WorldWideScience

Sample records for flood protection

  1. Legitimizing differentiated flood protection levels

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo

    2016-01-01

    The European flood risk management plan is a new instrument introduced by the Floods Directive. It introduces a spatial turn and a scenario approach in flood risk management, ultimately leading to differentiated flood protection levels on a catchment basis. This challenges the traditional sources of

  2. Adjustable Robust Strategies for Flood Protection

    NARCIS (Netherlands)

    Postek, Krzysztof; den Hertog, Dick; Kind, J.; Pustjens, Chris

    2016-01-01

    Flood protection is of major importance to many flood-prone regions and involves substantial investment and maintenance costs. Modern flood risk management requires often to determine a cost-efficient protection strategy, i.e., one with lowest possible long run cost and satisfying flood protection

  3. 33 CFR 385.37 - Flood protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood protection. 385.37 Section... DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN Ensuring Protection of... Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent...

  4. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Science.gov (United States)

    2010-10-01

    ... local flood protection systems no longer provide base flood protection. 65.14 Section 65.14 Emergency... § 65.14 Remapping of areas for which local flood protection systems no longer provide base flood... process of restoring a flood protection system that was: (i) Constructed using Federal funds; (ii...

  5. Greening flood protection through knowledge processes

    NARCIS (Netherlands)

    Janssen, Stephanie; Tatenhove, van J.P.M.; Mol, A.P.J.; Otter, H.S.

    2017-01-01

    Greening flood protection (GFP) is increasingly recognized as an adaptive and flexible approach to water management that is well suited to addressing uncertain futures associated with climate change. In the last decade, GFP knowledge and policies have developed rapidly, but implementation has been

  6. Flood protection diversification to reduce probabilities of extreme losses.

    Science.gov (United States)

    Zhou, Qian; Lambert, James H; Karvetski, Christopher W; Keisler, Jeffrey M; Linkov, Igor

    2012-11-01

    Recent catastrophic losses because of floods require developing resilient approaches to flood risk protection. This article assesses how diversification of a system of coastal protections might decrease the probabilities of extreme flood losses. The study compares the performance of portfolios each consisting of four types of flood protection assets in a large region of dike rings. A parametric analysis suggests conditions in which diversifications of the types of included flood protection assets decrease extreme flood losses. Increased return periods of extreme losses are associated with portfolios where the asset types have low correlations of economic risk. The effort highlights the importance of understanding correlations across asset types in planning for large-scale flood protection. It allows explicit integration of climate change scenarios in developing flood mitigation strategy. © 2012 Society for Risk Analysis.

  7. Floods in Serbia in the 1999-2009 period: Hydrological analysis and flood protection measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2010-01-01

    Full Text Available The review on greatest floods recorded in Vojvodina and central Serbia within the period from 1999 to 2009 is given in this paper. For 13 hydrological stations, that recorded the greatest floods for the present period, probability of occurrence of these floods has been accomplished. Based on analysis of time series of discharge and water level maximum, performed by applying probability theory and mathematical statistics, and calculated theoretical probability distribution function of floods, probability of occurrence of flood has been obtained. Most often the best agreement with the empirical distribution function had a Log-Pearson III, Pearson III distribution. These results can be used for dimensioning of hydro-technical objects for flood protection. The most significant causes for floods recorded in this period were melting of snow and intensive rainfall. In this paper the current situation of flood protection and future development of flood protection measures were also presented. .

  8. Coastal flood protection management under uncertainty – the Danish case

    DEFF Research Database (Denmark)

    Jumppanen Andersen, Kaija; Sørensen, Carlo Sass; Piontkowitz, Thorsten

    Local stakeholders responsible for coastal management. In Denmark, the responsibility of defining, planning and implementing coastal flood protection lies with the local stakeholders, such as landowners and municipalities. Similarly, it is a municipal responsibility to define building foundation...... and flood protection levels in urban planning and long term development. These planning and protection levels are most often defined from the hazard instead of a risk perspective.The Danish Coastal Authority (DCA) guides local stakeholders on general coastal flood protection and implements the EU Flood...... Directive on flood risk reduction in appointed areas of significant flood risk. DCA is obligated to communicate the concept of risk and, in a thorough and easily comprehendible way, the hazards and uncertainties relating to this today and in the future....

  9. Thames barrier (flood protection barriers on the Thames)

    International Nuclear Information System (INIS)

    Ilkovic, J.

    2005-01-01

    In this paper the flood protection barriers on the Thames are presented. The flood protection system on the Thames in 1984 was commissioned. During two decades this barrier was used 54 times against to the high water and 34 times against storm-sewage. There is installed buttress type hydroelectric power plant

  10. Greening Flood Protection - An Interactive Knowledge Arrangement Perspective

    NARCIS (Netherlands)

    Janssen, S.K.H.; Tatenhove, van J.P.M.; Otter, H.S.; Mol, A.P.J.

    2015-01-01

    In flood protection, the dominant paradigm of ‘building hard structures’ is being challenged by approaches that integrate ecosystem dynamics and are ‘nature-based’. Knowledge development and policy ambitions on greening flood protection (GFP) are rapidly growing, but a deficit remains in actual

  11. 18 CFR 801.8 - Flood plain management and protection.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management and protection. 801.8 Section 801.8 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands...

  12. Water NOT wanted - Coastal Floods and Flooding Protection in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass

    2016-01-01

    vulnerability towards coastal flooding, the country has experienced severe storm surges throughout history, and hitherto safe areas will become increasingly at risk this century as the climate changes. Historically a seafarers’ nation, Denmark has always been connected with the sea. From medieval time ports...

  13. Flood protection of Crystal River Unit 3 Nuclear Plant

    International Nuclear Information System (INIS)

    Noble, R.M.; Simpson, B.

    1975-01-01

    To satisfy U.S. Atomic Energy Commission (AEC) safety criteria, a required evaluation of the worst site-related flood is performed for the Crystal River Plant, located on the Gulf Coast of Florida, the probable maximum stillwater flood levels are likely to be a result of the probable maximum hurricane. Flood protection requirements for the Crystal River Plant are determined by considering the most severe combination of probable maximum hurricane parameters for the Gulf Coast Region. These parameters are used as input to a model of hurricane surge generation and attendant wave activity in order to determine the maximum flood levels at the Crystal River Plant. 4 refs

  14. Risk reduction by combining nature values with flood protection?

    Directory of Open Access Journals (Sweden)

    Van Loon-Steensma Jantsje M.

    2016-01-01

    Full Text Available In the Netherlands, the concept of a multifunctional dike has already often been implemented, and has been identified as a promising climate adaptation measure. In a multifunctional dike, functions like urban development, transport infrastructure, recreation, agriculture or nature are deliberately combined with its primary flood protection function. This means that the design must be based on the requirements and life span of all different functions, while in a monofunctional dike only the flood protection function is considered. By accommodating other functions, a multifunctional dike may easier fit into, or even contribute to the quality of the landscape. Moreover, these other functions may help in financing the flood protection works, but governance is more complicated. To avoid costly adjustments forthcoming from changed safety standards, incorporation of multiple functions can require a more “robust” flood defence than a monofunctional flood defence. A robust flood defence can withstand more extreme situations than required by the present safety standards, and has a substantially lower flooding probability. Therefore, a multifunctional dike may be attractive in view of the uncertainties regarding the effects of climate change and a changing world. Moreover, it will result in reduced flood risk. As part of the Dutch Delta programme, several explorative studies on multifunctional dikes were initiated. Most studies focused on urban areas, but also in the rural area interest emerged for multifunctional dikes, e.g. for the integration of salt marshes into the flood defences. Marshes provide valuable habitat for vegetation and invertebrate species, and are important for wading birds. Furthermore, under condition of abundant sediment availability they can keep pace with sea level rise. Explorative modelling results indicate that vegetated forelands affect wave heights, even under extreme conditions. However, the inclusion of a vegetated

  15. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2017-04-01

    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  16. Evaluation of Flooding Risk and Engineering Protection Against Floods for Ulan-Ude

    Science.gov (United States)

    Borisova, T. A.

    2017-11-01

    The report presents the results of the study on analysis and risk assessment in relation to floods for Ulan-Ude and provides the developed recommendations of the activities for engineering protection of the population and economic installations. The current situation is reviewed and the results of the site survey are shown to identify the challenges and areas of negative water influence along with the existing security system. The report presents a summary of floods and index risk assessment. The articles describes the scope of eventual flooding, underflooding and enumerates the economic installations inside the urban areas’ research-based zones of flooding at the rated levels of water to identify the likeliness of exceedance. The assessment of damage from flood equal to 1% is shown.

  17. Flood Cleanup to Protect Indoor Air Quality

    Science.gov (United States)

    During a flood cleanup, the indoor air quality in your home or office may appear to be the least of your problems. However, failure to remove contaminated materials and to reduce moisture and humidity can present serious long-term health risks.

  18. Managing uncertainty in flood protection planning with climate projections

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Schoppa, Lukas; Straub, Daniel

    2018-04-01

    Technical flood protection is a necessary part of integrated strategies to protect riverine settlements from extreme floods. Many technical flood protection measures, such as dikes and protection walls, are costly to adapt after their initial construction. This poses a challenge to decision makers as there is large uncertainty in how the required protection level will change during the measure lifetime, which is typically many decades long. Flood protection requirements should account for multiple future uncertain factors: socioeconomic, e.g., whether the population and with it the damage potential grows or falls; technological, e.g., possible advancements in flood protection; and climatic, e.g., whether extreme discharge will become more frequent or not. This paper focuses on climatic uncertainty. Specifically, we devise methodology to account for uncertainty associated with the use of discharge projections, ultimately leading to planning implications. For planning purposes, we categorize uncertainties as either visible, if they can be quantified from available catchment data, or hidden, if they cannot be quantified from catchment data and must be estimated, e.g., from the literature. It is vital to consider the hidden uncertainty, since in practical applications only a limited amount of information (e.g., a finite projection ensemble) is available. We use a Bayesian approach to quantify the visible uncertainties and combine them with an estimate of the hidden uncertainties to learn a joint probability distribution of the parameters of extreme discharge. The methodology is integrated into an optimization framework and applied to a pre-alpine case study to give a quantitative, cost-optimal recommendation on the required amount of flood protection. The results show that hidden uncertainty ought to be considered in planning, but the larger the uncertainty already present, the smaller the impact of adding more. The recommended planning is robust to moderate changes in

  19. Concepts of Urban Drainage and Flood Protection

    DEFF Research Database (Denmark)

    Harremoës, Poul

    1990-01-01

    The significance of the introduction of modern computer technology to design, analysis, operation and control of sewer systems during rain is analyzed. With new tools come new basic concepts and new engineering criteria for performance. The most significant developments are: the capability...... to calculate surcharging and flooding, rather than just relating to pipe capacity performance criteria; the capability of calculating long series of rain record in order to derive proper statistics on the pollutional load on the environment; and finally the capability of dynamically controlling the system...

  20. Information support systems for cultural heritage protection against flooding

    Directory of Open Access Journals (Sweden)

    K. Nedvedova

    2015-08-01

    Full Text Available The goal of this paper is to present use of different kind of software applications to create complex support system for protection of cultural heritage against flooding. The project is very complex and it tries to cover the whole area of the problem from prevention to liquidation of aftermath effects. We used GIS for mapping the risk areas, ontology systems for vulnerability assessment application and the BORM method (Business Object Relation Modelling for flood protection system planning guide. Those modern technologies helped us to gather a lot of information in one place and provide the knowledge to the broad audience.

  1. Analysis of coastal protection under rising flood risk

    Directory of Open Access Journals (Sweden)

    Megan J. Lickley

    2014-01-01

    Full Text Available Infrastructure located along the U.S. Atlantic and Gulf coasts is exposed to rising risk of flooding from sea level rise, increasing storm surge, and subsidence. In these circumstances coastal management commonly based on 100-year flood maps assuming current climatology is no longer adequate. A dynamic programming cost–benefit analysis is applied to the adaptation decision, illustrated by application to an energy facility in Galveston Bay. Projections of several global climate models provide inputs to estimates of the change in hurricane and storm surge activity as well as the increase in sea level. The projected rise in physical flood risk is combined with estimates of flood damage and protection costs in an analysis of the multi-period nature of adaptation choice. The result is a planning method, using dynamic programming, which is appropriate for investment and abandonment decisions under rising coastal risk.

  2. Managing uncertainty in flood protection planning with climate projections

    Directory of Open Access Journals (Sweden)

    B. Dittes

    2018-04-01

    Full Text Available Technical flood protection is a necessary part of integrated strategies to protect riverine settlements from extreme floods. Many technical flood protection measures, such as dikes and protection walls, are costly to adapt after their initial construction. This poses a challenge to decision makers as there is large uncertainty in how the required protection level will change during the measure lifetime, which is typically many decades long. Flood protection requirements should account for multiple future uncertain factors: socioeconomic, e.g., whether the population and with it the damage potential grows or falls; technological, e.g., possible advancements in flood protection; and climatic, e.g., whether extreme discharge will become more frequent or not. This paper focuses on climatic uncertainty. Specifically, we devise methodology to account for uncertainty associated with the use of discharge projections, ultimately leading to planning implications. For planning purposes, we categorize uncertainties as either visible, if they can be quantified from available catchment data, or hidden, if they cannot be quantified from catchment data and must be estimated, e.g., from the literature. It is vital to consider the hidden uncertainty, since in practical applications only a limited amount of information (e.g., a finite projection ensemble is available. We use a Bayesian approach to quantify the visible uncertainties and combine them with an estimate of the hidden uncertainties to learn a joint probability distribution of the parameters of extreme discharge. The methodology is integrated into an optimization framework and applied to a pre-alpine case study to give a quantitative, cost-optimal recommendation on the required amount of flood protection. The results show that hidden uncertainty ought to be considered in planning, but the larger the uncertainty already present, the smaller the impact of adding more. The recommended planning is

  3. Sequential planning of flood protection infrastructure under limited historic flood record and climate change uncertainty

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Straub, Daniel

    2017-04-01

    Flood protection is often designed to safeguard people and property following regulations and standards, which specify a target design flood protection level, such as the 100-year flood level prescribed in Germany (DWA, 2011). In practice, the magnitude of such an event is only known within a range of uncertainty, which is caused by limited historic records and uncertain climate change impacts, among other factors (Hall & Solomatine, 2008). As more observations and improved climate projections become available in the future, the design flood estimate changes and the capacity of the flood protection may be deemed insufficient at a future point in time. This problem can be mitigated by the implementation of flexible flood protection systems (that can easily be adjusted in the future) and/or by adding an additional reserve to the flood protection, i.e. by applying a safety factor to the design. But how high should such a safety factor be? And how much should the decision maker be willing to pay to make the system flexible, i.e. what is the Value of Flexibility (Špačková & Straub, 2017)? We propose a decision model that identifies cost-optimal decisions on flood protection capacity in the face of uncertainty (Dittes et al. 2017). It considers sequential adjustments of the protection system during its lifetime, taking into account its flexibility. The proposed framework is based on pre-posterior Bayesian decision analysis, using Decision Trees and Markov Decision Processes, and is fully quantitative. It can include a wide range of uncertainty components such as uncertainty associated with limited historic record or uncertain climate or socio-economic change. It is shown that since flexible systems are less costly to adjust when flood estimates are changing, they justify initially lower safety factors. Investigation on the Value of Flexibility (VoF) demonstrates that VoF depends on the type and degree of uncertainty, on the learning effect (i.e. kind and quality of

  4. Innovative solutions in monitoring systems in flood protection

    Science.gov (United States)

    Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra

    2018-02-01

    The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.

  5. From flood protection to flood risk management: condition-based and performance-based regulations in German water law

    NARCIS (Netherlands)

    Hartmann, T.; Albrecht, J.

    2014-01-01

    In many European countries, a paradigm shift from technically oriented flood protection to a holistic approach of flood risk management is taking place. In Germany, this approach is currently being implemented after several amendments of the Federal Water Act. The paradigm shift is also reflected in

  6. The role of knowledge in greening flood protection. Lessons from the Dutch case study future Afsluitdijk

    NARCIS (Netherlands)

    Janssen, S.K.H.; Mol, A.P.J.; Tatenhove, van J.; Otter, H.S.

    2014-01-01

    Greening flood protection (GFP) is an upcoming approach in coastal protection knowledge and policy. The central notion of this multifunctional concept is that natural processes, nature development and the dynamics of ecosystems are taken into account in realising flood protection. In practice,

  7. Legal instruments of the protection from waters (floods and droughts and of the protection of waters

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available In this paper the author analyzes the Serbian law, the laws of several European countries (Germany, France, Austria, Hungary and Croatia and European Union rules in respect of the protection from harmful effects of waters, such as floods, erosion, torrents, icing on the surface of waters, just as well as the rules on diverting of water from a territory where it is in surplus, on the one hand, or directing it from the territory where it is in surplus to the one with water shortage (amelioration, on the other. The subject of analysis is the instruments of water management in the function of protection from high-water, too, such as the long and short term planning of protection from floods, measures necessary to prevent them and elimination of their effects. The maintenance of required water regime is also considered as an instrument of protection from high-water, especially the construction and upkeep of facilities for protection from floods. Facilities for utilization of water resources, such as roads and bridges, should be constructed in accordance with environmental permits, at the level well above the high water level measured in a longer period of time.

  8. Protection of French nuclear power plants against flooding risks - 15307

    International Nuclear Information System (INIS)

    Barbaud, J.

    2015-01-01

    In France, the flooding risk has been taken into account since the beginning of the nuclear program and has been reinforced following operating feedback from French and international power plants. The main events which led to reinforcement were the partial flooding in the Blayais NPP that occurred in 1999 and the Fukushima accident in 2011. The current French fleet is composed of 58 PWR reactors located on 19 sites: 4 sites are sea side, 1 side is located on an estuary and all other are located on river side. The lessons learned from the Blayais event are: -) an update of the hazard evaluation of the risks, -) a new assessment of the sufficiency of the protective measures, and -) the taking into account of aggravating risks associated to support functions such as site inaccessibility, loss of off-site power, etc. The lessons learned from the Fukushima accident have confirmed and enhanced lessons from the Blayais event. In addition the Fukushima accident has underlined the need to have sufficient margins beyond the design to avoid cliff edge effects. The improvements implemented on the Blayais and the Belleville sites are detailed

  9. Development of an anti-flood board to protect the interiors and exteriors of the infrastructure

    Science.gov (United States)

    Petru, Michal; Srb, Pavel; Sevcik, Ladislav; Martinec, Tomas; Kulhavy, Petr

    2018-06-01

    This article deals with the development of an anti-flood board to protect the interior and exterior of various infrastructures, such a houses, cottages or industrial buildings. It was designed prototypes and assembled numerical simulations. In Central Europe and in particular in the Czech Republic, floods are an integral part of the natural water cycle and cause great loss of life and great property damage. The development of new types of mobile anti-flood boards is very important as the design solution is developed for flood protection with regard to minimizing weight, cost of production, easy manipulation, simplicity and speed of installation.

  10. Flood Protection Through Landscape Scale Ecosystem Restoration- Quantifying the Benefits

    Science.gov (United States)

    Pinero, E.

    2017-12-01

    Hurricane Harvey illustrated the risks associated with storm surges on coastal areas, especially during severe storms. One way to address storm surges is to utilize the natural ability of offshore coastal land to dampen their severity. In addition to helping reduce storm surge intensity and related damage, restoring the land will generate numerous co-benefits such as carbon sequestration and water quality improvement. The session will discuss the analytical methodology that helps define what is the most resilient species to take root, and to calculate quantified benefits. It will also address the quantification and monetization of benefits to make the business case for restoration. In 2005, Hurricanes Katrina and Rita damaged levees along the Gulf of Mexico, leading to major forest degradation, habitat deterioration and reduced wildlife use. As a result, this area lost an extensive amount of land, with contiguous sections of wetlands being converted to open water. The Restore the Earth Foundation's North American Amazon project intends to restore one million acres of forests and forested wetlands in the lower Mississippi River Valley. The proposed area for the first phase of this project was once an historic bald cypress forested wetland, which was degraded due to increased salinity levels and extreme fluctuations in hydrology. The Terrebonne and Lafourche Parishes, the "bayou parishes", communities with a combined population of over 200,000, sit on thin fingers of land that are protected by surrounding wetland swamps and wetlands, beyond which is the Gulf of Mexico. The Parishes depend on fishing, hunting, trapping, boat building, off-shore oil and gas production and support activities. Yet these communities are highly vulnerable to risks from natural hazards and future land loss. The ground is at or near sea level and therefore easily inundated by storm surges if not protected by wetlands. While some communities are protected by a levee system, the Terrebonne and

  11. Investment in flood protection measures under climate change uncertainty. An investment decision

    Energy Technology Data Exchange (ETDEWEB)

    Bruin, Karianne de

    2012-11-01

    Recent river flooding in Europe has triggered debates among scientists and policymakers on future projections of flood frequency and the need for adaptive investments, such as flood protection measures. Because there exists uncertainty about the impact of climate change of flood risk, such investments require a careful analysis of expected benefits and costs. The objective of this paper is to show how climate change uncertainty affects the decision to invest in flood protection measures. We develop a model that simulates optimal decision making in flood protection, it incorporates flexible timing of investment decisions and scientific uncertainty on the extent of climate change impacts. This model allows decision-makers to cope with the uncertain impacts of climate change on the frequency and damage of river flood events and minimises the risk of under- or over-investment. One of the innovative elements is that we explicitly distinguish between structural and non-structural flood protection measures. Our results show that the optimal investment decision today depends strongly on the cost structure of the adaptation measures and the discount rate, especially the ratio of fixed and weighted annual costs of the measures. A higher level of annual flood damage and later resolution of uncertainty in time increases the optimal investment. Furthermore, the optimal investment decision today is influenced by the possibility of the decision-maker to adjust his decision at a future moment in time.(auth)

  12. ASN guide project. Protection of base nuclear installations against external flooding

    International Nuclear Information System (INIS)

    2010-01-01

    This guide aims at defining criteria to be taken into account to assess risks of flooding of a nuclear installation in case of external flooding, at proposing an acceptable method to assess such risks, at listing recommendations to define protection means adapted to the peculiarities of the flood risk and implemented by the operators with respect to the life phases of the installation, and in taking the climate change into account. The first part proposes an approach allowing the identification of reference situations which are to be taken into account for the flood risk. The second part deals with the quantification of parameters which characterize physical phenomena associated with these situations. The third part identifies the peculiarities of the flood risk as well as the guiding principles for designing options and protection mean selection with respect to a given flood risk

  13. Floods

    Science.gov (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  14. Flood risk, uncertainty and changing river protection policy in the Netherlands: the case of 'calamity polders'

    NARCIS (Netherlands)

    Roth, D.; Warner, J.F.

    2007-01-01

    Extreme river discharges, floods and debates about climate change triggered a shift in flood protection policy in the Netherlands from infrastructural to spatial measures. The new policy directive of `Room for the River¿, details of which were introduced in 2000, should prepare the country for

  15. Ranking coastal flood protection designs from engineered to nature-based

    NARCIS (Netherlands)

    Nat, van der A.; Vellinga, P.; Leemans, R.; Slobbe, van E.

    2016-01-01

    Compared to traditional hard engineering, nature-based flood protection can be more cost effective, use up less raw materials, increase system adaptability and present opportunities to improve ecosystem functioning. However, high flood safety standards cause the need to combine nature-based

  16. New French guide for the protection of nuclear facilities against external flooding

    International Nuclear Information System (INIS)

    Duluc, Claire-Marie; Bardet, Lise; Guimier, Laurent; Rebour, Vincent

    2014-01-01

    On 27 December 1999, more than ten years before the tsunami of 11 March 2011, a severe storm occurred in the vicinity of the 'Le Blayais' Nuclear Power Plant (NPP) located in the Gironde estuary. This partial flooding called into question the design bases defined in the French Basic Safety Rule (BSR) I.2.e for the protection of French NPPs against external flooding. Following an initial improvement of protections of nuclear installations against external flooding, the French Nuclear Safety Authority (ASN) and the Institute for Radioprotection and Nuclear Safety (IRSN) initiated the elaboration a new safety rule for the protection of nuclear facilities against external flooding. In order to prepare the technical basis of the new safety rule, IRSN conducted a hydrologic working group. This technical group gathered experts from universities or research organisms, government departments or agencies and operators. After a long process, the guide for protection of basic nuclear installations against external flooding was published by the French Nuclear Safety Authority in April, 2013. The purpose of this guide is to i) define the situations to consider when evaluating the flood hazard for a given site ii) propose an acceptable method of quantifying them, iii) list recommendations for defining means of protection adapted to the specificities of the hazard of flooding. A specificity of external flooding is that many different sources have to be considered. Consequently, a list of 11 'Reference Flood Situation' (RFS) is defined. Each of them is based on a single event or on a conjunction of events whose characteristics may be increased if necessary. The RFS are defined with a probability target of 10-4 per year, taking into account uncertainties. This article presents the guide process of development, the method applied to define the reference flood situations (RFS) and the treatment of uncertainties. The last part of the article presents the RFS defined for local rainfall

  17. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  18. A global framework for future costs and benefits of river-flood protection in urban areas

    Science.gov (United States)

    Ward, Philip J.; Jongman, Brenden; Aerts, Jeroen C. J. H.; Bates, Paul D.; Botzen, Wouter J. W.; Diaz Loaiza, Andres; Hallegatte, Stephane; Kind, Jarl M.; Kwadijk, Jaap; Scussolini, Paolo; Winsemius, Hessel C.

    2017-09-01

    Floods cause billions of dollars of damage each year, and flood risks are expected to increase due to socio-economic development, subsidence, and climate change. Implementing additional flood risk management measures can limit losses, protecting people and livelihoods. Whilst several models have been developed to assess global-scale river-flood risk, methods for evaluating flood risk management investments globally are lacking. Here, we present a framework for assessing costs and benefits of structural flood protection measures in urban areas around the world. We demonstrate its use under different assumptions of current and future climate change and socio-economic development. Under these assumptions, investments in dykes may be economically attractive for reducing risk in large parts of the world, but not everywhere. In some regions, economically efficient investments could reduce future flood risk below today’s levels, in spite of climate change and economic growth. We also demonstrate the sensitivity of the results to different assumptions and parameters. The framework can be used to identify regions where river-flood protection investments should be prioritized, or where other risk-reducing strategies should be emphasized.

  19. How Flood Experience and Risk Perception Influences Protective Actions and Behaviours among Canadian Homeowners

    Science.gov (United States)

    Thistlethwaite, Jason; Henstra, Daniel; Brown, Craig; Scott, Daniel

    2018-02-01

    Canada is a country in the midst of a flood management policy transition that is shifting part of the flood damage burden from the state to homeowners. This transition—as well as the large financial losses resulting from flooding—have created a window of opportunity for Canada to implement strategies that increase property owners' capacity to avoid and absorb the financial and physical risks associated with flooding. This work presents foundational research into the extent to which Canadians' flood experience, perceptions of flood risks and socio-demographics shape their intentions and adoption of property level flood protection (PLFP). A bilingual, national survey was deployed in Spring 2016 and was completed by 2300 respondents across all 10 Canadian provinces. The survey was developed using assumptions in existing literature on flood risk behaviours and the determinants of flood risk management in similar jurisdictions. The paper argues that property owners are not willing to accept greater responsibility for flood risk as envisioned by recent policy changes. This finding is consistent with other OECD jurisdictions, where flood risk engagement strategies have been developed that could be replicated in Canada to encourage risk-sharing behaviour.

  20. Health protection and risks for rescuers in cases of floods.

    Science.gov (United States)

    Janev Holcer, Nataša; Jeličić, Pavle; Grba Bujević, Maja; Važanić, Damir

    2015-03-01

    Floods can pose a number of safety and health hazards for flood-affected populations and rescuers and bring risk of injuries, infections, and diseases due to exposure to pathogenic microorganisms and different biological and chemical contaminants. The risk factors and possible health consequences for the rescuers involved in evacuation and rescuing operations during the May 2014 flood crisis in Croatia are shown, as well as measures for the prevention of injuries and illnesses. In cases of extreme floods, divers play a particularly important role in rescuing and first-response activities. Rescuing in contaminated floodwaters means that the used equipment such as diving suits should be disinfected afterwards. The need for securing the implementation of minimal health and safety measures for involved rescuers is paramount. Data regarding injuries and disease occurrences among rescuers are relatively scarce, indicating the need for medical surveillance systems that would monitor and record all injuries and disease occurrences among rescuers in order to ensure sound epidemiological data. The harmful effects of flooding can be reduced by legislation, improvement of flood forecasting, establishing early warning systems, and appropriate planning and education.

  1. Flood disaster and protection measures in Turkey Case Study: May 1998 flood disaster at North Western Black Sea Region of Turkey

    International Nuclear Information System (INIS)

    Gurer, Ibrahim; Ozguier, Hamza

    2004-01-01

    Due to geographical location, geology, and topography, Turkey undergoes three main types of natural disasters related to gravity flows; floods, landslides, and snow avalanches. Flooding is second important natural hazard after earthquakes with 18 floods and 23 deaths per year, on average. During 20-21 May 1998, the rainfall which was equal to about four times of long-term mean annual rainfall total of north western Black Sea geographical region of Turkey affected 35.000 m 2 , damaged 1300 km highway, 600 km roads to the villages, and 60 km railway. After the recession of the flood waters, the field survey done proved that 12 highway bridges, 91 small bridges on village roads and 6900 highway culverts, 13.800 m retaining wall and about 500 houses were severely damaged. During the last five years, with the loans and credits provided by World Bank, a series of flood protection structures were designed and built for the rehabilitation of the region. Mostly concentrating on non-structural flood protection studies, a work programme has been drafted in this framework to develop flood management and to reduce or eliminate long-term risk and damage to people and their property from natural hazards and their effects. In this case study, the factors causing the flood disaster are given, and the flood event is analyzed from hydrologic and morphologic points of view. Also the different types of the flood protection measures are exemplified and the experience gained in controlling the flood damages is presented.(Author)

  2. Coping capacities for improving adaptation pathways for flood protection in Can Tho, Vietnam

    Science.gov (United States)

    Pathirana, A.; Radhakrishnan, M.; Quan, N. H.; Gersonius, B.; Ashley, R.; Zevenbergen, C.

    2016-12-01

    Studying the evolution of coping and adaptation capacities is a prerequisite for preparing an effective flood management plan for the future, especially in the dynamic and fast changing cities of developing countries. The objectives, requirements, targets, design and performance of flood protection measures will have to be determined after taking into account, or in conjunction with, the coping capacities. A methodology is presented based on adaptation pathways to account for coping capacities and to assess the effect on flood protection measures. The adaptation pathways method determines the point of failure of a particular strategy based on the change in an external driver, a point in time or a socio economic situation where / at which the strategy can no longer meet its objective. Pathways arrived at based on this methodology reflect future reality by considering changing engineering standards along with future uncertainties, risk taking abilities and adaptation capacities. This pathways based methodology determines the Adaptation tipping points (ATP), `time of occurrence of ATP' of flood protection measures after accounting for coping capacities, evaluates the measures and then provides the means to determine the adaptation pathways. Application of this methodology for flood protection measures in Can Tho city in the Mekong delta reveals the effect of coping capacity on the usefulness of flood protection measures and the delay in occurrence of tipping points. Consideration of coping capacity in the system owing to elevated property floor levels lead to the postponement of tipping points and improved the adaptation pathways comprising flood protection measures such as dikes. This information is useful to decision makers for planning and phasing of investments in flood protection.

  3. The protection of RIVERLIFE by mitigation of flood damages RIVERLIFE

    Science.gov (United States)

    Adler, M. J.

    2003-04-01

    The long-term development objective of the RIVERLIFE project is to contribute to sustainable human end economic development in the Timis-Bega river basin area as part of the Danube River Basin (DRB), through reinforcing the capacities of Romanian central and local authorities to develop effective mechanisms and tools for integrated river basin management in the Timis-Bega basin. The overall objective of the project is to assist the country in the EU enlargement and accession process to meet the EU requirements of water related Directives with emphasis on the EU Water Framework Directive (WFD). The specific objective of the project is to support the WFD implementation process at the level of a sub-unit within the limits of the DRB, through the development of a River Basin Management Plan (RBMP). The project will also facilitate the implementation of the Danube River Protection Convention (DRPC) as an essential element in the implementation of the Directive in the transboundary river basins. Expected outcomes in the recipient country consist of (i) responding to a real hazard problem, which affects the quality of life of many citizens, and (ii) improvement in the environmental conditions in the targeted areas. Flooding is one of the major natural hazards to human society and an important influence on social and economic development for Romania causing financially greater losses per annum on average than any other natural hazard. One key concept of the WFD is the coordination, organization and regulation of water management at the level of river basins. Therefore, river basin districts are shaped in such a way as to include not only the surface run-off through streams and rivers to the sea, but the total area of land and sea together with the associated groundwater and coastal waters. The concept allows even for the small river basins directly discharging into the sea to be combined into one river basin district. As a principle, the complex decisions on the use or

  4. From the 'Le Blayais NPP' flooding in 1999 to the review of French regulation for the protection of nuclear facilities against external flooding

    International Nuclear Information System (INIS)

    Dupuy, P.

    2011-01-01

    On 27 December 1999, a severe storm occurred in the vicinity of the 'Le Blayais' Nuclear Power Plant located on the banks of the Gironde estuary. The severe storm-driven waves coincident with high water levels in the Gironde estuary exceeded the worst-case scenario considered at the design of the site protection against flooding, resulting in the scram of three out of four units and severe nuclear island flooding. Several underground rooms sheltering equipment important to safety were flooded. This partial flooding incident has called into question the design bases defined in the French Basic Safety Rule (BSR) I.2.e for the protection of French NPPs against external flooding in particular in terms of flood events and combinations of flood events considered for the design. It has also revealed some weaknesses in the existing measures implemented, especially the site protection dykes, the protection of equipment important to safety, the warning systems and the emergency organization. Following this incident, in addition to the rush through protection measures undertaken on Le Blayais NPP, the utility Electricity De France (EDF) has launched a wide review of the protection of all French NPPs against external flooding. This review is based on a new and more comprehensive methodology for the protection of NPPs against external flooding (called 'REX Blayais methodology'), including a reassessment of flood events and their combinations and of all protection measures. This review has led EDF to carry out a large number of modifications and improvements at all NPP sites. 'REX Blayais methodology' and its application to all French NPPs were submitted to the approval of the French Nuclear Safety Authority (ASN) in 2001 and then in 2007 after being analyzed by its technical support IRSN (French Institute for Radioprotection and Nuclear Safety). The methodology and the level of protection of the NPPs thanks to all the improvements and modifications performed by the utility were

  5. Design of flood protection for transportation alignments on alluvial fans

    International Nuclear Information System (INIS)

    French, R.H.

    1991-01-01

    The method of floodplain delineation on alluvial fans developed for the national flood insurance program is modified to provide estimates of peak flood flows at transportation alignments crossing an alluvial fan. The modified methodology divides the total alignment length into drainage design segments and estimates the peak flows that drainage structures would be required to convey as a function of the length of the drainage design segment, the return period of the event, and the location of the alignment on the alluvial fan. An example of the application of the methodology is provided. 16 refs., 5 figs

  6. Floods, civil protection and inhabitants of San Mateo Atenco, State of Mexico

    Directory of Open Access Journals (Sweden)

    Alejandra Toscana Aparicio

    2010-09-01

    Full Text Available According to the national civil protection and the State of Mexico´s civil protection systems, the municipality order is the first instance on attending the emergency situations; in order to do it, each municipality must have a civil protection system. In this essay it is exposed the case of the municipality San Mateo Atenco, constantly affected by floods that are produced by the physical characteristics of the zone, the anthropic transformations to the natural environment and the government decisions and omissions. It is analyzed the discrepancies between municipality authorities and the population affected by floods; in order to do it, a flood map based on testimonies was made, a vulnerability map, and a survey of the opinion of the San Mateo Atenco´s population about the civil protection municipality authorities´ performance.

  7. A national scale flood hazard mapping methodology: The case of Greece - Protection and adaptation policy approaches.

    Science.gov (United States)

    Kourgialas, Nektarios N; Karatzas, George P

    2017-12-01

    The present work introduces a national scale flood hazard assessment methodology, using multi-criteria analysis and artificial neural networks (ANNs) techniques in a GIS environment. The proposed methodology was applied in Greece, where flash floods are a relatively frequent phenomenon and it has become more intense over the last decades, causing significant damages in rural and urban sectors. In order the most prone flooding areas to be identified, seven factor-maps (that are directly related to flood generation) were combined in a GIS environment. These factor-maps are: a) the Flow accumulation (F), b) the Land use (L), c) the Altitude (A), b) the Slope (S), e) the soil Erodibility (E), f) the Rainfall intensity (R), and g) the available water Capacity (C). The name to the proposed method is "FLASERC". The flood hazard for each one of these factors is classified into five categories: Very low, low, moderate, high, and very high. The above factors are combined and processed using the appropriate ANN algorithm tool. For the ANN training process spatial distribution of historical flooded points in Greece within the five different flood hazard categories of the aforementioned seven factor-maps were combined. In this way, the overall flood hazard map for Greece was determined. The final results are verified using additional historical flood events that have occurred in Greece over the last 100years. In addition, an overview of flood protection measures and adaptation policy approaches were proposed for agricultural and urban areas located at very high flood hazard areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Towards modelling flood protection investment as a coupled human and natural system

    Science.gov (United States)

    O'Connell, P. E.; O'Donnell, G.

    2014-01-01

    Due to a number of recent high-profile flood events and the apparent threat from global warming, governments and their agencies are under pressure to make proactive investments to protect people living in floodplains. However, adopting a proactive approach as a universal strategy is not affordable. It has been argued that delaying expensive and essentially irreversible capital decisions could be a prudent strategy in situations with high future uncertainty. This paper firstly uses Monte Carlo simulation to explore the performance of proactive and reactive investment strategies using a rational cost-benefit approach in a natural system with varying levels of persistence/interannual variability in annual maximum floods. It is found that, as persistence increases, there is a change in investment strategy optimality from proactive to reactive. This could have implications for investment strategies under the increasingly variable climate that is expected with global warming. As part of the emerging holistic approaches to flood risk management, there is increasing emphasis on stakeholder participation in determining where and when flood protection investments are made, and so flood risk management is becoming more people-centred. As a consequence, multiple actors are involved in the decision-making process, and the social sciences are assuming an increasingly important role in flood risk management. There is a need for modelling approaches which can couple the natural and human system elements. It is proposed that coupled human and natural system (CHANS) modelling could play an important role in understanding the motivations, actions and influence of citizens and institutions and how these impact on the effective delivery of flood protection investment. A framework for using agent-based modelling of human activities leading to flood investments is outlined, and some of the challenges associated with implementation are discussed.

  9. Geospatial Information Relevant to the Flood Protection Available on The Mainstream Web

    Directory of Open Access Journals (Sweden)

    Kliment Tomáš

    2014-03-01

    Full Text Available Flood protection is one of several disciplines where geospatial data is very important and is a crucial component. Its management, processing and sharing form the foundation for their efficient use; therefore, special attention is required in the development of effective, precise, standardized, and interoperable models for the discovery and publishing of data on the Web. This paper describes the design of a methodology to discover Open Geospatial Consortium (OGC services on the Web and collect descriptive information, i.e., metadata in a geocatalogue. A pilot implementation of the proposed methodology - Geocatalogue of geospatial information provided by OGC services discovered on Google (hereinafter “Geocatalogue” - was used to search for available resources relevant to the area of flood protection. The result is an analysis of the availability of resources discovered through their metadata collected from the OGC services (WMS, WFS, etc. and the resources they provide (WMS layers, WFS objects, etc. within the domain of flood protection.

  10. Flood Management and Protection from the Social Point of View: Case Study from Ukraine

    Science.gov (United States)

    Manukalo, V.; Gerasymenko, H.

    2012-12-01

    to their regions of residence (low- or high- flood risk areas, cities or villages), education level; c) a lot of peoples don't know distribution of duties between governmental bodies on central and local levels in the field of flood management and protection; d) the most of peoples don't know which Ukrainian governmental bodies are responsible for the elaboration of National adaptation strategy to the expected climate change; e) many recipient estimate as inefficient activities of Ukrainian authorities on local, national and international levels as well as a public participation in the flood management and protection policy. The results of this study have been rather unexpected for Ukrainian central and local governmental bodies responsible for flood management and protection policies. This underlines the importance of having the alternative flood risk management and protection policies studied not only from aspects of technical and economic rational, but also from that of social acceptability, before any decision is made. Practical Application Results of study have been used in preparation of: a) the State Program on the protection against floods in the Dniester, Prut and Siret river basins; b) of the "National Action Plan for Adaptation to Climate Change for period 2011-2015".

  11. Global assessment of river flood protection benefits and corresponding residual risks under climate change

    Science.gov (United States)

    Lim, Wee Ho; Yamazaki, Dai; Koirala, Sujan; Hirabayashi, Yukiko; Kanae, Shinjiro; Dadson, Simon J.; Hall, Jim W.

    2016-04-01

    Global warming increases the water-holding capacity of the atmosphere and this could lead to more intense rainfalls and possibly increasing natural hazards in the form of flooding in some regions. This implies that traditional practice of using historical hydrological records alone is somewhat limited for supporting long-term water infrastructure planning. This has motivated recent global scale studies to evaluate river flood risks (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014, Sadoff et al., 2015) and adaptations benefits (e.g., Jongman et al., 2015). To support decision-making in river flood risk reduction, this study takes a further step to examine the benefits and corresponding residual risks for a range of flood protection levels. To do that, we channelled runoff information of a baseline period (forced by observed hydroclimate conditions) and each CMIP5 model (historic and future periods) into a global river routing model called CaMa-Flood (Yamazaki et al., 2011). We incorporated the latest global river width data (Yamazaki et al., 2014) into CaMa-Flood and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the flood protection benefits. We quantify the corresponding residual risks using a mathematical approach that is consistent with the modelling structure of CaMa-Flood. Globally and regionally, we find that the benefits of flood protection level peak somewhere between 20 and 500 years; residual risks diminish

  12. Integration of ecological aspects in flood protection strategies: defining an ecological minimum

    NARCIS (Netherlands)

    Geilen, N.; Jochems, H.; Krebs, L.; Muller, S.; Pedroli, G.B.M.; Sluis, van der T.; Looy, van K.; Rooij, van S.A.M.

    2004-01-01

    Policy makers are confronted with the question of how to combine sustainable flood protection and floodplain rehabilitation in the best possible way. Both topics deal with spatial planning aspects in a range of scales. This question was the starting point for the development of an evaluation method

  13. Fiber Reinfoced Polymer Used for Flooding Protection of Engineering Structures Made of RC and Brick Masonry

    Directory of Open Access Journals (Sweden)

    Gabriel Oprişan

    2008-01-01

    Full Text Available Urban and rural floods are becoming nowadays a frequent problem to be dealt with, by both the population and the authorities. Floods and flood related natural disasters act against the civil, industrial and agricultural structures by the hydrostatic and hydrodynamic pressures of water. A set of protective solutions based on Fiber Reinforced Polymer (FRP composite materials, for structural elements of buildings subjected to flood loadings, is proposed and analysed. These solutions are achieved by using the hand lay-up forming technique utilizing glass, carbon or aramid fibers fabrics pre-impregnated with thermosetting epoxy, polyester or vynilester resins. The application of these FRP composites is carried out on reinforced concrete columns and beams as well as on brick masonry works aiming to increase in the overall load bearing capacity, especially against horizontal loads. An improved protection against excessive humidity is also envisaged. The Finite Elements Method based LUSAS software was used to simulate a partially flooded structure. The numerical modeling was carried out in both the un-strengthened and strengthened conditions of the structure in order to assess the increasing in load and deformation capacities of the structural elements. Volumetric finite elements were used for modeling the concrete and masonry members.

  14. Insights into Flood-Coping Appraisals of Protection Motivation Theory: Empirical Evidence from Germany and France.

    Science.gov (United States)

    Bubeck, Philip; Wouter Botzen, W J; Laudan, Jonas; Aerts, Jeroen C J H; Thieken, Annegret H

    2017-11-17

    Protection motivation theory (PMT) has become a popular theory to explain the risk-reducing behavior of residents against natural hazards. PMT captures the two main cognitive processes that individuals undergo when faced with a threat, namely, threat appraisal and coping appraisal. The latter describes the evaluation of possible response measures that may reduce or avert the perceived threat. Although the coping appraisal component of PMT was found to be a better predictor of protective intentions and behavior, little is known about the factors that influence individuals' coping appraisals of natural hazards. More insight into flood-coping appraisals of PMT, therefore, are needed to better understand the decision-making process of individuals and to develop effective risk communication strategies. This study presents the results of two surveys among more than 1,600 flood-prone households in Germany and France. Five hypotheses were tested using multivariate statistics regarding factors related to flood-coping appraisals, which were derived from the PMT framework, related literature, and the literature on social vulnerability. We found that socioeconomic characteristics alone are not sufficient to explain flood-coping appraisals. Particularly, observational learning from the social environment, such as friends and neighbors, is positively related to flood-coping appraisals. This suggests that social norms and networks play an important role in flood-preparedness decisions. Providing risk and coping information can also have a positive effect. Given the strong positive influence of the social environment on flood-coping appraisals, future research should investigate how risk communication can be enhanced by making use of the observed social norms and network effects. © 2017 Society for Risk Analysis.

  15. Protection of base nuclear installations against external flooding - Guide nr 13, release of the 08/01/2013

    International Nuclear Information System (INIS)

    2013-01-01

    As the French law requires the flooding risk to be taken into account in the demonstration of the nuclear safety of base nuclear installations (INB), this guide aims at defining situations to be taken into account when assessing the flooding risk for a site (identification of water sources and of flooding causes, definition of flooding situations), at proposing an acceptable method to quantify these situations (local rains, rise of water level, problems on hydraulic works, dam failure, ocean waves, and so on), and at listing recommendations to define the protection means which are adapted to the specificities of the flooding risk, and are implemented by the operator with respect to the installation lifetime

  16. Effects of rock riprap design parameters on flood protection costs for uranium tailings impoundments

    International Nuclear Information System (INIS)

    Ecker, R.M.

    1984-07-01

    The Pacific Northwest Laboratory (PNL) is studying the problem of long-term protection of earthen covers on decommissioned uranium tailings impoundments. The major erosive forces acting on these covers will be river flooding and overland flow from rainfall-runoff. For impoundments adjacent to rivers, overbank flooding presents the greater potential for significant erosion. To protect the earthen covers against flood erosion, rock riprap armoring will be placed over the cover surface. Because of the large size rock usually required for riprap, the quarrying, transport, and placement of the rock could be a significant part of the decommissioning cost. This report examines the sensitivity of riprap protection costs to certain design parameters at tailings impoundments. The parameters include flood discharge, riprap materials, impoundment side slopes, and an added safety factor. Two decommissioned tailings impoundments are used as case studies for the evaluation. These are the Grand Junction, Colorado, impoundment located adjacent to the Colorado River and the Slickrock, Colorado, impoundment located adjacent to the Dolores River. The evaluation considers only the cost of riprap protection against flood erosion. The study results show that embankment side slope and rock specific gravity can have optimum values or ranges at a specific site. For both case study sites the optimum side slope is about 5H:1V. Of the rock sources considered at Grand Junction, the optimum specific gravity would be about 2.50; however, an optimum rock specific gravity for the Slickrock site could not be determined. Other results indicate that the arbitrary safety factor usually added in riprap design can lead to large increases in protection costs. 22 references, 19 figures, 15 tables

  17. Damage and protection cost curves for coastal floods within the 600 largest European cities

    Science.gov (United States)

    Prahl, Boris F.; Boettle, Markus; Costa, Luís; Kropp, Jürgen P.; Rybski, Diego

    2018-01-01

    The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves. PMID:29557944

  18. Flood protection structure detection with Lidar: examples on French Mediterranean rivers and coastal areas

    Directory of Open Access Journals (Sweden)

    Trmal Céline

    2016-01-01

    Full Text Available This paper aims at presenting different topographic analysis conducted with GIS software in order to detect flood protection structures, natural or artificial, in river floodplains but also in coastal zones. Those computations are relevant because of the availability of high-resolution lidar digital terrain model (DTM. An automatic detection permits to map the footprint of those structures. Then detailed mapping of structure crest is achieved by implementing a least cost path analysis on DTM but also on other terrain aspects such as the curvature. On coastal zones, the analysis is going further by identifying flood protected areas and the level of protection regarding sea level. This article is illustrated by examples on French Mediterranean rivers and coastal areas.

  19. Damage and protection cost curves for coastal floods within the 600 largest European cities

    Science.gov (United States)

    Prahl, Boris F.; Boettle, Markus; Costa, Luís; Kropp, Jürgen P.; Rybski, Diego

    2018-03-01

    The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves.

  20. Protection of Basic Nuclear Installations Against External Flooding - Guide No. 13

    International Nuclear Information System (INIS)

    2013-01-01

    The French regulations require that the flooding hazard be taken into consideration in the demonstration of nuclear safety of basic nuclear installations (BNI). This guide details the recommendations concerning the external flooding hazard which is defined, for the purpose of this guide, as being a flood whose origin is external to the structures, areas or buildings of the BNI accommodating systems or components to be protected, whatever the cause(s) of that flooding (rainfall, river spates, storms, pipes failures, etc.). An external flood therefore means any flood originating outside the perimeter of the BNI and certain floods originating within the BNI perimeter. The terms 'flood' or 'flooding' as used henceforth designate external flooding. The purpose of this guide is to: - define the situations to consider when assessing the flood hazard for the site in question; - propose an acceptable method of quantifying them; - list recommendations for defining means of protection adapted to the specifics of the flooding hazard, implemented by the licensee according to the life cycle phases of the installation. The guide has taken climate change into account when the state of knowledge so allows. It is necessary to take into account - on the basis of current knowledge - the predictable climate changes for a period representative of the installations' foreseeable life times, and until the next safety review. The use of this guide necessitates prior identification - for the installation in question - of the functions required to demonstrate nuclear safety and which shall be preserved in the event of flooding. These functions are called 'safety functions' in this guide. This guide applies to all the basic nuclear installations defined by article L. L.593-2 of the Environment Code. With regard to radioactive waste disposal installations, this guide only applies to above-ground facilities. This guide can be used to assess the external flooding hazards and the associated

  1. Fragility analysis of flood protection structures in earthquake and flood prone areas around Cologne, Germany for multi-hazard risk assessment

    Science.gov (United States)

    Tyagunov, Sergey; Vorogushyn, Sergiy; Munoz Jimenez, Cristina; Parolai, Stefano; Fleming, Kevin; Merz, Bruno; Zschau, Jochen

    2013-04-01

    The work presents a methodology for fragility analyses of fluvial earthen dikes in earthquake and flood prone areas. Fragility estimates are being integrated into the multi-hazard (earthquake-flood) risk analysis being undertaken within the framework of the EU FP7 project MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe) for the city of Cologne, Germany. Scenarios of probable cascading events due to the earthquake-triggered failure of flood protection dikes and the subsequent inundation of surroundings are analyzed for the area between the gauges Andernach and Düsseldorf along the Rhine River. Along this river stretch, urban areas are partly protected by earthen dikes, which may be prone to failure during exceptional floods and/or earthquakes. The seismic fragility of the dikes is considered in terms of liquefaction potential (factor of safety), estimated by the use of the simplified procedure of Seed and Idriss. It is assumed that initiation of liquefaction at any point throughout the earthen dikes' body corresponds to the failure of the dike and, therefore, this should be taken into account for the flood risk calculations. The estimated damage potential of such structures is presented as a two-dimensional surface (as a function of seismic hazard and water level). Uncertainties in geometrical and geotechnical dike parameters are considered within the framework of Monte Carlo simulations. Taking into consideration the spatial configuration of the existing flood protection system within the area under consideration, seismic hazard curves (in terms of PGA) are calculated for sites along the river segment of interest at intervals of 1 km. The obtained estimates are used to calculate the flood risk when considering the temporal coincidence of seismic and flood events. Changes in flood risk for the considered hazard cascade scenarios are quantified and compared to the single-hazard scenarios.

  2. Risk-based flood protection planning under climate change and modeling uncertainty: a pre-alpine case study

    Science.gov (United States)

    Dittes, Beatrice; Kaiser, Maria; Špačková, Olga; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2018-05-01

    Planning authorities are faced with a range of questions when planning flood protection measures: is the existing protection adequate for current and future demands or should it be extended? How will flood patterns change in the future? How should the uncertainty pertaining to this influence the planning decision, e.g., for delaying planning or including a safety margin? Is it sufficient to follow a protection criterion (e.g., to protect from the 100-year flood) or should the planning be conducted in a risk-based way? How important is it for flood protection planning to accurately estimate flood frequency (changes), costs and damage? These are questions that we address for a medium-sized pre-alpine catchment in southern Germany, using a sequential Bayesian decision making framework that quantitatively addresses the full spectrum of uncertainty. We evaluate different flood protection systems considered by local agencies in a test study catchment. Despite large uncertainties in damage, cost and climate, the recommendation is robust for the most conservative approach. This demonstrates the feasibility of making robust decisions under large uncertainty. Furthermore, by comparison to a previous study, it highlights the benefits of risk-based planning over the planning of flood protection to a prescribed return period.

  3. Risk-based flood protection planning under climate change and modeling uncertainty: a pre-alpine case study

    Directory of Open Access Journals (Sweden)

    B. Dittes

    2018-05-01

    Full Text Available Planning authorities are faced with a range of questions when planning flood protection measures: is the existing protection adequate for current and future demands or should it be extended? How will flood patterns change in the future? How should the uncertainty pertaining to this influence the planning decision, e.g., for delaying planning or including a safety margin? Is it sufficient to follow a protection criterion (e.g., to protect from the 100-year flood or should the planning be conducted in a risk-based way? How important is it for flood protection planning to accurately estimate flood frequency (changes, costs and damage? These are questions that we address for a medium-sized pre-alpine catchment in southern Germany, using a sequential Bayesian decision making framework that quantitatively addresses the full spectrum of uncertainty. We evaluate different flood protection systems considered by local agencies in a test study catchment. Despite large uncertainties in damage, cost and climate, the recommendation is robust for the most conservative approach. This demonstrates the feasibility of making robust decisions under large uncertainty. Furthermore, by comparison to a previous study, it highlights the benefits of risk-based planning over the planning of flood protection to a prescribed return period.

  4. Flood Protection Decision Making Within a Coupled Human and Natural System

    Science.gov (United States)

    O'Donnell, Greg; O'Connell, Enda

    2013-04-01

    Due to the perceived threat from climate change, prediction under changing climatic and hydrological conditions has become a dominant theme of hydrological research. Much of this research has been climate model-centric, in which GCM/RCM climate projections have been used to drive hydrological system models to explore potential impacts that should inform adaptation decision-making. However, adaptation fundamentally involves how humans may respond to increasing flood and drought hazards by changing their strategies, activities and behaviours which are coupled in complex ways to the natural systems within which they live and work. Humans are major agents of change in hydrological systems, and representing human activities and behaviours in coupled human and natural hydrological system models is needed to gain insight into the complex interactions that take place, and to inform adaptation decision-making. Governments and their agencies are under pressure to make proactive investments to protect people living in floodplains from the perceived increasing flood hazard. However, adopting this as a universal strategy everywhere is not affordable, particularly in times of economic stringency and given uncertainty about future climatic conditions. It has been suggested that the assumption of stationarity, which has traditionally been invoked in making hydrological risk assessments, is no longer tenable. However, before the assumption of hydrologic nonstationarity is accepted, the ability to cope with the uncertain impacts of global warming on water management via the operational assumption of hydrologic stationarity should be carefully examined. Much can be learned by focussing on natural climate variability and its inherent changes in assessing alternative adaptation strategies. A stationary stochastic multisite flood hazard model has been developed that can exhibit increasing variability/persistence in annual maximum floods, starting with the traditional assumption of

  5. Mount St. Helens Project. Cowlitz River Levee Systems, 2009 Level of Flood Protection Update Summary

    Science.gov (United States)

    2010-02-04

    of Flood Protection Update Summary Draft December 2009 Page F-5 soil in unsaturated region. So those equipotential lines above phreatic surface are...Lexington levee where a 50 percent probability of failure is assumed when the water surface is at the top of the levee and a 100 percent chance of failure...is assumed when the water surface is above the top of the levee. Additionally, for cases where the SWL is determined to be the same elevation as

  6. Erosion control and protection from torrential floods in Serbia-spatial aspects

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2011-01-01

    order to achieve maximum security for people and their property and to meet other requirements such as: environmental protection, sustainable soil usage, drinking water supply, rural development, biodiversity sustaining, etc. The lowest and the most effective level is attained through PAERs (Plans for announcement of erosive regions and PPTFs (Plans for protection from torrential floods, with HZs (Hazard zones and TAs (Threatened areas mapping on the basis of spatial analysis of important factors in torrential floods formation. Solutions defined through PAERs and PPTFs must be integrated into Spatial Plans at local and regional levels.

  7. Protection from annual flooding is correlated with increased cholera prevalence in Bangladesh: a zero-inflated regression analysis

    Directory of Open Access Journals (Sweden)

    Yunus Mohammad

    2010-03-01

    Full Text Available Abstract Background Alteration of natural or historical aquatic flows can have unintended consequences for regions where waterborne diseases are endemic and where the epidemiologic implications of such change are poorly understood. The implementation of flood protection measures for a portion of an intensely monitored population in Matlab, Bangladesh, allows us to examine whether cholera outcomes respond positively or negatively to measures designed to control river flooding. Methods Using a zero inflated negative binomial model, we examine how selected covariates can simultaneously account for household clusters reporting no cholera from those with positive counts as well as distinguishing residential areas with low counts from areas with high cholera counts. Our goal is to examine how residence within or outside a flood protected area interacts with the probability of cholera presence and the effect of flood protection on the magnitude of cholera prevalence. Results In Matlab, living in a household that is protected from annual monsoon flooding appears to have no significant effect on whether the household experiences cholera, net of other covariates. However, counter-intuitively, among households where cholera is reported, living within the flood protected region significantly increases the number of cholera cases. Conclusions The construction of dams or other water impoundment strategies for economic or social motives can have profound and unanticipated consequences for waterborne disease. Our results indicate that the construction of a flood control structure in rural Bangladesh is correlated with an increase in cholera cases for residents protected from annual monsoon flooding. Such a finding requires attention from both the health community and from governments and non-governmental organizations involved in ongoing water management schemes.

  8. Implementing new flood protection standards: obstacles to adaptive management and how to overcome these

    Directory of Open Access Journals (Sweden)

    Klijn Frans

    2016-01-01

    Full Text Available The Netherlands is updating its flood protection, whilst fully taking into account climate change and socioeconomic development. This translates in ‘anticipatory standards’ which need to be met in 2050, and which apply for the then foreseen climate and economy. Whilst the government maintains to have adopted a policy of adaptive planning and management, the new standards are thus based on one future situation, which qualifies as a ‘high end scenario’ from a flood risk management perspective. The consequences of adopting these new standards are now becoming clear. It is expected that many hundreds of kilometres of primary flood defences need to be reinforced and/or raised, at an estimated investment of about 9-14 billion euros. The many uncertainties about actual future development, however, complicate the decision making about the implementation of individual reinforcement projects: should one aim at immediately meeting the new standard or gradually improve and grow towards it? In this paper we discuss the uncertain decision making context, show that lawfulness (working according to procedures, rules and regulations and expediency (towards a purpose may jeopardize the good intentions of adaptive management, and argue that optimization may not provide the most useful answer to this decision making problem.

  9. Protecting Coastal Areas from Flooding by Injecting Solids into the Subsurface

    Science.gov (United States)

    Germanovich, L. N.; Murdoch, L.

    2008-12-01

    Subsidence and sea level rise conspire to increase the risk of flooding in coastal cities throughout the world, and these processes were key contributors to the devastation of New Orleans by hurricane Katrina. Constructing levees and placing fill to raise ground elevations are currently the main options for reducing flooding risks in coastal areas, and both of these options have drawbacks. We suggest that hydromechanical injection of solid compounds suspended in liquid can be used to lift the ground surface and thereby expand the options for protecting such coastal cities as New Orleans, Venice, and Shanghai from flooding. These techniques are broadly related to hydraulic fracturing and compensation grouting, where solid compounds are injected as slurries and cause upward displacements at the ground surface. The equipment and logistics required for hydromechanical solid injection and ground lifting are readily available from current geotechnical and petroleum operations. Hydraulic fractures are routinely created in the upper tens of meters of sediments, where they are filled with a wide range of different proppants for environmental applications. At shallow depths, many of these fractures are sub-parallel to the ground surface and lift their overburden by a few mm to cm, although lifting is not the objective of these fractures. Much larger, vertical displacements, of the order of several meters, could be created in low-cohesion sediments over areas as large as square kilometers. This would be achieved as a result of multiple injections. Injecting solid particulates provides the benefits of a permanent displacement supported by the solids. We have demonstrated that hydraulic fractures will lift the ground surface at shallow depths in Texas near the Sabine River, where the geological setting is generally similar to that of New Orleans (and where, incidentally, hurricane Rita landed in 2005). In these regions, the soft surficial sediments are underlain by relatively

  10. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  11. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The establishment of riparian protection forests in the Three Gorges Reservoir (TGR is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ. Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress

  12. Cost estimates for flood resilience and protection strategies in New York City.

    Science.gov (United States)

    Aerts, Jeroen C J H; Botzen, W J Wouter; de Moel, Hans; Bowman, Malcolm

    2013-08-01

    In the aftermaths of Hurricanes Irene, in 2011, and Sandy, in 2012, New York City has come to recognize the critical need to better prepare for future storm surges and to anticipate future trends, such as climate change and socio-economic developments. The research presented in this report assesses the costs of six different flood management strategies to anticipate long-term challenges the City will face. The proposed strategies vary from increasing resilience by upgrading building codes and introducing small scale protection measures, to creating green infrastructure as buffer zones and large protective engineering works such as storm surge barriers. The initial investment costs of alternative strategies vary between $11.6 and $23.8 bn, maximally. We show that a hybrid solution, combining protection of critical infrastructure and resilience measures that can be upgraded over time, is less expensive. However, with increasing risk in the future, storm surge barriers may become cost-effective, as they can provide protection to the largest areas in both New York and New Jersey. © 2013 New York Academy of Sciences.

  13. Stakeholders and public involvement for flood protection: traditional river management organisations for a better consideration of local knowledge?

    Science.gov (United States)

    Utz, Stephan; Lane, Stuart; Reynard, Emmanuel

    2016-04-01

    This research explores participatory processes in the domain of river management in Switzerland. The main objective is to understand how traditional, highly participatory, local organisations for flood protection have been institutionalised into current river management policy, and to what extent this has impacted on wider participatory processes of producing knowledge. Traditionally, flood protection strategies have been based upon scientific knowledge but have often ignored the capacities of local actors to contribute to the development of the policy. Thus, there may be a gap between scientists, stakeholders and the public that favours controversies and leads to opposition to flood protection projects. In order to reduce this gap and to increase incorporation of local knowledge, participatory processes are set up. They are considered as allowing the integration of all the actors concerned by flood risks to discuss their positions and to develop alternative solutions. This is a particularly important goal in the Swiss political system where direct democracy (the possibility of calling the decision of any level of government into question through a popular vote) means that a reasonable level of project acceptance is a necessary element of project. In order to support implementation of participatory processes, federal funding includes a special grant to cover the additional costs due to these actions. It is considered that, since its introduction in 2008, this grant certainly furthered participatory processes for flood protection projects and fostered water management policy implementation. However, the implication of stakeholders and public in decision-making processes is much well-established than modern river management often assumes. In some regions, flood protection tasks have been traditionally assumed by local organisations such as dyke corporations (DCs). These comprise land and property owners who are DC members and have to participate in flood protection

  14. A decision-making framework for protecting process plants from flooding based on fault tree analysis

    International Nuclear Information System (INIS)

    Hauptmanns, Ulrich

    2010-01-01

    The protection of process plants from external events is mandatory in the Seveso Directive. Among these events figures the possibility of inundation of a plant, which may cause a hazard by disabling technical components and obviating operator interventions. A methodological framework for dealing with hazards from potential flooding events is presented. It combines an extension of the fault tree method with generic properties of flooding events in rivers and of dikes, which should be adapted to site-specific characteristics in a concrete case. Thus, a rational basis for deciding whether upgrading is required or not and which of the components should be upgraded is provided. Both the deterministic and the probabilistic approaches are compared. Preference is given to the probabilistic one. The conclusions drawn naturally depend on the scope and detail of the model calculations and the decision criterion adopted. The latter has to be supplied from outside the analysis, e.g. by the analyst himself, the plant operator or the competent authority. It turns out that decision-making is only viable if the boundary conditions for both the procedure of analysis and the decision criterion are clear.

  15. Operational tools to help stakeholders to protect and alert municipalities facing uncertainties and changes in karst flash floods

    Science.gov (United States)

    Borrell Estupina, V.; Raynaud, F.; Bourgeois, N.; Kong-A-Siou, L.; Collet, L.; Haziza, E.; Servat, E.

    2015-06-01

    Flash floods are often responsible for many deaths and involve many material damages. Regarding Mediterranean karst aquifers, the complexity of connections, between surface and groundwater, as well as weather non-stationarity patterns, increase difficulties in understanding the basins behaviour and thus warning and protecting people. Furthermore, given the recent changes in land use and extreme rainfall events, knowledge of the past floods is no longer sufficient to manage flood risks. Therefore the worst realistic flood that could occur should be considered. Physical and processes-based hydrological models are considered among the best ways to forecast floods under diverse conditions. However, they rarely match with the stakeholders' needs. In fact, the forecasting services, the municipalities, and the civil security have difficulties in running and interpreting data-consuming models in real-time, above all if data are uncertain or non-existent. To face these social and technical difficulties and help stakeholders, this study develops two operational tools derived from these models. These tools aim at planning real-time decisions given little, changing, and uncertain information available, which are: (i) a hydrological graphical tool (abacus) to estimate flood peak discharge from the karst past state and the forecasted but uncertain intense rainfall; (ii) a GIS-based method (MARE) to estimate the potential flooded pathways and areas, accounting for runoff and karst contributions and considering land use changes. Then, outputs of these tools are confronted to past and recent floods and municipalities observations, and the impacts of uncertainties and changes on planning decisions are discussed. The use of these tools on the recent 2014 events demonstrated their reliability and interest for stakeholders. This study was realized on French Mediterranean basins, in close collaboration with the Flood Forecasting Services (SPC Med-Ouest, SCHAPI, municipalities).

  16. Flood Protection Ecosystem Services in the Coast of Puerto Rico: Associations Between Watershed Processes and Local Human Health and Well Being Indicators

    Science.gov (United States)

    Flood events are becoming increasingly important in coastal cities due to a projected increase in the frequency of extreme weather events. A potential strategy to promote coastal protection from these hazards is the use of green infrastructure to provide flood protection ecosyste...

  17. You gain some funding, you lose some freedom: The ironies of flood protection in Limburg (The Netherlands)

    International Nuclear Information System (INIS)

    Wesselink, Anna; Warner, Jeroen; Kok, Matthijs

    2013-01-01

    Highlights: ► We apply an analytical framing of hegemony to flood management in The Netherlands. ► We show the crucial role of securitisation strategies in instigating hegemony. ► We point out historical contexts of hegemony in other policy domains. ► This analysis draws out strategic positioning obscured by a rationalistic analysis. ► The role of water expertise is highlighted as crucial for policy change. -- Abstract: In this paper we show how applying an analytical framing of hegemony to policy making can draw out strategic positioning and negotiation of the actors involved that would remain hidden with a more rationalistic analysis. We show how long established flood protection management from the Dutch lowlands was imported into Limburg after two major flood events (1993/1995) and we argue this case highlights how existing hegemony is easily replicated in new situations. With the shock caused by these floods came a securitising discourse that transformed the portrayal of flood risks in Limburg as ‘safety’ rather than ‘costly nuisance’. After an intense lobby by Limburg, the Meuse and its floodplains were included into the Dutch Flood Defence Law in 2005, becoming a national responsibility. While most Limburg inhabitants see increased protection against flooding as beneficial, the new law also meant strict design procedures and planning restrictions. Water expertise plays an important role in setting the new rules that determine which local ambitions are compatible with the national laws and policies. While securitisation helped to actively reproduce the existing (perception of) hegemonic relations in this case, the relationship between securitisation and hegemony is context-dependent, and both hegemon and non-hegemon can use a securitisation strategy to their advantage. Exactly how this will happen cannot be predicted, but ‘securitization’ and ‘hegemony’ are important sensitising concepts that can alert the observer to mechanisms of

  18. Review Article: Structural flood-protection measures referring to several European case studies

    Science.gov (United States)

    Kryžanowski, A.; Brilly, M.; Rusjan, S.; Schnabl, S.

    2014-01-01

    The paper presents a review of structural measures that were taken to cope with floods in some cities along the Danube River, such as Vienna, Bratislava, and Belgrade. These cities were also considered as case studies within the KULTURisk project. The structural measures are reviewed and compared to each other according to the type, duration of application, the return period of the design flood event, how the project measures are integrated into spatial planning and the problems that occur in the flood defences today. Based on this review, some suggestions are given on how to improve the flood risk management in flood-prone areas.

  19. Socio-economic Evaluation Of Different Alternatives For Flood Protection Within The Rivierenland-project

    Science.gov (United States)

    Boot, S. P.; van Ast, J. A.

    The Netherlands have a tradition of protecting land against flooding from the main rivers Rhine, Meuse and Scheldt by means of an extensive system of dikes. In recent years, however, this approach to protection has been increasingly questioned with re- gard to its sustainability and cost-effectiveness. The argument is that although the continued elevation of dikes may be technically feasible, there are several disadvan- tages to this approach. Firstly, a vast network of dikes requires a very high degree of organisation of water management, in which mistakes can not be afforded. Such a high degree of organisation may not always be maintainable in the future, due to changed economic or political circumstances. Secondly, it may not be the most cost- effective system for maintaining safety in the long term. Thirdly, it may not be the most desirable approach in terms of sustainability. One of the alternatives to contin- ued dike-elevation is the concept 'room for the river' ('ruimte voor de rivier'), which aims to give more space to rivers in the horizontal in stead of the vertical dimen- sion. This approach would reduce the risk of flooding, defined as the product of the probability and the consequences of flooding. In order to explore the long term con- sequences of both alternatives ('dike elevation' and 'room for the river'), the ministry of Verkeer en Waterstaat (Public Works, Transport and Water Management) started the 'Rivierenland'-project. The comparison of the alternatives mentioned was based on a fictitious project to adjust a region of The Netherlands, between the rivers Rhine and Meuse, to the concept of 'room for water'. The consequence of this adjustment would be that safety within that region would no longer be safeguarded by dikes, but by adjusting daily life to the 'demands of the water'. Part of the 'Rivierenland'-project was an analysis of the socio-economic costs and benefits of the alternative approaches. Within this analysis, a study was performed

  20. Flood protection as a key-component of the environmental restoration of Canal del Dique, Colombia

    Directory of Open Access Journals (Sweden)

    Sokolewicz Marius

    2016-01-01

    Full Text Available Canal del Dique is a man-made distributary of Rio Magdalena. After its widening in 1980’s environmental degradation caused by abundant sediment load and changes to hydrology took a catastrophic form. In 2010, the Canal’s dike breached and 35,000 ha of land were flooded. In 2013 a huge effort to restore the environment in the Canal del Dique system and to flood-proof the villages was started. An integrated approach was adopted to provide an optimal solution for flood control, environment, fresh water supply and navigation. In order to prepare restoration plans, an extensive hydrologic and hydraulic assessment was carried out. 1D, 2D and 3D numerical models were developed to answer different questions, to evaluate different alternatives and to enable selection of optimal solutions. To assess the flood risk, a hindcast of 2010 flood was carried out. A solution was designed in which the inlet of water from the Magdalena River is regulated by a control structure, managed by an automated system based on SCADA and Delft-FEWS flood forecasting software and advanced statistics.

  1. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  2. Generic results and conclusions of re-evaluating the flooding protection in French Nuclear Power Plants

    International Nuclear Information System (INIS)

    Vial, E.; Rebour, V.; Mattei, J.; Gprbatchev, A.

    2002-01-01

    The partial flooding of the Blayais site, occurred on December 1999 has led to a large scale re-examination of the measures to prevent and limit the consequences associated with all contingencies or combinations of them, which could lead to external flooding of any of the 19 French sites, equipped with pressurized water reactors. An Action Program has been launched by Electricite de France and a methodology has been approved, consisting of: defining of principles for re-evaluating external flooding risks together with the relevant arrangements; applying the principles to each site and showing that the margins adopted are sufficient for achieving an acceptable safety level. The implementation of the program throughout all sites with PWR in France will extend to 2005

  3. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Science.gov (United States)

    2010-07-01

    ... shall be brought to a satisfactory condition or shall be promptly replaced. Diesel and gasoline engines... machines, fuel for gasoline or diesel powered equipment, and flash lights or lanterns for emergency... the efficient operation and maintenance of all of the structures and facilities during flood periods...

  4. Land use change for flood protection: A prospective study for the restoration of the river Jelašnica watershed

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2011-01-01

    Full Text Available Serbia’s hilly-mountainous regions are extremely vulnerable to flooding as a consequence of their natural characteristics and human impacts. Land mismanagement influences the development of erosion processes, and causes soil degradation that significantly reduces the land’s capacity to infiltrate and retain rainwater. Inappropriate land use as well as development activities replace permeable with impervious surfaces in the watershed. This leads to more rapid runoff generation and the more frequent appearance of torrential floods and bed-load deposits on downstream sections. Environmental degradation creates economicsocial problems within local societies which is often followed by depopulation. Restoring watersheds to their optimal hydrologic state would reduce flood discharge and by increasing groundwater recharge would increase both low-flow and average discharges in springs and streams. Best management practices could be developed through the application of specific combinations of biotechnical, technical and administrative measures, and by using the concept of ″natural reservoirs″. The design of such practices is explored through a case study of the watershed of the river Jelašnica, southeastern Serbia. Realization of these planned restoration works should help decrease the annual yields of erosive material by 44.1% and the specific annual transport of sediment through hydrographic network by 43.6%. Representative value of the coefficient of erosion will be reduced from Z=0.555 to Z=0.379. The value of maximal discharge Qmax-AMCIII (1%=54.17 m3•s-1, before restoration, is decreased to Qmax-AMCIII (1%=41.22 m3•s-1 after restoration, indicating the improvement of hydrological conditions, as a direct consequence of land use changes. Administrative measures are applied through ″Plans for announcement of erosive regions and protection from torrential floods in the territory of Leskovac municipality″.

  5. Personal protective equipment, hygiene behaviours and occupational risk of illness after July 2011 flood in Copenhagen, Denmark.

    Science.gov (United States)

    Wójcik, O P; Holt, J; Kjerulf, A; Müller, L; Ethelberg, S; Mølbak, K

    2013-08-01

    Incidence of various diseases can increase following a flood. We aimed to identify professionals in Copenhagen who became ill after contact with 2 July 2011 floodwater/sediment and determine risks and protective factors associated with illness. We conducted a cohort study of employees engaged in post-flood management activities. Participants completed a questionnaire collecting information about demographics, floodwater/sediment exposure, compliance with standard precautions, and symptoms of illness. Overall, 257 professionals participated, with 56 (22%) cases. Risk of illness was associated with not washing hands after floodwater/sediment contact [relative risk (RR) 2∙45], exposure to floodwater at work and home (RR 2∙35), smoking (RR 1∙92), direct contact with floodwater (RR 1∙86), and eating/drinking when in contact with floodwater (RR 1∙77). Professionals need to follow standard precautions when in contact with floodwater/sediment, especially proper hand hygiene after personal protective equipment use and before eating/drinking and smoking.

  6. General Reevaluation Report and Environmental Impact Statement for the Blanchard River, Ottawa, Ohio Flood Protection Project

    Science.gov (United States)

    1987-04-01

    Black locust Black willow Honey locust Mulberry Slippery elm Box elder Cottonwood Multiflora rose Green ash Hackberry The U.S. Fish and Wildlife Service...flows in the Blanchard River at Ottawa. The Perry Street bridge was removed in 1951 and replaced by a new bridge at Elm Street that is less restrictive...flood plain. The present tree growth commonly consists of a second growth of spe- cies of elm , maple, and oak. All of the Blanchard River basin lies

  7. ISTSOS, SENSOR OBSERVATION MANAGEMENT SYSTEM: A REAL CASE APPLICATION OF HYDRO-METEOROLOGICAL DATA FOR FLOOD PROTECTION

    Directory of Open Access Journals (Sweden)

    M. Cannata

    2014-01-01

    Full Text Available istSOS (Istituto scienze della Terra Sensor Observation Service is an implementation of the Sensor Observation Service standard from Open Geospatial Consortium (OGC. The development of istSOS started in 2009 in order to provide a simple implementation of the Sensor Observation Service (SOS standard for the management, provision and integration of hydro-meteorological data collected in Canton Ticino (Southern Switzerland. istSOS is entirely written in Python and is based on reliable open source software like PostgreSQL/PostGIS and Apache/mod_wsgi. The authors during this presentation want to illustrate the latest software enhancements together with a real case in a production environment. Latest software enhancement includes the development of a RESTful service and of a Web-based graphical user interface that allows hydrologists a better interaction with measurements. This includes the ability of new services creation, addition of new sensors and relative metadata, visualization and manipulation of stored observations, registration of new measures and setting of system properties like observable properties and data quality codes. The study will show a real case application of the system for the provision of data to interregional partners and to a hydrological model for lake level forecasting and flooding hazard assessment. The hydrological model uses a combination of WPS (Web Processing Service and SOS for the generation of model input data. This system is linked with a dedicated geo-portal used by the civil protection for the management, alert and protection of population and assets of the Locarno area (Verbano Lake flooding. Practical considerations and technical issues will be presented and discussed.

  8. A reflection about the social and technological aspects in flood risk management - the case of the Italian Civil Protection

    Science.gov (United States)

    Llasat, M. Del Carmen; Siccardi, F.

    2010-01-01

    The right of a person to be protected from natural hazards is a characteristic of the social and economical development of the society. This paper is a contribution to the reflection about the role of Civil Protection organizations in a modern society. The paper is based in the inaugural conference made by the authors on the 9th Plinius Conference on Mediterranean Storms. Two major issues are considered. The first one is sociological; the Civil Protection organizations and the responsible administration of the land use planning should be perceived as reliable as possible, in order to get consensus on the restrictions they pose, temporary or definitely, on the individual free use of the territory as well as in the entire warning system. The second one is technological: in order to be reliable they have to issue timely alert and warning to the population at large, but such alarms should be as "true" as possible. With this aim, the paper summarizes the historical evolution of the risk assessment, starting from the original concept of "hazard", introducing the concepts of "scenario of event" and "scenario of risk" and ending with a discussion about the uncertainties and limits of the most advanced and efficient tools to predict, to forecast and to observe the ground effects affecting people and their properties. The discussion is centred in the case of heavy rains and flood events in the North-West of Mediterranean Region.

  9. istSOS, a new sensor observation management system: software architecture and a real-case application for flood protection

    Directory of Open Access Journals (Sweden)

    M. Cannata

    2015-11-01

    Full Text Available istSOS (Istituto scienze della Terra Sensor Observation Service is an implementation of the Sensor Observation Service (SOS standard from the Open Geospatial Consortium. The development of istSOS started in 2009 in order to provide a simple implementation of the SOS for the management, provision and integration of hydro-meteorological data collected in Canton Ticino (Southern Switzerland. istSOS is an Open Source, entirely written in Python and based on reliable software like PostgreSQL/PostGIS and Apache/mod_wsgi. This paper illustrates the latest software enhancements, including a RESTful Web service and a Web-based graphical user interface, which enable a better and simplified interaction with measurements and SOS service settings. The robustness of the implemented solution has been validated in a real-case application: the Verbano Lake Early Warning System. In this application, near real-time data have to be exchanged by inter-regional partners and used in a hydrological model for lake level forecasting and flooding hazard assessment. This system is linked with a dedicated geoportal used by the civil protection for the management, alert and protection of the population and the assets of the Locarno area. Practical considerations, technical issues and foreseen improvements are presented and discussed.

  10. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.

    2015-01-01

    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  11. Pittsfield Local Flood Protection, West Branch and Southwest Branch, Housatonic River, Pittsfield, Massachusetts. Detailed Project Report for Water Resources Development.

    Science.gov (United States)

    1980-10-01

    a bakery , a gas station, and the Linden Street bridge were flooded during the March 1977 storm. Flooding also occurred on the Southwest Branch...and service station, one bakery , and five other commercial establishments. Most of these structures are not suited to being elevated above the design...of a shopping plaza and a fast-food franchise in the flood plain on West Housatonic Street (Route 20). The following three alternate plans of

  12. Optimal and centralized reservoir management for drought and flood protection via Stochastic Dual Dynamic Programming on the Upper Seine-Aube River system

    Science.gov (United States)

    Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier

    2015-04-01

    Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.

  13. Structural evaluation of multifunctional flood defenses

    NARCIS (Netherlands)

    Voorendt, M.Z.; Kothuis, Baukje; Kok, Matthijs

    2017-01-01

    Flood risk reduction aims to minimize losses in low-lying areas. One of the ways to reduce flood risks is to protect land by means of flood defenses. The Netherlands has a long tradition of flood protection and, therefore, a wide variety of technical reports written

  14. Constructing risks – Internalisation of flood risks in the flood risk management plan

    NARCIS (Netherlands)

    Roos, Matthijs; Hartmann, T.; Spit, T.J.M.; Johann, Georg

    Traditional flood protection methods have focused efforts on different measures to keep water out of floodplains. However, the European Flood Directive challenges this paradigm (Hartmann and Driessen, 2013). Accordingly, flood risk management plans should incorporate measures brought about by

  15. Flood Stress as a Technique to Assess Preventive Insecticide and Fungicide Treatments for Protecting Trees against Ambrosia Beetles

    Directory of Open Access Journals (Sweden)

    Christopher M. Ranger

    2016-08-01

    Full Text Available Ambrosia beetles tunnel into the heartwood of trees where they cultivate and feed upon a symbiotic fungus. We assessed the effectiveness of flood stress for making Cercis canadensis L. and Cornus florida L. trees attractive to attack as part of insecticide and fungicide efficacy trials conducted in Ohio and Virginia. Since female ambrosia beetles will not begin ovipositing until their symbiotic fungus is established within the host, we also assessed pre-treatment of trees with permethrin, azoxystrobin, and potassium phosphite on fungal establishment and beetle colonization success. Permethrin reduced attacks on flooded trees, yet no attacks occurred on any of the non-flooded trees. Fewer galleries created within flooded trees pre-treated with permethrin, azoxystrobin, and potassium phosphite contained the purported symbiotic fungus; foundress’ eggs were only detected in flooded but untreated trees. While pre-treatment with permethrin, azoxystrobin, and potassium phosphite can disrupt colonization success, maintaining tree health continues to be the most effective and sustainable management strategy.

  16. Flood Label for buildings : a tool for more flood-resilient cities

    NARCIS (Netherlands)

    Hartmann, T.; Scheibel, Marc

    2016-01-01

    River floods are among the most expensive natural disasters in Europe. Traditional flood protection methods are not sufficient anymore. It is widely acknowledged in the scholarly debate and in practice of flood risk management that traditional flood protection measures such as dikes need to be

  17. Unjust waters. Climate change, flooding and the protection of poor urban communities. Experiences from six African cities

    International Nuclear Information System (INIS)

    2007-02-01

    Floods are natural phenomena, but damage and losses from floods are the consequence of human action. The increasing climatic variability, storminess and more frequent flooding driven by climate change will affect poor urban communities far more than other people living in towns and cities. Although driven by human activities ranging from modernisation and development to land degradation by poor farmers and grazing flocks, climate change in Africa has uneven impacts, affecting the poor severely. Flooding in urban areas is not just related to heavy rainfall and extreme climatic events; it is also related to changes in the built-up areas themselves. Urbanisation aggravates flooding by restricting where floods waters can go, by covering large parts of the ground with roofs, roads and pavements, by obstructing sections of natural channels, and by building drains that ensure that water moves to rivers more rapidly than it did under natural conditions. As people crowd into African cities, these human impacts on urban land surfaces and drainage intensify. The proportions of small stream and river catchment areas that are urbanised will increase. As a result, even quite moderate storms now produce quite high flows in rivers because much more of the catchment area supplies direct surface runoff from its hard surfaces and drains. Where streams flow through a series of culverts and concrete channels, they cannot adjust to changes in the frequency of heavy rain as natural streams do. They often get obstructed by silt and urban debris, particularly when houses are built close to the channels. Such situations frequently arise where poor people build their shelters on low-lying flood plains, over swamps or above the tidewater on the coast. The effects of climate change are superimposed on these people-driven local land surface modifications. The links between changes in land use and in heavy rainfall patterns, the frequency and depth of flooding and the problems of the urban poor

  18. The development of flood map in Malaysia

    Science.gov (United States)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto

    2017-11-01

    In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to

  19. Developing a Graphical User Interface to Automate the Estimation and Prediction of Risk Values for Flood Protective Structures using Artificial Neural Network

    Science.gov (United States)

    Hasan, M.; Helal, A.; Gabr, M.

    2014-12-01

    In this project, we focus on providing a computer-automated platform for a better assessment of the potential failures and retrofit measures of flood-protecting earth structures, e.g., dams and levees. Such structures play an important role during extreme flooding events as well as during normal operating conditions. Furthermore, they are part of other civil infrastructures such as water storage and hydropower generation. Hence, there is a clear need for accurate evaluation of stability and functionality levels during their service lifetime so that the rehabilitation and maintenance costs are effectively guided. Among condition assessment approaches based on the factor of safety, the limit states (LS) approach utilizes numerical modeling to quantify the probability of potential failures. The parameters for LS numerical modeling include i) geometry and side slopes of the embankment, ii) loading conditions in terms of rate of rising and duration of high water levels in the reservoir, and iii) cycles of rising and falling water levels simulating the effect of consecutive storms throughout the service life of the structure. Sample data regarding the correlations of these parameters are available through previous research studies. We have unified these criteria and extended the risk assessment in term of loss of life through the implementation of a graphical user interface to automate input parameters that divides data into training and testing sets, and then feeds them into Artificial Neural Network (ANN) tool through MATLAB programming. The ANN modeling allows us to predict risk values of flood protective structures based on user feedback quickly and easily. In future, we expect to fine-tune the software by adding extensive data on variations of parameters.

  20. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    OpenAIRE

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of individuals to undertake flood risk mitigation measures, as well as the public's demand for flood protection, and therefore provide useful insights for flood risk management. This study empirically exa...

  1. Generic results and conclusions of re-evaluating the flooding protection in French and German nuclear power plants

    International Nuclear Information System (INIS)

    Mattei, J.M.; Vial, E.; Rebour, V.

    2001-01-01

    Although the event which occurred at the Blayais site on December 27, 1999 did not lead to a dangerous situation for the local population or the environment, it clearly demonstrated the possible occurrence of modes of degradation of the safety level affecting all the units at a site. As a result, a number of projects were established by the French and German operators that were designed to extract useful lessons concerning the flooding risks at the Blayais site, as well as to upgrade all sites equipped with pressurized water reactors, both in France and Germany. This report presents, on the basis of the circumstances observed at the Blayais site during the course of the flood event of December 27, 1999 (which was the subject of a presentation by IPSN at the Eurosafe 2000 Conference), an evaluation of the initiatives aimed at improving the safety of both the French and the German units from an external flooding risk perspective. The safety approaches used in both countries have not been compared. (authors)

  2. Generic results and conclusions of re-evaluating the flooding protection in French and German nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, J.M.; Vial, E.; Rebour, V. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Liemersdorf, H.; Tuerschmann, M. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2001-07-01

    Although the event which occurred at the Blayais site on December 27, 1999 did not lead to a dangerous situation for the local population or the environment, it clearly demonstrated the possible occurrence of modes of degradation of the safety level affecting all the units at a site. As a result, a number of projects were established by the French and German operators that were designed to extract useful lessons concerning the flooding risks at the Blayais site, as well as to upgrade all sites equipped with pressurized water reactors, both in France and Germany. This report presents, on the basis of the circumstances observed at the Blayais site during the course of the flood event of December 27, 1999 (which was the subject of a presentation by IPSN at the Eurosafe 2000 Conference), an evaluation of the initiatives aimed at improving the safety of both the French and the German units from an external flooding risk perspective. The safety approaches used in both countries have not been compared. (authors)

  3. Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances

    Science.gov (United States)

    Sung, Kyungmin; Jeong, Hanseok; Sangwan, Nikhil; Yu, David J.

    2018-04-01

    A community capacity to cope with flood hazards, or community flood resilience, emerges from the interplay of hydrological and social processes. This interplay can be significantly influenced by the flood control strategy adopted by a society, i.e., how a society sets its desired flood protection level and strives to achieve this goal. And this interplay can be further complicated by rising land-sea level differences, seasonal water level fluctuations, and economic change. But not much research has been done on how various forms of flood control strategies affect human-flood interactions under these disturbances and therefore flood resilience in the long run. The current study is an effort to address these issues by developing a conceptual model of human-flood interaction mediated by flood control strategies. Our model extends the existing model of Yu et al. (2017), who investigated the flood resilience of a community-based flood protection system in coastal Bangladesh. The major extensions made in this study are inclusions of various forms of flood control strategies (both adaptive and nonadaptive ones), the challenge of rising land-sea level differences, and various high tide level scenarios generated from modifying the statistical variances and averages. Our results show that adaptive forms of flood control strategies tend to outperform nonadaptive ones for maintaining the model community's flood protection system. Adaptive strategies that dynamically adjust target flood protection levels through close monitoring of flood damages and social memories of flood risk can help the model community deal with various disturbances.

  4. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  5. Application of State of the Art Modeling Techniques to Predict Flooding and Waves for a Coastal Area within a Protected Bay

    Directory of Open Access Journals (Sweden)

    Malcolm L. Spaulding

    2017-03-01

    Full Text Available Flood Insurance Rate Maps (FIRMs are developed by the Federal Emergency Management Agency (FEMA to provide guidance in establishing the risk to structures and infrastructure from storm surge sand associated waves in the coastal zone. The maps are used by state agencies and municipalities to help guide coastal planning and establish the minimum elevation and construction standards for new or substantially improved structures. A summary of the methods used and a comparison with the results of 2013 FIRM mapping are presented for Warwick, Rhode Island (RI, a coastal community located within Narragansett Bay. Because of its location, Warwick is protected from significant coastal erosion and wave attacks, but is subject to surge amplification. Concerns surrounding the FEMA methods used in the 2013 FIRM analysis are put in context with the National Research Council’s (NRC 2009 review of the FEMA coastal mapping program. New mapping is then performed using state of the art, fully coupled surge and wave modeling, and data analysis methods, to address the NRC concerns. The new maps and methodologies are in compliance with FEMA regulations and guidelines. This new approach makes extensive use of the numerical modeling results from the recent US Army Corp of Engineers, North Atlantic Coast Comprehensive Study (NACCS, 2015. Revised flooding maps are presented and compared to the 2013 FIRM maps, to provide insight into the differences. The new maps highlight the importance of developing better estimates of surge dynamics and the advancement in nearshore mapping of waves in flood inundated areas by the use of state of the art, two-dimensional, wave transformation models.

  6. Rhine Cities - Urban Flood Integration (UFI)

    NARCIS (Netherlands)

    Redeker, C.

    2013-01-01

    While agglomerations along the Rhine are confronted with the uncertainties of an increasing flood risk due to climate change, different programs are claiming urban river front sites. Simultaneously, urban development, flood management, as well as navigation and environmental protection are

  7. The determinants of private flood mitigation measures in Germany - evidence from a nationwide survey

    OpenAIRE

    Osberghaus, Daniel

    2014-01-01

    Public flood protection cannot totally eliminate the risk of flooding. Hence, private mitigation measures which proactively protect homes from being flooded or reduce flood damage are an essential part of modern flood risk management. This study analyses private flood mitigation measures among German households. The dataset covers more than 6000 households from all parts of the country, including flood plains as well as areas which are typically not at a high risk of riverine flooding. The re...

  8. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    Science.gov (United States)

    Hogeboom, Rick J.; Knook, Luuk; Hoekstra, Arjen Y.

    2018-03-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, residential and industrial water supply, flood protection, fishing and recreation, based on their economic value. We estimate that economic benefits from 2235 reservoirs included in this study amount to 265 × 109 US a year, with residential and industrial water supply and hydroelectricity generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (<1% contribution) and evaporation from the reservoir's surface area, and globally adds up to 66 × 109 m3 y-1. The largest share of this water footprint (57%) is located in non-water scarce basins and only 1% in year-round scarce basins. The primary purposes of a reservoir change with increasing water scarcity, from mainly hydroelectricity generation in non-scarce basins, to residential and industrial water supply, irrigation water supply and flood control in scarcer areas.

  9. Application of InSAR to detection of localized subsidence and its effects on flood protection infrastructure in the New Orleans area

    Science.gov (United States)

    Jones, Cathleen; Blom, Ronald; Latini, Daniele

    2014-05-01

    The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of

  10. Rethinking the relationship between flood risk perception and flood management.

    Science.gov (United States)

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  12. Structural master plan of flood mitigation measures

    OpenAIRE

    A. Heidari

    2009-01-01

    Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possi...

  13. Probabilistic Flood Defence Assessment Tools

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available The WTI2017 project is responsible for the development of flood defence assessment tools for the 3600 km of Dutch primary flood defences, dikes/levees, dunes and hydraulic structures. These tools are necessary, as per January 1st 2017, the new flood risk management policy for the Netherlands will be implemented. Then, the seven decades old design practice (maximum water level methodology of 1958 and two decades old safety standards (and maximum hydraulic load methodology of 1996 will formally be replaced by a more risked based approach for the national policy in flood risk management. The formal flood defence assessment is an important part of this new policy, especially for flood defence managers, since national and regional funding for reinforcement is based on this assessment. This new flood defence policy is based on a maximum allowable probability of flooding. For this, a maximum acceptable individual risk was determined at 1/100 000 per year, this is the probability of life loss of for every protected area in the Netherlands. Safety standards of flood defences were then determined based on this acceptable individual risk. The results were adjusted based on information from cost -benefit analysis, societal risk and large scale societal disruption due to the failure of critical infrastructure e.g. power stations. The resulting riskbased flood defence safety standards range from a 300 to a 100 000 year return period for failure. Two policy studies, WV21 (Safety from floods in the 21st century and VNK-2 (the National Flood Risk in 2010 provided the essential information to determine the new risk based safety standards for flood defences. The WTI2017 project will provide the safety assessment tools based on these new standards and is thus an essential element for the implementation of this policy change. A major issue to be tackled was the development of user-friendly tools, as the new assessment is to be carried out by personnel of the

  14. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  15. Urban sprawl and flooding in southern California

    Science.gov (United States)

    Rantz, S.E.

    1970-01-01

    The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.

  16. Crowdsourcing detailed flood data

    Science.gov (United States)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  17. Floods in Colorado

    Science.gov (United States)

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    resulting from a cloudburst rises so quickly that it is usually described as a 'wall of water.' It has a peak duration of only a few minutes, followed by a rapid subsidence. Nearly 90 cloudburst floods in Colorado are described in varying detail in this report. The earliest recorded cloudburst--called at that time a waterspout--occurred in Golden Gate Gulch, July 14, 1872. The 'wall of water' was described as a 'perpendicular breast of 10 or 12 feet.' A cloudburst flood on Kiowa Creek in May 1878 caused the loss of a standard-gage locomotive, and although search was made by means of long metallic rods, the locomotive was never recovered, as bedrock was about 50 feet below the creek bed. All available information relative to floods in Colorado, beginning with the flood of 1826 on the Arkansas River, is presented in this report, although for many of the earlier floods estimates of discharge are lacking. Floods throughout a large part of the State have occurred in 1844, June 1864, June 1884, May 1894, and June 1921. The highest floods of record were on the larger streams and occurred as follows: South Platte River, June 1921; Rio Grande, June 1927; Colorado River, June and July 1884; San Juan River, October 1911. The greatest floods on the plains streams occurred during May and June 1935 and were caused by cloudbursts. Ranchers living in the vicinity noted rainfalls as high as 24 inches in a 13-hour period, measurements being made in a stock tank. The effect of settlement on channel capacities can be clearly traced. When settlement began, and with it the beginning of the livestock industry, the plains were thickly covered with a luxuriant growth of grasses. With the development of the livestock industry the grass cover was grazed so closely that it afforded little protection against erosion during the violent rains and resulting floods. The intensive grazing packed the soil so hard as to increase greatly the percentage of rainfall that entered the streams. This co

  18. The Global Flood Model

    Science.gov (United States)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  19. After the flood is before the next flood - post event review of the Central European Floods of June 2013. Insights, recommendations and next steps for future flood prevention

    Science.gov (United States)

    Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian

    2015-04-01

    In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk

  20. Structural master plan of flood mitigation measures

    Directory of Open Access Journals (Sweden)

    A. Heidari

    2009-01-01

    Full Text Available Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  1. Assessment of nature-based flood defences' implementation potential : development and application of a game theory based method

    NARCIS (Netherlands)

    Janssen, S.K.H.; Hermans, L.M.

    2017-01-01

    Nature-based flood defence (NBFD) by means of vegetated foreshores is an innovative flood protection strategy. In contrasts with traditional hard structures it combines nature and flood protection functions and employs natural dynamics. Introducing such an innovation into actual flood protection

  2. Flood preparedness : thoughts, feelings and intentions of the Dutch public

    NARCIS (Netherlands)

    Terpstra, Teun

    2010-01-01

    Despite the high levels of flood protection in the Netherlands, absolute safety is not guaranteed. Preparing Dutch society for potential flood disasters, including the preparedness of individual citizens, is one of the great challenges in future flood risk management. This thesis is aimed at

  3. FloodProBE: technologies for improved safety of the built environment in relation to flood events

    International Nuclear Information System (INIS)

    Ree, C.C.D.F. van; Van, M.A.; Heilemann, K.; Morris, M.W.; Royet, P.; Zevenbergen, C.

    2011-01-01

    The FloodProBE project started as a FP7 research project in November 2009. Floods, together with wind related storms, are considered the major natural hazard in the EU in terms of risk to people and assets. In order to adapt urban areas (in river and coastal zones) to prevent flooding or to be better prepared for floods, decision makers need to determine how to upgrade flood defences and increasing flood resilience of protected buildings and critical infrastructure (power supplies, communications, water, transport, etc.) and assess the expected risk reduction from these measures. The aim of the FloodProBE-project is to improve knowledge on flood resilience and flood protection performance for balancing investments in flood risk management in urban areas. To this end, technologies, methods and tools for assessment purposes and for the adaptation of new and existing buildings and critical infrastructure are developed, tested and disseminated. Three priority areas are addressed by FloodProBE. These are: (i) vulnerability of critical infrastructure and high-density value assets including direct and indirect damage, (ii) the assessment and reliability of urban flood defences including the use of geophysical methods and remote sensing techniques and (iii) concepts and technologies for upgrading weak links in flood defences as well as construction technologies for flood proofing buildings and infrastructure networks to increase the flood resilience of the urban system. The primary impact of FloodProBE in advancing knowledge in these areas is an increase in the cost-effectiveness (i.e. performance) of new and existing flood protection structures and flood resilience measures.

  4. Flood risk management and ‘fairness’: aspirations and reality

    Directory of Open Access Journals (Sweden)

    Penning-Rowsell Edmund C.

    2016-01-01

    Full Text Available Flood risk management in United Kingdom has been going through a process of rapid change in the last decade or so, no doubt spurred on by a series of very serious floods since the year 2000. These changes affect flood defence and non-structural flood risk management measures alike, and involve a degree of devolution from central government to local communities and regional organisations, as central government seeks to shed responsibilities for policy implementation. This paper discusses three case studies concerning flood defence, property level protection, and flood insurance, set against the framework of “fairness” encapsulated in egalitarian, utilitarian and Rawlsian approaches to social justice. The results show a different pattern in each area, with flood defence moving somewhat towards a Rawlsian approach, but flood insurance and property level protection showing signs of both inefficiency and poor penetration, respectively, particularly with regard to low income residents, especially those in social housing.

  5. Identification and classification of Serbia's historic floods

    Directory of Open Access Journals (Sweden)

    Prohaska Stevan

    2009-01-01

    Full Text Available River flooding in Serbia is a natural phenomenon which largely exceeds the scope of water management and hydraulic engineering, and has considerable impact on the development of Serbian society. Today, the importance and value of areas threatened by floods are among the key considerations of sustainable development. As a result, flood protection techniques and procedures need to be continually refined and updated, following innovations in the fields of science and technology. Knowledge of high flows is key for sizing hydraulic structures and for gauging the cost-effectiveness and safety of the component structures of flood protection systems. However, sizing of hydraulic structures based on computed high flows does not ensure absolute safety; there is a residual flood risk and a risk of structural failure, if a flood exceeds computed levels. In hydrological practice, such floods are often referred to as historic/loads. The goal of this paper is to present a calculation procedure for the objective identification of historic floods, using long, multiple-year series of data on high flows of natural watercourses in Serbia. At its current stage of development, the calculation procedure is based on maximum annual discharges recorded at key monitoring stations of the Hydro-Meteorological Service of Serbia (HMS Serbia. When applied, the procedure results in the identification of specific historic maximum stages/floods (if any at all gauge sites included in the analysis. The probabilistic theory is then applied to assess the statistical significance of each identified historic flood and to classify the historic flood, as appropriate. At the end of the paper, the results of the applied methodology are shown in tabular and graphic form for various Serbian rivers. All identified historic floods are ranked based on their probability of occurrence (i.e., return period.

  6. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Science.gov (United States)

    2010-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  7. Delivering Integrated Flood Risk Management : Governance for collaboration, learning and adaptation

    NARCIS (Netherlands)

    Van Herk, S.

    2014-01-01

    The frequency and consequences of extreme flood events have increased rapidly worldwide in recent decades and climate change and economic growth are likely to exacerbate this trend. Flood protection measures alone cannot accommodate the future frequencies and impacts of flooding. Integrated flood

  8. Delivering Integrated Flood Risk Management: Governance for collaboration, learning and adaptation

    NARCIS (Netherlands)

    Van Herk, S.

    2014-01-01

    The frequency and consequences of extreme flood events have increased rapidly worldwide in recent decades and climate change and economic growth are likely to exacerbate this trend. Flood protection measures alone cannot accommodate the future frequencies and impacts of flooding. Integrated flood

  9. Flood risk control of dams and dykes in middle reach of Huaihe River

    Directory of Open Access Journals (Sweden)

    Zhen-kun MA

    2014-01-01

    Full Text Available Three stochastic mathematical models for calculation of the reservoir flood regulation process, river course flood release, and flood risk rate under flood control were established based on the theory of stochastic differential equations and features of flood control systems in the middle reach of the Huaihe River from Xixian to the Bengbu floodgate, comprehensively considering uncertain factors of hydrology, hydraulics, and engineering control. They were used to calculate the flood risk rate with flood regulation of five key reservoirs, including the Meishan, Xianghongdian, Nianyushan, Mozitan, and Foziling reservoirs in the middle reach of the Huaihe River under different flood frequencies, the flood risk rate with river course flood release under design and check floods for the trunk of the Huaihe River in conjunction with relevant flood storage areas, and the flood risk rate with operation of the Linhuaigang Project under design and check floods. The calculated results show that (1 the five reservoirs can withstand design floods, but the Xianghongdian and Foziling reservoirs will suffer overtopping accidents under check floods; (2 considering the service of flood storage areas under the design flood conditions of the Huaihe River, the mean flood risk rate with flood regulation of dykes and dams from Xixian to the Bengbu floodgate is about 0.2, and the trunk of the Huaihe River can generally withstand design floods; and (3 under a check flood with the flood return period of 1 000 years, the risk rate of overtopping accidents of the Linhuaigang Project is not larger than 0.15, indicating that it has a high flood regulation capacity. Through regulation and application of the flood control system of the Linhuigang Project, the Huaihe River Basin can withstand large floods, and the safety of the protected area can be ensured.

  10. Flooding and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  11. Economic optimization of flood prevention systems in the Netherlands

    NARCIS (Netherlands)

    Tsimopoulou, V.; Kok, M.; Vrijling, J.K.

    2015-01-01

    After the flood disaster of 1953, the Netherlands adopted a rational approach to flood risk management with the use of protection standards determined by means of cost-benefit analysis. Due to scientific and political developments that have recently taken place, an update of the Dutch protection

  12. Flood loss reduction of private households due to building precautionary measures -- lessons learned from the Elbe flood in August 2002

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2005-01-01

    Full Text Available Building houses in inundation areas is always a risk, since absolute flood protection is impossible. Where settlements already exist, flood damage must be kept as small as possible. Suitable means are precautionary measures such as elevated building configuration or flood adapted use. However, data about the effects of such measures are rare, and consequently, the efficiency of different precautionary measures is unclear. To improve the knowledge about efficient precautionary measures, approximately 1200 private households, which were affected by the 2002 flood at the river Elbe and its tributaries, were interviewed about the flood damage of their buildings and contents as well as about their precautionary measures. The affected households had little flood experience, i.e. only 15% had experienced a flood before. 59% of the households stated that they did not know, that they live in a flood prone area. Thus, people were not well prepared, e.g. just 11% had used and furnished their house in a flood adapted way and only 6% had a flood adapted building structure. Building precautionary measures are mainly effective in areas with frequent small floods. But also during the extreme flood event in 2002 building measures reduced the flood loss. From the six different building precautionary measures under study, flood adapted use and adapted interior fitting were the most effective ones. They reduced the damage ratio for buildings by 46% and 53%, respectively. The damage ratio for contents was reduced by 48% due to flood adapted use and by 53% due to flood adapted interior fitting. The 2002 flood motivated a relatively large number of people to implement private precautionary measures, but still much more could be done. Hence, to further reduce flood losses, people's motivation to invest in precaution should be improved. More information campaigns and financial incentives should be issued to encourage precautionary measures.

  13. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab

    2013-10-01

    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  14. Flood damage to historic buildings and structures

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš

    2010-01-01

    Roč. 24, č. 5 (2010), s. 439-445 ISSN 0887-3828 Grant - others:evropská komise(XE) FP6 Project cultural heritage protection against flood CHEF-SSPI-044251 Institutional research plan: CEZ:AV0Z20710524 Keywords : flood impact * historic structures * damage category Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.293, year: 2010

  15. Lessons learned from international flood PSAS in Korea

    International Nuclear Information System (INIS)

    Kim, Myungro; Lee, Beomsu; Kang, Sunkoo

    1998-01-01

    Risk due to internal flooding has been one of the major concerns for the design and operation of nuclear power plants. To reduce the risk from internal flooding, two design approaches for flood protection systems, active and passive, can be considered. The approaches to flood protection design are different for each plant design, and they are highly dependent on the plant type. The flood PSA revealed that the potential plant risk due to a flooding event is highly dependent on the flood design. The major design characteristics are 1) the location of systems that utilize sea water and their impact to other safety related systems, and 2) the existence of emergency overflow paths and an emergency sump which can transfer and accommodate flood water to prevent a significant flooding event. To identify and compare the effectiveness and potential vulnerability of various Korean nuclear power plants' flood designs, the flood PSAs have been performed for three plant designs, such as existing Korean PWR plants, CANDU type PHWR plants, and Korean Standard Nuclear Plants. Based on the evaluation, several design changes were recommended. (author)

  16. Flood Hazard Area

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  17. Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  18. Base Flood Elevation

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  19. Feedback on flood risk management

    Science.gov (United States)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    For several years, as floods were increasing in South of France, local communities felt deprive to assume their mission of protection and information of citizens, and were looking for assistance in flood management. In term of flood disaster, the fact is that physical protection is necessary but inevitably limited. Tools and structures of assistance to anticipation remain slightly developed. To manage repeated crisis, local authorities need to be able to base their policy against flood on prevention, warnings, post-crisis analysis and feedback from former experience. In this objective, after 3 years of test and improvement since 2003, the initiative Predict-Services was developped in South of France: it aims at helping communities and companies to face repeated flood crisis. The principle is to prepare emergency plans, to organize crisis management and reduce risks; to help and assist communities and companies during crisis to activate and adapt their emergency plans with enough of anticipation; and to analyse floods effects and improve emergency plans afterwards. In order to reduce risks, and to keep the benefits of such an initiative, local communities and companies have to maintain the awareness of risk of the citizens and employees. They also have to maintain their safety plans to keep them constantly operational. This is a part of the message relayed. Companies, Local communities, local government authorities and basin stakeholders are the decision makers. Companies and local communities have to involve themselves in the elaboration of safety plans. They are also completely involved in their activation that is their own responsability. This applies to other local government authorities, like districts one's and basin stakeholders, which participle in the financing community safety plans and adminitrative district which are responsible of the transmission of meteorological alert and of rescue actions. In the crossing of the géo-information stemming from the

  20. Long-term experiences with pluvial flood risk management

    Directory of Open Access Journals (Sweden)

    Fritsch Kathrina

    2016-01-01

    Full Text Available The awareness of pluvial (rain-related flood risk has grown significantly in the past few years but pluvial flooding is not handled with the same intensity throughout Europe. A variety of methods and modelling technologies are used to assess pluvial flood hazard and risk and to develop suggestions for flood mitigation measures. A brief overview of current model approaches is followed by the description of a modelling methodology that has been developed throughout the last 15 years with the focus on processing large scale areas. Experiences from several projects show that only high quality models of whole catchment areas yield results with enough accuracy to gain credibility among stakeholders, planners and the public. As a best practice example shows, the model approach also helps to plan effective decentral flood protection measures. To ensure successful flood risk management, a long-term preservation of flood risk awareness among local authorities and the public is necessary.

  1. Reactor safety under design basis flood condition for inland sites

    International Nuclear Information System (INIS)

    Hajela, S.; Bajaj, S.S.; Samota, A.; Verma, U.S.P.; Warudkar, A.S.

    2002-01-01

    Full text: In June 1994, there was an incident of flooding at Kakrapar Atomic Power Station (KAPS) due to combination of heavy rains and mechanical failure in the operation of gates at the adjoining weir. An indepth review of the incident was carried out and a number of flood protection measures were recommended and were implemented at site. As part of this review, a safety analysis was also done to demonstrate reactor safety with a series of failures considered in the flood protection features. For each inland NPP site, as part of design, different flood scenarios are analysed to arrive at design basis flood (DBF) level. This level is estimated based on worst combination of heavy local precipitation, flooding in river, failure of upstream/downstream water control structures

  2. An Agent-Based Model of Evolving Community Flood Risk.

    Science.gov (United States)

    Tonn, Gina L; Guikema, Seth D

    2017-11-17

    Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.

  3. Lessons Learned from Missing Flooding Barriers Operating Experience

    International Nuclear Information System (INIS)

    Simic, Z.; Veira, M. P.

    2016-01-01

    Flooding hazard is highly significant for nuclear power plant safety because of its potential for common cause impact on safety related systems, and because operating experience reviews regularly identify flooding as a cause of concern. Source of the flooding could be external (location) or internal (plant design). The amount of flooding water could vary but even small amount might suffice to affect redundant trains of safety related systems for power supply and cooling. The protection from the flooding is related to the design-basis flood level (DBFL) and it consists of three elements: structural, organizational and accessibility. Determination of the DBFL is critical, as Fukushima Daiichi accident terribly proved. However, as the topic of flooding is very broad, the scope of this paper is focused only on the issues related to the missing flood barriers. Structural measures are physically preventing flooding water to reach or damage safety related system, and they could be permanent or temporary. For temporary measures it is important to have necessary material, equipment and organizational capacity for the timely implementation. Maintenance is important for permanent protection and periodical review is important for assuring readiness and feasibility of temporary flooding protection. Final flooding protection element is assured accessibility to safety related systems during the flooding. Appropriate flooding protection is based on the right implementation of design requirements, proper maintenance and periodic reviews. Operating experience is constantly proving how numerous water sources and systems interactions make flooding protection challenging. This paper is presenting recent related operating experience feedback involving equipment, procedures and analysis. Most frequent deficiencies are: inadequate, degraded or missing seals that would allow floodwaters into safety related spaces. Procedures are inadequate typically because they underestimate necessary

  4. Urban pluvial flood prediction

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer

    2016-01-01

    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numerically both...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0–2 h lead time, and numerical weather models with lead times up to 24 h are used as inputs...... to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on a small town Lystrup in Denmark, which has been flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps...

  5. Flood Hazard Management: British and International Perspectives

    Science.gov (United States)

    James, L. Douglas

    This proceedings of an international workshop at the Flood Hazard Research Centre (Queensway, Enfield, Middlesex, U.K.) begins by noting how past British research on flood problems concentrated on refining techniques to implement established policy. In contrast, research covered in North American and Australian publications involved normative issues on policy alternatives and administrative implementation. The workshop's participants included 16 widely recognized scientists, whose origins were about equally divided between Britain and overseas; from this group the workshop's organizers expertly drew ideas for refining British urban riverine flood hazard management and for cultivating links among researchers everywhere. Such intellectual exchange should be of keen interest to flood hazard program managers around the world, to students of comparative institutional performance, to those who make policy on protecting people from hazards, and to hydrologists and other geophysicists who must communicate descriptive information for bureaucratic, political, and public decision- making.

  6. The framing of two major flood episodes in the Irish print news media: Implications for societal adaptation to living with flood risk.

    Science.gov (United States)

    Devitt, Catherine; O'Neill, Eoin

    2017-10-01

    Societal adaptation to flooding is a critical component of contemporary flood policy. Using content analysis, this article identifies how two major flooding episodes (2009 and 2014) are framed in the Irish broadsheet news media. The article considers the extent to which these frames reflect shifts in contemporary flood policy away from protection towards risk management, and the possible implications for adaptation to living with flood risk. Frames help us make sense of the social world, and within the media, framing is an essential tool for communication. Five frames were identified: flood resistance and structural defences, politicisation of flood risk, citizen as risk manager, citizen as victim and emerging trade-offs. These frames suggest that public debates on flood management do not fully reflect shifts in contemporary flood policy, with negative implications for the direction of societal adaptation. Greater discussion is required on the influence of the media on achieving policy objectives.

  7. FLOOD MENACE IN KADUNA METROPOLIS: IMPACTS ...

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    damage, causes of flooding, human response to flooding and severity of ... from moving out. Source of ... Man responds to flood hazards through adjustment, flood abatement ... action to minimize or ameliorate flood hazards; flood abatement.

  8. Hierarchical Modelling of Flood Risk for Engineering Decision Analysis

    DEFF Research Database (Denmark)

    Custer, Rocco

    protection structures in the hierarchical flood protection system - is identified. To optimise the design of protection structures, fragility and vulnerability models must allow for consideration of decision alternatives. While such vulnerability models are available for large protection structures (e...... systems, as well as the implementation of the flood risk analysis methodology and the vulnerability modelling approach are illustrated with an example application. In summary, the present thesis provides a characterisation of hierarchical flood protection systems as well as several methodologies to model...... and robust. Traditional risk management solutions, e.g. dike construction, are not particularly flexible, as they are difficult to adapt to changing risk. Conversely, the recent concept of integrated flood risk management, entailing a combination of several structural and non-structural risk management...

  9. Validation of a Global Hydrodynamic Flood Inundation Model

    Science.gov (United States)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  10. The contribution of disaster management to integrated flood risk management strategies: lessons learned from the Netherlands

    NARCIS (Netherlands)

    Kolen, B.; van Alphen, J

    2017-01-01

    An integrated flood risk management (IFRM) strategy consist of a comprehensive set of measures to reduce the risk: protective measures (to reduce the probability of a flood), and land use planning and disaster management (to reduce the consequences of a flood. In the Netherlands this is called a

  11. 75 FR 28778 - Magma Flood Retarding Structure (FRS) Supplemental Watershed Plan, Pinal County, AZ

    Science.gov (United States)

    2010-05-24

    ... DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Magma Flood Retarding Structure... statement is not being prepared for the Magma Flood Retarding Structure (FRS) Supplemental Watershed Plan... rehabilitate the Magma FRS to provide for continued flood protection for a portion of the Town of Florence and...

  12. Computational intelligence methods for the efficient reliability analysis of complex flood defence structures

    NARCIS (Netherlands)

    Kingston, Greer B.; Rajabali Nejad, Mohammadreza; Gouldby, Ben P.; van Gelder, Pieter H.A.J.M.

    2011-01-01

    With the continual rise of sea levels and deterioration of flood defence structures over time, it is no longer appropriate to define a design level of flood protection, but rather, it is necessary to estimate the reliability of flood defences under varying and uncertain conditions. For complex

  13. A complete CFD tool for flooding forecasting

    International Nuclear Information System (INIS)

    Nguyen, V.T.; Eberl, H.

    2004-01-01

    Every year, flooding does not only cause property damage of billions of dollars, but also threats to millions of human life around the world. The ability to accurately predict the extreme flooding in urban areas is of obvious importance in order to reduce flooding risks and to improve public safety. In this paper, a complete computational tool is presented that includes pre-processing, meshing, calculating and post-processing modules. The pre-processing procedure is used to interpolate the geometry of the river and floodplains where the data can not be obtained directly from measurements. The meshing procedure is implemented by a triangle mesh generator. The computational procedure is based on a Finite Element Method to discretize the two-dimensional depth-averaged equations for shallow water flow. The post-processing procedure, finally, is interfaced with Geographic Information Systems (GIS), which can serve as a tool for monitoring and as an early warning system. The numerical model is verified and calibrated through many practical projects of flood protection for rivers in Germany. The numerical results show a very good agreement with data from the field survey, as well as data from past flood events. Thus the numerical model can be used as an important tool for flood prediction. (author)

  14. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico

    Science.gov (United States)

    Haer, Toon; Botzen, W. J. Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M.; Ward, Philip J.

    2018-06-01

    Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  15. Flood Finder: Mobile-based automated water level estimation and mapping during floods

    International Nuclear Information System (INIS)

    Pongsiriyaporn, B; Jariyavajee, C; Laoharawee, N; Narkthong, N; Pitichat, T; Goldin, S E

    2014-01-01

    Every year, Southeast Asia faces numerous flooding disasters, resulting in very high human and economic loss. Responding to a sudden flood is difficult due to the lack of accurate and up-to- date information about the incoming water status. We have developed a mobile application called Flood Finder to solve this problem. Flood Finder allows smartphone users to measure, share and search for water level information at specified locations. The application uses image processing to compute the water level from a photo taken by users. The photo must be of a known reference object with a standard size. These water levels are more reliable and consistent than human estimates since they are derived from an algorithmic measuring function. Flood Finder uploads water level readings to the server, where they can be searched and mapped by other users via the mobile phone app or standard browsers. Given the widespread availability of smartphones in Asia, Flood Finder can provide more accurate and up-to-date information for better preparation for a flood disaster as well as life safety and property protection

  16. Discover Floods Educators Guide

    Science.gov (United States)

    Project WET Foundation, 2009

    2009-01-01

    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  17. Flood action plans

    International Nuclear Information System (INIS)

    Slopek, R.J.

    1995-01-01

    Safe operating procedures developed by TransAlta Utilities for dealing with flooding, resulting from upstream dam failures or extreme rainfalls, were presented. Several operating curves developed by Monenco AGRA were described, among them the No Overtopping Curve (NOC), the Safe Filling Curve (SFC), the No Spill Curve (NSC) and the Guaranteed Fill Curve (GFC). The concept of an operational comfort zone was developed and defined. A flood action plan for all operating staff was created as a guide in case of a flooding incident. Staging of a flood action plan workshop was described. Dam break scenarios pertinent to the Bow River were developed for subsequent incorporation into a Flood Action Plan Manual. Evaluation of the technical presentations made during workshops were found them to have been effective in providing operating staff with a better understanding of the procedures that they would perform in an emergency. 8 figs

  18. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  19. A methodology for urban flood resilience assessment

    Science.gov (United States)

    Lhomme, Serge; Serre, Damien; Diab, Youssef; Laganier, Richard

    2010-05-01

    In Europe, river floods have been increasing in frequency and severity [Szöllösi-Nagy and Zevenbergen, 2005]. Moreover, climate change is expected to exacerbate the frequency and intensity of hydro meteorological disaster [IPCC, 2007]. Despite efforts made to maintain the flood defense assets, we often observe levee failures leading to finally increase flood risk in protected area. Furthermore, flood forecasting models, although benefiting continuous improvements, remain partly inaccurate due to uncertainties arising all along data calculation processes. In the same time, the year 2007 marks a turning point in history: half of the world population now lives in cities (UN-Habitat, 2007). Moreover, the total urban population is expected to double from two to four billion over the next 30 to 35 years (United Nations, 2006). This growing rate is equivalent to the creation of a new city of one million inhabitants every week, and this during the next four decades [Flood resilience Group]. So, this quick urban development coupled with technical failures and climate change have increased flood risk and corresponding challenges to urban flood risk management [Ashley et al., 2007], [Nie et al., 2009]. These circumstances oblige to manage flood risk by integrating new concepts like urban resilience. In recent years, resilience has become a central concept for risk management. This concept has emerged because a more resilient system is less vulnerable to risk and, therefore, more sustainable [Serre et al., 2010]. But urban flood resilience is a concept that has not yet been directly assessed. Therefore, when decision makers decide to use the resilience concept to manage urban flood, they have no tool to help them. That is why this paper proposes a methodology to assess urban flood resilience in order to make this concept operational. Networks affect the well-being of the people and the smooth functioning of services and, more generally, of economical activities. Yet

  20. Iowa Flood Information System

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  1. Socio-hydrology: conceptualising human-flood interactions

    Directory of Open Access Journals (Sweden)

    G. Di Baldassarre

    2013-08-01

    Full Text Available Over history, humankind has tended to settle near streams because of the role of rivers as transportation corridors and the fertility of riparian areas. However, human settlements in floodplains have been threatened by the risk of flooding. Possible responses have been to resettle away and/or modify the river system by building flood control structures. This has led to a complex web of interactions and feedback mechanisms between hydrological and social processes in settled floodplains. This paper is an attempt to conceptualise these interplays for hypothetical human-flood systems. We develop a simple, dynamic model to represent the interactions and feedback loops between hydrological and social processes. The model is then used to explore the dynamics of the human-flood system and the effect of changing individual characteristics, including external forcing such as technological development. The results show that the conceptual model is able to reproduce reciprocal effects between floods and people as well as the emergence of typical patterns. For instance, when levees are built or raised to protect floodplain areas, their presence not only reduces the frequency of flooding, but also exacerbates high water levels. Then, because of this exacerbation, higher flood protection levels are required by society. As a result, more and more flooding events are avoided, but rare and catastrophic events take place.

  2. Satellites, tweets, forecasts: the future of flood disaster management?

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.

  3. The Calculation of Flooding Level using CFX Code

    International Nuclear Information System (INIS)

    Oh, Seo Bin; Kim, Keon Yeop; Lee, Hyung Ho

    2015-01-01

    The plant design should consider internal flooding by postulated pipe ruptures, component failures, actuation of spray systems, and improper system alignment. The flooding causes failure of safety-related equipment and affects the integrity of the structure. The safety-related equipment should be installed above the flood level for protection against flooding effects. Conservative estimates of the flood level are important when a DBA occurs. The flooding level can be calculated simply applying Bernoulli's equation. However, in this study, a realistic calculation is performed with ANSYS CFX code. In calculation with CFX, air-core vortex phenomena, and turbulent flow can be simulated, which cannot be calculated analytically. The flooding level is evaluated by analytical calculation and CFX analysis for an assumed condition. The flood level is calculated as 0.71m and 1.1m analytically and with CFX simulation, respectively. Comparing the analytical calculation and simulation, they are similar, but the analytical calculation is not conservative. There are many factors reducing the drainage capacity such as air-core vortex, intake of air, and turbulent flow. Therefore, in case of flood level evaluation by analytical calculation, a sufficient safety margin should be considered

  4. Health impacts of floods.

    Science.gov (United States)

    Du, Weiwei; FitzGerald, Gerard Joseph; Clark, Michele; Hou, Xiang-Yu

    2010-01-01

    Floods are the most common hazard to cause disasters and have led to extensive morbidity and mortality throughout the world. The impact of floods on the human community is related directly to the location and topography of the area, as well as human demographics and characteristics of the built environment. The aim of this study is to identify the health impacts of disasters and the underlying causes of health impacts associated with floods. A conceptual framework is developed that may assist with the development of a rational and comprehensive approach to prevention, mitigation, and management. This study involved an extensive literature review that located >500 references, which were analyzed to identify common themes, findings, and expert views. The findings then were distilled into common themes. The health impacts of floods are wide ranging, and depend on a number of factors. However, the health impacts of a particular flood are specific to the particular context. The immediate health impacts of floods include drowning, injuries, hypothermia, and animal bites. Health risks also are associated with the evacuation of patients, loss of health workers, and loss of health infrastructure including essential drugs and supplies. In the medium-term, infected wounds, complications of injury, poisoning, poor mental health, communicable diseases, and starvation are indirect effects of flooding. In the long-term, chronic disease, disability, poor mental health, and poverty-related diseases including malnutrition are the potential legacy. This article proposes a structured approach to the classification of the health impacts of floods and a conceptual framework that demonstrates the relationships between floods and the direct and indirect health consequences.

  5. Nogales flood detention study

    Science.gov (United States)

    Norman, Laura M.; Levick, Lainie; Guertin, D. Phillip; Callegary, James; Guadarrama, Jesus Quintanar; Anaya, Claudia Zulema Gil; Prichard, Andrea; Gray, Floyd; Castellanos, Edgar; Tepezano, Edgar; Huth, Hans; Vandervoet, Prescott; Rodriguez, Saul; Nunez, Jose; Atwood, Donald; Granillo, Gilberto Patricio Olivero; Ceballos, Francisco Octavio Gastellum

    2010-01-01

    Flooding in Ambos Nogales often exceeds the capacity of the channel and adjacent land areas, endangering many people. The Nogales Wash is being studied to prevent future flood disasters and detention features are being installed in tributaries of the wash. This paper describes the application of the KINEROS2 model and efforts to understand the capacity of these detention features under various flood and urbanization scenarios. Results depict a reduction in peak flow for the 10-year, 1-hour event based on current land use in tributaries with detention features. However, model results also demonstrate that larger storm events and increasing urbanization will put a strain on the features and limit their effectiveness.

  6. Development of flood index by characterisation of flood hydrographs

    Science.gov (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  7. The spatial turn and the scenario approach in flood risk management—Implementing the European Floods Directive in the Netherlands

    Directory of Open Access Journals (Sweden)

    Leon J. van Ruiten

    2016-10-01

    Full Text Available The European Floods Directive requires member states to prepare flood risk management plans for their river catchments. The first generation of those plans was just developed at the end of 2015; the next revision is due in 2021. The new instrument institutionalizes an ongoing paradigm shift from flood protection to flood risk management in Europe. It implies two major governance challenges: the spatial turn and the scenario approach. This contribution studies the implementation of these two governance challenges in the Netherlands, where the paradigm shift is considered to be advanced. Therefore, the spatial turn and the scenario approach are operationalized. The spatial turn consists of three aspects: space for the river, an integrated approach, and beyond structural measures. The scenario approach introduces the vulnerability of society in flood risk management. It is discussed how the challenges of spatial turn and the scenario approach—and thus the shift towards flood risk management—have an effect on the prevailing modes of governance in water management in the Netherlands. This helps understand the tensions and frictions with implementing the plans, but also illustrates how the European Floods Directive institutionalizes the shift towards flood risk management. The analytical scheme, consists mainly of operationalization, can foster future comparative studies with other countries and over time, to trace the changes in approaches to flood risks in Europe.

  8. Channel Shallowing as Mitigation of Coastal Flooding

    Directory of Open Access Journals (Sweden)

    Philip M. Orton

    2015-07-01

    Full Text Available Here, we demonstrate that reductions in the depth of inlets or estuary channels can be used to reduce or prevent coastal flooding. A validated hydrodynamic model of Jamaica Bay, New York City (NYC, is used to test nature-based adaptation measures in ameliorating flooding for NYC's two largest historical coastal flood events. In addition to control runs with modern bathymetry, three altered landscape scenarios are tested: (1 increasing the area of wetlands to their 1879 footprint and bathymetry, but leaving deep shipping channels unaltered; (2 shallowing all areas deeper than 2 m in the bay to be 2 m below Mean Low Water; (3 shallowing only the narrowest part of the inlet to the bay. These three scenarios are deliberately extreme and designed to evaluate the leverage each approach exerts on water levels. They result in peak water level reductions of 0.3%, 15%, and 6.8% for Hurricane Sandy, and 2.4%, 46% and 30% for the Category-3 hurricane of 1821, respectively (bay-wide averages. These results suggest that shallowing can provide greater flood protection than wetland restoration, and it is particularly effective at reducing "fast-pulse" storm surges that rise and fall quickly over several hours, like that of the 1821 storm. Nonetheless, the goal of flood mitigation must be weighed against economic, navigation, and ecological needs, and practical concerns such as the availability of sediment.

  9. Consistency of extreme flood estimation approaches

    Science.gov (United States)

    Felder, Guido; Paquet, Emmanuel; Penot, David; Zischg, Andreas; Weingartner, Rolf

    2017-04-01

    Estimations of low-probability flood events are frequently used for the planning of infrastructure as well as for determining the dimensions of flood protection measures. There are several well-established methodical procedures to estimate low-probability floods. However, a global assessment of the consistency of these methods is difficult to achieve, the "true value" of an extreme flood being not observable. Anyway, a detailed comparison performed on a given case study brings useful information about the statistical and hydrological processes involved in different methods. In this study, the following three different approaches for estimating low-probability floods are compared: a purely statistical approach (ordinary extreme value statistics), a statistical approach based on stochastic rainfall-runoff simulation (SCHADEX method), and a deterministic approach (physically based PMF estimation). These methods are tested for two different Swiss catchments. The results and some intermediate variables are used for assessing potential strengths and weaknesses of each method, as well as for evaluating the consistency of these methods.

  10. HISTORICAL FLOOD RISK MANAGEMENT: SPATIAL EXPANSION OF GHERGHIȚA VILLAGE (LOWER PRAHOVA RIVER

    Directory of Open Access Journals (Sweden)

    IOANA-TOROIMAC GABRIELA

    2015-03-01

    Full Text Available This paper analyses settlements expansion in flood zones during historical time. We focused on the example of Gherghiţa village on Lower Prahova River by using a diachronic study in GIS. It revealed three major periods of extension of Gherghița village and flood risk management: (1 from Middle Age to the end of the 19th century – prevention against floods by expansion outside the flood-prone area; (2 during the major part of the 20th – flood negligence by expansion inside the flood-prone area; (3 at the end of the 20th century and at the beginning of the 21th century – protection against floods by extension inside the flood-prone area with structural measures (i.e. levees. As a consequence, human pressure on Lower Prahova River grew since the beginning of the 20th century, especially for agricultural purposes.

  11. Flood-proof motors

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Marcus [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  12. Floods and Mold Growth

    Science.gov (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  13. FLOODPLAIN, FLOOD COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  14. Flood-proof motors

    International Nuclear Information System (INIS)

    Schmitt, Marcus

    2013-01-01

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  15. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  16. Sustainable flood risk management – What is sustainable?

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Brudler, Sarah; Lerer, Sara Maria

    2016-01-01

    Sustainable flood risk management has to be achieved since flood protection is a fundamental societal service that we must deliver. Based on the discourse within the fields of risk management and sustainable urban water management, we discuss the necessity of assessing the sustainability of flood...... risk management, and propose an evaluation framework for doing so. We argue that it is necessary to include quantitative sustainability measures in flood risk management in order to exclude unsustainable solutions. Furthermore, we use the concept of absolute sustainability to discuss the prospects...... of maintaining current service levels without compromising future generation’s entitlement of services. Discussions on the sustainability of different overall flood risk schemes must take place. Fundamental changes in the approaches will require fundamental changes in the mind-sets of practitioners as well...

  17. Emotions, trust, and perceived risk: affective and cognitive routes to flood preparedness behavior.

    Science.gov (United States)

    Terpstra, Teun

    2011-10-01

    Despite the prognoses of the effects of global warming (e.g., rising sea levels, increasing river discharges), few international studies have addressed how flood preparedness should be stimulated among private citizens. This article aims to predict Dutch citizens' flood preparedness intentions by testing a path model, including previous flood hazard experiences, trust in public flood protection, and flood risk perceptions (both affective and cognitive components). Data were collected through questionnaire surveys in two coastal communities (n= 169, n= 244) and in one river area community (n= 658). Causal relations were tested by means of structural equation modeling (SEM). Overall, the results indicate that both cognitive and affective mechanisms influence citizens' preparedness intentions. First, a higher level of trust reduces citizens' perceptions of flood likelihood, which in turn hampers their flood preparedness intentions (cognitive route). Second, trust also lessens the amount of dread evoked by flood risk, which in turn impedes flood preparedness intentions (affective route). Moreover, the affective route showed that levels of dread were especially influenced by citizens' negative and positive emotions related to their previous flood hazard experiences. Negative emotions most often reflected fear and powerlessness, while positive emotions most frequently reflected feelings of solidarity. The results are consistent with the affect heuristic and the historical context of Dutch flood risk management. The great challenge for flood risk management is the accommodation of both cognitive and affective mechanisms in risk communications, especially when most people lack an emotional basis stemming from previous flood hazard events. © 2011 Society for Risk Analysis.

  18. Mitigating flood exposure

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  19. Influence of risk factors and past events on flood resilience in coastal megacities: Comparative analysis of NYC and Shanghai.

    Science.gov (United States)

    Xian, Siyuan; Yin, Jie; Lin, Ning; Oppenheimer, Michael

    2018-01-01

    Coastal flood protection measures have been widely implemented to improve flood resilience. However, protection levels vary among coastal megacities globally. This study compares the distinct flood protection standards for two coastal megacities, New York City and Shanghai, and investigates potential influences such as risk factors and past flood events. Extreme value analysis reveals that, compared to NYC, Shanghai faces a significantly higher flood hazard. Flood inundation analysis indicates that Shanghai has a higher exposure to extreme flooding. Meanwhile, Shanghai's urban development, population, and economy have increased much faster than NYC's over the last three decades. These risk factors provide part of the explanation for the implementation of a relatively high level of protection (e.g. reinforced concrete sea-wall designed for a 200-year flood return level) in Shanghai and low protection (e.g. vertical brick and stone walls and sand dunes) in NYC. However, individual extreme flood events (typhoons in 1962, 1974, and 1981) seem to have had a greater impact on flood protection decision-making in Shanghai, while NYC responded significantly less to past events (with the exception of Hurricane Sandy). Climate change, sea level rise, and ongoing coastal development are rapidly changing the hazard and risk calculus for both cities and both would benefit from a more systematic and dynamic approach to coastal protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Application of Flood Nomograph for Flood Forecasting in Urban Areas

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee

    2018-01-01

    Full Text Available Imperviousness has increased due to urbanization, as has the frequency of extreme rainfall events by climate change. Various countermeasures, such as structural and nonstructural measures, are required to prepare for these effects. Flood forecasting is a representative nonstructural measure. Flood forecasting techniques have been developed for the prevention of repetitive flood damage in urban areas. It is difficult to apply some flood forecasting techniques using training processes because training needs to be applied at every usage. The other flood forecasting techniques that use rainfall data predicted by radar are not appropriate for small areas, such as single drainage basins. In this study, a new flood forecasting technique is suggested to reduce flood damage in urban areas. The flood nomograph consists of the first flooding nodes in rainfall runoff simulations with synthetic rainfall data at each duration. When selecting the first flooding node, the initial amount of synthetic rainfall is 1 mm, which increases in 1 mm increments until flooding occurs. The advantage of this flood forecasting technique is its simple application using real-time rainfall data. This technique can be used to prepare a preemptive response in the process of urban flood management.

  1. The August 2002 flood in Salzburg / Austria experience gained and lessons learned from the ``Flood of the century''?

    Science.gov (United States)

    Wiesenegger, H.

    2003-04-01

    On the {12th} of August 2002 a low pressure system moved slowly from northern Italy towards Slovakia. It continuously carried moist air from the Mediterranean towards the northern rim of the Alps with the effect of wide-spread heavy rainfall in Salzburg and other parts of Austria. Daily precipitation amounts of 100 - 160 mm, in some parts even more, as well as rainfall intensities of 5 - 10 mm/h , combined with well saturated soils lead to a rare flood with a return period of 100 years and more. This rare hydrological event not only caused a national catastrophe with damages of several Billion Euro, but also endangered more than 200,000 people, and even killed some. As floods are dangerous, life-threatening, destructive, and certainly amongst the most frequent and costly natural disasters in terms of human hardship as well as economic loss, a great effort, therefore, has to be made to protect people against negative impacts of floods. In order to achieve this objective, various regulations in land use planning (flood maps), constructive measurements (river regulations and technical constructions) as well as flood warning systems, which are not suitable to prevent big floods, but offer in-time-warnings to minimize the loss of human lives, are used in Austria. HYDRIS (Hydrological Information System for flood forecasting in Salzburg), a modular river basin model, developed at Technical University Vienna and operated by the Hydrological Service of Salzburg, was used during the August 2002 flood providing accurate 3 to 4 hour forecasts within 3 % of the real peak discharge of the fast flowing River Salzach. The August {12^th}} flood was in many ways an exceptional, very fast happening event which took many people by surprise. At the gauging station Salzburg / Salzach (catchment area 4425 {km^2}) it took only eighteen hours from mean annual discharge (178 {m3/s}) to the hundred years flood (2300 {m3/s}). The August flood made clear, that there is a strong need for

  2. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA

    Science.gov (United States)

    Dierauer, Jennifer; Pinter, Nicholas; Remo, Jonathan W. F.

    2012-07-01

    SummaryOne-dimensional hydraulic modeling and flood-loss modeling were used to test the effectiveness of levee setbacks for flood-loss reduction along the Middle Mississippi River (MMR). Four levee scenarios were assessed: (1) the present-day levee configuration, (2) a 1000 m levee setback, (3) a 1500 m levee setback, and (4) an optimized setback configuration. Flood losses were estimated using FEMA's Hazus-MH (Hazards US Multi-Hazard) loss-estimation software on a structure-by-structure basis for a range of floods from the 2- to the 500-year events. These flood-loss estimates were combined with a levee-reliability model to calculate probability-weighted damage estimates. In the simplest case, the levee setback scenarios tested here reduced flood losses compared to current conditions for large, infrequent flooding events but increased flood losses for smaller, more frequent flood events. These increases occurred because levee protection was removed for some of the existing structures. When combined with buyouts of unprotected structures, levee setbacks reduced flood losses for all recurrence intervals. The "optimized" levee setback scenario, involving a levee configuration manually planned to protect existing high-value infrastructure, reduced damages with or without buyouts. This research shows that levee setbacks in combination with buyouts are an economically viable approach for flood-risk reduction along the study reach and likely elsewhere where levees are widely employed for flood control. Designing a levee setback around existing high-value infrastructure can maximize the benefit of the setback while simultaneously minimizing the costs. The optimized levee setback scenario analyzed here produced payback periods (costs divided by benefits) of less than 12 years. With many aging levees failing current inspections across the US, and flood losses spiraling up over time, levee setbacks are a viable solution for reducing flood exposure and flood levels.

  3. Adige river in Trento flooding map, 1892: private or public risk transfer?

    Science.gov (United States)

    Ranzi, Roberto

    2016-04-01

    For the determination of the flood risk hydrologist and hydraulic engineers focuse their attention mainly to the estimation of physical factors determining the flood hazard, while economists and experts of social sciences deal mainly with the estimation of vulnerability and exposure. The fact that flood zoning involves both hydrological and socio-economic aspects, however, was clear already in the XIX century when the impact of floods on inundated areas started to appear in flood maps, for instance in the UK and in Italy. A pioneering 'flood risk' map for the Adige river in Trento, Italy, was already published in 1892, taking into account in detail both hazard intensity in terms of velocity and depth, frequency of occurrence, vulnerability and economic costs for flood protection with river embankments. This map is likely to be the reinterpreted certainly as a pioneering, and possibly as the first flood risk map for an Italian river and worldwide. Risk levels were divided in three categories and seven sub-categories, depending on flood water depth, velocity, frequency and damage costs. It is interesting to notice the fact that at that time the map was used to share the cost of levees' reparation and enhancement after the severe September 1882 flood as a function of the estimated level of protection of the respective areas against the flood risk. The sharing of costs between public bodies, the railway company and private owners was debated for about 20 years and at the end the public sustained the major costs. This shows how already at that time the economic assessment of structural flood protections was based on objective and rational cost-benefit criteria, that hydraulic risk mapping was perceived by the society as fundamental for the design of flood protection systems and that a balanced cost sharing between public and private was an accepted approach although some protests arose at that time.

  4. Flood-resilient waterfront development in New York City: bridging flood insurance, building codes, and flood zoning.

    Science.gov (United States)

    Aerts, Jeroen C J H; Botzen, W J Wouter

    2011-06-01

    Waterfronts are attractive areas for many-often competing-uses in New York City (NYC) and are seen as multifunctional locations for economic, environmental, and social activities on the interface between land and water. The NYC waterfront plays a crucial role as a first line of flood defense and in managing flood risk and protecting the city from future climate change and sea-level rise. The city of New York has embarked on a climate adaptation program (PlaNYC) outlining the policies needed to anticipate the impacts of climate change. As part of this policy, the Department of City Planning has recently prepared Vision 2020: New York City Comprehensive Waterfront Plan for the over 500 miles of NYC waterfront (NYC-DCP, 2011). An integral part of the vision is to improve resilience to climate change and sea-level rise. This study seeks to provide guidance for advancing the goals of NYC Vision 2020 by assessing how flood insurance, flood zoning, and building code policies can contribute to waterfront development that is more resilient to climate change. © 2011 New York Academy of Sciences.

  5. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-01-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from

  6. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-01-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, creates a growing need for accurate and timely flood maps. This research focussed on creating flood maps using user generated content from Twitter. Twitter data has

  7. Mapping flood hazards under uncertainty through probabilistic flood inundation maps

    Science.gov (United States)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.

    2017-12-01

    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  8. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.

    2013-01-01

    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  9. Exploitation of Documented Historical Floods for Achieving Better Flood Defense

    Directory of Open Access Journals (Sweden)

    Slobodan Kolaković

    2016-01-01

    Full Text Available Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach, involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods has been exploited in this study. The short presentation of the catchment of the Tisza River in this paper is followed by the overview of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of different extreme flood scenarios and to establish the Base Flood Elevation. The calibration has shown that the coefficient of friction in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the expected maximum water levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again. The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.

  10. Improving Global Flood Forecasting using Satellite Detected Flood Extent

    NARCIS (Netherlands)

    Revilla Romero, B.

    2016-01-01

    Flooding is a natural global phenomenon but in many cases is exacerbated by human activity. Although flooding generally affects humans in a negative way, bringing death, suffering, and economic impacts, it also has potentially beneficial effects. Early flood warning and forecasting systems, as well

  11. Flood Risk Assessment Based On Security Deficit Analysis

    Science.gov (United States)

    Beck, J.; Metzger, R.; Hingray, B.; Musy, A.

    Risk is a human perception: a given risk may be considered as acceptable or unac- ceptable depending on the group that has to face that risk. Flood risk analysis of- ten estimates economic losses from damages, but neglects the question of accept- able/unacceptable risk. With input from land use managers, politicians and other stakeholders, risk assessment based on security deficit analysis determines objects with unacceptable risk and their degree of security deficit. Such a risk assessment methodology, initially developed by the Swiss federal authorities, is illustrated by its application on a reach of the Alzette River (Luxembourg) in the framework of the IRMA-SPONGE FRHYMAP project. Flood risk assessment always involves a flood hazard analysis, an exposed object vulnerability analysis, and an analysis combing the results of these two previous analyses. The flood hazard analysis was done with the quasi-2D hydraulic model FldPln to produce flood intensity maps. Flood intensity was determined by the water height and velocity. Object data for the vulnerability analysis, provided by the Luxembourg government, were classified according to their potential damage. Potential damage is expressed in terms of direct, human life and secondary losses. A thematic map was produced to show the object classification. Protection goals were then attributed to the object classes. Protection goals are assigned in terms of an acceptable flood intensity for a certain flood frequency. This is where input from land use managers and politicians comes into play. The perception of risk in the re- gion or country influences the protection goal assignment. Protection goals as used in Switzerland were used in this project. Thematic maps showing the protection goals of each object in the case study area for a given flood frequency were produced. Com- parison between an object's protection goal and the intensity of the flood that touched the object determine the acceptability of the risk and the

  12. Analysis and GIS Mapping of Flooding Hazards on 10 May 2016, Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Hai-Min Lyu

    2016-10-01

    Full Text Available On 10 May 2016, Guangdong Province, China, suffered a heavy rainstorm. This rainstorm flooded the whole city of Guangzhou. More than 100,000 people were affected by the flooding, in which eight people lost their lives. Subway stations, cars, and buses were submerged. In order to analyse the influential factors of this flooding, topographical characteristics were mapped using Digital Elevation Model (DEM by the Geographical Information System (GIS and meteorological conditions were statistically summarised at both the whole city level and the district level. To analyse the relationship between flood risk and urbanization, GIS was also adopted to map the effect of the subway system using the Multiple Buffer operator over the flooding distribution area. Based on the analyses, one of the significant influential factors of flooding was identified as the urbanization degree, e.g., construction of a subway system, which forms along flood-prone areas. The total economic loss due to flooding in city centers with high urbanization has become very serious. Based on the analyses, the traditional standard of severity of flooding hazards (rainfall intensity grade was modified. Rainfall intensity for severity flooding was decreased from 50 mm to 30 mm in urbanized city centers. In order to protect cities from flooding, a “Sponge City” planning approach is recommended to increase the temporary water storage capacity during heavy rainstorms. In addition, for future city management, the combined use of GIS and Building Information Modelling (BIM is recommended to evaluate flooding hazards.

  13. Camp Marmal Flood Study

    Science.gov (United States)

    2012-03-01

    was simulated by means of a broad - crested weir built into the topography of the mesh. There is 0.5 m of freeboard and the width of the weir is 30 m...ER D C/ CH L TR -1 2- 5 Camp Marmal Flood Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp , Steve H. Scott...Camp Marmal Flood Study Jeremy A. Sharp , Steve H. Scott, Mark R. Jourdan, and Gaurav Savant Coastal and Hydraulics Laboratory U.S. Army Engineer

  14. FEMA DFIRM Base Flood Elevations

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally,...

  15. 2013 FEMA Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  16. FEMA DFIRM Flood Hazard Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  17. Base Flood Elevation (BFE) Lines

    Data.gov (United States)

    Department of Homeland Security — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally if...

  18. National Flood Hazard Layer (NFHL)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are...

  19. FEMA 100 year Flood Data

    Data.gov (United States)

    California Natural Resource Agency — The Q3 Flood Data product is a digital representation of certain features of FEMA's Flood Insurance Rate Map (FIRM) product, intended for use with desktop mapping...

  20. 2013 FEMA Flood Control Structures

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  1. FEMA Q3 Flood Data

    Data.gov (United States)

    Kansas Data Access and Support Center — The Q3 Flood Data are derived from the Flood Insurance Rate Maps (FIRMS) published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to...

  2. Determining the Financial Impact of Flood Hazards in Ungaged Basins

    Science.gov (United States)

    Cotterman, K. A.; Gutenson, J. L.; Pradhan, N. R.; Byrd, A.

    2017-12-01

    Many portions of the Earth lack adequate authoritative or in situ data that is of great value in determining natural hazard vulnerability from both anthropogenic and physical perspective. Such locations include the majority of developing nations, which do not possess adequate warning systems and protective infrastructure. The lack of warning and protection from natural hazards make these nations vulnerable to the destructive power of events such as floods. The goal of this research is to demonstrate an initial workflow with which to characterize flood financial hazards with global datasets and crowd-sourced, non-authoritative data in ungagged river basins. This workflow includes the hydrologic and hydraulic response of the watershed to precipitation, characterized by the physics-based modeling application Gridded Surface-Subsurface Hydrologic Analysis (GSSHA) model. In addition, data infrastructure and resources are available to approximate the human impact of flooding. Open source, volunteer geographic information (VGI) data can provide global coverage of elements at risk of flooding. Additional valuation mechanisms can then translate flood exposure into percentage and financial damage to each building. The combinations of these tools allow the authors to remotely assess flood hazards with minimal computational, temporal, and financial overhead. This combination of deterministic and stochastic modeling provides the means to quickly characterize watershed flood vulnerability and will allow emergency responders and planners to better understand the implications of flooding, both spatially and financially. In either a planning, real-time, or forecasting scenario, the system will assist the user in understanding basin flood vulnerability and increasing community resiliency and preparedness.

  3. Impacts of dyke development in flood prone areas in the Vietnamese Mekong Delta to downstream flood hazard

    Science.gov (United States)

    Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan

  4. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-01-01

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  5. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  6. Coastal flooding in Denmark – future outlook

    DEFF Research Database (Denmark)

    Sørensen, C.; Knudsen, P.; Andersen, O. B.

    2014-01-01

    Water loading from all directions due to river discharge, precipitation, groundwater and the sea state (i.e. mean and extreme water levels) need to be carefully considered when dealing with flooding hazards at the coast. Flooding hazard and risk mapping are major topics in low-lying coastal are- ...... this knowledge together to enable a practice-oriented methodology that combines their effects and future sea extremes in hazard and risk mapping and climate change adaptation schemes in Denmark......- as before even considering the adverse effects of climate change and sea level rise (SLR). From an assessment of Danish sea extremes from historical evidence, tide gauge series, and space measurements, we discuss the current and future hazards, exposure, and vulnerability to flooding along the diverse......, land-use, protection measures a.o. that must be taken into account in order to evaluate current and future flooding hazards and management options. We provide examples from Danish case-studies underlining the necessity of including these factors and we outline an interdisciplinary approach to bring...

  7. Design basis flood for nuclear power plants on river sites

    International Nuclear Information System (INIS)

    1983-01-01

    The Guide presents techniques for determining the design basis flood (DBF) to be used for siting nuclear power plants at or near non-tidal reaches of rivers and for protecting nuclear power plants against floods. Since flooding of a nuclear power plant can have repercussions on safety, the DBF is always chosen to have a very low probability of exceedance per annum. The DBF may result from one or more of the following causes: (1) Precipitation, snowmelt; (2) Failure of water control structures, either from seismic or hydrological causes or from faulty operation of these structures; (3) Channel obstruction such as landslide, ice effects, log or debris jams, and effects of vulcanism. Normally the DBF is not less than any recorded or historical flood occurrence. For flood evaluation two types of methods are discussed in this Guide: probabilistic and deterministic. Simple probabilistic methods to determine floods of such low exceedance probability have a great degree of uncertainty and are presented for use only during the site survey. However, the more sophisticated probabilistic methods, the so-called stochastic methods, may give an acceptable result, as outlined in this Guide. The preferred method of evaluating the component of the DBF due to precipitation, as described in this Guide, is the deterministic one, based on the concept of a limit to the probable maximum precipitation (PMP) and on the unit hydrograph technique. Dam failures may generate a flood substantially more severe than that due to precipitation. The methodology for evaluating these types of floods is therefore presented in this Guide. Making allowance for the possible simultaneous occurrence of two or more important flood-producing events is also discussed here. The Guide does not deal with floods caused by sabotage

  8. Floods in a changing climate

    Science.gov (United States)

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  9. Flood Hazards: Communicating Hydrology and Complexity to the Public

    Science.gov (United States)

    Holmes, R. R.; Blanchard, S. F.; Mason, R. R.

    2010-12-01

    Floods have a major impact on society and the environment. Since 1952, approximately 1,233 of 1,931 (64%) Federal disaster declarations were due directly to flooding, with an additional 297 due to hurricanes which had associated flooding. Although the overall average annual number of deaths due to flooding has decreased in the United States, the average annual flood damage is rising. According to the Munich Reinsurance Company in their publication “Schadenspiegel 3/2005”, during 1990s the world experienced as much as $500 billion in economic losses due to floods, highlighting the serious need for continued emphasis on flood-loss prevention measures. Flood-loss prevention has two major elements: mitigation (including structural flood-control measures and land-use planning and regulation) and risk awareness. Of the two, increasing risk awareness likely offers the most potential for protecting lives over the near-term and long-term sustainability in the coming years. Flood-risk awareness and risk-aware behavior is dependent on communication, involving both prescriptive and educational measures. Prescriptive measures (for example, flood warnings and stormwater ordinances) are and have been effective, but there is room for improvement. New communications technologies, particularly social media utilizing mobile, smart phones and text devices, for example, could play a significant role in increasing public awareness of long-term risk and near-term flood conditions. The U.S. Geological Survey (USGS), for example, the Federal agency that monitors the Nation’s rivers, recently released a new service that can better connect the to the public to information about flood hazards. The new service, WaterAlert (URL: http://water.usgs.gov/wateralert/), allows users to set flood notification thresholds of their own choosing for any USGS real-time streamgage. The system then sends emails or text messages to subscribers whenever the threshold conditions are met, as often as the

  10. Establishment and Practical Application of Flood Warning Stage in Taiwan's River

    Science.gov (United States)

    Yang, Sheng-Hsueh; Chia Yeh, Keh-

    2017-04-01

    In the face of extreme flood events or the possible impact of climate change, non-engineering disaster prevention and early warning work is particularly important. Taiwan is an island topography with more than 3,900 meters of high mountains. The length of the river is less than 100 kilometers. Most of the watershed catchment time is less than 24 hours, which belongs to the river with steep slope and rapid flood. Every year in summer and autumn, several typhoon events invade Taiwan. Typhoons often result in rainfall events in excess of 100 mm/hr or 250 mm/3hr. In the face of Taiwan's terrain and extreme rainfall events, flooding is difficult to avoid. Therefore, most of the river has embankment protection, so that people do not have to face every year flooding caused by economic and life and property losses. However, the river embankment protection is limited. With the increase of the hydrological data, the design criteria for the embankment protection standards in the past was 100 year of flood return period and is now gradually reduced to 25 or 50 year of flood return period. The river authorities are not easy to rise the existing embankment height. The safety of the river embankment in Taiwan is determined by the establishment of the flood warning stage to cope with the possible increase in annual floods and the impact of extreme hydrological events. The flood warning stage is equal to the flood control elevation minus the flood rise rate multiply by the flood early warning time. The control elevation can be the top of the embankment, the design flood level of the river, the embankment gap of the river section, the height of the bridge beam bottom, etc. The flood rise rate is consider the factors such as hydrological stochastic and uncertain rainfall and the effect of flood discharge operation on the flood in the watershed catchment area. The maximum value of the water level difference between the two hours or five hours before the peak value of the analysis

  11. Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington

    International Nuclear Information System (INIS)

    Smith, G.A.

    1993-01-01

    Sedimentological study of late Wisconsin, Missoula-flood slack-water sediments deposited along the Columbia and Tucannon Rivers in southern Washington reveals important aspects of flood dynamics. Most flood facies were deposited by energetic flood surges (velocities>6 m/sec) entering protected areas along the flood tract, or flowing up and then directly out of tributary valleys. True still-water facies are less voluminous and restricted to elevations below 230 m. High flood stages attended the initial arrival of the flood wave and were not associated with subsequent hydraulic ponding upslope from channel constrictions. Among 186 flood beds studied in 12 sections, 57% have bioturbated tops, and about half of these bioturbated beds are separated from overlying flood beds by nonflood sediments. A single graded flood bed was deposited at most sites during most floods. Sequences in which 2-9 graded beds were deposited during a single flood are restricted to low elevations. These sequences imply complex, multi-peaked hydrographs in which the first flood surge was generally the largest, and subsequent surges were attenuated by water already present in slack-water areas. Slack-water - sediment stratigraphy suggests a wide range of flood discharges and volumes. Of >40 documented late Wisconsin floods that inundated the Pasco Basin, only about 20 crossed the Palouse-Snake divide. Floods younger than the set-S tephras from Mount St.Helens were generally smaller than earlier floods of late Wisconsin age, although most still crossed the Palouse-Snake divide. These late floods primarily traversed the Cheney-Palouse scabland because stratigraphy of slack-water sediment along the Columbia River implies that the largest flood volumes did not enter the Pasco Basin by way of the Columbia River. 47 refs., 17 figs., 2 tabs

  12. Math Fights Flooding

    NARCIS (Netherlands)

    Besseling, Niels; Bokhove, Onno; Kolechkina, Alla; Molenaar, Jaap; van Nooyen, Ronald; Rottschäfer, Vivi; Stein, Alfred; Stoorvogel, Anton

    2008-01-01

    Due to climate changes that are expected in the coming years, the characteristics of the rainfall will change. This can potentially cause flooding or have negative influences on agriculture and nature. In this research, we study the effects of this change in rainfall and investigate what can be done

  13. Flood model for Brazil

    Science.gov (United States)

    Palán, Ladislav; Punčochář, Petr

    2017-04-01

    Looking on the impact of flooding from the World-wide perspective, in last 50 years flooding has caused over 460,000 fatalities and caused serious material damage. Combining economic loss from ten costliest flood events (from the same period) returns a loss (in the present value) exceeding 300bn USD. Locally, in Brazil, flood is the most damaging natural peril with alarming increase of events frequencies as 5 out of the 10 biggest flood losses ever recorded have occurred after 2009. The amount of economic and insured losses particularly caused by various flood types was the key driver of the local probabilistic flood model development. Considering the area of Brazil (being 5th biggest country in the World) and the scattered distribution of insured exposure, a domain covered by the model was limited to the entire state of Sao Paolo and 53 additional regions. The model quantifies losses on approx. 90 % of exposure (for regular property lines) of key insurers. Based on detailed exposure analysis, Impact Forecasting has developed this tool using long term local hydrological data series (Agencia Nacional de Aguas) from riverine gauge stations and digital elevation model (Instituto Brasileiro de Geografia e Estatística). To provide most accurate representation of local hydrological behaviour needed for the nature of probabilistic simulation, a hydrological data processing focused on frequency analyses of seasonal peak flows - done by fitting appropriate extreme value statistical distribution and stochastic event set generation consisting of synthetically derived flood events respecting realistic spatial and frequency patterns visible in entire period of hydrological observation. Data were tested for homogeneity, consistency and for any significant breakpoint occurrence in time series so the entire observation or only its subparts were used for further analysis. The realistic spatial patterns of stochastic events are reproduced through the innovative use of d-vine copula

  14. Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

    OpenAIRE

    Chia Lin Chan; Yi Ju Yang; Chih Chin Yang

    2011-01-01

    Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall freque...

  15. Flood Impacts on People: from Hazard to Risk Maps

    Science.gov (United States)

    Arrighi, C.; Castelli, F.

    2017-12-01

    The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.

  16. Building regional early flood warning systems by AI techniques

    Science.gov (United States)

    Chang, F. J.; Chang, L. C.; Amin, M. Z. B. M.

    2017-12-01

    Building early flood warning system is essential for the protection of the residents against flood hazards and make actions to mitigate the losses. This study implements AI technology for forecasting multi-step-ahead regional flood inundation maps during storm events. The methodology includes three major schemes: (1) configuring the self-organizing map (SOM) to categorize a large number of regional inundation maps into a meaningful topology; (2) building dynamic neural networks to forecast multi-step-ahead average inundated depths (AID); and (3) adjusting the weights of the selected neuron in the constructed SOM based on the forecasted AID to obtain real-time regional inundation maps. The proposed models are trained, and tested based on a large number of inundation data sets collected in regions with the most frequent and serious flooding in the river basin. The results appear that the SOM topological relationships between individual neurons and their neighbouring neurons are visible and clearly distinguishable, and the hybrid model can continuously provide multistep-ahead visible regional inundation maps with high resolution during storm events, which have relatively small RMSE values and high R2 as compared with numerical simulation data sets. The computing time is only few seconds, and thereby leads to real-time regional flood inundation forecasting and make early flood inundation warning system. We demonstrate that the proposed hybrid ANN-based model has a robust and reliable predictive ability and can be used for early warning to mitigate flood disasters.

  17. Flooding and schools: experiences in Hull in 2007.

    Science.gov (United States)

    Convery, Ian; Carroll, Bob; Balogh, Ruth

    2015-01-01

    Hull, a city in the East Riding of Yorkshire, United Kingdom, suffered severe flooding in June 2007, affecting some 8,600 households and most schools. Despite the potential for damage in such disasters, no studies of the effects of floods on teachers and schools in the UK appear to have been published previously. This study analysed the impacts of the floods on teachers in Hull in two stages: first through correspondence with Hull City Council and a mailed questionnaire to 91 head teachers of primary, secondary, and special schools; and second, through in-depth interviews with head teachers from six flooded schools, representing different degrees of flood experience, and a questionnaire completed by eight teachers from the same schools. The findings reveal the importance and the complexity of the role of the school in the wider community in a time of crisis. The study highlights issues concerning preparedness for floods, support for schools, and flood protection for schools. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  18. Challenges of torrential flood risk management in Serbia

    Directory of Open Access Journals (Sweden)

    Petrović Ana M.

    2015-01-01

    Full Text Available Torrential floods are the natural hydrological hazards manifesting as a consequence of extreme rainfall episodes which have a quick response from the watersheds of small areas, steep slopes and intensive soil erosion. Taking in consideration the nature of torrential flood (sudden and destructive occurrence and the fact they are the most frequent natural hazards in Serbia, torrential flood risk management is a real challenge. Instead of partial solutions for flood protection, integrated torrential flood risk management is more meaningful and effective. The key steps should be an improvement of the legal framework on national level and an expansion of technical and biological torrent control works in river basins. Consequences for society can be significantly reduced if there is an efficient forecast and timely warning, rescue and evacuation and if affected population is educated about flood risks and measures which can be undertaken in case of emergency situation. In this paper, all aspects of torrential flood risk management are analyzed. [Projekat Ministarstva nauke Republike Srbije, br. 47007 III

  19. Dealing with Uncertainty in Flood Management Through Diversification

    Directory of Open Access Journals (Sweden)

    Jeroen C. J. H. Aerts

    2008-06-01

    Full Text Available This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands. The paper shows a method based on Modern Portfolio Theory (MPT that contributes to developing flood management strategies. MPT aims at finding sets of investments that diversify risks thereby reducing the overall risk of the total portfolio of investments. This paper shows that through systematically combining four different flood protection measures in portfolios containing three or four measures; risk is reduced compared with portfolios that only contain one or two measures. Adding partly uncorrelated measures to the portfolio diversifies risk. We demonstrate how MPT encourages a systematic discussion of the relationship between the return and risk of individual flood mitigation activities and the return and risk of complete portfolios. It is also shown how important it is to understand the correlation of the returns of various flood management activities. The MPT approach, therefore, fits well with the notion of adaptive water management, which perceives the future as inherently uncertain. Through applying MPT on flood protection strategies current vulnerability will be reduced by diversifying risk.

  20. Flood Risk in Australia: Whose Responsibility Is It, Anyway?

    Directory of Open Access Journals (Sweden)

    Robin van den Honert

    2013-10-01

    Full Text Available This paper presents research into four key stakeholders in flood risk management in Australia: local councils, the insurance industry, the State Emergency Service (SES, and local residents; examining the perception of their own roles and responsibilities, and those of the other stakeholders. Key informant interviews were conducted in four locations—Brisbane and Emerald, in Queensland, Dora Creek, in New South Wales, and Benalla, in Victoria. We find that understanding of the roles and responsibilities of each stakeholder varied considerably between research participants. Insurance representatives felt their concerns about increasing flood risk costs were unheeded until the 2010–2011 floods made them the “canary in the coal mine”. Councils felt they had limited options for reducing flood risk. SES representatives felt they were too relied upon for event response, with requests for assistance outstripping their capacity to assist, and many residents were uncertain how to prepare for flood, relying on emergency agencies and the local council to protect them. Key lessons for flood risk management in Australia are (a an urgent need for all stakeholders to better understand each others’ roles and responsibilities; and (b residents must take greater responsibility for their own personal protection. Only then can the vision of shared responsibility presented by the 2009 National Strategy for Disaster Resilience be achieved.

  1. Disruption and adaptation of urban transport networks from flooding

    Directory of Open Access Journals (Sweden)

    Pregnolato Maria

    2016-01-01

    Full Text Available Transport infrastructure networks are increasingly vulnerable to disruption from extreme rainfall events due to increasing surface water runoff from urbanization and changes in climate. Impacts from such disruptions typically extend far beyond the flood footprint, because of the interconnection and spatial extent of modern infrastructure. An integrated flood risk assessment couples high resolution information on depth and velocity from the CityCAT urban flood model with empirical analysis of vehicle speeds in different depths of flood water, to perturb a transport accessibility model and determine the impact of a given event on journey times across the urban area. A case study in Newcastle-upon-Tyne (UK shows that even minor flooding associate with a 1 in 10 year event can cause traffic disruptions of nearly half an hour. Two adaptation scenarios are subsequently tested (i hardening (i.e. flood protection a single major junction, (ii introduction of green roofs across all buildings. Both options have benefits in terms of reduced disruption, but for a 1 in 200 year event greening all roofs in the city provided only three times the benefit of protecting one critical road junction, highlighting the importance of understanding network attributes such as capacity and flows.

  2. The future of flood insurance in the UK

    Science.gov (United States)

    Horn, Diane

    2013-04-01

    Approximately one in seven properties in the UK (3.6 million homes and businesses) are at risk of flooding. The Adaptation Sub-Committee of the UK Committee on Climate Change reported in 2012 that development on the floodplain grew at a faster rate than elsewhere in England over the past ten years, with one in five properties in the floodplain in areas of significant risk. They concluded that current levels of investment will not keep pace with the increasing risk, noting that without additional action, climate change could almost double the number of properties at significant risk by 2035. Flood insurance can contribute to risk reduction by using pricing or restrictions on availability of cover to discourage new development in flood risk areas, or to encourage the uptake of flood resilience measures. The UK insurance market currently offers flood cover as a standard feature of domestic and small business policies, with central government providing physical protection backed up by financial protection provided by the insurance industry. This approach is unusual in not passing all or part of the flood risk to government schemes. At present, flood insurance in the UK is conducted under a series of informal agreements established between the insurance industry and the Government known as the Statement of Principles. Members of the Association of British Insurers (ABI) currently agree to cover homes at risk of flooding in return for government commitment to manage flood risk. However, this arrangement is now under threat, as the insurance industry is increasingly reluctant to bear the financial burden of flooding alone. The current Statement of Principles ends on 30 June 2013 and will not be renewed. High-risk properties may be unable to obtain insurance after the Statement of Principles expires. Unusually, insurers are arguing against a free market solution, arguing that no country in the world provides universal flood cover without some form of government-led support

  3. GIS Support for Flood Rescue

    DEFF Research Database (Denmark)

    Liang, Gengsheng; Mioc, Darka; Anton, François

    2007-01-01

    Under flood events, the ground traffic is blocked in and around the flooded area due to damages to roads and bridges. The traditional transportation network may not always help people to make a right decision for evacuation. In order to provide dynamic road information needed for flood rescue, we...... to retrieve the shortest and safest route in Fredericton road network during flood event. It enables users to make a timely decision for flood rescue. We are using Oracle Spatial to deal with emergency situations that can be applied to other constrained network applications as well....... developed an adaptive web-based transportation network application using Oracle technology. Moreover, the geographic relationships between the road network and flood areas are taken into account. The overlay between the road network and flood polygons is computed on the fly. This application allows users...

  4. Numerical simulation of flood barriers

    Science.gov (United States)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  5. Flood risk management in Italy: challenges and opportunities for the implementation of the EU Floods Directive (2007/60/EC)

    Science.gov (United States)

    Mysiak, J.; Testella, F.; Bonaiuto, M.; Carrus, G.; De Dominicis, S.; Ganucci Cancellieri, U.; Firus, K.; Grifoni, P.

    2013-11-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina (1987), Piedmont (1994), Crotone (1996), Sarno (1998), Soverato (2000), and Piedmont (2000) events have contributed to shaping the country's flood risk governance. Insufficient resources and capacity, slow implementation of the (at that time) novel risk prevention and protection framework, embodied in the law 183/89 of 18 May 1989, increased the reliance on the response and recovery operations of the civil protection. As a result, the importance of the Civil Protection Mechanism and the relative body of norms and regulation developed rapidly in the 1990s. In the aftermath of the Sarno (1998) and Soverato (2000) disasters, the Department for Civil Protection (DCP) installed a network of advanced early warning and alerting centres, the cornerstones of Italy's preparedness for natural hazards and a best practice worth following. However, deep convective clouds, not uncommon in Italy, producing intense rainfall and rapidly developing localised floods still lead to considerable damage and loss of life that can only be reduced by stepping up the risk prevention efforts. The implementation of the EU Floods Directive (2007/60/EC) provides an opportunity to revise the model of flood risk governance and confront the shortcomings encountered during more than 20 yr of organised flood risk management. This brief communication offers joint recommendations towards this end from three projects funded by the 2nd CRUE ERA-NET (http://www.crue-eranet.net/) Funding Initiative: FREEMAN, IMRA and URFlood.

  6. FINANCING OF THE FLOOD DEFENSE IN DABULENI-CETATE AREA

    Directory of Open Access Journals (Sweden)

    Dorin COSMA

    2014-11-01

    Full Text Available Danube River Basin has been frequently affected by floods in the last decades which often gained historical meanings, the latest being recorded in 2006 and 2013. The material losses were very high and on the Cetate-Dabuleni sector of the Danube river, after the floods of 2006 the dikes have been damaged and partially destroyed. In the end the Rast locality was almost total relocated. Following these events, we need to rebuild the flood defense infrastructure in the Lower Danube, but after the first assessment the costs are very high. With this paper we propose the ways of funding the flood protection works on the Lower Danube, research being done on the Cetate-Dabuleni Danube's sector.

  7. Flood Catastrophe Model for Designing Optimal Flood Insurance Program: Estimating Location-Specific Premiums in the Netherlands.

    Science.gov (United States)

    Ermolieva, T; Filatova, T; Ermoliev, Y; Obersteiner, M; de Bruijn, K M; Jeuken, A

    2017-01-01

    As flood risks grow worldwide, a well-designed insurance program engaging various stakeholders becomes a vital instrument in flood risk management. The main challenge concerns the applicability of standard approaches for calculating insurance premiums of rare catastrophic losses. This article focuses on the design of a flood-loss-sharing program involving private insurance based on location-specific exposures. The analysis is guided by a developed integrated catastrophe risk management (ICRM) model consisting of a GIS-based flood model and a stochastic optimization procedure with respect to location-specific risk exposures. To achieve the stability and robustness of the program towards floods with various recurrences, the ICRM uses stochastic optimization procedure, which relies on quantile-related risk functions of a systemic insolvency involving overpayments and underpayments of the stakeholders. Two alternative ways of calculating insurance premiums are compared: the robust derived with the ICRM and the traditional average annual loss approach. The applicability of the proposed model is illustrated in a case study of a Rotterdam area outside the main flood protection system in the Netherlands. Our numerical experiments demonstrate essential advantages of the robust premiums, namely, that they: (1) guarantee the program's solvency under all relevant flood scenarios rather than one average event; (2) establish a tradeoff between the security of the program and the welfare of locations; and (3) decrease the need for other risk transfer and risk reduction measures. © 2016 Society for Risk Analysis.

  8. Realistic modelling of external flooding scenarios - A multi-disciplinary approach

    International Nuclear Information System (INIS)

    Brinkman, J.L.

    2014-01-01

    Extreme phenomena, such as storm surges or high river water levels, may endanger the safety of nuclear power plants (NPPs) by inundation of the plant site with subsequent damage on safety-related buildings. Flooding may result in simultaneous failures of safety-related components, such as service water pumps and electrical equipment. In addition, the accessibility of the plant may be impeded due to flooding of the plant environment. These consequences are so severe that, (re)assessments of flood risk and flood protection measures should be based on accurate state-of-the-art methods. Dutch nuclear regulations require that a nuclear power plant shall withstand all external initiating events with a return period lower than one million years. For external flooding, this requirement is the basis of the so-called nuclear design level (nucleair ontwerp peil, NOP) of the buildings for external flooding, i.e. the water level at which a system - among others, the nuclear island and the ultimate heat sink - should still function properly. In determining the NOP, the mean water level, wave height and wave behaviour during storm surges are taken into account. This concept could also be used to implement external flooding in a PSA, by assuming that floods exceeding NOP levels directly lead to core damage. However, this straightforward modelling ignores some important aspects: the first is the mitigating effect of the external flood protection as dikes or dunes; the second aspect is that although water levels lower than NOP will not directly lead to core damage, they could do so indirectly as a result of combinations of system loss by flooding and random failure of required safety systems that have to bring the plant in a safe, stable state. Time is a third aspect: failure mechanisms need time to develop and time (via duration of the flood) determines the amount of water on site. This paper describes a PSA approach that takes the (structural) reliability of the external defences

  9. Citizen involvement in flood risk governance: flood groups and networks

    Directory of Open Access Journals (Sweden)

    Twigger-Ross Clare

    2016-01-01

    Full Text Available Over the past decade has been a policy shift withinUK flood risk management towards localism with an emphasis on communities taking ownership of flood risk. There is also an increased focus on resilience and, more specifically, on community resilience to flooding. This paper draws on research carried out for UK Department for Environment Food and Rural Affairs to evaluate the Flood Resilience Community Pathfinder (FRCP scheme in England. Resilience is conceptualised as multidimensional and linked to exisiting capacities within a community. Creating resilience to flooding is an ongoing process of adaptation, learning from past events and preparing for future risks. This paper focusses on the development of formal and informal institutions to support improved flood risk management: institutional resilience capacity. It includes new institutions: e.g. flood groups, as well as activities that help to build inter- and intra- institutional resilience capacity e.g. community flood planning. The pathfinder scheme consisted of 13 projects across England led by local authorities aimed at developing community resilience to flood risk between 2013 – 2015. This paper discusses the nature and structure of flood groups, the process of their development, and the extent of their linkages with formal institutions, drawing out the barriers and facilitators to developing institutional resilience at the local level.

  10. Study of flood defense structural measures priorities using Compromise Programming technique

    Science.gov (United States)

    Lim, D.; Jeong, S.

    2017-12-01

    Recent climate change of global warming has led to the frequent occurrence of heavy regional rainfalls. As such, inundation vulnerability increases in urban areas with high population density due to the low runoff carrying capacity. This study selects a sample area (Janghang-eup, the Republic of Korea), which is one of the most vulnerable areas to flooding, analyzing the urban flood runoff model (XP-SWMM) and using the MCDM (Multi-Criteria Decision Making) technique to establish flood protection structural measures. To this end, we compare the alternatives and choose the optimal flood defense measure: our model is utilized with three flood prevention structural measures; (i) drainage pipe construction; (ii) water detention; and (iii) flood pumping station. Dividing the target area into three small basins, we propose flood evaluations for an inundation decrease by studying the flooded area, the maximum inundation depth, the damaged residential area, and the construction cost. In addition, Compromise Programming determines the priority of the alternatives. As a consequent, this study suggests flood pumping station for Zone 1 and drainage pipe construction for Zone 2 and Zone 3, respectively, as the optimal flood defense alternative. Keywords : MCDM; Compromise Programming; Urban Flood Prevention; This research was supported by a grant [MPSS-DP-2013-62] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  11. Flood risk in a changing world - a coupled transdisciplinary modelling framework for flood risk assessment in an Alpine study area

    Science.gov (United States)

    Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine

    2017-04-01

    Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the

  12. Hydrologic and nutrient response of groundwater to flooding of cranberry farms in southeastern Massachusetts, USA

    Science.gov (United States)

    Seasonal flooding of cranberry farms is essential for long-term sustainability of cranberry production in southeastern Massachusetts, with roughly 90% of growers flooding for fall harvesting and winter protection. Although considered a significant source of recharge to the regional unconfined aquif...

  13. Improving the allocation of flood-risk interventions from a spatial quality perspective

    NARCIS (Netherlands)

    Nillesen, A.L.

    2014-01-01

    This paper describes an integral approach to flood-risk protection and spatial design that allows for an active involvement of landscape architects and urban designers in the allocation of flood-risk interventions within the Dutch Delta. The Dutch Rijnmond–Drechtsteden area is used as a case study

  14. Get ready for the flood! Risk-handling styles in Jakarta, Indonesia

    NARCIS (Netherlands)

    van Voorst, R.S.

    2014-01-01

    How do people protect their physical and mental well-being when their assets and health are continually threatened by river flooding? How can we understand their practices in anticipation of, during, or right after floods? These are the main questions that have led to my anthropological PhD-research

  15. Future flood risk estimates along the river Rhine

    Directory of Open Access Journals (Sweden)

    A. H. te Linde

    2011-02-01

    Full Text Available In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine basin. To optimize spatial planning and flood management measures, studies are needed that quantify future flood risks and estimate their uncertainties. In this paper, we estimated the current and future fluvial flood risk in 2030 for the entire Rhine basin in a scenario study. The change in value at risk is based on two land-use projections derived from a land-use model representing two different socio-economic scenarios. Potential damage was calculated by a damage model, and changes in flood probabilities were derived from two climate scenarios and hydrological modeling. We aggregated the results into seven sections along the Rhine. It was found that the annual expected damage in the Rhine basin may increase by between 54% and 230%, of which the major part (~ three-quarters can be accounted for by climate change. The highest current potential damage can be found in the Netherlands (110 billion €, compared with the second (80 billion € and third (62 billion € highest values in two areas in Germany. Results further show that the area with the highest fluvial flood risk is located in the Lower Rhine in Nordrhein-Westfalen in Germany, and not in the Netherlands, as is often perceived. This is mainly due to the higher flood protection standards in the Netherlands as compared to Germany.

  16. Geological setting control of flood dynamics in lowland rivers (Poland).

    Science.gov (United States)

    Wierzbicki, Grzegorz; Ostrowski, Piotr; Falkowski, Tomasz; Mazgajski, Michał

    2018-04-27

    We aim to answer a question: how does the geological setting affect flood dynamics in lowland alluvial rivers? The study area covers three river reaches: not trained, relatively large on the European scale, flowing in broad valleys cut in the landscape of old glacial plains. We focus on the locations where levees [both: a) natural or b) artificial] were breached during flood. In these locations we identify (1) the erosional traces of flood (crevasse channels) on the floodplain displayed on DEM derived from ALS LIDAR. In the main river channel, we perform drillings in order to measure the depth of the suballuvial surface and to locate (2) the protrusions of bedrock resistant to erosion. We juxtapose on one map: (1) the floodplain geomorphology with (2) the geological data from the river channel. The results from each of the three study reaches are presented on maps prepared in the same manner in order to enable a comparison of the regularities of fluvial processes written in (1) the landscape and driven by (2) the geological setting. These processes act in different river reaches: (a) not embanked and dominated by ice jam floods, (b) embanked and dominated by rainfall and ice jam floods. We also analyse hydrological data to present hydrodynamic descriptions of the flood. Our principal results indicate similarity of (1) distinctive erosional patterns and (2) specific geological features in all three study reaches. We draw the conclusion: protrusions of suballuvial bedrock control the flood dynamics in alluvial rivers. It happens in both types of rivers. In areas where the floodplain remains natural, the river inundates freely during every flood. In other areas the floodplain has been reclaimed by humans who constructed an artificial levee system, which protects the flood-prone area from inundation, until levee breach occurs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Floods and tsunamis.

    Science.gov (United States)

    Llewellyn, Mark

    2006-06-01

    Floods and tsunamis cause few severe injuries, but those injuries can overwhelm local areas, depending on the magnitude of the disaster. Most injuries are extremity fractures, lacerations, and sprains. Because of the mechanism of soft tissue and bone injuries, infection is a significant risk. Aspiration pneumonias are also associated with tsunamis. Appropriate precautionary interventions prevent communicable dis-ease outbreaks. Psychosocial health issues must be considered.

  18. Identification of flood-rich and flood-poor periods in flood series

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2015-04-01

    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  19. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    Science.gov (United States)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  20. Flood Risk Assessment as a Part of Integrated Flood and Drought Analysis. Case Study: Southern Thailand

    Science.gov (United States)

    Prabnakorn, Saowanit; Suryadi, Fransiscus X.; de Fraiture, Charlotte

    2015-04-01

    Flood and drought are two main meteorological catastrophes that have created adverse consequences to more than 80% of total casualties universally, 50% by flood and 31% by drought. Those natural hazards have the tendency of increasing frequency and degree of severity and it is expected that climate change will exacerbate their occurrences and impacts. In addition, growing population and society interference are the other key factors that pressure on and exacerbate the adverse impacts. Consequently, nowadays, the loss from any disasters becomes less and less acceptable bringing about more people's consciousness on mitigation measures and management strategies and policies. In general, due to the difference in their inherent characteristics and time occurrences flood and drought mitigation and protection have been separately implemented, managed, and supervised by different group of authorities. Therefore, the objective of this research is to develop an integrated mitigation measure or a management policy able to surmount both problems to acceptable levels and is conveniently monitored by the same group of civil servants which will be economical in both short- and long-term. As aforementioned of the distinction of fundamental peculiarities and occurrence, the assessment processes of floods and droughts are separately performed using their own specific techniques. In the first part of the research flood risk assessment is focused in order to delineate the flood prone area. The study area is a river plain in southern Thailand where flooding is influenced by monsoon and depression. The work is mainly concentrated on physically-based computational modeling and an assortment of tools was applied for: data completion, areal rainfall interpolation, statistical distribution, rainfall-runoff analysis and flow model simulation. The outcome from the simulation can be concluded that the flood prone areas susceptible to inundation are along the riparian areas, particularly at the

  1. Swiss Re Global Flood Hazard Zones: Know your flood risk

    Science.gov (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  2. Gauging Flash-Floods: Automated Measurement of Flood Events in Mountain Torrents

    Science.gov (United States)

    Liechti, Katharina; Boss, Stefan; Fritschi, Bruno; Zappa, Massimiliano

    2017-04-01

    Rating curves contain uncertainties, especially in their upper range of higher discharge. This is due to more uncertainties in the measurements and also the typically lower number of measurements of high discharge events. However, it is the upper part of a rating curve that is of interest if it comes to dimensioning protection measures against floods and flash floods. For small municipalities who plan mitigation measures like a dam for protection against flash floods of small mountain torrent a rating curve as accurate as possible can be of great interest. It helps to reduce costs that can be caused by both under- and overdimensioning of a protective structure. We therefore invented a mobile discharge measurement station that is set up to construct a rating curve for small turbulent mountain torrents. It operates with salt dilution method and works in its current setup up to about 10 m3/s. The salt is injected automatically to the torrent when an event of desired magnitude takes place. Further downstream a conductivity measuring sensor records the change in salt concentration of the stream water. This mechanism is guided by automatic continuous observation of radar quantitative precipitation estimates (QPE) and a water pressure sensor. Measurements at a first test site gave promising results. The system does event measurements independent of the time of day and day of the week. The measuring equipment at the field site is only activated in case of an event. Therefore it has a low power consumption and can be run by only two solar panels.

  3. Impacts of adaptive flood management strategies on the Socio-Hydrological system in Ganges - Brahmaputra river basin, Bangladesh

    Science.gov (United States)

    Sung, K.; Jeong, H.; Sangwan, N.; Yu, D. J.

    2017-12-01

    Human societies have tried to prevent floods by building robust infrastructure such as levees or dams. However, some scholars raise a doubt to this approach because of a lack of adaptiveness to environmental and societal changes in a long-term. Thus, a growing number of studies now suggest adopting new strategies in flood management to reinforce an adapt capacity to the long-term flood risk. This study addresses this issue by developing a conceptual mathematical model exploring how flood management strategies effect to the dynamics human-flood interaction, ultimately the flood resilience in a long-term. Especially, our model is motivated by the community-based flood protection system in southwest coastal area in Bangladesh. We developed several conceptual flood management strategies and investigated the interplay between those strategies and community's capacity to cope with floods. We additionally analyzed how external disturbances (sea level rise, water tide level change, and outside economic development) alter the adaptive capacity to flood risks. The results of this study reveal that the conventional flood management has potential vulnerabilities as external disturbances increase. Our results also highlight the needs of the adaptive strategy as a new paradigm in flood management which is able to feedback to the social and hydrological conditions. These findings provide insights on the resilience-based, adaptive strategies which can build flood resilience under global change.

  4. Recent advances in flood forecasting and flood risk assessment

    Directory of Open Access Journals (Sweden)

    G. Arduino

    2005-01-01

    Full Text Available Recent large floods in Europe have led to increased interest in research and development of flood forecasting systems. Some of these events have been provoked by some of the wettest rainfall periods on record which has led to speculation that such extremes are attributable in some measure to anthropogenic global warming and represent the beginning of a period of higher flood frequency. Whilst current trends in extreme event statistics will be difficult to discern, conclusively, there has been a substantial increase in the frequency of high floods in the 20th century for basins greater than 2x105 km2. There is also increasing that anthropogenic forcing of climate change may lead to an increased probability of extreme precipitation and, hence, of flooding. There is, therefore, major emphasis on the improvement of operational flood forecasting systems in Europe, with significant European Community spending on research and development on prototype forecasting systems and flood risk management projects. This Special Issue synthesises the most relevant scientific and technological results presented at the International Conference on Flood Forecasting in Europe held in Rotterdam from 3-5 March 2003. During that meeting 150 scientists, forecasters and stakeholders from four continents assembled to present their work and current operational best practice and to discuss future directions of scientific and technological efforts in flood prediction and prevention. The papers presented at the conference fall into seven themes, as follows.

  5. Public perception of flood risks, flood forecasting and mitigation

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2005-01-01

    Full Text Available A multidisciplinary and integrated approach to the flood mitigation decision making process should provide the best response of society in a flood hazard situation including preparation works and post hazard mitigation. In Slovenia, there is a great lack of data on social aspects and public response to flood mitigation measures and information management. In this paper, two studies of flood perception in the Slovenian town Celje are represented. During its history, Celje was often exposed to floods, the most recent serious floods being in 1990 and in 1998, with a hundred and fifty return period and more than ten year return period, respectively. Two surveys were conducted in 1997 and 2003, with 157 participants from different areas of the town in the first, and 208 in the second study, aiming at finding the general attitude toward the floods. The surveys revealed that floods present a serious threat in the eyes of the inhabitants, and that the perception of threat depends, to a certain degree, on the place of residence. The surveys also highlighted, among the other measures, solidarity and the importance of insurance against floods.

  6. Weighted normalized risk factor for floods risk assessment

    Directory of Open Access Journals (Sweden)

    Ashraf Mohamed Elmoustafa

    2012-12-01

    Full Text Available Multi Criteria Analysis (MCA describes any structured approach used to determine overall preferences among alternative options, where options accomplish certain or several objectives. The flood protection of properties is a highly important issue due to the damage, danger and other hazards associated to it to human life, properties, and environment. To determine the priority of execution of protection works for any project, many aspects should be considered in order to decide the areas to start the data collection and analysis with. Multi criteria analysis techniques were tested and evaluated for the purpose of flood risk assessment, hydro-morphological parameters were used in this analysis. Finally a suitable technique was chosen and tested to be adopted as a mark of flood risk level and results were presented.

  7. Floods in 2002 and 2013: comparing flood warnings and emergency measures from the perspective of affected parties

    Science.gov (United States)

    Kreibich, Heidi; Pech, Ina; Schröter, Kai; Müller, Meike; Thieken, Annegret

    2016-04-01

    Early warning is essential for protecting people and mitigating damage in case of flood events. However, early warning is only helpful if the flood-endangered parties are reached by the warning and if they know how to react effectively. Finding suitable methods for communicating helpful warnings to the "last mile" remains a challenge, but not much information is available. Surveys were undertaken after the August 2002 and the June 2013 floods in Germany, asking affected private households and companies about warnings they received and emergency measures they undertook. Results show, that in 2002 early warning did not work well: in too many areas warnings came too late or were too imprecise and many people (27%) and companies (45%) did not receive a flood warning. Afterwards, the warning systems were significantly improved, so that in 2013 only a small share of the affected people (7%) and companies (7 %) was not reached by any warning. Additionally, private households and companies were hardly aware of the flood risk in the Elbe catchment before 2002, mainly due to a lack of flood experience. For instance, in 2002 only 14% of private households clearly knew how to protect themselves and their assets when the warning reached them, in 2013 this fraction was 46 %. Although the share of companies which had an emergency plan in place had increased from 10 % in 2002 to 26 % in 2013, and the share of those conducting regular emergency exercises had increased from 4 % to 13 %, there is still plenty of room for improvement. Therefore, integrated early warning systems from monitoring through to the reaction of the affected parties as well as effective risk and emergency communication need continuous further improvement to protect people and mitigate residual risks in case of floods.

  8. Use of a dam break model to assess flooding at Haddam Neck Nuclear Power Plant

    International Nuclear Information System (INIS)

    Scherrer, J.S.; Chery, D.L. Jr.

    1984-01-01

    Because of their proximity to necessary supplies of cooling water, nuclear power plants are susceptible to riverine flooding. Greater flood hazards exist where plants are located downstream of larger dams. The consequences of the Quabbin Reservoir dam failure on the Haddam Neck Nuclear Power Plant situated on the Connecticut River were investigated using a dam break flood routing model. Reasons for selecting a particular model are presented and the input assumption for the modeling process are developed. Relevant information concerning the level of manpower involvement is presented. The findings of this analysis demonstrate that the plant is adequately protected from the consequences of the postulated flood event

  9. Flooding correlations in narrow channel

    International Nuclear Information System (INIS)

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  10. Flood Hazards - A National Threat

    Science.gov (United States)

    ,

    2006-01-01

    In the late summer of 2005, the remarkable flooding brought by Hurricane Katrina, which caused more than $200 billion in losses, constituted the costliest natural disaster in U.S. history. However, even in typical years, flooding causes billions of dollars in damage and threatens lives and property in every State. Natural processes, such as hurricanes, weather systems, and snowmelt, can cause floods. Failure of levees and dams and inadequate drainage in urban areas can also result in flooding. On average, floods kill about 140 people each year and cause $6 billion in property damage. Although loss of life to floods during the past half-century has declined, mostly because of improved warning systems, economic losses have continued to rise due to increased urbanization and coastal development.

  11. Fault tree analysis for urban flooding

    NARCIS (Netherlands)

    Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.; Van Gelder, P.H.A.J.M.

    2008-01-01

    Traditional methods to evaluate flood risk mostly focus on storm events as the main cause of flooding. Fault tree analysis is a technique that is able to model all potential causes of flooding and to quantify both the overall probability of flooding and the contributions of all causes of flooding to

  12. Societal impacts and vulnerability to floods in Bangladesh and Nepal

    Directory of Open Access Journals (Sweden)

    Tanvir H. Dewan

    2015-03-01

    Full Text Available Bangladesh and Nepal lie between the Himalayas and low-lying coasts of the Bay of Bengal and are traversed by hundreds of rivers and tributaries. Historical data shows that, since 1970, the scale, intensity and duration of floods have increased in Bangladesh and Nepal, causing grave human suffering; disruptions in normal life and activity, damages of infrastructure, crops and agricultural land with severe impacts on the economy. Bangladesh is affected by torrential rain, glacier melt, upstream water flow and tidal surges. In 1988, Bangladesh experienced one of the most severe floods of the twentieth century which aroused significant concern internationally and triggered the Bangladesh Action Plan for Flood Control. The Government of Bangladesh (GOB has so far constructed a number of flood shelters and carried out 482 water and flood control projects involving flood protection embankments, drainage channels, sluice gates and regulators on different rivers and canals. These also provided safety measures against inundation by tidal waves, storm-surges and flooding. The Terai region of Nepal is highly prone to hydrological risks including torrential rain, floods, glaciers resulting in erosion and landslides. The Government of Nepal (GON has implemented different mitigation measures mainly early warning awareness, rescue measure, relief, and post-flood rehabilitation programs etc. Disaster Management Bureaus of both the countries have already conducted many trainings, workshops and seminars to disseminate scientific knowledge and coping up practices to disaster managers and to create public awareness. Besides the contemporary approaches to mitigating flood effects, people of these countries have coped with floods through generations relying on traditional/indigenous knowledge and other local adaptation practices. It is crucial that along with scientific process, indigenous, traditional and conventional practices are to be integrated for a national

  13. Towards a Flood Severity Index

    Science.gov (United States)

    Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.

    2017-12-01

    Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio

  14. Change in the Magnitude of River Flooding in the United States, 1965-2015

    Data.gov (United States)

    U.S. Environmental Protection Agency — This figure shows changes in the size and frequency of flooding events in rivers and streams in the United States between 1965 and 2015. Blue upward-pointing symbols...

  15. Termites and flooding affect microbial communities in decomposing wood

    Science.gov (United States)

    Michael D. Ulyshen; Susan V. Diehl; Dragica Jeremic

    2016-01-01

    Wood properties and microbial community characteristics were compared between loblolly pine (Pinus taeda L.) logs protected or unprotected from termites (Blattodea: Rhinotermitidae: Reticulitermes spp.) and other arthropods for two years in seasonally flooded and unflooded forests in the southeastern United States. Significant compositional differences were observed...

  16. Adaptation to floods in future climate: a practical approach

    Science.gov (United States)

    Doroszkiewicz, Joanna; Romanowicz, Renata; Radon, Radoslaw; Hisdal, Hege

    2016-04-01

    In this study some aspects of the application of the 1D hydraulic model are discussed with a focus on its suitability for flood adaptation under future climate conditions. The Biała Tarnowska catchment is used as a case study. A 1D hydraulic model is developed for the evaluation of inundation extent and risk maps in future climatic conditions. We analyse the following flood indices: (i) extent of inundation area; (ii) depth of water on flooded land; (iii) the flood wave duration; (iv) the volume of a flood wave over the threshold value. In this study we derive a model cross-section geometry following the results of primary research based on a 500-year flood inundation extent. We compare two methods of localisation of cross-sections from the point of view of their suitability to the derivation of the most precise inundation outlines. The aim is to specify embankment heights along the river channel that would protect the river valley in the most vulnerable locations under future climatic conditions. We present an experimental design for scenario analysis studies and uncertainty reduction options for future climate projections obtained from the EUROCORDEX project. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  17. Prospects for development of unified global flood observation and prediction systems (Invited)

    Science.gov (United States)

    Lettenmaier, D. P.

    2013-12-01

    Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.

  18. Prototypes of risk-based flood forecasting systems in the Netherlands and Italy

    Directory of Open Access Journals (Sweden)

    Bachmann D.

    2016-01-01

    Full Text Available Flood forecasting, warning and emergency response are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within emergency response. However, the information provided for decision support is often restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in current early warning and response systems. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. This paper presents the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. This paper presents the first results from two prototype applications of the new developed concept: The first prototype is applied to the Rotterdam area situated in the western part of the Netherlands. The second pilot study focusses on a rural area between the cities of Mantua and Ferrara along the Po river (Italy.

  19. IMPACT ASSESSMENT OF STRUCTURAL FLOOD MITIGATION MEASURES

    Directory of Open Access Journals (Sweden)

    ZVIJAKOVA LENKA

    2015-03-01

    Full Text Available The objective of the paper is to propose a methodology for assessing water constructions, which will allow impact assessment of water constructions on the environment and hence select the best option for the permission process. The result is “Guideline for environmental impact assessment of flood protection object”, which uses the method of UMRA (universal matrix of risk analysis, which is one of the methods of risk analysis proposed not only to enhance the transparency and sensitivity of the evaluation process, but also to cope with the requirements of the EIA system in the Slovakia and Europe Union.

  20. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    Science.gov (United States)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  1. Reserve Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  2. Elephant Butte Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  3. The Aqueduct Global Flood Analyzer

    Science.gov (United States)

    Iceland, Charles

    2015-04-01

    As population growth and economic growth take place, and as climate change accelerates, many regions across the globe are finding themselves increasingly vulnerable to flooding. A recent OECD study of the exposure of the world's large port cities to coastal flooding found that 40 million people were exposed to a 1 in 100 year coastal flood event in 2005, and the total value of exposed assets was about US 3,000 billion, or 5% of global GDP. By the 2070s, those numbers were estimated to increase to 150 million people and US 35,000 billion, or roughly 9% of projected global GDP. Impoverished people in developing countries are particularly at risk because they often live in flood-prone areas and lack the resources to respond. WRI and its Dutch partners - Deltares, IVM-VU University Amsterdam, Utrecht University, and PBL Netherlands Environmental Assessment Agency - are in the initial stages of developing a robust set of river flood and coastal storm surge risk measures that show the extent of flooding under a variety of scenarios (both current and future), together with the projected human and economic impacts of these flood scenarios. These flood risk data and information will be accessible via an online, easy-to-use Aqueduct Global Flood Analyzer. We will also investigate the viability, benefits, and costs of a wide array of flood risk reduction measures that could be implemented in a variety of geographic and socio-economic settings. Together, the activities we propose have the potential for saving hundreds of thousands of lives and strengthening the resiliency and security of many millions more, especially those who are most vulnerable. Mr. Iceland will present Version 1.0 of the Aqueduct Global Flood Analyzer and provide a preview of additional elements of the Analyzer to be released in the coming years.

  4. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    Science.gov (United States)

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly. © 2015 Society for Risk Analysis.

  5. Innovations in Stream Restoration and Flood Control Design Meeting Flood Capacity and Environmental Goals on San Luis Obispo Creek

    Science.gov (United States)

    Wayne Peterson

    1989-01-01

    Can a natural flowing creek be increased in drainage capacity to protect an adjacent community from flooding while still maintaining a natural habitat? San Luis Obispo constructed one such project on over a mile of Creek as a part of a housing development. The City found that some of the mitigation measures included in the project worked while others did not. In the...

  6. Quantifying flooding regime in floodplain forests to guide river restoration

    Directory of Open Access Journals (Sweden)

    Christian O. Marks

    2014-09-01

    Full Text Available Abstract Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and channel morphology, and hydrologic regime to define conditions promoting distinct floodplain forest assemblages. Species assemblages were dominated by floodplain-associated trees on surfaces experiencing flood durations between 4.5 and 91 days/year, which were generally well below the stage of the two-year recurrence interval flood, a widely-used benchmark for floodplain restoration. These tree species rarely occurred on surfaces that flooded less than 1 day/year. By contrast abundance of most woody invasive species decreased with flooding. Such flood-prone surfaces were jointly determined by characteristics of the hydrograph (high discharges of long duration and topography (low gradient and reduced valley constraint, resulting in increased availability of floodplain habitat with increasing watershed area and/or decreasing stream gradient. Downstream mainstem reaches provided the most floodplain habitat, largely associated with low-energy features such as back swamps and point bars, and were dominated by silver maple (Acer saccharinum. However, we were able to identify a number of suitable sites in the upper part of the basin and in large tributaries, often associated with in-channel islands and bars and frequently dominated by sycamore (Platanus occidentalis and flood disturbance-dependent species. Our results imply that restoring flows by modifying dam operations to benefit floodplain forests on existing surfaces need not conflict with flood protection in some regional settings. These results underscore the need to understand how flow, geomorphology, and species traits

  7. Urban flooding and Resilience: concepts and needs

    Science.gov (United States)

    Gourbesville, Ph.

    2012-04-01

    During the recent years, a growing interest for resilience has been expressed in the natural disaster mitigation area and especially in the flood related events. The European Union, under the Seventh Framework Programme (FP7), has initiated several research initiatives in order to explore this concept especially for the urban environments. Under urban resilience is underlined the ability of system potentially exposed to hazard to resist, respond, recover and reflect up to stage which is enough to preserve level of functioning and structure. Urban system can be resilient to lot of different hazards. Urban resilience is defined as the degree to which cities are able to tolerate some disturbance before reorganizing around a new set of structures and processes (Holling 1973, De Bruijn 2005). The United Nation's International strategy for Disaster Reductions has defined resilience as "the capacity of a system, community or society potentially exposed to hazards to adapt, by resisting or changing in order to reach and maintain an acceptable level of functioning and structure. This is determined by the degree to which the social system is capable of organizing itself to increase this capacity for learning from past disasters for better future protection and to improve risk reduction measures."(UN/ISDR 2004). According to that, system should be able to accept the hazard and be able to recover up to condition that provides acceptable operational level of city structure and population during and after hazard event. Main elements of urban system are built environment and population. Physical characteristic of built environment and social characteristic of population have to be examined in order to evaluate resilience. Therefore presenting methodology for assessing flood resilience in urban areas has to be one of the focal points for the exposed cities. Strategies under flood management planning related to resilience of urban systems are usually regarding controlling runoff

  8. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Floods in the Saguenay

    International Nuclear Information System (INIS)

    Martel, R.; Michaud, E.; Tousignant, P.M.

    1997-01-01

    Footage of a natural disaster that occurred between July 20 and 25 1996, in the Saguenay region of Quebec was documented. A heavy downpour of rain raised the water level of the Kenogami Lake reservoir beyond its capacity. This created huge pressure on its dam that upset the fragile balance between nature and rock. The dam raptured, resulting in a flood of previously unseen proportions. The Riviere au Sable in Jonquiere became an overwhelming body of water. The video showed how the shores of the river were eroded and how apartment buildings were engulfed by the torrent of water. A newly constructed electricity power plant had to be decommissioned, roads were washed away and entire neighborhoods were devastated. The devastation suffered by the cities of Chicoutimi, Jonquiere, Ville de la Baie, Ferland-Boileau, and L'Anse St-Jean was recorded. Thousands of victims of the disaster were evacuated with the help of the Canadian Armed Forces. Some of the work of reconstruction, begun even before the total retreat of the flood, involved restoration of roads, bridges and communication networks, was also shown

  10. Flood risk management in Italy

    DEFF Research Database (Denmark)

    Mysiak, J.; Testella, F.; Bonaiuto, M.

    2013-01-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina...

  11. Using integrated modeling for generating watershed-scale dynamic flood maps for Hurricane Harvey

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.; Singhofen, P. J.

    2017-12-01

    Hurricane Harvey, which was categorized as a 1000-year return period event, produced unprecedented rainfall and flooding in Houston. Although the expected rainfall was forecasted much before the event, there was no way to identify which regions were at higher risk of flooding, the magnitude of flooding, and when the impacts of rainfall would be highest. The inability to predict the location, duration, and depth of flooding created uncertainty over evacuation planning and preparation. This catastrophic event highlighted that the conventional approach to managing flood risk using 100-year static flood inundation maps is inadequate because of its inability to predict flood duration and extents for 500-year or 1000-year return period events in real-time. The purpose of this study is to create models that can dynamically predict the impacts of rainfall and subsequent flooding, so that necessary evacuation and rescue efforts can be planned in advance. This study uses a 2D integrated surface water-groundwater model called ICPR (Interconnected Channel and Pond Routing) to simulate both the hydrology and hydrodynamics for Hurricane Harvey. The methodology involves using the NHD stream network to create a 2D model that incorporates rainfall, land use, vadose zone properties and topography to estimate streamflow and generate dynamic flood depths and extents. The results show that dynamic flood mapping captures the flood hydrodynamics more accurately and is able to predict the magnitude, extent and time of occurrence for extreme events such as Hurricane Harvey. Therefore, integrated modeling has the potential to identify regions that are more susceptible to flooding, which is especially useful for large-scale planning and allocation of resources for protection against future flood risk.

  12. Uncertainty and Sensitivity of Direct Economic Flood Damages: the FloodRisk Free and Open-Source Software

    Science.gov (United States)

    Albano, R.; Sole, A.; Mancusi, L.; Cantisani, A.; Perrone, A.

    2017-12-01

    The considerable increase of flood damages in the the past decades has shifted in Europe the attention from protection against floods to managing flood risks. In this context, the expected damages assessment represents a crucial information within the overall flood risk management process. The present paper proposes an open source software, called FloodRisk, that is able to operatively support stakeholders in the decision making processes with a what-if approach by carrying out the rapid assessment of the flood consequences, in terms of direct economic damage and loss of human lives. The evaluation of the damage scenarios, trough the use of the GIS software proposed here, is essential for cost-benefit or multi-criteria analysis of risk mitigation alternatives. However, considering that quantitative assessment of flood damages scenarios is characterized by intrinsic uncertainty, a scheme has been developed to identify and quantify the role of the input parameters in the total uncertainty of flood loss model application in urban areas with mild terrain and complex topography. By the concept of parallel models, the contribution of different module and input parameters to the total uncertainty is quantified. The results of the present case study have exhibited a high epistemic uncertainty on the damage estimation module and, in particular, on the type and form of the utilized damage functions, which have been adapted and transferred from different geographic and socio-economic contexts because there aren't depth-damage functions that are specifically developed for Italy. Considering that uncertainty and sensitivity depend considerably on local characteristics, the epistemic uncertainty associated with the risk estimate is reduced by introducing additional information into the risk analysis. In the light of the obtained results, it is evident the need to produce and disseminate (open) data to develop micro-scale vulnerability curves. Moreover, the urgent need to push

  13. Internal flooding analyses results of Slovak NPPs

    International Nuclear Information System (INIS)

    Sopira, Vladimir

    2000-01-01

    The assessment of the flood risk was the objective of the internal flooding analysis for NPPs Bohunice V1, V2 and Mochovce. All important flooding sources were identified. The rooms containing safety important components were analyzed from the point of view of: Integrity of flood boundaries; Capability for drainage; Flood signalisation; Flood localization and liquidation; Vulnerability of safety system component. The redundancies of safety systems are located mostly separately and no flood can endanger more than single train. It can be concluded that NPPs with WWER-440 are very safe against the flooding initiating event

  14. Flood risk and insurance loss potential in the Thames Gateway

    Science.gov (United States)

    Eldridge, J.; Horn, D.

    2009-04-01

    The Thames Gateway, currently Europe's largest regeneration project, is an area of redevelopment located in the South East of England, with Government plans to create up to 160,000 new homes and 180,000 new jobs by 2016. Although the new development is intended to contribute £12bn annually to the economy, the potential flood risk is high, with much of the area situated on Thames tidal floodplain and vulnerable to both storm surges and peak river flows. This poses significant hazard to those inhabiting the area and has raised concern amongst the UK insurance industry, who would be liable for significant financial claims if a large flood event were to occur, particularly with respect to the number of new homes and businesses being built in flood risk areas. Flood risk and the potential damage to both lives and assets in vulnerable areas have gained substantial recognition, in light of recent flooding events, from both governmental agencies and in the public's awareness of flood hazard. This has resulted in a change in UK policy with planning policy for flood risk (PPS25, Planning Policy Statement 25) adopting a more strategic approach to development, as well as a new Flooding and Water Bill which is due for consultation in 2009. The Government and the Association of British Insurers, who represent the UK insurance industry, have also recently changed their Statement of Principles which guides provision of flood insurance in the future. This PhD research project aims to quantify flood risk in the Thames Gateway area with a view to evaluating the insurance loss potential under different insurance and planning scenarios. Using current sources of inundation extent, and incorporating varying insurance penetration rates and degrees of adoption of planning policy and guidance, it focuses on estimating flood risk under these different scenarios. This presentation introduces the development of the project and the theory and methodology which will be used to address the

  15. Assessment of the effectiveness of flood adaptation strategies for HCMC

    Science.gov (United States)

    Lasage, R.; Veldkamp, T. I. E.; de Moel, H.; Van, T. C.; Phi, H. L.; Vellinga, P.; Aerts, J. C. J. H.

    2014-06-01

    on different strategies will be used by the government of Ho Chi Minh City to determine a new flood protection strategy. Future research should focus on gathering empirical data right after a flood on the occurring damage, as this appears to be the most uncertain factor in the risk assessment.

  16. Developing a Malaysia flood model

    Science.gov (United States)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina

    2014-05-01

    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  17. Texas floods of 1940

    Science.gov (United States)

    Breeding, Seth D.

    1948-01-01

    Floods occurred in Texas during, June, July, and November 1940 that exceeded known stages on many small streams and at a few places on the larger streams. Stages at several stream-gaging stations exceeded the maximum known at those places since the collection of daily records began. A storm, haying its axis generally on a north-south line from Cameron to Victoria and extending across the Brazos, Colorado, Lavaca, and Guadalupe River Basins, caused heavy rainfall over a large part of south-central Texas. The maximum recorded rain of 22.7 inches for the 2-day period June 29-30 occurred at Engle. Of this amount, 17.5 inches fell in the 12-hour period between 8 p.m. June 29, and 8 a.m. June 30. Light rains fell at a number of places on June 28, and additional light rains fell at many places within the area from July 1 to 4. During the period June 28 to July 4 more than 20 inches of rain fell over an area of 300 square miles, more than 15 inches over 1,920 square miles, and more than 10 inches over 5,100 square miles. The average annual rainfall for the area experiencing the heaviest rainfall during this storm is about 35 inches. Farming is largely confined to the fertile flood plains in much of the area subjected to the record-breaking floods in June and July. Therefore these floods, coming at the height of the growing season, caused severe losses to crops. Much damage was done also to highways and railways. The city of Hallettsville suffered the greatest damage of any urban area. The Lavaca River at that place reached a stage 8 feet higher than ever known before, drowned several people, destroyed many homes, and submerged almost the entire business district. The maximum discharge there was 93,100 second-feet from a drainage area of 101 square miles. Dry Creek near Smithville produced a maximum discharge of 1,879 second-feet from an area of 1.48 square miles and a runoff of 11.3 inches in a 2-day period from a rainfall of 19.5 inches. The area in the Colorado River

  18. Blayais: after the tempest, a better protection

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    This article reports the action undertaken by the IRSN for a new assessment of flood risk after the flooding of the Blayais nuclear power station in December 1999. Corrective actions have first been asked to EDF for this station (implementation of a reliable alarm system, dike rehabilitation, and so on) and for all the others (general re-assessment of the protection against floods). The adopted approach is described as well as the changes and works performed in and about the Blayais power station. This action and the Fukushima accident notably resulted in the publication of a guide about floods in 2013. The case of the Sainte-Lucie power station in Florida is briefly evoked: flooding due to heavy rains revealed some design weaknesses and the lack of protection for drainage equipment

  19. Improving Gas Flooding Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability

  20. Promoting flood risk reduction: The role of insurance in Germany and England

    Science.gov (United States)

    Surminski, Swenja; Thieken, Annegret H.

    2017-10-01

    Improving society's ability to prepare for, respond to and recover from flooding requires integrated, anticipatory flood risk management (FRM). However, most countries still focus their efforts on responding to flooding events if and when they occur rather than addressing their current and future vulnerability to flooding. Flood insurance is one mechanism that could promote a more ex ante approach to risk by supporting risk reduction activities. This paper uses an adapted version of Easton's System Theory to investigate the role of insurance for FRM in Germany and England. We introduce an anticipatory FRM framework, which allows flood insurance to be considered as part of a broader policy field. We analyze if and how flood insurance can catalyze a change toward a more anticipatory approach to FRM. In particular we consider insurance's role in influencing five key components of anticipatory FRM: risk knowledge, prevention through better planning, property-level protection measures, structural protection and preparedness (for response). We find that in both countries FRM is still a reactive, event-driven process, while anticipatory FRM remains underdeveloped. Collaboration between insurers and FRM decision-makers has already been successful, for example in improving risk knowledge and awareness, while in other areas insurance acts as a disincentive for more risk reduction action. In both countries there is evidence that insurance can play a significant role in encouraging anticipatory FRM, but this remains underutilized. Effective collaboration between insurers and government should not be seen as a cost, but as an investment to secure future insurability through flood resilience.

  1. Effects of an extreme flood on river morphology (case study: Karoon River, Iran)

    Science.gov (United States)

    Yousefi, Saleh; Mirzaee, Somayeh; Keesstra, Saskia; Surian, Nicola; Pourghasemi, Hamid Reza; Zakizadeh, Hamid Reza; Tabibian, Sahar

    2018-03-01

    An extreme flood occurred on 14 April 2016 in the Karoon River, Iran. The occurred flood discharge was the highest discharge recorded over the last 60 years in the Karoon River. Using the OLI Landsat images taken on 8 April 2016 (before the flood) and 24 April 2016 (after the flood) the geomorphic effects were detected in different land cover types within the 155-km-long study reach. The results show that the flood significantly affected the channel width and the main effect was high mobilization of channel sediments and severe bank erosion in the meandering reaches. According to field surveys, the flood occupied the channel corridor and even the floodplain parts. However, the channel pattern was not significantly altered, although the results show that the average channel width increased from 192 to 256 m. Statistical results indicate a significant change for active channel width and sinuosity index at 99% confidence level for both indexes. The flood-induced morphological changes varied significantly for different land cover types along the Karoon River. Specifically, the channel has widened less in residential areas than in other land cover types because of the occurrence of bank protection structures. However, the value of bank retreat in residential and protected sides of the Karoon River is more than what we expected during the study of extreme flood.

  2. Flood precautionary behaviour of private households in Can Tho city in the Mekong Delta

    Science.gov (United States)

    Kreibich, Heidi; Gani Adnan, Sarfaraz; Thi Chinh, Do; Bubeck, Philip

    2015-04-01

    Flood risk is high and it is projected to increase in many places due to the effects of climate change and the on-going intensification of human activities in risk-prone areas. These projections and the considerable uncertainties associated with these developments increasingly require integrated approaches in flood risk management. In addition to flood protection, private precautionary measures aim at reducing the potential negative consequences of floods. Thus, insights into flood precautionary behaviour are important. This study is grounded on the Protection Motivation Theory (PMT), which refers to the cognitive process that people undergo when evaluating their own ability to avoid a certain risk. Results of a survey among 858 flood-prone households in Can Tho city in the Mekong Delta, Vietnam are presented. It is shown that flood-coping appraisal is an important variable in terms of precautionary behaviour. Thus, risk communication should focus more on the potential of precautionary measures to effectively reduce flood damage, as well as on information about how to implement such measures in practice.

  3. Determination of minimum flood flow for regeneration of floodplain forest from inundated forest width-stage curve

    Directory of Open Access Journals (Sweden)

    Song-hao Shang

    2010-09-01

    Full Text Available Floods are essential for the regeneration and growth of floodplain forests in arid and semiarid regions. However, river flows, and especially flood flows, have decreased greatly with the increase of water diversion from rivers and/or reservoir regulation, resulting in severe deterioration of floodplain ecosystems. Estimation of the flood stage that will inundate the floodplain forest is necessary for the forest's restoration or protection. To balance water use for economic purposes and floodplain forest protection, the inundated forest width method is proposed for estimating the minimum flood stage for floodplain forests from the inundated forest width-stage curve. The minimum flood stage is defined as the breakpoint of the inundated forest width-stage curve, and is determined directly or analytically from the curve. For the analytical approach, the problem under consideration is described by a multi-objective optimization model, which can be solved by the ideal point method. Then, the flood flow at the minimum flood stage (minimum flood flow, which is useful for flow regulation, can be calculated from the stage-discharge curve. In order to protect the forest in a river floodplain in a semiarid area in Xinjiang subject to reservoir regulation upstream, the proposed method was used to determine the minimum flood stage and flow for the forest. Field survey of hydrology, topography, and forest distribution was carried out at typical cross sections in the floodplain. Based on the survey results, minimum flood flows for six typical cross sections were estimated to be between 306 m3/s and 393 m3/s. Their maximum, 393 m3/s, was considered the minimum flood flow for the study river reach. This provides an appropriate flood flow for the protection of floodplain forest and can be used in the regulation of the upstream reservoir.

  4. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey

    Science.gov (United States)

    Farlekas, George M.

    1966-01-01

    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood

  5. Risk to life due to flooding in post-Katrina New Orleans

    Science.gov (United States)

    Miller, A.; Jonkman, S. N.; Van Ledden, M.

    2015-01-01

    Since the catastrophic flooding of New Orleans due to Hurricane Katrina in 2005, the city's hurricane protection system has been improved to provide protection against a hurricane load with a 1/100 per year exceedance frequency. This paper investigates the risk to life in post-Katrina New Orleans. In a flood risk analysis the probabilities and consequences of various flood scenarios have been analyzed for the central area of the city (the metro bowl) to give a preliminary estimate of the risk to life in the post-Katrina situation. A two-dimensional hydrodynamic model has been used to simulate flood characteristics of various breaches. The model for estimation of fatality rates is based on the loss of life data for Hurricane Katrina. Results indicate that - depending on the flood scenario - the estimated loss of life in case of flooding ranges from about 100 to nearly 500, with the highest life loss due to breaching of the river levees leading to large flood depths. The probability and consequence estimates are combined to determine the individual risk and societal risk for New Orleans. When compared to risks of other large-scale engineering systems (e.g., other flood prone areas, dams and the nuclear sector) and acceptable risk criteria found in literature, the risks for the metro bowl are found to be relatively high. Thus, despite major improvements to the flood protection system, the flood risk to life of post-Katrina New Orleans is still expected to be significant. Indicative effects of reduction strategies on the risk level are discussed as a basis for further evaluation and discussion.

  6. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Science.gov (United States)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  7. Increasing resilience through participative flood risk map design

    Science.gov (United States)

    Fuchs, Sven; Spira, Yvonne; Stickler, Therese

    2013-04-01

    In recent years, an increasing number of flood hazards has shown to the European Commission and the Member States of the European Union the importance of flood risk management strategies in order to reduce losses and to protect the environment and the citizens. Exposure to floods as well as flood vulnerability might increase across Europe due to the ongoing economic development in many EU countries. Thus even without taking climate change into account an increase of flood disasters in Europe might be foreseeable. These circumstances have produced a reaction in the European Commission, and a Directive on the Assessment and Management of Flood Risks was issued as one of the three components of the European Action Programme on Flood Risk Management. Floods have the potential to jeopardise economic development, above all due to an increase of human activities in floodplains and the reduction of natural water retention by land use activities. As a result, an increase in the likelihood and adverse impacts of flood events is expected. Therefore, concentrated action is needed at the European level to avoid severe impacts on human life and property. In order to have an effective tool available for gathering information, as well as a valuable basis for priority setting and further technical, financial and political decisions regarding flood risk mitigation and management, it is necessary to provide for the establishment of flood risk maps which show the potential adverse consequences associated with different flood scenarios. So far, hazard and risk maps are compiled in terms of a top-down linear approach: planning authorities take the responsibility to create and implement these maps on different national and local scales, and the general public will only be informed about the outcomes (EU Floods Directive, Article 10). For the flood risk management plans, however, an "active involvement of interested parties" is required, which means at least some kind of multilateral

  8. Flood scour monitoring system using fiber Bragg grating sensors

    Science.gov (United States)

    Lin, Yung Bin; Lai, Jihn Sung; Chang, Kuo Chun; Li, Lu Sheng

    2006-12-01

    The exposure and subsequent undermining of pier/abutment foundations through the scouring action of a flood can result in the structural failure of a bridge. Bridge scour is one of the leading causes of bridge failure. Bridges subject to periods of flood/high flow require monitoring during those times in order to protect the traveling public. In this study, an innovative scour monitoring system using button-like fiber Bragg grating (FBG) sensors was developed and applied successfully in the field during the Aere typhoon period in 2004. The in situ FBG scour monitoring system has been demonstrated to be robust and reliable for real-time scour-depth measurements, and to be valid for indicating depositional depth at the Dadu Bridge. The field results show that this system can function well and survive a typhoon flood.

  9. Flooding Fragility Experiments and Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tahhan, Antonio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Muchmore, Cody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nichols, Larinda [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Bishwo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the work that has been performed on flooding fragility, both the experimental tests being carried out and the probabilistic fragility predictive models being produced in order to use the text results. Flooding experiments involving full-scale doors have commenced in the Portal Evaluation Tank. The goal of these experiments is to develop a full-scale component flooding experiment protocol and to acquire data that can be used to create Bayesian regression models representing the fragility of these components. This work is in support of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluation research and development.

  10. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    Science.gov (United States)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which

  11. Local Flood Action Groups: Governance And Resilience

    NARCIS (Netherlands)

    Forrest, Steven; Trell, Elen-Maarja; Woltjer, Johan; Macoun, Milan; Maier, Karel

    2015-01-01

    A diverse range of citizen groups focusing on flood risk management have been identified in several European countries. The paper discusses the role of flood action (citizen) groups in the context of flood resilience and will do this by analysing the UK and its diverse range of flood groups. These

  12. Planning of technical flood retention measures in large river basins under consideration of imprecise probabilities of multivariate hydrological loads

    Directory of Open Access Journals (Sweden)

    D. Nijssen

    2009-08-01

    . With regard to these known unknowns the bias of the simulations was considered by imprecise probabilities. Probabilities, derived from measured flood data were combined with probabilities which were estimated from long simulated series. To consider imprecise probabilities, fuzzy sets were used to distinguish the results between more or less possible design floods. The need for such a differentiated view on the performance of flood protection systems is demonstrated by a case study.

  13. Flood hazards in an urbanizing watershed in Riyadh, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Hatim O. Sharif

    2016-03-01

    Full Text Available Riyadh, the capital of the Kingdom of Saudi Arabia, has experienced unusual levels of urbanization in the past few decades, making it one of the fastest growing cities in the world. This paper examines flood hazards in the rapidly urbanizing catchment of Al-Aysen in Riyadh. Remote sensing and geographic information system techniques were employed to obtain and prepare input data for hydrologic and hydraulic models, with the former based on the very popular curve number approach. Due to the limited nature of the rainfall data, observations from two rain gauges in the vicinity of the catchment were used to estimate design storms. The hydrologic model was run in a semi-distributed mode by dividing the catchment into many sub-catchments. The impact of urbanization on run-off volume and peak discharge resulting from different storms was investigated, with various urbanization scenarios simulated. Flood hazard zones and affected streets were also identified through hydrologic/hydraulic model simulation. The mismatch between administrative and catchment boundaries can create problems in flood risk management for similar cities since hydrologic processes and flood hazards are based on the hydrologic connectivity. Since flooding events impact the road network and create driving hazards, governmental decision-makers must take the necessary precautions to protect drivers in these situations.

  14. Increasing stress on disaster risk finance due to large floods

    Science.gov (United States)

    Jongman, Brenden; Hochrainer-Stigler, Stefan; Feyen, Luc; Aerts, Jeroen; Mechler, Reinhard; Botzen, Wouter; Bouwer, Laurens; Pflug, Georg; Rojas, Rodrigo; Ward, Philip

    2014-05-01

    Recent major flood disasters have shown that single extreme events can affect multiple countries simultaneously, which puts high pressure on trans-national risk reduction and risk transfer mechanisms. To date, little is known about such flood hazard interdependencies across regions, and the corresponding joint risks at regional to continental scales. Reliable information on correlated loss probabilities is crucial for developing robust insurance schemes and public adaptation funds, and for enhancing our understanding of climate change impacts. Here we show that extreme discharges are strongly correlated across European river basins and that these correlations can, or should, be used in national to continental scale risk assessment. We present probabilistic trends in continental flood risk, and demonstrate that currently observed extreme flood losses could more than double in frequency by 2050 under future climate change and socioeconomic development. The results demonstrate that accounting for tail dependencies leads to higher estimates of extreme losses than estimates based on the traditional assumption of independence between basins. We suggest that risk management for these increasing losses is largely feasible, and we demonstrate that risk can be shared by expanding risk transfer financing, reduced by investing in flood protection, or absorbed by enhanced solidarity between countries. We conclude that these measures have vastly different efficiency, equity and acceptability implications, which need to be taken into account in broader consultation, for which our analysis provides a basis.

  15. Smoky River coal flood risk mapping study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Canada-Alberta Flood Damage Reduction Program (FDRP) is designed to reduce flood damage by identifying areas susceptible to flooding and by encouraging application of suitable land use planning, zoning, and flood preparedness and proofing. The purpose of this study is to define flood risk and floodway limits along the Smoky River near the former Smoky River Coal (SRC) plant. Alberta Energy has been responsible for the site since the mine and plant closed in 2000. The study describes flooding history, available data, features of the river and valley, calculation of flood levels, and floodway determination, and includes flood risk maps. The HEC-RAS program is used for the calculations. The flood risk area was calculated using the 1:100 year return period flood as the hydrological event. 7 refs., 11 figs., 7 tabs., 3 apps.

  16. Flood Resilient Systems and their Application for Flood Resilient Planning

    Science.gov (United States)

    Manojlovic, N.; Gabalda, V.; Antanaskovic, D.; Gershovich, I.; Pasche, E.

    2012-04-01

    Following the paradigm shift in flood management from traditional to more integrated approaches, and considering the uncertainties of future development due to drivers such as climate change, one of the main emerging tasks of flood managers becomes the development of (flood) resilient cities. It can be achieved by application of non-structural - flood resilience measures, summarised in the 4As: assistance, alleviation, awareness and avoidance (FIAC, 2007). As a part of this strategy, the key aspect of development of resilient cities - resilient built environment can be reached by efficient application of Flood Resilience Technology (FReT) and its meaningful combination into flood resilient systems (FRS). FRS are given as [an interconnecting network of FReT which facilitates resilience (including both restorative and adaptive capacity) to flooding, addressing physical and social systems and considering different flood typologies] (SMARTeST, http://www.floodresilience.eu/). Applying the system approach (e.g. Zevenbergen, 2008), FRS can be developed at different scales from the building to the city level. Still, a matter of research is a method to define and systematise different FRS crossing those scales. Further, the decision on which resilient system is to be applied for the given conditions and given scale is a complex task, calling for utilisation of decision support tools. This process of decision-making should follow the steps of flood risk assessment (1) and development of a flood resilience plan (2) (Manojlovic et al, 2009). The key problem in (2) is how to match the input parameters that describe physical&social system and flood typology to the appropriate flood resilient system. Additionally, an open issue is how to integrate the advances in FReT and findings on its efficiency into decision support tools. This paper presents a way to define, systematise and make decisions on FRS at different scales of an urban system developed within the 7th FP Project

  17. Flood Hazard Areas - High Risk

    Data.gov (United States)

    Department of Homeland Security — The S_Fld_Haz_Ar table contains information about the flood hazards within the study area. A spatial file with locational information also corresponds with this data...

  18. FEMA Flood Insurance Studies Inventory

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital data set provides an inventory of Federal Emergency Management Agency (FEMA) Flood Insurance Studies (FIS) that have been conducted for communities and...

  19. Flooding characteristics of Goodloe packing

    International Nuclear Information System (INIS)

    Begovich, J.M.; Watson, J.S.

    1976-08-01

    Experimental flooding data for the countercurrent flow of air and water in a 7.62-cm-diam glass column filled with Goodloe packing were compared with a correlation reported by the packing manufacturer. Flooding rates observed in this study were as low as one-half those predicted by the correlation. Rearranging the packing by inverting the column and removing some packing segments yielded results similar to the correlation for liquid-to-gas (L/G) mass flow rate ratios greater than 10, but the experimental flooding curve fell significantly below the correlation at lower L/G ratios. When the column was repacked with new packing, the results were essentially the same as those obtained in the inverted column. Thus, it is believed that a carefully packed column is more likely to yield flooding rates similar to those obtained in the new or inverted columns rather than rates predicted by the original correlation

  20. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  1. FLOOD CHARACTERISTICS AND MANAGEMENT ADAPTATIONS ...

    African Journals Online (AJOL)

    Dr Osondu

    2011-10-26

    Oct 26, 2011 ... Ethiopian Journal of Environmental Studies and Management Vol. ... people are estimated to be at such risk by 2080 .... SCS-CN method is based on the water balance .... and psychological burden of flood hazard often fall.

  2. Introduction to flood control science

    International Nuclear Information System (INIS)

    Lee, Dong U; Ha, Jin Uk; Kim, Dong Ha; Shin, Hong Ryeol; Song, Seok Hwan; Kim, Jin Gyu; Moon, Heon Cheol

    2003-01-01

    This book covers introduction, industrialization disaster such as Bhopal and Chernobyl disaster, earthquake disaster, volcano disaster, avalanche disaster including loss allocation and prevention measures, and natural fire by showing California, Yellowstone park and similarity between fire and flood. It also introduces climate change and disaster, Earth's greenhouse effect and disaster due to current sea level rise, flood damage, drought disaster, famine and drought, prediction of drought, population problems, outlook of world population, and disaster prevention administration system of Korea.

  3. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  4. Prevalence of and Risk Factors for Skin Diseases Among Army Personnel and Flood Victims During the 2011 Floods in Thailand.

    Science.gov (United States)

    Thongtaeparak, Wittaya; Pratchyapruit, Walai-Orn; Kotanivong, Settha; Sirithanakit, Nimit; Thunyaharn, Sudaluck; Rangsin, Ram; Chaikaew, Phachara; Wongyongsin, Pitee; Pinyoboon, Pongpak; Sutthiwan, Phatcharaphan; Theethansiri, Witchwaree; Janthayanont, Dusit; Mungthin, Mathirut

    2016-08-01

    This study aimed to determine the prevalence of and risk factors for skin problems among flood victims and army personnel during the 2011 floods in Thailand. To determine the prevalence of and risk factors for skin symptoms, standardized questionnaires were used to collect demographic data, current skin symptoms, history of water exposure, and sanitary behaviors. A certified dermatologist evaluated those who presented with skin problems and provided diagnoses. Univariate and multivariate analyses were performed to assess independent risk factors for skin symptoms. The most prevalent skin disease was irritant contact dermatitis. Flood victims showed a higher prevalence of skin symptoms compared with army personnel. Development of skin symptoms after exposure to floodwater was also observed earlier among flood victims. Having a history of skin diseases and delayed skin cleaning after exposure were also significant risk factors for the development of skin symptoms. This information might be used as guidelines for protecting military personnel and to educate the general public regarding flood disaster management. (Disaster Med Public Health Preparedness. 2016;10:570-575).

  5. Cyber Surveillance for Flood Disasters

    Directory of Open Access Journals (Sweden)

    Shi-Wei Lo

    2015-01-01

    Full Text Available Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective.

  6. Scales of Natural Flood Management

    Science.gov (United States)

    Nicholson, Alex; Quinn, Paul; Owen, Gareth; Hetherington, David; Piedra Lara, Miguel; O'Donnell, Greg

    2016-04-01

    The scientific field of Natural flood Management (NFM) is receiving much attention and is now widely seen as a valid solution to sustainably manage flood risk whilst offering significant multiple benefits. However, few examples exist looking at NFM on a large scale (>10km2). Well-implemented NFM has the effect of restoring more natural catchment hydrological and sedimentological processes, which in turn can have significant flood risk and WFD benefits for catchment waterbodies. These catchment scale improvements in-turn allow more 'natural' processes to be returned to rivers and streams, creating a more resilient system. Although certain NFM interventions may appear distant and disconnected from main stem waterbodies, they will undoubtedly be contributing to WFD at the catchment waterbody scale. This paper offers examples of NFM, and explains how they can be maximised through practical design across many scales (from feature up to the whole catchment). New tools to assist in the selection of measures and their location, and to appreciate firstly, the flooding benefit at the local catchment scale and then show a Flood Impact Model that can best reflect the impacts of local changes further downstream. The tools will be discussed in the context of our most recent experiences on NFM projects including river catchments in the north east of England and in Scotland. This work has encouraged a more integrated approach to flood management planning that can use both traditional and novel NFM strategies in an effective and convincing way.

  7. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  8. How do people perceive, understand, and anticipate responding to flash flood risks and warnings? Results from a public survey in Boulder, Colorado, USA

    Science.gov (United States)

    Morss, Rebecca E.; Mulder, Kelsey J.; Lazo, Jeffrey K.; Demuth, Julie L.

    2016-10-01

    This study investigates flash flood forecast and warning communication, interpretation, and decision making, using data from a survey of 418 members of the public in Boulder, Colorado, USA. Respondents to the public survey varied in their perceptions and understandings of flash flood risks in Boulder, and some had misconceptions about flash flood risks, such as the safety of crossing fast-flowing water. About 6% of respondents indicated consistent reversals of US watch-warning alert terminology. However, more in-depth analysis illustrates the multi-dimensional, situationally dependent meanings of flash flood alerts, as well as the importance of evaluating interpretation and use of warning information along with alert terminology. Some public respondents estimated low likelihoods of flash flooding given a flash flood warning; these were associated with lower anticipated likelihood of taking protective action given a warning. Protective action intentions were also lower among respondents who had less trust in flash flood warnings, those who had not made prior preparations for flash flooding, and those who believed themselves to be safer from flash flooding. Additional analysis, using open-ended survey questions about responses to warnings, elucidates the complex, contextual nature of protective decision making during flash flood threats. These findings suggest that warnings can play an important role not only by notifying people that there is a threat and helping motivate people to take protective action, but also by helping people evaluate what actions to take given their situation.

  9. The influence of antecedent conditions on flood risk in sub-Saharan Africa

    Science.gov (United States)

    Bischiniotis, Konstantinos; van den Hurk, Bart; Coughlan de Perez, Erin; Jongman, Brenden; Veldkamp, Ted; Aerts, Jeroen

    2017-04-01

    Traditionally, flood risk management has focused on long-term flood protection measures. However, many countries are often not able to afford hard infrastructure that provides sufficient safety levels due to the high investment costs. As a consequence, they rely more on post disaster response and timely warning systems. Most early warning systems have predominantly focused on precipitation as the main predictive factor, having usually lead times of hours or days. However, other variables could also play a role. For instance, anomalous positive water storage, soil saturation and evapotranspiration are physical factors that may influence the length of the flood build-up period. This period can vary from some days to several months before the event and it is particularly important in flood risk management since longer flood warning lead times during this period could result in better flood preparation actions. This study addresses how the antecedent conditions of historical reported flood events over the period 1980 to 2010 in sub-Saharan Africa relate to flood generation. The seasonal-scale conditions are reflected in the Standardized Precipitation Evapotranspiration Index (SPEI), which is calculated using monthly precipitation and temperature data and accounts for the wetness/dryness of an area. Antecedent conditions are separated into a) a short term 'weather-scale' period (0-7 days) and b) a 'seasonal-scale' period (up to 6 months) before the flood event in such a way that they do not overlap. Total 7-day precipitation, which is based on daily meteorological data, was used to evaluate the short-term weather-scale conditions. Using a pair of coordinates, derived from the NatCatSERVICE database on global flood losses, each flood event is positioned on a 0.5°x 0.5° grid cell. The antecedent SPEI conditions of the two periods and their joint influence in flood generation are compared to the same period conditions of the other years of the dataset. First results

  10. Improving Flood Risk Management for California's Central Valley: How the State Developed a Toolbox for Large, System-wide Studies

    Science.gov (United States)

    Pingel, N.; Liang, Y.; Bindra, A.

    2016-12-01

    More than 1 million Californians live and work in the floodplains of the Sacramento-San Joaquin Valley where flood risks are among the highest in the nation. In response to this threat to people, property and the environment, the Department of Water Resources (DWR) has been called to action to improve flood risk management. This has transpired through significant advances in development of flood information and tools, analysis, and planning. Senate Bill 5 directed DWR to prepare the Central Valley Flood Protection Plan (CVFPP) and update it every 5 years. A key component of this aggressive planning approach is answering the question: What is the current flood risk, and how would proposed improvements change flood risk throughout the system? Answering this question is a substantial challenge due to the size and complexity of the watershed and flood control system. The watershed is roughly 42,000 sq mi, and flows are controlled by numerous reservoirs, bypasses, and levees. To overcome this challenge, the State invested in development of a comprehensive analysis "tool box" through various DWR programs. Development of the tool box included: collection of hydro-meteorological, topographic, geotechnical, and economic data; development of rainfall-runoff, reservoir operation, hydraulic routing, and flood risk analysis models; and development of specialized applications and computing schemes to accelerate the analysis. With this toolbox, DWR is analyzing flood hazard, flood control system performance, exposure and vulnerability of people and property to flooding, consequence of flooding for specific events, and finally flood risk for a range of CVFPP alternatives. Based on the results, DWR will put forward a State Recommended Plan in the 2017 CVFPP. Further, the value of the analysis tool box extends beyond the CVFPP. It will serve as a foundation for other flood studies for years to come and has already been successfully applied for inundation mapping to support emergency

  11. Modelling the interaction between flooding events and economic growth

    Science.gov (United States)

    Grames, Johanna; Grass, Dieter; Prskawetz, Alexia; Blöschl, Günther

    2015-04-01

    Socio-hydrology describes the interaction between the socio-economy, water and population dynamics. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre, 2013, Viglione, 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. This is the first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events: Investments in defense capital can avoid floods even when the water level is high, but on the other hand such investment competes with investment in productive capital and hence may reduce the level of consumption. When floods occur, the flood damage therefore depends on the existing defense capital. The aim is to find an optimal tradeoff between investments in productive versus defense capital such as to optimize the stream of consumption in the long-term. We assume a non-autonomous exogenous periodic rainfall function (Yevjevich et.al. 1990, Zakaria 2001) which implies that the long-term equilibrium will be periodic . With our model we aim to derive mechanisms that allow consumption smoothing in the long term, and at the same time allow for optimal investment in flood defense to maximize economic output. We choose an aggregate welfare function that depends on the consumption level of the society as the objective function. I.e. we assume a social planer with perfect foresight that maximizes the aggregate welfare function. Within our model framework we can also study whether the path and level of defense capital (that protects people from floods) is related to the time preference rate of the social planner. Our model also allows to investigate how the frequency

  12. Drivers of flood damage on event level

    DEFF Research Database (Denmark)

    Kreibich, H.; Aerts, J. C. J. H.; Apel, H.

    2016-01-01

    Flood risk is dynamic and influenced by many processes related to hazard, exposure and vulnerability. Flood damage increased significantly over the past decades, however, resulting overall economic loss per event is an aggregated indicator and it is difficult to attribute causes to this increasing...... trend. Much has been learned about damaging processes during floods at the micro-scale, e.g. building level. However, little is known about the main factors determining the amount of flood damage on event level. Thus, we analyse and compare paired flood events, i.e. consecutive, similar damaging floods...... example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number...

  13. CULTURAL HERITAGE AND FLOODS RISK PREPAREDNESS

    Directory of Open Access Journals (Sweden)

    K. Nedvědová

    2013-07-01

    Full Text Available The goal of this paper is to present some of the results of an ongoing project focused on protection of cultural heritage from flood danger. We present an original methodology of risk analysis of movable and immovable cultural heritage and two supporting web applications: one for experts and one for ordinary users. Cultural heritage forms a special category that requires different approach towards risk mitigation than other ordinary objects. First of all their assets cannot be reproduced so we have to pay much more attention for the correct preventive measures as well as remedial works after the potential disaster. Second, historical materials are usually more predispose to damage as they are already eroded by age. This brings a need of profound knowledge of the mechanical, chemical and biological reaction to the flood stress. This knowledge is usually not possessed by the stewards and owners in the sufficient rate. This is probably not even possible, because it encompasses knowledge of various building branches from the view of hydrology, physics, biology, chemistry, geology and others. To be able to perform an effective risk analysis and to choose right effective measures means to know the building and its condition as well as its setting very well. Therefore we want to give users and administrators of the buildings clear guidelines how to examine the objects and what else they might need to be aware of, in order to be ready and prepared.

  14. Flooding and subsidence in the Thames Gateway: impact on insurance loss potential

    Science.gov (United States)

    Royse, Katherine; Horn, Diane; Eldridge, Jillian; Barker, Karen

    2010-05-01

    In the UK, household buildings insurance generally covers loss and damage to the insured property from a range of natural and human perils, including windstorm, flood, subsidence, theft, accidental fire and winter freeze. Consequently, insurers require a reasoned view on the likely scale of losses that they may face to assist in strategic planning, reinsurance structuring, regulatory returns and general risk management. The UK summer 2007 flood events not only provided a clear indication of the scale of potential losses that the industry could face from an individual event, with £3 billion in claims, but also identified a need for insurers and reinsurers to better understand how events may correlate in time and space, and how to most effectively use the computational models of extreme events that are commonly applied to reflect these correlations. In addition to the potential for temporal clustering of events such as windstorms and floods, there is a possibility that seemingly uncorrelated natural perils, such as floods and subsidence, may impact an insurer's portfolio. Where aggregations of large numbers of new properties are planned, such as in the Thames Gateway, consideration of the potential future risk of aggregate losses due to the combination of perils such as subsidence and flood is increasingly important within the insurance company's strategic risk management process. Whilst perils such as subsidence and flooding are generally considered independent within risk modelling, the potential for one event to influence the magnitude and likelihood of the other should be taken into account when determining risk level. In addition, the impact of correlated, but distinctive, loss causing events on particular property types may be significant, particularly if a specific property is designed to protect against one peril but is potentially susceptible to another. We suggest that flood events can lead to increased subsidence risk due to the weight of additional water

  15. 11th Magdeburg seminar on waters in Central and Eastern Europe: Assessment, protection, management. Proceedings

    International Nuclear Information System (INIS)

    Geller, W.

    2004-01-01

    The meeting was held October 2004 in Leipzig. The 148 contributions and lectures were pooled under the following session headers: Ecological impacts of flooding, flood risk modelling, socio-economic issues of water framework directive, Nitrogen-transport, methods development,sediments, flood protection and Mitigation, flood risk management, draughts, pollutants impact, integrated assessment, transboundary problems, groundwater, land use, modelling and plankton, fish biota. (uke)

  16. Socio-hydrological modelling of floods: investigating community resilience, adaptation capacity and risk

    Science.gov (United States)

    Ciullo, Alessio; Viglione, Alberto; Castellarin, Attilio

    2016-04-01

    Changes in flood risk occur because of changes in climate and hydrology, and in societal exposure and vulnerability. Research on change in flood risk has demonstrated that the mutual interactions and continuous feedbacks between floods and societies has to be taken into account in flood risk management. The present work builds on an existing conceptual model of an hypothetical city located in the proximity of a river, along whose floodplains the community evolves over time. The model reproduces the dynamic co-evolution of four variables: flooding, population density of the flooplain, amount of structural protection measures and memory of floods. These variables are then combined in a way to mimic the temporal change of community resilience, defined as the (inverse of the) amount of time for the community to recover from a shock, and adaptation capacity, defined as ratio between damages due to subsequent events. Also, temporal changing exposure, vulnerability and probability of flooding are also modelled, which results in a dynamically varying flood-risk. Examples are provided that show how factors such as collective memory and risk taking attitude influence the dynamics of community resilience, adaptation capacity and risk.

  17. Assessing flood risk at the global scale: model setup, results, and sensitivity

    International Nuclear Information System (INIS)

    Ward, Philip J; Jongman, Brenden; Weiland, Frederiek Sperna; Winsemius, Hessel C; Bouwman, Arno; Ligtvoet, Willem; Van Beek, Rens; Bierkens, Marc F P

    2013-01-01

    Globally, economic losses from flooding exceeded $19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP ($1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures. (letter)

  18. Vistula River bed erosion processes and their influence on Warsaw’s flood safety

    Directory of Open Access Journals (Sweden)

    A. Magnuszewski

    2015-03-01

    Full Text Available Large cities have historically been well protected against floods as a function of their importance to society. In Warsaw, Poland, located on a narrow passage of the Vistula River valley, urban flood disasters were not unusual. Beginning at the end of the 19th century, the construction of river embankment and training works caused the narrowing of the flood passage path in the downtown reach of the river. The process of bed erosion lowered the elevation of the river bed by 205 cm over the 20th century, and the consequences of bed lowering are reflected by the rating curve change. Conditions of the flood passage have been analysed by the CCHE2D hydrodynamic model both in retro-modelling and scenario simulation modelling. The high water mark of the 1844 flood and iterative calculations in retro-modelling made possible estimation of the discharge, Q = 8250 m3 s−1. This highest observed historical flood in a natural river has been compared to recent conditions of the Vistula River in Warsaw by scenario modelling. The result shows dramatic changes in water surface elevation, velocities, and shear stress. The vertical velocity in the proximity of Port Praski gauge at km 513 can reach 3.5 m s−1, a very high value for a lowland river. The average flow conveyance is improving due to channel erosion but also declining in the case of extreme floods due to high resistance from vegetation on the flood plains.

  19. Governance and Community Responses to Floods in Poor Peri-urban Areas

    DEFF Research Database (Denmark)

    Schaer, Caroline

    see their already considerable vulnerability increased for every flooding event. In the long term, climate change is expected to make matters worse for these already tried populations, due to an increase in storm frequency and intensity, and with them in the risk of floods. However, climate change......-induced changing weather patterns and more extreme weather events are only part of the explanation for this situation, as large segments of the urban population in West Africa are not offered the public services, infrastructure and protective regulations needed in order to respond to floods. In Senegal, in spite...

  20. System robustness analysis in support of flood and drought risk management

    CERN Document Server

    Mens, MJP

    2015-01-01

    Floods and droughts have an increasing impact on societies worldwide. It is unlikely that the provision of flood protection infrastructure and reservoirs will eliminate this problem, especially as extreme events are expected to increase in probability and magnitude as a result of climate change. For this reason, the focus of water management has shifted to a risk-based approach in recent years; but this also has its limitations.This book examines system robustness as a new perspective on flood and drought risk management. The concept of robustness is familiar from other areas, such as engineer

  1. PMF (probable maximum flood) study for Nevada Nuclear Waste Storage Investigation Project

    International Nuclear Information System (INIS)

    Bullard, K.L.

    1986-01-01

    This document estimates the risk of flooding in the high-level radioactive waste depository proposed for the Yucca Mountain of Nevada. Described are the general features of the proposed site, the drainage pattern of the surrounding area, the historical pattern of precipitation, and an estimate of future precipitation trends. Information from this report will be used in decisions on flood protection construction at this facility. 10 refs., 61 figs., 42 tabs

  2. Advanced methodology for risk and vulnerability assessment of interdependency of critical infrastructure in respect to urban floods

    Directory of Open Access Journals (Sweden)

    Serre Damien

    2016-01-01

    Full Text Available The behaviour of the urban network infrastructures, and their interactions during flood events, will have direct and indirect consequences on the flood risk level in the built environment. By urban network infrastructures we include all the urban technical networks like transportation, energy, water supply, waste water, telecommunication…able to spread the flood risk in cities, qualified as critical infrastructures due to their major roles for modern living standards. From history, most of cities in the world have been built close to coast lines or to river to beneficiate this means of communication and trade. Step by step, to avoid being flooded, defences like levees have been built. The capacity of the levees to retain the floods depends on their conditions, their performance level and the capacity of the authorities to well maintain these infrastructures. But recent history shows the limits of a flood risk management strategy focused on protection, leading to levee breaks these last decades. Then, in case of levee break, cities will be flooded. The urban technical networks, due to the way they have been designed, their conditions and their locations in the city, will play a major role in the diffusion of the flood extent. Also, the flood risk will have consequences in some not flooded neighbourhoods due to networks collapses and complex interdependencies. This article describes some methods to design spatial decision support systems in that context.

  3. Flooding Mechanism in Vertical Flow

    International Nuclear Information System (INIS)

    Ronny-Dwi Agussulistyo; Indarto

    2000-01-01

    This research was carried out to investigate the mechanism of flooding ina vertical liquid-gas counter current flow, along two meter length of thetube. The tube use both circular and square tube, a cross section of squaretube was made the same as a cross section of circular tube with one inchdiameter tube. The liquid enters the tube, passes through a porous wall inletand a groove inlet in a distributor and it flows downwards through a liquidoutlet in a collector. The gas is being introduced at the bottom of the tube,it flows upwards through nozzle in the collector. The results of researchshowed that the flooding occurs earlier in the circular tube than in thesquare tube, either uses a porous wall inlet or a groove inlet. In the squaretube , onset of the flooding occurs at the top of the tube, in front ofliquid injection, it is related to the formation of a film wave, just belowthe liquid feed. Whereas in the circular tube, onset of the flooding occursfrom the bottom of the tube, at the liquid outlet, it is related to theexpand of the film wave. However, in the circular tube with the groove inlet,for the higher liquid flow rate, onset of the flooding from the top, like inthe square tube. (author)

  4. Flood trends along the Rhine: the role of river training

    Directory of Open Access Journals (Sweden)

    S. Vorogushyn

    2013-10-01

    Full Text Available Several previous studies have detected positive trends in flood flows in German rivers, among others, at Rhine gauges over the past six decades. The presence and detectability of the climate change signal in flood records has been controversially discussed, particularly against the background of massive river training measures in the Rhine. In the past the Rhine catchment has been heavily trained, including the construction of the Rhine weir cascade, flood protection dikes and detention basins. The present study investigates the role of river training on changes in annual maximum daily flows at Rhine gauges starting from Maxau down to Lobith. In particular, the effect of the Rhine weir cascade and of a series of detention basins was investigated. By homogenising the original flood flow records in the period from 1952 till 2009, the annual maximum series were computed that would have been recorded had river training measures not been in place. Using multiple trend analysis, relative changes in the homogenised time series were found to be from a few percentage points to more than 10 percentage points smaller compared to the original records. This effect is attributable to the river training measures, and primarily to the construction of the Rhine weir cascade. The increase in Rhine flood discharges during this period was partly caused by an unfavourable superposition of the Rhine and Neckar flood waves. This superposition resulted from an acceleration of the Rhine waves due to the construction of the weir cascade and associated channelisation and dike heightening. However, at the same time, tributary flows across the entire Upper and Lower Rhine, which enhance annual maximum Rhine peaks, showed strong positive trends. This suggests the dominance of another driver or drivers which acted alongside river training.

  5. Assess the flood resilience tools integration in the landuse projects

    Science.gov (United States)

    Moulin, E.; Deroubaix, J.-F.

    2012-04-01

    landuse elaborated the master plan taking into account the flood risk; reducing vulnerability of the area and improving the resilience in case of floods, towards a threshold plan. We set this case-study back in the French policy context of prevention and protection against floods and in the context of the Greater Paris development. There are two levels of problems: In the case of the Ardoines project, the reduction of vulnerability isn't linked with the improvement of the resilience. Indeed, the stakeholders do not envisage an event worst than the 100-years flood return period, the one taken into account in a flood prevention plan. The regulation is the guide for construction rules but there is no consideration for the crisis management. Moreover, the reduction of vulnerability appears less important than the economical issues in the management of a project. This case study illustrates how the lack of awareness for territorial resilience issues and the lack of interest for flood resilience tools are embedded in the "governance" of the risk in the greater Paris area.

  6. Looking upstream: enhancers of child nutritional status in post-flood rural settings.

    Science.gov (United States)

    Rodriguez-Llanes, Jose Manuel; Ranjan-Dash, Shishir; Mukhopadhyay, Alok; Guha-Sapir, Debarati

    2016-01-01

    Background. Child undernutrition and flooding are highly prevalent public health issues in many developing countries, yet we have little understanding of preventive strategies for effective coping in these circumstances. Education has been recently highlighted as key to reduce the societal impacts of extreme weather events under climate change, but there is a lack of studies assessing to what extent parental education may prevent post-flood child undernutrition. Methods and Materials. One year after large floods in 2008, we conducted a two-stage cluster population-based survey of 6-59 months children inhabiting flooded and non-flooded communities of Jagatsinghpur district, Odisha (India), and collected anthropometric measurements on children along with child, parental and household level variables through face-to-face interviews. Using multivariate logistic regression models, we examined separately the effect of maternal and paternal education and other risk factors (mainly income, socio-demographic, and child and mother variables) on stunting and wasting in children from households inhabiting recurrently flooded communities (2006 and 2008; n = 299). As a comparison, separate analyses on children in non-flooded communities were carried out (n = 385). All analyses were adjusted by income as additional robustness check. Results. Overall, fathers with at least completed middle education (up to 14 years of age and compulsory in India) had an advantage in protecting their children from child wasting and stunting. For child stunting, the clearest result was a 100-200% lower prevalence associated with at least paternal secondary schooling (compared to no schooling) in flooded-areas. Again, only in flooded communities, an increase in per capita annual household income of 1,000 rupees was associated to a 4.7-4.9% lower prevalence of child stunting. For child wasting in flooded areas, delayed motherhood was associated to better nutritional outcomes (3.4% lower prevalence per

  7. Combining sea state and land subsidence rates in an assessment of flooding hazards at the Danish North Sea coast

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, Niels; Knudsen, Per

    Sand nourishments (2-3 M3/y) counteract erosion on the central North Sea coast of Denmark and dikes and artificial dunes protect the low-lying hinterland from flooding. The fisheries towns of Thyboron, Thorsminde and Hvide Sande are all liable to flooding during storm surges. Tide gauge series fr...... the coast are presented and the town of Thyboron is used as a case where, in addition to SLR and extremes, analyses of land movement and ocean-groundwater interactions are included in an integrated method for assessing future coastal flooding hazards.......Sand nourishments (2-3 M3/y) counteract erosion on the central North Sea coast of Denmark and dikes and artificial dunes protect the low-lying hinterland from flooding. The fisheries towns of Thyboron, Thorsminde and Hvide Sande are all liable to flooding during storm surges. Tide gauge series from...

  8. Environmental injustice and flood risk: A conceptual model and case comparison of metropolitan Miami and Houston, USA.

    Science.gov (United States)

    Collins, Timothy W; Grineski, Sara E; Chakraborty, Jayajit

    2018-02-01

    This article outlines a conceptual model and comparatively applies it to results from environmental justice (EJ) studies of flood risk in the Miami, Florida, and Houston, Texas, metropolitan areas. In contrast to most EJ studies of air pollution, which have found that socially-vulnerable groups experience disproportionate risk, distributive EJ studies of flooding reveal inconsistent findings regarding the relationship between social vulnerability and flood exposure. Counterintuitively (from a conventional EJ perspective), some pre-flood EJ studies have found that socially-advantaged people experience the highest residential exposure to flood risks. To integrate those anomalous findings within an EJ perspective, our conceptual model focuses on (1) the differential capacities of social groups to deploy/access protective resources for reducing the threat of loss, even while they reside amid flood-prone environments, and (2) both flood hazards and water-based benefits. Application of this model in Miami reveals that environmental injustices materialize as socially-privileged groups expose themselves to residential flood risks by seeking coastal amenities, as the costs of mitigating risks are conveyed to the broader public; in the process, socially-vulnerable residents are relegated to areas with air pollution and/or inland flood risks, where they experience constrained access to protective resources and coastal amenities. Findings from Houston better align with conventional EJ expectations-with flood zones disproportionately inhabited by socially-vulnerable people-because many coastal lands there are used by petrochemical industries, which produce major residential-environmental disamenities . Results underscore the need to consider protective resources and locational benefits in future empirical research on the EJ implications of flood hazards.

  9. Comparing flood loss models of different complexity

    Science.gov (United States)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno

    2013-04-01

    Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.

  10. 2011 floods of the central United States

    Science.gov (United States)

    ,

    2013-01-01

    The Central United States experienced record-setting flooding during 2011, with floods that extended from headwater streams in the Rocky Mountains, to transboundary rivers in the upper Midwest and Northern Plains, to the deep and wide sand-bedded lower Mississippi River. The U.S. Geological Survey (USGS), as part of its mission, collected extensive information during and in the aftermath of the 2011 floods to support scientific analysis of the origins and consequences of extreme floods. The information collected for the 2011 floods, combined with decades of past data, enables scientists and engineers from the USGS to provide syntheses and scientific analyses to inform emergency managers, planners, and policy makers about life-safety, economic, and environmental-health issues surrounding flood hazards for the 2011 floods and future floods like it. USGS data, information, and scientific analyses provide context and understanding of the effect of floods on complex societal issues such as ecosystem and human health, flood-plain management, climate-change adaptation, economic security, and the associated policies enacted for mitigation. Among the largest societal questions is "How do we balance agricultural, economic, life-safety, and environmental needs in and along our rivers?" To address this issue, many scientific questions have to be answered including the following: * How do the 2011 weather and flood conditions compare to the past weather and flood conditions and what can we reasonably expect in the future for flood magnitudes?

  11. Flood Water Segmentation from Crowdsourced Images

    Science.gov (United States)

    Nguyen, J. K.; Minsker, B. S.

    2017-12-01

    In the United States, 176 people were killed by flooding in 2015. Along with the loss of human lives is the economic cost which is estimated to be $4.5 billion per flood event. Urban flooding has become a recent concern due to the increase in population, urbanization, and global warming. As more and more people are moving into towns and cities with infrastructure incapable of coping with floods, there is a need for more scalable solutions for urban flood management.The proliferation of camera-equipped mobile devices have led to a new source of information for flood research. In-situ photographs captured by people provide information at the local level that remotely sensed images fail to capture. Applications of crowdsourced images to flood research required understanding the content of the image without the need for user input. This paper addresses the problem of how to automatically segment a flooded and non-flooded region in crowdsourced images. Previous works require two images taken at similar angle and perspective of the location when it is flooded and when it is not flooded. We examine three different algorithms from the computer vision literature that are able to perform segmentation using a single flood image without these assumptions. The performance of each algorithm is evaluated on a collection of labeled crowdsourced flood images. We show that it is possible to achieve a segmentation accuracy of 80% using just a single image.

  12. Flooding, flood risks and coping strategies in urban informal residential areas: The case of Keko Machungwa, Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Tumpale Sakijege

    2012-08-01

    Full Text Available This article presents findings from a study carried out in Keko Machungwa informal settlement in Dar es Salaam under the auspices of the Disaster Management Training Centre of Ardhi University, Tanzania. The settlement has experienced frequent flooding in the past five years, and this study explores the causes, risks, extent of flooding and coping strategies of residents as well as municipality and city officials. Key methods employed in capturing empirical evidence included mapping of zones by severity of flooding, interviews with households, sub-ward leaders, and municipal and city officials. Non-participant observation, primarily taking photographs, complemented these methods. Laboratory tests of water samples taken from shallow wells in the settlement were performed to establish the level of pollution. In addition, records of prevalence of water-borne diseases were gathered from a dispensary within the settlement to corroborate flooding events, water pollution and occurrence of such diseases. Findings show that flooding is contributed to by the lack of a coordinated stormwater drainage system; haphazard housing development within the valley; and blocking of the water stream by haphazard dumping of solid waste and construction. Risks associated with flooding include water and air pollution, diseases, waterlogging and blocked accessibility. The most common coping strategies at household level are use of sandbags and tree logs; raised pit latrines and doorsteps; provision of water outlet pipes above plinth level; construction of embankments, protection walls and elevation of house foundations; seasonal displacement; and boiling and chemical treatment of water. Recommendations for future action at household, community and city level are made.

  13. Collecting data for quantitative research on pluvial flooding

    NARCIS (Netherlands)

    Spekkers, M.H.; Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.

    2011-01-01

    Urban pluvial flood management requires detailed spatial and temporal information on flood characteristics and damaging consequences. There is lack of quantitative field data on pluvial flooding resulting in large uncertainties in urban flood model calculations and ensuing decisions for investments

  14. Keurbooms Estuary floods and sedimentation

    Directory of Open Access Journals (Sweden)

    Eckart H. Schumann

    2015-11-01

    Full Text Available The Keurbooms Estuary at Plettenberg Bay lies on a wave-dominated, microtidal coast. It has a dune-topped sandy barrier, or barrier dune, almost 4 km long, with a narrow back-barrier lagoon connected to its source rivers, the Keurbooms and Bitou. The estuary exits to the sea through this barrier dune, and it is the geomorphology and mouth position in relation to floods, which is the subject of this paper. Measurements of rainfall, water level, waves and high- and low-tide water lines were used to analyse the mouth variability over the years 2006–2012. Two major floods occurred during this time, with the first in November 2007 eroding away more than 500 000 m3 of sediment. The new mouth was established at the Lookout Rocks limit – the first time since 1915. The second flood occurred in July 2012 and opened up a new mouth about 1 km to the north-east; high waves also affected the position of the breach. The mouth has a tendency to migrate southwards against the longshore drift, but at any stage this movement can be augmented or reversed. The effectiveness of floods in breaching a new mouth through the barrier dune depends on the flood size and the nature of the exit channel in the back-barrier lagoon. Other factors such as ocean waves, sea level, vegetative state of the dune and duration of the flood are also important and can determine where the breach occurs, and if the new mouth will dominate the old mouth.

  15. Insights from socio-hydrology modelling on dealing with flood risk: roles of collective memory, risk-taking attitude and trust (Invited)

    Science.gov (United States)

    Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.; Scolobig, A.

    2013-12-01

    The risk coping culture of a community plays a major role in decision making in urban flood plains. While flood awareness is not necessarily linked to being prepared to face flooding at an individual level, the connection at the community level seems to be stronger through creating policy and initiating protection works. In this work we analyse, in a conceptual way, the interplay of community risk coping culture, flooding damage and economic growth. We particularly focus on three aspects: (i) collective memory, i.e., the capacity of the community to keep the awareness of flooding high; (ii) risk-taking attitude, i.e., the amount of risk a community is collectively willing to expose themselves to; and (iii) trust of people in risk protection measures. We use a dynamic model that represents the feedbacks between the hydrological and social system components. The model results indicate that, on one hand, by under perceiving the risk of flooding (because of short collective memory and too much trust in flood protection structures) in combination with a high risk-attitude, community survival is severely limited because of destruction caused by flooding. On the other hand, high perceived risk (long memory and lack of trust in flood protection structures) relative to the actual risk leads to lost economic opportunities and recession. There are many optimal scenarios for survival and economic growth, but greater certainty of survival plus economic growth can be achieved by ensuring community has accurate risk perception (memory neither too long nor too short and trust in flood protection neither too great nor too low) combined with a low to moderate risk-taking attitude. Interestingly, the model gives rise to situations in which the development of the community in the floodplain is path dependent, i.e., the history of flooding may lead to its growth or recession. Schematic of human adjustments to flooding: (a) settling away from the river; (b) raising levees/dikes.

  16. U.S. Coastal Flood Damage Reduction Projects: Federal Authorization and Investment Trends

    Science.gov (United States)

    Carter, N. T.

    2015-12-01

    The 2015 U.S. Environmental Protection Agency report Climate Change in the United States: Benefits of Global Action estimated the potential cumulative future economic impacts of storm surge and sea-level rise on U.S. coasts during this century at 5 trillion (2014 dollars) if no adaptation measures are implemented. These impacts drop to 0.8 trillion if investments are made in cost-effective adaptations and protections. Awareness of flood risk and its long-term fiscal impact historically has proven insufficient to motivate pre-disaster land use changes and investments in mitigation and protection. While many adaptations and protections fall largely under state and local authority, some stakeholders are interested in federal coastal flood protection projects, including projects by the U.S. Army Corps of Engineers. Since the 1950s, Congress has authorized the Corps to construct specific coastal projects. The broad vision, strategy, and priorities for the federal role in coastal flood damage reduction projects nonetheless remain ill-defined. This research analyzes (1) the authorization and appropriations trends for Corps coastal storm damage reduction projects, and (2) how Corps feasibility studies account for and address coastal flood hazards. Identified trends include: emergency appropriations for storm-damaged areas outstrip annual investments in coastal flood projects; the rate at which projects are congressionally approved for construction outpaces the rate at which construction is funded; and how coastal protection projects are evaluated in Corps feasibility studies shows variation and change in agency practices. These trends have consequences; they affect public and local expectations when projects begin providing protection benefits, and may influence investments in other adaptation measures. These trends also raise questions for policymakers at all levels and for scientists and practitioners interested in coastal flood resilience.

  17. Flood risk governance arrangements in Europe

    Science.gov (United States)

    Matczak, P.; Lewandowski, J.; Choryński, A.; Szwed, M.; Kundzewicz, Z. W.

    2015-06-01

    The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements) project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency) of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  18. Flood Insurance Rate Map, Scott County, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  19. DIGITAL FLOOD INSURANCE RATE MAP DATABASE,

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk Information And supporting data used to develop the risk data. The primary risk;...

  20. Sept 2013 NFHL Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  1. Seismic risks posed by mine flooding

    CSIR Research Space (South Africa)

    Goldbach, OD

    2009-09-01

    Full Text Available are allowed to flood. Such flooding-induced seismicity can have significant environmental, social and economic consequences, and may endanger neighbouring mines and surface communities. While fluid-induced seismicity has been observed in other settings (e...

  2. Flood risk governance arrangements in Europe

    Directory of Open Access Journals (Sweden)

    P. Matczak

    2015-06-01

    Full Text Available The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  3. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, , USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk Information And supporting data used to develop the risk data. The primary risk;...

  4. Field note from Pakistan floods: Preventing future flood disasters

    Directory of Open Access Journals (Sweden)

    Marcus Oxley

    2011-04-01

    Full Text Available Unusually heavy monsoon rains in Northern Pakistan have caused disproportionate levels of extreme flooding and unprecedented flood losses across the entire Indus River basin. Extensive land use changes and environmental degradation in the uplands and lowlands of the river basin together with the construction of a “built environment” out of balance with the functioning, capacities, scale and limits of the local ecosystems have exposed millions of people to an increased risk of extreme #ooding. The catastrophic nature of the August #ooding provides a unique opportunity to fundamentally change Pakistan’s current socio-economic development path by incorporating disaster risk reduction and climate change measures into the post-disaster recovery process to rebuild a safer, more resilient nation. In January 2005 one hundred and sixty-eight nations adopted the Hyogo Framework for Action (HFA2005-2015 to bring about a “substantial reduction in disaster losses” by 2015. Despite this global initiative a series of major disasters, including the recent flooding in Pakistan, all indicate that we are not on track to achieve the substantial reduction of disaster losses. The following fieldnote considers what can be done to accelerate progress towards implementation of the Hyogo Framework, drawing on insights and lessons learnt from the August flooding to understand how Pakistan and neighbouring countries can prevent a repeat of such catastrophic disasters in future years.

  5. Tool for analyzing the vulnerability of buildings to flooding: the case of Switzerland

    Science.gov (United States)

    Choffet, Marc; Bianchi, Renzo; Jaboyedoff, Michel; Kölz, Ehrfried; Lateltin, Olivier; Leroi, Eric; Mayis, Arnaud

    2010-05-01

    Whatever the way used to protect property exposed to flood, there exists a residual risk. That is what feedbacks of past flooding show. This residual risk is on one hand linked with the possibility that the protection measures may fail or may not work as intended. The residual risk is on the other hand linked with the possibility that the flood exceeds the chosen level of protection.In many European countries, governments and insurance companies are thinking in terms of vulnerability reduction. This publication will present a new tool to evaluate the vulnerability of buildings in a context of flooding. This tool is developed by the project "Analysis of the vulnerability of buildings to flooding" which is funded by the Foundation for Prevention of Cantonal insurances, Switzerland. It is composed by three modules and it aims to provide a method for reducing the vulnerability of buildings to flooding. The first two modules allow identifying all the elements composing the building and listing it. The third module is dedicated to the choice of efficient risk reducing measures on the basis of cost-benefit analyses. The diagnostic tool for different parts of the building is being developed to allow real estate appraisers, insurance companies and homeowners rapidly assess the vulnerability of buildings in flood prone areas. The tool works with by several databases that have been selected from the collection and analysis of data, information, standards and feedback from risk management, hydrology, architecture, construction, materials engineering, insurance, or economy of construction. A method for determining the local hazard is also proposed, to determine the height of potential floods threatening a building, based on a back analysis of Swiss hazard maps. To calibrate the model, seven cantonal insurance institutions participate in the study by providing data, such as the the amount of damage in flooded areas. The poster will present some results from the development of

  6. Effectiveness of flood damage mitigation measures: Empirical evidence from French flood disasters

    NARCIS (Netherlands)

    Poussin, J.K.; Botzen, W.J.W.; Aerts, J.C.J.H.

    2015-01-01

    Recent destructive flood events and projected increases in flood risks as a result of climate change in many regions around the world demonstrate the importance of improving flood risk management. Flood-proofing of buildings is often advocated as an effective strategy for limiting damage caused by

  7. Flooding in imagination vs flooding in vivo: A comparison with agoraphobics

    NARCIS (Netherlands)

    Emmelkamp, Paul M.G.; Wessels, Hemmy

    In this investigation of agoraphobic patients, 3 different flooding procedures were compared: (1) prolonged exposure in vivo, (2) flooding in the imagination by a ‘live’ therapist and (3) a combination of flooding in the imagination and flooding in vivo. After an intermediate-test all clients were

  8. Why are decisions in flood disaster management so poorly supported by information from flood models?

    NARCIS (Netherlands)

    Leskens, Anne; Brugnach, Marcela Fabiana; Hoekstra, Arjen Ysbert; Schuurmans, W.

    2014-01-01

    Flood simulation models can provide practitioners of Flood Disaster Management with sophisticated estimates of floods. Despite the advantages that flood simulation modeling may provide, experiences have proven that these models are of limited use. Until now, this problem has mainly been investigated

  9. Interactive modelling with stakeholders in two cases in flood management

    Science.gov (United States)

    Leskens, Johannes; Brugnach, Marcela

    2013-04-01

    New policies on flood management called Multi-Level Safety (MLS), demand for an integral and collaborative approach. The goal of MLS is to minimize flood risks by a coherent package of protection measures, crisis management and flood resilience measures. To achieve this, various stakeholders, such as water boards, municipalities and provinces, have to collaborate in composing these measures. Besides the many advances this integral and collaborative approach gives, the decision-making environment becomes also more complex. Participants have to consider more criteria than they used to do and have to take a wide network of participants into account, all with specific perspectives, cultures and preferences. In response, sophisticated models are developed to support decision-makers in grasping this complexity. These models provide predictions of flood events and offer the opportunity to test the effectiveness of various measures under different criteria. Recent model advances in computation speed and model flexibility allow stakeholders to directly interact with a hydrological hydraulic model during meetings. Besides a better understanding of the decision content, these interactive models are supposed to support the incorporation of stakeholder knowledge in modelling and to support mutual understanding of different perspectives of stakeholders To explore the support of interactive modelling in integral and collaborate policies, such as MLS, we tested a prototype of an interactive flood model (3Di) with respect to a conventional model (Sobek) in two cases. The two cases included the designing of flood protection measures in Amsterdam and a flood event exercise in Delft. These case studies yielded two main results. First, we observed that in the exploration phase of a decision-making process, stakeholders participated actively in interactive modelling sessions. This increased the technical understanding of complex problems and the insight in the effectiveness of various

  10. Hot wet spots of Swiss buildings - detecting clusters of flood exposure

    Science.gov (United States)

    Röthlisberger, Veronika; Zischg, Andreas; Keiler, Margreth

    2016-04-01

    Where are the hotspots of flood exposure in Switzerland? There is no single answer but rather a wide range of findings depending on the databases and methods used. In principle, the analysis of flood exposure is the overlay of two spatial datasets, one on flood hazard and one on assets, e.g. buildings. The presented study aims to test a new developed approach which is based on public available Swiss data. On the hazard side, these are two different types of flood hazard maps each representing a similar return period beyond the dimensioning of structural protection systems. When it comes to assets we use nationwide harmonized data on building, namely a complete dataset of building polygons to which we assign features as volume, residents and monetary value. For the latter we apply findings of multivariate analyses of insurance data. By overlaying building polygons with the flood hazard map we identify the exposed buildings. We analyse the resulting spatial distribution of flood exposure at different levels of scales (local to regional) using administrative units (e.g. municipalities) but also artificial grids with a corresponding size (e.g. 5 000 m). The presentation focuses on the identification of hotspots highlighting the influence of the applied data and methods, e.g. local scan statistics testing intensities within and without potential clusters or log relative exposure surfaces based on kernel intensity estimates. We find a major difference of identified hotspots between absolute values and normalized values of exposure. Whereas the hotspots of flood exposure in absolute figures mirrors the underlying distribution of buildings, the hotspots of flood exposure ratios show very different pictures. We conclude that findings on flood exposure vary depending on the data and moreover the methods used and therefore need to be communicated carefully and appropriate to different stakeholders who may use the information for decision making on flood risk management.

  11. Economic optimisation of flood risk management projects

    NARCIS (Netherlands)

    Tsimopoulou, V.

    2015-01-01

    The Netherlands has developed a flood risk management policy based on an economic rationale. After the flood disaster of 1953, when a large area of the south-western part of the country was flooded and more than 1800 people lost their lives, the so-called Delta Committee was installed, whose main

  12. Exploring logistics aspects of flood emergency measures

    NARCIS (Netherlands)

    de Leeuw, S.L.J.M.; Vis, I.F.A.; Jonkman, S.N.

    2012-01-01

    Floods are often preceded by warnings such as heavy rain that may make preparatory activities possible in order to prevent flooding from actually happening. However, flood emergency preparedness lacks insight in logistical aspects. This paper develops a framework of logistical aspects of emergency

  13. Exploring Logistics Aspects of Flood Emergency Measures

    NARCIS (Netherlands)

    de Leeuw, Sander; Vis, Iris F. A.; Jonkman, Sebastiaan N.

    Floods are often preceded by warnings such as heavy rain that may make preparatory activities possible in order to prevent flooding from actually happening. However, flood emergency preparedness lacks insight in logistical aspects. This paper develops a framework of logistical aspects of emergency

  14. Application of RUNTA code in flood analyses

    International Nuclear Information System (INIS)

    Perez Martin, F.; Benitez Fonzalez, F.

    1994-01-01

    Flood probability analyses carried out to date indicate the need to evaluate a large number of flood scenarios. This necessity is due to a variety of reasons, the most important of which include: - Large number of potential flood sources - Wide variety of characteristics of flood sources - Large possibility of flood-affected areas becoming inter linked, depending on the location of the potential flood sources - Diversity of flood flows from one flood source, depending on the size of the rupture and mode of operation - Isolation times applicable - Uncertainties in respect of the structural resistance of doors, penetration seals and floors - Applicable degrees of obstruction of floor drainage system Consequently, a tool which carries out the large number of calculations usually required in flood analyses, with speed and flexibility, is considered necessary. The RUNTA Code enables the range of possible scenarios to be calculated numerically, in accordance with all those parameters which, as a result of previous flood analyses, it is necessary to take into account in order to cover all the possible floods associated with each flood area

  15. Flood Progression Modelling and Impact Analysis

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Nickerson, B.

    People living in the lower valley of the St. John River, New Brunswick, Canada, frequently experience flooding when the river overflows its banks during spring ice melt and rain. To better prepare the population of New Brunswick for extreme flooding, we developed a new flood prediction model...

  16. Interconnected ponds operation for flood hazard distribution

    Science.gov (United States)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  17. The European Flood Risk Directive and Ethics

    NARCIS (Netherlands)

    Mostert, E.; Doorn, N.

    2012-01-01

    The European Flood risk directive (2007/60/EC) requires EU Member States to review their system of flood risk management. In doing so, they will have to face ethical issues inherent in flood risk management. This paper discusses three such issues, using examples from the Netherlands. These issues

  18. 46 CFR 28.580 - Unintentional flooding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...

  19. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  20. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    Science.gov (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  1. Continental and global scale flood forecasting systems

    NARCIS (Netherlands)

    Emerton, Rebecca E.; Stephens, Elisabeth M.; Pappenberger, Florian; Pagano, Thomas P.; Weerts, A.H.; Wood, A.; Salamon, Peter; Brown, James D.; Hjerdt, Niclas; Donnelly, Chantal; Baugh, Calum A.; Cloke, Hannah L.

    2016-01-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not

  2. Flood Risk Management in the People’s Republic of China: Learning to Live with Flood Risk

    OpenAIRE

    Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB)

    2012-01-01

    This publication presents a shift in the People’s Republic of China from flood control depending on structural measures to integrated flood management using both structural and non-structural measures. The core of the new concept of integrated flood management is flood risk management. Flood risk management is based on an analysis of flood hazard, exposure to flood hazard, and vulnerability of people and property to danger. It is recommended that people learn to live with flood risks, gaining...

  3. Modelling dynamic roughness during floods

    NARCIS (Netherlands)

    Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.

    2007-01-01

    In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most

  4. A Fair Approach to Flooding

    NARCIS (Netherlands)

    Doorn, N.

    2017-01-01

    Floods can be some of the most unexpected and devastating natural phenomena. Reducing their risks everywhere is near impossible, whether due to financial reasons or more physical obstacles. Dr Neelke Doorn at Delft University of Technology is working to improve policies related to water, with the

  5. READY: a web-based geographical information system for enhanced flood resilience through raising awareness in citizens

    Science.gov (United States)

    Albano, R.; Sole, A.; Adamowski, J.

    2015-07-01

    As evidenced by the EU Floods Directive (2007/60/EC), flood management strategies in Europe have undergone a shift in focus in recent years. The goal of flood prevention using structural measures has been replaced by an emphasis on the management of flood risks using non-structural measures. One implication of this is that public authorities alone not only take responsibility for flood management. A broader range of stakeholders, who may personally experience the negative effects of flooding, also take on responsibility for protecting themselves. Therefore, it is vital that information concerning flood risks is conveyed to those who may be affected in order to facilitate the self-protection of citizens. Experience shows that problems persist even where efforts have been made to communicate flood risks. There is a need for the development of new tools that are able to rapidly disseminate flood-risk information to the general public. To be useful these tools must be able to present information relevant to the location of the user. Moreover, the content and design of the tool need to be adjusted to laypeople's needs. Dissemination and communication influence both people's access to and understanding of natural risk information. Such a tool could be a useful aid to effective management of flood risks. To address this gap, a web-based geographical information system (WebGIS) has been developed through the collaborative efforts of a group of scientists, hazard and risk analysts and managers, GIS analysts, system developers and communication designers. This tool, called "READY: Risk, Extreme Events, Adaptation, Defend Yourself", aims to enhance the general public knowledge of flood risk, making citizens more capable of responding appropriately during a flood event. The READY WebGIS has allowed for the visualization and easy querying of a complex hazard and risk database thanks to a high degree of interactivity and easily read maps. In this way, READY has enabled fast

  6. A prospective study of the impact of floods on the mental and physical health of older adults.

    Science.gov (United States)

    Bei, Bei; Bryant, Christina; Gilson, Kim-Michelle; Koh, Juliana; Gibson, Penelope; Komiti, Angela; Jackson, Henry; Judd, Fiona

    2013-01-01

    With a longitudinal prospective design, we examined the impact of floods on the mental and physical health of older adults and explored risk and protective factors. Two hundred and seventy four older adults (age ≥60) completed surveys before and after a flood event. Both the surveys included measures of anxiety, depression, self-reported health, and satisfaction with life; the post-flood survey also included questionnaires on flood experience, symptoms of post-traumatic stress disorder (PTSD), stoicism, and psychological coping with floods. Compared to those not personally affected (78.8%), personally affected individuals (21.2%) reported significantly higher PTSD symptoms, with about one in six reporting PTSD symptoms that might require clinical attention. Personally affected individuals also reported a greater increase in anxiety post-flood, but changes in their depressive symptoms and self-reported health were not significantly different from those not personally affected. Greater flood exposure and the lack of social support were the risk factors for poorer mental and physical health. Higher stoicism was associated with higher post-flood depression and poorer self-reported mental health. The use of maladaptive coping, such as venting and distraction, was associated with greater deterioration in mental health after floods, whilst emotion-focused coping such as acceptance, positive reframing, and humour, was protective against such deterioration. Floods had adverse psychological impacts on some older adults who were personally affected. Despite the evidence of resilience, a small proportion of older adults experienced significant difficulties after the floods. The findings in this study help understand older adults' psychological responses to disasters and have practical implications for service planning and delivery.

  7. Drivers of flood damage on event level

    DEFF Research Database (Denmark)

    Kreibich, H.; Aerts, J. C. J. H.; Apel, H.

    2016-01-01

    example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number......-level mitigation measures, 3) more effective early warning and improved coordination of disaster response and 4) a more targeted maintenance of flood defence systems and their deliberate relocation. Thus, despite higher hydrological severity damage due to the 2013 flood was significantly lower than in 2002. In our...

  8. Top flooding modeling with MAAP4 code

    International Nuclear Information System (INIS)

    Brunet-Thibault, E.; Marguet, S.

    2006-01-01

    An engineering top flooding model was developed in MAAP4.04d.4, the severe accident code used in EDF, to simulate the thermal-hydraulic phenomena that should take place if emergency core cooling (ECC) water was injected in hot leg during quenching. In the framework of the ISTC (International Science and Technology Centre), a top flooding test was proposed in the PARAMETER facility (Podolsk, Russia). The MAAP calculation of the PARAMETER top flooding test is presented in this paper. A comparison between top and bottom flooding was made on the bundle test geometry. According to this study, top flooding appears to cool quickly and effectively the upper plenum internals. (author)

  9. Characterising Record Flooding in the United Kingdom

    Science.gov (United States)

    Cox, A.; Bates, P. D.; Smith, J. A.

    2017-12-01

    Though the most notable floods in history have been carefully explained, there remains a lack of literature that explores the nature of record floods as a whole in the United Kingdom. We characterise the seasonality, statistical and spatial distribution, and meteorological causes of peak river flows for 521 gauging stations spread across the British Isles. We use annual maximum data from the National River Flow Archive, catchment descriptors from the Flood Estimation Handbook, and historical records of large floods. What we aim to find is in what ways, if any, the record flood for a station is different from more 'typical' floods. For each station, we calculate two indices: the seasonal anomaly and the flood index. Broadly, the seasonal anomaly is the degree to which a station's record flood happens at a different time of year compared to typical floods at that site, whilst the flood index is a station's record flood discharge divided by the discharge of the 1-in-10-year return period event. We find that while annual maximum peaks are dominated by winter frontal rainfall, record floods are disproportionately caused by summer convective rainfall. This analysis also shows that the larger the seasonal anomaly, the higher the flood index. Additionally, stations across the country have record floods that occur in the summer with no notable spatial pattern, yet the most seasonally anomalous record events are concentrated around the south and west of the British Isles. Catchment descriptors tell us little about the flood index at a particular station, but generally areas with lower mean annual precipitation have a higher flood index. The inclusion of case studies from recent and historical examples of notable floods across the UK supplements our analysis and gives insight into how typical these events are, both statistically and meteorologically. Ultimately, record floods in general happen at relatively unexpected times and with unpredictable magnitudes, which is a

  10. Analysing the Effects of Flood-Resilience Technologies in Urban Areas Using a Synthetic Model Approach

    Directory of Open Access Journals (Sweden)

    Reinhard Schinke

    2016-11-01

    Full Text Available Flood protection systems with their spatial effects play an important role in managing and reducing flood risks. The planning and decision process as well as the technical implementation are well organized and often exercised. However, building-related flood-resilience technologies (FReT are often neglected due to the absence of suitable approaches to analyse and to integrate such measures in large-scale flood damage mitigation concepts. Against this backdrop, a synthetic model-approach was extended by few complementary methodical steps in order to calculate flood damage to buildings considering the effects of building-related FReT and to analyse the area-related reduction of flood risks by geo-information systems (GIS with high spatial resolution. It includes a civil engineering based investigation of characteristic properties with its building construction including a selection and combination of appropriate FReT as a basis for derivation of synthetic depth-damage functions. Depending on the real exposition and the implementation level of FReT, the functions can be used and allocated in spatial damage and risk analyses. The application of the extended approach is shown at a case study in Valencia (Spain. In this way, the overall research findings improve the integration of FReT in flood risk management. They provide also some useful information for advising of individuals at risk supporting the selection and implementation of FReT.

  11. Responses of an Agricultural Soil Microbiome to Flooding with Seawater after Managed Coastal Realignment

    Directory of Open Access Journals (Sweden)

    Kamilla S. Sjøgaard

    2018-01-01

    Full Text Available Coastal areas have become more prone to flooding with seawater due to climate-change-induced sea-level rise and intensified storm surges. One way to cope with this issue is by “managed coastal realignment”, where low-lying coastal areas are no longer protected and instead flooded with seawater. How flooding with seawater impacts soil microbiomes and the biogeochemical cycling of elements is poorly understood. To address this, we conducted a microcosm experiment using soil cores collected at the nature restoration project site Gyldensteen Strand (Denmark, which were flooded with seawater and monitored over six months. Throughout the experiment, biogeochemical analyses, microbial community fingerprinting and the quantification of marker genes documented clear shifts in microbiome composition and activity. The flooding with seawater initially resulted in accelerated heterotrophic activity that entailed high ammonium production and net removal of nitrogen from the system, also demonstrated by a concurrent increase in the abundances of marker genes for ammonium oxidation and denitrification. Due to the depletion of labile soil organic matter, microbial activity decreased after approximately four months. The event of flooding caused the largest shifts in microbiome composition with the availability of labile organic matter subsequently being the most important driver for the succession in microbiome composition in soils flooded with seawater.

  12. The probability of flooding wave occurrence and the vulnerability of the Kosovo territory settlements

    Directory of Open Access Journals (Sweden)

    Valjarević Aleksandar

    2013-01-01

    Full Text Available The work displays the presumed laws of flooding waves which would occur if the 1976 situation when the great floods in Kosovo happened reoccurred again. On a 1:300000 multilayer map of Kosovo and Metohia, there are areas which would have been flooded in case of a maximum flooding wave, and what is also shown is the areas which were covered in water as the average was measured, including the areas used as projects of minimal flooding wave value. There is a layer showing the points with regular flood defense, including the places where protection needs to establish. The map includes the ratio of 1:300000, whilst the areas are calculated with the help of processing their dynamic static’s, as well as using the formulae Gumbel Distribution and Weibull Formula. The data have been calculated with their maximum value, including the average and the minimum of flooding period embracing the time of 40 years. [Projekat Ministarstva nauke Republike Srbije, br. III44006 i br. 176019

  13. Flood Risk Management Policy in Scotland: Research Questions Past, Present and Future

    Science.gov (United States)

    Wilkinson, Mark; Hastings, Emily; MacDonald, Jannette

    2016-04-01

    Scotland's Centre of Expertise for Waters (CREW) delivers accessible research and expert opinion to support the Scottish Government and its delivery partners in the development and implementation of water policy. It was established in 2011 by the Scottish Government (Rural and Environmental Science and Analytical Services) in recognition of a gap in the provision of short term advice and research to policy (development and implementation). Key policy areas include the Water Framework Directive, Floods Directive, Drinking Water Directive, Habitats Directive and Scotland's Hydro Nation Strategy. CREW is unique in its demand-driven and free service for policy makers and practitioners, managing the engagement between scientists, policy makers and practitioners to work effectively across this interface. The users of CREW are the Scottish Government, Scottish Environment Protection Agency, Scottish Natural Heritage and Scottish Water. CREW has funded around 100 projects relating to water policy since its inception in 2011. Of these, a significant number relate to flood risk management policy. Based on a review of work to date, this poster will give an overview of these projects and a forward look at the challenges that remain. From learning from community led flood risk management to surface water flood forecasting for urban communities, links will be made between sustainable and traditional flood risk management while considering the perceptions of stakeholders to flood risk management. How can we deliver fully integrated flood risk management options? How policy makers, scientists and land managers can better work together will also be explored.

  14. Debates—Perspectives on socio-hydrology: Modeling flood risk as a public policy problem

    Science.gov (United States)

    Gober, Patricia; Wheater, Howard S.

    2015-06-01

    Socio-hydrology views human activities as endogenous to water system dynamics; it is the interaction between human and biophysical processes that threatens the viability of current water systems through positive feedbacks and unintended consequences. Di Baldassarre et al. implement socio-hydrology as a flood risk problem using the concept of social memory as a vehicle to link human perceptions to flood damage. Their mathematical model has heuristic value in comparing potential flood damages in green versus technological societies. It can also support communities in exploring the potential consequences of policy decisions and evaluating critical policy tradeoffs, for example, between flood protection and economic development. The concept of social memory does not, however, adequately capture the social processes whereby public perceptions are translated into policy action, including the pivotal role played by the media in intensifying or attenuating perceived flood risk, the success of policy entrepreneurs in keeping flood hazard on the public agenda during short windows of opportunity for policy action, and different societal approaches to managing flood risk that derive from cultural values and economic interests. We endorse the value of seeking to capture these dynamics in a simplified conceptual framework, but favor a broader conceptualization of socio-hydrology that includes a knowledge exchange component, including the way modeling insights and scientific results are communicated to floodplain managers. The social processes used to disseminate the products of socio-hydrological research are as important as the research results themselves in determining whether modeling is used for real-world decision making.

  15. Quantification of Multiple Climate Change and Human Activity Impact Factors on Flood Regimes in the Pearl River Delta of China

    Directory of Open Access Journals (Sweden)

    Yihan Tang

    2016-01-01

    Full Text Available Coastal flood regimes have been irreversibly altered by both climate change and human activities. This paper aims to quantify the impacts of multiple factors on delta flood. The Pearl River Delta (PRD, with dense river network and population, is one of the most developed coastal areas in China. The recorded extreme water level (m.s.l. in flood season has been heavily interfered with by varied income flood flow, sea-level rise, and dredged riverbeds. A methodology, composed of a numerical model and the index R, has been developed to quantify the impacts of these driving factors in the the PRD. Results show that the flood level varied 4.29%–53.49% from the change of fluvial discharge, 3.35%–38.73% from riverbed dredging, and 0.12%–16.81% from sea-level rise. The variation of flood flow apparently takes the most effect and sea-level rise the least. In particular, dense river network intensifies the impact of income flood change and sea-level rise. Findings from this study help understand the causes of the the PRD flood regimes and provide theoretical support for flood protection in the delta region.

  16. The effect of flooding on mental health: Lessons learned for building resilience

    Science.gov (United States)

    Foudi, Sébastien; Osés-Eraso, Nuria; Galarraga, Ibon

    2017-07-01

    Risk management and climate adaptation literature focuses mainly on reducing the impacts of, exposure to, and vulnerability to extreme events such as floods and droughts. Posttraumatic stress disorder is one of the most important impacts related to these events, but also a relatively under-researched topic outside original psychopathological contexts. We conduct a survey to investigate the mental stress caused by floods. We focus on hydrological, individual, and collective drivers of posttraumatic stress. We assess stress with flood-specific health scores and the GHQ-12 General Health Questionnaire. Our findings show that the combination of water depth and flood velocity measured via a Hazard Class Index is an important stressor; and that mental health resilience can be significantly improved by providing the population with adequate information. More specifically, the paper shows that psychological distress can be reduced by (i) coordinating awareness of flood risks and flood protection and prevention behavior; (ii) developing the ability to protect oneself from physical, material and intangible damage; (iii) designing simple insurance procedures and protocols for fast recovery; and (iv) learning from previous experiences.

  17. Flood loss assessment in the Kota Tinggi

    International Nuclear Information System (INIS)

    Tam, T H; Ibrahim, A L; Rahman, M Z A; Mazura, Z

    2014-01-01

    Malaysia is free from several destructive and widespread natural disasters but frequently affected by floods, which caused massive flood damage. In 2006 and 2007, an extreme rainfall occured in many parts of Peninsular Malaysia, which caused severe flooding in several major cities. Kota Tinggi was chosen as study area as it is one the seriously affected area in Johor state. The aim of this study is to estimate potential flood damage to physical elements in Kota Tinggi. The flood damage map contains both qualitative and quantitative information which corresponds to the consequences of flooding. This study only focuses on physical elements. Three different damage functions were adopted to calculate the potential flood damage and flood depth is considered as the main parameter. The adopted functions are United States, the Netherlands and Malaysia. The estimated flood damage for housing using United States, the Netherlands and Malaysia was RM 350/m 2 RM 200/m 2 and RM 100/m 2 respectively. These results successfully showed the average flood damage of physical element. Such important information needed by local authority and government for urban spatial planning and aiming to reduce flood risk

  18. Coping with Pluvial Floods by Private Households

    Directory of Open Access Journals (Sweden)

    Viktor Rözer

    2016-07-01

    Full Text Available Pluvial floods have caused severe damage to urban areas in recent years. With a projected increase in extreme precipitation as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. Therefore, further insights, especially on the adverse consequences of pluvial floods and their mitigation, are needed. To gain more knowledge, empirical damage data from three different pluvial flood events in Germany were collected through computer-aided telephone interviews. Pluvial flood awareness as well as flood experience were found to be low before the respective flood events. The level of private precaution increased considerably after all events, but is mainly focused on measures that are easy to implement. Lower inundation depths, smaller potential losses as compared with fluvial floods, as well as the fact that pluvial flooding may occur everywhere, are expected to cause a shift in damage mitigation from precaution to emergency response. However, an effective implementation of emergency measures was constrained by a low dissemination of early warnings in the study areas. Further improvements of early warning systems including dissemination as well as a rise in pluvial flood preparedness are important to reduce future pluvial flood damage.

  19. Improving Flash Flood Prediction in Multiple Environments

    Science.gov (United States)

    Broxton, P. D.; Troch, P. A.; Schaffner, M.; Unkrich, C.; Goodrich, D.; Wagener, T.; Yatheendradas, S.

    2009-12-01

    Flash flooding is a major concern in many fast responding headwater catchments . There are many efforts to model and to predict these flood events, though it is not currently possible to adequately predict the nature of flash flood events with a single model, and furthermore, many of these efforts do not even consider snow, which can, by itself, or in combination with rainfall events, cause destructive floods. The current research is aimed at broadening the applicability of flash flood modeling. Specifically, we will take a state of the art flash flood model that is designed to work with warm season precipitation in arid environments, the KINematic runoff and EROSion model (KINEROS2), and combine it with a continuous subsurface flow model and an energy balance snow model. This should improve its predictive capacity in humid environments where lateral subsurface flow significantly contributes to streamflow, and it will make possible the prediction of flooding events that involve rain-on-snow or rapid snowmelt. By modeling changes in the hydrologic state of a catchment before a flood begins, we can also better understand the factors or combination of factors that are necessary to produce large floods. Broadening the applicability of an already state of the art flash flood model, such as KINEROS2, is logical because flash floods can occur in all types of environments, and it may lead to better predictions, which are necessary to preserve life and property.

  20. Composite Flood Risk for Virgin Island

    Science.gov (United States)

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  1. Using cost-benefit concepts in design floods improves communication of uncertainty

    Science.gov (United States)

    Ganora, Daniele; Botto, Anna; Laio, Francesco; Claps, Pierluigi

    2017-04-01

    Flood frequency analysis, i.e. the study of the relationships between the magnitude and the rarity of high flows in a river, is the usual procedure adopted to assess flood hazard, preliminary to the plan/design of flood protection measures. It grounds on the fit of a probability distribution to the peak discharge values recorded in gauging stations and the final estimates over a region are thus affected by uncertainty, due to the limited sample availability and of the possible alternatives in terms of the probabilistic model and the parameter estimation methods used. In the last decade, the scientific community dealt with this issue by developing a number of methods to quantify such uncertainty components. Usually, uncertainty is visually represented through confidence bands, which are easy to understand, but are not yet demonstrated to be useful for design purposes: they usually disorient decision makers, as the design flood is no longer univocally defined, making the decision process undetermined. These considerations motivated the development of the uncertainty-compliant design flood estimator (UNCODE) procedure (Botto et al., 2014) that allows one to select meaningful flood design values accounting for the associated uncertainty by considering additional constraints based on cost-benefit criteria. This method suggests an explicit multiplication factor that corrects the traditional (without uncertainty) design flood estimates to incorporate the effects of uncertainty in the estimate at the same safety level. Even though the UNCODE method was developed for design purposes, it can represent a powerful and robust tool to help clarifying the effects of the uncertainty in statistical estimation. As the process produces increased design flood estimates, this outcome demonstrates how uncertainty leads to more expensive flood protection measures, or insufficiency of current defenses. Moreover, the UNCODE approach can be used to assess the "value" of data, as the costs

  2. Can we predict the next urban flood?

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer

    2015-01-01

    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numericallyboth...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 hours leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs...... to an integrated flood and drainage systems model with the purpose to investigate the potential for predicting future floods. The system is tested on a small town Lystrup in Denmark, which has been recently flooded. Results show that it is possible to generate detailed flood maps in real-time with high resolution...

  3. Betwixt Droughts and Floods: Flood Management Politics in Thailand

    Directory of Open Access Journals (Sweden)

    Naila Maier-Knapp

    2015-01-01

    Full Text Available Attempting to create greater understanding of the political dynamics that influence domestic disaster relief and management (DRM in Thailand, this article takes a closer look at these dynamics by outlining the main actors involved in flood-related DRM. It acknowledges the importance of international and military actors but emphasises the role of national and subnational authorities. The article then identifies the central issues of DRM governance as capacity and bureaucracy and discusses these through a chronological assessment of the flood crisis in Thailand in 2011, interweaving the colourful domestic politics with various political cleavages and dichotomies, and thereby distinguishing between three main dichotomies which it considers as the central drivers of the political dynamics and institutional development of DRM. These issues can be summarised as old versus new institutions, technocracy versus bureaucracy and centralised (but with direct people-orientation through greater channels of citizenry participation versus decentralised bureaucracy with an indirect orientation towards people.

  4. How Multilevel Societal Learning Processes Facilitate Transformative Change: A Comparative Case Study Analysis on Flood Management

    Directory of Open Access Journals (Sweden)

    Claudia Pahl-Wostl

    2013-12-01

    Full Text Available Sustainable resources management requires a major transformation of existing resource governance and management systems. These have evolved over a long time under an unsustainable management paradigm, e.g., the transformation from the traditionally prevailing technocratic flood protection toward the holistic integrated flood management approach. We analyzed such transformative changes using three case studies in Europe with a long history of severe flooding: the Hungarian Tisza and the German and Dutch Rhine. A framework based on societal learning and on an evolutionary understanding of societal change was applied to identify drivers and barriers for change. Results confirmed the importance of informal learning and actor networks and their connection to formal policy processes. Enhancing a society's capacity to adapt is a long-term process that evolves over decades, and in this case, was punctuated by disastrous flood events that promoted windows of opportunity for change.

  5. Accumulation risk assessment for the flooding hazard

    Science.gov (United States)

    Roth, Giorgio; Ghizzoni, Tatiana; Rudari, Roberto

    2010-05-01

    One of the main consequences of the demographic and economic development and of markets and trades globalization is represented by risks cumulus. In most cases, the cumulus of risks intuitively arises from the geographic concentration of a number of vulnerable elements in a single place. For natural events, risks cumulus can be associated, in addition to intensity, also to event's extension. In this case, the magnitude can be such that large areas, that may include many regions or even large portions of different countries, are stroked by single, catastrophic, events. Among natural risks, the impact of the flooding hazard cannot be understated. To cope with, a variety of mitigation actions can be put in place: from the improvement of monitoring and alert systems to the development of hydraulic structures, throughout land use restrictions, civil protection, financial and insurance plans. All of those viable options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - flood risk scenarios. It is therefore necessary to identify proper statistical methodologies, able to describe the multivariate aspects of the involved physical processes and their spatial dependence. In hydrology and meteorology, but also in finance and insurance practice, it has early been recognized that classical statistical theory distributions (e.g., the normal and gamma families) are of restricted use for modeling multivariate spatial data. Recent research efforts have been therefore directed towards developing statistical models capable of describing the forms of asymmetry manifest in data sets. This, in particular, for the quite frequent case of phenomena whose empirical outcome behaves in a non-normal fashion, but still maintains some broad similarity with the multivariate normal distribution. Fruitful approaches were recognized in the use of flexible models, which include the normal

  6. Sobre inundaciones y anegamientos / Reflections on floods and flooding

    Directory of Open Access Journals (Sweden)

    Ferrando A., Francisco J.

    2006-11-01

    Full Text Available Respecto a anegamientos e inundaciones, el autor realiza algunas precisiones conceptuales que afectan la gestión de acciones preventivas, la planificación y el ordenamiento territorial; además se ofrece una sistematización del quehacer sobre las inundaciones./ The author punctualizes the concepts regarding preventive actions and territorial planning. Also the article includes a systematized list of actions related to flood management.

  7. Flood of April 1975 at Williamston, Michigan

    Science.gov (United States)

    Knutilla, R.L.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  8. Aquatic chemistry of flood events

    Science.gov (United States)

    Klavins, Maris; Rodinov, Valery

    2015-04-01

    During flood events a major discharge of water and dissolved substances happens. However flood waters very much differs from water composition during low-water events. Aquatic chemistry of flood waters also is of importance at the calculation of loadings as well as they might have major impact on water quality in receiving water bodies (lakes, coastal waters and seas). Further flood regime of rivers is subjected to changes due to climate change and growing impact of human activities. The aim of this study is to analyse water chemical composition changes during flood events in respect to low water periods, character of high-water events and characteristics of the corresponding basin. Within this study, the concentrations of major dissolved substances in the major rivers of Latvia have been studied using monitoring data as well as field studies during high water/ low water events. As territories of studies flows of substances in river basins/subbasins with different land-use character and different anthropogenic impacts has been studied to calculate export values depending on the land-use character. Impact of relations between dissolved substances and relations in respect to budgets has been calculated. The dynamics of DOC, nutrient and major dissolved substance flows depending on landuse pattern and soil properties in Latvia has been described, including emissions by industrial and agricultural production. In these changes evidently climate change signals can be identified. The water chemistry of a large number of rivers during flood events has been determined and the possible impact of water chemical composition on DOC and nutrient flows has been evaluated. Long-term changes (1977-2013) of concentrations of dissolved substances do not follow linear trends but rather show oscillating patterns, indicating impact of natural factors, e.g. changing hydrological and climatic conditions. There is a positive correlation between content of inert dissolved substances and

  9. Use of documentary sources on past flood events for flood risk management and land planning

    Science.gov (United States)

    Cœur, Denis; Lang, Michel

    2008-09-01

    The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.

  10. Williston Reservoir: Site preparation and post-flood cleanup

    International Nuclear Information System (INIS)

    Loose, J.A.

    1990-01-01

    Williston Reservoir is the second largest in Canada and ranks ninth on the world scale. It was formed by the construction of the W.A.C. Bennet Dam and is the most important hydroelectric storage reservoir and largest body of fresh water in British Columbia. Site preparation for the reservoir began in 1962, with pre-flood clearing involving salvage of merchantable timber, handfalling, machine downing, burning of slash and burial. Post-flood cleanup included timber salvage, bailing and burning debris, tractor piling and burning, crane piling in shallows, underwater cutting, and hand cutting during low drawdown. Various types of floating debris have presented problems for recreational use, log booming and transport, waterways and aviation. Protection of the spillway is accomplished with a floating boom upstream of the channel. Administration, funding, forest clearance, salvage methods, clearing standards, wood volumes, project costs, environmental concerns, and future priorities are discussed. 5 figs., 2 tabs

  11. The Irma-sponge Program: Methodologies For Sustainable Flood Risk Management Along The Rhine and Meuse Rivers

    Science.gov (United States)

    Hooijer, A.; van Os, A. G.

    Recent flood events and socio-economic developments have increased the awareness of the need for improved flood risk management along the Rhine and Meuse Rivers. In response to this, the IRMA-SPONGE program incorporated 13 research projects in which over 30 organisations from all 6 River Basin Countries co-operated. The pro- gram is financed partly by the European INTERREG Rhine-Meuse Activities (IRMA). The main aim of IRMA-SPONGE is defined as: "The development of methodologies and tools to assess the impact of flood risk reduction measures and of land-use and climate change scenarios. This to support the spatial planning process in establish- ing alternative strategies for an optimal realisation of the hydraulic, economical and ecological functions of the Rhine and Meuse River Basins." Further important objec- tives are to promote transboundary co-operation in flood risk management by both scientific and management organisations, and to promote public participation in flood management issues. The projects in the program are grouped in three clusters, looking at measures from different scientific angles. The results of the projects in each cluster have been evaluated to define recommendations for flood risk management; some of these outcomes call for a change to current practices, e.g.: 1. (Flood Risk and Hydrol- ogy cluster): hydrological changes due to climate change exceed those due to further land use change, and are significant enough to necessitate a change in flood risk man- agement strategies if the currently claimed protection levels are to be sustained. 2. (Flood Protection and Ecology cluster): to not only provide flood protection but also enhance the ecological quality of rivers and floodplains, new flood risk management concepts ought to integrate ecological knowledge from start to finish, with a clear perspective on the type of nature desired and the spatial and time scales considered. 3. (Flood Risk Management and Spatial Planning cluster): extreme

  12. Social attitudes towards floods in Poland - spatial differentiation

    Science.gov (United States)

    Biernacki, W.; Działek, J.; Bokwa, A.

    2012-04-01

    ; the local population resigns from taking protective action or passes the responsibility on to the authorities; control when an aware population takes preventive action that help reduce their concern. Above analyses led to comparison of Polish and European social attitudes towards floods.

  13. Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks

    Directory of Open Access Journals (Sweden)

    B. Büchele

    2006-01-01

    Full Text Available Currently, a shift from classical flood protection as engineering task towards integrated flood risk management concepts can be observed. In this context, a more consequent consideration of extreme events which exceed the design event of flood protection structures and failure scenarios such as dike breaches have to be investigated. Therefore, this study aims to enhance existing methods for hazard and risk assessment for extreme events and is divided into three parts. In the first part, a regionalization approach for flood peak discharges was further developed and substantiated, especially regarding recurrence intervals of 200 to 10 000 years and a large number of small ungauged catchments. Model comparisons show that more confidence in such flood estimates for ungauged areas and very long recurrence intervals may be given as implied by statistical analysis alone. The hydraulic simulation in the second part is oriented towards hazard mapping and risk analyses covering the whole spectrum of relevant flood events. As the hydrodynamic simulation is directly coupled with a GIS, the results can be easily processed as local inundation depths for spatial risk analyses. For this, a new GIS-based software tool was developed, being presented in the third part, which enables estimations of the direct flood damage to single buildings or areas based on different established stage-damage functions. Furthermore, a new multifactorial approach for damage estimation is presented, aiming at the improvement of damage estimation on local scale by considering factors like building quality, contamination and precautionary measures. The methods and results from this study form the base for comprehensive risk analyses and flood management strategies.

  14. The flash flood of October 2011 in the Magra River basin (Italy): rainstorm characterisation and flood response analysis

    Science.gov (United States)

    Marchi, Lorenzo; Boni, Giorgio; Cavalli, Marco; Comiti, Francesco; Crema, Stefano; Lucía, Ana; Marra, Francesco; Zoccatelli, Davide

    2013-04-01

    On 25 October 2011, the Magra River, a stream of northwest Italy outflowing into the Ligurian Sea, was affected by a flash flood, which caused severe economic damage and loss of lives. The catchment covers an area of 1717 km2, of which 605 km2 are drained by the Vara River, the major tributary of the Magra River. The flood was caused by an intense rainstorm which lasted approximately 20 hours. The most intense phase lasted about 8 hours, with rainfall amounts up to around 500 mm. The largest rainfall depths (greater than 300 mm) occurred in a narrow southwest - northeast oriented belt covering an area of approximately 400 km2. This flash flood was studied by analysing rainstorm characteristics, runoff response and geomorphic effects. The rainfall fields used in the analysis are based on data from the Settepani weather radar antenna (located at around 100 km from the study basin) and the local rain gauge network. Radar observations and raingauge data were merged to obtain rainfall estimates at 30 min with a resolution of 1 km2. River stage and discharge rating curves are available for few cross-sections on the main channels. Post-flood documentation includes the reconstruction of peak discharge by means of topographic surveys and application of the slope-conveyance method in 34 cross-sections, observations on the geomorphic effects of the event - both in the channel network and on the hillslopes - and the assessment of the timing of the flood based on interviews to eyewitnesses. Regional authorities and local administrations contributed to the documentation of the flood by providing hydrometeorological data, civil protection volunteers accounts, photos and videos recorded during and immediately after the flood. A spatially distributed rainfall-runoff model, fed with rainfall estimates obtained by the radar-derived observations, was used to check the consistency of field-derived peak discharges and to derive the time evolution of the flood. The assessment of unit

  15. Forecasting characteristics of flood effects

    Science.gov (United States)

    Khamutova, M. V.; Rezchikov, A. F.; Kushnikov, V. A.; Ivaschenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikova, E. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.

    2018-05-01

    The article presents the development of a mathematical model of the system dynamics. Mathematical model allows forecasting the characteristics of flood effects. Model is based on a causal diagram and is presented by a system of nonlinear differential equations. Simulated characteristics are the nodes of the diagram, and edges define the functional relationships between them. The numerical solution of the system of equations using the Runge-Kutta method was obtained. Computer experiments to determine the characteristics on different time interval have been made and results of experiments have been compared with real data of real flood. The obtained results make it possible to assert that the developed model is valid. The results of study are useful in development of an information system for the operating and dispatching staff of the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters (EMERCOM).

  16. Bangladesh floods, cyclones and ENSO

    International Nuclear Information System (INIS)

    Choudhury, A.M.

    1994-04-01

    It has been found that in general there is a reduction of rainfall in all the regions of Bangladesh in all the seasons - premonsoon, monsoon and post monsoon during El Nino years. It has also been observed that in strong El Nino year Bangladesh is not hit by a catastrophic flood or a catastrophic cyclone. In the past, occurrence of famines in this region of the world coincided with El Nino years. The years of weak El Nino or when the El Nino index is positive seem to be favourable for the occurrence of floods and cyclones in Bangladesh. A theory of the modulation of the monsoon in Bangladesh by the Walker circulation has been described in the paper. (author). 14 refs, 7 figs, 1 tab

  17. Contaminated sediment transport during floods

    International Nuclear Information System (INIS)

    Fontaine, T.A.

    1992-01-01

    Over the past 48 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of parts of the White Oak Creek catchment. The contaminants presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in the White Oak Creek drainage system. The erosion of these sediments during floods can result in the transport of contaminants both within the catchment and off-site into the Clinch River. A data collection program and a modeling investigation are being used to evaluate the probability of contaminated sediment transport during floods and to develop strategies for controlling off-site transport under present and future conditions

  18. Computerized evaluation of flood impact

    International Nuclear Information System (INIS)

    Gagnon, J.; Quach, T.T.; Marche, C.; Lessard, G.

    1998-01-01

    A computerized evaluation process for assessing the economic impacts of a potential dam failure is described. The DOMINO software, which was developed by Hydro-Quebec, takes into account flow data from dam break simulations of floods, the territory involved, plus the economic evaluations of the real estate and infrastructures affected. Some examples of software applications and impact evaluations are presented. The principal elements involved in estimating economic or other types of impacts induced by natural flooding or dam failure, are: (1) flow forecasting, (2) defining the contour of the involved territory, and (3) accounting for the various impacts identified in the affected zone. Owing to its wide range of functions and utilities, DOMINO has proven to be a very useful, user-friendly and portable decision-making tool. 5 refs., 6 tabs

  19. A Database of Historical Information on Landslides and Floods in Italy

    Science.gov (United States)

    Guzzetti, F.; Tonelli, G.

    2003-04-01

    For the past 12 years we have maintained and updated a database of historical information on landslides and floods in Italy, known as the National Research Council's AVI (Damaged Urban Areas) Project archive. The database was originally designed to respond to a specific request of the Minister of Civil Protection, and was aimed at helping the regional assessment of landslide and flood risk in Italy. The database was first constructed in 1991-92 to cover the period 1917 to 1990. Information of damaging landslide and flood event was collected by searching archives, by screening thousands of newspaper issues, by reviewing the existing technical and scientific literature on landslides and floods in Italy, and by interviewing landslide and flood experts. The database was then updated chiefly through the analysis of hundreds of newspaper articles, and it now covers systematically the period 1900 to 1998, and non-systematically the periods 1900 to 1916 and 1999 to 2002. Non systematic information on landslide and flood events older than 20th century is also present in the database. The database currently contains information on more than 32,000 landslide events occurred at more than 25,700 sites, and on more than 28,800 flood events occurred at more than 15,600 sites. After a brief outline of the history and evolution of the AVI Project archive, we present and discuss: (a) the present structure of the database, including the hardware and software solutions adopted to maintain, manage, use and disseminate the information stored in the database, (b) the type and amount of information stored in the database, including an estimate of its completeness, and (c) examples of recent applications of the database, including a web-based GIS systems to show the location of sites historically affected by landslides and floods, and an estimate of geo-hydrological (i.e., landslide and flood) risk in Italy based on the available historical information.

  20. Long-term changes to flood conditions due to varying management strategies, Rock River, WI

    Science.gov (United States)

    Fredrick, K. C.

    2015-12-01

    The Rock River is a 300-mile tributary of the Mississippi River in southern Wisconsin. Its source is a protected migratory bird habitat called the Horicon National Wildlife Refuge. Below the refuge, the Rock River flows through mostly rural, agricultural areas, with wide floodplain of mixed land use. Between the dam at Horicon and a hydroelectric dam in Watertown, WI, lie the townships of Lebanon, Ashippun, and Ixonia. These rural townships boast productive agricultural lands of mostly corn, soybeans, and alfalfa. Large portions of their land are within the floodplain, underlain by vast expanses of outwash sands and gravels, glaciolacustrine deposits, and tills. Throughout the region, spring floods are common from snowmelt and spring rain. These annual floods may be exacerbated by frozen ground and slow infiltration, making it an accepted part of life for residents. Over the last 8 years, and possibly as many as 20, this segment of the Rock River has seen an increase in flooding both in periodicity and retention of flood waters. Due to the delicate habitat of the wildlife refuge and the commissioned hydroelectric installation at the upper dam in Watertown, the residents and local governments of the Lebanon/Ashippun/Ixonia segment of the river have mostly been left to their own devices to monitor and manage flood events. Lebanon Township has been recording water levels for several years. Recent events at the hydroelectric plant seem to indicate that it may be playing a more important role in the flooding. High water events and flood retention do not correlate well with precipitation for the region. It appears that releases at the dam, or periods of water retention, are driving the long flooding periods upstream. Negative impacts to the region from the flooding include property damage, loss of arable land, and environmental effects.

  1. Public responses to flood warning messages: the Floodline service in Scotland

    Science.gov (United States)

    Cranston, Michael; Geddes, Alistair; Black, Andrew; Ambler, Alice; Menmuir, Cordelia

    2017-04-01

    Over the past decade, efforts have been made to improve the national flood warning system in Scotland, with new capabilities in the underlying flood forecasting tools, as well as development of an active flood warning dissemination service. This paper focusses on the latter service, for which there are around 26,000 customers registered at present, and which saw over 300,000 individual messages being issued during recent floods in winter 2015/16. However, notwithstanding such promising signs of change, evidence of how (if at all) the flood warning messages disseminated by the service actually impacts on recipient behaviour remains more limited. For example, this includes knowledge of the extent to which the messages influence actions on flood preparedness and mitigation. In consequence, there are also ongoing questions over the cost-effectiveness of the service in its current format, and of its scalability to even larger numbers of recipients. This paper will present initial findings from the first detailed study of customer perceptions of the messages distributed via the Scottish flood warning system, officially known as Floodline. In particular, the primary focus will be on results generated from a web-based questionnaire survey of registered Floodline customers. The survey was designed to assess associations between multiple customer characteristics, including location and risk level, type of warning message received, prior experience of flooding, risk awareness, and demographics. The study was conducted for the Scottish Environment Protection Agency, which is responsible for running the Floodline service. More broadly it resonates with current emphases on exploring effective means of hazard communication and encouraging public engagement in flood risk management.

  2. Early Flood Detection for Rapid Humanitarian Response: Harnessing Near Real-Time Satellite and Twitter Signals

    Directory of Open Access Journals (Sweden)

    Brenden Jongman

    2015-10-01

    Full Text Available Humanitarian organizations have a crucial role in response and relief efforts after floods. The effectiveness of disaster response is contingent on accurate and timely information regarding the location, timing and impacts of the event. Here we show how two near-real-time data sources, satellite observations of water coverage and flood-related social media activity from Twitter, can be used to support rapid disaster response, using case-studies in the Philippines and Pakistan. For these countries we analyze information from disaster response organizations, the Global Flood Detection System (GFDS satellite flood signal, and flood-related Twitter activity analysis. The results demonstrate that these sources of near-real-time information can be used to gain a quicker understanding of the location, the timing, as well as the causes and impacts of floods. In terms of location, we produce daily impact maps based on both satellite information and social media, which can dynamically and rapidly outline the affected area during a disaster. In terms of timing, the results show that GFDS and/or Twitter signals flagging ongoing or upcoming flooding are regularly available one to several days before the event was reported to humanitarian organizations. In terms of event understanding, we show that both GFDS and social media can be used to detect and understand unexpected or controversial flood events, for example due to the sudden opening of hydropower dams or the breaching of flood protection. The performance of the GFDS and Twitter data for early detection and location mapping is mixed, depending on specific hydrological circumstances (GFDS and social media penetration (Twitter. Further research is needed to improve the interpretation of the GFDS signal in different situations, and to improve the pre-processing of social media data for operational use.

  3. Climate-proofing the flood protection of the Netherlands

    NARCIS (Netherlands)

    Vellinga, P.; Marinova, N.A.; Loon-Steensma, van J.M.

    2009-01-01

    Global sea level is rising at an increased rate since the late 19th century as a result of rising global mean temperatures. This rise is geographically non-uniform, with substantial spatial differences, and in the latest decade faster than expected. New evidence suggests that more rapid changes than

  4. Technical Basis for Flood Protection at Nuclear Power Plants

    Science.gov (United States)

    2015-07-01

    CHL SR-15-3 36 forces (FEMA 1993). The building’s utilities and sanitary facilities, including heating, air conditioning, electrical, water supply...and sanitary sewage services must be located above the DBFL, completely enclosed within the building’s watertight walls or made watertight and...to a height of approximately 1.5 ft. In areas where cohesive materials (such as clay ) are available, greater heights can be achieved, depending on

  5. Limestone Creek, Local Flood Protection, Fayetteville, New York

    Science.gov (United States)

    1990-08-01

    maple, slippery elm , syca- more, black locust, dogwood, sumac, choke cherry, creeping cucumber, goldenrod and teasel. Wooded areas on the surrounding...CIRCLE C. -AkA- BARKER t LANE IVIALL KEN 4A AVE 2 7rflEE EEOER r ’A CHANIC S ENWOOD LANE Shcoping cc a ttev Center RNE -V ELM STREET GENES STREET...0~i r; 0 i cyO n 0 00.- w ~ 0vwf N - N 9 00 0 , - 00 -l N NO w IV a,0 200 000 -0 a, r. elm ID MW PN0NIN MOJn 0m M e. 0’iamo 0 q0 ON T0 Fw% N..NV

  6. Floods and human health: a systematic review.

    Science.gov (United States)

    Alderman, Katarzyna; Turner, Lyle R; Tong, Shilu

    2012-10-15

    Floods are the most common type of disaster globally, responsible for almost 53,000 deaths in the last decade alone (23:1 low- versus high-income countries). This review assessed recent epidemiological evidence on the impacts of floods on human health. Published articles (2004-2011) on the quantitative relationship between floods and health were systematically reviewed. 35 relevant epidemiological studies were identified. Health outcomes were categorized into short- and long-term and were found to depend on the flood characteristics and people's vulnerability. It was found that long-term health effects are currently not well understood. Mortality rates were found to increase by up to 50% in the first year post-flood. After floods, it was found there is an increased risk of disease outbreaks such as hepatitis E, gastrointestinal disease and leptospirosis, particularly in areas with poor hygiene and displaced populations. Psychological distress in survivors (prevalence 8.6% to 53% two years post-flood) can also exacerbate their physical illness. There is a need for effective policies to reduce and prevent flood-related morbidity and mortality. Such steps are contingent upon the improved understanding of potential health impacts of floods. Global trends in urbanization, burden of disease, malnutrition and maternal and child health must be better reflected in flood preparedness and mitigation programs. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. The real governance of disaster risk management in peri-urban Senegal: Delivering flood response services through co-production

    DEFF Research Database (Denmark)

    Schaer, Caroline; Hahonou, Eric Komlavi

    2017-01-01

    Disastrous and recurring floods have impacted West African urban centres over the last decade, accentuating already existing vulnerabilities in poor neighbourhoods. Climate change-induced changing weather patterns and more extreme weather events are only part of the explanation for this situation......, as large segments of the urban population in West Africa are not offered the public services, infrastructure and protective regulations needed in order to respond to floods. Through an empirically grounded approach, the article shows that the ability to respond to floods is formed largely outside the realm....... The article concludes that weak state capacity is not equivalent to non-existent of ungoverned collective services linked to floods. While flood response service delivery through co-production, may constitute the best available options in a context of poor resources, because of the negotiated character...

  8. Predicting floods with Flickr tags.

    Science.gov (United States)

    Tkachenko, Nataliya; Jarvis, Stephen; Procter, Rob

    2017-01-01

    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags '#Sandy' or '#flooding'), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak.

  9. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  10. Community's Emergency Preparedness for Flood Hazards in Dire-dawa Town, Ethiopia: A Qualitative Study.

    Science.gov (United States)

    Ejeta, Luche Tadesse

    2018-02-21

    Emergency preparedness at all levels (individuals and communities) is the corner stone of effective response to the increasing trends of global disasters due to man-made and natural hazards. It is determined by different factors, including (among others) past direct and indirect exposures to hazards. This study was carried out in Dire Dawa town, Ethiopia, which in the past experienced frequent flooding events, yet dearth of information exists about preparedness in the area.  The aim of the study was to assess the levels of emergency preparedness for flood hazards at households and communities levels. The study was conducted in a qualitative approach and was conducted in Dire Dawa town, which has been divided into nine administrative-units called Kebeles. Two focus group discussions were held in two of these units (Kebele-05 and 06), each focus group comprising twelve people (all above 18 years of age), and in total 24 people (13 females and 11 males) took part in the study. Open ended questions were used that could guide the discussions, and the discussions were audio-taped and transcribed. The results were translated from local language to English and qualitatively presented. The findings of focus group discussions showed that the local government in collaboration with the federal government built the flood protection dams in areas where flood hazards have been thought to be repeatedly wreaking havoc, specifically after the flood disaster of the year 2006. In addition, in Kebele-05, where one Non-Governmental Organization (NGO) was operating on flood hazards prevention and mitigation program, some non-structural emergency preparedness measures were undertaken by the communities. These non-structural measures (the major ones) entailed: establishment of committees recruited from residents and training them to raise awareness among communities on emergency preparedness; some residents made changes to their own houses (retrofitted) and put sandbags around their

  11. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Directory of Open Access Journals (Sweden)

    A. Luke

    2018-04-01

    Full Text Available Flood hazard mapping in the United States (US is deeply tied to the National Flood Insurance Program (NFIP. Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1 legends that frame flood intensity both qualitatively and quantitatively, and (2 flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1 standing water depths following the flood, (2 the erosive potential of flowing water, and (3 pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating

  12. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Science.gov (United States)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  13. Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk

    Directory of Open Access Journals (Sweden)

    McEwen Lindsey

    2016-01-01

    Full Text Available Shifts to devolved flood risk management in the UK pose questions about how the changing role of floodplain residents in community-led adaptation planning can be supported and strengthened. This paper shares insights from an interdisciplinary research project that has proposed the concept of ‘sustainable flood memory’ in the context of effective flood risk management. The research aimed to increase understanding of whether and how flood memories from the UK Summer 2007 extreme floods provide a platform for developing lay knowledges and flood resilience. The project investigated what factors link flood memory and lay knowledges of flooding, and how these connect and disconnect during and after flood events. In particular, and relation to flood governance directions, we sought to explore how such memories might play a part in individual and community resilience. The research presented here explores some key themes drawn from semi-structured interviews with floodplain residents with recent flood experiences in contrasting demographic and physical settings in the lower River Severn catchment. These include changing practices in making flood memories and materialising flood knowledge and the roles of active remembering and active forgetting.

  14. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    Science.gov (United States)

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  15. Venice: Fifty years after the great flood of November 4, 1966

    Science.gov (United States)

    Rizzoli, P. M.

    2017-12-01

    Fifty years ago Venice and its lagoon suffered the most devastating flood in their millennial history. The causes of the increasingly recurring floods will be examined, namely the man-induced subsidence in the period 1925-1970 and the storm surges of the Adriatic sea. The engineering solution designed for their protection , named the MOSE system, will be discussed in detail. The MOSE was started in 2003 and is near completion. It consists of four barriers , invisible in normal conditions, which will close the inlets to the lagoon under the prediction of a forthcoming flood. Finally, the perspective of the MOSE capability of protecting the city under scenarios of future global sea level rise will be assessed. This assessment must critically take into account that Venice and its lagoon are confined in the northernmost corner of the semi-enclosed, marginal Mediterranean sea for which the uncertainties of future sea level rise greatly exceed the uncertainties of the global averages.

  16. Geostatistical analysis of the flood risk perception queries in the village of Navaluenga (Central Spain)

    Science.gov (United States)

    Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria

    2017-04-01

    Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and

  17. Actionable Science for Sea Level Rise and Coastal Flooding to Help Avoid Maladaptation

    Science.gov (United States)

    Buchanan, M. K.

    2017-12-01

    Rising sea levels increase the frequency of flooding at all levels, from nuisance to extreme, along coastlines across the world. Although recent flooding has increased the saliency of sea level rise (SLR) and the risks it presents to governments and communities, the effect of SLR on coastal hazards is complex and filled with uncertainty that is often uncomfortable for decision-makers. Although it is certain that SLR is occurring and will continue, its rate remains ambiguous. Because extreme flooding is by definition rare, there is also uncertainty in the effect of natural variability on flood frequency. These uncertainties pose methodological obstacles for integrating SLR into flood hazard projections and risk management. A major challenge is how to distill this complexity into information geared towards public sectors to help inform adaptation decision-making. Because policy windows are limited, budgets are tight, and decisions may have long-term consequences, it is especially important that this information accounts for uncertainty to help avoid damage and maladaptation. The U.S. Global Research Program, and others, describe this type of science—data and tools that help decision-makers plan for climate change impacts—as actionable [1]. We produce actionable science to support decision-making for adaptation to coastal impacts, despite uncertainty in projections of SLR and flood frequency. We found that SLR will boost the occurrence of minor rather than severe flooding in some regions of the U.S., while in other regions the reverse is true. For many cities, the current ten-year flood level will become a regular occurrence as the century progresses and by 2100 will occur every few days for some cities. This creates a mismatch with current planning in some cases. For example, a costly storm surge barrier may be built to protect parts of New York City from extreme flood levels but these are not often used because they are expensive to operate and obstructive to

  18. Flood hazards for nuclear power plants

    International Nuclear Information System (INIS)

    Yen, B.C.

    1988-01-01

    Flooding hazards for nuclear power plants may be caused by various external geophysical events. In this paper the hydrologic hazards from flash floods, river floods and heavy rain at the plant site are considered. Depending on the mode of analysis, two types of hazard evaluation are identified: 1) design hazard which is the probability of flooding over an expected service period, and 2) operational hazard which deals with real-time forecasting of the probability of flooding of an incoming event. Hazard evaluation techniques using flood frequency analysis can only be used for type 1) design hazard. Evaluation techniques using rainfall-runoff simulation or multi-station correlation can be used for both types of hazard prediction. (orig.)

  19. Evaluation of internal flooding in a BWR

    International Nuclear Information System (INIS)

    Shiu, K.; Papazoglou, I.A.; Sun, Y.H.; Anavim, E.; Ilberg, D.

    1985-01-01

    Flooding inside a nuclear power station is capable of concurrently disabling redundant safety systems. This paper presents the results of a recent review study performed on internally-generated floods inside a boiling water reactor (BWR) reactor building. The study evaluated the flood initiator frequency due to either maintenance or ruptures using Markovian models. A time phased event tree approach was adopted to quantify the core damage frequency based on the flood initiator frequency. It is found in the study that the contribution to the total core damage due to internal flooding events is not insignificant and is comparable to other transient contributors. The findings also indicate that the operator plays an important role in the prevention as well as the mitigation of a flooding event

  20. [Climate changes, floods, and health consequences].

    Science.gov (United States)

    Michelozzi, Paola; de' Donato, Francesca

    2014-02-01

    In the European Region, floods are the most common natural disaster, causing extensive damage and disruption. In Italy, it has been estimated that over 68% of municipalities are at high hydrogeological risk and with the recent intense rainfall events local populations have been facing severe disruptions. The health consequences of floods are wide ranging and are dependent upon the vulnerability of the environment and the local population. Health effects can be a direct or indirect consequence of flooding. The immediate health impacts of floods include drowning, heart attacks, injuries and hypothermia. The indirect effects include, injuries and infections, water-borne infectious disease, mental health problems, respiratory disease and allergies in both the medium and long term after a flood. Future efforts should be addressed to integrate health preparedness and prevention measures into emergency flood plans and hydrological warning systems.

  1. Flood Protection, Section 4, Ohio River, Southwest Jefferson County, Kentucky. Local Flood Protection Project. Supplement Number 6.

    Science.gov (United States)

    1984-04-01

    Contractors, Inc. 208 Dishman Lane Bowling Green, Kentucky 42101 k. Stone and Asphalt - Murray Company, Inc. P.O. Box 23410 Anchorage, Kentucky 40223...LAm on~i Fa FLAT BOTTOM flof a a $1N orma Wm IN waasam.m amma mll - sme - tamm. ius as MliS mu "e.a.wIMI. mINI Me em Inicilla am emma atNI L.we -0 uma6L...is 8 17 1? 3 10 14.5- 21.0 43 Z2.0- It is P ILL PATIRIAL CINDERS SOW MVE1. - r WOW BRICK , .. IM-T LONE 1417 a 430 425 12 24 EL7 424.00+ 16.3- 13.4 II

  2. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  3. 44 CFR 78.5 - Flood Mitigation Plan development.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...

  4. 78 FR 52955 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2013-08-27

    ... community that the Deputy Associate Administrator for Mitigation reconsider the changes. The flood hazard...; Internal Agency Docket No. FEMA-B-1349] Changes in Flood Hazard Determinations AGENCY: Federal Emergency... modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or...

  5. Flooded native pastures of the northern region of the Pantanal of Mato Grosso: biomass and primary productivity variations

    Directory of Open Access Journals (Sweden)

    C. G. Pozer

    Full Text Available The Pantanal comprises a number of landscape units, submitted to a flood pulse with variable intensity or regularity. One of these units, the flooded plains, is important in cattle raising. This study was carried out in the northern portion of the Pantanal and presents data related to the productive dynamics of the flooded native pastures both protected from and exposed to cattle. The greatest total biomass values were for the protected pasture due to accumulated dead biomass. Net primary production presented smaller values at the flood-season start and increasing gradually beginning in the subsequent rainy season. However, consumption by cattle was also more intense during the months of greater precipitation. The effect of cattle in pastures is of fundamental importance to management since it prevents the dead biomass excess that increases fire risks.

  6. Flood Response System—A Case Study

    OpenAIRE

    Yogesh Kumar Singh; Upasana Dutta; T. S. Murugesh Prabhu; I. Prabu; Jitendra Mhatre; Manoj Khare; Sandeep Srivastava; Subasisha Dutta

    2017-01-01

    Flood Response System (FRS) is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the critica...

  7. Flood-inundation maps for the Saddle River from Rochelle Park to Lodi, New Jersey, 2012

    Science.gov (United States)

    Hoppe, Heidi L.; Watson, Kara M.

    2012-01-01

    Digital flood-inundation maps for a 2.75-mile reach of the Saddle River from 0.2 mile upstream from the Interstate 80 bridge in Rochelle Park to 1.5 miles downstream from the U.S. Route 46 bridge in Lodi, New Jersey, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Saddle River at Lodi, New Jersey (station 01391500). Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01391500. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Saddle River at Lodi, New Jersey streamgage and documented high-water marks from recent floods. The hydraulic model was then used to determine 11 water-surface profiles for flood stages at the Saddle River streamgage at 1-ft intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from bankfull, 0.5 ft below NWS Action Stage, to the extent of the stage-discharge rating, which is approximately 1 ft higher than the highest recorded water level at the streamgage. Action Stage is the stage which when reached by a rising stream the NWS or a partner needs to take some type of mitigation action in

  8. Evaluation of Flood Level under Main Feedwater Line Break Accident using GOTHIC Computer Code and Analytical Calculation by ANSI 56.11

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keon Yeop; Park, Jae Won; Jeon, Woo Jae [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    The design basis internal flooding is caused by postulated pipe ruptures or component failures. The flooding can cause failure of safety-related equipment and affect the integrity of the structure. Though large diameter pipe rupture is significant in flooding analysis, split breaks should also be considered with consideration of a spectrum of pipe break size and power level. The pipe rupture analysis should be based on the most severe single active failure. For enveloping spectrum of pipe break condition, flood relief paths are necessary and passive flood protection without operating action, basically, shall be applied. In this study, the evaluation of flood level in case of Main Feedwater Line Break (MFLB) was performed by using GOTHIC computer program and hand calculation. The flooding analyses were performed by hand calculation and GOTHIC analysis for an assumed MFLB condition. The calculated flood levels were 0.823m and 0.691m for hand calculation and GOTHIC analysis, respectively. In comparison to the GOTHIC analysis, hand calculation showed conservative results. However, in actual flood protection design, margin for uncertainty shall be considered, in order to reflect the outflow reducing effect due to vortex and intake of air.

  9. Evaluation of Flood Level under Main Feedwater Line Break Accident using GOTHIC Computer Code and Analytical Calculation by ANSI 56.11

    International Nuclear Information System (INIS)

    Kim, Keon Yeop; Park, Jae Won; Jeon, Woo Jae

    2016-01-01

    The design basis internal flooding is caused by postulated pipe ruptures or component failures. The flooding can cause failure of safety-related equipment and affect the integrity of the structure. Though large diameter pipe rupture is significant in flooding analysis, split breaks should also be considered with consideration of a spectrum of pipe break size and power level. The pipe rupture analysis should be based on the most severe single active failure. For enveloping spectrum of pipe break condition, flood relief paths are necessary and passive flood protection without operating action, basically, shall be applied. In this study, the evaluation of flood level in case of Main Feedwater Line Break (MFLB) was performed by using GOTHIC computer program and hand calculation. The flooding analyses were performed by hand calculation and GOTHIC analysis for an assumed MFLB condition. The calculated flood levels were 0.823m and 0.691m for hand calculation and GOTHIC analysis, respectively. In comparison to the GOTHIC analysis, hand calculation showed conservative results. However, in actual flood protection design, margin for uncertainty shall be considered, in order to reflect the outflow reducing effect due to vortex and intake of air

  10. Reconstruction of the 1945 Wieringermeer Flood

    Science.gov (United States)

    Hoes, O. A. C.; Hut, R. W.; van de Giesen, N. C.; Boomgaard, M.

    2013-03-01

    The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. Such reference data can either be historic data, or can be obtained from controlled experiments. The inundation of the Wieringermeer polder in the Netherlands in April 1945 is one of the few examples for which sufficient historical information is available. The objective of this article is to compare the flood simulation with flood data from 1945. The context, the breach growth process and the flood propagation are explained. Key findings for current flood risk management addresses the importance of the drainage canal network during the inundation of a polder, and the uncertainty that follows from not knowing the breach growth parameters. This case study shows that historical floods provide valuable data for the validation of models and reveal lessons that are applicable in current day flood risk management.

  11. Lessons Learned from Southeast Asian Floods

    Science.gov (United States)

    Osti, R.; Tanaka, S.

    2009-04-01

    At certain scales, flood has always been the lifeline of many people from Southeast Asian countries. People are traditionally accustomed to living with such floods and their livelihood is adjusted accordingly to optimize the benefits from the floods. However, large scale flood occasionally turns into the disaster and causes massive destruction not only in terms of human causalities but also damage to economic, ecological and social harmonies in the region. Although economic growth is prevailing in a relative term, the capacity of people to cope with such extreme events is weakening therefore the flood disaster risk is increasing in time. Recent examples of flood disaster in the region clearly show the increasing severity of disaster impact. This study reveals that there are many factors, which directly or indirectly influence the change. This paper considers the most prominent natural and socio-economic factors and analyzes their trend with respect to flood disasters in each country's context. A regional scale comparative analysis further helps to exchange the know how and to determine what kind of strategy and policy are lacking to manage the floods in a long run. It is also helpful in identifying the critical sectors that should be addressed first to mitigate the potential damage from the floods.

  12. Flood Response System—A Case Study

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Singh

    2017-06-01

    Full Text Available Flood Response System (FRS is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of damage. The inputs to FRS are provided using two components: (1 a semi-automated application developed indigenously, to delineate inundated areas for Near-Real Time Flood Monitoring using Active Microwave Remote Sensing data and (2 a two-dimensional (2D hydrodynamic river model generated outputs for water depth and velocity in flooded areas for an embankment breach scenario. The 2D Hydrodynamic model, CCHE2D (Center for Computational Hydroscience and Engineering Two-Dimensional model, was used to simulate an area of 600 km2 in the flood-prone zone of the Brahmaputra basin. The resultant inundated area from the model was found to be 85% accurate when validated with post-flood optical satellite data.

  13. Polders as active element of flood control

    International Nuclear Information System (INIS)

    Zilavy, M.

    2004-01-01

    In this presentation author deals with use of the polders as active element of flood control on the example Kysuca River and Podluzianka River (Slovakia). It was concluded that it is necessary: - dense network of rain gauge stations; - network of water level recorders; revision of design process for hydraulic objects - degree of safety; changes in legislation - permission for construction in flood-plains; maintenance of channel capacity; early flood forecasting - forecasting and warning service; river training works and maintenance; design of retention areas; preparation of retention areas prior to flood propagation

  14. Flood forecasting and warning systems in Pakistan

    International Nuclear Information System (INIS)

    Ali Awan, Shaukat

    2004-01-01

    Meteorologically, there are two situations which may cause three types of floods in Indus Basin in Pakistan: i) Meteorological Situation for Category-I Floods when the seasonal low is a semi permanent weather system situated over south eastern Balochistan, south western Punjab, adjoining parts of Sindh get intensified and causes the moisture from the Arabian Sea to be brought up to upper catchments of Chenab and Jhelum rivers. (ii) Meteorological Situation for Category-11 and Category-111 Floods, which is linked with monsoon low/depression. Such monsoon systems originate in Bay of Bengal region and then move across India in general west/north westerly direction arrive over Rajasthan or any of adjoining states of India. Flood management in Pakistan is multi-functional process involving a number of different organizations. The first step in the process is issuance of flood forecast/warning, which is performed by Pakistan Meteorological Department (PMD) utilizing satellite cloud pictures and quantitative precipitation measurement radar data, in addition to the conventional weather forecasting facilities. For quantitative flood forecasting, hydrological data is obtained through the Provincial Irrigation Department and WAPDA. Furthermore, improved rainfall/runoff and flood routing models have been developed to provide more reliable and explicit flood information to a flood prone population.(Author)

  15. Simulating Catchment Scale Afforestation for Mitigating Flooding

    Science.gov (United States)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  16. A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices

    Science.gov (United States)

    Kourgialas, N. N.; Karatzas, G. P.

    2014-03-01

    A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.

  17. Optimal investment and location decisions of a firm in a flood risk area using Impulse Control Theory

    Science.gov (United States)

    Grames, Johanna; Grass, Dieter; Kort, Peter; Prskawetz, Alexia

    2017-04-01

    Flooding events can affect businesses close to rivers, lakes or coasts. This paper provides a partial equilibrium model which helps to understand the optimal location choice for a firm in flood risk areas and its investment strategies. How often, when and how much are firms willing to invest in flood risk protection measures? We apply Impulse Control Theory to solve the model analytically and develop a continuation algorithm to solve the model numerically. Firms always invest in flood defense. The investment increases the higher the flood risk and the more firms also value the future, i.e. the more sustainable they plan. Investments in production capital follow a similar path. Hence, planning in a sustainable way leads to economic growth. Sociohydrological feedbacks are crucial for the location choice of the firm, whereas different economic situations have an impact on investment strategies. If flood defense is already present, e.g. built up by the government, firms move closer to the water and invest less in flood defense, which allows firms to accrue higher expected profits. Firms with a large initial production capital surprisingly try not to keep their market advantage, but rather reduce flood risk by reducing exposed production capital.

  18. STUDY REGARDING DELINEATION OF FLOOD HAZARD ZONES IN THE HYDROGRAPHIC BASIN OF THE SOMEŞ RIVER, BORDER AREA

    Directory of Open Access Journals (Sweden)

    STOICA F.

    2014-03-01

    Full Text Available The hydrological studies will provide the characteristic parameters for the floods occurred for the calculus discharges with overflow probabilities of 0,1%; 1%, 5%, 10%. The hydrologic and hydraulic models will be made by using the hydro-meteorological data base and the topographical measurements on site; them calibration will be done according to the records of the historical floods. The studies on the hydrologic and hydraulic models will be necessary for the establishment of the carrying capacity of the riverbeds, for the delimitation of the flood plains and for the detection of the transit discharges at the hydro-technical installations, but also for the establishment of the parameters needed for the structural measures’ projects. These will be based on the 1D and 2D unstable hydro-dynamic models. Therefore, the users would be able to assess the proposed measures and the impact over the river’s system; of course with the potential combination of the 1D and 2D. The main objectives followed by the project are: • identification of the river basins or river sub-basins with flood risks; • regionalization of the flood hazard; • presentation of the main flash floods occurred during the last 30 years, which induced floods; • assessment of the consequences of eventual flood over the population, properties and environment; • the establishment of the protection degree, accepted for the human settlements, for the economic and social objectives, for the farm areas, etc.;

  19. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    Science.gov (United States)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  20. Spatiotemporal flooding fluctuation analysis: wetland managment Bañado La Estrella, Chaco región, Argentina

    OpenAIRE

    Gómez Romina, Díaz; Cuellar, Ana Carolina; Brown, Alejandro

    2016-01-01

    The wetlands are widely distributed over the Chaco region. Despite their wide territorial extension and major functional role, Bañado la Estella wetlands have not been appropriately mapped, and this is not a protected area nowadays. Wetlands are ecosystems that depend on periodical flooding, which determine the presence of soils with hydromorphic features and species adapted to permanent or temporary flooding conditions.The bed of the Pilcomayo River began regressing to the west about 30 year...

  1. Operational flood forecasting, warning and response for multi-scale flood risks in developing cities

    NARCIS (Netherlands)

    Rogelis Prada, M.C.

    2016-01-01

    Flood early warning systems are recognized as one of the most effective flood risk management instruments when correctly embedded in comprehensive flood risk management strategies and policies. Many efforts around the world are being put in place to advance the components that determine the

  2. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    NARCIS (Netherlands)

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of

  3. Floods and climate: emerging perspectives for flood risk assessment and management

    NARCIS (Netherlands)

    Merz, B.; Aerts, J.C.J.H.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; Delgado, J.M.; Gocht, M.; Guzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H. -H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P.J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-01-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of

  4. Adaptation to flood risk: Results of international paired flood event studies

    NARCIS (Netherlands)

    Kreibich, Heidi; Di Baldassarre, G.; Vorogushyn, Sergiy; Aerts, J.C.J.H.; Apel, H.; Aronica, G.T.; Arnbjerg-Nielsen, K.; Bouwer, L.; Bubeck, P.; Caloiero, Tommaso; Chinh, Do. T.; Cortès, Maria; Gain, A.K.; Giampá, Vincenzo; Kuhlicke, C; Kundzewicz, Z.W.; Carmen Llasat, M; Mård, Johanna; Matczak, Piotr; Mazzoleni, Maurizio; Molinari, Daniela; Dung, N.V.; Petrucci, Olga; Schröter, Kai; Slager, Kymo; Thieken, A.H.; Ward, P.J.; Merz, B.

    2017-01-01

    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in

  5. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    Science.gov (United States)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  6. Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure

    Science.gov (United States)

    Tsai, C.; Yeh, J. J. J.

    2017-12-01

    A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.

  7. “Expect More Floods In 2013”: An analysis of flood preparedness in ...

    African Journals Online (AJOL)

    In 2013, the Nigerian Meteorological Agency (NIMET) issued a prediction of heavy rainfall with consequent flooding in some major cities of Nigeria particularly Ibadan. In light of the country's previous flood experiences, citizens and government were promptly alerted and advised to be fully prepared for imminent floods.

  8. Applying the Flood Vulnerability Index as a Knowledge base for flood risk assessment

    NARCIS (Netherlands)

    Balica, S-F.

    2012-01-01

    Floods are one of the most common and widely distributed natural risks to life and property worldwide. An important part of modern flood risk management is to evaluate vulnerability to floods. This evaluation can be done only by using a parametric approach. Worldwide there is a need to enhance our

  9. Delivering change : Towards fit-for-purpose governance of adaptation to flooding and drought

    NARCIS (Netherlands)

    Rijke, J.S.

    2014-01-01

    This book addresses pressing challenges of policy makers, planners and project managers in the water sector to successfully implement adaptation action. It draws on case studies about water sensitive urban design (WSUD) in Australia and the Room for the River flood protection programme in the

  10. Delivering change: Towards fit-for-purpose governance of adaptation to flooding and drought

    NARCIS (Netherlands)

    Rijke, J.S.

    2014-01-01

    This book addresses pressing challenges of policy makers, planners and project managers in the water sector to successfully implement adaptation action. It draws on case studies about water sensitive urban design (WSUD) in Australia and the Room for the River flood protection programme in the

  11. 75 FR 18238 - United States Section; Final Environmental Impact Statement, Flood Control Improvements and...

    Science.gov (United States)

    2010-04-09

    ... engineering alternatives for long-term improvement of the Presidio FCP flood containment capacity. The EIS... Federal Register on February 26, 2010 for a 30-day wait period. Finding: Based on engineering, economic... existing levee and provide protection to the City of Presidio and adjacent agricultural areas from a 25...

  12. 76 FR 40738 - Agency Information Collection Activities: Proposed Collection; Comment Request; Standard Flood...

    Science.gov (United States)

    2011-07-11

    ... requirement for federally regulated lending institutions to determine whether a building or mobile home..., has been in effect since the enactment of the Flood Disaster Protection Act of 1973, although the use... required and available. The form may also be used by property owner, insurance agents, realtors, community...

  13. Low cost, multiscale and multi-sensor application for flooded area mapping

    Directory of Open Access Journals (Sweden)

    D. Giordan

    2018-05-01

    Full Text Available Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed and multispectral sensors (MODIS, Sentinel-2. Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  14. A Model to Partly but Reliably Distinguish DDOS Flood Traffic from Aggregated One

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available Reliable distinguishing DDOS flood traffic from aggregated traffic is desperately desired by reliable prevention of DDOS attacks. By reliable distinguishing, we mean that flood traffic can be distinguished from aggregated one for a predetermined probability. The basis to reliably distinguish flood traffic from aggregated one is reliable detection of signs of DDOS flood attacks. As is known, reliably distinguishing DDOS flood traffic from aggregated traffic becomes a tough task mainly due to the effects of flash-crowd traffic. For this reason, this paper studies reliable detection in the underlying DiffServ network to use static-priority schedulers. In this network environment, we present a method for reliable detection of signs of DDOS flood attacks for a given class with a given priority. There are two assumptions introduced in this study. One is that flash-crowd traffic does not have all priorities but some. The other is that attack traffic has all priorities in all classes, otherwise an attacker cannot completely achieve its DDOS goal. Further, we suppose that the protected site is equipped with a sensor that has a signature library of the legitimate traffic with the priorities flash-crowd traffic does not have. Based on those, we are able to reliably distinguish attack traffic from aggregated traffic with the priorities that flash-crowd traffic does not have according to a given detection probability.

  15. IMPACTS OF WETLAND DEGRADATION IN NIGER DELTA NIGERIA AND ITS SIGNIFICANCE IN FLOOD CONTROL

    Directory of Open Access Journals (Sweden)

    Enwere Chidimma Loveline

    2015-08-01

    Full Text Available  Wetlands perform a wide variety of functions that include flood control, ground water recharge, shore line stabilization, storm protection and climate moderation. However, despite these huge wetland functions, it has witnessed poor appreciation and dreadful conditions. Niger Delta has witnessed constant coastal erosion and rising sea level, this has led to large portions of the landmass being eroded. This paper aims to review some environmental effects of flooding in the Niger Delta region of Nigeria to provide the desired knowledge of role that wetlands play in reducing flood impacts. However, having witnessed the flood, the experience opened my eyes to the environmental challenges facing Niger Delta with respect to Wetlands degradation, poor perception of wetland values and functions, poor environmental practices and non-implementation of environmental regulations. This memorable experience rekindled the desire and motivation to seek a solution to wetland degradation with the aim of recognizing significance of wetlands at the centre of achieving both livelihood and biodiversity improvements to address coastal flooding problem.The study therefore concludes that wetlands are very significant in flood control and thus the conservation and restoration of wetlands, should put in place measures to reduce wetland destruction.International Journal of EnvironmentVolume-4, Issue-3, June-August 2015Page: 177-184

  16. A quantitative flood risk analysis methodology for urban areas with integration of social research data

    Directory of Open Access Journals (Sweden)

    I. Escuder-Bueno

    2012-09-01

    Full Text Available Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009–2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative. First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.

  17. Incorporating institutions and collective action into a sociohydrological model of flood resilience

    Science.gov (United States)

    Yu, David J.; Sangwan, Nikhil; Sung, Kyungmin; Chen, Xi; Merwade, Venkatesh

    2017-02-01

    Stylized sociohydrological models have mainly used social memory aspects such as community awareness or sensitivity to connect hydrologic change and social response. However, social memory alone does not satisfactorily capture the details of how human behavior is translated into collective action for water resources governance. Nor is it the only social mechanism by which the two-way feedbacks of sociohydrology can be operationalized. This study contributes toward bridging of this gap by developing a sociohydrological model of a flood resilience that includes two additional components: (1) institutions for collective action, and (2) connections to an external economic system. Motivated by the case of community-managed flood protection systems (polders) in coastal Bangladesh, we use the model to understand critical general features that affect long-term resilience of human-flood systems. Our findings suggest that occasional adversity can enhance long-term resilience. Allowing some hydrological variability to enter into the polder can increase its adaptive capacity for resilience through the preservation of social norm for collective action. Further, there are potential trade-offs associated with optimization of flood resistance through structural measures. By reducing sensitivity to floods, the system may become more fragile under the double impact of floods and economic change.

  18. A quantitative flood risk analysis methodology for urban areas with integration of social research data

    Science.gov (United States)

    Escuder-Bueno, I.; Castillo-Rodríguez, J. T.; Zechner, S.; Jöbstl, C.; Perales-Momparler, S.; Petaccia, G.

    2012-09-01

    Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009-2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative). First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.

  19. Allowances for evolving coastal flood risk under uncertain local sea-level rise

    Science.gov (United States)

    Buchanan, M. K.; Kopp, R. E.; Oppenheimer, M.; Tebaldi, C.

    2015-12-01

    Sea-level rise (SLR) causes estimates of flood risk made under the assumption of stationary mean sea level to be biased low. However, adjustments to flood return levels made assuming fixed increases of sea level are also inaccurate when applied to sea level that is rising over time at an uncertain rate. To accommodate both the temporal dynamics of SLR and their uncertainty, we develop an Average Annual Design Life Level (AADLL) metric and associated SLR allowances [1,2]. The AADLL is the flood level corresponding to a time-integrated annual expected probability of occurrence (AEP) under uncertainty over the lifetime of an asset; AADLL allowances are the adjustment from 2000 levels that maintain current risk. Given non-stationary and uncertain SLR, AADLL flood levels and allowances provide estimates of flood protection heights and offsets for different planning horizons and different levels of confidence in SLR projections in coastal areas. Allowances are a function primarily of local SLR and are nearly independent of AEP. Here we employ probabilistic SLR projections [3] to illustrate the calculation of AADLL flood levels and allowances with a representative set of long-duration tide gauges along U.S. coastlines. [1] Rootzen et al., 2014, Water Resources Research 49: 5964-5972. [2] Hunter, 2013, Ocean Engineering 71: 17-27. [3] Kopp et al., 2014, Earth's Future 2: 383-406.

  20. Zinc fertilization of flooded rice

    International Nuclear Information System (INIS)

    1981-02-01

    Local scientists studied Zn fertilization of flooded rice soils in Bangladesh, India, Indonesia, the Republic of Korea, Egypt, the Philippines, Thailand and Turkey. Diagnosis of Zn deficiency was carried out for submerged rice soils. Soil maps were prepared, designating areas as low, medium and high in Zn, based on Zn extraction with DTPA and HCl solutions and on rice leaf analysis. The effectiveness of various Zn fertilizer sources and methods of application in field and greenhouse experiments was measured, using 65 Zn. The percent Zn derived from fertilizer was shown to be a much more sensitive measure of efficiency than yield or total uptake

  1. Detection of Variations of Local Irregularity of Traffic under DDOS Flood Attack

    Directory of Open Access Journals (Sweden)

    Ming Li

    2008-01-01

    Full Text Available The aim of distributed denial-of-service (DDOS flood attacks is to overwhelm the attacked site or to make its service performance deterioration considerably by sending flood packets to the target from the machines distributed all over the world. This is a kind of local behavior of traffic at the protected site because the attacked site can be recovered to its normal service state sooner or later even though it is in reality overwhelmed during attack. From a view of mathematics, it can be taken as a kind of short-range phenomenon in computer networks. In this paper, we use the Hurst parameter (H to measure the local irregularity or self-similarity of traffic under DDOS flood attack provided that fractional Gaussian noise (fGn is used as the traffic model. As flood attack packets of DDOS make the H value of arrival traffic vary significantly away from that of traffic normally arriving at the protected site, we discuss a method to statistically detect signs of DDOS flood attacks with predetermined detection probability and false alarm probability.

  2. Report 2: Guidance document on practices to model and implement external flooding hazards in extended PSA

    International Nuclear Information System (INIS)

    Rebour, V.; Georgescu, G.; Leteinturier, D.; Raimond, E.; La Rovere, S.; Bernadara, P.; Vasseur, D.; Brinkman, H.; Groudev, P.; Ivanov, I.; Turschmann, M.; Sperbeck, S.; Potempski, S.; Hirata, K.; Kumar, Manorma

    2016-01-01

    This report provides a review of existing practices to model and implement external flooding hazards in existing level 1 PSA. The objective is to identify good practices on the modelling of initiating events (internal and external hazards) with a perspective of development of extended PSA and implementation of external events modelling in extended L1 PSA, its limitations/difficulties as far as possible. The views presented in this report are based on the ASAMPSA-E partners' experience and available publications. The report includes discussions on the following issues: - how to structure a L1 PSA for external flooding events, - information needed from geosciences in terms of hazards modelling and to build relevant modelling for PSA, - how to define and model the impact of each flooding event on SSCs with distinction between the flooding protective structures and devices and the effect of protection failures on other SSCs, - how to identify and model the common cause failures in one reactor or between several reactors, - how to apply HRA methodology for external flooding events, - how to credit additional emergency response (post-Fukushima measures like mobile equipment), - how to address the specific issues of L2 PSA, - how to perform and present risk quantification. (authors)

  3. Economic motivation of households to undertake private precautionary measures against floods

    Science.gov (United States)

    Kreibich, H.; Christenberger, S.; Schwarze, R.

    2011-02-01

    Flood damage is on the increase due to a combination of growing vulnerability and a changing climate. This trend can be mitigated only through significantly improved flood risk management which, alongside the efforts of public authorities, will include improvements in the mitigation measures adopted by private households. Economically "reasonable" efforts to self-insure and self-protect should be expected from households before the government steps in with publicly-funded relief programmes. To gain a deeper understanding of the benefits of households' precautionary measures, telephone interviews with private home owners were conducted in the Elbe and Danube catchments in Germany after the floods of 2002 and again after the floods in 2005 and 2006. Only detached, solid single-family houses were included in this study, which is based on 759 interviews. In addition, market-based cost assessments were solicited based on a "model building". Expert interviews and a literature review - including catalogues and price lists for building materials and household appliances - were used as back-up information for the cost assessments. The comparison of costs and benefits shows that large investments, such as building a sealed cellar, are only economically efficient if the building is flooded very frequently, that is, if it is located in a high flood risk area. In such areas it would be preferable in economic terms not to build a new house at all - or else to build a house without a cellar. Small investments, however, such as oil tank protection, can prevent serious damage at low cost. Such investments are still profitable even if the building is flooded every 50 years or less on average. It could be argued that these low-cost measures should be made mandatory through the enforcement of building codes. Financial incentives built into insurance contracts coupled with limits set on governmental relief programmes would provide an economic motivation for people to invest in

  4. Economic motivation of households to undertake private precautionary measures against floods

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2011-02-01

    Full Text Available Flood damage is on the increase due to a combination of growing vulnerability and a changing climate. This trend can be mitigated only through significantly improved flood risk management which, alongside the efforts of public authorities, will include improvements in the mitigation measures adopted by private households. Economically "reasonable" efforts to self-insure and self-protect should be expected from households before the government steps in with publicly-funded relief programmes. To gain a deeper understanding of the benefits of households' precautionary measures, telephone interviews with private home owners were conducted in the Elbe and Danube catchments in Germany after the floods of 2002 and again after the floods in 2005 and 2006. Only detached, solid single-family houses were included in this study, which is based on 759 interviews. In addition, market-based cost assessments were solicited based on a "model building". Expert interviews and a literature review – including catalogues and price lists for building materials and household appliances – were used as back-up information for the cost assessments. The comparison of costs and benefits shows that large investments, such as building a sealed cellar, are only economically efficient if the building is flooded very frequently, that is, if it is located in a high flood risk area. In such areas it would be preferable in economic terms not to build a new house at all – or else to build a house without a cellar. Small investments, however, such as oil tank protection, can prevent serious damage at low cost. Such investments are still profitable even if the building is flooded every 50 years or less on average. It could be argued that these low-cost measures should be made mandatory through the enforcement of building codes. Financial incentives built into insurance contracts coupled with limits set on governmental relief programmes would provide an economic motivation for

  5. Best Practice for Rainfall Measurement, Torrential Flood Monitoring and Real Time Alerting System in Serbia

    Science.gov (United States)

    Stefanovic, Milutin; Milojevic, Mileta; Zlatanovic, Nikola

    2014-05-01

    Serbia occupies 88.000 km2 and its confined zone menaced with torrent flood occupies 50.000km2. Floods on large rivers and torrents are the most frequent natural disasters in Serbia. This is the result of a geographic position and relief of Serbia. Therefore, defense from these natural disasters has been institutionalized since the 19th century. Through its specialized bodies and public companies, the State organized defense from floods on large rivers and protection of international and other main roads. The Topčiderska River is one of a number of rivers in Serbia that is a threat to both urban and rural environments. In this text, general characteristics of this river will be illustrated, as well as the historical natural hazards that have occurred in the part of Belgrade near Topčiderska River. Belgrade is the capital of Serbia, its political, administrative and financial center, which means that there are significant financial capacities and human resources for investments in all sectors, and specially in the water resources sector. Along the Topčiderska catchment there are many industrial, traffic and residential structures that are in danger of floods and flood protection is more difficult with rapid high flows. The goal is to use monitoring on the Topčiderska River basin to set up a modern system for monitoring in real time and forecast of torrential floods. This paper represents a system of remote detection and monitoring of torrential floods and rain measurements in real time on Topciderka river and ready for a quick response.

  6. An assessment of flood vulnerability on physical development along ...

    African Journals Online (AJOL)

    Mohammad

    Key words: Drainage channel, flood, risk assessment, vulnerability. INTRODUCTION ... hydraulic and other control structures.” The effects of floods are always ..... An application of Geographic Information System in mapping flood risk zones in ...

  7. Truth or Consequences Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  8. Social media for disaster response during floods

    Science.gov (United States)

    Eilander, D.; van de Vries, C.; Baart, F.; van Swol, R.; Wagemaker, J.; van Loenen, A.

    2015-12-01

    During floods it is difficult to obtain real-time accurate information about the extent and severity of the hazard. This information is very important for disaster risk reduction management and crisis relief organizations. Currently, real-time information is derived from few sources such as field reports, traffic camera's, satellite images and areal images. However, getting a real-time and accurate picture of the situation on the ground remains difficult. At the same time, people affected by natural hazards increasingly share their observations and their needs through digital media. Unlike conventional monitoring systems, Twitter data contains a relatively large number of real-time ground truth observations representing both physical hazard characteristics and hazard impacts. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at almost 900 tweets per minute during floods in early 2015. Flood events around the world in 2014/2015 yielded large numbers of flood related tweets: from Philippines (85.000) to Pakistan (82.000) to South-Korea (50.000) to Detroit (20.000). The challenge here is to filter out useful content from this cloud of data, validate these observations and convert them to readily usable information. In Jakarta, flood related tweets often contain information about the flood depth. In a pilot we showed that this type of information can be used for real-time mapping of the flood extent by plotting these observations on a Digital Elevation Model. Uncertainties in the observations were taken into account by assigning a probability to each observation indicating its likelihood to be correct based on statistical analysis of the total population of tweets. The resulting flood maps proved to be correct for about 75% of the neighborhoods in Jakarta. Further cross-validation of flood related tweets against (hydro-) meteorological data is to likely improve the skill of the method.

  9. Hydrochemical aspects of the Aue pit flooding

    International Nuclear Information System (INIS)

    Meyer, J.; Jenk, U.; Schuppan, W.; Knappik, R.

    1998-01-01

    WISMUT is conducting controlled flooding of underground mines at the Schlema-Alberoda and Poehla sites. Flooding of the Poehla mine lasted from January 1992 through September 1995. Flooding at the Niederschlema-Alberoda site began in July 1990 and will continue to approximately 2002. In mid-1998 the flood level had reached the - 420 m level which is about 1,400 m above the lowest mine level. Only ground waters with low mineral and pollutant content are used for flooding purposes. Typically, the flooding process results in elevated levels of mineral salts and of uranium, radium, arsenic, iron, and manganese in flooding waters. However, the mobilised part of these contaminants represents only a small fraction of potential concentrations contained in the surrounding rock. Geochemical and hydrochemical conditions at both mines are characterised by the presence of carbonate buffers and by neutral pH and intermediate to low Eh. Decrease due to oxidation of sulphides in the long term is unlikely. Environmentally relevant metals in flooding waters may be dissolved, colloidal, or suspended solids with uranium present as uranyl carbonate complexes. Intensity of mobilisation is primarily a function of kinetic processes. Post flooding conditions at the Poehla subsite exhibit specific hydrochemical phenomena such as extremely reduced SO 4 concentrations and an increase in Ra concentrations over time. Continued flood monitoring will provide the basis for more in-depth interpretation and prognosis of contaminant mobilisation. Current investigations focus on technically feasible in situ control of mine flooding at the Schlema-Alberoda site to reduce contaminant mobilisation. At both sites water treatment plants are either on stream or under construction. (orig.)

  10. Flood mapping with multitemporal MODIS data

    Science.gov (United States)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  11. Stimulating household flood risk mitigation investments through insurance and subsidies: an Agent-Based Modelling approach

    Science.gov (United States)

    Haer, Toon; Botzen, Wouter; de Moel, Hans; Aerts, Jeroen

    2015-04-01

    In the period 1998-2009, floods triggered roughly 52 billion euro in insured economic losses making floods the most costly natural hazard in Europe. Climate change and socio/economic trends are expected to further aggrevate floods losses in many regions. Research shows that flood risk can be significantly reduced if households install protective measures, and that the implementation of such measures can be stimulated through flood insurance schemes and subsidies. However, the effectiveness of such incentives to stimulate implementation of loss-reducing measures greatly depends on the decision process of individuals and is hardly studied. In our study, we developed an Agent-Based Model that integrates flood damage models, insurance mechanisms, subsidies, and household behaviour models to assess the effectiveness of different economic tools on stimulating households to invest in loss-reducing measures. Since the effectiveness depends on the decision making process of individuals, the study compares different household decision models ranging from standard economic models, to economic models for decision making under risk, to more complex decision models integrating economic models and risk perceptions, opinion dynamics, and the influence of flood experience. The results show the effectiveness of incentives to stimulate investment in loss-reducing measures for different household behavior types, while assuming climate change scenarios. It shows how complex decision models can better reproduce observed real-world behaviour compared to traditional economic models. Furthermore, since flood events are included in the simulations, the results provide an analysis of the dynamics in insured and uninsured losses for households, the costs of reducing risk by implementing loss-reducing measures, the capacity of the insurance market, and the cost of government subsidies under different scenarios. The model has been applied to the City of Rotterdam in The Netherlands.

  12. Potential increase in floods in California's Sierra Nevada under future climate projections

    Science.gov (United States)

    Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.

    2011-01-01

    California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p models, while under the third scenario, GFDL CM2. 1, frequencies remain constant or decline slightly, owing to an overall drying trend. These increases appear to derive jointly from increases in heavy precipitation amount, storm frequencies, and days with more precipitation falling as rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science+Business Media B.V.

  13. Operational flash flood forecasting platform based on grid technology

    Science.gov (United States)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important

  14. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    Science.gov (United States)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to

  15. Concurrency and climate change signal in Scottish flooding

    Science.gov (United States)

    Harding, A. E.; Butler, A.; Goody, N.; Bertram, D.; Baggaley, N.; Tett, S. F.

    2013-12-01

    The Scottish Environment Protection Agency maintains a database of river gauging stations and intensity rain-gauges with a 3-hourly resolution that covers the majority of Scotland. Both SEPA and a number of other Scottish agencies are invested in climate change attribution in this data set. SEPA's main interest lies in trend detection and changes in river level (';stage') data throughout Scotland. Emergency response teams are more concerned with the concurrency of multiple flood events that might stretch their ability to respond effectively. Unfortunately, much of the rainfall signal within SEPA's river-gauge data is altered by land use changes, modified by artificial interventions such as reservoirs, compromised by tidal flow, or obscured by measurement issues. Data reduction techniques, indices of extreme rainfall, and hydrology-driven discrimination have been employed to produce a reduced set of flood-relevant information for 24-hour ';flashy' events. Links between this set and North Atlantic circulation have been explored, as have patterns of mutual occurrence across Scotland and location- and seasonally- dependent trends through time. Both frontal systems and summer convective storms have been characterised in terms of subsequent flood-inducing flow regime, their changing behaviour over the last fifty years, and their spatial extent. This is the first stage of an ongoing project that will intelligently expand to take less robust river and rain-gauge stations into account through statistical analysis and hydrological modelling. It is also the first study of its type to analyse a nation-scale dataset of both rainfall and river flow from multiple catchments for flood event concurrency. As rainfall events are expected to intensify across much of Europe, this kind of research is likely to have an increasing degree of relevance for policy-makers. This project demonstrates that productive, policy-relevant and mutually-rewarding partnerships are already underway.

  16. Integrated flash flood vulnerability assessment: Insights from East Attica, Greece

    Science.gov (United States)

    Karagiorgos, Konstantinos; Thaler, Thomas; Heiser, Micha; Hübl, Johannes; Fuchs, Sven

    2016-10-01

    In the framework of flood risk assessment, vulnerability is a key concept to assess the susceptibility of elements at risk. Besides the increasing amount of studies on flash floods available, in-depth information on vulnerability in Mediterranean countries was missing so far. Moreover, current approaches in vulnerability research are driven by a divide between social scientists who tend to view vulnerability as representing a set of socio-economic factors, and natural scientists who view vulnerability in terms of the degree of loss to an element at risk. Further, vulnerability studies in response to flash flood processes are rarely answered in the literature. In order to close this gap, this paper implemented an integrated vulnerability approach focusing on residential buildings exposed to flash floods in Greece. In general, both physical and social vulnerability was comparable low, which is interpreted as a result from (a) specific building regulations in Greece as well as general design principles leading to less structural susceptibility of elements at risk exposed, and (b) relatively low economic losses leading to less social vulnerability of citizens exposed. The population show high risk awareness and coping capacity to response to natural hazards event and in the same time the impact of the events are quite low, because of the already high use of local protection measures. The low vulnerability score for East Attica can be attributed especially to the low physical vulnerability and the moderate socio-economic well-being of the area. The consequence is to focus risk management strategies mainly in the reduction of the social vulnerability. By analysing both physical and social vulnerability an attempt was made to bridge the gap between scholars from sciences and humanities, and to integrate the results of the analysis into the broader vulnerability context.

  17. Collaborative multi-stakeholder approach to drafting flood risk management plans in Wallonia, Belgium

    Science.gov (United States)

    Maroy, Edith; Javaux, Mathieu; Vandermosten, Pierre; Englebert, Benjamin

    2015-04-01

    The Flood Directive 2007/60/CE establishes a common framework within the European Union for assessing and reducing risks posed by floods on human health, the environment, economic activity and cultural heritage. For that purpose, Member States had to establish flood areas and flood risk maps, and subsequently, flood risk management plans (due December 2015). According to the Directive, special attention is to be paid to international coordination for transboundary water courses, integrated management approaches at the catchment scale, cost-effectiveness of measures and public involvement. Management measures must focus on reducing the probability of flooding and the potential consequences of flooding. They must cover prevention, protection and preparedness and must take into account relevant aspects, such as water management, soil management, spatial planning, land use and nature conservation. Floods in Wallonia mostly originate from overflowing of both little sloped rivers and highly reactive rivers but also, from concentrated runoff in the intensely cultivated and erosion-prone region north of the Sambre-Meuse axis. Consequently, walloon flood area maps not only show flood areas based on hydraulic modelling and observations but also runoff concentration axis in agricultural areas. Now released to the public, this information can be used to assess the risk of damage for land planning and erosion control strategies. Incidentally, some 166 km2 were mapped as flood hazard area with a return period of 25 years, 28.8 of which are urbanized or destined to urbanisation and counting of number of approximatively 39.000 people living in those areas. Flood area and flood risk maps should be the starting point of elaborating flood risk management plans. In order to involve the diversity of water managers and stakeholders in the drafting of a management plan for hydrographic districts in Wallonia, responsible authorities decided to mandate scientists and engineers to organize

  18. Managing runoff and flow pathways in a small rural catchment to reduce flood risk with other multi-purpose benefits

    Science.gov (United States)

    Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine

    2010-05-01

    From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in

  19. Flooding

    Science.gov (United States)

    ... and soil contamination from burial. Typical methods of recycling and solid waste disposal in sanitary landfills often ... rid of standing water in rain gutters, old tires, buckets, plastic covers, toys, pools, or any other ...

  20. Flood early warning system: sensors and internet

    NARCIS (Netherlands)

    Pengel, B.E.; Krzhizhanovskaya, V.V.; Melnikova, N.B.; Shirshov, G.S.; Koelewijn, A.R.; Pyayt, A.L.; Mokhov, I.I.; Chavoshian, A.; Takeuchi, K.

    2013-01-01

    The UrbanFlood early warning system (EWS) is designed to monitor data from very large sensornetworks in flood defences such as embankments, dikes, levees, and dams. The EWS, based on the internet, uses real-time sensor information and Artificial Intelligence (AI) to immediately calculate the

  1. Stakeholder initiatives in flood risk management

    NARCIS (Netherlands)

    Edelenbos, Jurian; Buuren, Van Arwin; Roth, Dik; Winnubst, Madelinde

    2017-01-01

    In recent years stakeholder participation has become a popular topic in flood management. Little is known about how and under which circumstances local stakeholders initiate and develop successful flood management strategies and how governmental actors respond to them. Drawing on theories of

  2. 76 FR 58436 - Proposed Flood Elevation Determinations

    Science.gov (United States)

    2011-09-21

    ... +725 feet upstream of the U.S. Route 50 West exit ramp. Dickerson Creek Tributary 1......... At the... Flooding Approximately 1,025 None 2 Hawaii County. feet west of the intersection of Waikoloa Beach Drive... intersection of West Kawailani Street and Launa Street. Shallow Flooding Approximately 3.6 miles None 1 Hawaii...

  3. Survey of September 1987 Natal floods

    CSIR Research Space (South Africa)

    Badenhorst, P

    1989-01-01

    Full Text Available During the September 1987 floods in Natal various organisations collaborated by observing the effects of the floods. The efforts of the CSIR in Stellenbosch and Durban, and the Geology Departments of the Universities of Natal and Port Elizabeth were...

  4. Flooding Capability for River-based Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, Emerald [Idaho State Univ., Pocatello, ID (United States); Calhoun, Donna [Boise State Univ., ID (United States); Sampath, Ramprasad [Centroid Labs., Los Angeles, CA (United States); Anderson, S. Danielle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casteneda, Cody [Boise State Univ., ID (United States)

    2015-10-01

    This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.

  5. Unstructured mesh adaptivity for urban flooding modelling

    Science.gov (United States)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  6. 13 CFR 120.170 - Flood insurance.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Flood insurance. 120.170 Section 120.170 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Policies Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.170 Flood insurance...

  7. Flooding and its Effect on Trees

    Science.gov (United States)

    Stephen Bratkovich; Lisa Burban; Steven Katovich; Craig Locey; Jill Pokorny; Richard Wiest

    1993-01-01

    The 1993 floods along the Missouri and Mississippi Rivers and their tributaries have caused tremendous losses in terms of human life, homes, businesses and crop production. Bottomland areas have been under water for many weeks. Landowners, homeowners, foresters, park managers, and others are concerned about the long-term effect of the flooding on the forests of the...

  8. Freight economic vulnerabilities due to flooding events.

    Science.gov (United States)

    2016-12-01

    Extreme weather events, and flooding in particular, have been occurring more often and with increased severity over the past decade, and there is reason to expect this trend will continue in the future due to a changing climate. Flooding events can u...

  9. Managing flood risks in the Mekong Delta

    NARCIS (Netherlands)

    Hoang, Long Phi; Biesbroek, Robbert; Tri, Van Pham Dang; Kummu, Matti; Vliet, van Michelle T.H.; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2018-01-01

    Climate change and accelerating socioeconomic developments increasingly challenge flood-risk management in the Vietnamese Mekong River Delta—a typical large, economically dynamic and highly vulnerable delta. This study identifies and addresses the emerging challenges for flood-risk management.

  10. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars

    1998-12-31

    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  11. 77 FR 46994 - Proposed Flood Elevation Determinations

    Science.gov (United States)

    2012-08-07

    ..., it addresses the following flooding sources: Jones Bayou, Mississippi River, and Porter Bayou. DATES... Incorporated Areas'' addressed the following flooding sources: Jones Bayou, Mississippi River, and Porter Bayou.... Approximately 8.1 miles None +162 upstream of the Arkansas River confluence. Porter Bayou Approximately 0.8 mile...

  12. Impact of stream restoration on flood waves

    Science.gov (United States)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  13. Flood risk management in Flanders: from flood risk objectives to appropriate measures through state assessment

    Directory of Open Access Journals (Sweden)

    Verbeke Sven

    2016-01-01

    Full Text Available In compliance with the EU Flood Directive to reduce flood risk, flood risk management objectives are indispensable for the delineation of necessary measures. In Flanders, flood risk management objectives are part of the environmental objectives which are judicially integrated by the Decree on Integrated Water Policy. Appropriate objectives were derived by supporting studies and extensive consultation on a local, regional and policy level. Under a general flood risk objective sub-objectives are formulated for different aspects: water management and safety, shipping, ecology, and water supply. By developing a risk matrix, it is possible to assess the current state of flood risk and to judge where action is needed to decrease the risk. Three different states of flood risk are distinguished: a acceptable risk, where no action is needed, b intermediate risk where the risk should be reduced by cost efficient actions, and c unacceptable risk, where action is necessary. For each particular aspect, the severity of the consequences of flooding is assessed by quantifiable indicators, such as economic risk, people at risk and ecological flood tolerance. The framework also allows evaluating the effects of the implemented measures and the autonomous development such as climate change and land use change. This approach gives a quantifiable assessment of state, and enables a prioritization of flood risk measures for the reduction of flood risk in a cost efficient and sustainable way.

  14. Return period assessment of urban pluvial floods through modelling of rainfall–flood response

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Thorndahl, Søren Liedtke; Rasmussen, Michael Robdrup

    2018-01-01

    Intense rainfall in urban areas can often generate severe flood impacts. Consequently, it is crucial to design systems to minimize potential flood damages. Traditional, simple design of urban drainage systems assumes agreement between rainfall return period and its consequent flood return period......; however, this does not always apply. Hydraulic infrastructures found in urban drainage systems can increase system heterogeneity and perturb the impact of severe rainfall response. In this study, a surface flood return period assessment was carried out at Lystrup (Denmark), which has received the impact...... of flooding in recent years. A 35 years' rainfall dataset together with a coupled 1D/2D surface and network model was used to analyse and assess flood return period response. Results show an ambiguous relation between rainfall and flood return periods indicating that linear rainfall–runoff relationships will...

  15. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    Science.gov (United States)

    Kochilakis, Giorgos; Poursanidis, Dimitris; Chrysoulakis, Nektarios; Varella, Vassiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas; Papathanasiou, Chrysoula; Karavokyros, George; Aivazoglou, Maria; Makropoulos, Christos; Mimikou, Maria

    2016-01-01

    A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement "what-if" scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of "what-if" scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its robust architecture and its

  16. FLOOD RISK ASSESSMENT IN RIVER TIMIS BASIN - THE CARANSEBES - LUGOJ SECTOR- USING GIS TECHNIQUE

    Directory of Open Access Journals (Sweden)

    MIHAI VALENTIN HERBEI

    2012-11-01

    Timis valley or in the low lands, where the landscape decreases in altitude, were partially affected, also transport infrastructure (roads and railways was covered by water in some areas, resulting in the isolation of villages; agricultural land located near or within the localities were flooded, situation that had negative consequences on their productivity. The data presented in this study support the importance and opportunity of using GIS techniques in the evaluation of the hydrological risk assessment, techniques through which tackling the problems that address the geographic area is o