WorldWideScience

Sample records for flood risk assessment

  1. Uncertainty quantification in flood risk assessment

    Science.gov (United States)

    Blöschl, Günter; Hall, Julia; Kiss, Andrea; Parajka, Juraj; Perdigão, Rui A. P.; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2017-04-01

    Uncertainty is inherent to flood risk assessments because of the complexity of the human-water system, which is characterised by nonlinearities and interdependencies, because of limited knowledge about system properties and because of cognitive biases in human perception and decision-making. On top of the uncertainty associated with the assessment of the existing risk to extreme events, additional uncertainty arises because of temporal changes in the system due to climate change, modifications of the environment, population growth and the associated increase in assets. Novel risk assessment concepts are needed that take into account all these sources of uncertainty. They should be based on the understanding of how flood extremes are generated and how they change over time. They should also account for the dynamics of risk perception of decision makers and population in the floodplains. In this talk we discuss these novel risk assessment concepts through examples from Flood Frequency Hydrology, Socio-Hydrology and Predictions Under Change. We believe that uncertainty quantification in flood risk assessment should lead to a robust approach of integrated flood risk management aiming at enhancing resilience rather than searching for optimal defense strategies.

  2. Flood risk management in Flanders: from flood risk objectives to appropriate measures through state assessment

    Directory of Open Access Journals (Sweden)

    Verbeke Sven

    2016-01-01

    Full Text Available In compliance with the EU Flood Directive to reduce flood risk, flood risk management objectives are indispensable for the delineation of necessary measures. In Flanders, flood risk management objectives are part of the environmental objectives which are judicially integrated by the Decree on Integrated Water Policy. Appropriate objectives were derived by supporting studies and extensive consultation on a local, regional and policy level. Under a general flood risk objective sub-objectives are formulated for different aspects: water management and safety, shipping, ecology, and water supply. By developing a risk matrix, it is possible to assess the current state of flood risk and to judge where action is needed to decrease the risk. Three different states of flood risk are distinguished: a acceptable risk, where no action is needed, b intermediate risk where the risk should be reduced by cost efficient actions, and c unacceptable risk, where action is necessary. For each particular aspect, the severity of the consequences of flooding is assessed by quantifiable indicators, such as economic risk, people at risk and ecological flood tolerance. The framework also allows evaluating the effects of the implemented measures and the autonomous development such as climate change and land use change. This approach gives a quantifiable assessment of state, and enables a prioritization of flood risk measures for the reduction of flood risk in a cost efficient and sustainable way.

  3. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    Science.gov (United States)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  4. Recent advances in flood forecasting and flood risk assessment

    Directory of Open Access Journals (Sweden)

    G. Arduino

    2005-01-01

    Full Text Available Recent large floods in Europe have led to increased interest in research and development of flood forecasting systems. Some of these events have been provoked by some of the wettest rainfall periods on record which has led to speculation that such extremes are attributable in some measure to anthropogenic global warming and represent the beginning of a period of higher flood frequency. Whilst current trends in extreme event statistics will be difficult to discern, conclusively, there has been a substantial increase in the frequency of high floods in the 20th century for basins greater than 2x105 km2. There is also increasing that anthropogenic forcing of climate change may lead to an increased probability of extreme precipitation and, hence, of flooding. There is, therefore, major emphasis on the improvement of operational flood forecasting systems in Europe, with significant European Community spending on research and development on prototype forecasting systems and flood risk management projects. This Special Issue synthesises the most relevant scientific and technological results presented at the International Conference on Flood Forecasting in Europe held in Rotterdam from 3-5 March 2003. During that meeting 150 scientists, forecasters and stakeholders from four continents assembled to present their work and current operational best practice and to discuss future directions of scientific and technological efforts in flood prediction and prevention. The papers presented at the conference fall into seven themes, as follows.

  5. A framework for global river flood risk assessments

    NARCIS (Netherlands)

    Winsemius, H.C.; van Beek, L.P.H.|info:eu-repo/dai/nl/14749799X; Jongman, B.; Ward, P.J.; Bouwman, A.

    2013-01-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and

  6. Quantitative flood risk assessment for Polders

    International Nuclear Information System (INIS)

    Manen, Sipke E. van; Brinkhuis, Martine

    2005-01-01

    In the Netherlands, the design of dikes and other water retaining structures is based on an acceptable probability (frequency) of overtopping. In 1993 a new safety concept was introduced based on total flood risk. Risk was defined as the product of probability and consequences. In recent years advanced tools have become available to calculate the actual flood risk of a polder. This paper describes the application of these tools to an existing lowland river area. The complete chain of calculations necessary to estimate the risk of flooding of a polder (or dike ring) is presented. The difficulties in applying the present day tools and the largest uncertainties in the calculations are shown

  7. Quantitative flood risk assessment for Polders

    Energy Technology Data Exchange (ETDEWEB)

    Manen, Sipke E. van [Ministry of Transport, Public Works and Water Management, Bouwdienst Rijkswaterstaat, Griffioenlaan 2, Utrecht 3526 (Netherlands)]. E-mail: s.e.vmanen@bwd.rws.minvenw.nl; Brinkhuis, Martine [Ministry of Transport, Public Works and Water Management, Delft (Netherlands)

    2005-12-01

    In the Netherlands, the design of dikes and other water retaining structures is based on an acceptable probability (frequency) of overtopping. In 1993 a new safety concept was introduced based on total flood risk. Risk was defined as the product of probability and consequences. In recent years advanced tools have become available to calculate the actual flood risk of a polder. This paper describes the application of these tools to an existing lowland river area. The complete chain of calculations necessary to estimate the risk of flooding of a polder (or dike ring) is presented. The difficulties in applying the present day tools and the largest uncertainties in the calculations are shown.

  8. An operational procedure for rapid flood risk assessment in Europe

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  9. Evolutionary leap in large-scale flood risk assessment needed

    OpenAIRE

    Vorogushyn, Sergiy; Bates, Paul D.; de Bruijn, Karin; Castellarin, Attilio; Kreibich, Heidi; Priest, Sally J.; Schröter, Kai; Bagli, Stefano; Blöschl, Günter; Domeneghetti, Alessio; Gouldby, Ben; Klijn, Frans; Lammersen, Rita; Neal, Jeffrey C.; Ridder, Nina

    2018-01-01

    Current approaches for assessing large-scale flood risks contravene the fundamental principles of the flood risk system functioning because they largely ignore basic interactions and feedbacks between atmosphere, catchments, river-floodplain systems and socio-economic processes. As a consequence, risk analyses are uncertain and might be biased. However, reliable risk estimates are required for prioritizing national investments in flood risk mitigation or for appraisal and management of insura...

  10. Weighted normalized risk factor for floods risk assessment

    Directory of Open Access Journals (Sweden)

    Ashraf Mohamed Elmoustafa

    2012-12-01

    Full Text Available Multi Criteria Analysis (MCA describes any structured approach used to determine overall preferences among alternative options, where options accomplish certain or several objectives. The flood protection of properties is a highly important issue due to the damage, danger and other hazards associated to it to human life, properties, and environment. To determine the priority of execution of protection works for any project, many aspects should be considered in order to decide the areas to start the data collection and analysis with. Multi criteria analysis techniques were tested and evaluated for the purpose of flood risk assessment, hydro-morphological parameters were used in this analysis. Finally a suitable technique was chosen and tested to be adopted as a mark of flood risk level and results were presented.

  11. Assessment of flood risk in Tokyo metropolitan area

    Science.gov (United States)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments

  12. Framework for probabilistic flood risk assessment in an Alpine region

    Science.gov (United States)

    Schneeberger, Klaus; Huttenlau, Matthias; Steinberger, Thomas; Achleitner, Stefan; Stötter, Johann

    2014-05-01

    Flooding is among the natural hazards that regularly cause significant losses to property and human lives. The assessment of flood risk delivers crucial information for all participants involved in flood risk management and especially for local authorities and insurance companies in order to estimate the possible flood losses. Therefore a framework for assessing flood risk has been developed and is introduced with the presented contribution. Flood risk is thereby defined as combination of the probability of flood events and of potential flood damages. The probability of occurrence is described through the spatial and temporal characterisation of flood. The potential flood damages are determined in the course of vulnerability assessment, whereas, the exposure and the vulnerability of the elements at risks are considered. Direct costs caused by flooding with the focus on residential building are analysed. The innovative part of this contribution lies on the development of a framework which takes the probability of flood events and their spatio-temporal characteristic into account. Usually the probability of flooding will be determined by means of recurrence intervals for an entire catchment without any spatial variation. This may lead to a misinterpretation of the flood risk. Within the presented framework the probabilistic flood risk assessment is based on analysis of a large number of spatial correlated flood events. Since the number of historic flood events is relatively small additional events have to be generated synthetically. This temporal extrapolation is realised by means of the method proposed by Heffernan and Tawn (2004). It is used to generate a large number of possible spatial correlated flood events within a larger catchment. The approach is based on the modelling of multivariate extremes considering the spatial dependence structure of flood events. The input for this approach are time series derived from river gauging stations. In a next step the

  13. Flood risk assessment and mapping for the Lebanese watersheds

    Science.gov (United States)

    Abdallah, Chadi; Hdeib, Rouya

    2016-04-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs

  14. Accumulation risk assessment for the flooding hazard

    Science.gov (United States)

    Roth, Giorgio; Ghizzoni, Tatiana; Rudari, Roberto

    2010-05-01

    One of the main consequences of the demographic and economic development and of markets and trades globalization is represented by risks cumulus. In most cases, the cumulus of risks intuitively arises from the geographic concentration of a number of vulnerable elements in a single place. For natural events, risks cumulus can be associated, in addition to intensity, also to event's extension. In this case, the magnitude can be such that large areas, that may include many regions or even large portions of different countries, are stroked by single, catastrophic, events. Among natural risks, the impact of the flooding hazard cannot be understated. To cope with, a variety of mitigation actions can be put in place: from the improvement of monitoring and alert systems to the development of hydraulic structures, throughout land use restrictions, civil protection, financial and insurance plans. All of those viable options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - flood risk scenarios. It is therefore necessary to identify proper statistical methodologies, able to describe the multivariate aspects of the involved physical processes and their spatial dependence. In hydrology and meteorology, but also in finance and insurance practice, it has early been recognized that classical statistical theory distributions (e.g., the normal and gamma families) are of restricted use for modeling multivariate spatial data. Recent research efforts have been therefore directed towards developing statistical models capable of describing the forms of asymmetry manifest in data sets. This, in particular, for the quite frequent case of phenomena whose empirical outcome behaves in a non-normal fashion, but still maintains some broad similarity with the multivariate normal distribution. Fruitful approaches were recognized in the use of flexible models, which include the normal

  15. Integrating human behaviour dynamics into flood disaster risk assessment

    Science.gov (United States)

    Aerts, J. C. J. H.; Botzen, W. J.; Clarke, K. C.; Cutter, S. L.; Hall, J. W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H.

    2018-03-01

    The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.

  16. Floods and climate: emerging perspectives for flood risk assessment and management

    DEFF Research Database (Denmark)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, Karsten

    2014-01-01

    context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical......, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand......Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction...

  17. Flood Risk Assessment Based On Security Deficit Analysis

    Science.gov (United States)

    Beck, J.; Metzger, R.; Hingray, B.; Musy, A.

    Risk is a human perception: a given risk may be considered as acceptable or unac- ceptable depending on the group that has to face that risk. Flood risk analysis of- ten estimates economic losses from damages, but neglects the question of accept- able/unacceptable risk. With input from land use managers, politicians and other stakeholders, risk assessment based on security deficit analysis determines objects with unacceptable risk and their degree of security deficit. Such a risk assessment methodology, initially developed by the Swiss federal authorities, is illustrated by its application on a reach of the Alzette River (Luxembourg) in the framework of the IRMA-SPONGE FRHYMAP project. Flood risk assessment always involves a flood hazard analysis, an exposed object vulnerability analysis, and an analysis combing the results of these two previous analyses. The flood hazard analysis was done with the quasi-2D hydraulic model FldPln to produce flood intensity maps. Flood intensity was determined by the water height and velocity. Object data for the vulnerability analysis, provided by the Luxembourg government, were classified according to their potential damage. Potential damage is expressed in terms of direct, human life and secondary losses. A thematic map was produced to show the object classification. Protection goals were then attributed to the object classes. Protection goals are assigned in terms of an acceptable flood intensity for a certain flood frequency. This is where input from land use managers and politicians comes into play. The perception of risk in the re- gion or country influences the protection goal assignment. Protection goals as used in Switzerland were used in this project. Thematic maps showing the protection goals of each object in the case study area for a given flood frequency were produced. Com- parison between an object's protection goal and the intensity of the flood that touched the object determine the acceptability of the risk and the

  18. Flood damage curves for consistent global risk assessments

    Science.gov (United States)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra

  19. A framework for global river flood risk assessments

    Science.gov (United States)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.

    2013-05-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM

  20. A framework for global river flood risk assessments

    Directory of Open Access Journals (Sweden)

    H. C. Winsemius

    2013-05-01

    Full Text Available There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population. The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE. We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from

  1. A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    Chinh Luu

    2018-04-01

    Full Text Available Vietnam is highly vulnerable to flood and storm impacts. Holistic flood risk assessment maps that adequately consider flood risk factors of hazard, exposure, and vulnerability are not available. These are vital for flood risk preparedness and disaster mitigation measures at the local scale. Unfortunately, there is a lack of knowledge about spatial multicriteria decision analysis and flood risk analysis more broadly in Vietnam. In response to this need, we identify and quantify flood risk components in Quang Nam province through spatial multicriteria decision analysis. The study presents a new approach to local flood risk assessment mapping, which combines historical flood marks with exposure and vulnerability data. The flood risk map output could assist and empower decision-makers in undertaking flood risk management activities in the province. Our study demonstrates a methodology to build flood risk assessment maps using flood mark, exposure and vulnerability data, which could be applied in other provinces in Vietnam.

  2. How Confident can we be in Flood Risk Assessments?

    Science.gov (United States)

    Merz, B.

    2017-12-01

    Flood risk management should be based on risk analyses quantifying the risk and its reduction for different risk reduction strategies. However, validating risk estimates by comparing model simulations with past observations is hardly possible, since the assessment typically encompasses extreme events and their impacts that have not been observed before. Hence, risk analyses are strongly based on assumptions and expert judgement. This situation opens the door for cognitive biases, such as `illusion of certainty', `overconfidence' or `recency bias'. Such biases operate specifically in complex situations with many factors involved, when uncertainty is high and events are probabilistic, or when close learning feedback loops are missing - aspects that all apply to risk analyses. This contribution discusses how confident we can be in flood risk assessments, and reflects about more rigorous approaches towards their validation.

  3. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2017-04-01

    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  4. New challenges on uncertainty propagation assessment of flood risk analysis

    Science.gov (United States)

    Martins, Luciano; Aroca-Jiménez, Estefanía; Bodoque, José M.; Díez-Herrero, Andrés

    2016-04-01

    Natural hazards, such as floods, cause considerable damage to the human life, material and functional assets every year and around the World. Risk assessment procedures has associated a set of uncertainties, mainly of two types: natural, derived from stochastic character inherent in the flood process dynamics; and epistemic, that are associated with lack of knowledge or the bad procedures employed in the study of these processes. There are abundant scientific and technical literature on uncertainties estimation in each step of flood risk analysis (e.g. rainfall estimates, hydraulic modelling variables); but very few experience on the propagation of the uncertainties along the flood risk assessment. Therefore, epistemic uncertainties are the main goal of this work, in particular,understand the extension of the propagation of uncertainties throughout the process, starting with inundability studies until risk analysis, and how far does vary a proper analysis of the risk of flooding. These methodologies, such as Polynomial Chaos Theory (PCT), Method of Moments or Monte Carlo, are used to evaluate different sources of error, such as data records (precipitation gauges, flow gauges...), hydrologic and hydraulic modelling (inundation estimation), socio-demographic data (damage estimation) to evaluate the uncertainties propagation (UP) considered in design flood risk estimation both, in numerical and cartographic expression. In order to consider the total uncertainty and understand what factors are contributed most to the final uncertainty, we used the method of Polynomial Chaos Theory (PCT). It represents an interesting way to handle to inclusion of uncertainty in the modelling and simulation process. PCT allows for the development of a probabilistic model of the system in a deterministic setting. This is done by using random variables and polynomials to handle the effects of uncertainty. Method application results have a better robustness than traditional analysis

  5. A Bayesian Network approach for flash flood risk assessment

    Science.gov (United States)

    Boutkhamouine, Brahim; Roux, Hélène; Pérès, François

    2017-04-01

    Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments ( 10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio-temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by

  6. Flood risk in a changing world - a coupled transdisciplinary modelling framework for flood risk assessment in an Alpine study area

    Science.gov (United States)

    Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine

    2017-04-01

    Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the

  7. Novel flood risk assessment framework for rapid decision making

    Science.gov (United States)

    Valyrakis, Manousos; Koursari, Eftychia; Solley, Mark

    2016-04-01

    The impacts of catastrophic flooding, have significantly increased over the last few decades. This is due to primarily the increased urbanisation in ever-expanding mega-cities as well as due to the intensification both in magnitude and frequency of extreme hydrologic events. Herein a novel conceptual framework is presented that incorporates the use of real-time information to inform and update low dimensionality hydraulic models, to allow for rapid decision making towards preventing loss of life and safeguarding critical infrastructure. In particular, a case study from the recent UK floods in the area of Whitesands (Dumfries), is presented to demonstrate the utility of this approach. It is demonstrated that effectively combining a wealth of readily available qualitative information (such as crowdsourced visual documentation or using live data from sensing techniques), with existing quantitative data, can help appropriately update hydraulic models and reduce modelling uncertainties in future flood risk assessments. This approach is even more useful in cases where hydraulic models are limited, do not exist or were not needed before unpredicted dynamic modifications to the river system took place (for example in the case of reduced or eliminated hydraulic capacity due to blockages). The low computational cost and rapid assessment this framework offers, render it promising for innovating in flood management.

  8. Assessing Stability and Dynamics in Flood Risk Governance

    NARCIS (Netherlands)

    Hegger, D.L.T.; Driessen, P.P.J.; Dieperink, C.; Wiering, M.A.; Raadgever, G.T.; Rijswick, H.F.M.W. van

    2014-01-01

    European urban agglomerations face increasing flood risks due to urbanization and the effects of climate change. These risks are addressed at European, national and regional policy levels. A diversification and alignment of Flood Risk Management Strategies (FRMSs) can make vulnerable urban

  9. Applying the Flood Vulnerability Index as a Knowledge base for flood risk assessment

    NARCIS (Netherlands)

    Balica, S-F.

    2012-01-01

    Floods are one of the most common and widely distributed natural risks to life and property worldwide. An important part of modern flood risk management is to evaluate vulnerability to floods. This evaluation can be done only by using a parametric approach. Worldwide there is a need to enhance our

  10. Imagining flood futures: risk assessment and management in practice.

    Science.gov (United States)

    Lane, Stuart N; Landström, Catharina; Whatmore, Sarah J

    2011-05-13

    The mantra that policy and management should be 'evidence-based' is well established. Less so are the implications that follow from 'evidence' being predictions of the future (forecasts, scenarios, horizons) even though such futures define the actions taken today to make the future sustainable. Here, we consider the tension between 'evidence', reliable because it is observed, and predictions of the future, unobservable in conventional terms. For flood risk management in England and Wales, we show that futures are actively constituted, and so imagined, through 'suites of practices' entwining policy, management and scientific analysis. Management has to constrain analysis because of the many ways in which flood futures can be constructed, but also because of commitment to an accounting calculus, which requires risk to be expressed in monetary terms. It is grounded in numerical simulation, undertaken by scientific consultants who follow policy/management guidelines that define the futures to be considered. Historical evidence is needed to deal with process and parameter uncertainties and the futures imagined are tied to pasts experienced. Reliance on past events is a challenge for prediction, given changing probability (e.g. climate change) and consequence (e.g. development on floodplains). So, risk management allows some elements of risk analysis to become unstable (notably in relation to climate change) but forces others to remain stable (e.g. invoking regulation to prevent inappropriate floodplain development). We conclude that the assumed separation of risk assessment and management is false because the risk calculation has to be defined by management. Making this process accountable requires openness about the procedures that make flood risk analysis more (or less) reliable to those we entrust to produce and act upon them such that, unlike the 'pseudosciences', they can be put to the test of public interrogation by those who have to live with their consequences

  11. Flood risk assessment in France: comparison of extreme flood estimation methods (EXTRAFLO project, Task 7)

    Science.gov (United States)

    Garavaglia, F.; Paquet, E.; Lang, M.; Renard, B.; Arnaud, P.; Aubert, Y.; Carre, J.

    2013-12-01

    In flood risk assessment the methods can be divided in two families: deterministic methods and probabilistic methods. In the French hydrologic community the probabilistic methods are historically preferred to the deterministic ones. Presently a French research project named EXTRAFLO (RiskNat Program of the French National Research Agency, https://extraflo.cemagref.fr) deals with the design values for extreme rainfall and floods. The object of this project is to carry out a comparison of the main methods used in France for estimating extreme values of rainfall and floods, to obtain a better grasp of their respective fields of application. In this framework we present the results of Task 7 of EXTRAFLO project. Focusing on French watersheds, we compare the main extreme flood estimation methods used in French background: (i) standard flood frequency analysis (Gumbel and GEV distribution), (ii) regional flood frequency analysis (regional Gumbel and GEV distribution), (iii) local and regional flood frequency analysis improved by historical information (Naulet et al., 2005), (iv) simplify probabilistic method based on rainfall information (i.e. Gradex method (CFGB, 1994), Agregee method (Margoum, 1992) and Speed method (Cayla, 1995)), (v) flood frequency analysis by continuous simulation approach and based on rainfall information (i.e. Schadex method (Paquet et al., 2013, Garavaglia et al., 2010), Shyreg method (Lavabre et al., 2003)) and (vi) multifractal approach. The main result of this comparative study is that probabilistic methods based on additional information (i.e. regional, historical and rainfall information) provide better estimations than the standard flood frequency analysis. Another interesting result is that, the differences between the various extreme flood quantile estimations of compared methods increase with return period, staying relatively moderate up to 100-years return levels. Results and discussions are here illustrated throughout with the example

  12. Flood Risk Assessment in Urban Areas Based on Spatial Analytics and Social Factors

    Directory of Open Access Journals (Sweden)

    Costas Armenakis

    2017-11-01

    Full Text Available Flood maps alone are not sufficient to determine and assess the risks to people, property, infrastructure, and services due to a flood event. Simply put, the risk is almost zero to minimum if the flooded region is “empty” (i.e., unpopulated, has not properties, no industry, no infrastructure, and no socio-economic activity. High spatial resolution Earth Observation (EO data can contribute to the generation and updating of flood risk maps based on several aspects including population, economic development, and critical infrastructure, which can enhance a city’s flood mitigation and preparedness planning. In this case study for the Don River watershed, Toronto, the flood risk is determined and flood risk index maps are generated by implementing a methodology for estimating risk based on the geographic coverage of the flood hazard, vulnerability of people, and the exposure of large building structures to flood water. Specifically, the spatial flood risk index maps have been generated through analytical spatial modeling which takes into account the areas in which a flood hazard is expected to occur, the terrain’s morphological characteristics, socio-economic parameters based on demographic data, and the density of large building complexes. Generated flood risk maps are verified through visual inspection with 3D city flood maps. Findings illustrate that areas of higher flood risk coincide with areas of high flood hazard and social and building exposure vulnerability.

  13. The role of interactions along the flood process chain and implications for risk assessment

    Science.gov (United States)

    Vorogushyn, Sergiy; Apel, Heiko; Viet Nguyen, Dung; Guse, Björn; Kreibich, Heidi; Lüdtke, Stefan; Schröter, Kai; Merz, Bruno

    2017-04-01

    Floods with their manifold characteristics are shaped by various processes along the flood process chain - from triggering meteorological extremes through catchment and river network process down to impacts on societies. In flood risk systems numerous interactions and feedbacks along the process chain may occur which finally shape spatio-temporal flood patterns and determine the ultimate risk. In this talk, we review some important interactions in the atmosphere-catchment, river-dike-floodplain and vulnerability compartments of the flood risk system. We highlight the importance of spatial interactions for flood hazard and risk assessment. For instance, the role of spatial rainfall structure or wave superposition in river networks is elucidated with selected case studies. In conclusion, we show the limits of current methods in assessment of large-scale flooding and outline the approach to more comprehensive risk assessment based on our regional flood risk model (RFM) for Germany.

  14. Flood Risk Assessment as a Part of Integrated Flood and Drought Analysis. Case Study: Southern Thailand

    Science.gov (United States)

    Prabnakorn, Saowanit; Suryadi, Fransiscus X.; de Fraiture, Charlotte

    2015-04-01

    Flood and drought are two main meteorological catastrophes that have created adverse consequences to more than 80% of total casualties universally, 50% by flood and 31% by drought. Those natural hazards have the tendency of increasing frequency and degree of severity and it is expected that climate change will exacerbate their occurrences and impacts. In addition, growing population and society interference are the other key factors that pressure on and exacerbate the adverse impacts. Consequently, nowadays, the loss from any disasters becomes less and less acceptable bringing about more people's consciousness on mitigation measures and management strategies and policies. In general, due to the difference in their inherent characteristics and time occurrences flood and drought mitigation and protection have been separately implemented, managed, and supervised by different group of authorities. Therefore, the objective of this research is to develop an integrated mitigation measure or a management policy able to surmount both problems to acceptable levels and is conveniently monitored by the same group of civil servants which will be economical in both short- and long-term. As aforementioned of the distinction of fundamental peculiarities and occurrence, the assessment processes of floods and droughts are separately performed using their own specific techniques. In the first part of the research flood risk assessment is focused in order to delineate the flood prone area. The study area is a river plain in southern Thailand where flooding is influenced by monsoon and depression. The work is mainly concentrated on physically-based computational modeling and an assortment of tools was applied for: data completion, areal rainfall interpolation, statistical distribution, rainfall-runoff analysis and flow model simulation. The outcome from the simulation can be concluded that the flood prone areas susceptible to inundation are along the riparian areas, particularly at the

  15. A Computational Framework for Flood Risk Assessment in The Netherlands

    Directory of Open Access Journals (Sweden)

    A.A. Markus

    2010-01-01

    Full Text Available The safety of dikes in The Netherlands, located in the delta of the rivers Rhine, Meuse and Scheldt, has been the subject of debate for more than ten years. The safety (or flood risk of a particular area may depend on the safety of other areas. This is referred to as effects of river system behaviour on flood risk (quantified as the estimated number of casualties and economic damage. A computational framework was developed to assess these effects. It consists of several components that are loosely coupled via data files and Tcl scripts to manage the individual programs and keep track of the state of the computations. The computations involved are lengthy (days or even weeks on a Linux cluster, which makes the framework currently more suitable for planning and design than for real-time operation. While the framework was constructed ad hoc, it can also be viewed more formally as a tuplespace Realising this makes it possible to adopt the philosophy for other similar frameworks.

  16. Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS

    Science.gov (United States)

    Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun

    2015-12-01

    Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.

  17. Urban flooding and health risk analysis by use of quantitative microbial risk assessment

    DEFF Research Database (Denmark)

    Andersen, Signe Tanja

    D thesis is to identify the limitations and possibilities for optimising microbial risk assessments of urban flooding through more evidence-based solutions, including quantitative microbial data and hydrodynamic water quality models. The focus falls especially on the problem of data needs and the causes......, but also when wading through a flooded area. The results in this thesis have brought microbial risk assessments one step closer to more uniform and repeatable risk analysis by using actual and relevant measured data and hydrodynamic water quality models to estimate the risk from flooding caused...... are expected to increase in the future. To ensure public health during extreme rainfall, solutions are needed, but limited knowledge on microbial water quality, and related health risks, makes it difficult to implement microbial risk analysis as a part of the basis for decision making. The main aim of this Ph...

  18. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    Science.gov (United States)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model

  19. Analysis of Hydrological Sensitivity for Flood Risk Assessment

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Sharma

    2018-02-01

    Full Text Available In order for the Indian government to maximize Integrated Water Resource Management (IWRM, the Brahmaputra River has played an important role in the undertaking of the Pilot Basin Study (PBS due to the Brahmaputra River’s annual regional flooding. The selected Kulsi River—a part of Brahmaputra sub-basin—experienced severe floods in 2007 and 2008. In this study, the Rainfall-Runoff-Inundation (RRI hydrological model was used to simulate the recent historical flood in order to understand and improve the integrated flood risk management plan. The ultimate objective was to evaluate the sensitivity of hydrologic simulation using different Digital Elevation Model (DEM resources, coupled with DEM smoothing techniques, with a particular focus on the comparison of river discharge and flood inundation extent. As a result, the sensitivity analysis showed that, among the input parameters, the RRI model is highly sensitive to Manning’s roughness coefficient values for flood plains, followed by the source of the DEM, and then soil depth. After optimizing its parameters, the simulated inundation extent showed that the smoothing filter was more influential than its simulated discharge at the outlet. Finally, the calibrated and validated RRI model simulations agreed well with the observed discharge and the Moderate Imaging Spectroradiometer (MODIS-detected flood extents.

  20. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines

    Science.gov (United States)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.

    2016-12-01

    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the

  1. Flood disaster risk assessment of rural housings--a case study of Kouqian Town in China.

    Science.gov (United States)

    Zhang, Qi; Zhang, Jiquan; Jiang, Liupeng; Liu, Xingpeng; Tong, Zhijun

    2014-04-03

    Floods are a devastating kind of natural disaster. About half of the population in China lives in rural areas. Therefore, it is necessary to assess the flood disaster risk of rural housings. The results are valuable for guiding the rescue and relief goods layout. In this study, we take the severe flood disaster that happened at Kouqian Town in Jilin, China in 2010 as an example to build an risk assessment system for flood disaster on rural housings. Based on the theory of natural disaster risk formation and "3S" technology (remote sensing, geography information systems and global positioning systems), taking the rural housing as the bearing body, we assess the flood disaster risk from three aspects: hazard, exposure and vulnerability. The hazard presented as the flood submerging range and depth. The exposure presented as the values of the housing and the property in it. The vulnerability presented as the relationship between the losses caused by flood and flood depth. We validate the model by the field survey after the flood disaster. The risk assessment results highly coincide with the field survey losses. This model can be used to assess the risk of other flood events in this area.

  2. Flood Disaster Risk Assessment of Rural Housings — A Case Study of Kouqian Town in China

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2014-04-01

    Full Text Available Floods are a devastating kind of natural disaster. About half of the population in China lives in rural areas. Therefore, it is necessary to assess the flood disaster risk of rural housings. The results are valuable for guiding the rescue and relief goods layout. In this study, we take the severe flood disaster that happened at Kouqian Town in Jilin, China in 2010 as an example to build an risk assessment system for flood disaster on rural housings. Based on the theory of natural disaster risk formation and “3S” technology (remote sensing, geography information systems and global positioning systems, taking the rural housing as the bearing body, we assess the flood disaster risk from three aspects: hazard, exposure and vulnerability. The hazard presented as the flood submerging range and depth. The exposure presented as the values of the housing and the property in it. The vulnerability presented as the relationship between the losses caused by flood and flood depth. We validate the model by the field survey after the flood disaster. The risk assessment results highly coincide with the field survey losses. This model can be used to assess the risk of other flood events in this area.

  3. Flood Disaster Risk Assessment of Rural Housings — A Case Study of Kouqian Town in China

    Science.gov (United States)

    Zhang, Qi; Zhang, Jiquan; Jiang, Liupeng; Liu, Xingpeng; Tong, Zhijun

    2014-01-01

    Floods are a devastating kind of natural disaster. About half of the population in China lives in rural areas. Therefore, it is necessary to assess the flood disaster risk of rural housings. The results are valuable for guiding the rescue and relief goods layout. In this study, we take the severe flood disaster that happened at Kouqian Town in Jilin, China in 2010 as an example to build an risk assessment system for flood disaster on rural housings. Based on the theory of natural disaster risk formation and “3S” technology (remote sensing, geography information systems and global positioning systems), taking the rural housing as the bearing body, we assess the flood disaster risk from three aspects: hazard, exposure and vulnerability. The hazard presented as the flood submerging range and depth. The exposure presented as the values of the housing and the property in it. The vulnerability presented as the relationship between the losses caused by flood and flood depth. We validate the model by the field survey after the flood disaster. The risk assessment results highly coincide with the field survey losses. This model can be used to assess the risk of other flood events in this area. PMID:24705363

  4. Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe River

    NARCIS (Netherlands)

    de Kok, Jean-Luc; Grossmann, M.

    2010-01-01

    The downstream effects of flood risk mitigation measures and the necessity to develop flood risk management strategies that are effective on a basin scale call for a flood risk assessment methodology that can be applied at the scale of a large river. We present an example of a rapid flood risk

  5. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-01-01

    uncertainty analysis, which can assess and quantify the overall uncertainty in relation to climate change adaptation to urban flash floods. The analysis is based on an uncertainty cascade that by means of Monte Carlo simulations of flood risk assessments incorporates climate change impacts as a key driver......There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation...... to increasing urban flood risk. Assessment of adaptation strategies often requires a comprehensive risk-based economic analysis of current risk, drivers of change of risk over time, and measures to reduce the risk. However, such studies are often associated with large uncertainties. The uncertainties arise from...

  6. Flood Risk Index Assessment in Johor River Basin

    International Nuclear Information System (INIS)

    Ahmad Shakir Mohd Saudi; Hafizan Juahir; Azman Azid; Fazureen Azaman; Ahmad Shakir Mohd Saudi

    2015-01-01

    This study is focusing on constructing the flood risk index in the Johor river basin. The application of statistical methods such as factor analysis (FA), statistical process control (SPC) and artificial neural network (ANN) had revealed the most efficient flood risk index. The result in FA was water level has correlation coefficient of 0.738 and the most practicable variable to be used for the warning alert system. The upper control limits (UCL) for the water level in the river basin Johor is 4.423 m and the risk index for the water level has been set by this method consisting of 0-100.The accuracy of prediction has been evaluated by using ANN and the accuracy of the test result was R"2 = 0.96408 with RMSE= 2.5736. The future prediction for UCL in Johor river basin has been predicted and the value was 3.75 m. This model can shows the current and future prediction for flood risk index in the Johor river basin and can help local authorities for flood control and prevention of the state of Johor. (author)

  7. An influence diagram for urban flood risk assessment through pluvial flood hazards under non-stationary conditions

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra; Friis Hansen, P.; Garrè, Luca

    2014-01-01

    Urban flooding introduces significant risk to society. Non-stationarity leads to increased uncertainty and this is challenging to include in actual decision-making. The primary objective of this study was to develop a risk assessment and decision support framework for pluvial urban flood risk under...... non-stationary conditions using an influence diagram (ID) which is a Bayesian network (BN) extended with decision and utility nodes. Non-stationarity is considered to be the influence of climate change where extreme precipitation patterns change over time. The overall risk is quantified in monetary...... terms expressed as expected annual damage. The network is dynamic in as much as it assesses risk at different points in time. The framework provides means for decision-makers to assess how different decisions on flood adaptation affect the risk now and in the future. The result from the ID was extended...

  8. Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks

    Directory of Open Access Journals (Sweden)

    B. Büchele

    2006-01-01

    Full Text Available Currently, a shift from classical flood protection as engineering task towards integrated flood risk management concepts can be observed. In this context, a more consequent consideration of extreme events which exceed the design event of flood protection structures and failure scenarios such as dike breaches have to be investigated. Therefore, this study aims to enhance existing methods for hazard and risk assessment for extreme events and is divided into three parts. In the first part, a regionalization approach for flood peak discharges was further developed and substantiated, especially regarding recurrence intervals of 200 to 10 000 years and a large number of small ungauged catchments. Model comparisons show that more confidence in such flood estimates for ungauged areas and very long recurrence intervals may be given as implied by statistical analysis alone. The hydraulic simulation in the second part is oriented towards hazard mapping and risk analyses covering the whole spectrum of relevant flood events. As the hydrodynamic simulation is directly coupled with a GIS, the results can be easily processed as local inundation depths for spatial risk analyses. For this, a new GIS-based software tool was developed, being presented in the third part, which enables estimations of the direct flood damage to single buildings or areas based on different established stage-damage functions. Furthermore, a new multifactorial approach for damage estimation is presented, aiming at the improvement of damage estimation on local scale by considering factors like building quality, contamination and precautionary measures. The methods and results from this study form the base for comprehensive risk analyses and flood management strategies.

  9. Flood Disaster Risk Assessment of Rural Housings — A Case Study of Kouqian Town in China

    OpenAIRE

    Zhang, Qi; Zhang, Jiquan; Jiang, Liupeng; Liu, Xingpeng; Tong, Zhijun

    2014-01-01

    Floods are a devastating kind of natural disaster. About half of the population in China lives in rural areas. Therefore, it is necessary to assess the flood disaster risk of rural housings. The results are valuable for guiding the rescue and relief goods layout. In this study, we take the severe flood disaster that happened at Kouqian Town in Jilin, China in 2010 as an example to build an risk assessment system for flood disaster on rural housings. Based on the theory of natural disaster ris...

  10. Surging Seas Risk Finder: A Tool for Local-Scale Flood Risk Assessments in Coastal Cities

    Science.gov (United States)

    Kulp, S. A.; Strauss, B.

    2015-12-01

    Local decision makers in coastal cities require accurate, accessible, and thorough assessments of flood exposure risk within their individual municipality, in their efforts to mitigate against damage due to future sea level rise. To fill this need, we have developed Climate Central's Surging Seas Risk Finder, an interactive data toolkit which presents our sea level rise and storm surge analysis for every coastal town, city, county, and state within the USA. Using this tool, policy makers can easily zoom in on their local place of interest to receive a detailed flood risk assessment, which synthesizes a wide range of features including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and many other critical facilities. Risk Finder can also be used to identify specific points of interest in danger of exposure at different flood levels. Additionally, this tool provides localized storm surge probabilities and sea level rise projections at tidal gauges along the coast, so that users can quickly understand the risk of flooding in their area over the coming decades.

  11. Uncertainty assessment of climate change adaptation using an economic pluvial flood risk framework

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    2012-01-01

    It is anticipated that climate change is likely to lead to an increasing risk level of flooding in cities in northern Europe. One challenging question is how to best address the increasing flood risk and assess the costs and benefits of adapting to such changes. We established an integrated...... approach for identification and assessment of climate change adaptation options by incorporating climate change impacts, flood inundation modelling, economic tool and risk assessment and management. The framework is further extended and adapted by embedding a Monte Carlo simulation to estimate the total...

  12. Integrated urban flood risk assessment – adapting a multicriteria approach to a city

    Directory of Open Access Journals (Sweden)

    C. Kubal

    2009-11-01

    Full Text Available Flood risk assessment is an essential part of flood risk management. As part of the new EU flood directive it is becoming increasingly more popular in European flood policy. Particularly cities with a high concentration of people and goods are vulnerable to floods. This paper introduces the adaptation of a novel method of multicriteria flood risk assessment, that was recently developed for the more rural Mulde river basin, to a city. The study site is Leipzig, Germany. The "urban" approach includes a specific urban-type set of economic, social and ecological flood risk criteria, which focus on urban issues: population and vulnerable groups, differentiated residential land use classes, areas with social and health care but also ecological indicators such as recreational urban green spaces. These criteria are integrated using a "multicriteria decision rule" based on an additive weighting procedure which is implemented into the software tool FloodCalc urban. Based on different weighting sets we provide evidence of where the most flood-prone areas are located in a city. Furthermore, we can show that with an increasing inundation extent it is both the social and the economic risks that strongly increase.

  13. Urban Flood Risk Assessment Under Uncertain Conditions and Scarce Information

    Science.gov (United States)

    Rodríguez-Gaviria, E. M.; Botero-Fernandez, V.

    2015-12-01

    Flood risk management in small urban areas in Colombia has a great degree of uncertainty due to the low availability and quality of data, the non-existent personnel qualified in the collection and processing of data, and the insufficient information to evaluate the risk and vulnerability. It is because of this that two methods are developed: one for the generation of flood threat maps for different return periods combining historical, geomorphological, and hydrological hydraulic methods assisted by remote sensors and SIG through the use of data acquired through field campaigns, official hydrological networks, orthophotos, multitemporal topographic maps, and ASTER, STRM, and LiDAR images. And another method in which categorical variables are established, linking local physical, social, economical, environmental and political-institutional factors that are explored through different media such as reports, news, databases, transects, interviews, community workshops, and surveys conducted at homes. Such variables were included within an analysis of multiple correspondence to conduct a descriptive study of the exposure, susceptibility, and capacity conditions and to create a vulnerability index that was spatially plotted spatially on maps. The uncertainty is reduced in the measure in which local knowledge is used as a source of information acquisition, of validation of what already exists, and of calibration of the proposed methods. This research was applied to the urban centers of Caucasia (Antioquia) and Plato (Magdalena), which have been historically affected by slow flooding of the Magdalena and Cauca river, it being especially useful in the selection of best alternatives for risk management, planning for development, and land use management, with the possibility of replicating it to benefit other municipalities that experience the same reality.

  14. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    Science.gov (United States)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  15. Assessing the environmental justice consequences of flood risk: a case study in Miami, Florida

    Science.gov (United States)

    Montgomery, Marilyn C.; Chakraborty, Jayajit

    2015-09-01

    recognizing intra-ethnic diversity within the Hispanic category to obtain a more comprehensive assessment of the social distribution of flood risks.

  16. Hydrological Modelling using HEC-HMS for Flood Risk Assessment of Segamat Town, Malaysia

    Science.gov (United States)

    Romali, N. S.; Yusop, Z.; Ismail, A. Z.

    2018-03-01

    This paper presents an assessment of the applicability of using Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS) for hydrological modelling of Segamat River. The objective of the model application is to assist in the assessment of flood risk by providing the peak flows of 2011 Segamat flood for the generation of flood mapping of Segamat town. The capability of the model was evaluated by comparing the historical observed data with the simulation results of the selected flood events. The model calibration and validation efficiency was verified using Nash-Sutcliffe model efficiency coefficient. The results demonstrate the interest to implement the hydrological model for assessing flood risk where the simulated peak flow result is in agreement with historical observed data. The model efficiency of the calibrated and validated exercises is 0.90 and 0.76 respectively, which is acceptable.

  17. Assessing flood risk at the global scale: model setup, results, and sensitivity

    International Nuclear Information System (INIS)

    Ward, Philip J; Jongman, Brenden; Weiland, Frederiek Sperna; Winsemius, Hessel C; Bouwman, Arno; Ligtvoet, Willem; Van Beek, Rens; Bierkens, Marc F P

    2013-01-01

    Globally, economic losses from flooding exceeded $19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP ($1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures. (letter)

  18. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Mikkelsen, Peter Steen; Halsnæs, Kirsten

    2012-01-01

    Climate change is likely to affect the water cycle by influencing the precipitation patterns. It is important to integrate the anticipated changes into the design of urban drainage in response to the increased risk level in cities. This paper presents a pluvial flood risk assessment framework...... to identify and assess adaptation options in the urban context. An integrated approach is adopted by incorporating climate change impact assessment, flood inundation modeling, economic tool, and risk assessment, hereby developing a step-by-step process for cost-benefit assessment of climate change adaptation...

  19. Impact of modelling scale on probabilistic flood risk assessment: the Malawi case

    Directory of Open Access Journals (Sweden)

    Rudari Roberto

    2016-01-01

    Full Text Available In the early months of 2015, destructive floods hit Malawi, causing deaths and economic losses. Flood risk assessment outcomes can be used to increase scientific-supported awareness of risk. The recent increase in availability of high resolution data such as TanDEM-X at 12m resolution makes possible the use of detailed physical based flood hazard models in risk assessment. Nonetheless the scale of hazard modelling still remains an issue, which requires a compromise between level of detail and computational efforts. This work presents two different approaches on hazard modelling. Both methods rely on 32-years of numeric weather re-analysis and rainfall-runoff transformation through a fully distributed WFLOW-type hydrological model. The first method, applied at national scale, uses fast post-processing routines, which estimate flood water depth at a resolution of about 1×1km. The second method applies a full 2D hydraulic model to propagate water discharge into the flood plains and best suites for small areas where assets are concentrated. At the 12m resolution, three hot spots with a model area of approximately 10×10 km are analysed. Flood hazard maps obtained with both approaches are combined with flood impact models at the same resolution to generate indicators for flood risk. A quantitative comparison of the two approaches is presented in order to show the effects of modelling scale on both hazard and impact losses.

  20. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments

    Science.gov (United States)

    Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko

    2018-01-01

    This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to

  1. Flood Risk Assessment on Selected Critical Infrastructure in Kota Marudu Town, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Ayog Janice Lynn

    2017-01-01

    Full Text Available This study investigates the risk of flood on selected critical infrastructure in a flood-prone catchment in Sabah, Malaysia. Kota Marudu, located in the Bandau floodplain, one of the Sabah’s northern water catchments, was selected as the study site due to its frequent flood occurrence and large floodplain coverage. Two of its largest rivers, namely Sungai Bongon and Sungai Bandau, tends to flood during rainy season and cause temporary displacements of thousands of people living in the floodplain. A total of 362 respondents participated in the questionnaire survey in order to gather information on historical flood occurrence. Three flood depth groups were determined, which are 1 less than 0.3 meter, 2 0.3 – 0.6 meter and 3 more than 0.6 meter, while three categories of critical infrastructure were defined, namely transportation system, communication system and buildings. It is found that the transportation system encounters the most severe impact as flood inundation increases, where 92% of the respondents believe that the transportation access should be abandoned when flood depth is more than 0.6m. The findings of this study will be used for detailed risk assessment, specifically on the vulnerability of the critical infrastructures to flood in this floodplain.

  2. Vehicles instability criteria for flood risk assessment of a street network

    Directory of Open Access Journals (Sweden)

    C. Arrighi

    2016-05-01

    Full Text Available The mutual interaction between floods and human activity is a process, which has been evolving over history and has shaped flood risk pathways. In developed countries, many events have illustrated that the majority of the fatalities during a flood occurs in a vehicle, which is considered as a safe shelter but it may turn into a trap for several combinations of water depth and velocity. Thus, driving a car in floodwaters is recognized as the most crucial aggravating factor for people safety. On the other hand, the entrainment of vehicles may locally cause obstructions to the flow and induce the collapse of infrastructures. Flood risk to vehicles can be defined as the combination of the probability of a vehicle of being swept away (i.e. the hazard and the actual traffic/parking density, i.e. the vulnerability. Hazard for vehicles can be assessed through the spatial identification and mapping of the critical conditions for vehicles incipient motion. This analysis requires a flood map with information on water depth and velocity and consistent instability criteria accounting for flood and vehicles characteristics. Vulnerability is evaluated thanks to the road network and traffic data. Therefore, vehicles flood risk mapping can support people's education and management practices in order to reduce the casualties. In this work, a flood hazard classification for vehicles is introduced and an application to a real case study is presented and discussed.

  3. Vehicles instability criteria for flood risk assessment of a street network

    Science.gov (United States)

    Arrighi, Chiara; Huybrechts, Nicolas; Ouahsine, Abdellatif; Chassé, Patrick; Oumeraci, Hocine; Castelli, Fabio

    2016-05-01

    The mutual interaction between floods and human activity is a process, which has been evolving over history and has shaped flood risk pathways. In developed countries, many events have illustrated that the majority of the fatalities during a flood occurs in a vehicle, which is considered as a safe shelter but it may turn into a trap for several combinations of water depth and velocity. Thus, driving a car in floodwaters is recognized as the most crucial aggravating factor for people safety. On the other hand, the entrainment of vehicles may locally cause obstructions to the flow and induce the collapse of infrastructures. Flood risk to vehicles can be defined as the combination of the probability of a vehicle of being swept away (i.e. the hazard) and the actual traffic/parking density, i.e. the vulnerability. Hazard for vehicles can be assessed through the spatial identification and mapping of the critical conditions for vehicles incipient motion. This analysis requires a flood map with information on water depth and velocity and consistent instability criteria accounting for flood and vehicles characteristics. Vulnerability is evaluated thanks to the road network and traffic data. Therefore, vehicles flood risk mapping can support people's education and management practices in order to reduce the casualties. In this work, a flood hazard classification for vehicles is introduced and an application to a real case study is presented and discussed.

  4. Risk assessment of flood disaster and forewarning model at different spatial-temporal scales

    Science.gov (United States)

    Zhao, Jun; Jin, Juliang; Xu, Jinchao; Guo, Qizhong; Hang, Qingfeng; Chen, Yaqian

    2018-05-01

    Aiming at reducing losses from flood disaster, risk assessment of flood disaster and forewarning model is studied. The model is built upon risk indices in flood disaster system, proceeding from the whole structure and its parts at different spatial-temporal scales. In this study, on the one hand, it mainly establishes the long-term forewarning model for the surface area with three levels of prediction, evaluation, and forewarning. The method of structure-adaptive back-propagation neural network on peak identification is used to simulate indices in prediction sub-model. Set pair analysis is employed to calculate the connection degrees of a single index, comprehensive index, and systematic risk through the multivariate connection number, and the comprehensive assessment is made by assessment matrixes in evaluation sub-model. The comparison judging method is adopted to divide warning degree of flood disaster on risk assessment comprehensive index with forewarning standards in forewarning sub-model and then the long-term local conditions for proposing planning schemes. On the other hand, it mainly sets up the real-time forewarning model for the spot, which introduces the real-time correction technique of Kalman filter based on hydrological model with forewarning index, and then the real-time local conditions for presenting an emergency plan. This study takes Tunxi area, Huangshan City of China, as an example. After risk assessment and forewarning model establishment and application for flood disaster at different spatial-temporal scales between the actual and simulated data from 1989 to 2008, forewarning results show that the development trend for flood disaster risk remains a decline on the whole from 2009 to 2013, despite the rise in 2011. At the macroscopic level, project and non-project measures are advanced, while at the microcosmic level, the time, place, and method are listed. It suggests that the proposed model is feasible with theory and application, thus

  5. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    Science.gov (United States)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  6. Assessment and Adaptation to Climate Change-Related Floods Risks

    NARCIS (Netherlands)

    Jongman, B.; Winsemius, H.C.; Fraser, S.; Muis, S.; Ward, P.J.

    2018-01-01

    The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand

  7. Assessing urban potential flooding risk and identifying effective risk-reduction measures.

    Science.gov (United States)

    Cherqui, Frédéric; Belmeziti, Ali; Granger, Damien; Sourdril, Antoine; Le Gauffre, Pascal

    2015-05-01

    Flood protection is one of the traditional functions of any drainage system, and it remains a major issue in many cities because of economic and health impact. Heavy rain flooding has been well studied and existing simulation software can be used to predict and improve level of protection. However, simulating minor flooding remains highly complex, due to the numerous possible causes related to operational deficiencies or negligent behaviour. According to the literature, causes of blockages vary widely from one case to another: it is impossible to provide utility managers with effective recommendations on how to improve the level of protection. It is therefore vital to analyse each context in order to define an appropriate strategy. Here we propose a method to represent and assess the flooding risk, using GIS and data gathered during operation and maintenance. Our method also identifies potential management responses. The approach proposed aims to provide decision makers with clear and comprehensible information. Our method has been successfully applied to the Urban Community of Bordeaux (France) on 4895 interventions related to flooding recorded during the 2009-2011 period. Results have shown the relative importance of different issues, such as human behaviour (grease, etc.) or operational deficiencies (roots, etc.), and lead to identify corrective and proactive. This study also confirms that blockages are not always directly due to the network itself and its deterioration. Many causes depend on environmental and operating conditions on the network and often require collaboration between municipal departments in charge of roads, green spaces, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A long-term, continuous simulation approach for large-scale flood risk assessments

    Science.gov (United States)

    Falter, Daniela; Schröter, Kai; Viet Dung, Nguyen; Vorogushyn, Sergiy; Hundecha, Yeshewatesfa; Kreibich, Heidi; Apel, Heiko; Merz, Bruno

    2014-05-01

    The Regional Flood Model (RFM) is a process based model cascade developed for flood risk assessments of large-scale basins. RFM consists of four model parts: the rainfall-runoff model SWIM, a 1D channel routing model, a 2D hinterland inundation model and the flood loss estimation model for residential buildings FLEMOps+r. The model cascade was recently undertaken a proof-of-concept study at the Elbe catchment (Germany) to demonstrate that flood risk assessments, based on a continuous simulation approach, including rainfall-runoff, hydrodynamic and damage estimation models, are feasible for large catchments. The results of this study indicated that uncertainties are significant, especially for hydrodynamic simulations. This was basically a consequence of low data quality and disregarding dike breaches. Therefore, RFM was applied with a refined hydraulic model setup for the Elbe tributary Mulde. The study area Mulde catchment comprises about 6,000 km2 and 380 river-km. The inclusion of more reliable information on overbank cross-sections and dikes considerably improved the results. For the application of RFM for flood risk assessments, long-term climate input data is needed to drive the model chain. This model input was provided by a multi-site, multi-variate weather generator that produces sets of synthetic meteorological data reproducing the current climate statistics. The data set comprises 100 realizations of 100 years of meteorological data. With the proposed continuous simulation approach of RFM, we simulated a virtual period of 10,000 years covering the entire flood risk chain including hydrological, 1D/2D hydrodynamic and flood damage estimation models. This provided a record of around 2.000 inundation events affecting the study area with spatially detailed information on inundation depths and damage to residential buildings on a resolution of 100 m. This serves as basis for a spatially consistent, flood risk assessment for the Mulde catchment presented in

  9. Insights from Guideline for Performance of Internal Flooding Probabilistic Risk Assessment (IFPRA)

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joo Eon

    2009-01-01

    An internal flooding (IF) risk assessment refers to the quantitative probabilistic safety assessment (PSA) treatment of flooding as a result of pipe and tank breaks inside the plants, as well as from other recognized flood sources. The industry consensus standard for Internal Events Probabilistic Risk Assessment (ASME-RA-Sb-2005) includes high-level and supporting technical requirements for developing internal flooding probabilistic risk assessment (IFPRA). This industry standard is endorsed in Regulatory Guide 1.200, Revision 1 as an acceptable approach for addressing the risk contribution from IF events for risk informed applications that require U.S. Nuclear Regulatory commission (NRC) approval. In 2006, EPRI published a draft report for IFPRA that addresses the requirements of the ASME PRA consensus standard and have made efforts to refine and update the final EPRI IFPRA guideline. Westinghouse has performed an IFPRA analysis for several nuclear power plants (NPPs), such as Watts Bar and Fort Calhoun, using the draft EPRI guidelines for development of an IFPRA. Proprietary methodologies have been developed to apply the EPRI guidelines. The objectives of the draft report for IFPRA guideline are to: · Provide guidance for PSA practitioners in the performance of the elements of a PRA associated with internal flooding events consistent with the current state of the art for internal flooding PRA · Provide guidance regarding acceptable approaches that is sufficient to meeting the requirements of the ASME PRA Standard associated with internal flooding · Incorporate lessons learned in the performance of internal flooding PRAs including those identified as pilot applications of earlier drafts of this procedures guide The purpose of this paper is to present a vision for domestic nuclear power plants' IFPRA by comparing the method of the draft EPRI guidelines with the existing IFPRA method for domestic NPPs

  10. Insights from Guideline for Performance of Internal Flooding Probabilistic Risk Assessment (IFPRA)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Yeong; Yang, Joo Eon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    An internal flooding (IF) risk assessment refers to the quantitative probabilistic safety assessment (PSA) treatment of flooding as a result of pipe and tank breaks inside the plants, as well as from other recognized flood sources. The industry consensus standard for Internal Events Probabilistic Risk Assessment (ASME-RA-Sb-2005) includes high-level and supporting technical requirements for developing internal flooding probabilistic risk assessment (IFPRA). This industry standard is endorsed in Regulatory Guide 1.200, Revision 1 as an acceptable approach for addressing the risk contribution from IF events for risk informed applications that require U.S. Nuclear Regulatory commission (NRC) approval. In 2006, EPRI published a draft report for IFPRA that addresses the requirements of the ASME PRA consensus standard and have made efforts to refine and update the final EPRI IFPRA guideline. Westinghouse has performed an IFPRA analysis for several nuclear power plants (NPPs), such as Watts Bar and Fort Calhoun, using the draft EPRI guidelines for development of an IFPRA. Proprietary methodologies have been developed to apply the EPRI guidelines. The objectives of the draft report for IFPRA guideline are to: {center_dot} Provide guidance for PSA practitioners in the performance of the elements of a PRA associated with internal flooding events consistent with the current state of the art for internal flooding PRA {center_dot} Provide guidance regarding acceptable approaches that is sufficient to meeting the requirements of the ASME PRA Standard associated with internal flooding {center_dot} Incorporate lessons learned in the performance of internal flooding PRAs including those identified as pilot applications of earlier drafts of this procedures guide The purpose of this paper is to present a vision for domestic nuclear power plants' IFPRA by comparing the method of the draft EPRI guidelines with the existing IFPRA method for domestic NPPs.

  11. A spatial assessment framework for evaluating flood risk under extreme climates.

    Science.gov (United States)

    Chen, Yun; Liu, Rui; Barrett, Damian; Gao, Lei; Zhou, Mingwei; Renzullo, Luigi; Emelyanova, Irina

    2015-12-15

    Australian coal mines have been facing a major challenge of increasing risk of flooding caused by intensive rainfall events in recent years. In light of growing climate change concerns and the predicted escalation of flooding, estimating flood inundation risk becomes essential for understanding sustainable mine water management in the Australian mining sector. This research develops a spatial multi-criteria decision making prototype for the evaluation of flooding risk at a regional scale using the Bowen Basin and its surroundings in Queensland as a case study. Spatial gridded data, including climate, hydrology, topography, vegetation and soils, were collected and processed in ArcGIS. Several indices were derived based on time series of observations and spatial modeling taking account of extreme rainfall, evapotranspiration, stream flow, potential soil water retention, elevation and slope generated from a digital elevation model (DEM), as well as drainage density and proximity extracted from a river network. These spatial indices were weighted using the analytical hierarchy process (AHP) and integrated in an AHP-based suitability assessment (AHP-SA) model under the spatial risk evaluation framework. A regional flooding risk map was delineated to represent likely impacts of criterion indices at different risk levels, which was verified using the maximum inundation extent detectable by a time series of remote sensing imagery. The result provides baseline information to help Bowen Basin coal mines identify and assess flooding risk when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in this research offers the Australian mining industry, and social and environmental studies around the world, an effective way to produce reliable assessment on flood risk for managing uncertainty in water availability under climate change. Copyright © 2015. Published by Elsevier B.V.

  12. Floods and climate: emerging perspectives for flood risk assessment and management

    NARCIS (Netherlands)

    Merz, B.; Aerts, J.C.J.H.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; Delgado, J.M.; Gocht, M.; Guzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H. -H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P.J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-01-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of

  13. Microbial Risk Assessment of Tidal-Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam).

    Science.gov (United States)

    Nguyen, Hong Quan; Huynh, Thi Thao Nguyen; Pathirana, Assela; Van der Steen, Peter

    2017-11-30

    Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., "living with floods", in the Mekong Delta should also consider health risk issues.

  14. Assessing coastal flood risk and sea level rise impacts at New York City area airports

    Science.gov (United States)

    Ohman, K. A.; Kimball, N.; Osler, M.; Eberbach, S.

    2014-12-01

    Flood risk and sea level rise impacts were assessed for the Port Authority of New York and New Jersey (PANYNJ) at four airports in the New York City area. These airports included John F. Kennedy International, LaGuardia, Newark International, and Teterboro Airports. Quantifying both present day and future flood risk due to climate change and developing flood mitigation alternatives is crucial for the continued operation of these airports. During Hurricane Sandy in October 2012 all four airports were forced to shut down, in part due to coastal flooding. Future climate change and sea level rise effects may result in more frequent shutdowns and disruptions in travel to and from these busy airports. The study examined the effects of the 1%-annual-chance coastal flooding event for present day existing conditions and six different sea level rise scenarios at each airport. Storm surge model outputs from the Federal Emergency Management Agency (FEMA) provided the present day storm surge conditions. 50th and 90thpercentile sea level rise projections from the New York Panel on Climate Change (NPCC) 2013 report were incorporated into storm surge results using linear superposition methods. These projections were evaluated for future years 2025, 2035, and 2055. In addition to the linear superposition approach for storm surge at airports where waves are a potential hazard, one dimensional wave modeling was performed to get the total water level results. Flood hazard and flood depth maps were created based on these results. In addition to assessing overall flooding at each airport, major at-risk infrastructure critical to the continued operation of the airport was identified and a detailed flood vulnerability assessment was performed. This assessment quantified flood impacts in terms of potential critical infrastructure inundation and developed mitigation alternatives to adapt to coastal flooding and future sea level changes. Results from this project are advancing the PANYNJ

  15. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  16. Specifying risk management standard for flood risk assessment: a framework for resources allocation

    Directory of Open Access Journals (Sweden)

    Yunika Anastasia

    2017-01-01

    Full Text Available General risk management standard, e.g. ISO 31000:2009, approaches risk as a coin with a pair of two sides, i.e. the threat and the opportunity. However, it is hardly the case of flood events which mainly come as threats. Despite the contrary, this study explores the potential applicability of the available risk management standards specifically for flood. It then also synthesizes the components to result a framework for allocating resources among various strategies to result the optimum flood risk reduction. In order to review its applicability, the framework is then reviewed using several historic flood risk reduction cases. Its results are qualitatively discussed and summarized including the possible improvement of the framework for further applications.

  17. Assessment on the pedestrian risk during floods based on numerical simulation - A case study in Jinan City

    Science.gov (United States)

    Cheng, T.; Xu, Z.; Hong, S.

    2017-12-01

    Flood disasters frequently attack the urban area in Jinan City during past years, and the city is faced with severe road flooding which greatly threaten pedestrians' safety. Therefore, it is of great significance to investigate the pedestrian risk during floods under specific topographic condition. In this study, a model coupled hydrological and hydrodynamic processes is developed in the study area to simulate the flood routing process on the road for the "7.18" rainstorm and validated with post-disaster damage survey information. The risk of pedestrian is estimated with a flood risk assessment model. The result shows that the coupled model performs well in the rainstorm flood process. On the basis of the simulation result, the areas with extreme risk, medium risk, and mild risk are identified, respectively. Regions with high risk are generally located near the mountain front area with steep slopes. This study will provide scientific support for the flood control and disaster reduction in Jinan City.

  18. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    Science.gov (United States)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for

  19. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantification of flood risk mitigation benefits: A building-scale damage assessment through the RASOR platform.

    Science.gov (United States)

    Arrighi, Chiara; Rossi, Lauro; Trasforini, Eva; Rudari, Roberto; Ferraris, Luca; Brugioni, Marcello; Franceschini, Serena; Castelli, Fabio

    2018-02-01

    Flood risk mitigation usually requires a significant investment of public resources and cost-effectiveness should be ensured. The assessment of the benefits of hydraulic works requires the quantification of (i) flood risk in absence of measures, (ii) risk in presence of mitigation works, (iii) investments to achieve acceptable residual risk. In this work a building-scale is adopted to estimate direct tangible flood losses to several building classes (e.g. residential, industrial, commercial, etc.) and respective contents, exploiting various sources of public open data in a GIS environment. The impact simulations for assigned flood hazard scenarios are computed through the RASOR platform which allows for an extensive characterization of the properties and their vulnerability through libraries of stage-damage curves. Recovery and replacement costs are estimated based on insurance data, market values and socio-economic proxies. The methodology is applied to the case study of Florence (Italy) where a system of retention basins upstream of the city is under construction to reduce flood risk. Current flood risk in the study area (70 km 2 ) is about 170 Mio euros per year without accounting for people, infrastructures, cultural heritage and vehicles at risk. The monetary investment in the retention basins is paid off in about 5 years. However, the results show that although hydraulic works are cost-effective, a significant residual risk has to be managed and the achievement of the desired level of acceptable risk would require about 1 billion euros of investments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data

    Science.gov (United States)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2013-04-01

    Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and meteorological disasters such as floods are the main contributors to this pattern. In recent years flood management has shifted from protection against floods to managing the risks of floods (the European Flood risk directive). In order to enable operational flood monitoring and assessment of flood risk, it is required to provide an infrastructure with standardized interfaces and services. Grid and Sensor Web can meet these requirements. In this paper we present a general approach to flood monitoring and risk assessment based on heterogeneous geospatial data acquired from multiple sources. To enable operational flood risk assessment integration of Grid and Sensor Web approaches is proposed [1]. Grid represents a distributed environment that integrates heterogeneous computing and storage resources administrated by multiple organizations. SensorWeb is an emerging paradigm for integrating heterogeneous satellite and in situ sensors and data systems into a common informational infrastructure that produces products on demand. The basic Sensor Web functionality includes sensor discovery, triggering events by observed or predicted conditions, remote data access and processing capabilities to generate and deliver data products. Sensor Web is governed by the set of standards, called Sensor Web Enablement (SWE), developed by the Open Geospatial Consortium (OGC). Different practical issues regarding integration of Sensor Web with Grids are discussed in the study. We show how the Sensor Web can benefit from using Grids and vice versa. For example, Sensor Web services such as SOS, SPS and SAS can benefit from the integration with the Grid platform like Globus Toolkit. The proposed approach is implemented within the Sensor Web framework for flood monitoring and risk assessment, and a case-study of exploiting this framework, namely the Namibia SensorWeb Pilot Project, is

  2. Microbial Risk Assessment of Tidal−Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Hong Quan Nguyen

    2017-11-01

    Full Text Available Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively, while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., “living with floods”, in the Mekong Delta should also consider health risk issues.

  3. Microbial Risk Assessment of Tidal−Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam)

    Science.gov (United States)

    Huynh, Thi Thao Nguyen; Van der Steen, Peter

    2017-01-01

    Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., “living with floods”, in the Mekong Delta should also consider health risk issues. PMID:29189715

  4. FLOOD RISK ASSESSMENT IN RIVER TIMIS BASIN - THE CARANSEBES - LUGOJ SECTOR- USING GIS TECHNIQUE

    Directory of Open Access Journals (Sweden)

    MIHAI VALENTIN HERBEI

    2012-11-01

    Full Text Available Flood risk assessment in Timis River basin - the Caransebes -Lugoj sector- using GIS technique. Over time freshets, thus floods constituted and constitute a particularly important issue that requires attention. In many cases, flood damages are extensive to the environment, to the economy and also socially. The purpose of this paper is to identify flood-prone areas between Caransebes and Lugoj, land that is part of the Timis river basin. This paper is based on a theoretical model in which we considered the building elements of the flood produced on the Timis river in April 2005 (levels and flows. to represent the zones flood – prone, we used the numerical model of the terrain, created for the abovementioned area. On this model , according to levels measured at hydrometric stations, were defined those flood prone areas. The Timis river hydrographic basin includes a varied terrain (mountains, hills and plains, with pronounced differences in altitude and massiveness, resulting from tectonic movements that have affected the region, this fact has affected water flow processes, both directly through fragmentation and slope, and indirectly, by creating the vertical climate, vegetation and soils zones. Using GIS technology to study hydrological phenomena and their impact on the geographic area are of particular importance due to the complexity of these techniques, which enables detailed analysis and analytical precision as well as an increased speed of the analysis. Creating theoretical models that give scale to the hydrological phenomena, in this case representing the flood areas, is of great practical importance because based on these models the areas can be defined and viewed, having the possibility of taking measures to prevent environmental effects on the natural and / or anthropogenic environment. In the studied area review of the flood of 2005, were represented flood areas, therefore, according with the researches, several villages, located in

  5. Investigation of Flood Risk Assessment in Inaccessible Regions using Multiple Remote Sensing and Geographic Information Systems

    Science.gov (United States)

    Lim, J.; Lee, K. S.

    2017-12-01

    Flooding is extremely dangerous when a river overflows to inundate an urban area. From 1995 to 2016, North Korea (NK) experienced annual extensive damage to life and property almost each year due to a levee breach resulting from typhoons and heavy rainfall during the summer monsoon season. Recently, Hoeryeong City (2016) experienced heavy rainfall during typhoon Lionrock and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings and settlements (11,600). The NK state media described it as the biggest national disaster since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a serious impact, which makes it necessary to figure out the extent of floods in restoring the damaged environment. In addition, traditional hydrological model is impractical to delineate Flood Damaged Areas (FDAs) in NK due to the inaccessibility. Under such a situation, multiple optical Remote Sensing (RS) and radar RS along with a Geographic Information System (GIS)-based spatial analysis were utilized in this study (1) to develop modelling FDA delineation using multiple RS and GIS methods and (2) to conduct flood risk assessment in NK. Interpreting high-resolution web-based satellite imagery were also implemented to confirm the results of the study. From the study result, it was found that (1) on August 30th, 2016, an area of 117.2 km2 (8.6%) at Hoeryeong City was inundated. Most floods occurred in flat areas with a lower and middle stream order. (2) In the binary logistic regression model applied in this study, the distance from the nearest stream map and landform map variables are important factors to delineate FDAs because these two factors reflect heterogeneous mountainous NK topography. (3) Total annual flood risk of study area is estimated to be ₩454.13 million NKW ($504,417.24 USD, and ₩576.53 million SKW). The risk of the confluence of the Tumen River and Hoeryeong stream appears to be the highest. (4) High resolution

  6. Definition of a shortcut methodology for assessing flood-related Na-Tech risk

    Directory of Open Access Journals (Sweden)

    E. Marzo

    2012-11-01

    Full Text Available In this paper a qualitative methodology for the initial assessment of flood-related Na-Tech risk was developed as a screening tool to identify which situations require a much more expensive quantitative risk analysis (QRA. Through the definition of some suitable key hazard indicators (KHIs, the proposed methodology allows the identification of the Na-Tech risk level associated with a given situation; the analytical hierarchy process (AHP was used as a multi-criteria decision tool for the evaluation of such qualitative KHIs. The developed methodology was validated through two case studies by comparing the predicted risk levels with the results of much more detailed QRAs previously presented in literature and then applied to the real flood happened at Spolana a.s., Neratovice, Czech Republic in August 2002.

  7. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    Science.gov (United States)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability

  8. Use Of Risk Analysis Fremeworks In Urban Flood Assessments

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Madsen, Henrik

    with better decision support tools. Some of the developments are risk frameworks that encompass economic and/or ethic evaluation of climate change adaptation options and improved risk management. This line of development is based on a societal-based evaluation of maximizing the outcome for society...... in extreme precipitation has been observed, corresponding to an increase of design levels of at least 30 %. Analysis of climate change model output has given clear evidence, that further increases in extreme precipitation must be expected in the future due to anthropogenic emissions of greenhouse gasses...... and planned urban drainage solutions are shared between very different stakeholders and that current practices are leading to personal bankruptcy by those bearing the highest costs. Therefore solutions must be developed that are understandable and can be communicated between different stakeholders...

  9. Colombia Mi Pronostico Flood Application: Updating and Improving the Mi Pronostico Flood Web Application to Include an Assessment of Flood Risk

    Science.gov (United States)

    Rushley, Stephanie; Carter, Matthew; Chiou, Charles; Farmer, Richard; Haywood, Kevin; Pototzky, Anthony, Jr.; White, Adam; Winker, Daniel

    2014-01-01

    Colombia is a country with highly variable terrain, from the Andes Mountains to plains and coastal areas, many of these areas are prone to flooding disasters. To identify these risk areas NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to construct a digital elevation model (DEM) for the study region. The preliminary risk assessment was applied to a pilot study area, the La Mosca River basin. Precipitation data from the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM)'s near-real-time rainfall products as well as precipitation data from the Instituto de Hidrologia, Meteorologia y Estudios Ambientales (the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM) and stations in the La Mosca River Basin were used to create rainfall distribution maps for the region. Using the precipitation data and the ASTER DEM, the web application, Mi Pronóstico, run by IDEAM, was updated to include an interactive map which currently allows users to search for a location and view the vulnerability and current weather and flooding conditions. The geospatial information was linked to an early warning system in Mi Pronóstico that can alert the public of flood warnings and identify locations of nearby shelters.

  10. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  11. The uncertainty cascade in flood risk assessment under changing climatic conditions - the Biala Tarnowska case study

    Science.gov (United States)

    Doroszkiewicz, Joanna; Romanowicz, Renata

    2016-04-01

    Uncertainty in the results of the hydraulic model is not only associated with the limitations of that model and the shortcomings of data. An important factor that has a major impact on the uncertainty of the flood risk assessment in a changing climate conditions is associated with the uncertainty of future climate scenarios (IPCC WG I, 2013). Future climate projections provided by global climate models are used to generate future runoff required as an input to hydraulic models applied in the derivation of flood risk maps. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps. One of the aims of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the process, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-section. The study shows that the application of the simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Acknowledgements: This work was supported by the

  12. Probabilistic Flood Defence Assessment Tools

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available The WTI2017 project is responsible for the development of flood defence assessment tools for the 3600 km of Dutch primary flood defences, dikes/levees, dunes and hydraulic structures. These tools are necessary, as per January 1st 2017, the new flood risk management policy for the Netherlands will be implemented. Then, the seven decades old design practice (maximum water level methodology of 1958 and two decades old safety standards (and maximum hydraulic load methodology of 1996 will formally be replaced by a more risked based approach for the national policy in flood risk management. The formal flood defence assessment is an important part of this new policy, especially for flood defence managers, since national and regional funding for reinforcement is based on this assessment. This new flood defence policy is based on a maximum allowable probability of flooding. For this, a maximum acceptable individual risk was determined at 1/100 000 per year, this is the probability of life loss of for every protected area in the Netherlands. Safety standards of flood defences were then determined based on this acceptable individual risk. The results were adjusted based on information from cost -benefit analysis, societal risk and large scale societal disruption due to the failure of critical infrastructure e.g. power stations. The resulting riskbased flood defence safety standards range from a 300 to a 100 000 year return period for failure. Two policy studies, WV21 (Safety from floods in the 21st century and VNK-2 (the National Flood Risk in 2010 provided the essential information to determine the new risk based safety standards for flood defences. The WTI2017 project will provide the safety assessment tools based on these new standards and is thus an essential element for the implementation of this policy change. A major issue to be tackled was the development of user-friendly tools, as the new assessment is to be carried out by personnel of the

  13. Flood risk assessment. Case of study: Motozintla de Mendoza, Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    David A. Novelo-Casanova

    2016-09-01

    Full Text Available Due to its geographical location, the community of Motozintla de Mendoza (Motozintla in the State of Chiapas, Mexico, is continuously exposed to the impact of natural hazards. In this work, we assessed the flood risk of Motozintla considering the structural, socioeconomic, organizational, and global (structural, socioeconomic, and organizational vulnerabilities. In addition, we also measured the local risk perception. Spatial maps were generated to determine the most vulnerable and risk areas of this community. Our results indicate that the population has a high level of risk to flooding mainly because (1 the majority of the local houses has high structural vulnerability; (2 a high percentage of the families has a daily income less than the official Mexican minimum wage and lacks of basic public services as well as of proper social security services; (3 most of the community does not know any existing Civil Protection Plan; and (4 the community organization for disaster mitigation and response is practically non-existent. For these reasons, we believe that it is necessary for local authorities to establish in the short-term, preparedness, mitigation and response plans as well as land-use measures to reduce the risk to floods in Motozintla.

  14. Risk assessment of urban flood disaster in Jingdezhen City based on analytic hierarchy process and geographic information system

    Science.gov (United States)

    Sun, D. C.; Huang, J.; Wang, H. M.; Wang, Z. Q.; Wang, W. Q.

    2017-08-01

    The research of urban flood risk assessment and management are of great academic and practical importance, which has become a widespread concern throughout the world. It’s significant to understand the spatial-temporal distribution of the flood risk before making the risk response measures. In this study, the urban region of Jingdezhen City is selected as the study area. The assessment indicators are selected from four aspects: disaster-causing factors, disaster-pregnant environment, disaster-bearing body and the prevention and mitigation ability, by consideration of the formation process of urban flood risk. And then, a small-scale flood disaster risk assessment model is developed based on Analytic Hierarchy Process(AHP) and Geographic Information System(GIS), and the spatial-temporal distribution of flood risk in Jingdezhen City is analysed. The results show that the risk decreases gradually from the centre line of Changjiang River to the surrounding, and the areas of high flood disaster risk is decreasing from 2010 to 2013 while the risk areas are more concentred. The flood risk of the areas along the Changjiang River is the largest, followed by the low-lying areas in Changjiang District. And the risk is also large in Zhushan District where the population, the industries and commerce are concentrated. The flood risk in the western part of Changjiang District and the north-eastern part of the study area is relatively low. The results can provide scientific support for flood control construction and land development planning in Jingdezhen City.

  15. Towards large scale stochastic rainfall models for flood risk assessment in trans-national basins

    Science.gov (United States)

    Serinaldi, F.; Kilsby, C. G.

    2012-04-01

    While extensive research has been devoted to rainfall-runoff modelling for risk assessment in small and medium size watersheds, less attention has been paid, so far, to large scale trans-national basins, where flood events have severe societal and economic impacts with magnitudes quantified in billions of Euros. As an example, in the April 2006 flood events along the Danube basin at least 10 people lost their lives and up to 30 000 people were displaced, with overall damages estimated at more than half a billion Euros. In this context, refined analytical methods are fundamental to improve the risk assessment and, then, the design of structural and non structural measures of protection, such as hydraulic works and insurance/reinsurance policies. Since flood events are mainly driven by exceptional rainfall events, suitable characterization and modelling of space-time properties of rainfall fields is a key issue to perform a reliable flood risk analysis based on alternative precipitation scenarios to be fed in a new generation of large scale rainfall-runoff models. Ultimately, this approach should be extended to a global flood risk model. However, as the need of rainfall models able to account for and simulate spatio-temporal properties of rainfall fields over large areas is rather new, the development of new rainfall simulation frameworks is a challenging task involving that faces with the problem of overcoming the drawbacks of the existing modelling schemes (devised for smaller spatial scales), but keeping the desirable properties. In this study, we critically summarize the most widely used approaches for rainfall simulation. Focusing on stochastic approaches, we stress the importance of introducing suitable climate forcings in these simulation schemes in order to account for the physical coherence of rainfall fields over wide areas. Based on preliminary considerations, we suggest a modelling framework relying on the Generalized Additive Models for Location, Scale

  16. Assessing Stability and Dynamics in Flood Risk Governance : An Empirically Illustrated Research Approach

    NARCIS (Netherlands)

    Hegger, Dries L T; Driessen, Peter P J; Dieperink, Carel; Wiering, Mark; Raadgever, G. T Tom; van Rijswick, Helena F M W

    2014-01-01

    European urban agglomerations face increasing flood risks due to urbanization and the effects of climate change. These risks are addressed at European, national and regional policy levels. A diversification and alignment of Flood Risk Management Strategies (FRMSs) can make vulnerable urban

  17. Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network

    Science.gov (United States)

    Khan, U. T.

    2016-12-01

    Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged

  18. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    Löwe, Roland; Urich, Christian; Sto Domingo, Nina

    Flood risk in cities is strongly affected by the development of the city itself. Many studies focus on changes in the flood hazard as a result of, for example, changed degrees of sealing in the catchment or climatic changes. However, urban developments in flood prone areas can affect the exposure...... to the hazard and thus have large impacts on flood risk. Different urban socio-economic development scenarios, rainfall inputs and options for the mitigation of flood risk, quickly lead to a large number of scenarios that need to be considered in the planning of the development of a city. This calls...... for automated analyses that allow the planner to quickly identify if, when and how infrastructure should be modified. Such analysis, which accounts for the two-way interactions between city development and flood risk, is possible only to a limited extent in existing tools. We have developed a software framework...

  19. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    that combines a model for the socio-economic development of cities (DANCE4WATER) with an urban flood model. The urban flood model is a 1D-2D spatially distributed hydrologic and hydraulic model that, for a given urban layout, simulates flow in the sewer system and the surface flow in the catchment (MIKE FLOOD......). The socio-economic model computes urban layouts that are transferred to the hydraulic model in the form of changes of impervious area and potential flow paths on the surface. Estimates of flood prone areas, as well as the expected annual damage due to flooding, are returned to the socio-economic model...... as an input for further refinement of the scenarios for the urban development. Our results in an Australian case study suggest that urban development is a major driver for flood risk and vice versa that flood risk can be significantly reduced if it is accounted for in the development of the cities...

  20. Fragility analysis of flood protection structures in earthquake and flood prone areas around Cologne, Germany for multi-hazard risk assessment

    Science.gov (United States)

    Tyagunov, Sergey; Vorogushyn, Sergiy; Munoz Jimenez, Cristina; Parolai, Stefano; Fleming, Kevin; Merz, Bruno; Zschau, Jochen

    2013-04-01

    The work presents a methodology for fragility analyses of fluvial earthen dikes in earthquake and flood prone areas. Fragility estimates are being integrated into the multi-hazard (earthquake-flood) risk analysis being undertaken within the framework of the EU FP7 project MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe) for the city of Cologne, Germany. Scenarios of probable cascading events due to the earthquake-triggered failure of flood protection dikes and the subsequent inundation of surroundings are analyzed for the area between the gauges Andernach and Düsseldorf along the Rhine River. Along this river stretch, urban areas are partly protected by earthen dikes, which may be prone to failure during exceptional floods and/or earthquakes. The seismic fragility of the dikes is considered in terms of liquefaction potential (factor of safety), estimated by the use of the simplified procedure of Seed and Idriss. It is assumed that initiation of liquefaction at any point throughout the earthen dikes' body corresponds to the failure of the dike and, therefore, this should be taken into account for the flood risk calculations. The estimated damage potential of such structures is presented as a two-dimensional surface (as a function of seismic hazard and water level). Uncertainties in geometrical and geotechnical dike parameters are considered within the framework of Monte Carlo simulations. Taking into consideration the spatial configuration of the existing flood protection system within the area under consideration, seismic hazard curves (in terms of PGA) are calculated for sites along the river segment of interest at intervals of 1 km. The obtained estimates are used to calculate the flood risk when considering the temporal coincidence of seismic and flood events. Changes in flood risk for the considered hazard cascade scenarios are quantified and compared to the single-hazard scenarios.

  1. Flood risk governance arrangements in Europe

    Science.gov (United States)

    Matczak, P.; Lewandowski, J.; Choryński, A.; Szwed, M.; Kundzewicz, Z. W.

    2015-06-01

    The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements) project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency) of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  2. Flood risk governance arrangements in Europe

    Directory of Open Access Journals (Sweden)

    P. Matczak

    2015-06-01

    Full Text Available The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  3. A Flood Risk Assessment Model for Companies and Criteria for Governmental Decision-Making to Minimize Hazards

    Directory of Open Access Journals (Sweden)

    Jieun Ryu

    2017-11-01

    Full Text Available Flood risks in the industrial sector and economic damages are increasing because of climate change. In addition to changes in precipitation patterns due to climate change; factors that increase flood damage include infrastructure deterioration and lack of storage facilities. Therefore; it is necessary for companies and the government to actively establish flood management policies. However; no evaluation method is currently available to determine which items should be invested in first by small and medium-sized enterprises that have limited finances. Because the government should make comprehensive and fair decisions; the purpose of this study is to propose priority investment risk items and an assessment method to decide which companies should be invested in first in flood risk management due to climate change. The multispatial scale of the method takes both the location and characteristics of the company into account. Future climate change scenarios were used to evaluate the changing patterns of flood risks. We developed the relative Flood Risk Assessment for Company (FRAC model methodology to support the government’s policymaking. This method was applied to four companies belonging to four different industries and three risk items were derived that are likely to harm the company owing to flooding.

  4. Evaluation of Stochastic Rainfall Models in Capturing Climate Variability for Future Drought and Flood Risk Assessment

    Science.gov (United States)

    Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.

    2016-12-01

    One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.

  5. A metric-based assessment of flood risk and vulnerability of rural communities in the Lower Shire Valley, Malawi

    Science.gov (United States)

    Adeloye, A. J.; Mwale, F. D.; Dulanya, Z.

    2015-06-01

    In response to the increasing frequency and economic damages of natural disasters globally, disaster risk management has evolved to incorporate risk assessments that are multi-dimensional, integrated and metric-based. This is to support knowledge-based decision making and hence sustainable risk reduction. In Malawi and most of Sub-Saharan Africa (SSA), however, flood risk studies remain focussed on understanding causation, impacts, perceptions and coping and adaptation measures. Using the IPCC Framework, this study has quantified and profiled risk to flooding of rural, subsistent communities in the Lower Shire Valley, Malawi. Flood risk was obtained by integrating hazard and vulnerability. Flood hazard was characterised in terms of flood depth and inundation area obtained through hydraulic modelling in the valley with Lisflood-FP, while the vulnerability was indexed through analysis of exposure, susceptibility and capacity that were linked to social, economic, environmental and physical perspectives. Data on these were collected through structured interviews of the communities. The implementation of the entire analysis within GIS enabled the visualisation of spatial variability in flood risk in the valley. The results show predominantly medium levels in hazardousness, vulnerability and risk. The vulnerability is dominated by a high to very high susceptibility. Economic and physical capacities tend to be predominantly low but social capacity is significantly high, resulting in overall medium levels of capacity-induced vulnerability. Exposure manifests as medium. The vulnerability and risk showed marginal spatial variability. The paper concludes with recommendations on how these outcomes could inform policy interventions in the Valley.

  6. Interdisciplinary Approach for Assessment of Continental River Flood Risk: A Case Study of the Czech Republic

    Science.gov (United States)

    Ushiyama, Tomoki; Kwak, Youngjoo; Ledvinka, Ondřej; Iwami, Yoichi; Danhelka, Jan

    2017-04-01

    In this research, GIS-based hydrological model-driven approach produces the distribution of continent-level flood risk based on national-level GIS data. In order to reveal flood hazard, exposure, and vulnerability in a large river basin, the system employs the simplified model such as GFiD2M (Global Flood inundation Depth 2-dimension Model) to calculate the differential inundation depth and the economic loss by pixel-based statistical processing, considering climate and socioeconomic scenarios, the representative concentration pathways emissions and the shared socioeconomic pathways, despite current limitations of data collections and poor data availability. We need new approaches to seek the possibility of its national-scale application, so that the framework can bring (1) improved flood inundation map (i.e., discharge, depth, velocity) using rainfall runoff inundation model, based on the in-situ data (rain-gauge and water level), validated with Earth Observation data, i.e., MODIS, (2) advanced flood forecasting using radar and satellite observed rainfall for national-level operational hydrological observations, (3) potential economic impact with the effect of flood hazard and risk under climate and socioeconomic changes based on rainfall from general circulation model. The preliminary examinations showed the better possibility of a nation-wide application for integrated flood risk management. At the same time, the hazard and risk model were also validated against event-based flood inundation of a national-level flood in the Czech Republic. Within the Czech Republic, although radar rainfall data have been used in operational hydrology for some time, there are also other products capable of warning us about the potential risk of floods. For instance, images from Europe's Sentinel satellites have not been evaluated for their use in Czech hydrology. This research is at the very beginning of a validation and its evaluation, focusing mainly on heavy rainfall and

  7. Flood risk index pattern assessment: case study in Langat River Basin

    African Journals Online (AJOL)

    This study focus on the creation of flood risk index in the study area based on secondary data derived from the Department of Drainage and Irrigation (DID) since 1982-2012. Based on the result, it shows that the water level is the best variable to be taken for the purposed of flood warning alert system as the result for ...

  8. Dam break modelling, risk assessment and uncertainty analysis for flood mitigation

    NARCIS (Netherlands)

    Zagonjolli, M.

    2007-01-01

    In this thesis a range of modelling techniques is explored to deal effectively with flood risk management. In particular, attention is paid to floods caused by failure of hydraulic structures such as dams and dikes. The methods considered here are applied for simulating dam and dike failure events,

  9. Holistic flood risk assessment using agent-based modelling: the case of Sint Maarten Island

    Science.gov (United States)

    Abayneh Abebe, Yared; Vojinovic, Zoran; Nikolic, Igor; Hammond, Michael; Sanchez, Arlex; Pelling, Mark

    2015-04-01

    Floods in coastal regions are regarded as one of the most dangerous and harmful disasters. Though commonly referred to as natural disasters, coastal floods are also attributable to various social, economic, historical and political issues. Rapid urbanisation in coastal areas combined with climate change and poor governance can lead to a significant increase in the risk of pluvial flooding coinciding with fluvial and coastal flooding posing a greater risk of devastation in coastal communities. Disasters that can be triggered by hydro-meteorological events are interconnected and interrelated with both human activities and natural processes. They, therefore, require holistic approaches to help understand their complexity in order to design and develop adaptive risk management approaches that minimise social and economic losses and environmental impacts, and increase resilience to such events. Being located in the North Atlantic Ocean, Sint Maarten is frequently subjected to hurricanes. In addition, the stormwater catchments and streams on Sint Maarten have several unique characteristics that contribute to the severity of flood-related impacts. Urban environments are usually situated in low-lying areas, with little consideration for stormwater drainage, and as such are subject to flash flooding. Hence, Sint Maarten authorities drafted policies to minimise the risk of flood-related disasters on the island. In this study, an agent-based model is designed and applied to understand the implications of introduced policies and regulations, and to understand how different actors' behaviours influence the formation, propagation and accumulation of flood risk. The agent-based model built for this study is based on the MAIA meta-model, which helps to decompose, structure and conceptualize socio-technical systems with an agent-oriented perspective, and is developed using the NetLogo simulation environment. The agents described in this model are households and businesses, and

  10. Assessing the effects of Climate Change on Urban Pluvial Flooding to provide a Risk Management Framework

    Science.gov (United States)

    Rianna, G.; Mercogliano, P.

    2017-12-01

    Urbanization increases the flood risk because of heightened vulnerability, stemming from population concentration and hazard due to soil sealing affecting the largest part of urban settlements and reducing the concentration time of interested basins. Furthermore, current and future hazards are exacerbated by expected increases in extreme rainfall events due to Climate Changes (CC) making inadequate urban drainage infrastructures designed under the assumption of steady conditions. In this work, we present a modeling chain/algorithm to assess potential increase in pluvial flood hazard able to take into account CC forcing. The adopted simulation chain reckon on three main elements: Regional Climate Model, COSMO_CLM, dynamically downscaling GCM CMCC_CM (Scoccimarro et al., 2011) and optimized, at high resolution (about 8km), by Bucchignani et al. (2015) on Italy provide projections about precipitation up to 2100 under two concentration scenarios (RCP4.5 and RCP8.5). Such projections are used in Equidistance Quantile Mapping (EQM) approach, developed by Srivastav et al. (2014) to estimate expected variations in IDF (Intensity-Duration-Frequency) curves calculated through Generalized Extreme Value (GEV) approach on the basis of available rainfall data. To this aim, 1971-2000 observations are used as reference. Finally, a 1-D/2-D coupled urban drainage/flooding model forced by IDF (current and projected) is used to simulate storm-sewer surcharge and surface inundation to establish the variations in urban flooding risk. As test case is considered the city center of Naples (Southern Italy). In this respective, the sewage and urban drainage network is highly complex due to the historical and subsequent transformations of the city. Under such constraints, the reliability of the results maybe deeply conditioned by uncertainties not undermining the illustrative purposes of the work. Briefly, EQM returns a remarkable increase in extreme precipitations; such increase is driven by

  11. A Vulnerability-Based, Bottom-up Assessment of Future Riverine Flood Risk Using a Modified Peaks-Over-Threshold Approach and a Physically Based Hydrologic Model

    Science.gov (United States)

    Knighton, James; Steinschneider, Scott; Walter, M. Todd

    2017-12-01

    There is a chronic disconnection among purely probabilistic flood frequency analysis of flood hazards, flood risks, and hydrological flood mechanisms, which hamper our ability to assess future flood impacts. We present a vulnerability-based approach to estimating riverine flood risk that accommodates a more direct linkage between decision-relevant metrics of risk and the dominant mechanisms that cause riverine flooding. We adapt the conventional peaks-over-threshold (POT) framework to be used with extreme precipitation from different climate processes and rainfall-runoff-based model output. We quantify the probability that at least one adverse hydrologic threshold, potentially defined by stakeholders, will be exceeded within the next N years. This approach allows us to consider flood risk as the summation of risk from separate atmospheric mechanisms, and supports a more direct mapping between hazards and societal outcomes. We perform this analysis within a bottom-up framework to consider the relevance and consequences of information, with varying levels of credibility, on changes to atmospheric patterns driving extreme precipitation events. We demonstrate our proposed approach using a case study for Fall Creek in Ithaca, NY, USA, where we estimate the risk of stakeholder-defined flood metrics from three dominant mechanisms: summer convection, tropical cyclones, and spring rain and snowmelt. Using downscaled climate projections, we determine how flood risk associated with a subset of mechanisms may change in the future, and the resultant shift to annual flood risk. The flood risk approach we propose can provide powerful new insights into future flood threats.

  12. Probabilistic assessment of erosion and flooding risk in the northern Gulf of Mexico

    Science.gov (United States)

    Wahl, Thomas; Plant, Nathaniel G.; Long, Joseph W.

    2016-05-01

    We assess erosion and flooding risk in the northern Gulf of Mexico by identifying interdependencies among oceanographic drivers and probabilistically modeling the resulting potential for coastal change. Wave and water level observations are used to determine relationships between six hydrodynamic parameters that influence total water level and therefore erosion and flooding, through consideration of a wide range of univariate distribution functions and multivariate elliptical copulas. Using these relationships, we explore how different our interpretation of the present-day erosion/flooding risk could be if we had seen more or fewer extreme realizations of individual and combinations of parameters in the past by simulating 10,000 physically and statistically consistent sea-storm time series. We find that seasonal total water levels associated with the 100 year return period could be up to 3 m higher in summer and 0.6 m higher in winter relative to our best estimate based on the observational records. Impact hours of collision and overwash—where total water levels exceed the dune toe or dune crest elevations—could be on average 70% (collision) and 100% (overwash) larger than inferred from the observations. Our model accounts for non-stationarity in a straightforward, non-parametric way that can be applied (with little adjustments) to many other coastlines. The probabilistic model presented here, which accounts for observational uncertainty, can be applied to other coastlines where short record lengths limit the ability to identify the full range of possible wave and water level conditions that coastal mangers and planners must consider to develop sustainable management strategies.

  13. Probabilistic assessment of erosion and flooding risk in the northern Gulf of Mexico

    Science.gov (United States)

    Plant, Nathaniel G.; Wahl, Thomas; Long, Joseph W.

    2016-01-01

    We assess erosion and flooding risk in the northern Gulf of Mexico by identifying interdependencies among oceanographic drivers and probabilistically modeling the resulting potential for coastal change. Wave and water level observations are used to determine relationships between six hydrodynamic parameters that influence total water level and therefore erosion and flooding, through consideration of a wide range of univariate distribution functions and multivariate elliptical copulas. Using these relationships, we explore how different our interpretation of the present-day erosion/flooding risk could be if we had seen more or fewer extreme realizations of individual and combinations of parameters in the past by simulating 10,000 physically and statistically consistent sea-storm time series. We find that seasonal total water levels associated with the 100 year return period could be up to 3 m higher in summer and 0.6 m higher in winter relative to our best estimate based on the observational records. Impact hours of collision and overwash—where total water levels exceed the dune toe or dune crest elevations—could be on average 70% (collision) and 100% (overwash) larger than inferred from the observations. Our model accounts for non-stationarity in a straightforward, non-parametric way that can be applied (with little adjustments) to many other coastlines. The probabilistic model presented here, which accounts for observational uncertainty, can be applied to other coastlines where short record lengths limit the ability to identify the full range of possible wave and water level conditions that coastal mangers and planners must consider to develop sustainable management strategies.

  14. Economic assessment of flood forecasts for a risk-averse decision-maker

    Science.gov (United States)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier-Filion, Thomas-Charles

    2017-04-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. It has also been suggested in past studies that ensemble forecasts might possess a greater economic value than deterministic forecasts. However, the vast majority of recent hydro-economic literature is based on the cost-loss ratio framework, which might be appealing for its simplicity and intuitiveness. One important drawback of the cost-loss ratio is that it implicitly assumes a risk-neutral decision maker. By definition, a risk-neutral individual is indifferent to forecasts' sharpness: as long as forecasts agree with observations on average, the risk-neutral individual is satisfied. A risk-averse individual, however, is sensitive to the level of precision (sharpness) of forecasts. This person is willing to pay to increase his or her certainty about future events. In fact, this is how insurance companies operate: the probability of seeing one's house burn down is relatively low, so the expected cost related to such event is also low. However, people are willing to buy insurance to avoid the risk, however small, of loosing everything. Similarly, in a context where people's safety and property is at stake, the typical decision maker is more risk-averse than risk-neutral. Consequently, the cost-loss ratio is not the most appropriate tool to assess the economic value of flood forecasts. This presentation describes a more realistic framework for assessing the economic value of such forecasts for flood mitigation purposes. Borrowing from economics, the Constant Absolute Risk Aversion utility function (CARA) is the central tool of this new framework. Utility functions allow explicitly accounting for the level of risk aversion of the decision maker and fully exploiting the information related to ensemble forecasts' uncertainty. Three concurrent ensemble streamflow forecasting systems are compared in terms of quality (comparison with

  15. An assessment of flood vulnerability on physical development along ...

    African Journals Online (AJOL)

    Mohammad

    Key words: Drainage channel, flood, risk assessment, vulnerability. INTRODUCTION ... hydraulic and other control structures.” The effects of floods are always ..... An application of Geographic Information System in mapping flood risk zones in ...

  16. An assessment of the impact of climate adaptation measures to reduce flood risk on ecosystem services.

    Science.gov (United States)

    Verburg, Peter H; Koomen, Eric; Hilferink, Maarten; Pérez-Soba, Marta; Lesschen, Jan Peter

    Measures of climate change adaptation often involve modification of land use and land use planning practices. Such changes in land use affect the provision of various ecosystem goods and services. Therefore, it is likely that adaptation measures may result in synergies and trade-offs between a range of ecosystems goods and services. An integrative land use modelling approach is presented to assess such impacts for the European Union. A reference scenario accounts for current trends in global drivers and includes a number of important policy developments that correspond to on-going changes in European policies. The reference scenario is compared to a policy scenario in which a range of measures is implemented to regulate flood risk and protect soils under conditions of climate change. The impacts of the simulated land use dynamics are assessed for four key indicators of ecosystem service provision: flood risk, carbon sequestration, habitat connectivity and biodiversity. The results indicate a large spatial variation in the consequences of the adaptation measures on the provisioning of ecosystem services. Synergies are frequently observed at the location of the measures itself, whereas trade-offs are found at other locations. Reducing land use intensity in specific parts of the catchment may lead to increased pressure in other regions, resulting in trade-offs. Consequently, when aggregating the results to larger spatial scales the positive and negative impacts may be off-set, indicating the need for detailed spatial assessments. The modelled results indicate that for a careful planning and evaluation of adaptation measures it is needed to consider the trade-offs accounting for the negative effects of a measure at locations distant from the actual measure. Integrated land use modelling can help land use planning in such complex trade-off evaluation by providing evidence on synergies and trade-offs between ecosystem services, different policy fields and societal

  17. Flood risk assessment and robust management under deep uncertainty: Application to Dhaka City

    Science.gov (United States)

    Mojtahed, Vahid; Gain, Animesh Kumar; Giupponi, Carlo

    2014-05-01

    The socio-economic changes as well as climatic changes have been the main drivers of uncertainty in environmental risk assessment and in particular flood. The level of future uncertainty that researchers face when dealing with problems in a future perspective with focus on climate change is known as Deep Uncertainty (also known as Knightian uncertainty), since nobody has already experienced and undergone those changes before and our knowledge is limited to the extent that we have no notion of probabilities, and therefore consolidated risk management approaches have limited potential.. Deep uncertainty is referred to circumstances that analysts and experts do not know or parties to decision making cannot agree on: i) the appropriate models describing the interaction among system variables, ii) probability distributions to represent uncertainty about key parameters in the model 3) how to value the desirability of alternative outcomes. The need thus emerges to assist policy-makers by providing them with not a single and optimal solution to the problem at hand, such as crisp estimates for the costs of damages of natural hazards considered, but instead ranges of possible future costs, based on the outcomes of ensembles of assessment models and sets of plausible scenarios. Accordingly, we need to substitute optimality as a decision criterion with robustness. Under conditions of deep uncertainty, the decision-makers do not have statistical and mathematical bases to identify optimal solutions, while instead they should prefer to implement "robust" decisions that perform relatively well over all conceivable outcomes out of all future unknown scenarios. Under deep uncertainty, analysts cannot employ probability theory or other statistics that usually can be derived from observed historical data and therefore, we turn to non-statistical measures such as scenario analysis. We construct several plausible scenarios with each scenario being a full description of what may happen

  18. Global assessment of river flood protection benefits and corresponding residual risks under climate change

    Science.gov (United States)

    Lim, Wee Ho; Yamazaki, Dai; Koirala, Sujan; Hirabayashi, Yukiko; Kanae, Shinjiro; Dadson, Simon J.; Hall, Jim W.

    2016-04-01

    Global warming increases the water-holding capacity of the atmosphere and this could lead to more intense rainfalls and possibly increasing natural hazards in the form of flooding in some regions. This implies that traditional practice of using historical hydrological records alone is somewhat limited for supporting long-term water infrastructure planning. This has motivated recent global scale studies to evaluate river flood risks (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014, Sadoff et al., 2015) and adaptations benefits (e.g., Jongman et al., 2015). To support decision-making in river flood risk reduction, this study takes a further step to examine the benefits and corresponding residual risks for a range of flood protection levels. To do that, we channelled runoff information of a baseline period (forced by observed hydroclimate conditions) and each CMIP5 model (historic and future periods) into a global river routing model called CaMa-Flood (Yamazaki et al., 2011). We incorporated the latest global river width data (Yamazaki et al., 2014) into CaMa-Flood and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the flood protection benefits. We quantify the corresponding residual risks using a mathematical approach that is consistent with the modelling structure of CaMa-Flood. Globally and regionally, we find that the benefits of flood protection level peak somewhere between 20 and 500 years; residual risks diminish

  19. Swiss Re Global Flood Hazard Zones: Know your flood risk

    Science.gov (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  20. Integrated risk assessment for the natomas basin (California) analysis of loss of life and emergency management for floods

    NARCIS (Netherlands)

    Jonkman, S.N.; Hiel, L.A.; Bea, R.G.; Foster, H.; Tsioulou, A.; Arroyo, P.; Stallard, T.; Harris, L.

    2012-01-01

    This article assesses the risk to life for the Natomas Basin, a low-lying, rapidly urbanizing region in the Sacramento-San Joaquin Delta in California. Using an empirical method, the loss of life is determined for a flood (high water), seismic, and sunny-day levee breach scenario. The analysis

  1. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    DEFF Research Database (Denmark)

    Skovgård Olsen, Anders; Zhou, Qianqian; Linde, Jens Jørgen

    2015-01-01

    Estimating the expected annual damage (EAD) due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change...... adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost...... of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift...

  2. Rapid Global River Flood Risk Assessment under Climate and Socioeconomic Scenarios: An Extreme Case of Eurasian region

    Science.gov (United States)

    Kwak, Young-joo; Magome, Jun; Hasegawa, Akira; Iwami, Yoichi

    2017-04-01

    Causing widespread devastation with massive economic damage and loss of human lives, flood disasters hamper economic growth and accelerate poverty particularly in developing countries. Globally, this trend will likely continue due to increase in flood magnitude and lack of preparedness for extreme events. In line with risk reduction efforts since the early 21st century, the monitors and governors of global river floods should pay attention to international scientific and policy communities for support to facilitate evidence-based policy making with a special interest in long-term changes due to climate change and socio-economic effects. Although advanced hydrological inundation models and risk models have been developed to reveal flood risk, hazard, exposure, and vulnerability at a river basin, it is obviously hard to identify the distribution and locations of continent-level flood risk based on national-level data. Therefore, we propose a methodological possibility for rapid global flood risk assessment with the results from its application to the two periods, i.e., Present (from 1980 to 2004) and Future (from 2075 to 2099). The method is particularly designed to effectively simplify complexities of a hazard area by calculating the differential inundation depth using GFID2M (global flood inundation depth 2-dimension model), despite low data availability. In this research, we addressed the question of which parts in the Eurasian region (8E to 180E, 0N to 60N) can be found as high-risk areas in terms of exposed population and economy in case of a 50-year return period flood. Economic losses were estimated according to the Shared Socioeconomic Pathways (SSP) scenario, and the flood scale was defined using the annual maximum daily river discharge under the extreme conditions of climate change simulated with MRI-AGCM3.2S based on the Representative Concentration Pathways (RCP8.5) emissions scenario. As a preliminary result, the total potential economic loss in the

  3. Climate Change Impact Assessment of Dike Safety and Flood Risk in the Vidaa River System

    DEFF Research Database (Denmark)

    Madsen, H.; Sunyer Pinya, Maria Antonia; Larsen, J.

    2013-01-01

    The impact of climate change on the flood risk and dike safety in the Vidaa River system, a cross-border catchment located in the southern part of Jutland, Denmark and northern Germany, is analysed. The river discharges to the Wadden Sea through a tidal sluice, and extreme water level conditions...... in the river system occur in periods of high sea water levels where the sluice is closed and increased catchment run-off take place. Climate model data from the ENSEMBLES data archive are used to assess the changes in climate variables and the resulting effect on catchment run-off. Extreme catchment run......-off is expected to increase about 8 % in 2050 and 14 % in 2100. The changes in sea water level is assessed considering climate projections of mean sea level rise, isostatic changes, and changes in storm surge statistics. At the Vidaa sluice a mean sea level rise of 0.15–0.39 m in 2050 and 0.41–1.11 m in 2010...

  4. Simulating floods : On the application of a 2D-hydraulic model for flood hazard and risk assessment

    NARCIS (Netherlands)

    Alkema, D.

    2007-01-01

    Over the last decades, river floods in Europe seem to occur more frequently and are causing more and more economic and emotional damage. Understanding the processes causing flooding and the development of simulation models to evaluate countermeasures to control that damage are important issues. This

  5. Assessing the impact of uncertainty on flood risk estimates with reliability analysis using 1-D and 2-D hydraulic models

    Directory of Open Access Journals (Sweden)

    L. Altarejos-García

    2012-07-01

    Full Text Available This paper addresses the use of reliability techniques such as Rosenblueth's Point-Estimate Method (PEM as a practical alternative to more precise Monte Carlo approaches to get estimates of the mean and variance of uncertain flood parameters water depth and velocity. These parameters define the flood severity, which is a concept used for decision-making in the context of flood risk assessment. The method proposed is particularly useful when the degree of complexity of the hydraulic models makes Monte Carlo inapplicable in terms of computing time, but when a measure of the variability of these parameters is still needed. The capacity of PEM, which is a special case of numerical quadrature based on orthogonal polynomials, to evaluate the first two moments of performance functions such as the water depth and velocity is demonstrated in the case of a single river reach using a 1-D HEC-RAS model. It is shown that in some cases, using a simple variable transformation, statistical distributions of both water depth and velocity approximate the lognormal. As this distribution is fully defined by its mean and variance, PEM can be used to define the full probability distribution function of these flood parameters and so allowing for probability estimations of flood severity. Then, an application of the method to the same river reach using a 2-D Shallow Water Equations (SWE model is performed. Flood maps of mean and standard deviation of water depth and velocity are obtained, and uncertainty in the extension of flooded areas with different severity levels is assessed. It is recognized, though, that whenever application of Monte Carlo method is practically feasible, it is a preferred approach.

  6. Effects of changes along the risk chain on flood risk

    Science.gov (United States)

    Duha Metin, Ayse; Apel, Heiko; Viet Dung, Nguyen; Guse, Björn; Kreibich, Heidi; Schröter, Kai; Vorogushyn, Sergiy; Merz, Bruno

    2017-04-01

    Interactions of hydrological and socio-economic factors shape flood disaster risk. For this reason, assessment of flood risk ideally takes into account the whole flood risk chain from atmospheric processes, through the catchment and river system processes to the damage mechanisms in the affected areas. Since very different processes at various scales are interacting along the flood risk, the impact of the single components is rather unclear. However for flood risk management, it is required to know the controlling factor of flood damages. The present study, using the flood-prone Mulde catchment in Germany, discusses the sensitivity of flood risk to disturbances along the risk chain: How do disturbances propagate through the risk chain? How do different disturbances combine or conflict and affect flood risk? In this sensitivity analysis, the five components of the flood risk change are included. These are climate, catchment, river system, exposure and vulnerability. A model framework representing the complete risk chain is combined with observational data to understand how the sensitivities evolve along the risk chain by considering three plausible change scenarios for each of five components. The flood risk is calculated by using the Regional Flood Model (RFM) which is based on a continuous simulation approach, including rainfall-runoff, 1D river network, 2D hinterland inundation and damage estimation models. The sensitivity analysis covers more than 240 scenarios with different combinations of the five components. It is investigated how changes in different components affect risk indicators, such as the risk curve and expected annual damage (EAD). In conclusion, it seems that changes in exposure and vulnerability seem to outweigh changes in hazard.

  7. Towards a whole-network risk assessment for railway bridge failures caused by scour during flood events

    Directory of Open Access Journals (Sweden)

    Lamb Rob

    2016-01-01

    Full Text Available Localised erosion (scour during flood flow conditions can lead to costly damage or catastrophic failure of bridges, and in some cases loss of life or significant disruption to transport networks. Here, we take a broad scale view to assess risk associated with bridge scour during flood events over an entire infrastructure network, illustrating the analysis with data from the British railways. There have been 54 recorded events since 1846 in which scour led to the failure of railway bridges in Britain. These events tended to occur during periods of extremely high river flow, although there is uncertainty about the precise conditions under which failures occur, which motivates a probabilistic analysis of the failure events. We show how data from the historical bridge failures, combined with hydrological analysis, have been used to construct fragility curves that quantify the conditional probability of bridge failure as a function of river flow, accompanied by estimates of the associated uncertainty. The new fragility analysis is tested using flood events simulated from a national, spatial joint probability model for extremes in river flows. The combined models appear robust in comparison with historical observations of the expected number of bridge failures in a flood event, and provide an empirical basis for further broad-scale network risk analysis.

  8. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    Directory of Open Access Journals (Sweden)

    Anders Skovgård Olsen

    2015-01-01

    Full Text Available Estimating the expected annual damage (EAD due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift in the damage costs as a function of the return period. The shift occurs approximately at the 10 year return period and can perhaps be related to the design criteria for sewer systems. Further, it was tested if the EAD estimation could be simplified by assuming a single unit cost per flooded area. The results indicate that within each catchment this may be a feasible approach. However the unit costs varies substantially between different case study areas. Hence it is not feasible to develop unit costs that can be used to calculate EAD, most likely because the urban landscape is too heterogeneous.

  9. Assessing Flood Risks and Planning for Resiliency in New Jersey: A Case Study on the Use of Online Flood Mapping and Resilience Planning Tools

    Science.gov (United States)

    Auermuller, L. M.; Gatto, J.; Huch, C.

    2015-12-01

    The highly developed nature of New Jersey's coastline, barrier island and lagoon communities make them particularly vulnerable to storm surge, sea level rise and flooding. The impacts of Hurricane Sandy have enlightened coastal communities to these realities. Recognizing these vulnerabilities, the Jacques Cousteau National Research Reserve (JC NERR), Rutgers Center for Remote Sensing and Spatial Analysis (CRSSA), Rutgers Bloustein School and the Barnegat Bay Partnership (BBP) have developed web-based tools to assist NJ's coastal communities in visualizing and planning for future local impacts. NJFloodMapper and NJAdapt are two complementary interactive mapping websites that visualize different current and future flood hazards. These hazard layers can be combined with additional data including critical facilities, evacuation routes, socioeconomic and environmental data. Getting to Resilience is an online self-assessment tool developed to assist communities reduce vulnerability and increase preparedness by linking planning, mitigation, and adaptation. Through this interactive process communities will learn how their preparedness can yield valuable points through voluntary programs like FEMA's Community Rating System and Sustainable Jersey. The assessment process can also increase the community's understanding of where future vulnerabilities should be addressed through hazard mitigation planning. Since Superstorm Sandy, more than thirty communities in New Jersey have been provided technical assistance in assessing their risks and vulnerabilities to coastal hazards, and have begun to understand how to better plan and prepare for short and long-term changes along their shorelines.

  10. An urban flood risk assessment method using the Bayesian Network approach

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra

    and water resources management studies, whereas climate risk studies have not yet fully adapted the BN method. A BN is a graphical model that utilizes causal relationships to describe the overall system where risk occurs. A BN can be further extended into a Bayesian Influence diagram (ID) by including...... for inclusion of multiple hazards in FRAs. Lastly, the inclusion of multiple hazards in FRA may be challenging, among others because concurrent events are rare. However, with climate change, the annual variation of hazards may change, and concurrent events may become more frequent. Large-scale atmospheric...... circulation influences local and regional climate and is considered an important factor when aiming at improving our understanding of local weather conditions and the occurrence of extreme events. Hence, this thesis presents a study that explores the relationship between flood generating hazards and large...

  11. Advanced methodology for risk and vulnerability assessment of interdependency of critical infrastructure in respect to urban floods

    Directory of Open Access Journals (Sweden)

    Serre Damien

    2016-01-01

    Full Text Available The behaviour of the urban network infrastructures, and their interactions during flood events, will have direct and indirect consequences on the flood risk level in the built environment. By urban network infrastructures we include all the urban technical networks like transportation, energy, water supply, waste water, telecommunication…able to spread the flood risk in cities, qualified as critical infrastructures due to their major roles for modern living standards. From history, most of cities in the world have been built close to coast lines or to river to beneficiate this means of communication and trade. Step by step, to avoid being flooded, defences like levees have been built. The capacity of the levees to retain the floods depends on their conditions, their performance level and the capacity of the authorities to well maintain these infrastructures. But recent history shows the limits of a flood risk management strategy focused on protection, leading to levee breaks these last decades. Then, in case of levee break, cities will be flooded. The urban technical networks, due to the way they have been designed, their conditions and their locations in the city, will play a major role in the diffusion of the flood extent. Also, the flood risk will have consequences in some not flooded neighbourhoods due to networks collapses and complex interdependencies. This article describes some methods to design spatial decision support systems in that context.

  12. Improving flood risk mapping in Italy: the FloodRisk open-source software

    Science.gov (United States)

    Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru

    2017-04-01

    Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood

  13. Quantitative risk analysis of urban flooding in lowland areas

    NARCIS (Netherlands)

    Ten Veldhuis, J.A.E.

    2010-01-01

    Urban flood risk analyses suffer from a lack of quantitative historical data on flooding incidents. Data collection takes place on an ad hoc basis and is usually restricted to severe events. The resulting data deficiency renders quantitative assessment of urban flood risks uncertain. The study

  14. Constructing risks – Internalisation of flood risks in the flood risk management plan

    NARCIS (Netherlands)

    Roos, Matthijs; Hartmann, T.; Spit, T.J.M.; Johann, Georg

    Traditional flood protection methods have focused efforts on different measures to keep water out of floodplains. However, the European Flood Directive challenges this paradigm (Hartmann and Driessen, 2013). Accordingly, flood risk management plans should incorporate measures brought about by

  15. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.

    2013-01-01

    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  16. Multi-dimensional perspectives of flood risk - using a participatory framework to develop new approaches to flood risk communication

    Science.gov (United States)

    Rollason, Edward; Bracken, Louise; Hardy, Richard; Large, Andy

    2017-04-01

    find confusing or lacking in realistic grounding. This means users do not have information they find useful to make informed decisions about how to prepare for and respond to floods. Working together with at-risk participants, the research has developed new approaches for communicating flood risk. These approaches focus on understanding flood mechanisms and dynamics, to help participants imagine their flood risk and link potential scenarios to reality, and provide forecasts of predicted flooding at a variety of scales, allowing participants to assess the significance of predicted flooding and make more informed judgments on what action to take in response. The findings presented have significant implications for the way in which flood risk is communicated, changing the focus of mapping from probabilistic future scenarios to understanding flood dynamics and mechanisms. Such ways of communicating flood risk embrace how people would like to see risk communicated, and help those at risk grow their resilience. Communicating in such a way has wider implications for flood modelling and data collection. However, these represent potential opportunities to build more effective local partnerships for assessing and managing flood risks.

  17. The necessity of flood risk maps on Timis River

    International Nuclear Information System (INIS)

    Aldescu, Geogr Catalin

    2008-01-01

    The paper aims to clarify the necessity of risk reduction in flood prone areas along the Timis River. Different methods to reduce risk in flood prone areas are analyzed as well. According to the EU Flood Directive it is mandatory for the European countries to develop flood maps and flood risk maps. The maps help to assess the vulnerable zones in the floodable (i.e. flood prone) areas. Many European countries have produced maps which identify areas prone to flooding events for specific known return periods. In Romania the flood risk maps have not been yet produced, but the process has been started to be implemented at the national and regional level, therefore the first results will be soon available. Banat Hydrographical Area was affected by severe floods on Timis River in 2000, 2005 and 2006. The 2005 flood was the most devastating one with large economic losses. As a result of these catastrophes the need for generating flood risk maps along the Timis. River was clearly stated. The water management experts can use these maps in order to identify the 'hot spots' in Timis catchment, give the people a better understanding of flood risk issues and help reducing flood risk more efficient in the identified vulnerable areas.

  18. Classification and assessment of water bodies as adaptive structural measures for flood risk management planning.

    Science.gov (United States)

    McMinn, William R; Yang, Qinli; Scholz, Miklas

    2010-09-01

    Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders. 2010 Elsevier Ltd. All rights reserved.

  19. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations - A new generation of urban planning tools

    Science.gov (United States)

    Löwe, Roland; Urich, Christian; Sto. Domingo, Nina; Mark, Ole; Deletic, Ana; Arnbjerg-Nielsen, Karsten

    2017-07-01

    We present a new framework for flexible testing of flood risk adaptation strategies in a variety of urban development and climate scenarios. This framework couples the 1D-2D hydrodynamic simulation package MIKE FLOOD with the agent-based urban development model DAnCE4Water and provides the possibility to systematically test various flood risk adaptation measures ranging from large infrastructure changes over decentralised water management to urban planning policies. We have tested the framework in a case study in Melbourne, Australia considering 9 scenarios for urban development and climate and 32 potential combinations of flood adaptation measures. We found that the performance of adaptation measures strongly depended on the considered climate and urban development scenario and the other implementation measures implemented, suggesting that adaptive strategies are preferable over one-off investments. Urban planning policies proved to be an efficient means for the reduction of flood risk, while implementing property buyback and pipe increases in a guideline-oriented manner was too costly. Random variations in location and time point of urban development could have significant impact on flood risk and would in some cases outweigh the benefits of less efficient adaptation strategies. The results of our setup can serve as an input for robust decision making frameworks and thus support the identification of flood risk adaptation measures that are economically efficient and robust to variations of climate and urban layout.

  20. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars

    1998-12-31

    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  1. Methodology for flood risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.; Casada, M.L.; Fussell, J.B.

    1984-01-01

    The methodology for flood risk analysis described here addresses the effects of a flood on nuclear power plant safety systems. Combining the results of this method with the probability of a flood allows the effects of flooding to be included in a probabilistic risk assessment. The five-step methodology includes accident sequence screening to focus the detailed analysis efforts on the accident sequences that are significantly affected by a flood event. The quantitative results include the flood's contribution to system failure probability, accident sequence occurrence frequency and consequence category occurrence frequency. The analysis can be added to existing risk assessments without a significant loss in efficiency. The results of two example applications show the usefulness of the methodology. Both examples rely on the Reactor Safety Study for the required risk assessment inputs and present changes in the Reactor Safety Study results as a function of flood probability

  2. Flood damage assessment – Literature review and recommended procedure

    DEFF Research Database (Denmark)

    Olesen, Lea; Löwe, Roland; Arnbjerg-Nielsen, Karsten

    The assessment of flood risk is an essential tool in evaluating the potential consequences of a flood. The analysis of the risk can be applied as part of the flood plain management, but can also be used in a cost-benefit analysis, when comparing different adaption strategies. This analysis is the...

  3. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.

    2015-01-01

    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  4. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    OpenAIRE

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of individuals to undertake flood risk mitigation measures, as well as the public's demand for flood protection, and therefore provide useful insights for flood risk management. This study empirically exa...

  5. Continuous rainfall simulation for regional flood risk assessment - application in the Austrian Alps

    Science.gov (United States)

    Salinas, Jose Luis; Nester, Thomas; Komma, Jürgen; Blöschl, Günter

    2017-04-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of the observed rainfall characteristics, such as regional intensity-duration-frequency curves, is necessary to adequately model the magnitude and frequency of the flood peaks. Furthermore, the replication of the observed rainfall spatial and temporal correlations allows to model important other hydrological features like antecedent soil moisture conditions before extreme rainfall events. In this work, we present an application in the Tirol region (Austrian alps) of a modification of the model presented by Bardossy and Platte (1992), where precipitation is modeled on a station basis as a mutivariate autoregressive model (mAr) in a Normal space, and then transformed to a Gamma-distributed space. For the sake of simplicity, the parameters of the Gamma distributions are assumed to vary monthly according to a sinusoidal function, and are calibrated trying to simultaneously reproduce i) mean annual rainfall, ii) mean daily rainfall amounts, iii) standard deviations of daily rainfall amounts, and iv) 24-hours intensity duration frequency curve. The calibration of the spatial and temporal correlation parameters is performed in a way that the intensity-duration-frequency curves aggregated at different spatial and temporal scales reproduce the measured ones. Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247-1259, doi:10.1029/91WR02589.

  6. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  7. Development of web-based services for an ensemble flood forecasting and risk assessment system

    Science.gov (United States)

    Yaw Manful, Desmond; He, Yi; Cloke, Hannah; Pappenberger, Florian; Li, Zhijia; Wetterhall, Fredrik; Huang, Yingchun; Hu, Yuzhong

    2010-05-01

    Flooding is a wide spread and devastating natural disaster worldwide. Floods that took place in the last decade in China were ranked the worst amongst recorded floods worldwide in terms of the number of human fatalities and economic losses (Munich Re-Insurance). Rapid economic development and population expansion into low lying flood plains has worsened the situation. Current conventional flood prediction systems in China are neither suited to the perceptible climate variability nor the rapid pace of urbanization sweeping the country. Flood prediction, from short-term (a few hours) to medium-term (a few days), needs to be revisited and adapted to changing socio-economic and hydro-climatic realities. The latest technology requires implementation of multiple numerical weather prediction systems. The availability of twelve global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a good opportunity for an effective state-of-the-art early forecasting system. A prototype of a Novel Flood Early Warning System (NEWS) using the TIGGE database is tested in the Huai River basin in east-central China. It is the first early flood warning system in China that uses the massive TIGGE database cascaded with river catchment models, the Xinanjiang hydrologic model and a 1-D hydraulic model, to predict river discharge and flood inundation. The NEWS algorithm is also designed to provide web-based services to a broad spectrum of end-users. The latter presents challenges as both databases and proprietary codes reside in different locations and converge at dissimilar times. NEWS will thus make use of a ready-to-run grid system that makes distributed computing and data resources available in a seamless and secure way. An ability to run or function on different operating systems and provide an interface or front that is accessible to broad spectrum of end-users is additional requirement. The aim is to achieve robust interoperability

  8. Developing a national programme of flood risk management measures: Moldova

    Directory of Open Access Journals (Sweden)

    Ramsbottom David

    2016-01-01

    Full Text Available A Technical Assistance project funded by the European Investment Bank has been undertaken to develop a programme of flood risk management measures for Moldova that will address the main shortcomings in the present flood management system, and provide the basis for long-term improvement. Areas of significant flood risk were identified using national hydraulic and flood risk modelling, and flood hazard and flood risk maps were then prepared for these high risk areas. The flood risk was calculated using 12 indicators representing social, economic and environmental impacts of flooding. Indicator values were combined to provide overall estimates of flood risk. Strategic approaches to flood risk management were identified for each river basin using a multi-criteria analysis. Measures were then identified to achieve the strategic approaches. A programme of measures covering a 20-year period was developed together with a more detailed Short-Term Investment Plan covering the first seven years of the programme. Arrangements are now being made to implement the programme. The technical achievements of the project included national hydrological and hydraulic modelling covering 12,000 km of river, the development of 2-dimensional channel and floodplain hydraulic models from a range of topographic and bathymetric data, and an integrated flood risk assessment that takes account of both economic and non-monetary impacts.

  9. The socio-economic dimension of flood risk assessment: insights of KULTURisk framework

    Science.gov (United States)

    Giupponi, Carlo; Gain, Animesh; Mojtahed, Vahid; Balbi, Stefano

    2013-04-01

    The approaches for vulnerability and risk assessment have found different and often contrasting solutions by various schools of thought. The two most prominent communities in this field are: climate change adaptation (CCA), and disaster risk reduction (DRR). Although those communities have usually in common the aim of reducing socio-economic vulnerability and risk to natural hazards, they have usually referred to different definitions and conceptualizations. For example, the DRR community has always driven more emphasis on the concept of risk and vulnerability is considered as a physical/environmental input for the quantification of risk, while the CCA research stream, mainly under the auspices of the Intergovernmental Panel on Climate Change (IPCC), considered vulnerability as an output deriving from social conditions and processes such as adaptation or maladaptation. Recently, with the publication of the IPCC Special Report on extreme events and disasters (IPCC-SREX), the notions of vulnerability and risk are somehow integrated in order to jointly consider both climate change adaptation and disaster risk management. The IPCC-SREX indeed is expected to significantly contribute to find common language and methodological approaches across disciplines and, therefore, the opportunity emerges for proposing new operational solutions, consistent with the most recent evolution of concepts and terminology. Based on the development of the IPCC Report, the KULTURisk project developed an operational framework to support integrated assessment and decision support through the combination of contributions from diverse disciplinary knowledge, with emphasis on the social and economic dimensions. KIRAF (KULTURisk Integrated Risk Assessment Framework) is specifically aimed at comprehensively evaluate the benefits of risk mitigation measures with consideration of the dynamic context deriving from the consideration of climatic changes and their effects on natural disasters, within the

  10. Rethinking the relationship between flood risk perception and flood management.

    Science.gov (United States)

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Citizen involvement in flood risk governance: flood groups and networks

    Directory of Open Access Journals (Sweden)

    Twigger-Ross Clare

    2016-01-01

    Full Text Available Over the past decade has been a policy shift withinUK flood risk management towards localism with an emphasis on communities taking ownership of flood risk. There is also an increased focus on resilience and, more specifically, on community resilience to flooding. This paper draws on research carried out for UK Department for Environment Food and Rural Affairs to evaluate the Flood Resilience Community Pathfinder (FRCP scheme in England. Resilience is conceptualised as multidimensional and linked to exisiting capacities within a community. Creating resilience to flooding is an ongoing process of adaptation, learning from past events and preparing for future risks. This paper focusses on the development of formal and informal institutions to support improved flood risk management: institutional resilience capacity. It includes new institutions: e.g. flood groups, as well as activities that help to build inter- and intra- institutional resilience capacity e.g. community flood planning. The pathfinder scheme consisted of 13 projects across England led by local authorities aimed at developing community resilience to flood risk between 2013 – 2015. This paper discusses the nature and structure of flood groups, the process of their development, and the extent of their linkages with formal institutions, drawing out the barriers and facilitators to developing institutional resilience at the local level.

  12. A methodology for urban flood resilience assessment

    Science.gov (United States)

    Lhomme, Serge; Serre, Damien; Diab, Youssef; Laganier, Richard

    2010-05-01

    In Europe, river floods have been increasing in frequency and severity [Szöllösi-Nagy and Zevenbergen, 2005]. Moreover, climate change is expected to exacerbate the frequency and intensity of hydro meteorological disaster [IPCC, 2007]. Despite efforts made to maintain the flood defense assets, we often observe levee failures leading to finally increase flood risk in protected area. Furthermore, flood forecasting models, although benefiting continuous improvements, remain partly inaccurate due to uncertainties arising all along data calculation processes. In the same time, the year 2007 marks a turning point in history: half of the world population now lives in cities (UN-Habitat, 2007). Moreover, the total urban population is expected to double from two to four billion over the next 30 to 35 years (United Nations, 2006). This growing rate is equivalent to the creation of a new city of one million inhabitants every week, and this during the next four decades [Flood resilience Group]. So, this quick urban development coupled with technical failures and climate change have increased flood risk and corresponding challenges to urban flood risk management [Ashley et al., 2007], [Nie et al., 2009]. These circumstances oblige to manage flood risk by integrating new concepts like urban resilience. In recent years, resilience has become a central concept for risk management. This concept has emerged because a more resilient system is less vulnerable to risk and, therefore, more sustainable [Serre et al., 2010]. But urban flood resilience is a concept that has not yet been directly assessed. Therefore, when decision makers decide to use the resilience concept to manage urban flood, they have no tool to help them. That is why this paper proposes a methodology to assess urban flood resilience in order to make this concept operational. Networks affect the well-being of the people and the smooth functioning of services and, more generally, of economical activities. Yet

  13. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    Science.gov (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  14. Smoky River coal flood risk mapping study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Canada-Alberta Flood Damage Reduction Program (FDRP) is designed to reduce flood damage by identifying areas susceptible to flooding and by encouraging application of suitable land use planning, zoning, and flood preparedness and proofing. The purpose of this study is to define flood risk and floodway limits along the Smoky River near the former Smoky River Coal (SRC) plant. Alberta Energy has been responsible for the site since the mine and plant closed in 2000. The study describes flooding history, available data, features of the river and valley, calculation of flood levels, and floodway determination, and includes flood risk maps. The HEC-RAS program is used for the calculations. The flood risk area was calculated using the 1:100 year return period flood as the hydrological event. 7 refs., 11 figs., 7 tabs., 3 apps.

  15. The European Flood Risk Directive and Ethics

    NARCIS (Netherlands)

    Mostert, E.; Doorn, N.

    2012-01-01

    The European Flood risk directive (2007/60/EC) requires EU Member States to review their system of flood risk management. In doing so, they will have to face ethical issues inherent in flood risk management. This paper discusses three such issues, using examples from the Netherlands. These issues

  16. Long-term experiences with pluvial flood risk management

    Directory of Open Access Journals (Sweden)

    Fritsch Kathrina

    2016-01-01

    Full Text Available The awareness of pluvial (rain-related flood risk has grown significantly in the past few years but pluvial flooding is not handled with the same intensity throughout Europe. A variety of methods and modelling technologies are used to assess pluvial flood hazard and risk and to develop suggestions for flood mitigation measures. A brief overview of current model approaches is followed by the description of a modelling methodology that has been developed throughout the last 15 years with the focus on processing large scale areas. Experiences from several projects show that only high quality models of whole catchment areas yield results with enough accuracy to gain credibility among stakeholders, planners and the public. As a best practice example shows, the model approach also helps to plan effective decentral flood protection measures. To ensure successful flood risk management, a long-term preservation of flood risk awareness among local authorities and the public is necessary.

  17. Flood Risk Characterization for the Eastern United States

    Science.gov (United States)

    Villarini, G.; Smith, J. A.; Ntelekos, A. A.

    2009-04-01

    Tropical cyclones landfalling in the eastern United States pose a major risk for insured property and can lead to extensive damage through storm surge flooding, inland flooding or extreme windspeeds. Current hurricane cat-models do not include calculations of inland flooding from the outer rainfall bands of tropical cyclones but the issue is becoming increasingly important for commercial insurance risk assessment. The results of this study could be used to feed into the next generation of hurricane cat-models and assist in the calculation of damages from inland hurricane flood damage. Annual maximum peak discharge records from more than 400 stations in the eastern United States with at least 75 years of record to examine the role of landfalling tropical cyclones in controlling the upper tail of inland flood risk for the eastern United States. In addition to examining tropical cyclone inland flood risk at specific locations, the spatial extent of extreme flooding from lanfalling tropical cyclones is analyzed. Analyses of temporal trends and abrupt changes in the mean and variance of annual flood peaks are performed. Change-point analysis is performed using the non-parametric Pettitt test. Two non-parametric (Mann-Kendall and Spearman) tests and one parametric (Pearson) test are applied to detect the presence of temporal trends. Flood risk characterization centers on assessments of the spatial variation in "upper tail" properties of annual flood peak distributions. The modeling framework for flood frequency analysis is provided by the Generalized Additive Models for Location Scale and Shape (GAMLSS).

  18. A methodology for flood risk appraisal in Lithuania

    Directory of Open Access Journals (Sweden)

    Kriščiukaitienė Irena

    2015-06-01

    Full Text Available This paper presents a methodology for flood risk mapping as envisaged by the Directive on the Assessment and Management of Flood Risks [Directive 2007/60/EC]. Specifically, we aimed at identifying the types of flood damage that can be estimated given data availability in Lithuania. Furthermore, we present the main sources of data and the associated cost functions. The methodology covers the following main types of flood threats: risk to inhabitants, risk to economic activity, and social risk. A multi-criteria framework for aggregation of different risks is proposed to provide a comprehensive appraisal of flood risk. On the basis of the proposed research, flood risk maps have been prepared for Lithuania. These maps are available for each type of flood risk (i.e. inhabitants, economic losses, social risk as well as for aggregate risk. The results indicate that flood risk management is crucial for western and central Lithuania, whereas other parts of the country are not likely to suffer from significant losses due to flooding.

  19. Beyond the Floodplain: Drivers of Flood Risk in Coastal Cities

    Science.gov (United States)

    Rosenzweig, B.; McPhearson, T.; Rosi, E. J.

    2017-12-01

    While the catastrophic impacts of Hurricane Katrina increased awareness of coastal flood risk, conventional approaches to flood risk assessment do not adequately represent the drivers of flood risk in the unique, highly engineered landscape of dense cities. We review the recent (1996-2016) history of flooding events and current regional climate change projection for 4 diverse coastal cities in the United States: San Juan, Miami, Baltimore and New York. Our review suggests that while all 4 of these cities face increased risk from direct coastal flooding with climate change, pluvial flooding will be an additional, important driver of risk that is currently poorly quantified. Unlike other types of flooding, pluvial flood risk is not limited to a contiguous riverine or coastal floodplain, but is instead driven by interactions between spatially variable geophysical drivers (intense rainfall, shallow groundwater, and influent tidal water), social drivers (patterns of land use) and technical drivers (urban stormwater and coastal infrastructure). We discuss approaches for quantitative assessment of pluvial flood risk, the challenges presented by the lack of data on geophysical flooding drivers in dense cities, and opportunities for integrated research to provide the scientific information needed by practitioners.

  20. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks

    NARCIS (Netherlands)

    Gaitan Sabogal, S.; ten Veldhuis, J.A.E.; Rogger, M; Aksoy, H; Kooy, M

    2015-01-01

    Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing

  1. Improving the analysis of social component of flash-floods risk assessment: Application to urban areas of Castilla y León (Spain)

    Science.gov (United States)

    Aroca Jimenez, Estefanía; Bodoque del Pozo, Jose Maria; Garcia Martin, Juan Antonio; Diez Herrero, Andres

    2016-04-01

    The increasing evidence of anthropogenic climate change, the respective intensification of extreme events as well as the increase in human exposure to natural hazards and their vulnerability show that the enhancement of strategies on how to reduce disaster risk and promote adaptation to extreme events is critical to increase resilience. Growing economic losses, high numbers of casualties and the disruption of livelihoods in various places of the world, at an even higher rate than the increase of magnitude and frequency of extreme events, underline that the vulnerability of societies exposed is a key aspect to be considered. Social vulnerability characterizes the predisposition of society to be afflicted by hazards such as floods, being flash floods one of the hazards with the greatest capacity to generate risk. Despite its importance, social vulnerability is often a neglected aspect of traditional risk assessments which mainly focus on economic and structural measures. The aim of this research is to identify those social characteristics which render people vulnerable to flash flood hazards, and consider whether these characteristics are identifiable as local patterns at regional level. The result of this task is a Social Susceptibility Index (SSI) based on susceptibility profiles of the population per township. These profiles are obtained by Hierarchical Segmentation and Latent Class Analysis of demographic and socio-economic information provided by different public organisms. By adding exposure information to SSI, a Social and Infraestructure Flood Vulnerability Index (SIFVI) is created. The methodology proposed here is implemented in the region of Castilla y León (94,226 km2). Townships that are included in this study meet two requirements: i) city centres are affected by an area where potential significant flash-flood risk exists (i.e. villages are crossed by rivers with a longitudinal slope higher than 0.01); ii) city centres are affected by an area with low

  2. Future trends in flood risk in Indonesia - A probabilistic approach

    Science.gov (United States)

    Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip

    2014-05-01

    Indonesia is one of the 10 most populous countries in the world and is highly vulnerable to (river) flooding. Catastrophic floods occur on a regular basis; total estimated damages were US 0.8 bn in 2010 and US 3 bn in 2013. Large parts of Greater Jakarta, the capital city, are annually subject to flooding. Flood risks (i.e. the product of hazard, exposure and vulnerability) are increasing due to rapid increases in exposure, such as strong population growth and ongoing economic development. The increase in risk may also be amplified by increasing flood hazards, such as increasing flood frequency and intensity due to climate change and land subsidence. The implementation of adaptation measures, such as the construction of dykes and strategic urban planning, may counteract these increasing trends. However, despite its importance for adaptation planning, a comprehensive assessment of current and future flood risk in Indonesia is lacking. This contribution addresses this issue and aims to provide insight into how socio-economic trends and climate change projections may shape future flood risks in Indonesia. Flood risk were calculated using an adapted version of the GLOFRIS global flood risk assessment model. Using this approach, we produced probabilistic maps of flood risks (i.e. annual expected damage) at a resolution of 30"x30" (ca. 1km x 1km at the equator). To represent flood exposure, we produced probabilistic projections of urban growth in a Monte-Carlo fashion based on probability density functions of projected population and GDP values for 2030. To represent flood hazard, inundation maps were computed using the hydrological-hydraulic component of GLOFRIS. These maps show flood inundation extent and depth for several return periods and were produced for several combinations of GCMs and future socioeconomic scenarios. Finally, the implementation of different adaptation strategies was incorporated into the model to explore to what extent adaptation may be able to

  3. Sustainability appraisal and flood risk management

    International Nuclear Information System (INIS)

    Carter, Jeremy G.; White, Iain; Richards, Juliet

    2009-01-01

    This research establishes that sustainability appraisal (SA) has a role to play in strengthening spatial plans in the context of flooding issues. Indeed, evidence has been gathered to indicate that tentative steps are being taken in this direction during the SA of English regional spatial plans, which are used as an illustrative case study. In England as in many other countries, appraisal procedures including SA and strategic environmental assessment (SEA) are enshrined in planning law. An opportunity therefore exists to utilise existing and familiar planning tools to embed flooding considerations within spatial plans at an early stage in the planning process. SA (and similar appraisal tools such as SEA) can therefore usefully aid in the implementation of decision making principles and government policy relating to flooding. Moreover, with the threats associated with climate change becoming increasingly apparent, of which increased flood risk is a particular concern in many countries, there is a need develop appropriate adaptation responses. This article emphasizes the role that SA can play in managing future flood risk in this context

  4. Coastal flood risk

    CSIR Research Space (South Africa)

    Luck-Vogel, Melanie

    2017-07-01

    Full Text Available ! Unless… People @ Coasts https://eoimages.gsfc.nasa.gov/images/imagerecords/79000/79765/dnb_land_ocean_ice.2012.3600x1800.jpg People & Coasts • About 40% of the world’s population is situated within 100km of the coastline (Millennium Ecosystem Assessment...

  5. Feedback on flood risk management

    Science.gov (United States)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    For several years, as floods were increasing in South of France, local communities felt deprive to assume their mission of protection and information of citizens, and were looking for assistance in flood management. In term of flood disaster, the fact is that physical protection is necessary but inevitably limited. Tools and structures of assistance to anticipation remain slightly developed. To manage repeated crisis, local authorities need to be able to base their policy against flood on prevention, warnings, post-crisis analysis and feedback from former experience. In this objective, after 3 years of test and improvement since 2003, the initiative Predict-Services was developped in South of France: it aims at helping communities and companies to face repeated flood crisis. The principle is to prepare emergency plans, to organize crisis management and reduce risks; to help and assist communities and companies during crisis to activate and adapt their emergency plans with enough of anticipation; and to analyse floods effects and improve emergency plans afterwards. In order to reduce risks, and to keep the benefits of such an initiative, local communities and companies have to maintain the awareness of risk of the citizens and employees. They also have to maintain their safety plans to keep them constantly operational. This is a part of the message relayed. Companies, Local communities, local government authorities and basin stakeholders are the decision makers. Companies and local communities have to involve themselves in the elaboration of safety plans. They are also completely involved in their activation that is their own responsability. This applies to other local government authorities, like districts one's and basin stakeholders, which participle in the financing community safety plans and adminitrative district which are responsible of the transmission of meteorological alert and of rescue actions. In the crossing of the géo-information stemming from the

  6. Tacking Flood Risk from Watersheds using a Natural Flood Risk Management Toolkit

    Science.gov (United States)

    Reaney, S. M.; Pearson, C.; Barber, N.; Fraser, A.

    2017-12-01

    In the UK, flood risk management is moving beyond solely mitigating at the point of impact in towns and key infrastructure to tackle problem at source through a range of landscape based intervention measures. This natural flood risk management (NFM) approach has been trailed within a range of catchments in the UK and is moving towards being adopted as a key part of flood risk management. The approach offers advantages including lower cost and co-benefits for water quality and habitat creation. However, for an agency or group wishing to implement NFM within a catchment, there are two key questions that need to be addressed: Where in the catchment to place the measures? And how many measures are needed to be effective? With this toolkit, these questions are assessed with a two-stage workflow. First, SCIMAP-Flood gives a risk based mapping of likely locations that contribute to the flood peak. This tool uses information on land cover, hydrological connectivity, flood generating rainfall patterns and hydrological travel time distributions to impacted communities. The presented example applies the tool to the River Eden catchment, UK, with 5m grid resolution and hence provide sub-field scale information at the landscape extent. SCIMAP-Flood identifies sub-catchments where physically based catchment hydrological simulation models can be applied to test different NFM based mitigation measures. In this example, the CRUM3 catchment hydrological model has been applied within an uncertainty framework to consider the effectiveness of soil compaction reduction and large woody debris dams within a sub-catchment. It was found that large scale soil aeration to reduce soil compaction levels throughout the catchment is probably the most useful natural flood management measure for this catchment. NFM has potential for wide-spread application and these tools help to ensure that the measures are correctly designed and the scheme performance can be quantitatively assessed and predicted.

  7. A free and open source QGIS plugin for flood risk analysis: FloodRisk

    Science.gov (United States)

    Albano, Raffaele; Sole, Aurelia; Mancusi, Leonardo

    2016-04-01

    An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to increase the resilience of European economies and societies, the improvement of risk assessment and management has been pursued in the last years. This results in a wide range of flood analysis models of different complexities with substantial differences in underlying components needed for its implementation, as geographical, hydrological and social differences demand specific approaches in the different countries. At present, it is emerging the need of promote the creation of open, transparent, reliable and extensible tools for a comprehensive, context-specific and applicable flood risk analysis. In this context, the free and open-source Quantum GIS (QGIS) plugin "FloodRisk" is a good starting point to address this objective. The vision of the developers of this free and open source software (FOSS) is to combine the main features of state-of-the-art science, collaboration, transparency and interoperability in an initiative to assess and communicate flood risk worldwide and to assist authorities to facilitate the quality and fairness of flood risk management at multiple scales. Among the scientific community, this type of activity can be labelled as "participatory research", intended as adopting a set of techniques that "are interactive and collaborative" and reproducible, "providing a meaningful research experience that both promotes learning and generates knowledge and research data through a process of guided discovery"' (Albano et al., 2015). Moreover, this FOSS geospatial approach can lowering the financial barriers to understanding risks at national and sub-national levels through a spatio-temporal domain and can provide better and more complete

  8. Morphometric Analysis to Prioritize Sub-Watershed for Flood Risk Assessment in Central Karakoram National Park Using Gis/rs Approach

    Science.gov (United States)

    Syed, N. H.; Rehman, A. A.; Hussain, D.; Ishaq, S.; Khan, A. A.

    2017-11-01

    Morphometric analysis is vital for any watershed investigation and it is inevitable for flood risk assessment in sub-watershed basins. Present study undertaken to carry out critical evaluation and assessment of sub watershed morphological parameters for flood risk assessment of Central Karakorum National Park (CKNP), where Geographical information system and remote sensing (GIS & RS) approach used for quantifying the parameter and mapping of sub watershed units. ASTER DEM used as a geo-spatial data for watershed delineation and stream network. Morphometric analysis carried out using spatial analyst tool of ArcGIS 10.2. The parameters included were bifurcation ratio (Rb), Drainage Texture (Rt), Circulatory ratio (Rc), Elongated ratio (Re), Drainage density (Dd), Stream Length (Lu), Stream order (Su), Slope and Basin length (Lb) have calculated separately. The analysis revealed that the stream order varies from order 1 to 6 and the total numbers of stream segments of all orders were 52. Multi criteria analysis process used to calculate the risk factor. As an accomplished result, map of sub watershed prioritization developed using weighted standardized risk factor. These results helped to understand sensitivity of flush floods in different sub watersheds of the study area and leaded to better management of the mountainous regions in prospect of flush floods.

  9. Glacial lake outburst flood risk assessment using combined approaches of remote sensing, GIS and dam break modelling

    Directory of Open Access Journals (Sweden)

    Arpit Aggarwal

    2016-01-01

    Full Text Available A great number of glacial lakes have appeared in many mountain regions across the world during the last half-century due to receding of glaciers and global warming. In the present study, glacial lake outburst flood (GLOF risk assessment has been carried out in the Teesta river basin located in the Sikkim state of India. First, the study focuses on accurate mapping of the glaciers and glacial lakes using multispectral satellite images of Landsat and Indian Remote Sensing satellites. For glacier mapping, normalized difference snow index (NDSI image and slope map of the area have been utilized. NDSI approach can identify glaciers covered with clean snow but debris-covered glaciers cannot be mapped using NDSI method alone. For the present study, slope map has been utilized along with the NDSI approach to delineate glaciers manually. Glacial lakes have been mapped by supervised maximum likelihood classification and normalized difference water index followed by manual editing afterwards using Google Earth images. Second, the first proper inventory of glacial lakes for Teesta basin has been compiled containing information of 143 glacial lakes. Third, analysis of these lakes has been carried out for identification of potentially dangerous lakes. Vulnerable lakes have been identified on the basis of parameters like surface area, position with respect to parent glacier, growth since 2009, slope, distance from the outlet of the basin, presence of supraglacial lakes, presence of other lakes in downstream, condition of moraine, condition of the terrain around them, etc. From these criterions, in total, 18 lakes have been identified as potentially dangerous glacial lakes. Out of these 18 lakes, further analysis has been carried out for the identification of the most vulnerable lake. Lake 140 comes out to be the most vulnerable for a GLOF event. Lastly, for this potentially dangerous lake, different dam break parameters have been generated using satellite data

  10. A Study on Coastal Flooding and Risk Assessment under Climate Change in the Mid-Western Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Tai-Wen Hsu

    2017-06-01

    Full Text Available This study integrated coastal watershed models and combined them with a risk assessment method to develop a methodology to investigate the impact resulting from coastal disasters under climate change. The mid-western coast of Taiwan suffering from land subsidence was selected as the demonstrative area for the vulnerability analysis based on the prediction of sea level rise (SLR, wave run-up, overtopping, and coastal flooding under the scenarios of the years from 2020 to 2039. Databases from tidal gauges and satellite images were used to analyze SLR using Ensemble Empirical Mode Decomposition (EEMD. Extreme wave condition and storm surge were estimated by numerical simulation using the Wind Wave Model (WWM and the Princeton Ocean Model (POM. Coastal inundation was then simulated via the WASH123D watershed model. The risk map of study areas based on the analyses of vulnerability and disaster were established using the Analytic Hierarchy Process (AHP technique. Predictions of sea level rise, the maximum wave condition, and storm surge under the scenarios of 2020 to 2039 are presented. The results indicate that the sea level at the mid-western coast of Taiwan will rise by an average of 5.8 cm, equivalent to a rising velocity of 2.8 mm/year. The analysis indicates that the Wuqi, Lukang, Mailiao, and Taixi townships are susceptive, low resistant and low resilient and reach the high-risk level. This assessment provides important information for creating an adaption policy for the mid-western coast of Taiwan.

  11. An experimental system for flood risk forecasting at global scale

    Science.gov (United States)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  12. Economic optimisation of flood risk management projects

    NARCIS (Netherlands)

    Tsimopoulou, V.

    2015-01-01

    The Netherlands has developed a flood risk management policy based on an economic rationale. After the flood disaster of 1953, when a large area of the south-western part of the country was flooded and more than 1800 people lost their lives, the so-called Delta Committee was installed, whose main

  13. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal

    Directory of Open Access Journals (Sweden)

    Paulo Fernandez

    2016-07-01

    Full Text Available Over the last decade, flood disasters have affected millions of people and caused massive economic losses. Social vulnerability assessment uses a combination of several factors to represent a population's differential access to resources and its ability to cope with and respond to hazards. In this paper, social vulnerability assessment to flood risk was applied to the third most populous Portuguese municipality. The study was developed at the neighbourhood level, allowing for social vulnerability analysis at inter civil parish, intra civil parish, and municipality scales. A geographic information system-based multicriteria decision analysis (GIS-MCDA was applied to social vulnerability and allows for an increased understanding and improved monitoring of social vulnerability over space, identifying ‘hot spots’ that require adaptation policies. Mafamude, Oliveira do Douro, Vila Nova de Gaia, and Avintes civil parishes display the greatest vulnerability to flooding. According to the most pessimistic scenario 57%–68% of the area of these civil parishes is classed at a high or very high level of social vulnerability. The GIS-MCDA helps to assess what and who is at risk, and where targeted impact-reduction strategies should be implemented. The results demonstrate the importance of an urban-scale approach instead of a river basin scale to urban flood risk management plans.

  14. Modeling of Flood Risk for the Continental United States

    Science.gov (United States)

    Lohmann, D.; Li, S.; Katz, B.; Goteti, G.; Kaheil, Y. H.; Vojjala, R.

    2011-12-01

    The science of catastrophic risk modeling helps people to understand the physical and financial implications of natural catastrophes (hurricanes, flood, earthquakes, etc.), terrorism, and the risks associated with changes in life expectancy. As such it depends on simulation techniques that integrate multiple disciplines such as meteorology, hydrology, structural engineering, statistics, computer science, financial engineering, actuarial science, and more in virtually every field of technology. In this talk we will explain the techniques and underlying assumptions of building the RMS US flood risk model. We especially will pay attention to correlation (spatial and temporal), simulation and uncertainty in each of the various components in the development process. Recent extreme floods (e.g. US Midwest flood 2008, US Northeast flood, 2010) have increased the concern of flood risk. Consequently, there are growing needs to adequately assess the flood risk. The RMS flood hazard model is mainly comprised of three major components. (1) Stochastic precipitation simulation module based on a Monte-Carlo analogue technique, which is capable of producing correlated rainfall events for the continental US. (2) Rainfall-runoff and routing module. A semi-distributed rainfall-runoff model was developed to properly assess the antecedent conditions, determine the saturation area and runoff. The runoff is further routed downstream along the rivers by a routing model. Combined with the precipitation model, it allows us to correlate the streamflow and hence flooding from different rivers, as well as low and high return-periods across the continental US. (3) Flood inundation module. It transforms the discharge (output from the flow routing) into water level, which is further combined with a two-dimensional off-floodplain inundation model to produce comprehensive flood hazard map. The performance of the model is demonstrated by comparing to the observation and published data. Output from

  15. Evaluation of Flooding Risk and Engineering Protection Against Floods for Ulan-Ude

    Science.gov (United States)

    Borisova, T. A.

    2017-11-01

    The report presents the results of the study on analysis and risk assessment in relation to floods for Ulan-Ude and provides the developed recommendations of the activities for engineering protection of the population and economic installations. The current situation is reviewed and the results of the site survey are shown to identify the challenges and areas of negative water influence along with the existing security system. The report presents a summary of floods and index risk assessment. The articles describes the scope of eventual flooding, underflooding and enumerates the economic installations inside the urban areas’ research-based zones of flooding at the rated levels of water to identify the likeliness of exceedance. The assessment of damage from flood equal to 1% is shown.

  16. Flash flood forecasting, warning and risk management: the HYDRATE project

    International Nuclear Information System (INIS)

    Borga, M.; Anagnostou, E.N.; Bloeschl, G.; Creutin, J.-D.

    2011-01-01

    Highlights: → We characterize flash flood events in various regions of Europe. → We provide guidance to improve observations and monitoring of flash floods. → Flash floods are associated to orography and are influenced by initial soil moisture conditions. → Models for flash flood forecasting and flash flood hazard assessment are illustrated and discussed. → We examine implications for flood risk policy and discuss recommendations received from end users. - Abstract: The management of flash flood hazards and risks is a critical component of public safety and quality of life. Flash-floods develop at space and time scales that conventional observation systems are not able to monitor for rainfall and river discharge. Consequently, the atmospheric and hydrological generating mechanisms of flash-floods are poorly understood, leading to highly uncertain forecasts of these events. The objective of the HYDRATE project has been to improve the scientific basis of flash flood forecasting by advancing and harmonising a European-wide innovative flash flood observation strategy and developing a coherent set of technologies and tools for effective early warning systems. To this end, the project included actions on the organization of the existing flash flood data patrimony across Europe. The final aim of HYDRATE was to enhance the capability of flash flood forecasting in ungauged basins by exploiting the extended availability of flash flood data and the improved process understanding. This paper provides a review of the work conducted in HYDRATE with a special emphasis on how this body of research can contribute to guide the policy-life cycle concerning flash flood risk management.

  17. Flood risk analysis procedure for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.

    1982-01-01

    This paper describes a methodology and procedure for determining the impact of floods on nuclear power plant risk. The procedures are based on techniques of fault tree and event tree analysis and use the logic of these techniques to determine the effects of a flood on system failure probability and accident sequence occurrence frequency. The methodology can be applied independently or as an add-on analysis for an existing risk assessment. Each stage of the analysis yields useful results such as the critical flood level, failure flood level, and the flood's contribution to accident sequence occurrence frequency. The results of applications show the effects of floods on the risk from nuclear power plants analyzed in the Reactor Safety Study

  18. Sustainable flood risk management – What is sustainable?

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Brudler, Sarah; Lerer, Sara Maria

    2016-01-01

    Sustainable flood risk management has to be achieved since flood protection is a fundamental societal service that we must deliver. Based on the discourse within the fields of risk management and sustainable urban water management, we discuss the necessity of assessing the sustainability of flood...... risk management, and propose an evaluation framework for doing so. We argue that it is necessary to include quantitative sustainability measures in flood risk management in order to exclude unsustainable solutions. Furthermore, we use the concept of absolute sustainability to discuss the prospects...... of maintaining current service levels without compromising future generation’s entitlement of services. Discussions on the sustainability of different overall flood risk schemes must take place. Fundamental changes in the approaches will require fundamental changes in the mind-sets of practitioners as well...

  19. A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas

    Directory of Open Access Journals (Sweden)

    Szymon Szewrański

    2018-06-01

    Full Text Available The interplay of an ever-growing number of inhabitants, sprawl development, soil sealing, changes in urban traffic characteristics, as well as observed climate trends gives rise to more frequent pluvial flooding in cities, a higher run-off of water, and an increasing pollution of surface water. The aim of this research is to develop a location intelligence system for the assessment of pluvial flooding risks and the identification of storm water pollutant sources from roads in newly-developed areas. The system combines geographic information systems and business intelligence software, and it is based on the original Pluvial Flood Risk Assessment tool. The location intelligence system effectively identifies the spatial and temporal distribution of pluvial flood risks, allows to preliminarily evaluate the total run-off from roads, and helps localise potential places for new water management infrastructure. Further improvements concern the modelling of a flow accumulation and drainage system, the application of weather radar precipitation data, and traffic monitoring and modelling.

  20. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    Science.gov (United States)

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly. © 2015 Society for Risk Analysis.

  1. Financing increasing flood risk: evidence from millions of buildings

    Science.gov (United States)

    Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.

    2014-01-01

    The effectiveness of disaster risk management and financing mechanisms depends on the accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on the ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information can contribute to discussions on possible risk financing practices. The case-study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood prone areas has been higher than in not flood prone areas. We also find that property values in flood prone areas are lower than those in not flood prone areas. We argue that the increase in the share of economic value located in potential flood prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.

  2. Increasing flood exposure in the Netherlands: implications for risk financing

    Science.gov (United States)

    Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.

    2014-05-01

    The effectiveness of disaster risk management and financing mechanisms depends on an accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information provides valuable input to discussions on possible risk financing practices. The case study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood-prone areas has been higher than in non-flood-prone areas. We also find that property values in flood-prone areas are lower than those in non-flood-prone areas. We argue that the increase in the share of economic value located in potential flood-prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.

  3. IMPACT ASSESSMENT OF STRUCTURAL FLOOD MITIGATION MEASURES

    Directory of Open Access Journals (Sweden)

    ZVIJAKOVA LENKA

    2015-03-01

    Full Text Available The objective of the paper is to propose a methodology for assessing water constructions, which will allow impact assessment of water constructions on the environment and hence select the best option for the permission process. The result is “Guideline for environmental impact assessment of flood protection object”, which uses the method of UMRA (universal matrix of risk analysis, which is one of the methods of risk analysis proposed not only to enhance the transparency and sensitivity of the evaluation process, but also to cope with the requirements of the EIA system in the Slovakia and Europe Union.

  4. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    NARCIS (Netherlands)

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of

  5. Assessing public flood risk perception for understanding the level of risk preparedness - Evidence from a community-based survey (the Bend Subcarpathians, Romania)

    Science.gov (United States)

    Balteanu, Dan; Micu, Dana; Dumitrascu, Monica; Chendes, Viorel; Dragota, Carmen; Kucsicsa, Gheorghita; Grigorescu, Ines; Persu, Mihaela; Costache, Andra

    2016-04-01

    Floods (slow-onset and rapid) are among the costliest hydro-meteorological hazards in Romania, with strong societal and economic impacts, especially in small rural settlements, with a limited adaptive capacity to their adverse effects induced by the regional socio-economic context (e.g. aging population, low economic power). The study-area is located in the Bend Subcarpathians (Romania), a region with high tectonic mobility (the Seismic Vrancea Region), active slope processes (e.g. shallow and deep-seated landslides, mud flow, gully erosion) and increasing frequency of flash floods associated to heavy rainfalls. The study was conducted in the framework of the project "Vulnerability of the environment and human settlements to floods in the context of Global Environmental Change - VULMIN" (PN-II-PT-PCCA-2011-3.1-1587), funded by the Ministry of National Education over the 2012-2016 period (http://www.igar-vulmin.ro). Prior research derived valuable insights into the local population vulnerability to extreme hydro-meteorological events, revealing an increased individual experience to past hydrological events, a high level of worry associated to flood recurrence, a low rate of the perceived trustworthiness in national institutions and authorities, as well as evident differences between the perception of community members and local authorities in terms of risk preparedness. In the present study, an attempt has been made for developing an advanced understanding of the current level of flood risk preparedness within some communities strongly affected by the floods of 1970-1975, 2005 and 2010. The recent events had a significant impact on local communities and infrastructure in terms of the financial losses, causing a visible stress and even psychological trauma on some residents of the most affected households. The selected communities are located in areas affected by recurrent hydro-meteorological hazards (floods and flash floods), with return periods below 10 years. A

  6. Composite Flood Risk for Virgin Island

    Science.gov (United States)

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  7. Contribution of future urbanisation expansion to flood risk changes

    Science.gov (United States)

    Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin

    2016-04-01

    The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to

  8. River flood risk in Jakarta under scenarios of future change

    Science.gov (United States)

    Budiyono, Yus; Aerts, Jeroen C. J. H.; Tollenaar, Daniel; Ward, Philip J.

    2016-03-01

    Given the increasing impacts of flooding in Jakarta, methods for assessing current and future flood risk are required. In this paper, we use the Damagescanner-Jakarta risk model to project changes in future river flood risk under scenarios of climate change, land subsidence, and land use change. Damagescanner-Jakarta is a simple flood risk model that estimates flood risk in terms of annual expected damage, based on input maps of flood hazard, exposure, and vulnerability. We estimate baseline flood risk at USD 186 million p.a. Combining all future scenarios, we simulate a median increase in risk of +180 % by 2030. The single driver with the largest contribution to that increase is land subsidence (+126 %). We simulated the impacts of climate change by combining two scenarios of sea level rise with simulations of changes in 1-day extreme precipitation totals from five global climate models (GCMs) forced by the four Representative Concentration Pathways (RCPs). The results are highly uncertain; the median change in risk due to climate change alone by 2030 is a decrease by -46 %, but we simulate an increase in risk under 12 of the 40 GCM-RCP-sea level rise combinations. Hence, we developed probabilistic risk scenarios to account for this uncertainty. If land use change by 2030 takes places according to the official Jakarta Spatial Plan 2030, risk could be reduced by 12 %. However, if land use change in the future continues at the same rate as the last 30 years, large increases in flood risk will take place. Finally, we discuss the relevance of the results for flood risk management in Jakarta.

  9. Managing flood risks in the Mekong Delta

    NARCIS (Netherlands)

    Hoang, Long Phi; Biesbroek, Robbert; Tri, Van Pham Dang; Kummu, Matti; Vliet, van Michelle T.H.; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2018-01-01

    Climate change and accelerating socioeconomic developments increasingly challenge flood-risk management in the Vietnamese Mekong River Delta—a typical large, economically dynamic and highly vulnerable delta. This study identifies and addresses the emerging challenges for flood-risk management.

  10. Flood Risk Management in the People’s Republic of China: Learning to Live with Flood Risk

    OpenAIRE

    Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB)

    2012-01-01

    This publication presents a shift in the People’s Republic of China from flood control depending on structural measures to integrated flood management using both structural and non-structural measures. The core of the new concept of integrated flood management is flood risk management. Flood risk management is based on an analysis of flood hazard, exposure to flood hazard, and vulnerability of people and property to danger. It is recommended that people learn to live with flood risks, gaining...

  11. Improving Flood Damage Assessment Models in Italy

    Science.gov (United States)

    Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.

    2015-12-01

    The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.

  12. An integrated simulation method for flash-flood risk assessment: 2. Effects of changes in land-use under a historical perspective

    Science.gov (United States)

    Rosso, R.; Rulli, M. C.

    The influence of land use changes on flood occurrence and severity in the Bisagno River (Thyrrenian Liguria, N.W. Italy is investigated using a Monte Carlo simulation approach (Rulli and Rosso, 2002). High resolution land-use maps for the area were reconstructed and scenario simulations were made for a pre-industrial (1878), an intermediate (1930) and a current (1980) year. Land-use effects were explored to assess the consequences of distributed changes in land use due to agricultural practice and urbanisation. Hydraulic conveyance effects were considered, to assess the consequences of channel modifications associated with engineering works in the lower Bisagno River network. Flood frequency analyses of the annual flood series, retrieved from the simulations, were used to examine the effect of land-use change and river conveyance on flood regime. The impact of these effects proved to be negligible in the upper Bisagno River, moderate in the downstream river and severe in the small tributaries in the lower Bisagno valley that drain densely populated urban areas. The simulation approach is shown to be capable of incorporating historical data on landscape and river patterns into quantitative methods for risk assessment.

  13. An analysis of the public perception of flood risk on the Belgian coast.

    Science.gov (United States)

    Kellens, Wim; Zaalberg, Ruud; Neutens, Tijs; Vanneuville, Wouter; De Maeyer, Philippe

    2011-07-01

    In recent years, perception of flood risks has become an important topic to policy makers concerned with risk management and safety issues. Knowledge of the public risk perception is considered a crucial aspect in modern flood risk management as it steers the development of effective and efficient flood mitigation strategies. This study aimed at gaining insight into the perception of flood risks along the Belgian coast. Given the importance of the tourism industry on the Belgian coast, the survey considered both inhabitants and residential tourists. Based on actual expert's risk assessments, a high and a low risk area were selected for the study. Risk perception was assessed on the basis of scaled items regarding storm surges and coastal flood risks. In addition, various personal and residence characteristics were measured. Using multiple regression analysis, risk perception was found to be primarily influenced by actual flood risk estimates, age, gender, and experience with previous flood hazards. © 2011 Society for Risk Analysis.

  14. Spatial dependence and correlation of rainfall in the Danube catchment and its role in flood risk assessment.

    Science.gov (United States)

    Martina, M. L. V.; Vitolo, R.; Todini, E.; Stephenson, D. B.; Cook, I. M.

    2009-04-01

    The possibility that multiple catastrophic events occur within a given timespan and affect the same portfolio of insured properties may induce enhanced risk. For this reason, in the insurance industry it is of interest to characterise not only the point probability of catastrophic events, but also their spatial structure. As far as floods are concerned it is important to determine the probability of having multiple simultaneous events in different parts of the same basin: in this case, indeed, the loss in a portfolio can be significantly different. Understanding the spatial structure of the precipitation field is a necessary step for the proper modelling of the spatial dependence and correlation of river discharge. Several stochastic models are available in the scientific literature for the multi-site generation of precipitation. Although most models achieve good performance in modelling mean values, temporal variability and inter-site dependence of extremes are still delicate issues. In this work we aim at identifying the main spatial characteristics of the precipitation structure and then at analysing them in a real case. We consider data from a large network of raingauges in the Danube catchment. This catchment is a good example of a large-scale catchment where the spatial correlation of flood events can radically change the effect in term of flood damage.

  15. ENSO impacts on flood risk at the global scale

    Science.gov (United States)

    Ward, Philip; Dettinger, Michael; Jongman, Brenden; Kummu, Matti; Winsemius, Hessel

    2014-05-01

    We present the impacts of El Niño Southern Oscillation (ENSO) on society and the economy, via relationships between ENSO and the hydrological cycle. We also discuss ways in which this knowledge can be used in disaster risk management and risk reduction. This contribution provides the most recent results of an ongoing 4-year collaborative research initiative to assess and map the impacts of large scale interannual climate variability on flood hazard and risk at the global scale. We have examined anomalies in flood risk between ENSO phases, whereby flood risk is expressed in terms of indicators such as: annual expected damage; annual expected affected population; annual expected affected Gross Domestic Product (GDP). We show that large anomalies in flood risk occur during El Niño or La Niña years in basins covering large parts of the Earth's surface. These anomalies reach statistical significance river basins covering almost two-thirds of the Earth's surface. Particularly strong anomalies exist in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially La Niña anomalies), and parts of South America. We relate these anomalies to possible causal relationships between ENSO and flood hazard, using both modelled and observed data on flood occurrence and extremity. The implications for flood risk management are many-fold. In those regions where disaster risk is strongly influenced by ENSO, the potential predictably of ENSO could be used to develop probabilistic flood risk projections with lead times up to several seasons. Such data could be used by the insurance industry in managing risk portfolios and by multinational companies for assessing the robustness of their supply chains to potential flood-related interruptions. Seasonal forecasts of ENSO influence of peak flows could also allow for improved flood early warning and regulation by dam operators, which could also reduce overall risks

  16. Governance in support of integrated flood risk management? The case of Romania

    NARCIS (Netherlands)

    Vinke-de Kruijf, Joanne; Kuks, Stefanus M.M.; Augustijn, Dionysius C.M.

    2015-01-01

    Building on an existing model of governance, this paper aims to assess the supportiveness of Romania׳s structural flood risk governance context towards integrated flood risk management. We assert that a governance structure supports the development and implementation of integrated flood risk

  17. Effects of climate variability on global scale flood risk

    Science.gov (United States)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change

  18. Flood risk management in Italy

    DEFF Research Database (Denmark)

    Mysiak, J.; Testella, F.; Bonaiuto, M.

    2013-01-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina...

  19. Usefulness and limitations of global flood risk models

    Science.gov (United States)

    Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Bates, Paul; De Groeve, Tom; Muis, Sanne; Coughlan de Perez, Erin; Rudari, Roberto; Mark, Trigg; Winsemius, Hessel

    2016-04-01

    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742

  20. Flood risk analysis for flood control and sediment transportation in sandy regions: A case study in the Loess Plateau, China

    Science.gov (United States)

    Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai

    2018-05-01

    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  1. Increasing resilience through participative flood risk map design

    Science.gov (United States)

    Fuchs, Sven; Spira, Yvonne; Stickler, Therese

    2013-04-01

    In recent years, an increasing number of flood hazards has shown to the European Commission and the Member States of the European Union the importance of flood risk management strategies in order to reduce losses and to protect the environment and the citizens. Exposure to floods as well as flood vulnerability might increase across Europe due to the ongoing economic development in many EU countries. Thus even without taking climate change into account an increase of flood disasters in Europe might be foreseeable. These circumstances have produced a reaction in the European Commission, and a Directive on the Assessment and Management of Flood Risks was issued as one of the three components of the European Action Programme on Flood Risk Management. Floods have the potential to jeopardise economic development, above all due to an increase of human activities in floodplains and the reduction of natural water retention by land use activities. As a result, an increase in the likelihood and adverse impacts of flood events is expected. Therefore, concentrated action is needed at the European level to avoid severe impacts on human life and property. In order to have an effective tool available for gathering information, as well as a valuable basis for priority setting and further technical, financial and political decisions regarding flood risk mitigation and management, it is necessary to provide for the establishment of flood risk maps which show the potential adverse consequences associated with different flood scenarios. So far, hazard and risk maps are compiled in terms of a top-down linear approach: planning authorities take the responsibility to create and implement these maps on different national and local scales, and the general public will only be informed about the outcomes (EU Floods Directive, Article 10). For the flood risk management plans, however, an "active involvement of interested parties" is required, which means at least some kind of multilateral

  2. Managing flood risk through collaborative governance | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-05-21

    May 21, 2013 ... Managing flood risk through collaborative governance ... This article profiles a project supported by IDRC's Climate Change and Water program, ... and in the intensity of extreme weather events are resulting in the erosion of lo.

  3. Flood Hazard Areas - High Risk

    Data.gov (United States)

    Department of Homeland Security — The S_Fld_Haz_Ar table contains information about the flood hazards within the study area. A spatial file with locational information also corresponds with this data...

  4. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    Science.gov (United States)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  5. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  6. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico

    Science.gov (United States)

    Haer, Toon; Botzen, W. J. Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M.; Ward, Philip J.

    2018-06-01

    Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  7. Flood loss assessment in the Kota Tinggi

    International Nuclear Information System (INIS)

    Tam, T H; Ibrahim, A L; Rahman, M Z A; Mazura, Z

    2014-01-01

    Malaysia is free from several destructive and widespread natural disasters but frequently affected by floods, which caused massive flood damage. In 2006 and 2007, an extreme rainfall occured in many parts of Peninsular Malaysia, which caused severe flooding in several major cities. Kota Tinggi was chosen as study area as it is one the seriously affected area in Johor state. The aim of this study is to estimate potential flood damage to physical elements in Kota Tinggi. The flood damage map contains both qualitative and quantitative information which corresponds to the consequences of flooding. This study only focuses on physical elements. Three different damage functions were adopted to calculate the potential flood damage and flood depth is considered as the main parameter. The adopted functions are United States, the Netherlands and Malaysia. The estimated flood damage for housing using United States, the Netherlands and Malaysia was RM 350/m 2 RM 200/m 2 and RM 100/m 2 respectively. These results successfully showed the average flood damage of physical element. Such important information needed by local authority and government for urban spatial planning and aiming to reduce flood risk

  8. Urban flood risk warning under rapid urbanization.

    Science.gov (United States)

    Chen, Yangbo; Zhou, Haolan; Zhang, Hui; Du, Guoming; Zhou, Jinhui

    2015-05-01

    In the past decades, China has observed rapid urbanization, the nation's urban population reached 50% in 2000, and is still in steady increase. Rapid urbanization in China has an adverse impact on urban hydrological processes, particularly in increasing the urban flood risks and causing serious urban flooding losses. Urban flooding also increases health risks such as causing epidemic disease break out, polluting drinking water and damaging the living environment. In the highly urbanized area, non-engineering measurement is the main way for managing urban flood risk, such as flood risk warning. There is no mature method and pilot study for urban flood risk warning, the purpose of this study is to propose the urban flood risk warning method for the rapidly urbanized Chinese cities. This paper first presented an urban flood forecasting model, which produces urban flood inundation index for urban flood risk warning. The model has 5 modules. The drainage system and grid dividing module divides the whole city terrain into drainage systems according to its first-order river system, and delineates the drainage system into grids based on the spatial structure with irregular gridding technique; the precipitation assimilation module assimilates precipitation for every grids which is used as the model input, which could either be the radar based precipitation estimation or interpolated one from rain gauges; runoff production module classifies the surface into pervious and impervious surface, and employs different methods to calculate the runoff respectively; surface runoff routing module routes the surface runoff and determines the inundation index. The routing on surface grid is calculated according to the two dimensional shallow water unsteady flow algorithm, the routing on land channel and special channel is calculated according to the one dimensional unsteady flow algorithm. This paper then proposed the urban flood risk warning method that is called DPSIR model based

  9. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management

    NARCIS (Netherlands)

    Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W.

    2015-01-01

    Flood risk assessments provide inputs for the evaluation of flood risk management (FRM) strategies. Traditionally, such risk assessments provide estimates of loss of life and economic damage. However, the effect of policy measures aimed at reducing risk also depends on the capacity of households to

  10. A new methodology for modelling of health risk from urban flooding exemplified by cholera

    DEFF Research Database (Denmark)

    Mark, Ole; Jørgensen, Claus; Hammond, Michael

    2016-01-01

    outlines a novel methodology for linking dynamic urban flood modelling with quantitative microbial risk assessment (QMRA). This provides a unique possibility for understanding the interaction between urban flooding and health risk caused by direct human contact with the flood water and hence gives...... and mortality, especially during floods. At present, there are no software tools capable of combining hydrodynamic modelling and health risk analyses, and the links between urban flooding and the health risk for the population due to direct contact with the flood water are poorly understood. The present paper...... an option for reducing the burden of disease in the population by use of intelligent urban flood risk management. The model linking urban flooding and health risk is applied to Dhaka City in Bangladesh, where waterborne diseases including cholera are endemic. The application to Dhaka City is supported...

  11. Flood Impacts on People: from Hazard to Risk Maps

    Science.gov (United States)

    Arrighi, C.; Castelli, F.

    2017-12-01

    The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.

  12. Methods and tools to support real time risk-based flood forecasting - a UK pilot application

    Directory of Open Access Journals (Sweden)

    Brown Emma

    2016-01-01

    Full Text Available Flood managers have traditionally used probabilistic models to assess potential flood risk for strategic planning and non-operational applications. Computational restrictions on data volumes and simulation times have meant that information on the risk of flooding has not been available for operational flood forecasting purposes. In practice, however, the operational flood manager has probabilistic questions to answer, which are not completely supported by the outputs of traditional, deterministic flood forecasting systems. In a collaborative approach, HR Wallingford and Deltares have developed methods, tools and techniques to extend existing flood forecasting systems with elements of strategic flood risk analysis, including probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. This paper presents the results of the application of these new operational flood risk management tools to a pilot catchment in the UK. It discusses the problems of performing probabilistic flood risk assessment in real time and how these have been addressed in this study. It also describes the challenges of the communication of risk to operational flood managers and to the general public, and how these new methods and tools can provide risk-based supporting evidence to assist with this process.

  13. Assessment of Urban Pluvial Flood Risk and Efficiency of Adaptation Options Through Simulations – A New Generation of Urban Planning Tools

    DEFF Research Database (Denmark)

    Löwe, Roland; Urich, Christian; Sto. Domingo, Niña Donna Farpale

    2017-01-01

    the possibility to systematically test various flood risk adaptation measures ranging from large infrastructure changes over decentralised water management to urban planning policies. We have tested the framework in a case study in Melbourne, Australia considering 9 scenarios for urban development and climate......-off investments. Urban planning policies proved to be an efficient means for the reduction of flood risk, while implementing property buyback and pipe increases in a guideline-oriented manner was too costly. Random variations in location and time point of urban development could have significant impact on flood......We present a new framework for flexible testing of flood risk adaptation strategies in a variety of urban development and climate scenarios. This framework couples the 1D-2D hydrodynamic simulation package MIKE FLOOD with the agent-based urban development model DAnCE4Water and provides...

  14. Scenario-based tsunami risk assessment using a static flooding approach and high-resolution digital elevation data: An example from Muscat in Oman

    Science.gov (United States)

    Schneider, Bastian; Hoffmann, Gösta; Reicherter, Klaus

    2016-04-01

    Knowledge of tsunami risk and vulnerability is essential to establish a well-adapted Multi Hazard Early Warning System, land-use planning and emergency management. As the tsunami risk for the coastline of Oman is still under discussion and remains enigmatic, various scenarios based on historical tsunamis were created. The suggested inundation and run-up heights were projected onto the modern infrastructural setting of the Muscat Capital Area. Furthermore, possible impacts of the worst-case tsunami event for Muscat are discussed. The approved Papathoma Tsunami Vulnerability Assessment Model was used to model the structural vulnerability of the infrastructure for a 2 m tsunami scenario, depicting the 1945 tsunami and a 5 m tsunami in Muscat. Considering structural vulnerability, the results suggest a minor tsunami risk for the 2 m tsunami scenario as the flooding is mainly confined to beaches and wadis. Especially traditional brick buildings, still predominant in numerous rural suburbs, and a prevalently coast-parallel road network lead to an increased tsunami risk. In contrast, the 5 m tsunami scenario reveals extensively inundated areas and with up to 48% of the buildings flooded, and therefore consequently a significantly higher tsunami risk. We expect up to 60000 damaged buildings and up to 380000 residents directly affected in the Muscat Capital Area, accompanied with a significant loss of life and damage to vital infrastructure. The rapid urbanization processes in the Muscat Capital Area, predominantly in areas along the coast, in combination with infrastructural, demographic and economic growth will additionally increase the tsunami risk and therefore emphasizes the importance of tsunami risk assessment in Oman.

  15. Increasing stress on disaster risk finance due to large floods

    Science.gov (United States)

    Jongman, Brenden; Hochrainer-Stigler, Stefan; Feyen, Luc; Aerts, Jeroen; Mechler, Reinhard; Botzen, Wouter; Bouwer, Laurens; Pflug, Georg; Rojas, Rodrigo; Ward, Philip

    2014-05-01

    Recent major flood disasters have shown that single extreme events can affect multiple countries simultaneously, which puts high pressure on trans-national risk reduction and risk transfer mechanisms. To date, little is known about such flood hazard interdependencies across regions, and the corresponding joint risks at regional to continental scales. Reliable information on correlated loss probabilities is crucial for developing robust insurance schemes and public adaptation funds, and for enhancing our understanding of climate change impacts. Here we show that extreme discharges are strongly correlated across European river basins and that these correlations can, or should, be used in national to continental scale risk assessment. We present probabilistic trends in continental flood risk, and demonstrate that currently observed extreme flood losses could more than double in frequency by 2050 under future climate change and socioeconomic development. The results demonstrate that accounting for tail dependencies leads to higher estimates of extreme losses than estimates based on the traditional assumption of independence between basins. We suggest that risk management for these increasing losses is largely feasible, and we demonstrate that risk can be shared by expanding risk transfer financing, reduced by investing in flood protection, or absorbed by enhanced solidarity between countries. We conclude that these measures have vastly different efficiency, equity and acceptability implications, which need to be taken into account in broader consultation, for which our analysis provides a basis.

  16. Global drivers of future river flood risk

    Science.gov (United States)

    Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; van Beek, Ludovicus P. H.; Bierkens, Marc F. P.; Bouwman, Arno; Jongman, Brenden; Kwadijk, Jaap C. J.; Ligtvoet, Willem; Lucas, Paul L.; van Vuuren, Detlef P.; Ward, Philip J.

    2016-04-01

    Understanding global future river flood risk is a prerequisite for the quantification of climate change impacts and planning effective adaptation strategies. Existing global flood risk projections fail to integrate the combined dynamics of expected socio-economic development and climate change. We present the first global future river flood risk projections that separate the impacts of climate change and socio-economic development. The projections are based on an ensemble of climate model outputs, socio-economic scenarios, and a state-of-the-art hydrologic river flood model combined with socio-economic impact models. Globally, absolute damage may increase by up to a factor of 20 by the end of the century without action. Countries in Southeast Asia face a severe increase in flood risk. Although climate change contributes significantly to the increase in risk in Southeast Asia, we show that it is dwarfed by the effect of socio-economic growth, even after normalization for gross domestic product (GDP) growth. African countries face a strong increase in risk mainly due to socio-economic change. However, when normalized to GDP, climate change becomes by far the strongest driver. Both high- and low-income countries may benefit greatly from investing in adaptation measures, for which our analysis provides a basis.

  17. The 3D Elevation Program—Flood risk management

    Science.gov (United States)

    Carswell, William J.; Lukas, Vicki

    2018-01-25

    Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these

  18. Disaster risk, climate change, and poverty : assessing the global exposure of poor people to floods and droughts

    NARCIS (Netherlands)

    Winsemius, Hessel C.; Jongman, Brenden; Veldkamp, Ted I.E.; Hallegatte, Stephane; Bangalore, Mook; Ward, Philip J.

    People living in poverty are particularly vulnerable to shocks, including those caused by natural disasters such as floods and droughts. This paper analyses household survey data and hydrological riverine flood and drought data for 52 countries to find out whether poor people are disproportionally

  19. ESP and NOAH: computer programs for flood-risk analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.; Montague, D.F.; Rooney, J.J.; Fussell, J.B.; Baker, L.S.

    1982-06-01

    This report describes a computer program package that aids in assessing the impact of floods on risk from nuclear power plants. The package consists of two distinct computer programs: ESP and NOAH. The ESP program improves the efficiency of a flood analysis by screening accident sequences and identifying accident sequences that are potentially significant contributors to risk in the event of a flood. Input to ESP includes accident sequences from an existing risk assessment and flood screening criteria. The NOAH program provides detailed qualitative analysis of the plant systems identified by ESP. NOAH performs a qualitative flood simulation of the fault tree

  20. Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model Approach.

    Science.gov (United States)

    Haer, Toon; Botzen, W J Wouter; de Moel, Hans; Aerts, Jeroen C J H

    2017-10-01

    Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent-based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss-reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low-probability/high-impact risks. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  1. Use of documentary sources on past flood events for flood risk management and land planning

    Science.gov (United States)

    Cœur, Denis; Lang, Michel

    2008-09-01

    The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.

  2. Exploring public databases to characterize urban flood risks in Amsterdam

    Science.gov (United States)

    Gaitan, Santiago; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2015-04-01

    Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to decide upon investment to reduce their impacts. Obvious flooding factors affecting flood risk include sewer systems performance and urban topography. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall and socioeconomic characteristics may help to explain probability and impacts of urban flooding. Several public databases were analyzed: complaints about flooding made by citizens, rainfall depths (15 min and 100 Ha spatio-temporal resolution), grids describing number of inhabitants, income, and housing price (1Ha and 25Ha resolution); and buildings age. Data analysis was done using Python and GIS programming, and included spatial indexing of data, cluster analysis, and multivariate regression on the complaints. Complaints were used as a proxy to characterize flooding impacts. The cluster analysis, run for all the variables except the complaints, grouped part of the grid-cells of central Amsterdam into a highly differentiated group, covering 10% of the analyzed area, and accounting for 25% of registered complaints. The configuration of the analyzed variables in central Amsterdam coincides with a high complaint count. Remaining complaints were evenly dispersed along other groups. An adjusted R2 of 0.38 in the multivariate regression suggests that explaining power can improve if additional variables are considered. While rainfall intensity explained 4% of the incidence of complaints, population density and building age significantly explained around 20% each. Data mining of public databases proved to be a valuable tool to identify factors explaining variability in occurrence of urban pluvial flooding, though additional variables must be considered to fully explain flood risk variability.

  3. Assessment of the effectiveness of flood adaptation strategies for HCMC

    Science.gov (United States)

    Lasage, R.; Veldkamp, T. I. E.; de Moel, H.; Van, T. C.; Phi, H. L.; Vellinga, P.; Aerts, J. C. J. H.

    2014-06-01

    Coastal cities are vulnerable to flooding, and flood risk to coastal cities will increase due to sea-level rise. Moreover, Asian cities in particular are subject to considerable population growth and associated urban developments, increasing this risk even more. Empirical data on vulnerability and the cost and benefits of flood risk reduction measures are therefore paramount for sustainable development of these cities. This paper presents an approach to explore the impacts of sea-level rise and socio-economic developments on flood risk for the flood-prone District 4 in Ho Chi Minh City, Vietnam, and to develop and evaluate the effects of different adaptation strategies (new levees, dry- and wet proofing of buildings and elevating roads and buildings). A flood damage model was developed to simulate current and future flood risk using the results from a household survey to establish stage-damage curves for residential buildings. The model has been used to assess the effects of several participatory developed adaptation strategies to reduce flood risk, expressed in expected annual damage (EAD). Adaptation strategies were evaluated assuming combinations of both sea-level scenarios and land-use scenarios. Together with information on costs of these strategies, we calculated the benefit-cost ratio and net present value for the adaptation strategies until 2100, taking into account depreciation rates of 2.5% and 5%. The results of this modelling study indicate that the current flood risk in District 4 is USD 0.31 million per year, increasing up to USD 0.78 million per year in 2100. The net present value and benefit-cost ratios using a discount rate of 5 % range from USD -107 to -1.5 million, and from 0.086 to 0.796 for the different strategies. Using a discount rate of 2.5% leads to an increase in both net present value and benefit-cost ratio. The adaptation strategies wet-proofing and dry-proofing generate the best results using these economic indicators. The information

  4. Ecosystem Approach To Flood Disaster Risk Reduction

    Directory of Open Access Journals (Sweden)

    RK Kamble

    2013-12-01

    Full Text Available India is one of the ten worst disaster prone countries of the world. The country is prone to disasters due to number of factors; both natural and anthropogenic, including adverse geo-climatic conditions, topographical features, environmental degradation, population growth, urbanisation, industrlisation, non-scientific development practices etc. The factors either in original or by accelerating the intensity and frequency of disasters are responsible for heavy toll of human lives and disrupting the life support systems in the country. India has 40 million hectares of the flood-prone area, on an average, flood affect an area of around 7.5 million hectares per year. Knowledge of environmental systems and processes are key factors in the management of disasters, particularly the hydro-metrological ones. Management of flood risk and disaster is a multi-dimensional affair that calls for interdisciplinary approach. Ecosystem based disaster risk reduction builds on ecosystem management principles, strategies and tools in order to maximise ecosystem services for risk reduction. This perspective takes into account the integration of social and ecological systems, placing people at the centre of decision making. The present paper has been attempted to demonstrate how ecosystem-based approach can help in flood disaster risk reduction. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 70-82 DOI: http://dx.doi.org/10.3126/ije.v2i1.9209

  5. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    Science.gov (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  6. Quantifying riverine and storm-surge flood risk by single-family residence: application to Texas.

    Science.gov (United States)

    Czajkowski, Jeffrey; Kunreuther, Howard; Michel-Kerjan, Erwann

    2013-12-01

    The development of catastrophe models in recent years allows for assessment of the flood hazard much more effectively than when the federally run National Flood Insurance Program (NFIP) was created in 1968. We propose and then demonstrate a methodological approach to determine pure premiums based on the entire distribution of possible flood events. We apply hazard, exposure, and vulnerability analyses to a sample of 300,000 single-family residences in two counties in Texas (Travis and Galveston) using state-of-the-art flood catastrophe models. Even in zones of similar flood risk classification by FEMA there is substantial variation in exposure between coastal and inland flood risk. For instance, homes in the designated moderate-risk X500/B zones in Galveston are exposed to a flood risk on average 2.5 times greater than residences in X500/B zones in Travis. The results also show very similar average annual loss (corrected for exposure) for a number of residences despite their being in different FEMA flood zones. We also find significant storm-surge exposure outside of the FEMA designated storm-surge risk zones. Taken together these findings highlight the importance of a microanalysis of flood exposure. The process of aggregating risk at a flood zone level-as currently undertaken by FEMA-provides a false sense of uniformity. As our analysis indicates, the technology to delineate the flood risks exists today. © 2013 Society for Risk Analysis.

  7. Climate change, uncertainty and investment in flood risk reduction

    OpenAIRE

    Pol, van der, T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies. Chapter 2 provides an overview of cost-benefit analysis (CBA) of flood risk management strategies under climate change uncertainty and new information. CBA is applied to determine optimal dike height...

  8. Operational flood forecasting, warning and response for multi-scale flood risks in developing cities

    NARCIS (Netherlands)

    Rogelis Prada, M.C.

    2016-01-01

    Flood early warning systems are recognized as one of the most effective flood risk management instruments when correctly embedded in comprehensive flood risk management strategies and policies. Many efforts around the world are being put in place to advance the components that determine the

  9. Flood risk management in the Souss watershed

    Science.gov (United States)

    Bouaakkaz, Brahim; El Abidine El Morjani, Zine; Bouchaou, Lhoussaine; Elhimri, Hamza

    2018-05-01

    Flooding is the most devasting natural hazards that causes more damage throughout the world. In 2016, for the fourth year in a row, it was the most costly natural disaster, in terms of global economic losses: 62 billion, according to a Benfield's 2016 annual report on climate and natural disasters [1]. The semi-arid to arid Souss watershed is vulnerable to floods, whose the intensity is becoming increasingly alarming and this area does not escape to the effects of this extreme event.. Indeed, the susceptibility of this region to this type of hazard is accentuated by its rapid evolution in terms of demography, uncontrolled land use, anthropogenic actions (uncontrolled urbanization, encroachment of the hydraulic public domain, overgrazing, clearing and deforestation).), and physical behavior of the environment (higher slope, impermeable rocks, etc.). It is in this context, that we have developed a strategic plan of action to manage this risk in the Souss basin in order to reduce the human, economic and environmental losses, after the modeling of the flood hazard in the study area, using georeferenced information systems (GIS), satellite remote sensing space and multi-criteria analysis techniques, as well as the history of major floods. This study, which generated the high resolution 30m flood hazard spatial distribution map of with accuracy of 85%, represents a decision tool to identify and prioririze area with high probability of hazard occurrence. It can also serve as a basis for urban evacuation plans for anticipating and preventing flood risk in the region, in order to ovoid any dramatic disaster.

  10. Designing a flood-risk education program in the Netherlands

    NARCIS (Netherlands)

    Bosschaert, A.; van der Schee, J.; Kuiper, W.

    2016-01-01

    This study focused on designing a flood-risk education program to enhance 15-year-old students’ flood-risk perception. In the flood-risk education program, learning processes were modeled in such a way that the arousal of moderate levels of fear should prompt experiential and analytical information

  11. Climate change, uncertainty and investment in flood risk reduction

    NARCIS (Netherlands)

    Pol, van der T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies.

  12. Flood Risk Management In Europe: an exploration of governance challenges

    NARCIS (Netherlands)

    Hegger, D.; Dieperink, C.; Green, C.; Driessen, Peter; Bakker, M.H.; Rijswick, H.F.M.W. van; Crabbé, A.; Ek, K.

    2013-01-01

    In order to make European regions more resilient to flood risks a broadening of Flood Risk Management strategies (FRMSs) might be necessary. The development and implementation of FRMSs like risk prevention, flood defence, mitigation, preparation and recovery is a matter of governance, a process of

  13. Lessons learned from Khartoum flash flood impacts: An integrated assessment.

    Science.gov (United States)

    Mahmood, Mohamad Ibrahim; Elagib, Nadir Ahmed; Horn, Finlay; Saad, Suhair A G

    2017-12-01

    This study aims at enabling the compilation of key lessons for decision makers and urban planners in rapidly urbanizing cities regarding the identification of representative, chief causal natural and human factors for the increased level of flash flood risk. To achieve this, the impacts of flash flood events of 2013 and 2014 in the capital of Sudan, Khartoum, were assessed using seven integrated approaches, i.e. rainfall data analysis, document analysis of affected people and houses, observational fieldwork in the worst flood affected areas, people's perception of causes and mitigation measures through household interviews, reported drinking water quality, reported water-related diseases and social risk assessment. Several lessons have been developed as follows. Urban planners must recognize the devastating risks of building within natural pathways of ephemeral watercourses. They must also ensure effective drainage infrastructures and physio-geographical investigations prior to developing urban areas. The existing urban drainage systems become ineffective due to blockage by urban waste. Building of unauthorized drainage and embankment structures by locals often cause greater flood problems than normal. The urban runoff is especially problematic for residential areas built within low-lying areas having naturally low infiltration capacity, as surface water can rapidly collect within hollows and depressions, or beside elevated roads that preclude the free flow of floodwater. Weak housing and infrastructure quality are especially vulnerable to flash flooding and even to rainfall directly. Establishment of services infrastructure is imperative for flash flood disaster risk reduction. Water supply should be from lower aquifers to avoid contaminant groundwater. Regular monitoring of water quality and archiving of its indicators help identify water-related diseases and sources of water contamination in the event of environmental disasters such as floods. Though the

  14. How useful are Swiss flood insurance data for flood vulnerability assessments?

    Science.gov (United States)

    Röthlisberger, Veronika; Bernet, Daniel; Zischg, Andreas; Keiler, Margreth

    2015-04-01

    vulnerability and resilience assessments. For instance, the collation of insurance loss data with event documentations containing information on flood intensity allows to develop damage curves. Flood damage curves are fundamental for many risk analysis methodologies but to date only few are published and the spatial and temporal scope of their applicability is subject of discussion. Another possibility of using insurance data lies in the field of assessment exposure, where the analysis of comprehensive insurance portfolio data can improve the understanding of the physical but also the socio-economical vulnerability of a society. The poster spotlights key opportunities and challenges scientists are facing when using insurance data for flood vulnerability assessments.

  15. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  16. Flood risk assessment through 1D/2D couple HEC-RAS hydrodynamic modeling- A case study of Surat City, Lower Tapi Basin, India

    Science.gov (United States)

    Patel, Dhruvesh; Ramirez, Jorge; Srivastava, Prashant; Bray, Michaela; Han, Dawei

    2017-04-01

    flood inundation mapping and can be applied for flood assessment at locations with similar geographical conditions.

  17. Challenges of Modeling Flood Risk at Large Scales

    Science.gov (United States)

    Guin, J.; Simic, M.; Rowe, J.

    2009-04-01

    algorithm propagates the flows for each simulated event. The model incorporates a digital terrain model (DTM) at 10m horizontal resolution, which is used to extract flood plain cross-sections such that a one-dimensional hydraulic model can be used to estimate extent and elevation of flooding. In doing so the effect of flood defenses in mitigating floods are accounted for. Finally a suite of vulnerability relationships have been developed to estimate flood losses for a portfolio of properties that are exposed to flood hazard. Historical experience indicates that a for recent floods in Great Britain more than 50% of insurance claims occur outside the flood plain and these are primarily a result of excess surface flow, hillside flooding, flooding due to inadequate drainage. A sub-component of the model addresses this issue by considering several parameters that best explain the variability of claims off the flood plain. The challenges of modeling such a complex phenomenon at a large scale largely dictate the choice of modeling approaches that need to be adopted for each of these model components. While detailed numerically-based physical models exist and have been used for conducting flood hazard studies, they are generally restricted to small geographic regions. In a probabilistic risk estimation framework like our current model, a blend of deterministic and statistical techniques have to be employed such that each model component is independent, physically sound and is able to maintain the statistical properties of observed historical data. This is particularly important because of the highly non-linear behavior of the flooding process. With respect to vulnerability modeling, both on and off the flood plain, the challenges include the appropriate scaling of a damage relationship when applied to a portfolio of properties. This arises from the fact that the estimated hazard parameter used for damage assessment, namely maximum flood depth has considerable uncertainty. The

  18. Surface water flood risk and management strategies for London: An Agent-Based Model approach

    Directory of Open Access Journals (Sweden)

    Jenkins Katie

    2016-01-01

    Full Text Available Flooding is recognised as one of the most common and costliest natural disasters in England. Flooding in urban areas during heavy rainfall is known as ‘surface water flooding’, considered to be the most likely cause of flood events and one of the greatest short-term climate risks for London. In this paper we present results from a novel Agent-Based Model designed to assess the interplay between different adaptation options, different agents, and the role of flood insurance and the flood insurance pool, Flood Re, in the context of climate change. The model illustrates how investment in adaptation options could reduce London’s surface water flood risk, today and in the future. However, benefits can be outweighed by continued development in high risk areas and the effects of climate change. Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, it offers no additional benefits in terms of overall risk reduction, and will face increasing pressure due to rising surface water flood risk in the future. The modelling approach and findings are highly relevant for reviewing the proposed Flood Re scheme, as well as for wider discussions on the potential of insurance schemes, and broader multi-sectoral partnerships, to incentivise flood risk management in the UK and internationally.

  19. Assessment of Three Flood Hazard Mapping Methods: A Case Study of Perlis

    Science.gov (United States)

    Azizat, Nazirah; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Flood is a common natural disaster and also affect the all state in Malaysia. Regarding to Drainage and Irrigation Department (DID) in 2007, about 29, 270 km2 or 9 percent of region of the country is prone to flooding. Flood can be such devastating catastrophic which can effected to people, economy and environment. Flood hazard mapping can be used is an important part in flood assessment to define those high risk area prone to flooding. The purposes of this study are to prepare a flood hazard mapping in Perlis and to evaluate flood hazard using frequency ratio, statistical index and Poisson method. The six factors affecting the occurrence of flood including elevation, distance from the drainage network, rainfall, soil texture, geology and erosion were created using ArcGIS 10.1 software. Flood location map in this study has been generated based on flooded area in year 2010 from DID. These parameters and flood location map were analysed to prepare flood hazard mapping in representing the probability of flood area. The results of the analysis were verified using flood location data in year 2013, 2014, 2015. The comparison result showed statistical index method is better in prediction of flood area rather than frequency ratio and Poisson method.

  20. Flooding Risk for Coastal Infrastructure: a Stakeholder-Oriented Approach

    Science.gov (United States)

    Plater, A. J.; Prime, T.; Brown, J. M.; Knight, P. J.; Morrissey, K.

    2015-12-01

    A flood risk assessment for coastal energy infrastructure in the UK with respect to long-term sea-level rise and extreme water levels has been conducted using a combination of numerical modelling approaches (LISFLOOD-FP, SWAB, XBeach-G, POLCOMS). Model outputs have been incorporated into a decision-support tool that enables users from a wide spectrum of coastal stakeholders (e.g. nuclear energy, utility providers, local government, environmental regulators, communities) to explore the potential impacts of flooding on both operational (events to 10 years) and strategic (10 to 50 years) timescales. Examples illustrate the physical and economic impacts of flooding from combined extreme water levels, wave overtopping and high river flow for Fleetwood, NW England; changes in the extent of likely flooding arising from an extreme event due to sea-level rise for Oldbury, SW England; and the relative vulnerability to overtopping and breaching of sea defences for Dungeness, SE England. The impacts of a potential large-scale beach recharge scheme to mitigate coastal erosion and flood risk along the southern shoreline of Dungeness are also examined using a combination of coastal evolution and particle-tracking modelling. The research goal is to provide an evidence base for resource allocation, investment in interventions, and communication and dialogue in relation to sea-level rise to 2500 AD.

  1. Public perception of flood risks, flood forecasting and mitigation

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2005-01-01

    Full Text Available A multidisciplinary and integrated approach to the flood mitigation decision making process should provide the best response of society in a flood hazard situation including preparation works and post hazard mitigation. In Slovenia, there is a great lack of data on social aspects and public response to flood mitigation measures and information management. In this paper, two studies of flood perception in the Slovenian town Celje are represented. During its history, Celje was often exposed to floods, the most recent serious floods being in 1990 and in 1998, with a hundred and fifty return period and more than ten year return period, respectively. Two surveys were conducted in 1997 and 2003, with 157 participants from different areas of the town in the first, and 208 in the second study, aiming at finding the general attitude toward the floods. The surveys revealed that floods present a serious threat in the eyes of the inhabitants, and that the perception of threat depends, to a certain degree, on the place of residence. The surveys also highlighted, among the other measures, solidarity and the importance of insurance against floods.

  2. Future flood risk estimates along the river Rhine

    NARCIS (Netherlands)

    te Linde, A.H.; Bubeck, P.; Dekkers, J.E.C.; de Moel, H.; Aerts, J.C.J.H.

    2011-01-01

    In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine

  3. Adaptation to flood risk: Results of international paired flood event studies

    NARCIS (Netherlands)

    Kreibich, Heidi; Di Baldassarre, G.; Vorogushyn, Sergiy; Aerts, J.C.J.H.; Apel, H.; Aronica, G.T.; Arnbjerg-Nielsen, K.; Bouwer, L.; Bubeck, P.; Caloiero, Tommaso; Chinh, Do. T.; Cortès, Maria; Gain, A.K.; Giampá, Vincenzo; Kuhlicke, C; Kundzewicz, Z.W.; Carmen Llasat, M; Mård, Johanna; Matczak, Piotr; Mazzoleni, Maurizio; Molinari, Daniela; Dung, N.V.; Petrucci, Olga; Schröter, Kai; Slager, Kymo; Thieken, A.H.; Ward, P.J.; Merz, B.

    2017-01-01

    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in

  4. The credibility challenge for global fluvial flood risk analysis

    NARCIS (Netherlands)

    Trigg, M.A.; Birch, C.E.; Neal, J.C.; Bates, P.D.; Smith, A.; Sampson, C.C.; Yamazaki, D.; Hirabayashi, Y.; Pappenberger, F.; Dutra, E.; Ward, P.J.; Winsemius, H.C.; Salamon, P.; Dottori, F.; Rudari, R.; Kappes, M.S.; Simpson, A.L.; Hadzilacos, G.; Fewtrell, T.J.

    2016-01-01

    Quantifying flood hazard is an essential component of resilience planning, emergency response, and mitigation, including insurance. Traditionally undertaken at catchment and national scales, recently, efforts have intensified to estimate flood risk globally to better allow consistent and equitable

  5. Review of the flood risk management system in Germany after the major flood in 2013

    Directory of Open Access Journals (Sweden)

    Annegret H. Thieken

    2016-06-01

    Full Text Available Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1 an increased consideration of flood hazards in spatial planning and urban development, (2 comprehensive property-level mitigation and preparedness measures, (3 more effective flood warnings and improved coordination of disaster response, and (4 a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.

  6. Developments in Levee Reliability and Flood Risk Analysis in the Netherlands

    NARCIS (Netherlands)

    Jonkman, S.N.; Schweckendiek, T.

    2015-01-01

    This paper presents and overview of advances in flood risk and levee reliability analysis in the Netherlands. It is described how new safety standards – in the form of a target failure probability – have been derived on the basis of nationwide flood risk assessments which taken into account both

  7. Understanding flood risk sensitivity and uncertainty in a subcatchment of the Thames River (United Kingdom)

    Science.gov (United States)

    Theofanidi, Sofia; Cloke, Hannah Louise; Clark, Joanna

    2017-04-01

    of the flood events will follow, using simple hydrological boundary conditions. The sensitivity testing of the model, will permit to assess which parameters have the potential to alter significantly the peak discharge during the flood, flood water levels and flood inundation extent. Assessing the model's sensitivity and uncertainty, contributes to the improvement of the flood risk knowledge. The area of study is a subcatchment of the River Thames in the southern part of the United Kingdom. The Thames with its tributaries, support a wide range of social, economic and recreational activities. In addition, the historical and environmental importance of the Thames valley highlights the need for a sustainable flood mitigation planning which includes the better understanding of the flood mechanisms and flood risks.

  8. A statistical approach to evaluate flood risk at the regional level: an application to Italy

    Science.gov (United States)

    Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea

    2016-04-01

    Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate

  9. Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk

    Directory of Open Access Journals (Sweden)

    McEwen Lindsey

    2016-01-01

    Full Text Available Shifts to devolved flood risk management in the UK pose questions about how the changing role of floodplain residents in community-led adaptation planning can be supported and strengthened. This paper shares insights from an interdisciplinary research project that has proposed the concept of ‘sustainable flood memory’ in the context of effective flood risk management. The research aimed to increase understanding of whether and how flood memories from the UK Summer 2007 extreme floods provide a platform for developing lay knowledges and flood resilience. The project investigated what factors link flood memory and lay knowledges of flooding, and how these connect and disconnect during and after flood events. In particular, and relation to flood governance directions, we sought to explore how such memories might play a part in individual and community resilience. The research presented here explores some key themes drawn from semi-structured interviews with floodplain residents with recent flood experiences in contrasting demographic and physical settings in the lower River Severn catchment. These include changing practices in making flood memories and materialising flood knowledge and the roles of active remembering and active forgetting.

  10. A Flood Risk Assessment of the LaHave River Watershed, Canada Using GIS Techniques and an Unstructured Grid Combined River-Coastal Hydrodynamic Model

    Directory of Open Access Journals (Sweden)

    Kevin McGuigan

    2015-09-01

    Full Text Available A flexible mesh hydrodynamic model was developed to simulate flooding of the LaHave River watershed in Nova Scotia, Canada, from the combined effects of fluvial discharge and ocean tide and surge conditions. The analysis incorporated high-resolution lidar elevation data, bathymetric river and coastal chart data, and river cross-section information. These data were merged to generate a seamless digital elevation model which was used, along with river discharge and tidal elevation data, to run a two-dimensional hydrodynamic model to produce flood risk predictions for the watershed. Fine resolution topography data were integrated seamlessly with coarse resolution bathymetry using a series of GIS tools. Model simulations were carried out using DHI Mike 21 Flexible Mesh under a variety of combinations of discharge events and storm surge levels. Discharge events were simulated for events that represent a typical annual maximum runoff and extreme events, while tide and storm surge events were simulated by using the predicted tidal time series and adding 2 and 3 m storm surge events to the ocean level seaward of the mouth of the river. Model output was examined and the maximum water level for the duration of each simulation was extracted and merged into one file that was used in a GIS to map the maximum flood extent and water depth. Upstream areas were most vulnerable to fluvial discharge events, the lower estuary was most vulnerable to the effect of storm surge and sea-level rise, and the Town of Bridgewater was influenced by the combined effects of discharge and storm surge. To facilitate the use of the results for planning officials, GIS flood risk layers were intersected with critical infrastructure, identifying the roads, buildings, and municipal sewage infrastructure at risk under each flood scenario. Roads were converted to points at 10 m spacing for inundated areas and appended with the flood depth calculated from the maximum water level

  11. Uncertainty and Sensitivity of Direct Economic Flood Damages: the FloodRisk Free and Open-Source Software

    Science.gov (United States)

    Albano, R.; Sole, A.; Mancusi, L.; Cantisani, A.; Perrone, A.

    2017-12-01

    The considerable increase of flood damages in the the past decades has shifted in Europe the attention from protection against floods to managing flood risks. In this context, the expected damages assessment represents a crucial information within the overall flood risk management process. The present paper proposes an open source software, called FloodRisk, that is able to operatively support stakeholders in the decision making processes with a what-if approach by carrying out the rapid assessment of the flood consequences, in terms of direct economic damage and loss of human lives. The evaluation of the damage scenarios, trough the use of the GIS software proposed here, is essential for cost-benefit or multi-criteria analysis of risk mitigation alternatives. However, considering that quantitative assessment of flood damages scenarios is characterized by intrinsic uncertainty, a scheme has been developed to identify and quantify the role of the input parameters in the total uncertainty of flood loss model application in urban areas with mild terrain and complex topography. By the concept of parallel models, the contribution of different module and input parameters to the total uncertainty is quantified. The results of the present case study have exhibited a high epistemic uncertainty on the damage estimation module and, in particular, on the type and form of the utilized damage functions, which have been adapted and transferred from different geographic and socio-economic contexts because there aren't depth-damage functions that are specifically developed for Italy. Considering that uncertainty and sensitivity depend considerably on local characteristics, the epistemic uncertainty associated with the risk estimate is reduced by introducing additional information into the risk analysis. In the light of the obtained results, it is evident the need to produce and disseminate (open) data to develop micro-scale vulnerability curves. Moreover, the urgent need to push

  12. Assessing damage cost estimation of urban pluvial flood risk as a mean of improving climate change adaptations investments

    DEFF Research Database (Denmark)

    Skovgård Olsen, Anders; Zhou, Qianqian; Linde, Jens Jørgen

    Estimating the expected annual damage (EAD) due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how it will be affected by climate change and how much can be gained by implementing adaptation...... measures. This study investigates three different methods for estimating the EAD based on a loglinear relation between the damage costs and the return periods, one of which has been used in previous studies. The results show with the increased amount of data points there appears to be a shift in the log......-linear relation which could be contributed by the Danish design standards for drainage systems. Three different methods for estimating the EAD were tested and the choice of method is less important than accounting for the log-linear shift. This then also means that the statistical approximation of the EAD used...

  13. Coupling Modelling of Urban Development and Flood Risk – An Attempt for a Combined Software Framework

    DEFF Research Database (Denmark)

    Löwe, Roland; Sto Domingo, Nina; Urich, Christian

    2015-01-01

    to use the results of the hydraulic simulation to condition DANCE4WATER and to account for flood risk in the simulated urban development. In an Australian case study, we demonstrate that future flood risk can be significantly reduced while maintaining the overall speed of urban development.......We have developed a setup that couples the urban development model DANCE4WATER with the 1D-2D hydraulic model MIKE FLOOD. The setup makes it possible to assess the impact of urban development and infrastructural change scenarios on flood risk in an automated manner. In addition, it permits us...

  14. Reflecting Societal Values in Designing Flood Risk Management Strategies

    Directory of Open Access Journals (Sweden)

    Adamson Mark

    2016-01-01

    Full Text Available In 2006, the Office of Public Works (OPW began the National Catchment-based Flood Risk Assessment and Management (CFRAM Programme through a series of pilot studies. A Multi-Criteria Analysis (MCA Framework was developed through the pilot studies that integrated a number of objectives related to a wide range of potential impacts and benefits into the core of process of appraising and selecting suitable flood risk management measures for a given area or location, and then for prioritising national investments for different schemes and projects. This MCA Framework, that provides a systematic process of developing a non-monetised but numerical indicator of benefit and impact, has since been implemented nationally in the preparation of the Flood Risk Management Plans (FRMPs. A key feature of the MCA is that it should represent societal values. To this end, nationally representative quantitative research was undertaken to determine global weights that reflect the perceived importance of each of the objectives for reducing economic, social and environmental / cultural risks in flood management strategies. Saaty’s Analytical Hierarchy Process (AHP, in conjunction with a pair-wise comparison of criteria relating to these risks, was utilised to determine weights. In excess of 1,000 structured interviews were completed where the relative importance of these objectives were assessed using a seven-point scale. The weighting given to each of the 13 specific objectives identified broadly followed expectations, with risk to people followed by risk to homes and properties being respectively the first and second most important, although some were given greater or less weighting than expected. The national application of the MCA Framework, using the weighted objectives based on this process, through the CFRAM Programme has generally lead to the identification of appropriate and, based on local consultation, acceptable options for each community.

  15. Risk Assessment

    Science.gov (United States)

    How the EPA conducts risk assessment to protect human health and the environment. Several assessments are included with the guidelines, models, databases, state-based RSL Tables, local contacts and framework documents used to perform these assessments.

  16. RISK VIP: Evaluation of Flood Risk on the French Railway Network Using an Innovative GIS Approach

    Directory of Open Access Journals (Sweden)

    Cheetham Mark

    2016-01-01

    Full Text Available Flooding can have significant direct and indirect negative effects on a railway network affecting both infrastructure and rail operations. Such impacts include the delaying or cancelling of train services, damage to railway structures or the implementation of costly maintenance and monitoring programs to ensure the safety and performance of the railway system. Identifying sections of railway line at risk from flooding allows appropriate actions to be targeted at specific areas and contributes to an effective asset management plan. Flooding of railway infrastructure can have numerous sources including surface water run-off, insufficient capacity of hydraulic structures or the inundation of embankments located in floodplains. Consequences of flooding include the destabilisation of structures (surface erosion of embankments or the undermining of bridge foundations, differential settlement of structures and damage to the track structure. This paper details an innovative approach developed at the SNCF using a Geographic Information System (GIS model to identify zones of the railway network at risk of different types of flooding. The GIS model RiskVIP has been constructed through the assessment of three distinct components of risk: “Vulnerability” (assessment of the susceptibility of the railway infrastructure to flood conditions, Intensity’ (capacity of a catchment to generate a flood flow, Probability’ (probability of a rainfall event.Through the application of decision trees, the component ‘Intensity’ has been characterised in the model by the physical properties of the catchment intercepted by the railway line (surface area of the catchment, slope and land cover characteristics and “Vulnerability” by the infrastructure itself (type, geometry and the presence of hydraulic structures. In order to evaluate its efficiency at identifying sites at risk of flooding, the model has been tested in the region of Languedoc-Roussillon in France

  17. Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties

    Science.gov (United States)

    Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.

    2017-12-01

    Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.

  18. An Agent-Based Model of Evolving Community Flood Risk.

    Science.gov (United States)

    Tonn, Gina L; Guikema, Seth D

    2017-11-17

    Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.

  19. The Challenge of Communicating Flood Risk

    Science.gov (United States)

    Matthew, R.

    2015-12-01

    Worldwide, natural hazard risks, and especially flood risk, are increasing dramatically as populations grow, infrastructure deteriorates, and climate change worsens. Street level modeling technologies may help decision makers and the general public understand risk and explore options for building resilience. But there are challenges in linking powerful visualization technologies to people in ways that they trust, support and can use. Technology adoption depends on a host of social and psychological factors—for example, how have past experiences shaped perceptions? Where do people currently turn for information? Who do they trust? Who do they see as responsible for implementing response and resilience measures? What do people think about climate change and sea level rise? What are the values that will motivate them to act? The answers vary from place to place and group to group. Visualization technologies that are responsive to this type of information may be most effective. Through household level survey data collected at sites in California and Mexico, we identify factors that may help in designing effective flood risk communication tools.

  20. The role of risk perception in making flood risk management more effective

    Science.gov (United States)

    Buchecker, M.; Salvini, G.; Di Baldassarre, G.; Semenzin, E.; Maidl, E.; Marcomini, A.

    2013-11-01

    Over the last few decades, Europe has suffered from a number of severe flood events and, as a result, there has been a growing interest in probing alternative approaches to managing flood risk via prevention measures. A literature review reveals that, although in the last decades risk evaluation has been recognized as key element of risk management, and risk assessment methodologies (including risk analysis and evaluation) have been improved by including social, economic, cultural, historical and political conditions, the theoretical schemes are not yet applied in practice. One main reason for this shortcoming is that risk perception literature is mainly of universal and theoretical nature and cannot provide the necessary details to implement a comprehensive risk evaluation. This paper therefore aims to explore a procedure that allows the inclusion of stakeholders' perceptions of prevention measures in risk assessment. It proposes to adopt methods of risk communication (both one-way and two-way communication) in risk assessment with the final aim of making flood risk management more effective. The proposed procedure not only focuses on the effect of discursive risk communication on risk perception, and on achieving a shared assessment of the prevention alternatives, but also considers the effects of the communication process on perceived uncertainties, accepted risk levels, and trust in the managing institutions. The effectiveness of this combined procedure has been studied and illustrated using the example of the participatory flood prevention assessment process on the Sihl River in Zurich, Switzerland. The main findings of the case study suggest that the proposed procedure performed well, but that it needs some adaptations for it to be applicable in different contexts and to allow a (semi-) quantitative estimation of risk perception to be used as an indicator of adaptive capacity.

  1. The efficiency of asset management strategies to reduce urban flood risk.

    Science.gov (United States)

    ten Veldhuis, J A E; Clemens, F H L R

    2011-01-01

    In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.

  2. Land Use Measures are Underused in Flood Risk Mitigation

    NARCIS (Netherlands)

    Brink, van den A.; Neuvel, J.J.M. (Jeroen)

    2010-01-01

    New research in the Netherlands indicates that spatial planning to manage flood risk, such as the elevation of residential areas and the exclusion of vulnerable land uses from flood-prone areas, is underused. Its use appears to depend on governmental requirements, previous experience of flooding and

  3. Current and future flood risk to railway infrastructure in Europe

    Science.gov (United States)

    Bubeck, Philip; Kellermann, Patric; Alfieri, Lorenzo; Feyen, Luc; Dillenardt, Lisa; Thieken, Annegret H.

    2017-04-01

    Railway infrastructure plays an important role in the transportation of freight and passengers across the European Union. According to Eurostat, more than four billion passenger-kilometres were travelled on national and international railway lines of the EU28 in 2014. To further strengthen transport infrastructure in Europe, the European Commission will invest another € 24.05 billion in the transnational transport network until 2020 as part of its new transport infrastructure policy (TEN-T), including railway infrastructure. Floods pose a significant risk to infrastructure elements. Damage data of recent flood events in Europe show that infrastructure losses can make up a considerable share of overall losses. For example, damage to state and municipal infrastructure in the federal state of Saxony (Germany) accounted for nearly 60% of overall losses during the large-scale event in June 2013. Especially in mountainous areas with little usable space available, roads and railway lines often follow floodplains or are located along steep and unsteady slopes. In Austria, for instance, the flood of 2013 caused € 75 million of direct damage to railway infrastructure. Despite the importance of railway infrastructure and its exposure to flooding, assessments of potential damage and risk (i.e. probability * damage) are still in its infancy compared with other sectors, such as the residential or industrial sector. Infrastructure-specific assessments at the regional scale are largely lacking. Regional assessment of potential damage to railway infrastructure has been hampered by a lack of infrastructure-specific damage models and data availability. The few available regional approaches have used damage models that assess damage to various infrastructure elements (e.g. roads, railway, airports and harbours) using one aggregated damage function and cost estimate. Moreover, infrastructure elements are often considerably underrepresented in regional land cover data, such as

  4. Flood risk management and ‘fairness’: aspirations and reality

    Directory of Open Access Journals (Sweden)

    Penning-Rowsell Edmund C.

    2016-01-01

    Full Text Available Flood risk management in United Kingdom has been going through a process of rapid change in the last decade or so, no doubt spurred on by a series of very serious floods since the year 2000. These changes affect flood defence and non-structural flood risk management measures alike, and involve a degree of devolution from central government to local communities and regional organisations, as central government seeks to shed responsibilities for policy implementation. This paper discusses three case studies concerning flood defence, property level protection, and flood insurance, set against the framework of “fairness” encapsulated in egalitarian, utilitarian and Rawlsian approaches to social justice. The results show a different pattern in each area, with flood defence moving somewhat towards a Rawlsian approach, but flood insurance and property level protection showing signs of both inefficiency and poor penetration, respectively, particularly with regard to low income residents, especially those in social housing.

  5. Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain)

    Science.gov (United States)

    Sayol, J. M.; Marcos, M.

    2018-02-01

    This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.

  6. Communicating Flood Risk with Street-Level Data

    Science.gov (United States)

    Sanders, B. F.; Matthew, R.; Houston, D.; Cheung, W. H.; Karlin, B.; Schubert, J.; Gallien, T.; Luke, A.; Contreras, S.; Goodrich, K.; Feldman, D.; Basolo, V.; Serrano, K.; Reyes, A.

    2015-12-01

    Coastal communities around the world face significant and growing flood risks that require an accelerating adaptation response, and fine-resolution urban flood models could serve a pivotal role in enabling communities to meet this need. Such models depict impacts at the level of individual buildings and land parcels or "street level" - the same spatial scale at which individuals are best able to process flood risk information - constituting a powerful tool to help communities build better understandings of flood vulnerabilities and identify cost-effective interventions. To measure understanding of flood risk within a community and the potential impact of street-level models, we carried out a household survey of flood risk awareness in Newport Beach, California, a highly urbanized coastal lowland that presently experiences nuisance flooding from high tides, waves and rainfall and is expected to experience a significant increase in flood frequency and intensity with climate change. Interviews were completed with the aid of a wireless-enabled tablet device that respondents could use to identify areas they understood to be at risk of flooding and to view either a Federal Emergency Management Agency (FEMA) flood map or a more detailed map prepared with a hydrodynamic urban coastal flood model (UCI map) built with grid cells as fine as 3 m resolution and validated with historical flood data. Results indicate differences in the effectiveness of the UCI and FEMA maps at communicating the spatial distribution of flood risk, gender differences in how the maps affect flood understanding, and spatial biases in the perception of flood vulnerabilities.

  7. CULTURAL HERITAGE AND FLOODS RISK PREPAREDNESS

    Directory of Open Access Journals (Sweden)

    K. Nedvědová

    2013-07-01

    Full Text Available The goal of this paper is to present some of the results of an ongoing project focused on protection of cultural heritage from flood danger. We present an original methodology of risk analysis of movable and immovable cultural heritage and two supporting web applications: one for experts and one for ordinary users. Cultural heritage forms a special category that requires different approach towards risk mitigation than other ordinary objects. First of all their assets cannot be reproduced so we have to pay much more attention for the correct preventive measures as well as remedial works after the potential disaster. Second, historical materials are usually more predispose to damage as they are already eroded by age. This brings a need of profound knowledge of the mechanical, chemical and biological reaction to the flood stress. This knowledge is usually not possessed by the stewards and owners in the sufficient rate. This is probably not even possible, because it encompasses knowledge of various building branches from the view of hydrology, physics, biology, chemistry, geology and others. To be able to perform an effective risk analysis and to choose right effective measures means to know the building and its condition as well as its setting very well. Therefore we want to give users and administrators of the buildings clear guidelines how to examine the objects and what else they might need to be aware of, in order to be ready and prepared.

  8. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region

    Science.gov (United States)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.

    2017-12-01

    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  9. Adige river in Trento flooding map, 1892: private or public risk transfer?

    Science.gov (United States)

    Ranzi, Roberto

    2016-04-01

    For the determination of the flood risk hydrologist and hydraulic engineers focuse their attention mainly to the estimation of physical factors determining the flood hazard, while economists and experts of social sciences deal mainly with the estimation of vulnerability and exposure. The fact that flood zoning involves both hydrological and socio-economic aspects, however, was clear already in the XIX century when the impact of floods on inundated areas started to appear in flood maps, for instance in the UK and in Italy. A pioneering 'flood risk' map for the Adige river in Trento, Italy, was already published in 1892, taking into account in detail both hazard intensity in terms of velocity and depth, frequency of occurrence, vulnerability and economic costs for flood protection with river embankments. This map is likely to be the reinterpreted certainly as a pioneering, and possibly as the first flood risk map for an Italian river and worldwide. Risk levels were divided in three categories and seven sub-categories, depending on flood water depth, velocity, frequency and damage costs. It is interesting to notice the fact that at that time the map was used to share the cost of levees' reparation and enhancement after the severe September 1882 flood as a function of the estimated level of protection of the respective areas against the flood risk. The sharing of costs between public bodies, the railway company and private owners was debated for about 20 years and at the end the public sustained the major costs. This shows how already at that time the economic assessment of structural flood protections was based on objective and rational cost-benefit criteria, that hydraulic risk mapping was perceived by the society as fundamental for the design of flood protection systems and that a balanced cost sharing between public and private was an accepted approach although some protests arose at that time.

  10. Flood Risk Management in Remote and Impoverished Areas—A Case Study of Onaville, Haiti

    Directory of Open Access Journals (Sweden)

    Valentin Heimhuber

    2015-07-01

    Full Text Available In this study, geographic information system (GIS-based hydrologic and hydraulic modeling was used to perform a flood risk assessment for Onaville, which is a fairly new, rapidly growing informal settlement that is exposed to dangerous flash-flood events. Since records of historic floods did not exist for the study area, design storms with a variety of significant average return intervals (ARIs were derived from intensity-duration-frequency (IDF curves and transformed into design floods via rainfall-runoff modeling in hydrologic engineering center’s hydrologic modeling system (HEC-HMS. The hydraulic modeling software hydrologic engineering center’s river analysis system (HEC-RAS was used to perform one-dimensional, unsteady-flow simulations of the design floods in the Ravine Lan Couline, which is the major drainage channel of the area. Topographic data comprised a 12 m spatial resolution TanDEM-X digital elevation model (DEM and a 30 cm spatial resolution DEM created with mapping drones. The flow simulations revealed that large areas of the settlement are currently exposed to flood hazard. The results of the hydrologic and hydraulic modeling were incorporated into a flood hazard map which formed the basis for flood risk management. We present a grassroots approach for preventive flood risk management on a community level, which comprises the elaboration of a neighborhood contingency plan and a flood risk awareness campaign together with representatives of the local community of Onaville.

  11. Public dialogues on flood risk communication: Literature review : Literature review

    NARCIS (Netherlands)

    Orr, Paula; Forrest, Steven; Brooks, Katya; Twigger-Ross, Clare

    2015-01-01

    This literature review summarises the state of knowledge on communicating the risk of flooding to the public as of January 2014. The review considers how different audiences respond to risk communication and the factors which influence that response. The current systems and techniques for flood risk

  12. Risk-trading in flood management: An economic model.

    Science.gov (United States)

    Chang, Chiung Ting

    2017-09-15

    Although flood management is no longer exclusively a topic of engineering, flood mitigation continues to be associated with hard engineering options. Flood adaptation or the capacity to adapt to flood risk, as well as a demand for internalizing externalities caused by flood risk between regions, complicate flood management activities. Even though integrated river basin management has long been recommended to resolve the above issues, it has proven difficult to apply widely, and sometimes even to bring into existence. This article explores how internalization of externalities as well as the realization of integrated river basin management can be encouraged via the use of a market-based approach, namely a flood risk trading program. In addition to maintaining efficiency of optimal resource allocation, a flood risk trading program may also provide a more equitable distribution of benefits by facilitating decentralization. This article employs a graphical analysis to show how flood risk trading can be implemented to encourage mitigation measures that increase infiltration and storage capacity. A theoretical model is presented to demonstrate the economic conditions necessary for flood risk trading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assess the flood resilience tools integration in the landuse projects

    Science.gov (United States)

    Moulin, E.; Deroubaix, J.-F.

    2012-04-01

    Despite a severe regulation concerning the building in flooding areas, 80% of these areas are already built in the Greater Paris (Paris, Val-de-Marne, Hauts-de-Seine and Seine-Saint-Denis). The land use in flooding area is presented as one of the main solutions to solve the ongoing real estate pressure. For instance some of the industrial wastelands located along the river are currently in redevelopment and residential buildings are planned. So the landuse in the flooding areas is currently a key issue in the development of the Greater Paris area. To deal with floods there are some resilience tools, whether structural (such as perimeter barriers or building aperture barriers, etc) or non structural (such as warning systems, etc.). The technical solutions are available and most of the time efficient1. Still, we notice that these tools are not much implemented. The people; stakeholders and inhabitants, literally seems to be not interested. This papers focus on the integration of resilience tools in urban projects. Indeed one of the blockages in the implementation of an efficient flood risk prevention policy is the lack of concern of the landuse stakeholders and the inhabitants for the risk2. We conducted an important number of interviews with stakeholders involved in various urban projects and we assess, in this communication, to what extent the improvement of the resilience to floods is considered as a main issue in the execution of an urban project? How this concern is maintained or could be maintained throughout the project. Is there a dilution of this concern? In order to develop this topic we rely on a case study. The "Ardoines" is a project aiming at redeveloping an industrial site (South-East Paris), into a project including residential and office buildings and other amenities. In order to elaborate the master plan, the urban planning authority brought together some flood risk experts. According to the comments of the experts, the architect in charge of the

  14. A new methodology for dynamic modelling of health risks arising from wastewater influenced urban flooding

    Science.gov (United States)

    Jørgensen, Claus; Mark, Ole; Djordjevic, Slobodan; Hammond, Michael; Khan, David M.; Erichsen, Anders; Dorrit Enevoldsen, Ann; Heinicke, Gerald; Helwigh, Birgitte

    2015-04-01

    Indroduction Urban flooding due to rainfall exceeding the design capacity of drainage systems is a global problem and it has significant economic and social consequences. While the cost of the direct flood damages of urban flooding is well understood, the indirect damages, like the water borne diseases is in general still poorly understood. Climate changes are expected to increase the frequency of urban flooding in many countries which is likely to increase water borne diseases. Diarrheal diseases are most prevalent in developing countries, where poor sanitation, poor drinking water and poor surface water quality causes a high disease burden and mortality, especially during floods. The level of water borne diarrhea in countries with well-developed water and waste water infrastructure has been reduced to an acceptable level, and the population in general do not consider waste water as being a health risk. Hence, exposure to wastewater influenced urban flood water still has the potential to cause transmission of diarrheal diseases. When managing urban flooding and planning urban climate change adaptations, health risks are rarely taken into consideration. This paper outlines a novel methodology for linking dynamic urban flood modelling with Quantitative Microbial Risk Assessment (QMRA). This provides a unique possibility for understanding the interaction between urban flooding and the health risks caused by direct human contact with flood water and provides an option for reducing the burden of disease in the population through the use of intelligent urban flood risk management. Methodology We have linked hydrodynamic urban flood modelling with quantitative microbial risk assessment (QMRA) to determine the risk of infection caused by exposure to wastewater influenced urban flood water. The deterministic model MIKE Flood, which integrates the sewer network model in MIKE Urban and the 2D surface model MIKE21, was used to calculate the concentration of pathogens in the

  15. The Total Risk Analysis of Large Dams under Flood Hazards

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2018-02-01

    Full Text Available Dams and reservoirs are useful systems in water conservancy projects; however, they also pose a high-risk potential for large downstream areas. Flood, as the driving force of dam overtopping, is the main cause of dam failure. Dam floods and their risks are of interest to researchers and managers. In hydraulic engineering, there is a growing tendency to evaluate dam flood risk based on statistical and probabilistic methods that are unsuitable for the situations with rare historical data or low flood probability, so a more reasonable dam flood risk analysis method with fewer application restrictions is needed. Therefore, different from previous studies, this study develops a flood risk analysis method for large dams based on the concept of total risk factor (TRF used initially in dam seismic risk analysis. The proposed method is not affected by the adequacy of historical data or the low probability of flood and is capable of analyzing the dam structure influence, the flood vulnerability of the dam site, and downstream risk as well as estimating the TRF of each dam and assigning corresponding risk classes to each dam. Application to large dams in the Dadu River Basin, Southwestern China, demonstrates that the proposed method provides quick risk estimation and comparison, which can help local management officials perform more detailed dam safety evaluations for useful risk management information.

  16. FLOOD SUSCEPTIBILITY ASSESSMENT IN THE NIRAJ BASIN

    Directory of Open Access Journals (Sweden)

    SANDA ROŞCA

    2012-03-01

    Full Text Available Flood susceptibility assessment in the Niraj basin. In the context of global warming and the increasing frequency of extreme weather events, it becomes evident that we have to face natural hazards, such as floods. In the area of Niraj basin this phenomenon is specific both in the spring, because of the snow melting and of the precipitations which come along with the season, and then in the summer because of the torrential precipitations but rarely in autumn and winter. The aim of this paper is to determinate the susceptibility of the zone and obtain a map which will take into consideration the possibility of a flooding. Defining vulnerability can help us understand this type of natural disasters and find the best ways to reduce it. For this purpose we use thematic layers, morphological characteristics (slope and depth fragmentation, hydrological characteristics, geology, pedology (permeability and soil texture, landuse, precipitation data, and human interventions because in this way we have the possibility to use data mining for this purpose. Data mining will allow us to extract new information based on the existing sets of data.The final result will be a thematic map that highlights the areas which are exposed to the flood. Therefore, this map can be used as a support decision for local government or business purposes.

  17. "Flooding Risk Analysis and the Understanding of Hydrological Disturbance due to the Rapid Urbanization in a Low-Scale Subwatershed in Houston Area". ( The project develops a relavant Model of flooding risk assessment to define the connection between increased streamflow/flooding and the rapid urban land development).

    Science.gov (United States)

    Geldiyev, P.

    2017-12-01

    Rapid urban development and changing climate influences the frequency and magnitude of flooding in Houston area. This proposed project aims to evaluate the flooding risks with the current and future land use changes by 2040 for one subbasin of the San Jacinto Brazos/Neches-Trinity Coastal basin. Surface environments and streamflow data of the Clear Creek are analyzed and stimulated to discuss the possible impact of urbanization on the occurrence of floods. The streamflow data is analyzed and simulated with the application of the Geographic Information Systems and its extensions. Both hydrologic and hydraulic models of the Clear Creek are created with the use of HEC-HMS and HEC-RAS software. Both models are duplicated for the year 2040, based on projected 2040 Landcover Maps developed by Houston and Galveston Area Council. This project examines a type of contemporary hydrologic disturbance and the interaction between land cover and changes in hydrological processes. Expected results will be very significant for urban development and flooding management.

  18. Forecast-based Integrated Flood Detection System for Emergency Response and Disaster Risk Reduction (Flood-FINDER)

    Science.gov (United States)

    Arcorace, Mauro; Silvestro, Francesco; Rudari, Roberto; Boni, Giorgio; Dell'Oro, Luca; Bjorgo, Einar

    2016-04-01

    Most flood prone areas in the globe are mainly located in developing countries where making communities more flood resilient is a priority. Despite different flood forecasting initiatives are now available from academia and research centers, what is often missing is the connection between the timely hazard detection and the community response to warnings. In order to bridge the gap between science and decision makers, UN agencies play a key role on the dissemination of information in the field and on capacity-building to local governments. In this context, having a reliable global early warning system in the UN would concretely improve existing in house capacities for Humanitarian Response and the Disaster Risk Reduction. For those reasons, UNITAR-UNOSAT has developed together with USGS and CIMA Foundation a Global Flood EWS called "Flood-FINDER". The Flood-FINDER system is a modelling chain which includes meteorological, hydrological and hydraulic models that are accurately linked to enable the production of warnings and forecast inundation scenarios up to three weeks in advance. The system is forced with global satellite derived precipitation products and Numerical Weather Prediction outputs. The modelling chain is based on the "Continuum" hydrological model and risk assessments produced for GAR2015. In combination with existing hydraulically reconditioned SRTM data and 1D hydraulic models, flood scenarios are derived at multiple scales and resolutions. Climate and flood data are shared through a Web GIS integrated platform. First validation of the modelling chain has been conducted through a flood hindcasting test case, over the Chao Phraya river basin in Thailand, using multi temporal satellite-based analysis derived for the exceptional flood event of 2011. In terms of humanitarian relief operations, the EO-based services of flood mapping in rush mode generally suffer from delays caused by the time required for their activation, programming, acquisitions and

  19. Seismic risks posed by mine flooding

    CSIR Research Space (South Africa)

    Goldbach, OD

    2009-09-01

    Full Text Available are allowed to flood. Such flooding-induced seismicity can have significant environmental, social and economic consequences, and may endanger neighbouring mines and surface communities. While fluid-induced seismicity has been observed in other settings (e...

  20. Integrated flash flood vulnerability assessment: Insights from East Attica, Greece

    Science.gov (United States)

    Karagiorgos, Konstantinos; Thaler, Thomas; Heiser, Micha; Hübl, Johannes; Fuchs, Sven

    2016-10-01

    In the framework of flood risk assessment, vulnerability is a key concept to assess the susceptibility of elements at risk. Besides the increasing amount of studies on flash floods available, in-depth information on vulnerability in Mediterranean countries was missing so far. Moreover, current approaches in vulnerability research are driven by a divide between social scientists who tend to view vulnerability as representing a set of socio-economic factors, and natural scientists who view vulnerability in terms of the degree of loss to an element at risk. Further, vulnerability studies in response to flash flood processes are rarely answered in the literature. In order to close this gap, this paper implemented an integrated vulnerability approach focusing on residential buildings exposed to flash floods in Greece. In general, both physical and social vulnerability was comparable low, which is interpreted as a result from (a) specific building regulations in Greece as well as general design principles leading to less structural susceptibility of elements at risk exposed, and (b) relatively low economic losses leading to less social vulnerability of citizens exposed. The population show high risk awareness and coping capacity to response to natural hazards event and in the same time the impact of the events are quite low, because of the already high use of local protection measures. The low vulnerability score for East Attica can be attributed especially to the low physical vulnerability and the moderate socio-economic well-being of the area. The consequence is to focus risk management strategies mainly in the reduction of the social vulnerability. By analysing both physical and social vulnerability an attempt was made to bridge the gap between scholars from sciences and humanities, and to integrate the results of the analysis into the broader vulnerability context.

  1. Risk assessment

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1983-01-01

    After defining risk and introducing the concept of individual and societal risk, the author considers each of these, restricting considerations to risk of death. Some probabilities of death arising from various causes are quoted, and attention drawn to the care necessary in making comparisons between sets of data and to the distinction between voluntary and involuntary categories and between early and delayed deaths. The presentation of information on societal risk is discussed and examples given. The history of quantified risk assessment is outlined, particularly related to the nuclear industry, the process of assessing risk discussed: identification of hazard causes, the development of accident chains and the use of event trees, the evaluation of probability through the collection of data and their use with fault trees, and the assessment of consequences of hazards in terms of fatalities. Reference is made to the human element and common-made failures, and to studies supporting the development of reliability assessment techniques. Acceptance criteria are discussed for individual and societal risk in the nuclear field, and it is shown that proposed criteria lead to risks conservative by comparison with risks from day-to-day accidents and other potentially hazardous industries. (U.K.)

  2. Self-Reported and FEMA Flood Exposure Assessment after Hurricane Sandy: Association with Mental Health Outcomes.

    Directory of Open Access Journals (Sweden)

    Wil Lieberman-Cribbin

    Full Text Available Hurricane Sandy caused extensive physical and economic damage; the long-term mental health consequences are unknown. Flooding is a central component of hurricane exposure, influencing mental health through multiple pathways that unfold over months after flooding recedes. Here we assess the concordance in self-reported and Federal Emergency Management (FEMA flood exposure after Hurricane Sandy and determine the associations between flooding and anxiety, depression, and post-traumatic stress disorder (PTSD. Self-reported flood data and mental health symptoms were obtained through validated questionnaires from New York City and Long Island residents (N = 1231 following Sandy. Self-reported flood data was compared to FEMA data obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. Multivariable logistic regressions were performed to determine the relationship between flooding exposure and mental health outcomes. There were significant discrepancies between self-reported and FEMA flood exposure data. Self-reported dichotomous flooding was positively associated with anxiety (ORadj: 1.5 [95% CI: 1.1-1.9], depression (ORadj: 1.7 [1.3-2.2], and PTSD (ORadj: 2.5 [1.8-3.4], while self-reported continuous flooding was associated with depression (ORadj: 1.1 [1.01-1.12] and PTSD (ORadj: 1.2 [1.1-1.2]. Models with FEMA dichotomous flooding (ORadj: 2.1 [1.5-2.8] or FEMA continuous flooding (ORadj: 1.1 [1.1-1.2] were only significantly associated with PTSD. Associations between mental health and flooding vary according to type of flood exposure measure utilized. Future hurricane preparedness and recovery efforts must integrate micro and macro-level flood exposures in order to accurately determine flood exposure risk during storms and realize the long-term importance of flooding on these three mental health symptoms.

  3. An agent-based model of flood risk and insurance

    NARCIS (Netherlands)

    Dubbelboer, J.; Nikolic, I.; Jenkins, K.; Hall, J

    2017-01-01

    Flood risk emerges from the dynamic interaction between natural hazards and human vulnerability. Methods for the quantification of flood risk are well established, but tend to deal with human and economic vulnerability as being static or changing with an exogenously defined trend. In this paper

  4. The flood risk management plan: towards spatial water governance

    NARCIS (Netherlands)

    Hartmann, T.; Driessen, P.

    2017-01-01

    The flood risk management plan challenges both water engineers and spatial planners. It calls for a new mode of governance for flood risk management. This contribution analyses how this mode of governance distinguishes from prevalent approaches. Spatial planning and water management in Europe are

  5. Assessing flash flood vulnerability using a multi-vulnerability approach

    Directory of Open Access Journals (Sweden)

    Karagiorgos Konstantinos

    2016-01-01

    Full Text Available In the framework of flood risk assessment, while the understanding of hazard and exposure has significantly improved over the last years, knowledge on vulnerability remains one of the challenges. Current approaches in vulnerability research are characterised by a division between social scientists and natural scientists. In order to close this gap, we present an approach that combines information on physical and social vulnerability in order to merge information on the susceptibility of elements at risk and society. With respect to physical vulnerability, the study is based on local-scale vulnerability models using nonlinear regression approaches. Modified Weibull distributions were fit to the data in order to represent the relationship between process magnitude and degree of loss. With respect to social vulnerability we conducted a door-to-door survey which resulted in particular insights on flood risk awareness and resilience strategies of exposed communities. In general, both physical and social vulnerability were low in comparison with other European studies, which may result from (a specific building regulations in the four Mediterranean test sites as well as general design principles leading to low structural susceptibility of elements at risk, and (b relatively low social vulnerability of citizens exposed. As a result it is shown that a combination of different perspectives of vulnerability will lead to a better understanding of exposure and capacities in flood risk management.

  6. CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas

    Science.gov (United States)

    Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J.

    2013-12-01

    When a flood affects an urban area, the managers and services responsible for public safety need precise and real time information on the localization of the flooded areas, on the submersion heights in those areas, but also on the vulnerability of people exposed to this hazard. Such information is essential for an effective crisis management. Despite a growing interest in this topic over the last 15 years, the development of flood risk assessment tools mainly focused on quantitative modeling of the monetary damages caused by floods to residential buildings or to critical infrastructures. Little attention was paid to the vulnerability of people exposed to flooding but also to the effects of the failure or destruction of critical infrastructures and residential building on people health and security during the disaster. Moreover, these models do not integrate the dynamic features of the flood (extent, submersion heights) and the evolution of human vulnerability in the same mapping tool. Thus, an accurate and precise evaluation of human risk induced by urban flooding is hardly feasible using such models. This study presents CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas, which fills the actual needs in terms of flood risk evaluation and management. This innovative tool integrates a methodology of flood hazard mapping that simulates, for a given discharge, the associated water level, and subsequently determines the extent of the flooded area and the submersion heights at each point of the flooded area, using a DEM. The dynamics of human vulnerability is then mapped at the household level, according to the characteristics of the flood hazard. Three key components of human vulnerability have been identified and are integrated to CADYRI: 1, the intrinsic vulnerability of the population, estimated by specific socio-economic indicators; 2, the vulnerability of buildings, assessed by their structural features; 3, the vulnerability of

  7. Return period assessment of urban pluvial floods through modelling of rainfall–flood response

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Thorndahl, Søren Liedtke; Rasmussen, Michael Robdrup

    2018-01-01

    Intense rainfall in urban areas can often generate severe flood impacts. Consequently, it is crucial to design systems to minimize potential flood damages. Traditional, simple design of urban drainage systems assumes agreement between rainfall return period and its consequent flood return period......; however, this does not always apply. Hydraulic infrastructures found in urban drainage systems can increase system heterogeneity and perturb the impact of severe rainfall response. In this study, a surface flood return period assessment was carried out at Lystrup (Denmark), which has received the impact...... of flooding in recent years. A 35 years' rainfall dataset together with a coupled 1D/2D surface and network model was used to analyse and assess flood return period response. Results show an ambiguous relation between rainfall and flood return periods indicating that linear rainfall–runoff relationships will...

  8. Prevalence of and Risk Factors for Skin Diseases Among Army Personnel and Flood Victims During the 2011 Floods in Thailand.

    Science.gov (United States)

    Thongtaeparak, Wittaya; Pratchyapruit, Walai-Orn; Kotanivong, Settha; Sirithanakit, Nimit; Thunyaharn, Sudaluck; Rangsin, Ram; Chaikaew, Phachara; Wongyongsin, Pitee; Pinyoboon, Pongpak; Sutthiwan, Phatcharaphan; Theethansiri, Witchwaree; Janthayanont, Dusit; Mungthin, Mathirut

    2016-08-01

    This study aimed to determine the prevalence of and risk factors for skin problems among flood victims and army personnel during the 2011 floods in Thailand. To determine the prevalence of and risk factors for skin symptoms, standardized questionnaires were used to collect demographic data, current skin symptoms, history of water exposure, and sanitary behaviors. A certified dermatologist evaluated those who presented with skin problems and provided diagnoses. Univariate and multivariate analyses were performed to assess independent risk factors for skin symptoms. The most prevalent skin disease was irritant contact dermatitis. Flood victims showed a higher prevalence of skin symptoms compared with army personnel. Development of skin symptoms after exposure to floodwater was also observed earlier among flood victims. Having a history of skin diseases and delayed skin cleaning after exposure were also significant risk factors for the development of skin symptoms. This information might be used as guidelines for protecting military personnel and to educate the general public regarding flood disaster management. (Disaster Med Public Health Preparedness. 2016;10:570-575).

  9. A quantitative flood risk analysis methodology for urban areas with integration of social research data

    Directory of Open Access Journals (Sweden)

    I. Escuder-Bueno

    2012-09-01

    Full Text Available Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009–2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative. First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.

  10. A quantitative flood risk analysis methodology for urban areas with integration of social research data

    Science.gov (United States)

    Escuder-Bueno, I.; Castillo-Rodríguez, J. T.; Zechner, S.; Jöbstl, C.; Perales-Momparler, S.; Petaccia, G.

    2012-09-01

    Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009-2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative). First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.

  11. A National Assessment of Changes in Flood Exposure in the United States

    Science.gov (United States)

    Lam, N.; Qiang, Y.; Cai, H.; Zou, L.

    2017-12-01

    Analyzing flood exposure and its temporal trend is the first step toward understanding flood risk, flood hazard, and flood vulnerability. This presentation is based on a national, county-based study assessing the changes in population and urban areas in high-risk flood zones from 2001-2011 in the contiguous United States. Satellite land use land cover data, Federal Emergency Management Agency (FEMA)'s 100-year flood maps, and census data were used to extract the proportion of developed (urban) land in flood zones by county in the two time points, and indices of difference were calculated. Local Moran's I statistic was applied to identify hotspots of increase in urban area in flood zones, and geographically weighted regression was used to estimate the population in flood zones from the land cover data. Results show that in 2011, an estimate of about 25.3 million people (8.3% of the total population) lived in the high-risk flood zones. Nationally, the ratio of urban development in flood zones is less than the ratio of land in flood zones, implying that Americans were responsive to flood hazards by avoiding development in flood zones. However, this trend varied from place to place, with coastal counties having less urban development in flood zones than the inland counties. Furthermore, the contrast between coastal and inland counties increased during 2001-2011. Finally, several exceptions from the trend (hotspots) were detected, most notably New York City and Miami where significant increases in urban development in flood zones were found. This assessment provides important baseline information on the spatial patterns of flood exposure and their changes from 2001-2011. The study pinpoints regions that may need further investigations and better policy to reduce the overall flood risks. Methodologically, the study demonstrates that pixelated land cover data can be integrated with other natural and human data to investigate important societal problems. The same

  12. September 2013 Storm and Flood Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Walterscheid, J. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurred between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.

  13. Assessment of factors contributing to flood disaster in Ibadan ...

    African Journals Online (AJOL)

    Climate change has brought with it some forms of extreme weather events. One of such is heavy rainfall which often leads to flood. In recent times, flood disaster has been a regular occurrence destroying lives and property. This study was carried out to identify and assess contributing factors to flood disaster in Ibadan ...

  14. Danish risk management plans of the EU Floods Directive

    DEFF Research Database (Denmark)

    Jebens, Martin; Sørensen, Carlo Sass; Piontkowitz, Thorsten

    2016-01-01

    We evaluate the impact and effect of the EU Flood’s Directive (2007/60/EC) in Denmark and the flood risk management plans that are the result of the national implementation. In a qualitative research approach, the flood risk management plans published by 22 Danish municipalities are reviewed...... and analyzed regarding main objectives and structural and non-structural mitigation measures. From the analyses conclusions are drawn on the non-structural risk management measures still to be improved to obtain the full benefits from the Directive. Conclusions point to the need of introducing better decision...... and cross-sectorial working platform for dealing with risks from floods....

  15. Predicting geomorphically-induced flood risk for the Nepalese Terai communities

    Science.gov (United States)

    Dingle, Elizabeth; Creed, Maggie; Attal, Mikael; Sinclair, Hugh; Mudd, Simon; Borthwick, Alistair; Dugar, Sumit; Brown, Sarah

    2017-04-01

    Rivers sourced from the Himalaya irrigate the Indo-Gangetic Plain via major river networks that support 10% of the global population. However, many of these rivers are also the source of devastating floods. During the 2014 Karnali River floods in west Nepal, the Karnali rose to around 16 m at Chisapani (where it enters the Indo-Gangetic Plain), 1 m higher than the previous record in 1983; the return interval for this event was estimated to be 1000 years. Flood risk may currently be underestimated in this region, primarily because changes to the channel bed are not included when identifying areas at risk of flooding from events of varying recurrence intervals. Our observations in the field, corroborated by satellite imagery, show that river beds are highly mobile and constantly evolve through each monsoon. Increased bed levels due to sediment aggradation decreases the capacity of the river, increasing significantly the risk of devastating flood events; we refer to these as 'geomorphically-induced floods'. Major, short-lived episodes of sediment accumulation in channels are caused by stochastic variability in sediment flux generated by storms, earthquakes and glacial outburst floods from upstream parts of the catchment. Here, we generate a field-calibrated, geomorphic flood risk model for varying upstream scenarios, and predict changing flood risk for the Karnali River. A numerical model is used to carry out a sensitivity analysis of changes in channel geometry (particularly aggradation or degradation) based on realistic flood scenarios. In these scenarios, water and sediment discharge are varied within a range of plausible values, up to extreme sediment and water fluxes caused by widespread landsliding and/or intense monsoon precipitation based on existing records. The results of this sensitivity analysis will be used to inform flood hazard maps of the Karnali River floodplain and assess the vulnerability of the populations in the region.

  16. Risk Assessment

    OpenAIRE

    Hrdová, Edita

    2012-01-01

    This diploma thesis is focused on companies risk evaluation before endorsement of Loan deriving from business relationships. The aim of this thesis is not only to describe individual steps of risk assessment, but also perfom analysis of particular companies based on available data, i.e. Balance sheet, Profit and Loss statement and external rating and after that propose solution for each company. My analysis will be based on theoretical knowledge, further on experience related to my job role a...

  17. Risk assessment

    DEFF Research Database (Denmark)

    Pedersen, Liselotte; Rasmussen, Kirsten; Elsass, Peter

    2010-01-01

    International research suggests that using formalized risk assessment methods may improve the predictive validity of professionals' predictions of risk of future violence. This study presents data on forensic psychiatric patients discharged from a forensic unit in Denmark in year 2001-2002 (n=107...... and the individual dynamic items strengthen the use of this scheme in clinical practice. (PsycINFO Database Record (c) 2010 APA, all rights reserved) (journal abstract)...

  18. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?

    Directory of Open Access Journals (Sweden)

    Dries L. T. Hegger

    2016-12-01

    Full Text Available European countries face increasing flood risks because of urbanization, increase of exposure and damage potential, and the effects of climate change. In literature and in practice, it is argued that a diversification of strategies for flood risk management (FRM, including flood risk prevention (through proactive spatial planning, flood defense, flood risk mitigation, flood preparation, and flood recovery, makes countries more flood resilient. Although this thesis is plausible, it should still be empirically scrutinized. We aim to do this. Drawing on existing literature we operationalize the notion of "flood resilience" into three capacities: capacity to resist; capacity to absorb and recover; and capacity to transform and adapt. Based on findings from the EU FP7 project STAR-FLOOD, we explore the degree of diversification of FRM strategies and related flood risk governance arrangements at the national level in Belgium, England, France, the Netherlands, Poland, and Sweden, as well as these countries' achievement in terms of the three capacities. We found that the Netherlands and to a lesser extent Belgium have a strong capacity to resist, France a strong capacity to absorb and recover, and especially England a high capacity to transform and adapt. Having a diverse portfolio of FRM strategies in place may be conducive to high achievements related to the capacities to absorb/recover and to transform and adapt. Hence, we conclude that diversification of FRM strategies contributes to resilience. However, the diversification thesis should be nuanced in the sense that there are different ways to be resilient. First, the three capacities imply different rationales and normative starting points for flood risk governance, the choice between which is inherently political. Second, we found trade-offs between the three capacities, e.g., being resistant seems to lower the possibility to be absorbent. Third, to explain countries' achievements in terms of

  19. Enhancing local action planning through quantitative flood risk analysis: a case study in Spain

    Science.gov (United States)

    Castillo-Rodríguez, Jesica Tamara; Escuder-Bueno, Ignacio; Perales-Momparler, Sara; Ramón Porta-Sancho, Juan

    2016-07-01

    This article presents a method to incorporate and promote quantitative risk analysis to support local action planning against flooding. The proposed approach aims to provide a framework for local flood risk analysis, combining hazard mapping with vulnerability data to quantify risk in terms of expected annual affected population, potential injuries, number of fatalities, and economic damages. Flood risk is estimated combining GIS data of loads, system response, and consequences and using event tree modelling for risk calculation. The study area is the city of Oliva, located on the eastern coast of Spain. Results from risk modelling have been used to inform local action planning and to assess the benefits of structural and non-structural risk reduction measures. Results show the potential impact on risk reduction of flood defences and improved warning communication schemes through local action planning: societal flood risk (in terms of annual expected affected population) would be reduced up to 51 % by combining both structural and non-structural measures. In addition, the effect of seasonal population variability is analysed (annual expected affected population ranges from 82 to 107 %, compared with the current situation, depending on occupancy rates in hotels and campsites). Results highlight the need for robust and standardized methods for urban flood risk analysis replicability at regional and national scale.

  20. Multi-Model Projections of River Flood Risk in Europe under Global Warming

    Directory of Open Access Journals (Sweden)

    Lorenzo Alfieri

    2018-01-01

    Full Text Available Knowledge on the costs of natural disasters under climate change is key information for planning adaptation and mitigation strategies of future climate policies. Impact models for large scale flood risk assessment have made leaps forward in the past few years, thanks to the increased availability of high resolution climate projections and of information on local exposure and vulnerability to river floods. Yet, state-of-the-art flood impact models rely on a number of input data and techniques that can substantially influence their results. This work compares estimates of river flood risk in Europe from three recent case studies, assuming global warming scenarios of 1.5, 2, and 3 degrees Celsius from pre-industrial levels. The assessment is based on comparing ensemble projections of expected damage and population affected at country level. Differences and common points between the three cases are shown, to point out main sources of uncertainty, strengths, and limitations. In addition, the multi-model comparison helps identify regions with the largest agreement on specific changes in flood risk. Results show that global warming is linked to substantial increase in flood risk over most countries in Central and Western Europe at all warming levels. In Eastern Europe, the average change in flood risk is smaller and the multi-model agreement is poorer.

  1. Assessing flood forecast uncertainty with fuzzy arithmetic

    Directory of Open Access Journals (Sweden)

    de Bruyn Bertrand

    2016-01-01

    Full Text Available Providing forecasts for flow rates and water levels during floods have to be associated with uncertainty estimates. The forecast sources of uncertainty are plural. For hydrological forecasts (rainfall-runoff performed using a deterministic hydrological model with basic physics, two main sources can be identified. The first obvious source is the forcing data: rainfall forecast data are supplied in real time by meteorological forecasting services to the Flood Forecasting Service within a range between a lowest and a highest predicted discharge. These two values define an uncertainty interval for the rainfall variable provided on a given watershed. The second source of uncertainty is related to the complexity of the modeled system (the catchment impacted by the hydro-meteorological phenomenon, the number of variables that may describe the problem and their spatial and time variability. The model simplifies the system by reducing the number of variables to a few parameters. Thus it contains an intrinsic uncertainty. This model uncertainty is assessed by comparing simulated and observed rates for a large number of hydro-meteorological events. We propose a method based on fuzzy arithmetic to estimate the possible range of flow rates (and levels of water making a forecast based on possible rainfalls provided by forcing and uncertainty model. The model uncertainty is here expressed as a range of possible values. Both rainfall and model uncertainties are combined with fuzzy arithmetic. This method allows to evaluate the prediction uncertainty range. The Flood Forecasting Service of Oise and Aisne rivers, in particular, monitors the upstream watershed of the Oise at Hirson. This watershed’s area is 310 km2. Its response time is about 10 hours. Several hydrological models are calibrated for flood forecasting in this watershed and use the rainfall forecast. This method presents the advantage to be easily implemented. Moreover, it permits to be carried out

  2. GAR Global Risk Assessment

    Science.gov (United States)

    Maskrey, Andrew; Safaie, Sahar

    2015-04-01

    Disaster risk management strategies, policies and actions need to be based on evidence of current disaster loss and risk patterns, past trends and future projections, and underlying risk factors. Faced with competing demands for resources, at any level it is only possible to priorities a range of disaster risk management strategies and investments with adequate understanding of realised losses, current and future risk levels and impacts on economic growth and social wellbeing as well as cost and impact of the strategy. The mapping and understanding of the global risk landscape has been greatly enhanced by the latest iteration of the GAR Global Risk Assessment and the objective of this submission is to present the GAR global risk assessment which contributed to Global Assessment Report (GAR) 2015. This initiative which has been led by UNISDR, was conducted by a consortium of technical institutions from around the world and has covered earthquake, cyclone, riverine flood, and tsunami probabilistic risk for all countries of the world. In addition, the risks associated with volcanic ash in the Asia-Pacific region, drought in various countries in sub-Saharan Africa and climate change in a number of countries have been calculated. The presentation will share thee results as well as the experience including the challenges faced in technical elements as well as the process and recommendations for the future of such endeavour.

  3. Stakeholder initiatives in flood risk management

    NARCIS (Netherlands)

    Edelenbos, Jurian; Buuren, Van Arwin; Roth, Dik; Winnubst, Madelinde

    2017-01-01

    In recent years stakeholder participation has become a popular topic in flood management. Little is known about how and under which circumstances local stakeholders initiate and develop successful flood management strategies and how governmental actors respond to them. Drawing on theories of

  4. Adaptation measures and pathways for flood risk in Dordrecht

    NARCIS (Netherlands)

    Gersonius, B.; Kelder, E.; Anema, K.; van Herk, S.; Zevenbergen, C.

    2014-01-01

    In line with the Adaptive Delta Management approach of the Dutch Delta Programme, Dordrecht has developed a multi-layer safety strategy to meet the future tasking for flood risk management. This strategy puts greater emphasis on limiting the consequences of floods through spatial planning (layer 2)

  5. EMERGO : The Dutch flood risk system since 1986

    NARCIS (Netherlands)

    Rijcken, T.

    2017-01-01

    PART I | A RESEARCH AND DESIGN PROJECT ABOUT FLOOD RISK POLICY SINCE 1986 The period between the Dutch flood disaster of 1953 and the year 2016 can be divided into two eras, separated by the year 1986, when the famous Eastern Scheldt barrier was completed. The perspective of water professionals on

  6. What can'(t) we do with global flood risk models?

    Science.gov (United States)

    Ward, P.; Jongman, B.; Salamon, P.; Simpson, A.; Bates, P. D.; de Groeve, T.; Muis, S.; Coughlan, E.; Rudari, R.; Trigg, M. A.; Winsemius, H.

    2015-12-01

    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward, P.J. et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742.

  7. Integrated climate change risk assessment:

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten

    2017-01-01

    Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models...... to address the complex linkages between the different kinds of data required in assessing climate adaptation. It emphasizes that the availability of spatially explicit data can reduce the overall uncertainty of the risk assessment and assist in identifying key vulnerable assets. The usefulness...... of such a framework is demonstrated by means of a risk assessment of flooding from extreme precipitation for the city of Odense, Denmark. A sensitivity analysis shows how the presence of particularly important assets, such as cultural and historical heritage, may be addressed in assessing such risks. The output...

  8. Mitigating flood exposure: Reducing disaster risk and trauma signature.

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city's worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods . We applied the "trauma signature analysis" (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results . Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion . In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation.

  9. Urban settlements' vulnerability to flood risks in African cities: A conceptual framework

    Directory of Open Access Journals (Sweden)

    Rafiu O. Salami

    2017-02-01

    Full Text Available In the recent past, the frequency and gravity of large-scale flood disasters have increased globally, resulting in casualties, destruction of property and huge economic loss. The destructive flood disaster devastating Louisiana, USA, is a recent example. Despite the availability of advanced technological capabilities for dealing with floods in developed nations, flood disasters continue to become more rampant and disastrous. Developing countries in Africa such as Benin, Ghana, Nigeria, Senegal and Sudan have recently experienced severe flooding, leaving a considerable number of human casualties and thousands displaced. In African cities, most vulnerable urban residents usually have lesser capacity and fewer resources to recover from the shocks of disaster as a result of the failure of governments to build human security for poor African residents. Many scholars have acknowledged the lack of appropriate vulnerability assessment frameworks and policies, questioning the efficiency and effectiveness of the tested models in Africa. The ability to accurately identify, measure and evaluate the various vulnerabilities of affected people and communities is a right step towards reducing disaster risk. This article aimed at developing a framework for assessing urban settlements’ vulnerability to flood risks in Africa. The framework is currently being tested to assess various dimensions of vulnerability drivers in three urban communities in Ibadan metropolis, the third largest city in Nigeria, focusing more on flood risk perceptions and behaviour of the risk bearers. It uses participatory and mixed method approaches to socially construct vulnerability of populations at risk. This model emanates from the evaluation of considerable relevant literature and an array of vulnerability assessment frameworks. It integrates some approaches that are applicable to African cities in a bid to create a versatile tool to assess, identify and mitigate the effects of

  10. HIGH RISK ZONES ON FLOODS AND LANDSLIDES DISASTERS IN RWANDA

    Directory of Open Access Journals (Sweden)

    Nsengiyumva J.ean Baptiste

    2014-01-01

    Full Text Available Disaster risk management as an issue at stake worldwide shifts its emphases from post disaster to pre-disaster phases. Management activities required in pre-disaster phases, such as risk assessment, hazard identification, preparedness or preventive and mitigation measures needs detailed information about hazard characteristics, social, economic, structural vulnerability and capacity. That information is not usually available in many different countries, as it is the case in Rwanda. Based on the international experiences and practices, knowledge of disaster prone areas can be assumed as an alternative for detailed information acquisition, thus contributing to effective disaster risk management. Identification of disaster higher risk zones on floods and landslides, can lead to better understanding of disaster risk and putting in place measures for risk reduction. Consequently, as Rwanda is prone to natural hazards with lack of adequate information that is essential for effective disaster risk management, due to limited scientific researches; this study aims to address that gap. The results revealed that some areas of the North-Western parts of Rwanda are highly prone to floods and landslides, namely Burera, Musanze, Rulindo, Nyabihu, Ngororero and Rubavu Districts. This is aggravated by some triggering factors such as steep slopes, soil types, heavy rains, landuse Practices and others. Intensity and frequency of disaster events vary from district to district and this geographical dispersal confirms the non-spatial clustering (as confirmed by Moran’s I analysis of risks due to uneven level of Disaster vulnerabilities, coping capacities and available hazards whereby lack of normal distribution of hazards all over all Districts.

  11. Hierarchical Modelling of Flood Risk for Engineering Decision Analysis

    DEFF Research Database (Denmark)

    Custer, Rocco

    protection structures in the hierarchical flood protection system - is identified. To optimise the design of protection structures, fragility and vulnerability models must allow for consideration of decision alternatives. While such vulnerability models are available for large protection structures (e...... systems, as well as the implementation of the flood risk analysis methodology and the vulnerability modelling approach are illustrated with an example application. In summary, the present thesis provides a characterisation of hierarchical flood protection systems as well as several methodologies to model...... and robust. Traditional risk management solutions, e.g. dike construction, are not particularly flexible, as they are difficult to adapt to changing risk. Conversely, the recent concept of integrated flood risk management, entailing a combination of several structural and non-structural risk management...

  12. How are flood risk estimates affected by the choice of return-periods?

    Science.gov (United States)

    Ward, P. J.; de Moel, H.; Aerts, J. C. J. H.

    2011-12-01

    Flood management is more and more adopting a risk based approach, whereby flood risk is the product of the probability and consequences of flooding. One of the most common approaches in flood risk assessment is to estimate the damage that would occur for floods of several exceedance probabilities (or return periods), to plot these on an exceedance probability-loss curve (risk curve) and to estimate risk as the area under the curve. However, there is little insight into how the selection of the return-periods (which ones and how many) used to calculate risk actually affects the final risk calculation. To gain such insights, we developed and validated an inundation model capable of rapidly simulating inundation extent and depth, and dynamically coupled this to an existing damage model. The method was applied to a section of the River Meuse in the southeast of the Netherlands. Firstly, we estimated risk based on a risk curve using yearly return periods from 2 to 10 000 yr (€ 34 million p.a.). We found that the overall risk is greatly affected by the number of return periods used to construct the risk curve, with over-estimations of annual risk between 33% and 100% when only three return periods are used. In addition, binary assumptions on dike failure can have a large effect (a factor two difference) on risk estimates. Also, the minimum and maximum return period considered in the curve affects the risk estimate considerably. The results suggest that more research is needed to develop relatively simple inundation models that can be used to produce large numbers of inundation maps, complementary to more complex 2-D-3-D hydrodynamic models. It also suggests that research into flood risk could benefit by paying more attention to the damage caused by relatively high probability floods.

  13. Modeling urban flood risk territories for Riga city

    Science.gov (United States)

    Piliksere, A.; Sennikovs, J.; Virbulis, J.; Bethers, U.; Bethers, P.; Valainis, A.

    2012-04-01

    the Gumbell extreme value analysis. The hydrological modelling driven by the temperature and precipitation data series from regional climate models were used for evaluation of rain event maximums in the future periods. The usage of the climate model data in hydrological models causes systematic errors; therefore the bias correction method (Sennikovs, Bethers, 2009) was applied for determination of the future rainfall intensities. SWMM model was built for the urban area. Objects of hydraulic importance (manifold, penstock, ditch, pumping station, weir, well, catchment sub-basin etc.) were included in the model. There exist pure rain sewage system and mixed rain-water/household sewage system in Riga. Sewage system with wastewater load proportional to population density was taken account and calibrated. Model system was calibrated for a real rain event against the water flux time series into sewage treatment plant of Riga. High resolution (~1.5 points per square meter) digital terrain map was used as the base for finite element mesh for the geospatial mapping of results of hydraulic calculations. Main results of study are (1) detection of the hot spots of densely populated urban areas; (2) identification of the weak chains of the melioration and sewage systems; (3) mapping the elevation of ground water mainly caused by snow melting. A.Piliksere, A.Valainis, J.Seņņikovs, (2011), A flood risk assessment for Riga city taking account climate changes, EGU, Vienna, Austria. EPA, (2004), Storm water management model. User's manual version 5.0. US Environmental Protection Agency J.Sennikovs, U.Bethers, (2009), Statistical downscaling method of regional climate model results for hydrological modelling. 18th World IMACS/MODSIM Congress, Cairns, Australia.

  14. Assessment of vulnerability to extreme flash floods in design storms.

    Science.gov (United States)

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  15. Assessment of the effectiveness of flood adaptation strategies for HCMC

    NARCIS (Netherlands)

    Lasage, R.; Veldkamp, T.I.E.; de Moel, H.; Van, T.C.; Phi, H.L.; Vellinga, P.; Aerts, J.C.J.H.

    2014-01-01

    Coastal cities are vulnerable to flooding, and flood risk to coastal cities will increase due to sea-level rise. Moreover, Asian cities in particular are subject to considerable population growth and associated urban developments, increasing this risk even more. Empirical data on vulnerability and

  16. Extensive spatio-temporal assessment of flood events by application of pair-copulas

    Directory of Open Access Journals (Sweden)

    M. Schulte

    2015-06-01

    Full Text Available Although the consequences of floods are strongly related to their peak discharges, a statistical classification of flood events that only depends on these peaks may not be sufficient for flood risk assessments. In many cases, the flood risk depends on a number of event characteristics. In case of an extreme flood, the whole river basin may be affected instead of a single watershed, and there will be superposition of peak discharges from adjoining catchments. These peaks differ in size and timing according to the spatial distribution of precipitation and watershed-specific processes of flood formation. Thus, the spatial characteristics of flood events should be considered as stochastic processes. Hence, there is a need for a multivariate statistical approach that represents the spatial interdependencies between floods from different watersheds and their coincidences. This paper addresses the question how these spatial interdependencies can be quantified. Each flood event is not only assessed with regard to its local conditions but also according to its spatio-temporal pattern within the river basin. In this paper we characterise the coincidence of floods by trivariate Joe-copula and pair-copulas. Their ability to link the marginal distributions of the variates while maintaining their dependence structure characterizes them as an adequate method. The results indicate that the trivariate copula model is able to represent the multivariate probabilities of the occurrence of simultaneous flood peaks well. It is suggested that the approach of this paper is very useful for the risk-based design of retention basins as it accounts for the complex spatio-temporal interactions of floods.

  17. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  18. Multi-dimensional flood vulnerability assessment using data envelopment analysis

    Science.gov (United States)

    Zahid, Zalina; Saharizan, Nurul Syuhada; Hamzah, Paezah; Hussin, Siti Aida Sheikh; Khairi, Siti Shaliza Mohd

    2017-11-01

    Malaysia has been greatly impacted by flood during monsoon seasons. Even though flood prone areas are well identified, assessment on the vulnerability of the disaster is lacking. Assessment of flood vulnerability, defined as the potential for loss when a disaster occurs, is addressed in this paper. The focus is on the development of flood vulnerability measurement in 11 states in Peninsular Malaysia using a non-parametric approach of Data Envelopment Analysis. Scores for three dimensions of flood vulnerability (Population Vulnerability, Social Vulnerability and Biophysical) were calculated using secondary data of selected input and output variables across an 11-year period from 2004 to 2014. The results showed that Johor and Pahang were the most vulnerable to flood in terms of Population Vulnerability, followed by Kelantan, the most vulnerable to flood in terms of Social Vulnerability and Kedah, Pahang and Terengganu were the most vulnerable to flood in terms of Biophysical Vulnerability among the eleven states. The results also showed that the state of Johor, Pahang and Kelantan to be most vulnerable across the three dimensions. Flood vulnerability assessment is important as it provides invaluable information that will allow the authority to identify and develop plans for flood mitigation and to reduce the vulnerability of flood at the affected regions.

  19. Protection of French nuclear power plants against flooding risks - 15307

    International Nuclear Information System (INIS)

    Barbaud, J.

    2015-01-01

    In France, the flooding risk has been taken into account since the beginning of the nuclear program and has been reinforced following operating feedback from French and international power plants. The main events which led to reinforcement were the partial flooding in the Blayais NPP that occurred in 1999 and the Fukushima accident in 2011. The current French fleet is composed of 58 PWR reactors located on 19 sites: 4 sites are sea side, 1 side is located on an estuary and all other are located on river side. The lessons learned from the Blayais event are: -) an update of the hazard evaluation of the risks, -) a new assessment of the sufficiency of the protective measures, and -) the taking into account of aggravating risks associated to support functions such as site inaccessibility, loss of off-site power, etc. The lessons learned from the Fukushima accident have confirmed and enhanced lessons from the Blayais event. In addition the Fukushima accident has underlined the need to have sufficient margins beyond the design to avoid cliff edge effects. The improvements implemented on the Blayais and the Belleville sites are detailed

  20. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  1. Assessment of flood Response Characteristics to Urbanization and extreme flood events-Typhoons at Cheongju, Chungbuk

    Science.gov (United States)

    Chang, HyungJoon; Lee, Hyosang; Hwang, Myunggyu; Jang, Sukhwan

    2016-04-01

    The changes of land use influence on the flood characteristics, which depend on rainfall runoff procedures in the catchment. This study assesses the changes of flood characteristics due to land use changes between 1997 and 2012. The catchment model (HEC-HMS) is calibrated with flood events of 1990's and 2000's respectively, then the design rainfall of 100, 200, 500year return period are applied to this model, which represent the catchment in 1990's and 2000's, to assess the flood peaks. Then the extreme flood events (i.e., 6 typhoon events) are applied to assess the flood responses. The results of comparison between 1990's and 2000's show that the flood peak and level of 2000's are increasing and time to peak of 2000's is decreasing comparing to those of 1990's :3% to 78% increase in flood peak, 3% in flood level and 10.2% to 16% decrease in time to peak in 100year return period flood. It is due to decreasing of the farmland area (2.18%), mountainous area (8.88%), and increasing of the urbanization of the area (5.86%). This study also estimates the responses to extreme flood events. The results of 2000's show that the increasing of the flood peak and time to peak comparing to 1990's. It indicates that the extreme rainfall is more responsible at unurbanized catchment ( 2000's), which resulting with a 11% increasing of the peak volume. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  2. Promoting adaptive flood risk management: the role and potential of flood recovery mechanisms

    Directory of Open Access Journals (Sweden)

    Priest Sally J

    2016-01-01

    Full Text Available There is a high potential for recovery mechanisms to be used to incentivise the uptake of flood mitigation and loss reduction measures, undertake adaptation and promote community resilience. Indeed, creating a resilient response to flooding requires flood risk management approaches to be aligned and it needs to be ensured that recovery mechanisms to not provide disincentives for individuals and business to take proactive action to reduce risk. However, the degree to which it is desirable and effective for insurers and governments providing compensation to promote resilience and risk reduction depends upon how the cover or compensation is organised and the premiums which are charged. A review of international flood recovery mechanisms has been undertaken to identify firstly the types of schemes that exist and their characteristics. Analysis of existing instruments highlights that there are various potential approaches to encourage or require the uptake of flood mitigation and also discourage the construction of new development in high flood risk. However despite the presence of these instruments, those organising recovery mechanisms could be doing much more to incentivise increased resilience.

  3. The legacy of extreme sea levels for the assessment of future coastal flood risk – A review of methods applied in Denmark, Germany and Norway

    DEFF Research Database (Denmark)

    Nilsen, Jan Even; Sørensen, Carlo Sass; Dangendore, Sönke

    in the three countries is discussed. Here, national approaches to deal with risk, risk acceptance and uncertainty vary, among other factors, as a result of the different assessments of extreme events. In hazard and vulnerability assessments, for instance, where results are highly dependent on the quality...

  4. Collaborative Strategies for Sustainable EU Flood Risk Management: FOSS and Geospatial Tools—Challenges and Opportunities for Operative Risk Analysis

    Directory of Open Access Journals (Sweden)

    Raffaele Albano

    2015-12-01

    Full Text Available An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to mitigate the impact of natural hazards on European economies and societies, improved risk assessment, and management needs to be pursued. With the recent transition to a more risk-based approach in European flood management policy, flood analysis models have become an important part of flood risk management (FRM. In this context, free and open-source (FOSS geospatial models provide better and more complete information to stakeholders regarding their compliance with the Flood Directive (2007/60/EC for effective and collaborative FRM. A geospatial model is an essential tool to address the European challenge for comprehensive and sustainable FRM because it allows for the use of integrated social and economic quantitative risk outcomes in a spatio-temporal domain. Moreover, a FOSS model can support governance processes using an interactive, transparent and collaborative approach, providing a meaningful experience that both promotes learning and generates knowledge through a process of guided discovery regarding flood risk management. This article aims to organize the available knowledge and characteristics of the methods available to give operational recommendations and principles that can support authorities, local entities, and the stakeholders involved in decision-making with regard to flood risk management in their compliance with the Floods Directive (2007/60/EC.

  5. Future flood risk estimates along the river Rhine

    Directory of Open Access Journals (Sweden)

    A. H. te Linde

    2011-02-01

    Full Text Available In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine basin. To optimize spatial planning and flood management measures, studies are needed that quantify future flood risks and estimate their uncertainties. In this paper, we estimated the current and future fluvial flood risk in 2030 for the entire Rhine basin in a scenario study. The change in value at risk is based on two land-use projections derived from a land-use model representing two different socio-economic scenarios. Potential damage was calculated by a damage model, and changes in flood probabilities were derived from two climate scenarios and hydrological modeling. We aggregated the results into seven sections along the Rhine. It was found that the annual expected damage in the Rhine basin may increase by between 54% and 230%, of which the major part (~ three-quarters can be accounted for by climate change. The highest current potential damage can be found in the Netherlands (110 billion €, compared with the second (80 billion € and third (62 billion € highest values in two areas in Germany. Results further show that the area with the highest fluvial flood risk is located in the Lower Rhine in Nordrhein-Westfalen in Germany, and not in the Netherlands, as is often perceived. This is mainly due to the higher flood protection standards in the Netherlands as compared to Germany.

  6. Urban micro-scale flood risk estimation with parsimonious hydraulic modelling and census data

    Directory of Open Access Journals (Sweden)

    C. Arrighi

    2013-05-01

    Full Text Available The adoption of 2007/60/EC Directive requires European countries to implement flood hazard and flood risk maps by the end of 2013. Flood risk is the product of flood hazard, vulnerability and exposure, all three to be estimated with comparable level of accuracy. The route to flood risk assessment is consequently much more than hydraulic modelling of inundation, that is hazard mapping. While hazard maps have already been implemented in many countries, quantitative damage and risk maps are still at a preliminary level. A parsimonious quasi-2-D hydraulic model is here adopted, having many advantages in terms of easy set-up. It is here evaluated as being accurate in flood depth estimation in urban areas with a high-resolution and up-to-date Digital Surface Model (DSM. The accuracy, estimated by comparison with marble-plate records of a historic flood in the city of Florence, is characterized in the downtown's most flooded area by a bias of a very few centimetres and a determination coefficient of 0.73. The average risk is found to be about 14 € m−2 yr−1, corresponding to about 8.3% of residents' income. The spatial distribution of estimated risk highlights a complex interaction between the flood pattern and the building characteristics. As a final example application, the estimated risk values have been used to compare different retrofitting measures. Proceeding through the risk estimation steps, a new micro-scale potential damage assessment method is proposed. This is based on the georeferenced census system as the optimal compromise between spatial detail and open availability of socio-economic data. The results of flood risk assessment at the census section scale resolve most of the risk spatial variability, and they can be easily aggregated to whatever upper scale is needed given that they are geographically defined as contiguous polygons. Damage is calculated through stage–damage curves, starting from census data on building type and

  7. Household flood risk reduction in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Duží, B.; Vikhrov, Dmytro; Kelman, I.; Stojanov, R.; Jakubínský, J.

    2015-01-01

    Roč. 20, č. 4 (2015), s. 499-504 ISSN 1381-2386 Institutional support: PRVOUK-P23 Keywords : flood risk reduction * household adaptation * Czech Republic Subject RIV: AH - Economics Impact factor: 3.085, year: 2015

  8. Household flood risk reduction in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Duží, B.; Vikhrov, Dmytro; Kelman, I.; Stojanov, R.; Jakubínský, J.

    2015-01-01

    Roč. 20, č. 4 (2015), s. 499-504 ISSN 1381-2386 Institutional support: RVO:67985998 Keywords : flood risk reduction * household adaptation * Czech Republic Subject RIV: AH - Economics Impact factor: 3.085, year: 2015

  9. Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France

    Directory of Open Access Journals (Sweden)

    J. F. Breilh

    2013-06-01

    Full Text Available This study aims to assess the performance of raster-based flood modeling methods on a wide diversity of coastal marshes. These methods are applied to the flooding associated with the storm Xynthia, which severely hit the western coast of France in February 2010. Static and semi-dynamic methods are assessed using a combination of LiDAR data, post-storm delineation of flooded areas and sea levels originating from both tide gauge measurements and storm surge modeling. Static methods are applied to 27 marshes showing a wide geomorphological diversity. It appears that these methods are suitable for marshes with a small distance between the coastline and the landward boundary of the marsh, which causes these marshes to flood rapidly. On the contrary, these methods overpredict flooded areas for large marshes where the distance between the coastline and the landward boundary of the marsh is large, because the flooding cannot be considered as instantaneous. In this case, semi-dynamic methods based on surge overflowing volume calculations can improve the flooding prediction significantly. This study suggests that static and semi-dynamic flood modeling methods can be attractive and quickly deployed to rapidly produce predictive flood maps of vulnerable areas under certain conditions, particularly for small distances between the coastline and the landward boundary of the low-lying coastal area.

  10. Challenges of torrential flood risk management in Serbia

    Directory of Open Access Journals (Sweden)

    Petrović Ana M.

    2015-01-01

    Full Text Available Torrential floods are the natural hydrological hazards manifesting as a consequence of extreme rainfall episodes which have a quick response from the watersheds of small areas, steep slopes and intensive soil erosion. Taking in consideration the nature of torrential flood (sudden and destructive occurrence and the fact they are the most frequent natural hazards in Serbia, torrential flood risk management is a real challenge. Instead of partial solutions for flood protection, integrated torrential flood risk management is more meaningful and effective. The key steps should be an improvement of the legal framework on national level and an expansion of technical and biological torrent control works in river basins. Consequences for society can be significantly reduced if there is an efficient forecast and timely warning, rescue and evacuation and if affected population is educated about flood risks and measures which can be undertaken in case of emergency situation. In this paper, all aspects of torrential flood risk management are analyzed. [Projekat Ministarstva nauke Republike Srbije, br. 47007 III

  11. Using FEMA FIS, HAZUS and WMOST to Evaluate Effectiveness of GI in Moderating Flood-Related Risks

    Science.gov (United States)

    The ability to accurately assess flood-related risks and costs as well as the effectiveness of green infrastructure on moderating those risks is critical for both emergency management and long-term planning. Potential flooding depths, land use and building conditions are needed ...

  12. NOAA predicts moderate flood potential in Midwest, elevated risk of ice

    Science.gov (United States)

    March 20, 2014 U.S. Spring Flood Risk Map for 2014. U.S. Spring Flood Risk Map for 2014. (Credit: NOAA moderate flood potential in Midwest, elevated risk of ice jams; California and Southwest stuck with drought minor or moderate risk of exceeding flood levels this spring with the highest threat in the southern

  13. Risk factors of diarrhoea among flood victims: a controlled epidemiological study.

    Science.gov (United States)

    Mondal, N C; Biswas, R; Manna, A

    2001-01-01

    The concept and practice of 'disaster preparedness and response', instead of traditional casualty relief, is relatively new. Vulnerability analysis and health risks assessment of disaster prone communities are important prerequisites of meaningful preparedness and effective response against any calamity. In this community based study, the risk of diarrhoeal disease and its related epidemiological factors were analysed by collecting data from two selected flood prone block of Midnapur district of West Bengal. The information was compared with that of another population living in two non-flood prone blocks of the same district. The study showed that diarrhoeal disease was the commonest morbidity in flood prone population. Some behaviours, like use of pond water for utensil wash and kitchen purpose, hand washing after defecation without soap, improper hand washing before eating, open field defecation, storage of drinking water in wide mouth vessels etc. were found to be associated with high attack rate of diarrhoea, in both study and control population during flood season compared to pre-flood season. Attack rates were also significantly higher in flood prone population than that of population in non-flood prone area during the same season. Necessity of both community education for proper water use behaviour and personal hygiene along with ensuring safe water and sanitation facilities of flood affected communities were emphasized.

  14. Analysis of coastal protection under rising flood risk

    Directory of Open Access Journals (Sweden)

    Megan J. Lickley

    2014-01-01

    Full Text Available Infrastructure located along the U.S. Atlantic and Gulf coasts is exposed to rising risk of flooding from sea level rise, increasing storm surge, and subsidence. In these circumstances coastal management commonly based on 100-year flood maps assuming current climatology is no longer adequate. A dynamic programming cost–benefit analysis is applied to the adaptation decision, illustrated by application to an energy facility in Galveston Bay. Projections of several global climate models provide inputs to estimates of the change in hurricane and storm surge activity as well as the increase in sea level. The projected rise in physical flood risk is combined with estimates of flood damage and protection costs in an analysis of the multi-period nature of adaptation choice. The result is a planning method, using dynamic programming, which is appropriate for investment and abandonment decisions under rising coastal risk.

  15. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  16. Towards a Risk Governance Culture in Flood Policy—Findings from the Implementation of the “Floods Directive” in Germany

    Directory of Open Access Journals (Sweden)

    Klaus Wagner

    2012-02-01

    Full Text Available The European Directive on the Assessment and Management of Flood Risks is likely to cause changes to flood policy in Germany and other member states. With its risk governance approach, it introduces a holistic and catchment-oriented flood risk management and tries to overcome shortcomings of the past, such as the event-driven construction of mainly structural measures. However, there is leeway for interpretation in implementing the directive. The present paper gives an overview on the implementation of the floods directive in Germany and is divided into two qualitative empirical case studies. Case Study I investigates the level of acceptance of the floods directive among decision-makers in the German part of the Rhine river basin. Findings show that the federal states respond differently to the impulse given by the floods directive. Whereas some decision-makers opt for a pro-forma implementation, others take it as a starting point to systematically improve their flood policy. Case Study II presents recommendations for a successful implementation of flood risk management plans that have been developed within a project for the water authority in Bavaria and might be interesting for other federal/member states. For a participation of the interested parties on the level of shared decision-making, the planning process has to work on sub-management-plan level (15–20 communities. The water resources authority has to adopt a multi-faceted role (expert, responsible or interested party depending on the discussed topics.

  17. Coupled modelling of subsurface water flux for an integrated flood risk management

    Directory of Open Access Journals (Sweden)

    T. Sommer

    2009-07-01

    Full Text Available Flood events cause significant damage not only on the surface but also underground. Infiltration of surface water into soil, flooding through the urban sewer system and, in consequence, rising groundwater are the main causes of subsurface damage. The modelling of flooding events is an important part of flood risk assessment. The processes of subsurface discharge of infiltrated water necessitate coupled modelling tools of both, surface and subsurface water fluxes. Therefore, codes for surface flooding, for discharge in the sewerage system and for groundwater flow were coupled with each other. A coupling software was used to amalgamate the individual programs in terms of mapping between the different model geometries, time synchronization and data exchange. The coupling of the models was realized on two scales in the Saxon capital of Dresden (Germany. As a result of the coupled modelling it could be shown that surface flooding dominates processes of any flood event. Compared to flood simulations without coupled modelling no substantial changes of the surface inundation area could be determined. Regarding sewerage, the comparison between the influx of groundwater into sewerage and the loading due to infiltration by flood water showed infiltration of surface flood water to be the main reason for sewerage overloading. Concurrent rainfalls can intensify the problem. The infiltration of the sewerage system by rising groundwater contributes only marginally to the loading of the sewerage and the distribution of water by sewerage has only local impacts on groundwater rise. However, the localization of risk areas due to rising groundwater requires the consideration of all components of the subsurface water fluxes. The coupled modelling has shown that high groundwater levels are the result of a multi-causal process that occurs before and during the flood event.

  18. Overview of the probabilistic risk assessment approach

    International Nuclear Information System (INIS)

    Reed, J.W.

    1985-01-01

    The techniques of probabilistic risk assessment (PRA) are applicable to Department of Energy facilities. The background and techniques of PRA are given with special attention to seismic, wind and flooding external events. A specific application to seismic events is provided to demonstrate the method. However, the PRA framework is applicable also to wind and external flooding. 3 references, 8 figures, 1 table

  19. Flood Risk Management in Iowa through an Integrated Flood Information System

    Science.gov (United States)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  20. Preparing for Local Adaptation: Understanding Flood Risk Perceptions in Pittsburgh

    Science.gov (United States)

    Klima, K.; Wong-Parodi, G.

    2015-12-01

    The City of Pittsburgh experiences numerous floods every year. Aging and insufficient infrastructure contribute to flash floods and to over 20 billion gallons of combined sewer overflows annually, contaminating Pittsburgh's streets, basements, and waterways. Climate change is expected to further exacerbate this problem by causing more intense and more frequent extreme precipitation events in Western Pennsylvania. For a stormwater adaptation plan to be implemented effectively, the City will need informed public support. One way to achieve public understanding and support is through effective communication of the risks, benefits, and uncertainties of local flooding hazards and adaptation methods. In order to develop these communications effectively, the city and its partners will need to know what knowledge and attitudes the residents of Pittsburgh already hold about flood risks. Here we seek to (1) identify Pittsburgh residents' knowledge level, risk perception and attitudes towards flooding and storm water management, and (2) pre-test communications meant to inform and empower Pittsburghers about flood risks and adaptation strategies. We conduct a city-wide survey of 10,000 Pittsburgh renters and homeowners from four life situations: high risk, above poverty; high-risk, below poverty; low risk, above poverty; and low-risk, below poverty. Mixed media recruitment strategies (online and paper-based solicitations guided/organized by community organizations) assist in reaching all subpopulations. Preliminary results suggest participants know what stormwater runoff is, but have a weak understanding of how stormwater interacts with natural and built systems. Furthermore, although participants have a good understanding of the difference between green and gray infrastructure, this does not translate into a change in their willingness to pay for green infrastructure adaptation. This suggests additional communications about flood risks and adaptation strategies.

  1. GIS-based flood risk model evaluated by Fuzzy Analytic Hierarchy Process (FAHP)

    Science.gov (United States)

    Sukcharoen, Tharapong; Weng, Jingnong; Teetat, Charoenkalunyuta

    2016-10-01

    Over the last 2-3 decades, the economy of many countries around the world has been developed rapidly but it was unbalanced development because of expecting on economic growth only. Meanwhile it lacked of effective planning in the use of natural resources. This can significantly induce climate change which is major cause of natural disaster. Hereby, Thailand has also suffered from natural disaster for ages. Especially, the flood which is most hazardous disaster in Thailand can annually result in the great loss of life and property, environment and economy. Since the flood management of country is inadequate efficiency. It is unable to support the flood analysis comprehensively. This paper applied Geographic Information System and Multi-Criteria Decision Making to create flood risk model at regional scale. Angthong province in Thailand was used as the study area. In practical process, Fuzzy logic technique has been used to improve specialist's assessment by implementing with Fuzzy membership because human decision is flawed under uncertainty then AHP technique was processed orderly. The hierarchy structure in this paper was categorized the spatial flood factors into two levels as following: 6 criteria (Meteorology, Geology, Topography, Hydrology, Human and Flood history) and 8 factors (Average Rainfall, Distance from Stream, Soil drainage capability, Slope, Elevation, Land use, Distance from road and Flooded area in the past). The validity of the pair-wise comparison in AHP was shown as C.R. value which indicated that the specialist judgment was reasonably consistent. FAHP computation result has shown that the first priority of criteria was Meteorology. In addition, the Rainfall was the most influencing factor for flooding. Finally, the output was displayed in thematic map of Angthong province with flood risk level processed by GIS tools. The map was classified into: High Risk, Moderate Risk and Low Risk (13.20%, 75.58%, and 11.22% of total area).

  2. Risk of the residents, infrastructure and water bodies by flash floods and sediment transport - assessment for scale of the Czech Republic

    Science.gov (United States)

    Dostál, Tomáš; Krása, Josef; Bauer, Miroslav; Strouhal, Luděk; Jáchymová, Barbora; Devátý, Jan; David, Václav; Koudelka, Petr; Dočkal, Martin

    2015-04-01

    Pluvial and flash floods, related to massive sediment transport become phenomenon nowadays, under conditions of climate changes. Storm events, related to material damages appear at unexpected places and their effective control is only possible in form of prevention. To apply preventive measures, there have to be defined localities with reasonable reliability, which are endangered by surface runoff and sediment transport produced in the subcatchments, often at agriculturally used landscape. Classification of such localities, concerning of potential damages and magnitude of sediment transport shall be also included within the analyses, to design control measures effectively. Large scale project for whole territory of the Czech Republic (ca 80.000 km2) has therefore been granted b the Ministry of Interior of the Czech Republic, with the aim to define critical points, where interaction between surface runoff connected to massive sediment transport and infrastructure or vulnerable water bodies can occur and to classify them according to potential risk. Advanced GIS routines, based on analyses of land use, soil conditions and morphology had been used to determine the critical points - points, where significant surface runoff occurs and interacts with infrastructure and vulnerable water bodies, based exclusively on the contributing area - flow accumulation. In total, ca 150.000 critical points were determined within the Czech Republic. For each of critical points, its subcatchment had then been analyzed in detail, concerning of soil loss and sediment transport, using simulation model WATEM/SEDEM. The results were used for classification of potential risk of individual critical points, based on mean soil loss within subcatchment, total sediment transport trough the outlet point and subcatchment area. The classification has been done into 5 classes. The boundaries were determined by calibration survey and statistical analysis, performed at three experimental catchments area

  3. Continuous Sub-daily Rainfall Simulation for Regional Flood Risk Assessment - Modelling of Spatio-temporal Correlation Structure of Extreme Precipitation in the Austrian Alps

    Science.gov (United States)

    Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.

    2017-12-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic

  4. Risk reduction by combining nature values with flood protection?

    Directory of Open Access Journals (Sweden)

    Van Loon-Steensma Jantsje M.

    2016-01-01

    Full Text Available In the Netherlands, the concept of a multifunctional dike has already often been implemented, and has been identified as a promising climate adaptation measure. In a multifunctional dike, functions like urban development, transport infrastructure, recreation, agriculture or nature are deliberately combined with its primary flood protection function. This means that the design must be based on the requirements and life span of all different functions, while in a monofunctional dike only the flood protection function is considered. By accommodating other functions, a multifunctional dike may easier fit into, or even contribute to the quality of the landscape. Moreover, these other functions may help in financing the flood protection works, but governance is more complicated. To avoid costly adjustments forthcoming from changed safety standards, incorporation of multiple functions can require a more “robust” flood defence than a monofunctional flood defence. A robust flood defence can withstand more extreme situations than required by the present safety standards, and has a substantially lower flooding probability. Therefore, a multifunctional dike may be attractive in view of the uncertainties regarding the effects of climate change and a changing world. Moreover, it will result in reduced flood risk. As part of the Dutch Delta programme, several explorative studies on multifunctional dikes were initiated. Most studies focused on urban areas, but also in the rural area interest emerged for multifunctional dikes, e.g. for the integration of salt marshes into the flood defences. Marshes provide valuable habitat for vegetation and invertebrate species, and are important for wading birds. Furthermore, under condition of abundant sediment availability they can keep pace with sea level rise. Explorative modelling results indicate that vegetated forelands affect wave heights, even under extreme conditions. However, the inclusion of a vegetated

  5. Flood Risk in Australia: Whose Responsibility Is It, Anyway?

    Directory of Open Access Journals (Sweden)

    Robin van den Honert

    2013-10-01

    Full Text Available This paper presents research into four key stakeholders in flood risk management in Australia: local councils, the insurance industry, the State Emergency Service (SES, and local residents; examining the perception of their own roles and responsibilities, and those of the other stakeholders. Key informant interviews were conducted in four locations—Brisbane and Emerald, in Queensland, Dora Creek, in New South Wales, and Benalla, in Victoria. We find that understanding of the roles and responsibilities of each stakeholder varied considerably between research participants. Insurance representatives felt their concerns about increasing flood risk costs were unheeded until the 2010–2011 floods made them the “canary in the coal mine”. Councils felt they had limited options for reducing flood risk. SES representatives felt they were too relied upon for event response, with requests for assistance outstripping their capacity to assist, and many residents were uncertain how to prepare for flood, relying on emergency agencies and the local council to protect them. Key lessons for flood risk management in Australia are (a an urgent need for all stakeholders to better understand each others’ roles and responsibilities; and (b residents must take greater responsibility for their own personal protection. Only then can the vision of shared responsibility presented by the 2009 National Strategy for Disaster Resilience be achieved.

  6. Danish risk management plans of the EU Floods Directive

    Directory of Open Access Journals (Sweden)

    Jebens Martin

    2016-01-01

    Full Text Available We evaluate the impact and effect of the EU Flood’s Directive (2007/60/EC in Denmark and the flood risk management plans that are the result of the national implementation. In a qualitative research approach, the flood risk management plans published by 22 Danish municipalities are reviewed and analyzed regarding main objectives and structural and non-structural mitigation measures. From the analyses conclusions are drawn on the non-structural risk management measures still to be improved to obtain the full benefits from the Directive. Conclusions point to the need of introducing better decision support systems, a need to define acceptable risks, and a need to enhance coordi-nation between municipal and cross-sectorial actors as well as an increased effort to involve civil society is necessary. In general, the implementation of the Directive has significantly advanced the national scientific and cross-sectorial working platform for dealing with risks from floods.

  7. National flood risk mapping of the Danish coastline

    DEFF Research Database (Denmark)

    Jumppanen Andersen, Kaija; Earnshaw, Matthew; Sørensen, Carlo

    2015-01-01

    Ocean flooding related to extreme storm surges poses a large damage potential for society. With future climate changes such as sea level rise and increased storminess, ocean flooding becomes one of the largest challenges for Denmark, due to its many islands and long low-lying coastline....... At The Danish Coastal Authority under the Ministry of the Environment we are carrying out a rapid screening of the areas vulnerable to ocean flooding throughout the whole of Denmark; today, in 2065 and in 2100, respectively, to determine hazard areas and vulnerabilities towards floods. With this information we...... can estimate the future requirement for sea defences along the Danish coastline now and into the future. While carrying out this screening we have to assess the factors influencing the flood level. This includes changes in the topography from glacial isostasy and subsidence along with future mean sea...

  8. Flood risk and insurance loss potential in the Thames Gateway

    Science.gov (United States)

    Eldridge, J.; Horn, D.

    2009-04-01

    The Thames Gateway, currently Europe's largest regeneration project, is an area of redevelopment located in the South East of England, with Government plans to create up to 160,000 new homes and 180,000 new jobs by 2016. Although the new development is intended to contribute £12bn annually to the economy, the potential flood risk is high, with much of the area situated on Thames tidal floodplain and vulnerable to both storm surges and peak river flows. This poses significant hazard to those inhabiting the area and has raised concern amongst the UK insurance industry, who would be liable for significant financial claims if a large flood event were to occur, particularly with respect to the number of new homes and businesses being built in flood risk areas. Flood risk and the potential damage to both lives and assets in vulnerable areas have gained substantial recognition, in light of recent flooding events, from both governmental agencies and in the public's awareness of flood hazard. This has resulted in a change in UK policy with planning policy for flood risk (PPS25, Planning Policy Statement 25) adopting a more strategic approach to development, as well as a new Flooding and Water Bill which is due for consultation in 2009. The Government and the Association of British Insurers, who represent the UK insurance industry, have also recently changed their Statement of Principles which guides provision of flood insurance in the future. This PhD research project aims to quantify flood risk in the Thames Gateway area with a view to evaluating the insurance loss potential under different insurance and planning scenarios. Using current sources of inundation extent, and incorporating varying insurance penetration rates and degrees of adoption of planning policy and guidance, it focuses on estimating flood risk under these different scenarios. This presentation introduces the development of the project and the theory and methodology which will be used to address the

  9. Development of a Data Warehouse for Riverine and Coastal Flood Risk Management

    Science.gov (United States)

    McGrath, H.; Stefanakis, E.; Nastev, M.

    2014-11-01

    In New Brunswick flooding occurs typically during the spring freshet, though, in recent years, midwinter thaws have led to flooding in January or February. Municipalities are therefore facing a pressing need to perform risk assessments in order to identify communities at risk of flooding. In addition to the identification of communities at risk, quantitative measures of potential structural damage and societal losses are necessary for these identified communities. Furthermore, tools which allow for analysis and processing of possible mitigation plans are needed. Natural Resources Canada is in the process of adapting Hazus-MH to respond to the need for risk management. This requires extensive data from a variety of municipal, provincial, and national agencies in order to provide valid estimates. The aim is to establish a data warehouse to store relevant flood prediction data which may be accessed thru Hazus. Additionally, this data warehouse will contain tools for On-Line Analytical Processing (OLAP) and knowledge discovery to quantitatively determine areas at risk and discover unexpected dependencies between datasets. The third application of the data warehouse is to provide data for online visualization capabilities: web-based thematic maps of Hazus results, historical flood visualizations, and mitigation tools; thus making flood hazard information and tools more accessible to emergency responders, planners, and residents. This paper represents the first step of the process: locating and collecting the appropriate datasets.

  10. A decision‐making framework for flood risk management based on a Bayesian Influence Diagram

    DEFF Research Database (Denmark)

    Åstrøm, Helena Lisa Alexandra; Madsen, Henrik; Friis-Hansen, Peter

    2014-01-01

    We develop a Bayesian Influence Diagram (ID) approach for risk‐based decision‐ making in flood management. We show that it is a flexible decision‐making tool to assess flood risk in a non‐stationary environment and with an ability to test different adaptation measures in order to agree on the best...... means to describe uncertainty in the system. Hence, an ID contributes with several advantages in risk assessment and decision‐making. We present an ID approach for risk‐ based decision‐making in which we improve conventional flood risk assessments by including several types of hazards...... measures and combinations of these. Adaptation options can be tested at different points in time (in different time slices) which allows for finding the optimal time to invest. The usefulness of our decision‐making framework was exemplified through case studies in Aarhus and Copenhagen. Risk‐based decision‐making...

  11. An empirical assessment of which inland floods can be managed.

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A; Hoegh, Andrew B; Angermeier, Paul L

    2016-02-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m(3)/s) but quicker (0.41 days) floods than non-urban watersheds (50 m(3)/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m(3)/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m(3)/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help

  12. An empirical assessment of which inland floods can be managed

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul

    2016-01-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that

  13. Uncertainty and sensitivity analysis of flood risk management decisions based on stationary and nonstationary model choices

    Directory of Open Access Journals (Sweden)

    Rehan Balqis M.

    2016-01-01

    Full Text Available Current practice in flood frequency analysis assumes that the stochastic properties of extreme floods follow that of stationary conditions. As human intervention and anthropogenic climate change influences in hydrometeorological variables are becoming evident in some places, there have been suggestions that nonstationary statistics would be better to represent the stochastic properties of the extreme floods. The probabilistic estimation of non-stationary models, however, is surrounded with uncertainty related to scarcity of observations and modelling complexities hence the difficulty to project the future condition. In the face of uncertain future and the subjectivity of model choices, this study attempts to demonstrate the practical implications of applying a nonstationary model and compares it with a stationary model in flood risk assessment. A fully integrated framework to simulate decision makers’ behaviour in flood frequency analysis is thereby developed. The framework is applied to hypothetical flood risk management decisions and the outcomes are compared with those of known underlying future conditions. Uncertainty of the economic performance of the risk-based decisions is assessed through Monte Carlo simulations. Sensitivity of the results is also tested by varying the possible magnitude of future changes. The application provides quantitative and qualitative comparative results that satisfy a preliminary analysis of whether the nonstationary model complexity should be applied to improve the economic performance of decisions. Results obtained from the case study shows that the relative differences of competing models for all considered possible future changes are small, suggesting that stationary assumptions are preferred to a shift to nonstationary statistics for practical application of flood risk management. Nevertheless, nonstationary assumption should also be considered during a planning stage in addition to stationary assumption

  14. Urban flood return period assessment through rainfall-flood response modelling

    DEFF Research Database (Denmark)

    Murla, Damian; Thorndahl, Søren Liedtke

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS......), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g.DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may...... cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized...

  15. Can we (actually) assess global risk?

    Science.gov (United States)

    Di Baldassarre, Giuliano

    2013-04-01

    The evaluation of the dynamic interactions of the different components of global risk (e.g. hazard, exposure, vulnerability or resilience) is one of the main challenges in risk assessment and management. In state-of-the-art approaches for the analysis of risk, natural and socio-economic systems are typically treated separately by using different methods. In flood risk studies, for instance, physical scientists typically focus on the study of the probability of flooding (i.e. hazard), while social scientists mainly examine the exposure, vulnerability or resilience to flooding. However, these different components are deeply interconnected. Changes in flood hazard might trigger changes in vulnerability, and vice versa. A typical example of these interactions is the so-called "levee effect", whereby heightening levees to reduce the probability of flooding often leads to increase the potential adverse consequences of flooding as people often perceive that flood risk was completely eliminated once the levee was raised. These interconnections between the different components of risk remain largely unexplored and poorly understood. This lack of knowledge is of serious concern as it limits our ability to plan appropriate risk prevention measures. To design flood control structures, for example, state-of-the-art models can indeed provide quantitative assessments of the corresponding risk reduction associated to the lower probability of flooding. Nevertheless, current methods cannot estimate how, and to what extent, such a reduction might trigger a future increase of the potential adverse consequences of flooding (the aforementioned "levee effect"). Neither can they evaluate how the latter might (in turn) lead to the requirement of additional flood control structures. Thus, while many progresses have been made in the static assessment of flood risk, more inter-disciplinary research is required for the development of methods for dynamic risk assessment, which is very much

  16. Flood risk control of dams and dykes in middle reach of Huaihe River

    Directory of Open Access Journals (Sweden)

    Zhen-kun MA

    2014-01-01

    Full Text Available Three stochastic mathematical models for calculation of the reservoir flood regulation process, river course flood release, and flood risk rate under flood control were established based on the theory of stochastic differential equations and features of flood control systems in the middle reach of the Huaihe River from Xixian to the Bengbu floodgate, comprehensively considering uncertain factors of hydrology, hydraulics, and engineering control. They were used to calculate the flood risk rate with flood regulation of five key reservoirs, including the Meishan, Xianghongdian, Nianyushan, Mozitan, and Foziling reservoirs in the middle reach of the Huaihe River under different flood frequencies, the flood risk rate with river course flood release under design and check floods for the trunk of the Huaihe River in conjunction with relevant flood storage areas, and the flood risk rate with operation of the Linhuaigang Project under design and check floods. The calculated results show that (1 the five reservoirs can withstand design floods, but the Xianghongdian and Foziling reservoirs will suffer overtopping accidents under check floods; (2 considering the service of flood storage areas under the design flood conditions of the Huaihe River, the mean flood risk rate with flood regulation of dykes and dams from Xixian to the Bengbu floodgate is about 0.2, and the trunk of the Huaihe River can generally withstand design floods; and (3 under a check flood with the flood return period of 1 000 years, the risk rate of overtopping accidents of the Linhuaigang Project is not larger than 0.15, indicating that it has a high flood regulation capacity. Through regulation and application of the flood control system of the Linhuigang Project, the Huaihe River Basin can withstand large floods, and the safety of the protected area can be ensured.

  17. Recurrent Governance Challenges in the Implementation and Alignment of Flood Risk Management Strategies: a Review

    NARCIS (Netherlands)

    Dieperink, C.; Hegger, D.L.T.; Bakker, M.H.N.; Kundzewicz, Zbigniew W.; Green, Colin; Driessen, P.P.J.

    2016-01-01

    In Europe increasing flood risks challenge societies to diversify their Flood Risk Management Strategies (FRMSs). Such a diversification implies that actors not only focus on flood defence, but also and simultaneously on flood risk prevention, mitigation, preparation and recovery. There is much

  18. Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria ...

    African Journals Online (AJOL)

    Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria. ... Journal of Applied Sciences and Environmental Management ... a false sense of security to flood plain dwellers and thereby encouraging investments in flood prone areas.

  19. Household flood risk reduction in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Duží, Barbora; Vikhrov, Dmytro; Kelman, I.; Stojanov, Robert; Jakubínský, Jiří

    2015-01-01

    Roč. 18, č. 8 (2015), s. 1-6 ISSN 1381-2386 R&D Projects: GA MŠk(CZ) EE2.4.31.0056; GA MŠk(CZ) LD13032; GA MŠk(CZ) LD13033 Institutional support: RVO:67179843 Keywords : Bečva River Basin * Czech Republic * flood risk reduction * floods * household adaptation * household coping Subject RIV: AO - Sociology, Demography Impact factor: 3.085, year: 2015

  20. Surrogate modeling of joint flood risk across coastal watersheds

    Science.gov (United States)

    Bass, Benjamin; Bedient, Philip

    2018-03-01

    This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.

  1. Flood Hazard and Risk Analysis in Urban Area

    Science.gov (United States)

    Huang, Chen-Jia; Hsu, Ming-hsi; Teng, Wei-Hsien; Lin, Tsung-Hsien

    2017-04-01

    Typhoons always induce heavy rainfall during summer and autumn seasons in Taiwan. Extreme weather in recent years often causes severe flooding which result in serious losses of life and property. With the rapid industrial and commercial development, people care about not only the quality of life, but also the safety of life and property. So the impact of life and property due to disaster is the most serious problem concerned by the residents. For the mitigation of the disaster impact, the flood hazard and risk analysis play an important role for the disaster prevention and mitigation. In this study, the vulnerability of Kaohsiung city was evaluated by statistics of social development factor. The hazard factors of Kaohsiung city was calculated by simulated flood depth of six different return periods and four typhoon events which result in serious flooding in Kaohsiung city. The flood risk can be obtained by means of the flood hazard and social vulnerability. The analysis results provide authority to strengthen disaster preparedness and to set up more resources in high risk areas.

  2. The potential for agricultural land use change to reduce flood risk in a large watershed

    Science.gov (United States)

    Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...

  3. Risk assessment

    International Nuclear Information System (INIS)

    1983-01-01

    The report is in sections, entitled: preface; summary and conclusions; introduction (historical and organizational); estimating engineering risks (techniques of risk estimation and forms of expression of risk); laboratory experiments for estimation of biological risks; estimation of risk from observations on man (travel, medical procedures; occupations; sport); the perception of risks; (as an example of attitudes towards a single hazard, studies of nuclear power are considered among other topics in this section); risk management (estimation; perception; acceptability, analysis of risk, costs and benefits; safety standards; decision-making process; possible guidelines). (U.K.)

  4. Collaborative multi-stakeholder approach to drafting flood risk management plans in Wallonia, Belgium

    Science.gov (United States)

    Maroy, Edith; Javaux, Mathieu; Vandermosten, Pierre; Englebert, Benjamin

    2015-04-01

    The Flood Directive 2007/60/CE establishes a common framework within the European Union for assessing and reducing risks posed by floods on human health, the environment, economic activity and cultural heritage. For that purpose, Member States had to establish flood areas and flood risk maps, and subsequently, flood risk management plans (due December 2015). According to the Directive, special attention is to be paid to international coordination for transboundary water courses, integrated management approaches at the catchment scale, cost-effectiveness of measures and public involvement. Management measures must focus on reducing the probability of flooding and the potential consequences of flooding. They must cover prevention, protection and preparedness and must take into account relevant aspects, such as water management, soil management, spatial planning, land use and nature conservation. Floods in Wallonia mostly originate from overflowing of both little sloped rivers and highly reactive rivers but also, from concentrated runoff in the intensely cultivated and erosion-prone region north of the Sambre-Meuse axis. Consequently, walloon flood area maps not only show flood areas based on hydraulic modelling and observations but also runoff concentration axis in agricultural areas. Now released to the public, this information can be used to assess the risk of damage for land planning and erosion control strategies. Incidentally, some 166 km2 were mapped as flood hazard area with a return period of 25 years, 28.8 of which are urbanized or destined to urbanisation and counting of number of approximatively 39.000 people living in those areas. Flood area and flood risk maps should be the starting point of elaborating flood risk management plans. In order to involve the diversity of water managers and stakeholders in the drafting of a management plan for hydrographic districts in Wallonia, responsible authorities decided to mandate scientists and engineers to organize

  5. Uncertainty Analysis of A Flood Risk Mapping Procedure Applied In Urban Areas

    Science.gov (United States)

    Krause, J.; Uhrich, S.; Bormann, H.; Diekkrüger, B.

    In the framework of IRMA-Sponge program the presented study was part of the joint research project FRHYMAP (flood risk and hydrological mapping). A simple con- ceptual flooding model (FLOODMAP) has been developed to simulate flooded areas besides rivers within cities. FLOODMAP requires a minimum of input data (digital el- evation model (DEM), river line, water level plain) and parameters and calculates the flood extent as well as the spatial distribution of flood depths. of course the simulated model results are affected by errors and uncertainties. Possible sources of uncertain- ties are the model structure, model parameters and input data. Thus after the model validation (comparison of simulated water to observed extent, taken from airborne pictures) the uncertainty of the essential input data set (digital elevation model) was analysed. Monte Carlo simulations were performed to assess the effect of uncertain- ties concerning the statistics of DEM quality and to derive flooding probabilities from the set of simulations. The questions concerning a minimum resolution of a DEM re- quired for flood simulation and concerning the best aggregation procedure of a given DEM was answered by comparing the results obtained using all available standard GIS aggregation procedures. Seven different aggregation procedures were applied to high resolution DEMs (1-2m) in three cities (Bonn, Cologne, Luxembourg). Basing on this analysis the effect of 'uncertain' DEM data was estimated and compared with other sources of uncertainties. Especially socio-economic information and monetary transfer functions required for a damage risk analysis show a high uncertainty. There- fore this study helps to analyse the weak points of the flood risk and damage risk assessment procedure.

  6. Risk Analysis of Reservoir Flood Routing Calculation Based on Inflow Forecast Uncertainty

    Directory of Open Access Journals (Sweden)

    Binquan Li

    2016-10-01

    Full Text Available Possible risks in reservoir flood control and regulation cannot be objectively assessed by deterministic flood forecasts, resulting in the probability of reservoir failure. We demonstrated a risk analysis of reservoir flood routing calculation accounting for inflow forecast uncertainty in a sub-basin of Huaihe River, China. The Xinanjiang model was used to provide deterministic flood forecasts, and was combined with the Hydrologic Uncertainty Processor (HUP to quantify reservoir inflow uncertainty in the probability density function (PDF form. Furthermore, the PDFs of reservoir water level (RWL and the risk rate of RWL exceeding a defined safety control level could be obtained. Results suggested that the median forecast (50th percentiles of HUP showed better agreement with observed inflows than the Xinanjiang model did in terms of the performance measures of flood process, peak, and volume. In addition, most observations (77.2% were bracketed by the uncertainty band of 90% confidence interval, with some small exceptions of high flows. Results proved that this framework of risk analysis could provide not only the deterministic forecasts of inflow and RWL, but also the fundamental uncertainty information (e.g., 90% confidence band for the reservoir flood routing calculation.

  7. Flood Risk Analysis in Denpasar City, Bali, Indonesia

    Science.gov (United States)

    Kusmiyarti, T. B.; Wiguna, P. P. K.; Ratna Dewi, N. K. R.

    2018-02-01

    Denpasar city is a Capital City of Bali Province and one of the leading tourist destinations in Indonesia. Denpasar area is relatively flat with high rain fall intensity with the domince of settlement. This makes Denpasar City becomes prone area of flood. The aim of this research is to find out the spatial distribution flood hazard and the risk of population which are affected to the flood hazard. Weighting, scoring and overlaying method were used in this research. Six indicators were used to analyze the flood hazard: landuse, rainfall, type of soil, slope, altitute and drainage density. The vulnerability is analyzed per Desa or Kelurahan (Rustic/Neighborhood) with the indicator of age, education and population density. Risk was calculated by multiplied hazard with vulnerability and divided with coping capacity. In this research, coping capacity is determined by the amount of internal budget for each Desa or Kelurahan for development purpose. Flood risk in Denpasar city is divided into five classes, very low risk, low risk, medium risk, high risk and very high risk. Total population with very high risk reached 202478 people or 13.16% of total population. The total area is 780.7 ha or 16.02% from total settlement in Denpasar city. Total population with high risk reached 202478 people or 13.16% of total population. The total area is 780.7 ha or 16.02% from total settlement in Denpasar city. The number of population with medium risk reached 202478 people or 33.51% of total population which occupied 22.95% of total settlements or 1118.18 ha. The total number of population with low risk reached 79435 people or 13.14% of total population with area of low flood risk is 716.89 ha or 14.71% of total settlements in Denpasar City. Very low flood risk with total population at risk reached 19184 people or 31.74% of total population and occupied 2003.54 areas or 41.12% of total areas of settlements.

  8. Regional flood reconstruction in Kullu District (Himachal Pradesh, India): implication for Disaster Risk Management

    Science.gov (United States)

    Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Trappmann, Daniel; Shekhar, Mayank; Bhattacharyya, Amalava

    2016-04-01

    Floods are a common natural hazard in the Western Indian Himalayas. They usually occur when humid monsoon airs are lifted along the Himalayan relief, thereby creating intense orographic rainfall and runoff, a process which is often enhanced by simultaneous snowmelt. Monsoon floods are considered a major threat in the region and frequently affect inhabited valleys, disturbing the status quo of communities, stressing the future welfare and condition of their economic development. Given the assumption that ongoing and future climatic changes may impact on monsoon patterns and extreme precipitation, the implementation of adaptation policies in this region is critically needed in order to improve local resilience of Himalayan communities. However, its success implementation is highly dependent on system knowledge and hence reliable baseline data of past disasters. In this communication, we demonstrate how newly gained knowledge on past flood incidents may improve flood hazard and risk assessments. Based on growth-ring analysis of trees growing in the floodplains and other, more classical paleo-hydrology techniques, we reconstruct the regional flood activity for the last decades. This information is then included as non-systematic data into the regional flood frequency by using Bayesian Markov Monte Carlo Chain algorithms, so as to analyse the impact of the additional data on flood hazard assessments. Moreover, through a detailed analysis of three flood risk hotspots, we demonstrate how the newly gained knowledge on past flood disasters derived from indirect proxies can explain failures in the implementation of disaster risk management (DRM). Our methodology allowed identification of thirty-four unrecorded flood events at the study sites located in the upper reaches since the early 20th century, and thus completion of the existing flood history in the region based on flow measurements in the lower part of the catchment. We observe that 56% of the floods occurred

  9. Effect of spatial adaptation measures on flood risk: study of coastal floods in Belgium

    NARCIS (Netherlands)

    Koks, E.E.; de Moel, H.; Aerts, J.C.J.H.; Bouwer, L.M.

    2014-01-01

    Flood risk in coastal zones is projected to increase due to climate change and socioeconomic changes. Over the last decades, population growth, increases in wealth, and urban expansion have been found to be the main causes for increasing losses in coastal areas. These changes may, however, be offset

  10. Geostatistical analysis of the flood risk perception queries in the village of Navaluenga (Central Spain)

    Science.gov (United States)

    Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria

    2017-04-01

    Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and

  11. Flood risk on the Black sea coast of Russia

    Science.gov (United States)

    Alekseevsky, Nikolay; Magritsky, Dmitry; Koltermann, Peter; Krylenko, Inna; Umina, Natalya; Aybulatov, Denis; Efremova, Natalya; Lebedeva, Seraphima

    2013-04-01

    coast is very high. It is proved by recent events in 1991, 2002, 2010 and 2012. Possibly, it will increase in the future, as well as number of high and destructive floods. This tendency is caused by strengthening of climatic and synoptic instability in the region and by the human activity in the watersheds and floodplains development (for example huge constructions for the Olympic Winter Games 2014 near Sochi). But this tendency statistically isn't significant yet. Decrease of flood risks will be promoted by optimization of system of hydrometeorological monitoring; detailed studying of factors and characteristics of the floods, including flood dynamic modeling and hazard zonation; development of effective methods of the forecast and the prevention of floods; increasing in channel capacity; population resettlement from especially dangerous areas. The scientific basis for these measures is created by authors within large-scale researches on a grant of the Government of the Russian Federation No. 11.G34.31.0007.

  12. Health protection and risks for rescuers in cases of floods.

    Science.gov (United States)

    Janev Holcer, Nataša; Jeličić, Pavle; Grba Bujević, Maja; Važanić, Damir

    2015-03-01

    Floods can pose a number of safety and health hazards for flood-affected populations and rescuers and bring risk of injuries, infections, and diseases due to exposure to pathogenic microorganisms and different biological and chemical contaminants. The risk factors and possible health consequences for the rescuers involved in evacuation and rescuing operations during the May 2014 flood crisis in Croatia are shown, as well as measures for the prevention of injuries and illnesses. In cases of extreme floods, divers play a particularly important role in rescuing and first-response activities. Rescuing in contaminated floodwaters means that the used equipment such as diving suits should be disinfected afterwards. The need for securing the implementation of minimal health and safety measures for involved rescuers is paramount. Data regarding injuries and disease occurrences among rescuers are relatively scarce, indicating the need for medical surveillance systems that would monitor and record all injuries and disease occurrences among rescuers in order to ensure sound epidemiological data. The harmful effects of flooding can be reduced by legislation, improvement of flood forecasting, establishing early warning systems, and appropriate planning and education.

  13. Implications of using on-farm flood flow capture to recharge groundwater and mitigate flood risks along the Kings River, CA.

    Science.gov (United States)

    Bachand, Philip A M; Roy, Sujoy B; Choperena, Joe; Cameron, Don; Horwath, William R

    2014-12-02

    The agriculturally productive San Joaquin Valley faces two severe hydrologic issues: persistent groundwater overdraft and flooding risks. Capturing flood flows for groundwater recharge could help address both of these issues, yet flood flow frequency, duration, and magnitude vary greatly as upstream reservoir releases are affected by snowpack, precipitation type, reservoir volume, and flood risks. This variability makes dedicated, engineered recharge approaches expensive. Our work evaluates leveraging private farmlands in the Kings River Basin to capture flood flows for direct and in lieu recharge, calculates on-farm infiltration rates, assesses logistics, and considers potential water quality issues. The Natural Resources Conservation Service (NRCS) soil series suggested that a cementing layer would hinder recharge. The standard practice of deep ripping fractured the layer, resulting in infiltration rates averaging 2.5 in d(-1) (6 cm d(-1)) throughout the farm. Based on these rates 10 acres are needed to infiltrate 1 cfs (100 m(3) h(-1)) of flood flows. Our conceptual model predicts that salinity and nitrate pulses flush initially to the groundwater but that groundwater quality improves in the long term due to pristine flood flows low in salts or nitrate. Flood flow capture, when integrated with irrigation, is more cost-effective than groundwater pumping.

  14. Danish risk management plans of the EU floods directive

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Jebens, Martin; Piontkowitz, Thorsten

    2017-01-01

    Danish municipalities included in 10 risk areas appointed due to a risk of floods from rivers, the sea, or both. For the municipal work, the national government has provided hazard, vulnerability, and risk assessments and maps as well as guidelines to fulfil the legal binding of the Directive. The plans...... are reviewed and analysed regarding main objectives and structural and non-structural mitigation measures. Conclusions point to the need of introducing better decision support systems, a need to define acceptable risks, and a need to enhance coordination between municipal and cross-sectorial actors as well...... vulnérabilité et de risque, ainsi que des recommandations générales pour la mise en œuvre de la Directive. Les plans de gestion ont ensuite été mis au point, avec les principales mesures d'atténuation structurelles et non structurelles. Le bilan de cette première application montre la nécessité d'introduire de...

  15. Increased risk of flooding on the coast of Alicante (Region of Valencia, Spain

    Directory of Open Access Journals (Sweden)

    J. Olcina Cantos

    2010-11-01

    Full Text Available In the past two decades, episodes of flooding on the coast of Alicante (Spain have led to substantial losses in human life in economic terms. With increased exposure to these phenomena comes also increased vulnerability. Given the various effects of flooding in areas of similar exposure, differences in vulnerability across regions at risk need to be analysed also in terms of the socioeconomic factors of the groups of society that may be affected, and of their perception of risk. This paper studies the increased risk of flooding in three locations on the Alicante coast as a result of urban occupation of areas subject to this hazard. The consequences of the most recent episodes in this area are analysed and a risk assessment, using survey-based research in the affected areas, is performed.

  16. Strong influence of El Niño Southern Oscillation on flood risk around the world

    Science.gov (United States)

    Ward, Philip J.; Jongman, B; Kummu, M.; Dettinger, Mike; Sperna Weiland, F.C; Winsemius, H.C

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions.

  17. Strong influence of El Niño Southern Oscillation on flood risk around the world

    Science.gov (United States)

    Ward, Philip J.; Jongman, Brenden; Kummu, Matti; Dettinger, Michael D.; Sperna Weiland, Frederiek C.; Winsemius, Hessel C.

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions. PMID:25331867

  18. Study on Public Flood Risk Cognition and Behavioral Response Based on IEC Strategy

    Science.gov (United States)

    Shen, Xin; Xu, Xiaofeng; Zhou, Guilin; Pan, Shaolin; Mi, Tengfei

    2017-11-01

    In order to disseminate knowledge and information on flood risks in flood-prone areas, raise public awareness of flood risks and reduce possible damage to the public, a questionnaire survey was coducted among 260 residents of nine selected communities in Jiaozhou City to learn the public awareness and behavioral response to flood risks at different early warning levels. IEC key information of flood risk awareness was modified and formulated through group discussions, in-depth individual interviews and on-site observation. The awareness of residents in the project area was enhanced through the public participation, environmental management and flood management training, which plays a very important role in reducing flood losses.

  19. Flood hazard assessment using 1D and 2D approaches

    Science.gov (United States)

    Petaccia, Gabriella; Costabile, Pierfranco; Macchione, Francesco; Natale, Luigi

    2013-04-01

    The EU flood risk Directive (Directive 2007/60/EC) prescribes risk assessment and mapping to develop flood risk management plans. Flood hazard mapping may be carried out with mathematical models able to determine flood-prone areas once realistic conditions (in terms of discharge or water levels) are imposed at the boundaries of the case study. The deterministic models are mainly based on shallow water equations expressed in their 1D or 2D formulation. The 1D approach is widely used, especially in technical studies, due to its relative simplicity, its computational efficiency and also because it requires topographical data not as expensive as the ones needed by 2D models. Even if in a great number of practical situations, such as modeling in-channel flows and not too wide floodplains, the 1D approach may provide results close to the prediction of a more sophisticated 2D model, it must be pointed out that the correct use of a 1D model in practical situations is more complex than it may seem. The main issues to be correctly modeled in a 1D approach are the definition of hydraulic structures such as bridges and buildings interacting with the flow and the treatment of the tributaries. Clearly all these aspects have to be taken into account also in the 2D modeling, but with fewer difficulties. The purpose of this paper is to show how the above cited issues can be described using a 1D or 2D unsteady flow modeling. In particular the Authors will show the devices that have to be implemented in 1D modeling to get reliable predictions of water levels and discharges comparable to the ones obtained using a 2D model. Attention will be focused on an actual river (Crati river) located in the South of Italy. This case study is quite complicated since it deals with the simulation of channeled flows, overbank flows, interactions with buildings, bridges and tributaries. Accurate techniques, intentionally developed by the Authors to take into account all these peculiarities in 1D and 2

  20. Hydrological change: Towards a consistent approach to assess changes on both floods and droughts

    Science.gov (United States)

    Quesada-Montano, Beatriz; Di Baldassarre, Giuliano; Rangecroft, Sally; Van Loon, Anne F.

    2018-01-01

    Several studies have found that the frequency, magnitude and spatio-temporal distribution of droughts and floods have significantly increased in many regions of the world. Yet, most of the methods used in detecting trends in hydrological extremes 1) focus on either floods or droughts, and/or 2) base their assessment on characteristics that, even though useful for trend identification, cannot be directly used in decision making, e.g. integrated water resources management and disaster risk reduction. In this paper, we first discuss the need for a consistent approach to assess changes on both floods and droughts, and then propose a method based on the theory of runs and threshold levels. Flood and drought changes were assessed in terms of frequency, length and surplus/deficit volumes. This paper also presents an example application using streamflow data from two hydrometric stations along the Po River basin (Italy), Piacenza and Pontelagoscuro, and then discuss opportunities and challenges of the proposed method.

  1. Stimulating household flood risk mitigation investments through insurance and subsidies: an Agent-Based Modelling approach

    Science.gov (United States)

    Haer, Toon; Botzen, Wouter; de Moel, Hans; Aerts, Jeroen

    2015-04-01

    In the period 1998-2009, floods triggered roughly 52 billion euro in insured economic losses making floods the most costly natural hazard in Europe. Climate change and socio/economic trends are expected to further aggrevate floods losses in many regions. Research shows that flood risk can be significantly reduced if households install protective measures, and that the implementation of such measures can be stimulated through flood insurance schemes and subsidies. However, the effectiveness of such incentives to stimulate implementation of loss-reducing measures greatly depends on the decision process of individuals and is hardly studied. In our study, we developed an Agent-Based Model that integrates flood damage models, insurance mechanisms, subsidies, and household behaviour models to assess the effectiveness of different economic tools on stimulating households to invest in loss-reducing measures. Since the effectiveness depends on the decision making process of individuals, the study compares different household decision models ranging from standard economic models, to economic models for decision making under risk, to more complex decision models integrating economic models and risk perceptions, opinion dynamics, and the influence of flood experience. The results show the effectiveness of incentives to stimulate investment in loss-reducing measures for different household behavior types, while assuming climate change scenarios. It shows how complex decision models can better reproduce observed real-world behaviour compared to traditional economic models. Furthermore, since flood events are included in the simulations, the results provide an analysis of the dynamics in insured and uninsured losses for households, the costs of reducing risk by implementing loss-reducing measures, the capacity of the insurance market, and the cost of government subsidies under different scenarios. The model has been applied to the City of Rotterdam in The Netherlands.

  2. BWR flood risk - The human contributor

    International Nuclear Information System (INIS)

    Fragola, J.R.; Paccione, R.J.

    1985-01-01

    The development of approaches to address the human contribution to nuclear plant risk has come a long way since the days of WASH-1400. More systematic approaches to procedural error evaluation now exist, and promising techniques for addressing errors in decision making have been proposed. Human interaction with the development, progress, and mitigation of accident sequences are now addressed directly if not routinely in many current Probabilistic Risk Assessment (PRA) projects. No longer is the Human Reliability Analyst relegated only to the minor role of supporting fault tree models developed by others, now he is often a member of the team who participates early on in the development of the initiating events sets, and the construction of the event tree. This integrated involvement which has come about recently has led to a greater understanding of how the human might participate in the initiation of an accident, in the enabling or disabling of mitigating systems subsequent to its initiation (thereby either ameliorating or exacerbating its development), or in the recovery efforts once it has developed

  3. Coastal risk management: how to motivate individual economic decisions to lower flood risk?

    NARCIS (Netherlands)

    Filatova, Tatiana; Mulder, J.P.M. P.M.; van der Veen, A.

    2011-01-01

    Coastal flood risk is defined as a product of probability of event and its effect, measured in terms of damage. The paper is focused on coastal management strategies aimed to decrease risk by decreasing potential damage. We review socio-economic literature to show that total flood damage depends on

  4. The spatial turn and the scenario approach in flood risk management—Implementing the European Floods Directive in the Netherlands

    Directory of Open Access Journals (Sweden)

    Leon J. van Ruiten

    2016-10-01

    Full Text Available The European Floods Directive requires member states to prepare flood risk management plans for their river catchments. The first generation of those plans was just developed at the end of 2015; the next revision is due in 2021. The new instrument institutionalizes an ongoing paradigm shift from flood protection to flood risk management in Europe. It implies two major governance challenges: the spatial turn and the scenario approach. This contribution studies the implementation of these two governance challenges in the Netherlands, where the paradigm shift is considered to be advanced. Therefore, the spatial turn and the scenario approach are operationalized. The spatial turn consists of three aspects: space for the river, an integrated approach, and beyond structural measures. The scenario approach introduces the vulnerability of society in flood risk management. It is discussed how the challenges of spatial turn and the scenario approach—and thus the shift towards flood risk management—have an effect on the prevailing modes of governance in water management in the Netherlands. This helps understand the tensions and frictions with implementing the plans, but also illustrates how the European Floods Directive institutionalizes the shift towards flood risk management. The analytical scheme, consists mainly of operationalization, can foster future comparative studies with other countries and over time, to trace the changes in approaches to flood risks in Europe.

  5. Preparing for local adaptation: Understanding flood risk perceptions in Pittsburgh

    Science.gov (United States)

    Wong-Parodi, G.; Klima, K.

    2016-12-01

    In cities such as Pittsburgh, aging and insufficient infrastructure contributes to flashfloods and numerous combined sewer overflows annually, contaminating streets, basements and waterways. Climate change is expected to further exacerbate this problem by causing more intense and more frequent extreme events in Western Pennsylvania. For a storm water adaptation plan to be implemented successfully, the City of Pittsburgh will need informed public support. One way to achieve public understanding and support is through effective communication of the risks, benefits, and uncertainties of local flooding hazards and adaptation methods. In order to develop risk communications effectively, the City and its partners will need to know what knowledge and attitudes the residents of Pittsburgh already hold about flood risks. To that end we surveyed 1,376 Pittsburgh residents on a variety of flood risk topics through an online or paper survey in Fall 2015. On balance, residents were relatively knowledgeable about storm water and see the City's current infrastructure as being inadequate to meet future risk. Moreover, they see the risk of runoff events as increasing and especially among those who live in hazardous flood areas. Residents expressed interest in having a dedicated fund to deal with runoff events. Among those queried about their willingness-to-pay, those asked to pay $15 were most interested in a dedicated fund and for green infrastructure (as opposed to gray infrastructure) in particular. Finally, while most residents favored green infrastructure in terms of its attractiveness and perceived affects on mitigating climate change many did not see it as effective at addressing flooding as gray infrastructure. We found people understand the risk and are open to doing something about it. However, more guidance and information on appropriate ways to adapt locally in terms that make sense to residents could enhance informed support for adaptation measures.

  6. Impacts of channel deposition on the risk of flooding in a watershed

    Science.gov (United States)

    Ting-Yue, Hong; Chia-Ling, Chang

    2017-04-01

    Taiwan is located in East Asian where is always hit by typhoons. Typhoons usually bring huge amounts of rainfall and result in the problems of channel deposition. Deposition influences the functions of channel and increases the risk of flooding. The Luliao Reservoir Watershed is the case area in this study. It is the major water source for agricultural activity and domestic use. The objective of this study is to assess the possible impacts of channel deposition on the watershed environment. This study applies the Storm Water Management Model (SWMM) to predict the hydrologic responses and evaluate the risk of flooding. The results show that the decrease of cross section induced by deposition in a channel may increase the risk of flooding and impact the safety of watershed environment. Therefore, canal desilting is important in channel regulation. The discussion and analysis can be useful references for channel regulation.

  7. Vulnerability assessment including tangible and intangible components in the index composition: An Amazon case study of flooding and flash flooding.

    Science.gov (United States)

    Andrade, Milena Marília Nogueira de; Szlafsztein, Claudio Fabian

    2018-07-15

    The vulnerability of cities and communities in the Amazon to flooding and flash flooding is increasing. The effects of extreme events on populations vary across landscapes, causing vulnerability to differ spatially. Traditional vulnerability studies in Brazil and across the world have used the vulnerability index for the country and, more recently, municipality scales. The vulnerability dimensions are exposure, sensitivity, and adaptive capacity. For each of these dimensions, there is a group of indicators that constitutes a vulnerability index using quantitative data. Several vulnerability assessments have used sensitivity and exposure analyses and, recently, adaptive capacity has been considered. The Geographical Information Systems (GIS) analysis allows spatial regional modeling using quantitative vulnerability indicators. This paper presents a local-scale vulnerability assessment in an urban Amazonian area, Santarém City, using interdisciplinary methods. Data for exposure and sensitivity were gathered by remote sensing and census data, respectively. However, adaptive capacity refers to local capacities, whether infrastructural or not, and the latter were gathered by qualitative participatory methods. For the mixed data used to study adaptive capacity, we consider tangible components for countable infrastructure that can cope with hazards, and intangible components that reflect social activities based on risk perceptions and collective action. The results indicate that over 80% of the area is highly or moderately vulnerable to flooding and flash flooding. Exposure and adaptive capacity were determinants of the results. Lower values of adaptive capacity play a significant role in vulnerability enhancement. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Flood damage in Italy: towards an assessment model of reconstruction costs

    Science.gov (United States)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto

    2016-04-01

    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy

  9. What can('t) we do with global flood risk models?

    Science.gov (United States)

    Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Winsemius, Hessel

    2015-04-01

    In recent years, several global scale flood risk models have become available. Within the scientific community these have been, and are being, used to assess and map the current levels of risk faced by countries and societies. Increasingly, they are also being used to assess how that level of risk may change in the future, under scenarios of climate change and/or socioeconomic development. More and more, these 'quick and not so dirty' methods are also being used in practice, for a large range of uses and applications, and by an increasing range of practitioners and decision makers. For example, assessments can be used by: International Financing Institutes for prioritising investments in the most promising natural disaster risk reduction measures and strategies; intra-national institutes in the monitoring of progress on risk reduction activities; the (re-)insurance industry in assessing their risk portfolios and potential changes in those portfolios under climate change; by multinational companies in assessing risks to their regional investments and supply chains; and by international aid organisations for improved resource planning. However, global scale flood risk models clearly have their limits, and therefore both modellers and users need to critically address the question 'What can('t) we do with global flood risk models?'. This contribution is intended to start a dialogue between model developers, users, and decision makers to better answer this question. We will provide a number of examples of how the GLOFRIS global flood risk model has recently been used in several practical applications, and share both the positive and negative insights gained through these experiences. We wish to discuss similar experiences with other groups of modelers, users, and decision-makers, in order to better understand and harness the potential of this new generation of models, understand the differences in model approaches followed and their impacts on applicability, and develop

  10. Deep Uncertainty Surrounding Coastal Flood Risk Projections: A Case Study for New Orleans

    Science.gov (United States)

    Wong, Tony E.; Keller, Klaus

    2017-10-01

    Future sea-level rise drives severe risks for many coastal communities. Strategies to manage these risks hinge on a sound characterization of the uncertainties. For example, recent studies suggest that large fractions of the Antarctic ice sheet (AIS) may rapidly disintegrate in response to rising global temperatures, leading to potentially several meters of sea-level rise during the next few centuries. It is deeply uncertain, for example, whether such an AIS disintegration will be triggered, how much this would increase sea-level rise, whether extreme storm surges intensify in a warming climate, or which emissions pathway future societies will choose. Here, we assess the impacts of these deep uncertainties on projected flooding probabilities for a levee ring in New Orleans, LA. We use 18 scenarios, presenting probabilistic projections within each one, to sample key deeply uncertain future projections of sea-level rise, radiative forcing pathways, storm surge characterization, and contributions from rapid AIS mass loss. The implications of these deep uncertainties for projected flood risk are thus characterized by a set of 18 probability distribution functions. We use a global sensitivity analysis to assess which mechanisms contribute to uncertainty in projected flood risk over the course of a 50-year design life. In line with previous work, we find that the uncertain storm surge drives the most substantial risk, followed by general AIS dynamics, in our simple model for future flood risk for New Orleans.

  11. Long-term strategies for flood risk management: scenario definition and strategic alternative design

    NARCIS (Netherlands)

    Bruijn, de K.; Klijn, F.; McGahey, C.; Mens, M.; Wolfert, H.P.

    2008-01-01

    This report reviews some mainstream existing methods of scenario development and use, as well as experiences with the design and assessment of strategic alternatives for flood risk management. Next, a procedure and methods are proposed and discussed. Thirdly, the procedure and methods are tried on

  12. Economic analysis of adaptive strategies for flood risk management under climate change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.

    2017-01-01

    Climate change requires reconsideration of flood risk management strategies. Cost-benefit analysis (CBA), an economic decision-support tool, has been widely applied to assess these strategies. This paper aims to describe and discuss probabilistic extensions of CBA to identify welfare-maximising

  13. Introduction to risk assessment

    International Nuclear Information System (INIS)

    Raina, V.M.

    2002-01-01

    This paper gives an introduction to risk assessment. It discusses the basic concepts of risk assessment, nuclear risk assessment process and products, the role of risk assessment products in nuclear safety assurance, the relationship between risk assessment and other safety analysis and risk assessment and safe operating envelope

  14. The role of knowledge in students’ flood-risk perception

    NARCIS (Netherlands)

    Bosschaart, A.; Kuiper, W.; van der Schee, J.A.; Schoonenboom, J.

    2013-01-01

    Until now, flood-risk perception in the Netherlands has been solely studied as it relates to adults. This exploratory study focused on 15-year-old students who have taken geography courses for 3 years. Since geography education focuses on the formation of knowledge and understanding with respect to

  15. Floods

    Science.gov (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  16. Creating a Flood Risk Index to Improve Community Resilience

    Science.gov (United States)

    Klima, K.; El Gammal, L.

    2017-12-01

    While flood risk reduction is an existent discourse and agenda in policy and insurance, vulnerabilities vary between communities; some communities may have aging infrastructure, or an older/poorer population less able to absorb a flood, putting them at increased risk from the hazards. As a result, some are considering environmental justice aspects of flood risk reduction. To date, catastrophe models have focused on creating floodmaps (e.g., NOAA's Sea Level Rise Viewer, Climate Central's Surging Seas), or on linking hydrological models to economic loss models (e.g., HEC-RAS + HAZUS). However, this approach may be highly inequitable between areas of different income (as well as other demographics). Some have begun work on combining hydrology with vulnerability information (e.g., USACE's North Atlantic Comprehensive Coastal Study). To our knowledge, no one has tried to adapt the more advanced known heat risk theory to water risk by combining hydrology information (e.g., HEC-RAS, floodplain maps) with the social vulnerability (e.g., Cutter et al.) of the residents. This project will create a method to combine water hazard data with a derived water vulnerability index to help a community understand their current and future water risk. We will use the case study area of Pittsburgh, PA, which faces severe precipitation and riverine flooding hazards. Building on present literature of factors influencing water vulnerability contextualized to the Pittsburgh region, we will identify, quantify, and map the top factors impacting water vulnerability. We will combine these with flood maps to identify the geospatial distribution of water risk. This work will allow policy makers to identify location-specific aspects of water vulnerability and risk in any community, thus promoting environmental justice. It is possible that this type of original research would create maps of relative water risk that may prove as understandable to the general public as other flood maps, and may also

  17. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    Science.gov (United States)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  18. Analysis of Risk and Burden of Dysentery Associated with Floods from 2004 to 2010 in Nanning, China.

    Science.gov (United States)

    Liu, Zhidong; Ding, Guoyong; Zhang, Ying; Xu, Xin; Liu, Qiyong; Jiang, Baofa

    2015-11-01

    This study aimed to examine the association between floods and the morbidity of dysentery and to quantify the burden of dysentery due to floods in Nanning, China. A generalized additive mixed model was conducted to assess the relationship between monthly morbidity of dysentery and floods from 2004 to 2010. The years lived with disability (YLDs) of dysentery attributable to floods were then estimated based on the WHO framework of the burden of disease study for calculating the potential impact fraction. The relative risk (RR) of floods on the morbidity of dysentery was 1.44 (95% confidence interval [CI] = 1.18-1.75). The models suggest that a potential 1-day rise in flood duration may lead to 8% (RR = 1.08, 95% CI = 1.04-1.12) increase in the morbidity of dysentery. The average attributable YLD per 1,000 of dysentery caused by floods were 0.013 in males, 0.005 in females, and 0.009 in persons. Our study confirms that floods have significantly increased the risk and the burden of dysentery in the study area. Public health action should be taken to prevent and control the potential risk of dysentery after floods. Vulnerable groups such as males and children should be paid more attention. © The American Society of Tropical Medicine and Hygiene.

  19. Challenges in Risk Assessment: Quantitative Risk Assessment

    OpenAIRE

    Jacxsens, Liesbeth; Uyttendaele, Mieke; De Meulenaer, Bruno

    2016-01-01

    The process of risk analysis consists out of three components, risk assessment, risk management and risk communication. These components are internationally well spread by Codex Alimentarius Commission as being the basis for setting science based standards, criteria on food safety hazards, e.g. setting maximum limits of mycotoxins in foodstuffs. However, the technical component risk assessment is hard to elaborate and to understand. Key in a risk assessment is the translation of biological or...

  20. Increasing risk of compound flooding from storm surge and rainfall for major US coastal cities

    Science.gov (United States)

    Wahl, Thomas; Jain, Shaleen; Bender, Jens; Meyers, Steven; Luther, Mark

    2016-04-01

    Flood risk is a well-known facet of natural hazards along the US coastline where nearly 40% of the population resides in coastal counties. Given the heavy reliance on the coastal zone for natural resources and economic activity, flood preparedness and safety is a key element of long-term resilience. A clear understanding of the various flood types and changes in the frequency of their occurrence is critical towards reliable estimates of vulnerability and potential impacts in the near-term as well as into the future. When the two main flood drivers for coastal areas storm surge and heavy precipitation occur in tandem the potential for significant flooding is much greater than from either in isolation. Exploring the probability of these 'compound events' and understanding the processes driving them is essential to mitigate the associated high impact risks. For the contiguous US the likelihood of the joint occurrence of the two phenomena is largely unknown. Here we show - using storm surge and precipitation records spanning the last century - that the risk of compound flooding is higher for the US east and Gulf coasts, relative to the west coast. We also show that the number of compound events has increased significantly over the last century along large coastline stretches including many of the major coastal cities. For New York City - as an example - this increase is attributed to a shift towards storm surge weather patterns also favouring high precipitation. Preliminary analyses reveal that these synoptic scale changes are closely linked to large scale and low frequency climate variations. Our results demonstrate the importance of assessing the risk of compound flooding within the design process of coastal and urban infrastructure in a non-stationary framework and to explore the potential effects of climate change on these high impact events.

  1. Using open source data for flood risk mapping and management in Brazil

    Science.gov (United States)

    Whitley, Alison; Malloy, James; Chirouze, Manuel

    2013-04-01

    Whitley, A., Malloy, J. and Chirouze, M. Worldwide the frequency and severity of major natural disasters, particularly flooding, has increased. Concurrently, countries such as Brazil are experiencing rapid socio-economic development with growing and increasingly concentrated populations, particularly in urban areas. Hence, it is unsurprising that Brazil has experienced a number of major floods in the past 30 years such as the January 2011 floods which killed 900 people and resulted in significant economic losses of approximately 1 billion US dollars. Understanding, mitigating against and even preventing flood risk is high priority. There is a demand for flood models in many developing economies worldwide for a range of uses including risk management, emergency planning and provision of insurance solutions. However, developing them can be expensive. With an increasing supply of freely-available, open source data, the costs can be significantly reduced, making the tools required for natural hazard risk assessment more accessible. By presenting a flood model developed for eight urban areas of Brazil as part of a collaboration between JBA Risk Management and Guy Carpenter, we explore the value of open source data and demonstrate its usability in a business context within the insurance industry. We begin by detailing the open source data available and compare its suitability to commercially-available equivalents for datasets including digital terrain models and river gauge records. We present flood simulation outputs in order to demonstrate the impact of the choice of dataset on the results obtained and its use in a business context. Via use of the 2D hydraulic model JFlow+, our examples also show how advanced modelling techniques can be used on relatively crude datasets to obtain robust and good quality results. In combination with accessible, standard specification GPU technology and open source data, use of JFlow+ has enabled us to produce large-scale hazard maps

  2. A Risk-Based Approach to Shelter Resilience following Flood and Typhoon Damage in Rural Philippines

    Directory of Open Access Journals (Sweden)

    Victoria Stephenson

    2018-02-01

    Full Text Available The Philippines is exposed to numerous typhoons every year, each of which poses a potential threat to livelihoods, shelter, and in some cases life. Flooding caused by such events leads to extensive damage to land and buildings, and the impact on rural communities can be severe. The global community is calling for action to address and achieve disaster risk reduction for communities and people exposed to such events. Achieving this requires an understanding of the nature of the risks that flooding and typhoons pose to these communities and their homes. This paper presents the findings from a field based case study assessment of three rural settlements in the Philippines, where typhoons and associated flooding in recent years has caused significant damage to houses and livelihoods, leading to the reconstruction of homes that more often than not reproduce similar structural vulnerabilities as were there before these hazards occurred. This work presents a methodology for risk assessment of such structures profiling the flood and wind hazards and measuring physical vulnerability and the experience of communities affected. The aim of the work is to demonstrate a method for identifying risks in these communities, and seeks to address the challenge faced by practitioners of assisting communities in rebuilding their homes in more resilient ways. The work set out here contributes to the discussion about how best to enable practitioners and communities to achieve the sought for risk reduction and especially highlights the role that geoscience and engineering can have in achieving this ambition.

  3. Incentivising flood risk adaptation through risk based insurance premiums : Trade-offs between affordability and risk reduction

    NARCIS (Netherlands)

    Hudson, Paul F.; Botzen, W.J.W.; Feyen, L.; Aerts, Jeroen C.J.H.

    2016-01-01

    The financial incentives offered by the risk-based pricing of insurance can stimulate policyholder adaptation to flood risk while potentially conflicting with affordability. We examine the trade-off between risk reduction and affordability in a model of public-private flood insurance in France and

  4. Internal Flooding Probabilistic Safety Assessment of an OPR-1000 Plant during Low Power and Shutdown Operation

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Park, Jin Hee; Lim, Ho Gon

    2016-01-01

    In 2009, the electric power research institute (EPRI) published a guideline for the development of IF-PRA that addresses the requirements of the ASME/ANS RASa-2009 PRA consensus standard. The EPRI guideline delineates a level of detail and assessment complexity that has been significantly increased with respect to the guidance for IF assessment performed for the individual plant examination (IPE) to address Generic Letter 88- 20. The main differences include: A more systematic approach to the definition of flood area. The identification, screening and analysis of flooding sources and scenarios. The calculation of the initiating-event frequency (IEF) based on the actual length and characteristics of the piping. The inclusion of spatial effects such as spray from pipe leaks. The specific documentation associated with the plant walkdowns. Among these differences, this research focused on the third and fourth items when performing the internal flooding PSA. This is done by identifying the pipe and fluid characteristics, assessing the pipe pressure, characterizing the pipe (i.e., pipe diameter, length, etc.) and determining the pressure boundary failure frequency. The results were summed for the various piping systems within a given flood area to arrive at an overall internal flood initiating frequency for a given flood mode (i.e., spray, general flood, or major flood) for that particular area by each POS (Plant Operational State). In this initiating event frequency evaluations, the POS duration time is especially considered to get the real values for LPSD state. Characterizations of spray scenarios were evaluated to determine their impact on plant risk caused by internal flooding events.

  5. Floods: vulnerability, risks and management. A joint report of ETC CCA and ICM

    NARCIS (Netherlands)

    Hilden, M.; Dankers, R.; Kjeldsen, T.R.; Hannaford, J.; Kuhlicke, C.; Kuusisto, J.; Linde, te A.H.; Ludwig, F.

    2012-01-01

    This report describes floods in a European context with the purpose of highlighting factors that contribute to the occurrence and adverse consequences of floods, and possibilities to reduce flood risks from inland waters and rainfall. It includes a discussion on changes in flood patterns and

  6. Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria ...

    African Journals Online (AJOL)

    jen

    ABSTRACT: The study has the major objective of evaluating flood risk mitigation strategies in the Niger. Delta, a coastal region of Nigeria that suffers from perennial flooding. The Raper argues that the structural methods of flood control tends to give a false sense of security to flood plain dwellers and thereby encouraging.

  7. Assessment of Socioeconomic Vulnerability to Floods in the Bâsca Chiojdului Catchment Area

    Directory of Open Access Journals (Sweden)

    REMUS PRĂVĂLIE

    2014-12-01

    Full Text Available Hydrological risk phenomena such as floods are among the most costly natural disasters worldwide, effects consisting of socioeconomic damages and deaths. The Bâsca Chiojdului catchment area, by its morphometric and hydrographic peculiarities, is prone to generate these hydrological risk phenomena, so there is a high vulnerability in the socioeconomic elements. This paper is focused on the identification of the main socioeconomic elements vulnerable to hydrological risk phenomena such as floods, based on the assessment of their manifestation potential. Thus, following the delimitation of areas with the highest flood occurrence potential (susceptibility to floods, major socioeconomic factors existing in the basin, considering human settlements (constructions, transport infrastructure, and agricultural areas (the most important category, were superimposed. Results showed a high vulnerability for all three exposed socioeconomic elements especially in valley sectors, of which household structures were the most vulnerable, given both their importance and the high number of areas highly exposed to floods (approximately 2,500 houses and outbuildings, out of a total of about 10,250, intersect the most susceptible area to floods in the study area.

  8. Flood impact assessment on the development of Archaia Olympia riparian area in Greece.

    Science.gov (United States)

    Pasaporti, Christina; Podimata, Marianthi; Yannopoulos, Panayotis

    2013-04-01

    Basin Management Plans according to the European Water Framework Directive (WFD-EC 2000/60) and the European Directive on the assessment and management of the flood risk (EC 2007/60).

  9. An Assessment of the Effectiveness of Tree-Based Models for Multi-Variate Flood Damage Assessment in Australia

    Directory of Open Access Journals (Sweden)

    Roozbeh Hasanzadeh Nafari

    2016-07-01

    Full Text Available Flood is a frequent natural hazard that has significant financial consequences for Australia. In Australia, physical losses caused by floods are commonly estimated by stage-damage functions. These methods usually consider only the depth of the water and the type of buildings at risk. However, flood damage is a complicated process, and it is dependent on a variety of factors which are rarely taken into account. This study explores the interaction, importance, and influence of water depth, flow velocity, water contamination, precautionary measures, emergency measures, flood experience, floor area, building value, building quality, and socioeconomic status. The study uses tree-based models (regression trees and bagging decision trees and a dataset collected from 2012 to 2013 flood events in Queensland, which includes information on structural damages, impact parameters, and resistance variables. The tree-based approaches show water depth, floor area, precautionary measures, building value, and building quality to be important damage-influencing parameters. Furthermore, the performance of the tree-based models is validated and contrasted with the outcomes of a multi-parameter loss function (FLFArs from Australia. The tree-based models are shown to be more accurate than the stage-damage function. Consequently, considering more parameters and taking advantage of tree-based models is recommended. The outcome is important for improving established Australian flood loss models and assisting decision-makers and insurance companies dealing with flood risk assessment.

  10. Environmental Health Risk Assesement in Flood-prone Area in Tamangapa Sub-District Makassar

    Science.gov (United States)

    Haris, Ibrahim Abdul; Basir, Basir

    2018-05-01

    Environmental health in Indonesia is still caution to concern, poor sanitation in Indonesia is characterized by the high incidence of infectious diseases in society. The society in flood-prone area has a high-risk exposure on the disease based on the environment because they live in disaster-prone area. This research aimed to describe the condition of sanitary facilities and risky behavior on public health in flood-prone areas in Manggala district particularly in Tamangapa sub-district of Makassar. This reserach uses an observation method with a descriptive approach. The data is processed by using SPSS and Arc View GIS applications. Environmental risk category is determined by the approach of Environmental Health Risk Assessment (EHRA). The results showed that the flood-prone area in RT 04 RW 06 was included in very high-risk category at 229 with an index value of environmental health risks 212-229. Meanwhile, RT 04 RW 05 was in the category of low risk in the amount of 155 with an index of 155-173. Environmental health hazards identified in Tamangapa flood-prone areas sub-district includes domestic sources of clean water, domestic wastewater, and household garbage.

  11. Towards a diversification of Flood Risk Management in Europe: an exploration of governance challenges

    NARCIS (Netherlands)

    Dieperink, C.; Hegger, D.L.T.; Bakker, M.H.N.; Driessen, P.P.J.

    2014-01-01

    In order to make European regions more resilient to flood risks a broadening of Flood Risk Management strategies (FRMSs) might be necessary. The development and implementation of FRMSs like risk prevention, flood defence, mitigation, preparation and recovery is a matter of governance, a process of

  12. The added value of system robustness analysis for flood risk management

    NARCIS (Netherlands)

    Mens, M.J.P.; Klijn, F.

    2014-01-01

    Decision makers in fluvial flood risk management increasingly acknowledge that they have to prepare for extreme events. Flood risk is the most common basis on which to compare flood risk-reducing strategies. To take uncertainties into account the criteria of robustness and flexibility are advocated

  13. Flood risk and cultural heritage: the case study of Florence (Italy)

    Science.gov (United States)

    Arrighi, Chiara; Castelli, Fabio; Brugioni, Marcello; Franceschini, Serena; Mazzanti, Bernardo

    2016-04-01

    Cultural heritage plays a key role for communities in terms of both identity and economic value. It is often under serious threat by natural hazards, nevertheless, quantitative assessments of risk are quite uncommon. This work addresses the flood risk assessment to cultural heritage in an exemplary art city, which is Florence, Italy. The risk assessment method here adopted borrows the most common definition of flood risk as the product of hazard, vulnerability and exposure, with some necessary adjustments. The risk estimation is carried out at the building scale for the whole UNESCO site, which coincides with the historical centre of the city. A distinction in macro- and micro-damage categories has been made according to the vulnerability of the objects at risk. Two damage macro-categories are selected namely cultural buildings and contents. Cultural buildings are classified in damage micro-categories as churches/religious complexes, libraries/archives and museums. The damages to the contents are estimated for four micro-categories: paintings, sculptures, books/prints and goldsmith's art. Data from hydraulic simulations for different recurrence scenarios, historical reports of the devastating 1966 flood and the cultural heritage recognition sheets allow estimating and mapping the annual expected number of works of art lost in absence of risk mitigation strategies.

  14. Enhancement of global flood damage assessments using building material based vulnerability curves

    Science.gov (United States)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  15. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  16. Estimating climate change effects upon flood risk reduction by afforestation

    NARCIS (Netherlands)

    Díaz, R.A.; Querner, E.P.

    2005-01-01

    In areas prone to flooding it is impossible to remove excess water by increasing drainage. Under such conditions a local solution deserves consideration. In this study the impact of afforestation is examined for the Lagunas Encadenadas of Argentina. To assess the sustainability of this intervention,

  17. A Multi-Faceted Debris-Flood Hazard Assessment for Cougar Creek, Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Matthias Jakob

    2017-01-01

    the latter. A reasonable match was accomplished, verifying the overall relationship. The findings from this work were later used as input to a risk assessment seeking to quantify risk to loss of life and economic losses. The risk assessment then formed the basis for design of debris-flood mitigation structures.

  18. Urban flood return period assessment through rainfall-flood response modelling

    Science.gov (United States)

    Murla Tuyls, Damian; Thorndahl, Søren

    2017-04-01

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g. DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized catchment area of 440ha and 10.400inhab. located in Jutland (Denmark), which has received the impact of several pluvial flooding in the last recent years. A historical rainfall dataset from the last 35 years from two different rain gauges located at 2 and 10 km from the study area has been provided by the Danish Wastewater Pollution Committee and the Danish Meteorological Institute (DMI). The most extreme 25 rainfall events have been selected through a two-step multi-criteria procedure, ensuring an adequate variability of rainfall, from extreme high peak storms with a short duration to moderate rainfall with longer duration. In addition, a coupled 1D/2D surface and network UDS model of the catchment area developed in an integrated MIKE URBAN and MIKE Flood model (DHI 2014), considering both permeable and impermeable areas, in combination with a DTM (2x2m res.) has been used to study and assess in detail flood RP. Results show an ambiguous relation between rainfall RP and flood response. Local flood levels, flood area and volume RP estimates should therefore not be neglected in

  19. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Science.gov (United States)

    Hagemeier-Klose, M.; Wagner, K.

    2009-04-01

    Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  20. The Irma-sponge Program: Methodologies For Sustainable Flood Risk Management Along The Rhine and Meuse Rivers

    Science.gov (United States)

    Hooijer, A.; van Os, A. G.

    Recent flood events and socio-economic developments have increased the awareness of the need for improved flood risk management along the Rhine and Meuse Rivers. In response to this, the IRMA-SPONGE program incorporated 13 research projects in which over 30 organisations from all 6 River Basin Countries co-operated. The pro- gram is financed partly by the European INTERREG Rhine-Meuse Activities (IRMA). The main aim of IRMA-SPONGE is defined as: "The development of methodologies and tools to assess the impact of flood risk reduction measures and of land-use and climate change scenarios. This to support the spatial planning process in establish- ing alternative strategies for an optimal realisation of the hydraulic, economical and ecological functions of the Rhine and Meuse River Basins." Further important objec- tives are to promote transboundary co-operation in flood risk management by both scientific and management organisations, and to promote public participation in flood management issues. The projects in the program are grouped in three clusters, looking at measures from different scientific angles. The results of the projects in each cluster have been evaluated to define recommendations for flood risk management; some of these outcomes call for a change to current practices, e.g.: 1. (Flood Risk and Hydrol- ogy cluster): hydrological changes due to climate change exceed those due to further land use change, and are significant enough to necessitate a change in flood risk man- agement strategies if the currently claimed protection levels are to be sustained. 2. (Flood Protection and Ecology cluster): to not only provide flood protection but also enhance the ecological quality of rivers and floodplains, new flood risk management concepts ought to integrate ecological knowledge from start to finish, with a clear perspective on the type of nature desired and the spatial and time scales considered. 3. (Flood Risk Management and Spatial Planning cluster): extreme

  1. Regional flood impact assessment for Kiel and Eckernförde, Germany

    Science.gov (United States)

    Shustikova, Iuliia; Viavattene, Christophe; Seiß, Guntram

    2017-04-01

    It is well-observed that extreme flood events bring considerable destruction to coastal communities. The estimates of damage increases when direct and indirect losses are both considered in the assessment. This study applied the INtegrated DisRuption Assessment (INDRA) model which is designed to estimate and compare not only tangible but also intangible losses such as risk to life, recovery mechanisms and household displacement. Multi-criteria analysis (MCA) was performed in order to compare hotspots of high flood risk on the regional scale and detect which impact indicators influence results the most. INDRA allowed assessing the following impact indicators: direct damages to buildings and roads, transport disruption, risk to life and financial recovery mechanisms of private households and businesses. The focus was on two hotspots of flood risk, where direct and indirect impacts from 200 years flood were assessed and analyzed in terms of relative importance to the region. The region here was defined as municipalities located on the Baltic Sea coast within the Schleswig-Holstein state, Germany. The hotspots are the towns of Kiel and Eckernförde. They are urban areas with a high concentration of people and assets, which previously experienced extreme flood events. From the performed investigation it was found out that modeled flood differently impacts Kiel and Eckernförde. The results produced by MCA show that the scores of direct and indirect damage are slightly higher in Eckernförde than in Kiel. Transport disruption is a compelling element in the performed regional impact assessment and demonstrated immense weight. Extreme events may pose significant direct and indirect impacts on the coastal roads, obstructing not only the access to important landmarks such as hospitals, train stations, harbors, etc. but also to contiguous municipalities. Yet, the analysis showed that other impact indicators are rather of local importance and would not cause vast damage on a

  2. Damage assessment methodology for vehicles exposed to flooding in urban areas

    Directory of Open Access Journals (Sweden)

    E. Martínez Gomariz

    2017-10-01

    Full Text Available Urban floods may provoke important damages to vehicles, usually not taken into account within most studies related to urban flood risks damage assessments. Herein a methodology to estimate damages to vehicles exposed to urban floods is presented. After a state-of-the-art review, the most recent damage curves for vehicles developed by the U.S. Army Corps of Engineers (USACE, 2009 are presented as the best adaptive and the most comprehensively performed so far. The proposed methodology is applied to the Spanish municipality of Badalona, framed in the H2020 European Project BINGO. In order to conduct this methodology some aspects such as the vehicular distribution are analyzed within the study area. Finally, Expected Annual Damage (EAD for flooded vehicles is calculated based on inundations related to design storms of different return periods (1, 10, 100 and 500 years.

  3. Developments in remote sensing technology enable more detailed urban flood risk analysis.

    Science.gov (United States)

    Denniss, A.; Tewkesbury, A.

    2009-04-01

    digital airborne sensors, both optical and lidar, to produce the input layer for surface water flood modelling. A national flood map product has been created. The new product utilises sophisticated modelling techniques, perfected over many years, which harness graphical processing power. This product will prove particularly valuable for risk assessment decision support within insurance/reinsurance, property/environmental, utilities, risk management and government agencies. However, it is not just the ground elevation that determines the behaviour of surface water. By combining height information (surface and terrain) with high resolution aerial photography and colour infrared imagery, a high definition land cover mapping dataset (LandBase) is being produced, which provides a precise measure of sealed versus non sealed surface. This will allows even more sophisticated modelling of flood scenarios. Thus, the value of airborne survey data can be demonstrated by flood risk analysis down to individual addresses in urban areas. However for some risks, an even more detailed survey may be justified. In order to achieve this, Infoterra is testing new 360˚ mobile lidar technology. Collecting lidar data from a moving vehicle allows each street to be mapped in very high detail, allowing precise information about the location, size and shape of features such as kerbstones, gullies, road camber and building threshold level to be captured quickly and accurately. These data can then be used to model the problem of overland flood risk at the scale of individual properties. Whilst at present it might be impractical to undertake such detailed modelling for all properties, these techniques can certainly be used to improve the flood risk analysis of key locations. This paper will demonstrate how these new high resolution remote sensing techniques can be combined to provide a new resolution of detail to aid urban flood modelling.

  4. The potential of crowdsourcing and mobile technology to support flood disaster risk reduction

    Science.gov (United States)

    See, Linda; McCallum, Ian; Liu, Wei; Mechler, Reinhard; Keating, Adriana; Hochrainer-Stigler, Stefan; Mochizuki, Junko; Fritz, Steffen; Dugar, Sumit; Arestegui, Michael; Szoenyi, Michael; Laso-Bayas, Juan-Carlos; Burek, Peter; French, Adam; Moorthy, Inian

    2016-04-01

    The last decade has seen a rise in citizen science and crowdsourcing for carrying out a variety of tasks across a number of different fields, most notably the collection of data such as the identification of species (e.g. eBird and iNaturalist) and the classification of images (e.g. Galaxy Zoo and Geo-Wiki). Combining human computing with the proliferation of mobile technology has resulted in vast amounts of geo-located data that have considerable value across multiple domains including flood disaster risk reduction. Crowdsourcing technologies, in the form of online mapping, are now being utilized to great effect in post-disaster mapping and relief efforts, e.g. the activities of Humanitarian OpenStreetMap, complementing official channels of relief (e.g. Haiti, Nepal and New York). Disaster event monitoring efforts have been further complemented with the use of social media (e.g. twitter for earthquakes, flood monitoring, and fire detection). Much of the activity in this area has focused on ex-post emergency management while there is considerable potential for utilizing crowdsourcing and mobile technology for vulnerability assessment, early warning and to bolster resilience to flood events. This paper examines the use of crowdsourcing and mobile technology for measuring and monitoring flood hazards, exposure to floods, and vulnerability, drawing upon examples from the literature and ongoing projects on flooding and food security at IIASA.

  5. Risk factors for injuries in landslide- and flood-affected populations in Uganda.

    Science.gov (United States)

    Agrawal, Shreya; Gopalakrishnan, Tisha; Gorokhovich, Yuri; Doocy, Shannon

    2013-08-01

    The frequency of occurrence of natural disasters has increased over the past several decades, which necessitates a better understanding of human vulnerability, particularly in low-resource settings. This paper assesses risk factors for injury in the March 2010 floods and landslides in Eastern Uganda, and compares the effects of location, injury type, and severity. A stratified cluster survey of the disaster-affected populations was conducted five months after onset of the disasters. Probability proportional to size sampling was used to sample 800 households, including 400 affected by floods in Butaleja District and 400 affected by landslides in Bududa District. Flood- and landslide-affected populations were surveyed in July 2010 using a stratified cluster design. The odds of injury were 65% higher in the flood-affected groups than the landslide-affected groups in a logistic regression (OR = 0.35; 95% CI, 0.24-0.52; P disasters that occurred simultaneously in Eastern Uganda in 2010. In areas where landslides are prone to occur due to massive rainfalls or floods, preventative measures, such as early warning systems and evacuation, are more likely to increase the likelihood of people surviving, while for areas with massive floods, immediate and effective medical attention can save lives and improve injury outcomes.

  6. Mercury emissions from flooded soils and sediments in Germany are an underestimated problem: challenges for reliable risk assessments and management strategies

    Directory of Open Access Journals (Sweden)

    Rinklebe J.

    2013-04-01

    Full Text Available Environmental pollution by mercury is a world-wide problem. Particularly floodplain ecosystems are frequently affected. One example is the Elbe River in Germany and its catchment areas; large amounts of Hg from a range of anthropogenic and geogenic sources have been accumulated in the soils of these floodplains. They serve as sink for Hg originating from the surface water of adjacent river. Today, the vastly elevated Hg contents of the floodplain soils at the Elbe River often exceed even the action values of the German Soil Conservation Law. This is especially important as Hg polluted areas at the Elbe River achieve several hundred square kilometres. Thus, authorities are coerced by law to conduct an appropriate risk assessment and to implement practical actions to eliminate or reduce environmental problems. A reliable risk assessment particularly with view to organisms (vegetation as green fodder and hay production, grazing and wild animals to avoid the transfer of Hg into the human food chain, requires an authentic determination of Hg fluxes and their dynamics since gaseous emissions from soil to atmosphere are an important pathway of Hg. However, reliable estimates of Hg fluxes from the highly polluted floodplain soils at the Elbe River and its tributaries, and its influencing factors are scarce. For this purpose, we have developed a new method to determine mercury emissions from soils at various sites. Our objectives were i to quantify seasonal variations of total gaseous mercury (TGM fluxes for floodplain soils at the Elbe River, ii to provide insights into physico-chemical processes regulating these TGM fluxes, and iii to quantify the impacts of the controlling factors soil temperature and soil water content on Hg volatilization from a typical contaminated floodplain soil within soil microcosm experiments under various controlled temperature and moisture conditions. Our study provides insight into TGM emissions from highly Hg

  7. Review Article: A comparison of flood and earthquake vulnerability assessment indicators

    Science.gov (United States)

    de Ruiter, Marleen C.; Ward, Philip J.; Daniell, James E.; Aerts, Jeroen C. J. H.

    2017-07-01

    In a cross-disciplinary study, we carried out an extensive literature review to increase understanding of vulnerability indicators used in the disciplines of earthquake- and flood vulnerability assessments. We provide insights into potential improvements in both fields by identifying and comparing quantitative vulnerability indicators grouped into physical and social categories. Next, a selection of index- and curve-based vulnerability models that use these indicators are described, comparing several characteristics such as temporal and spatial aspects. Earthquake vulnerability methods traditionally have a strong focus on object-based physical attributes used in vulnerability curve-based models, while flood vulnerability studies focus more on indicators applied to aggregated land-use classes in curve-based models. In assessing the differences and similarities between indicators used in earthquake and flood vulnerability models, we only include models that separately assess either of the two hazard types. Flood vulnerability studies could be improved using approaches from earthquake studies, such as developing object-based physical vulnerability curve assessments and incorporating time-of-the-day-based building occupation patterns. Likewise, earthquake assessments could learn from flood studies by refining their selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies for exploring risk assessment methodologies across different hazard types.

  8. The spatial turn and the scenario approach in flood risk management : Implementing the European Floods Directive in the Netherlands

    NARCIS (Netherlands)

    van Ruiten, Leon; Hartmann, T.

    2016-01-01

    The European Floods Directive requires member states to prepare flood risk management plans for their river catchments. The first generation of those plans was just developed at the end of 2015; the next revision is due in 2021. The new instrument institutionalizes an ongoing paradigm shift from

  9. From flood protection to flood risk management: condition-based and performance-based regulations in German water law

    NARCIS (Netherlands)

    Hartmann, T.; Albrecht, J.

    2014-01-01

    In many European countries, a paradigm shift from technically oriented flood protection to a holistic approach of flood risk management is taking place. In Germany, this approach is currently being implemented after several amendments of the Federal Water Act. The paradigm shift is also reflected in

  10. Designing and operating infrastructure for nonstationary flood risk management

    Science.gov (United States)

    Doss-Gollin, J.; Farnham, D. J.; Lall, U.

    2017-12-01

    Climate exhibits organized low-frequency and regime-like variability at multiple time scales, causing the risk associated with climate extremes such as floods and droughts to vary in time. Despite broad recognition of this nonstationarity, there has been little theoretical development of ideas for the design and operation of infrastructure considering the regime structure of such changes and their potential predictability. We use paleo streamflow reconstructions to illustrate an approach to the design and operation of infrastructure to address nonstationary flood and drought risk. Specifically, we consider the tradeoff between flood control and conservation storage, and develop design and operation principles for allocating these storage volumes considering both a m-year project planning period and a n-year historical sampling record. As n increases, the potential uncertainty in probabilistic estimates of the return periods associated with the T-year extreme event decreases. As the duration m of the future operation period decreases, the uncertainty associated with the occurrence of the T-year event also increases. Finally, given the quasi-periodic nature of the system it may be possible to offer probabilistic predictions of the conditions in the m-year future period, especially if m is small. In the context of such predictions, one can consider that a m-year prediction may have lower bias, but higher variance, than would be associated with using a stationary estimate from the preceding n years. This bias-variance trade-off, and the potential for considering risk management for multiple values of m, provides an interesting system design challenge. We use wavelet-based simulation models in a Bayesian framework to estimate these biases and uncertainty distributions and devise a risk-optimized decision rule for the allocation of flood and conservation storage. The associated theoretical development also provides a methodology for the sizing of storage for new

  11. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment

    Science.gov (United States)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira

    2015-04-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  12. A new approach to flood vulnerability assessment for historic buildings in England

    Science.gov (United States)

    Stephenson, V.; D'Ayala, D.

    2014-05-01

    The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is presented here that studies the nature of the vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. Key findings of the work include determining the applicability of these indicators to fragility analysis, and the determination of the relative vulnerability of the three case study sites.

  13. A new approach to flood loss estimation and vulnerability assessment for historic buildings in England

    Science.gov (United States)

    Stephenson, V.; D'Ayala, D.

    2013-10-01

    The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is proposed that studies the nature of vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide key findings and guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of key vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. This in turn facilitates the production of strategies for mitigating and managing the losses threatened by such extreme climate events.

  14. Flood Risk Analysis in Lower Part of Markham River Based on Multi-Criteria Decision Approach (MCDA

    Directory of Open Access Journals (Sweden)

    Sailesh Samanta

    2016-08-01

    Full Text Available Papua New Guinea is blessed with a plethora of enviable natural resources, but at the same time it is also cursed by quite a few natural disasters like volcanic eruptions, earthquakes, landslide, floods, droughts etc. Floods happen to be a natural process of maintaining the health of the rivers and depth of its thalweg; it saves the river from becoming morbid while toning up the fertility of the riverine landscape. At the same time, from human perspective, all these ecological goodies are nullified when flood is construed overwhelmingly as one of the most devastating events in respect to social and economic consequences. The present investigation was tailored to assess the use of multi-criteria decision approach (MCDA in inland flood risk analysis. Categorization of possible flood risk zones was accomplished using geospatial data sets, like elevation, slope, distance to river, and land use/land cover, which were derived from digital elevation model (DEM and satellite image, respectively. A pilot study area was se