WorldWideScience

Sample records for flood plain management

  1. 7 CFR 650.25 - Flood-plain management.

    Science.gov (United States)

    2010-01-01

    ... user how alternative land use decisions may affect the aquatic and terrestial ecosystems, human safety... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...

  2. 18 CFR 801.8 - Flood plain management and protection.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management and protection. 801.8 Section 801.8 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands...

  3. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  4. Managing flood prone ecosystem for rice production in Bihar plains

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.

    2002-06-01

    A large area of the eastern region especially Bihar (0.5 million hectare) faces flood submergence and/or drought every year which creates an unfavorable environment for crop production. In this ecosystem only flood prone rice is grown whose cultivation is entirely different than normal rice crop. Managing the flood prone ecosystem for rice production needs to evaluate the reasons and a comprehensive appropriate technology through research efforts for better rice production under such harsh ecology. An attempt was made to develop a suitable agronomic package for rice cultivation during and after flooding in flood prone plains of Bihar. (author)

  5. 13 CFR 120.172 - Flood-plain and wetlands management.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Flood-plain and wetlands management. 120.172 Section 120.172 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Policies Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.172...

  6. Chemical weathering outputs from the flood plain of the Ganga

    Science.gov (United States)

    Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat

    2018-03-01

    Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has important implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain. The flood plain tributaries are characterised by a shallow δ18O - δD array, compared to the meteoric water line, with a low δDexcess from evaporative loss from the flood plain which is mirrored in the higher δDexcess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are dominantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87Sr/86Sr ratios >0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87Sr/86Sr ratios ≤0.74 and most have Na/Ca ratios waters have lost up to 70% of their Ca (average ∼ 50%) to precipitation of secondary calcite which is abundant as a diagenetic cement in the flood plain sediments. 31% of the Sr, 8% of the Ca and 45% of the Mg are calculated to be derived from silicate minerals. Because of significant evaporative loss of water across the flood plain, and in the absence of hydrological data for flood plain tributaries, chemical weathering fluxes from the

  7. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    Science.gov (United States)

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  8. A participatory approach of flood vulnerability assessment in the Banat Plain, Romania

    Science.gov (United States)

    Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines

    2014-05-01

    The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as

  9. Geohazards (floods and landslides in the Ndop plain, Cameroon volcanic line

    Directory of Open Access Journals (Sweden)

    Wotchoko Pierre

    2016-07-01

    Full Text Available The Ndop Plain, located along the Cameroon Volcanic Line (CVL, is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually and landslides (occasionally occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered.

  10. Radio monitoring of the Sozh-river flood plain

    International Nuclear Information System (INIS)

    Kuznetsova, V.A.; Generalova, V.A.; Kol'nenkov, V.P.; Glaz, A.S.

    2001-01-01

    Periodic radiation monitoring supervision is the important parameter of the radioactivity level time control with reference to concrete landscapes, estimation and their ecological radiochemistry conditions forecast in order to accept practical measures for the risk radiation danger reduction. The early monitoring supervision was carried out in the area of radioactive anomalies in Sozh-river flood plain. The new data received in 1998 and 2000 are cited below. The radiation situation of the last landscape appropriating to conditions in central and near terrace Sozh-river flood plain, more than in 10 years, is nowadays characterized by the data of the structure of Veprin one. In coastal flood plain the maximal radioactivity is dated to meadow vegetable layer in downturn of relief or to humus horizon of actual soil on coastal shaft. In central flood plain it remains rather high with the tendency of accumulation in meliorative channels, which are nowadays strongly overgrown, in 1,6-1,9 times exceeding earlier supervision. Down the Sozh near the village Gronovo in 1988 the level of gamma activity meadow vegetable layer changed. Radioactive situation is low here nowadays: on meadow vegetable layer almost in 5 times lower than former one. It is explained by the active hydro mode snow melt flood streams at the abrupt bend of Sozh channel, resulting in meadows washing and silt material washout. The deepening of Cs-137 reaches 0,20 m and connects with the accumulation of isotope in the top part of humus horizon where it is fixed in the fixed form. Monitoring supervision on radio strontium in the section of Sozh-river flood plain near the village Gronovo shows, that in 1995 its maximal concentration is observed in humusided loamy sand under meadow vegetable layer; the main mass of isotope - up to 80 % - was concentrated in the top 30-sm layer. It is remarkable, that with depth, reducing the contents almost twice and not being marked in underlaying sands, this isotope

  11. 137Cs contamination of Techa river flood plain in Brodokalmak settlement

    International Nuclear Information System (INIS)

    Chesnokov, A.V.; Govorun, A.P.; Liksonov, V.I.; Shcherbak, S.B.; Ivanitskaya, M.V.

    1999-01-01

    137 Cs contamination of the Techa river flood plain inside the Brodokalmak settlement has been mapped. The collimated scintillated detector technique was used for 137 Cs deposit measurements. The 137 Cs contamination is very heterogeneous. A comparison of this technique with the traditional sample method was performed at selected locations. The sampling data are in good agreement with in-situ data. Soil surface activity of 90 Sr was determined from the samples. It was shown that 137 Cs contamination correlates with 90 Sr contamination within the flood plain of the settlement

  12. Flood-inundation maps for a nine-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois

    Science.gov (United States)

    Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from

  13. Peculiarities of 239,240Pu behaviour in flood-plain soils of the Techa river

    International Nuclear Information System (INIS)

    Mikhailovskaya, L.N.; Molchanova, I.V.; Karavaeva, E.N.

    2004-01-01

    The Techa river was contaminated with the liquid nuclear waste discharged from the nuclear plant 'Mayak' within 1949-1956 years. In 1999-2002 flood-plain soils of the Techa river were investigated and the levels of content, a migration and a vertical distribution of 239,240 Pu in the flood-plain soils were studied. Reference plots were located in the pre-bed and in central flood plain at different distances from the source of contamination (78-240 km). It was shown that in the soils of the pre-bed the content of Pu isotopes was decreasing from 10.5 to 2.8 kBq/m 2 with the distance from the plant 'Mayak'. Besides, a non-uniform spatial distribution of 239,240 Pu was found in those plots, which were at the same distance from the source of the contamination. As a rule, the central flood plain (25-100 m from the river-bed) was contaminated with 239,240 Pu less than the area in the pre-bed (5-20 m from the the river-bed). Thus, in the area of the middle length of the river the density of the soil contamination with 239,240 Pu of the central flood plain is 0.3 to 0.8 kBq/m 2 and that of the pre-bed is 1.0 to 4.7 kBq/m 2 at a maximum migration depth being 25 to 30 cm and 40 to 50 cm, respectively. The determined value of the 239,240 Pu/ 137 Cs ratio proves that rates of the vertical migration of the Pu isotopes in the flood plain soils of the Techa river are comparable and higher (in some cases) than those of 137 Cs. (author)

  14. Flood risk mitigation and anthropogenic modifications of a coastal plain in southern Italy: combined effects over the past 150 years

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2007-06-01

    Full Text Available A study of the effects of human modification of a coastal plain mainly involving land reclamation and flood protection is proposed. The approach involves historical, geomorphological and hydrological data as a whole, taking into account the equilibrium of rivers, plains and coastal areas.

    The test area, a telling example of profound economic and social transformation of a coastal plain, is the Piana di Sibari (Calabria, southern Italy, subject to major human modifications over the last 150 years. The study area, at most 300 m a.s.l., is 450 km2 wide and comprises 24 hydrographic basins.

    The approach is based on the creation and analysis of four databases: 1 a historical series of geo-coded flood damage (DAMAGES database, concerning damaging floods which occurred over the past few centuries in the study area; 2 a geocoded series of protection works for land reclamation, protection from floods and improvement of soil stability in steep areas (WORKS database, gathered from the archives of the agencies that carried out the works, organized in a GIS-format; 3 a historical series of maximum flood discharges and extreme rainy events (HYMAX database aimed at defining the trends of occurrence and the intensity of flooding; 4 a coastal line position and migration over time (COASTAL database, created using mainly literature data based on discontinuous data such as historical maps and images.

    The work describes the complex succession of floods, protection and reclamation works, human transformation of the plain and major land use changes over the last two centuries in the test area. The new characteristics of the plain and its modifications, including major engineering works, land-use transformation and urbanisation, are illustrated. The damaging floods of the last 200 years, the modifications of runoff and flooding due to works built over the basins, hydrological data and the records concerning coastal

  15. Holocene climatic fluctuations from Lower Brahmaputra flood plain

    Indian Academy of Sciences (India)

    Pollen analysis of a 3.2-m deep sedimentary profile cored from the Dabaka Swamp, Nagaon District, Lower Brahmaputra flood plain, Assam has revealed persistent fluvial activity during 14,120–12,700 cal years BP which may be attributed to the paucity of pollen and spores with encounterance of fluvial marker taxa like ...

  16. Terrain And Laboratory Conductivity Studies Of Flood Plains Of ...

    African Journals Online (AJOL)

    A shallow electromagnetic study (electrical conductivity and magnetic susceptibility measurements) and laboratory conductivity sampling of the flood plains of Oluwatuyi/Oshinle area of Akure have been undertaken. This is with the aim of correlating the terrain conductivity mapping with laboratory measurements to establish ...

  17. A distribution of adsorbed forms of cesium 137 and strontium 90 in flood-plain formations of Sozh river

    International Nuclear Information System (INIS)

    Kuznetsov, V.A.; Generalova, V.A.

    1999-01-01

    The distribution of strontium 90 and cesium 137 forms in flood-plain geochemical system 'alluvial deposits - flood-plain turf - humus horizon - soil-source rock', where sorption and colloidal processes play main role in the isotopes migration, was studied. The bulk amount of strontium 90 is presented in adsorbed form in all investigated objects, whereas only 6% of cesium 137 amount in alluvial deposits, flood-plain turf and humus horizon is in adsorbed form. The content of exchange forms of cesium 137 and strontium 90 increases with the depth of the layer. The race of this increase for strontium 90 is large than for cesium 137. The distribution of radionuclides through the different parts of flood-plain of Sozh river has some distinctions due to more lability of adsorbed strontium 90 forms in comparison with cesium 137 ones

  18. Flood Plain Aggradation Rates Based on Tree-Ring Growth-Suppression Dates

    Science.gov (United States)

    Friedman, J. M.

    2003-12-01

    When woody riparian plants are partially buried subsequent tree rings of the buried stems resemble those of roots. Annual rings in a buried stem are narrower and have larger vessels then those in unburied sections of the same stem. We have used this phenomenon to date flood plain sediments exposed in trenches, along two ephemeral streams in New Mexico (Rio Puerco and Chaco Wash) where the sediments are predominantly silt and very fine sand and the plants are predominantly tamarisk and willow. Cross dating down the stem allows dating of the first growth-season following burial by thick beds, and constrains the age of all stratigraphic units deposited since germination of the tree. We observed that the anatomical reaction to burial increases with bed thickness and cumulative deposition. Beds that are thicker than 30 cm can be dated to the year of the deposition event. Beds 10 to 30 cm thick can usually be dated to within several years. The period of deposition of multiple very thin beds can be constrained to the decade. Results can be improved by analyzing multiple stems from one tree and multiple trees linked together by the stratigraphy. Along our study streams, sites far from the channel tend to have moderate and relatively steady point-aggradation rates. Levees next to the channel tend to have the thickest deposits per flood and variable long-term rates, which can differ from the whole flood plain aggradation rates by several fold. Cross-sectionally averaged flood plain aggradation has been as large as a meter per decade along our study streams.

  19. Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina

    Science.gov (United States)

    Doyle, Thomas W.

    2009-01-01

    An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water

  20. Floods, Droughts and Farming on the Plains of Argentina and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-04-01

    Floods, Droughts and Farming on the Plains of Argentina and Paraguay, Pampas and Chaco Regions ... End Date. April 1, 2015 ... Argentina, South America, Paraguay, North and Central America ... IDRC is now accepting applications for this year's IDRC Doctoral Research Awards (IDRA). ... Careers · Contact Us · Site map.

  1. Hydrology, vegetation, and soils of four north Florida River flood plains with an evaluation of state and federal wetland determinations

    Science.gov (United States)

    Light, H.M.; Darst, M.R.; MacLaughlin, M.T.; Sprecher, S.W.

    1993-01-01

    A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains. Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface. Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not

  2. Computations Of Critical Depth In Rivers With Flood Plains | Okoli ...

    African Journals Online (AJOL)

    Critical flows may occur at more than one depth in rivers with flood plains. The possibility of multiple critical depths affects the water-surface profile calculations. Presently available algorithms determine only one of the critical depths which may lead to large errors. It is the purpose of this paper to present an analytical ...

  3. New mechanism under International Flood Initiative toward robustness for flood management in the Asia Pacific region

    Science.gov (United States)

    Murase, M.; Yoshitani, J.; Takeuchi, K.; Koike, T.

    2015-12-01

    Climate change is likely to result in increases in the frequency or intensity of extreme weather events. It is imperative that a good understanding is developed of how climate change affects the events that are reflected in hydrological extremes such as floods and how practitioners in water resources management deal with them. Since there is still major uncertainty as to how the impact of climate change affect actual water resources management, it is important to build robustness into management schemes and communities. Flood management under such variety of uncertainty favors the flexible and adaptive implementation both in top-down and bottom-up approaches. The former uses projections of global or spatially downscaled models to drive resource models and project resource impacts. The latter utilizes policy or planning tools to identify what changes in climate would be most threatening to their long-range operations. Especially for the bottom-up approaches, it is essential to identify the gap between what should be done and what has not been achieved for disaster risks. Indicators or index are appropriate tools to measure such gaps, but they are still in progress to cover the whole world. The International Flood Initiative (IFI), initiated in January 2005 by UNESCO and WMO in close cooperation with UNU and ISDR, IAHS and IAHR, has promoted an integrated approach to flood management to take advantage of floods and use of flood plains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks at national, regional and international levels. The initiative is now preparing for a new mechanism to facilitate the integrated approach for flood management on the ground regionally in the Asia Pacific (IFI-AP) through monitoring, assessment and capacity building.

  4. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  5. Flood plain analysis for Petris, , Troas, and Monoros, tia watersheds, the Arad department, Romania

    Science.gov (United States)

    Győri, M.-M.; Haidu, I.

    2012-04-01

    The present study sets out to determine the flood plains corresponding to flood discharges having 10, 50 and 100 year recurrence intervals on the Monoroštia, Petriš and Troaš Rivers, located in Western Romania, the Arad department. The data of the study area is first collected and pre-processed in ArcGIS. It consists of land use data, soil data, the DEM, stream gauges' and meteorological stations' locations, on the basis of which the watersheds' hydrologic parameters' are computed using the Geospatial Hydrologic Modelling Extension (HEC Geo-HMS). HEC Geo-HMS functions as an interface between ArcGIS and HEC-HMS (Hydrologic Engineering Centre- Hydrologic Modelling System) and converts the data collected and generated in ArcGIS to data useable by HEC-HMS. The basin model component in HEC-HMS represents the physical watershed. It facilitates the effective rainfall computation on the basis of the input hyetograph, passing the results to a transform function that converts the excess precipitation into runoff at the subwatersheds' outlet. This enables the estimation and creation of hydrographs for the ungauged watersheds. In the present study, the results are achieved through the SCS CN loss method and the SCS Unit hydrograph transform method. The simulations use rainfall data that is registered at the stations situated in the catchments' vicinity, data that spans over two decades (1989-2009) and which allows the rainfall hyetographs to be determined for the above mentioned return periods. The model will be calibrated against measured streamflow data from the gauging stations on the main rivers, leading to the adjustment of watershed parameters, such as the CN parameter. As the flood discharges for 10, 50 and 100 year return periods have been determined, the profile of the water surface elevation along the channel will be computed through a steady flow analysis, with HEC-RAS (Hydrologic Engineering Centre- River Analysis System). For each of the flood frequencies, a

  6. Raptor habitat use in the Lake Chad Basin : Insights into the effect of flood-plain transformation on Afrotropical and Palearctic raptors

    NARCIS (Netherlands)

    Buij, Ralph; Croes, Barbara M.

    West African flood-plains have undergone major land-use transformations in the second half of the 20th century. To obtain insight in the effect of flood-plain development for irrigated rice cultivation on the abundance, richness, and diversity of Palearctic and Afrotropical raptors, we conducted

  7. Raptor habitat use in the lake Chad basin: insights into the effect of flood-plain transformation on afrotropical and paleartic raptors

    NARCIS (Netherlands)

    Buij, R.; Croes, B.M.

    2013-01-01

    West African flood-plains have undergone major land-use transformations in the second half of the 20th century. To obtain insight in the effect of flood-plain development for irrigated rice cultivation on the abundance, richness, and diversity of Palearctic and Afrotropical raptors, we conducted

  8. Concentration and distribution patterns of naturally occurring radionuclides in sediments and flood plain soils of the catchment area of the river Elbe

    International Nuclear Information System (INIS)

    Barth, A.; Jurk, M.; Weiß, D.

    1998-01-01

    The impact of uranium mining and milling as well as that of traditional mining activities on river sediments and flood plain soils in the catchment area of the river Elbe was investigated over the years 1994 to 1995. Contamination resulting from mining activities has been identified by comparing the median values for the measured radionuclides, and by establishing the ratio between Ra-226 and Ra-228. The transport and deposition of contaminated materials as a result of high water events, and river discharge of waste water from mining and milling facilities, can be considered to be the main paths of sediment and soil contamination. Sediments and flood plain soils located in the vicinity of former uranium mining and milling sites are primarily influenced by discharges of waste water. Long distance transport and deposition at dams, barrages and on flood plains has mainly been caused by high water events. In many cases the radionuclide concentrations were higher in the subsurface layer than in the top layer of flood plain soil. Due to termination of uranium mining and milling activities, no significant contamination of newer or fresh sediments was found. Radiation exposure arising in relation to angling or walking on flood plains is low

  9. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse

    NARCIS (Netherlands)

    Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.

    2005-01-01

    The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected

  10. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  11. Combining Landform Thematic Layer and Object-Oriented Image Analysis to Map the Surface Features of Mountainous Flood Plain Areas

    Science.gov (United States)

    Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.

    2012-04-01

    The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster

  12. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    Directory of Open Access Journals (Sweden)

    H. L. Chen

    2015-11-01

    Full Text Available Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  13. Representativeness of soil samples collected to assess mining-related contamination of flood plains in southeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2015-01-01

    Historical lead and zinc mining in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of lead and zinc to the environment (Juracek, 2006; Juracek and Becker, 2009). In response to concern about the mining-related contamination, southeast Cherokee County, Kansas, was listed on the U.S. Environmental Protection Agency’s (USEPA) National Priority List as a Superfund hazardous waste site (fig. 1). To provide some of the information needed to support remediation efforts in the Cherokee County Superfund site, a study was begun in 2009 by the U.S. Geological Survey (USGS) that was requested and funded by USEPA. As part of the study, surficial-soil sampling was used to investigate the extent and magnitude of mining-related lead and zinc contamination in the flood plains of the Spring River and several tributaries within the Superfund site. In mining-affected areas, flood-plain soils had lead and zinc concentrations that far exceeded background levels as well as probable-effects guidelines for toxic aquatic biological effects (Juracek, 2013). Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment.

  14. The foraging behaviour of herons and egrets on the Magela Creek flood plain, Northern Territory

    International Nuclear Information System (INIS)

    Recher, H.F.; Holmes, R.T.

    1982-03-01

    Five species of diurnal herons are common on the Magela Creek flood plain and forage along the edges of natural and artifical waterbodies both inside and outside the Ranger Uranium Project Area. The species of heron differ in the kinds and sizes of prey they take, their foraging location, degree of sociality and foraging behaviour. Because it takes relatively large fish, the Great Egret, E. alba, is most likely to be affected by any contamination of the aquatic environment by heavy metals or radionuclides. The Nankeen Night Heron, Nycticorax caledonicus is also abundant on the flood plain and probably feeds on large fish and frogs. The other herons take smaller or immature prey or hunt mostly in terrestrial habitats and are therefore less likely to be affected by contamination of the aquatic environment

  15. Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria ...

    African Journals Online (AJOL)

    Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria. ... Journal of Applied Sciences and Environmental Management ... a false sense of security to flood plain dwellers and thereby encouraging investments in flood prone areas.

  16. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China

    Science.gov (United States)

    Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie

    2018-05-01

    Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.

  17. Reducing the impact of unplanned urbanization on a riparian ecosystem: a case study on designing a plan for sustainable utilization of flood plains on river Ravi

    International Nuclear Information System (INIS)

    Khan, A.U.

    2005-01-01

    This work emphasizes that utilization of flood plain must be preceded by a study that shows the extent of the flood plain with the primary objective to management and maintaining the integrity of riparian areas for their multiple values. One such design is presented here where the riparian land is used for designing a municipal waste water treatment plant in order to provide a reward feedback to river Ravi. Since the space is becoming expensive for setting up of a treatment plant, this high risk piece of land instead of being used for land filling and housing schemes should be used for designing multipurpose environmentally sustainable projects. The treatment plant is designed to mimic the functional properties of riparian corridor flood plains. This design is based on integrated series of interconnected basins including a sedimentation basin, infiltration basin and a created wetland. This system would promote ground water recharge and passively remove pollutants through a combination of filtering, settling and biological treatment mechanisms and providing an attractive recreation and learning environment for the community at large. Additionally, benefits of such treatment will allow a direct recycling of water and nutrients for beneficial use; the sewage becomes a valuable natural resource that is not simply disposed of untreated. (author)

  18. 137Cs contamination of the Techa river flood plain near the village of Muslumovo

    International Nuclear Information System (INIS)

    Chesnokov, A.V.; Govorun, A.P.; Linnik, V.G.; Shcherbak, S.B.

    2000-01-01

    The results of a radiometric survey of the Techa river flood plain near the village of Muslumovo in the Chelyabinsk region of Russia are presented. The observed territory extended 16.6 km along the riverbed, with a total area of 2.5 km 2 . The collimated scintillation detector technique was applied to in situ field measurements of 137 Cs deposition on the soil. Maps of 137 Cs deposition and soil penetration depth were developed on the basis of approximately 5000 measurements. The total 137 Cs deposition within the surveyed territory has been estimated at 6.6 TBq. The means of the total 137 Cs soil depositions at half-kilometer sites on the flood plain and its distribution along the river have also been calculated. A maximum 137 Cs contamination above 7.5 MBq/m 2 is associated with a bank height up to 1 m above the usual water level. The data identify zones of intensive radionuclide sedimentation and transit zones

  19. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.

    2013-01-01

    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  20. Taenia spp. infections in wildlife in the Bangweulu and Kafue flood plains ecosystems of Zambia.

    Science.gov (United States)

    Muma, J B; Gabriël, S; Munyeme, M; Munang'andu, H M; Victor, B; Dorny, P; Nalubamba, K S; Siamudaala, V; Mwape, K E

    2014-09-15

    Taenia spp. have an indirect life cycle, cycling between a definitive and an intermediate host with zoonotic species causing public health problems in many developing countries. During the course of 2 separate surveys in Zambia (2004 and 2009), the presence of Taenia larval stages (cysticerci) was examined in Kafue lechwe (Kobus leche kafuensis), Black lechwe (Kobus leche smithermani) and other wildlife species from the Kafue and Bangweulu flood plains. Examinations involved post-mortem inspection and serum specific antigen detection. The recovered cysts from seven carcasses were characterised using PCR and DNA sequence analysis. The overall proportion of infection in wildlife on post-mortem examination was 19.0% (95% CI: 9.1-29.0%). The proportion of infected wildlife based on post-mortem examinations in the Kafue flood plains was estimated at 28.6% (95% CI: 13.3-43.9%), while the seroprevalence was estimated at 25.0% (95% CI: 2.9-47.1%). The seroprevalence for cattle in the Kafue flood plains was estimated at 61.5% (95% CI: 42.0-81.0%) while that of Kafue lechwe in the same ecosystem was estimated at 66.6% (95% CI: 45.6-85.7%). Infection rates were higher in Kafue lechwe than in Black lechwe suggesting differences in the exposure patterns. The sequencing results indicated that none of the recovered cysts were either Taenia solium or Taenia saginata. We therefore conclude they most likely belong to a less studied (wildlife) Taenia species that requires further characterisation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Flood Induced Disasters and Stakeholder Involvement to Implement Integrated Food Management in Nepal

    Science.gov (United States)

    Gautam, N. P.

    2016-12-01

    Nepal, a landlocked country in South Asia covers an area of 147, 181 square kilometers. Its elevation ranges from 61m as the lowest to 8848m, the highest peak Everest in the world. More than 80% of the annual rainfall occurs in the monsoon season from June to September. Thus, due to the intense rainfall that occurs within a short period, monsoon acts as the biggest cause for the occurrence of different disastrous events including flood. Beyond it, Nepal lies at the center and southern edge of Hindu-Kush Himalayan (HKH) region, which is the youngest geological formation in the world. Hence, floods and landslides are common in this region. In Nepal, from the records of 1971-2010, floods and landslides are the second biggest cause for casualties after epidemics. Hawaii based Center of Excellence in disaster management and humanitarian assistance in 2015 has declared Nepal as 30th vulnerable country from the aspect of floods. According to WMO definition, integrated flood management (IFM) is a process of promoting an integrated rather than a fragmented approach to flood management, integrating land and water resource development in a river basin within the context of integrated water resources management (IWRM), with the aim of maximizing the net benefits from flood plains while minimizing loss of life from flooding. That is the reason why the IFM is one of the important countermeasures to be implemented in Nepal to reduce the adverse effects of floods. This study emphasizes on the existing conditions along with the challenges of IFM with respect to stakeholder involvement in the context of Nepal. It can be assured that all the highlighted issues coming out from this study will be highly valuable to policy makers, implementing agencies along with scientific and local communities to enhance IFM works in the nation for the benefits of societies.

  2. Flood damage assessment – Literature review and recommended procedure

    DEFF Research Database (Denmark)

    Olesen, Lea; Löwe, Roland; Arnbjerg-Nielsen, Karsten

    The assessment of flood risk is an essential tool in evaluating the potential consequences of a flood. The analysis of the risk can be applied as part of the flood plain management, but can also be used in a cost-benefit analysis, when comparing different adaption strategies. This analysis is the...

  3. 2011 floods of the central United States

    Science.gov (United States)

    ,

    2013-01-01

    The Central United States experienced record-setting flooding during 2011, with floods that extended from headwater streams in the Rocky Mountains, to transboundary rivers in the upper Midwest and Northern Plains, to the deep and wide sand-bedded lower Mississippi River. The U.S. Geological Survey (USGS), as part of its mission, collected extensive information during and in the aftermath of the 2011 floods to support scientific analysis of the origins and consequences of extreme floods. The information collected for the 2011 floods, combined with decades of past data, enables scientists and engineers from the USGS to provide syntheses and scientific analyses to inform emergency managers, planners, and policy makers about life-safety, economic, and environmental-health issues surrounding flood hazards for the 2011 floods and future floods like it. USGS data, information, and scientific analyses provide context and understanding of the effect of floods on complex societal issues such as ecosystem and human health, flood-plain management, climate-change adaptation, economic security, and the associated policies enacted for mitigation. Among the largest societal questions is "How do we balance agricultural, economic, life-safety, and environmental needs in and along our rivers?" To address this issue, many scientific questions have to be answered including the following: * How do the 2011 weather and flood conditions compare to the past weather and flood conditions and what can we reasonably expect in the future for flood magnitudes?

  4. Tangible Results and Progress in Flood Risks Management with the PACTES Initiative

    Science.gov (United States)

    Costes, Murielle; Abadie, Jean-Paul; Ducuing, Jean-Louis; Denier, Jean-Paul; Stéphane

    The PACTES project (Prévention et Anticipation des Crues au moyen des Techniques Spatiales), initiated by CNES and the French Ministry of Research, aims at improving flood risk management, over the following three main phases : - Prevention : support and facilitate the analysis of flood risks and socio-economic impacts (risk - Forecasting and alert : improve the capability to predict and anticipate the flooding event - Crisis management : allow better situation awareness, communication and sharing of In order to achieve its ambitious objectives, PACTES: - integrates state-of-the-art techniques and systems (integration of the overall processing chains, - takes advantage of integrating recent model developments in wheather forecasting, rainfall, In this approach, space technology is thus used in three main ways : - radar and optical earth observation data are used to produce Digital Elevation Maps, land use - earth observation data are also an input to wheather forecasting, together with ground sensors; - satellite-based telecommunication and mobile positioning. Started in December 2000, the approach taken in PACTES is to work closely with users such as civil security and civil protection organisms, fire fighter brigades and city councils for requirements gathering and during the validation phase. It has lead to the development and experimentation of an integrated pre-operational demonstrator, delivered to different types of operational users. Experimentation has taken place in three watersheds representative of different types of floods (flash and plain floods). After a breaf reminder of what the PACTES project organization and aims are, the PACTES integrated pre-operational demonstrator is presented. The main scientific inputs to flood risk management are summarized. Validation studies for the three watersheds covered by PACTES (Moselle, Hérault and Thoré) are detailed. Feedback on the PACTES tangible results on flood risk management from an user point of view

  5. Natural Flood Management in context: evaluating and enhancing the impact.

    Science.gov (United States)

    Metcalfe, Peter; Beven, Keith; Hankin, Barry; Lamb, Rob

    2016-04-01

    The series of flood events in the UK throughout December 2015 have led to calls for a reappraisal of the country's approach to flood management. In parts of Cumbria so-called "1 in 100" year floods have occurred three times in the last ten years, leading to significant infrastructure damage. Hard-engineered defences upgraded to cope with an anticipated 20% increase in peak flows and these 1% AEP events have been overwhelmed. It has become more widely acknowledged that unsympathetic agricultural and upland management practices, mainly since the Second World War, have led to a significant loss of storage in mid and upper catchments and their consequent ability to retain and slow storm run-off. Natural Flood Management (NFM) is a nature-based solution to restoring this storage and flood peak attenuation through a network of small-scale features exploiting natural topography and materials. Combined with other "soft" interventions such as restoring flood plain roughness and tree-planting, NFM offers the attractive prospect of an intervention that can target both the ecological and chemical objectives of the Water Framework Directive and the resilience demanded by the Floods Directive. We developed a simple computerised physical routing model that can account for the presence of in-channel and offline features such as would be found in a NFM scheme. These will add storage to the channel and floodplain and throttle the downstream discharge at storm flows. The model was applied to the heavily-modified channel network of an agricultural catchment in North Yorkshire using the run-off simulated for two storm events that caused flooding downstream in the autumn of 2012. Using up to 60 online features we demonstrated some gains in channel storage and a small impact on the flood hydrograph which would, however, have been insufficient to prevent the downstream floods in either of the storms. Complementary research at JBA has applied their hydrodynamic model JFLOW+ to identify

  6. Cycling of 137Cs in soil and vegetation of a flood plain 30 years after initial contamination

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Van Voris, P.

    1976-01-01

    Distribution of radiocesium was determined in soil and vegetation components of a flood plain contaminated by Manhattan Project operations in 1944. Thirty years after contaminated waste effluents were deposited in a temporary holding basin, practically all the soil 137 Cs was still within 60 cm of the soil surface. Maximum 137 Cs concentrations occurred in the 12- to 22-cm horizon. Concentrations throughout the flood plain were variable; maximum levels of 137 Cs exceeded 20,000 pCi/g; intermediate levels of 5,000 to 20,000 pCi/g were encountered along the watercourse, and concentrations less than 5,000 pCi/g were found along the flood plain margins. Relative concentrations in soil, roots and aboveground vegetation (expressed as ratios on a gram per gram basis) were 0.6 for root/soil, 0.03 for aboveground vegetation/soil, and 0.04 for aboveground vegetation/roots. Vegetation-soil ratios ranged from 0.001 to 0.53 for all species, and average ratios for the 30-yr postcontamination study showed that the relative 137 Cs distribution between plants and soil has not changed from distributions reported 15 yr ago. The results also indicated that ratios were higher at low soil- 137 Cs concentration. Thus, when soil and environmental conditions remain unchanged over a 30-yr period, the relative concentration of 137 Cs between plants and soil does not appear to change as a function of time

  7. FLOOD PLAIN EVALUATION IN THE GANGA-BRAHMAPUTRA ...

    African Journals Online (AJOL)

    Dr Osondu

    2011-09-12

    Sep 12, 2011 ... Ethiopian Journal of Environmental Studies and Management Vol. 4 No.3 2011. FLOOD ..... middle units is fairly sharp, and the upper part of the lower unit is .... resources, but the architecture of the aquifers is not yet well ...

  8. BIOCHEM-ORCHESTRA: A tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems

    International Nuclear Information System (INIS)

    Vink, J.P.M.; Meeussen, J.C.L.

    2007-01-01

    The chemical speciation model BIOCHEM was extended with ecotoxicological transfer functions for uptake of metals (As, Cd, Cu, Ni, Pb, and Zn) by plants and soil invertebrates. It was coupled to the object-oriented framework ORCHESTRA to achieve a flexible and dynamic decision support system (DSS) to analyse natural or anthropogenic changes that occur in river systems. The DSS uses the chemical characteristics of soils and sediments as input, and calculates speciation and subsequent uptake by biota at various scenarios. Biotic transfer functions were field-validated, and actual hydrological conditions were derived from long-term monitoring data. The DSS was tested for several scenarios that occur in the Meuse catchment areas, such as flooding and sedimentation of riverine sediments on flood plains. Risks are expressed in terms of changes in chemical mobility, and uptake by flood plain key species (flora and fauna). - A diagnostic risk-assessment tool for heavy metals, based on biotic and abiotic interactions, compares risks under different environmental scenarios

  9. Change of microelemental composition of flood-plain soils under the increase of the anthropogenic impact

    International Nuclear Information System (INIS)

    Dmitrakov, L.M.; Dmitrakova, L.K.

    2008-01-01

    Change of technogenic pressure and pedotechnogenic concentration were research for some heavy metals (Mn, Pb, Zn, Cu, Ni, Cr, Cd). They describe the general character of element into the soil and the risk of disturbance of geochemical equilibrium in flood-plain soils and depend on regional technogenic loads and combinations of sources of microelements emission.

  10. Cycling of 137Cs in soil and vegetation of a flood plain 30 years after initial contamination

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Van Voris, P.

    1975-01-01

    Distribution of radiocesium was determined in soil and vegetation components of a flood plain contaminated by Manhattan Project operations in 1944. Thirty years after contaminated waste effluents were deposited in a temporary holding basin, practically all the soil 137 Cs was still within 60 cm of the soil surface. Maximum 137 Cs concentrations occurred in the 12- to 22-cm horizon. Concentrations throughout the flood plain were variable; maximum levels of 137 Cs exceeded 20,000 pCi/g; intermediate levels of 5,000 to 20,000 pCi/g were encountered along the watercourse, and concentrations less than 5,000 pCi/g were found along the flood plain margins. Relative concentrations in soil, roots, and above-ground vegetation (expressed as ratios on a gram per gram basis) were 0.6 for root/soil, 0.05 for above-ground vegetation/soil, and 0.03 for above-ground vegetation/roots. Ratios ranged from 0.001 to 0.53 for all species, and average ratios for the 30-year post-contamination study showed that the relative 137 Cs distribution between plants and soil has not changed significantly from distributions reported 15 years ago (plant/soil ratio 0.05 vs 0.03 by Auerbach et al., 1959). The results also indicated that ratios were higher at low soil- 137 Cs concentration. Thus, when soil and environmental conditions remain unchanged over a 30-year period, the relative concentration of 137 Cs between plants and soil does not appear to change significantly as a function of time. (U.S.)

  11. Floods and climate: emerging perspectives for flood risk assessment and management

    DEFF Research Database (Denmark)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, Karsten

    2014-01-01

    context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical......, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand......Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction...

  12. Morava River flood plain sediments deposited during the last millennium: Climatic and anthropogenic record

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jaroslav; Grygar, Tomáš; Světlík, Ivo; Ettler, V.; Mihaljevič, M.; Diehl, J.; Beske-Diehl, S.

    2008-01-01

    Roč. 34, 4/6 (2008), s. 1338314-1338314 ISSN 0161-6951. [International Geological Congress /33./. 06.08.2008-14.08.2008, Oslo ] R&D Projects: GA AV ČR IAA300130505; GA AV ČR IAA3013201; GA AV ČR IAAX00130801 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z40320502; CEZ:AV0Z10480505 Keywords : Morava River * flood * plain sediments * magnetic minerals Subject RIV: DB - Geology ; Mineralogy

  13. Rethinking the relationship between flood risk perception and flood management.

    Science.gov (United States)

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Study on ecological regulation of coastal plain sluice

    Science.gov (United States)

    Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo

    2018-02-01

    Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.

  15. The determinants of private flood mitigation measures in Germany - evidence from a nationwide survey

    OpenAIRE

    Osberghaus, Daniel

    2014-01-01

    Public flood protection cannot totally eliminate the risk of flooding. Hence, private mitigation measures which proactively protect homes from being flooded or reduce flood damage are an essential part of modern flood risk management. This study analyses private flood mitigation measures among German households. The dataset covers more than 6000 households from all parts of the country, including flood plains as well as areas which are typically not at a high risk of riverine flooding. The re...

  16. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  17. Flood Risk Management in the People’s Republic of China: Learning to Live with Flood Risk

    OpenAIRE

    Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB)

    2012-01-01

    This publication presents a shift in the People’s Republic of China from flood control depending on structural measures to integrated flood management using both structural and non-structural measures. The core of the new concept of integrated flood management is flood risk management. Flood risk management is based on an analysis of flood hazard, exposure to flood hazard, and vulnerability of people and property to danger. It is recommended that people learn to live with flood risks, gaining...

  18. Re-thinking urban flood management

    DEFF Research Database (Denmark)

    Sörensen, Johanna; Persson, Andreas; Sternudd, Catharina

    2016-01-01

    -term flood risk and harm the riverine ecosystems in urban as well as rural areas. In the present paper, we depart from resilience theory and suggest a concept to improve urban flood resilience. We identify areas where contemporary challenges call for improved collaborative urban flood management. The concept...... emphasizes resiliency and achieved synergy between increased capacity to handle stormwater runoff and improved experiential and functional quality of the urban environments. We identify research needs as well as experiments for improved sustainable and resilient stormwater management namely, flexibility...

  19. Floods and climate: emerging perspectives for flood risk assessment and management

    NARCIS (Netherlands)

    Merz, B.; Aerts, J.C.J.H.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; Delgado, J.M.; Gocht, M.; Guzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H. -H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P.J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-01-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of

  20. Catchment scale multi-objective flood management

    Science.gov (United States)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These

  1. THE FLOOD RISK IN THE LOWER GIANH RIVER: MODELLING AND FIELD VERIFICATION

    Directory of Open Access Journals (Sweden)

    NGUYEN H. D.

    2016-03-01

    Full Text Available Problems associated with flood risk definitely represent a highly topical issue in Vietnam. The case of the lower Gianh River in the central area of Vietnam, with a watershed area of 353 km2, is particularly interesting. In this area, periodically subject to flood risk, the scientific question is strongly linked to risk management. In addition, flood risk is the consequence of the hydrological hazard of an event and the damages related to this event. For this reason, our approach is based on hydrodynamic modelling using Mike Flood to simulate the runoff during a flood event. Unfortunately the data in the studied area are quite limited. Our computation of the flood risk is based on a three-step modelling process, using rainfall data coming from 8 stations, cross sections, the topographic map and the land-use map. The first step consists of creating a 1-D model using Mike 11, in order to simulate the runoff in the minor river bed. In the second step, we use Mike 21 to create a 2-D model to simulate the runoff in the flood plain. The last step allows us to couple the two models in order to precisely describe the variables for the hazard analysis in the flood plain (the water level, the speed, the extent of the flooding. Moreover the model is calibrated and verified using observational data of the water level at hydrologic stations and field control data (on the one hand flood height measurements, on the other hand interviews with the community and with the local councillors. We then generate GIS maps in order to improve flood hazard management, which allows us to create flood hazard maps by coupling the flood plain map and the runoff speed map. Our results show that: the flood peak, caused by typhoon Nari, reached more than 6 m on October 16th 2013 at 4 p.m. (its area was extended by 149 km². End that the typhoon constitutes an extreme flood hazard for 11.39%, very high for 10.60%, high for 30.79%, medium for 31.91% and a light flood hazard for 15

  2. Stakeholder initiatives in flood risk management

    NARCIS (Netherlands)

    Edelenbos, Jurian; Buuren, Van Arwin; Roth, Dik; Winnubst, Madelinde

    2017-01-01

    In recent years stakeholder participation has become a popular topic in flood management. Little is known about how and under which circumstances local stakeholders initiate and develop successful flood management strategies and how governmental actors respond to them. Drawing on theories of

  3. Risk-trading in flood management: An economic model.

    Science.gov (United States)

    Chang, Chiung Ting

    2017-09-15

    Although flood management is no longer exclusively a topic of engineering, flood mitigation continues to be associated with hard engineering options. Flood adaptation or the capacity to adapt to flood risk, as well as a demand for internalizing externalities caused by flood risk between regions, complicate flood management activities. Even though integrated river basin management has long been recommended to resolve the above issues, it has proven difficult to apply widely, and sometimes even to bring into existence. This article explores how internalization of externalities as well as the realization of integrated river basin management can be encouraged via the use of a market-based approach, namely a flood risk trading program. In addition to maintaining efficiency of optimal resource allocation, a flood risk trading program may also provide a more equitable distribution of benefits by facilitating decentralization. This article employs a graphical analysis to show how flood risk trading can be implemented to encourage mitigation measures that increase infiltration and storage capacity. A theoretical model is presented to demonstrate the economic conditions necessary for flood risk trading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Scales of Natural Flood Management

    Science.gov (United States)

    Nicholson, Alex; Quinn, Paul; Owen, Gareth; Hetherington, David; Piedra Lara, Miguel; O'Donnell, Greg

    2016-04-01

    The scientific field of Natural flood Management (NFM) is receiving much attention and is now widely seen as a valid solution to sustainably manage flood risk whilst offering significant multiple benefits. However, few examples exist looking at NFM on a large scale (>10km2). Well-implemented NFM has the effect of restoring more natural catchment hydrological and sedimentological processes, which in turn can have significant flood risk and WFD benefits for catchment waterbodies. These catchment scale improvements in-turn allow more 'natural' processes to be returned to rivers and streams, creating a more resilient system. Although certain NFM interventions may appear distant and disconnected from main stem waterbodies, they will undoubtedly be contributing to WFD at the catchment waterbody scale. This paper offers examples of NFM, and explains how they can be maximised through practical design across many scales (from feature up to the whole catchment). New tools to assist in the selection of measures and their location, and to appreciate firstly, the flooding benefit at the local catchment scale and then show a Flood Impact Model that can best reflect the impacts of local changes further downstream. The tools will be discussed in the context of our most recent experiences on NFM projects including river catchments in the north east of England and in Scotland. This work has encouraged a more integrated approach to flood management planning that can use both traditional and novel NFM strategies in an effective and convincing way.

  5. Precise Dating of Flood-Plain Stratigraphy Using Changes in Tree-Ring Anatomy Following Burial

    Science.gov (United States)

    Friedman, J. M.; Shafroth, P. B.; Vincent, K. R.; Scott, M. L.; Auble, G. T.

    2001-12-01

    Determination of sediment deposition rates from stratigraphy is typically limited by a scarcity of chronological information. We present a method for precise dating of sedimentary beds based on the change in anatomy of tree rings upon burial. When stems of tamarisk (Tamarix ramosissima)and sandbar willow (Salix exigua) are buried, subsequent annual rings in the buried portions become narrower and vessels within the rings become larger. Observation of these changes can be combined with tree ring counts to determine the year of deposition of sedimentary beds that are at least 10 cm thick. Using a backhoe we dug trenches across the flood plain at three locations along the arroyo of the Rio Puerco, New Mexico. At each cross section we prepared a detailed stratigraphic description and excavated several tamarisks to depths as great as 5 meters. From each excavated tree we cut and sanded 10-50 slabs for tree-ring analysis. We cross-dated slabs within and between plants and used the burial signature in the tree rings to date all sedimentary beds in the stratigraphic profile near each plant. We then used the trench stratigraphy to convert depths of sediment deposition around individual trees to areas of deposition in the cross section. In the lower Rio Puerco introduction of tamarisk in 1926 occurred just prior to the beginning of channel narrowing and arroyo filling. Thus the tamarisks record a process of channel change to which they may have contributed. Aggradation has not been synchronous along the lower arroyo. For example, near Highway 6 and Belen, the flood plain has aggraded more than 2 m since 1970, while there has been little aggradation downstream at Bernardo. Much of the sediment deposition in levies at Highway 6 occurred during a flood in 1988. Future work will document longitudinal variation in the arroyo so that we can convert areas of sediment deposition in cross sections to volumes in the arroyo.

  6. Sustainable flood risk management – What is sustainable?

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Brudler, Sarah; Lerer, Sara Maria

    2016-01-01

    Sustainable flood risk management has to be achieved since flood protection is a fundamental societal service that we must deliver. Based on the discourse within the fields of risk management and sustainable urban water management, we discuss the necessity of assessing the sustainability of flood...... risk management, and propose an evaluation framework for doing so. We argue that it is necessary to include quantitative sustainability measures in flood risk management in order to exclude unsustainable solutions. Furthermore, we use the concept of absolute sustainability to discuss the prospects...... of maintaining current service levels without compromising future generation’s entitlement of services. Discussions on the sustainability of different overall flood risk schemes must take place. Fundamental changes in the approaches will require fundamental changes in the mind-sets of practitioners as well...

  7. Review of the flood risk management system in Germany after the major flood in 2013

    Directory of Open Access Journals (Sweden)

    Annegret H. Thieken

    2016-06-01

    Full Text Available Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1 an increased consideration of flood hazards in spatial planning and urban development, (2 comprehensive property-level mitigation and preparedness measures, (3 more effective flood warnings and improved coordination of disaster response, and (4 a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.

  8. Geochemical characterisation of Elbe river high flood sediments

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, F. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung]|[UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Rupp, H.; Meissner, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung; Lohse, M.; Buettner, O.; Friese, K. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Miehlich, G. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2001-07-01

    Quality aims for land usage in flood plains have to be worked out in the Russian-German research project 'Effects of floods on the pollution of agricultural used flood plain soils of the Oka River and the Elbe River'. It is financed by the Germany Ministry of Education and Research (FKZ 02 WT 9617/0). Beside the characterisation of the present pollution of soils for the middle Elbe, it is necessary to prognosticate the current pollutant input. At the examination site nearby Wittenberge, Elbe River kilometers 435 and 440, natural deposited flood sediments were sampled by artificial lawn mats. By the geochemical characterisation it is possible to record the metal input into the flood plain and to win knowledge about the sedimentation process. The results of sediment investigation of the high flood in spring 1997 are presented. (orig.)

  9. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    Science.gov (United States)

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  10. Managing flood risks in the Mekong Delta

    NARCIS (Netherlands)

    Hoang, Long Phi; Biesbroek, Robbert; Tri, Van Pham Dang; Kummu, Matti; Vliet, van Michelle T.H.; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2018-01-01

    Climate change and accelerating socioeconomic developments increasingly challenge flood-risk management in the Vietnamese Mekong River Delta—a typical large, economically dynamic and highly vulnerable delta. This study identifies and addresses the emerging challenges for flood-risk management.

  11. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    Science.gov (United States)

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  12. Constructing risks – Internalisation of flood risks in the flood risk management plan

    NARCIS (Netherlands)

    Roos, Matthijs; Hartmann, T.; Spit, T.J.M.; Johann, Georg

    Traditional flood protection methods have focused efforts on different measures to keep water out of floodplains. However, the European Flood Directive challenges this paradigm (Hartmann and Driessen, 2013). Accordingly, flood risk management plans should incorporate measures brought about by

  13. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  14. Flood risk management in Flanders: from flood risk objectives to appropriate measures through state assessment

    Directory of Open Access Journals (Sweden)

    Verbeke Sven

    2016-01-01

    Full Text Available In compliance with the EU Flood Directive to reduce flood risk, flood risk management objectives are indispensable for the delineation of necessary measures. In Flanders, flood risk management objectives are part of the environmental objectives which are judicially integrated by the Decree on Integrated Water Policy. Appropriate objectives were derived by supporting studies and extensive consultation on a local, regional and policy level. Under a general flood risk objective sub-objectives are formulated for different aspects: water management and safety, shipping, ecology, and water supply. By developing a risk matrix, it is possible to assess the current state of flood risk and to judge where action is needed to decrease the risk. Three different states of flood risk are distinguished: a acceptable risk, where no action is needed, b intermediate risk where the risk should be reduced by cost efficient actions, and c unacceptable risk, where action is necessary. For each particular aspect, the severity of the consequences of flooding is assessed by quantifiable indicators, such as economic risk, people at risk and ecological flood tolerance. The framework also allows evaluating the effects of the implemented measures and the autonomous development such as climate change and land use change. This approach gives a quantifiable assessment of state, and enables a prioritization of flood risk measures for the reduction of flood risk in a cost efficient and sustainable way.

  15. Challenges of Modeling Flood Risk at Large Scales

    Science.gov (United States)

    Guin, J.; Simic, M.; Rowe, J.

    2009-04-01

    Flood risk management is a major concern for many nations and for the insurance sector in places where this peril is insured. A prerequisite for risk management, whether in the public sector or in the private sector is an accurate estimation of the risk. Mitigation measures and traditional flood management techniques are most successful when the problem is viewed at a large regional scale such that all inter-dependencies in a river network are well understood. From an insurance perspective the jury is still out there on whether flood is an insurable peril. However, with advances in modeling techniques and computer power it is possible to develop models that allow proper risk quantification at the scale suitable for a viable insurance market for flood peril. In order to serve the insurance market a model has to be event-simulation based and has to provide financial risk estimation that forms the basis for risk pricing, risk transfer and risk management at all levels of insurance industry at large. In short, for a collection of properties, henceforth referred to as a portfolio, the critical output of the model is an annual probability distribution of economic losses from a single flood occurrence (flood event) or from an aggregation of all events in any given year. In this paper, the challenges of developing such a model are discussed in the context of Great Britain for which a model has been developed. The model comprises of several, physically motivated components so that the primary attributes of the phenomenon are accounted for. The first component, the rainfall generator simulates a continuous series of rainfall events in space and time over thousands of years, which are physically realistic while maintaining the statistical properties of rainfall at all locations over the model domain. A physically based runoff generation module feeds all the rivers in Great Britain, whose total length of stream links amounts to about 60,000 km. A dynamical flow routing

  16. Tacking Flood Risk from Watersheds using a Natural Flood Risk Management Toolkit

    Science.gov (United States)

    Reaney, S. M.; Pearson, C.; Barber, N.; Fraser, A.

    2017-12-01

    In the UK, flood risk management is moving beyond solely mitigating at the point of impact in towns and key infrastructure to tackle problem at source through a range of landscape based intervention measures. This natural flood risk management (NFM) approach has been trailed within a range of catchments in the UK and is moving towards being adopted as a key part of flood risk management. The approach offers advantages including lower cost and co-benefits for water quality and habitat creation. However, for an agency or group wishing to implement NFM within a catchment, there are two key questions that need to be addressed: Where in the catchment to place the measures? And how many measures are needed to be effective? With this toolkit, these questions are assessed with a two-stage workflow. First, SCIMAP-Flood gives a risk based mapping of likely locations that contribute to the flood peak. This tool uses information on land cover, hydrological connectivity, flood generating rainfall patterns and hydrological travel time distributions to impacted communities. The presented example applies the tool to the River Eden catchment, UK, with 5m grid resolution and hence provide sub-field scale information at the landscape extent. SCIMAP-Flood identifies sub-catchments where physically based catchment hydrological simulation models can be applied to test different NFM based mitigation measures. In this example, the CRUM3 catchment hydrological model has been applied within an uncertainty framework to consider the effectiveness of soil compaction reduction and large woody debris dams within a sub-catchment. It was found that large scale soil aeration to reduce soil compaction levels throughout the catchment is probably the most useful natural flood management measure for this catchment. NFM has potential for wide-spread application and these tools help to ensure that the measures are correctly designed and the scheme performance can be quantitatively assessed and predicted.

  17. Challenges of torrential flood risk management in Serbia

    Directory of Open Access Journals (Sweden)

    Petrović Ana M.

    2015-01-01

    Full Text Available Torrential floods are the natural hydrological hazards manifesting as a consequence of extreme rainfall episodes which have a quick response from the watersheds of small areas, steep slopes and intensive soil erosion. Taking in consideration the nature of torrential flood (sudden and destructive occurrence and the fact they are the most frequent natural hazards in Serbia, torrential flood risk management is a real challenge. Instead of partial solutions for flood protection, integrated torrential flood risk management is more meaningful and effective. The key steps should be an improvement of the legal framework on national level and an expansion of technical and biological torrent control works in river basins. Consequences for society can be significantly reduced if there is an efficient forecast and timely warning, rescue and evacuation and if affected population is educated about flood risks and measures which can be undertaken in case of emergency situation. In this paper, all aspects of torrential flood risk management are analyzed. [Projekat Ministarstva nauke Republike Srbije, br. 47007 III

  18. Upstream Structural Management Measures for an Urban Area Flooding in Turkey and their Consequences on Flood Risk Management

    Science.gov (United States)

    Akyurek, Z.; Bozoglu, B.; Girayhan, T.

    2015-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies

  19. Use of documentary sources on past flood events for flood risk management and land planning

    Science.gov (United States)

    Cœur, Denis; Lang, Michel

    2008-09-01

    The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.

  20. Why are decisions in flood disaster management so poorly supported by information from flood models?

    NARCIS (Netherlands)

    Leskens, Anne; Brugnach, Marcela Fabiana; Hoekstra, Arjen Ysbert; Schuurmans, W.

    2014-01-01

    Flood simulation models can provide practitioners of Flood Disaster Management with sophisticated estimates of floods. Despite the advantages that flood simulation modeling may provide, experiences have proven that these models are of limited use. Until now, this problem has mainly been investigated

  1. Technical note: River modelling to infer flood management framework

    African Journals Online (AJOL)

    River hydraulic models have successfully identified the weaknesses and areas for improvement with respect to flooding in the Sarawak River system, and can also be used to support decisions on flood management measures. Often, the big question is 'how'. This paper demonstrates a theoretical flood management ...

  2. Economic optimisation of flood risk management projects

    NARCIS (Netherlands)

    Tsimopoulou, V.

    2015-01-01

    The Netherlands has developed a flood risk management policy based on an economic rationale. After the flood disaster of 1953, when a large area of the south-western part of the country was flooded and more than 1800 people lost their lives, the so-called Delta Committee was installed, whose main

  3. Flood management: prediction of microbial contamination in large-scale floods in urban environments.

    Science.gov (United States)

    Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip

    2011-07-01

    With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities

  4. Study on Flood Management Plan in Surabaya City

    Directory of Open Access Journals (Sweden)

    Anton Dharma Pusaka Mas

    2015-05-01

    Full Text Available The area alongside the Gunung Sari Channel has an important meaning to the development of Surabaya City. The rising development in this area which causes the increase of flood events induces negative impacts on the growth of Surabaya City. The flood management plan in Gunung Sari Channel has been conducted by Brantas Project since 1988. This planning was reviewed in 1993 and 1999. This research was conducted to analyze the performance of flood management plan by Brantas Project. It was constructively done by HEC-FDA Software which can develop risk analysis by including economic consideration. Hydro-Economy approach integrated with the HEC-FDA analysis can yield the indicator of flood management plan performance in the form of total cost and risk cost (Expected Annual Damage/EAD. The best total cost yielded from the analysis was Rp. 893,692,230, while the risk cost was Rp. 384,238,410/year. It is expected that this research result can used for achieving best performance for floods management in Gunung Sari Channel.

  5. An empirical assessment of which inland floods can be managed.

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A; Hoegh, Andrew B; Angermeier, Paul L

    2016-02-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m(3)/s) but quicker (0.41 days) floods than non-urban watersheds (50 m(3)/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m(3)/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m(3)/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help

  6. An empirical assessment of which inland floods can be managed

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul

    2016-01-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that

  7. Flood of April 1975 at Williamston, Michigan

    Science.gov (United States)

    Knutilla, R.L.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  8. Dealing with Uncertainty in Flood Management Through Diversification

    Directory of Open Access Journals (Sweden)

    Jeroen C. J. H. Aerts

    2008-06-01

    Full Text Available This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands. The paper shows a method based on Modern Portfolio Theory (MPT that contributes to developing flood management strategies. MPT aims at finding sets of investments that diversify risks thereby reducing the overall risk of the total portfolio of investments. This paper shows that through systematically combining four different flood protection measures in portfolios containing three or four measures; risk is reduced compared with portfolios that only contain one or two measures. Adding partly uncorrelated measures to the portfolio diversifies risk. We demonstrate how MPT encourages a systematic discussion of the relationship between the return and risk of individual flood mitigation activities and the return and risk of complete portfolios. It is also shown how important it is to understand the correlation of the returns of various flood management activities. The MPT approach, therefore, fits well with the notion of adaptive water management, which perceives the future as inherently uncertain. Through applying MPT on flood protection strategies current vulnerability will be reduced by diversifying risk.

  9. Participatory approaches to understanding practices of flood management across borders

    Science.gov (United States)

    Bracken, L. J.; Forrester, J.; Oughton, E. A.; Cinderby, S.; Donaldson, A.; Anness, L.; Passmore, D.

    2012-04-01

    The aim of this paper is to outline and present initial results from a study designed to identify principles of and practices for adaptive co-management strategies for resilience to flooding in borderlands using participatory methods. Borderlands are the complex and sometimes undefined spaces existing at the interface of different territories and draws attention towards messy connections and disconnections (Strathern 2004; Sassen 2006). For this project the borderlands concerned are those between professional and lay knowledge, between responsible agencies, and between one nation and another. Research was focused on the River Tweed catchment, located on the Scottish-English border. This catchment is subject to complex environmental designations and rural development regimes that make integrated management of the whole catchment difficult. A multi-method approach was developed using semi-structured interviews, Q methodology and participatory GIS in order to capture wide ranging practices for managing flooding, the judgements behind these practices and to 'scale up' participation in the study. Professionals and local experts were involved in the research. The methodology generated a useful set of options for flood management, with research outputs easily understood by key management organisations and the wider public alike. There was a wide endorsement of alternative flood management solutions from both managers and local experts. The role of location was particularly important for ensuring communication and data sharing between flood managers from different organisations and more wide ranging stakeholders. There were complex issues around scale; both the mismatch between communities and evidence of flooding and the mismatch between governance and scale of intervention for natural flood management. The multi-method approach was essential in capturing practice and the complexities around governance of flooding. The involvement of key flood management organisations was

  10. Analysis of Hydrological Sensitivity for Flood Risk Assessment

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Sharma

    2018-02-01

    Full Text Available In order for the Indian government to maximize Integrated Water Resource Management (IWRM, the Brahmaputra River has played an important role in the undertaking of the Pilot Basin Study (PBS due to the Brahmaputra River’s annual regional flooding. The selected Kulsi River—a part of Brahmaputra sub-basin—experienced severe floods in 2007 and 2008. In this study, the Rainfall-Runoff-Inundation (RRI hydrological model was used to simulate the recent historical flood in order to understand and improve the integrated flood risk management plan. The ultimate objective was to evaluate the sensitivity of hydrologic simulation using different Digital Elevation Model (DEM resources, coupled with DEM smoothing techniques, with a particular focus on the comparison of river discharge and flood inundation extent. As a result, the sensitivity analysis showed that, among the input parameters, the RRI model is highly sensitive to Manning’s roughness coefficient values for flood plains, followed by the source of the DEM, and then soil depth. After optimizing its parameters, the simulated inundation extent showed that the smoothing filter was more influential than its simulated discharge at the outlet. Finally, the calibrated and validated RRI model simulations agreed well with the observed discharge and the Moderate Imaging Spectroradiometer (MODIS-detected flood extents.

  11. Swiss Re Global Flood Hazard Zones: Know your flood risk

    Science.gov (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  12. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    OpenAIRE

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of individuals to undertake flood risk mitigation measures, as well as the public's demand for flood protection, and therefore provide useful insights for flood risk management. This study empirically exa...

  13. Improving techniques to estimate the magnitude and frequency of floods on urban streams in South Carolina, North Carolina, and Georgia, 2011 (ver. 1.1, March 2014) : U.S. Geological Survey scientific investigations report 2014-5030.

    Science.gov (United States)

    2014-03-01

    Reliable estimates of the magnitude and frequency : of floods are essential for the design of transportation and : water-conveyance structures, flood-insurance studies, and : flood-plain management. Such estimates are particularly : important in dens...

  14. Assessment of Nutrient Limitation in Flood plain Forests with Two Different Techniques

    International Nuclear Information System (INIS)

    Neatrour, M.A.; Jones, R.H.; Golladay, S.W.

    2008-01-01

    We assessed nitrogen and phosphorus limitation in a flood plain forest in southern Georgia in USA using two commonly used methods: nitrogen to phosphorus (N:P) ratios in litterfall and fertilized ingrowth cores. We measured nitrogen (N) and phosphorus (P) concentrations in litterfall to determine N:P mass ratios. We also installed ingrowth cores within each site containing native soil amended with nitrogen (N), phosphorus (P), or nitrogen and phosphorus (N + P) fertilizers or without added fertilizer (C). Litter N:P ratios ranged from 16 to 22, suggesting P limitation. However, fertilized ingrowth cores indicated N limitation because fine-root length density was greater in cores fertilized with N or N + P than in those fertilized with P or without added fertilizer. We feel that these two methods of assessing nutrient limitation should be corroborated with fertilization trials prior to use on a wider basis.

  15. Opportunities for corruption across Flood Disaster Management (FDM)

    Science.gov (United States)

    Nordin, R. Mohd; Latip, E.; Zawawi, E. M. Ahmad; Ismail, Z.

    2018-02-01

    Flood is one of the major disasters in the world. Despite flood resulted in loss of life and damaged properties, it naturally imparts people to assist the victims that affected by the disaster. Malaysia has experienced many serious flooding events and proper flood disaster management need to be developed and adopted occasionally. Flood Disaster Management (FDM) seemed to be not working effectively especially during the Kelantan prodigious flood in December 2014. There were negative perceptions among victims and Malaysian citizens regarding the disaster management and government authorities in relation to corrupt practices. The FDM can be divided into four phases (i.e., prevention, preparedness, response and recovery) which undoubtedly corruption is perceived to exists in every phase. The aim of this study is to identify opportunities of corruption across FDM phases. The study presents a case study of Kelantan using the quantitative research approach which utilises questionnaire with government and private agencies. Further to that, this paper proved that opportunities for corruption may occur at every phase, undoubtedly response and recovery phase especially activities involving fund and donation are riskier. The findings are hoped to assist in developing an improved FDM in term of increased transparency.

  16. The flood risk management plan: towards spatial water governance

    NARCIS (Netherlands)

    Hartmann, T.; Driessen, P.

    2017-01-01

    The flood risk management plan challenges both water engineers and spatial planners. It calls for a new mode of governance for flood risk management. This contribution analyses how this mode of governance distinguishes from prevalent approaches. Spatial planning and water management in Europe are

  17. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey

    Science.gov (United States)

    Farlekas, George M.

    1966-01-01

    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood

  18. Estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina

    Science.gov (United States)

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for such things as the design of transportation and water-conveyance structures, Flood Insurance Studies, and flood-plain management. The flood-frequency estimates are particularly important in densely populated urban areas. A multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The multistate approach has the advantage over a single state approach of increasing the number of stations available for analysis, expanding the geographical coverage that would allow for application of regional regression equations across state boundaries, and building on a previous flood-frequency investigation of rural streamflow-gaging stations (streamgages) in the Southeastern United States. In addition, streamgages from the inner Coastal Plain of New Jersey were included in the analysis. Generalized least-squares regression techniques were used to generate predictive equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions; the Piedmont-Ridge and Valley, Sand Hills, and Coastal Plain. Incorporation of urban streamgages from New Jersey also allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 2.1 to 53.5 square miles. Explanatory variables in the regression equations included drainage area (DA) and percent of impervious area (IA) for the Piedmont-Ridge and Valley region; DA and percent of developed land for the Sand Hills; and DA, IA, and 24-hour, 50-year maximum precipitation for the Coastal Plain. An application spreadsheet also was developed that can be used to compute the flood-frequency estimates along with the 95-percent prediction

  19. Flood Hazard Mapping using Hydraulic Model and GIS: A Case Study in Mandalay City, Myanmar

    Directory of Open Access Journals (Sweden)

    Kyu Kyu Sein

    2016-01-01

    Full Text Available This paper presents the use of flood frequency analysis integrating with 1D Hydraulic model (HECRAS and Geographic Information System (GIS to prepare flood hazard maps of different return periods in Ayeyarwady River at Mandalay City in Myanmar. Gumbel’s distribution was used to calculate the flood peak of different return periods, namely, 10 years, 20 years, 50 years, and 100 years. The flood peak from frequency analysis were input into HEC-RAS model to find the corresponding flood level and extents in the study area. The model results were used in integrating with ArcGIS to generate flood plain maps. Flood depths and extents have been identified through flood plain maps. Analysis of 100 years return period flood plain map indicated that 157.88 km2 with the percentage of 17.54% is likely to be inundated. The predicted flood depth ranges varies from greater than 0 to 24 m in the flood plains and on the river. The range between 3 to 5 m were identified in the urban area of Chanayetharzan, Patheingyi, and Amarapua Townships. The highest inundated area was 85 km2 in the Amarapura Township.

  20. Conceptualization of a Collaborative Decision Making for Flood Disaster Management

    Science.gov (United States)

    Nur Aishah Zubir, Siti; Thiruchelvam, Sivadass; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Hakimie, Hazlinda; Razak, Normy Norfiza Abdul; Aziz Mat Isa, Abdul; Hasini, Hasril; Sahari, Khairul Salleh Mohamed; Mat Husin, Norhayati; Ezanee Rusli, Mohd; Sabri Muda, Rahsidi; Mohd Sidek, Lariyah; Basri, Hidayah; Tukiman, Izawati

    2016-03-01

    Flooding is the utmost major natural hazard in Malaysia in terms of populations affected, frequency, area extent, flood duration and social economic damage. The recent flood devastation towards the end of 2014 witnessed almost 250,000 people being displaced from eight states in Peninsular Malaysia. The affected victims required evacuation within a short period of time to the designated evacuation centres. An effective and efficient flood disaster management would assure non-futile efforts for life-saving. Effective flood disaster management requires collective and cooperative emergency teamwork from various government agencies. Intergovernmental collaborations among government agencies at different levels have become part of flood disaster management due to the need for sharing resources and coordinating efforts. Collaborative decision making during disaster is an integral element in providing prompt and effective response for evacuating the victims.

  1. Statistical approach to flood disaster management and risks ...

    African Journals Online (AJOL)

    In the past four decades, economic losses due to flood have increased tremendously and resulted in major loss of human lives and livelihoods, the destruction of economic and social infrastructure, as well as environmental damage. This study focuses on flood disaster management through the establishment of a flood ...

  2. Flood risk management and ‘fairness’: aspirations and reality

    Directory of Open Access Journals (Sweden)

    Penning-Rowsell Edmund C.

    2016-01-01

    Full Text Available Flood risk management in United Kingdom has been going through a process of rapid change in the last decade or so, no doubt spurred on by a series of very serious floods since the year 2000. These changes affect flood defence and non-structural flood risk management measures alike, and involve a degree of devolution from central government to local communities and regional organisations, as central government seeks to shed responsibilities for policy implementation. This paper discusses three case studies concerning flood defence, property level protection, and flood insurance, set against the framework of “fairness” encapsulated in egalitarian, utilitarian and Rawlsian approaches to social justice. The results show a different pattern in each area, with flood defence moving somewhat towards a Rawlsian approach, but flood insurance and property level protection showing signs of both inefficiency and poor penetration, respectively, particularly with regard to low income residents, especially those in social housing.

  3. The use of Natural Flood Management to mitigate local flooding in the rural landscape

    Science.gov (United States)

    Wilkinson, Mark; Quinn, Paul; Ghimire, Sohan; Nicholson, Alex; Addy, Steve

    2014-05-01

    The past decade has seen increases in the occurrence of flood events across Europe, putting a growing number of settlements of varying sizes at risk. The issue of flooding in smaller villages is usually not well publicised. In these small communities, the cost of constructing and maintaining traditional flood defences often outweigh the potential benefits, which has led to a growing quest for more cost effective and sustainable approaches. Here we aim to provide such an approach that alongside flood risk reduction, also has multipurpose benefits of sediment control, water quality amelioration, and habitat creation. Natural flood management (NFM) aims to reduce flooding by working with natural features and characteristics to slow down or temporarily store flood waters. NFM measures include dynamic water storage ponds and wetlands, interception bunds, channel restoration and instream wood placement, and increasing soil infiltration through soil management and tree planting. Based on integrated monitoring and modelling studies, we demonstrate the potential to manage runoff locally using NFM in rural systems by effectively managing flow pathways (hill slopes and small channels) and by exploiting floodplains and buffers strips. Case studies from across the UK show that temporary storage ponds (ranging from 300 to 3000m3) and other NFM measures can reduce peak flows in small catchments (5 to 10 km2) by up to 15 to 30 percent. In addition, increasing the overall effective storage capacity by a network of NFM measures was found to be most effective for total reduction of local flood peaks. Hydraulic modelling has shown that the positioning of such features within the catchment, and how they are connected to the main channel, may also affect their effectiveness. Field evidence has shown that these ponds can collect significant accumulations of fine sediment during flood events. On the other hand, measures such as wetlands could also play an important role during low flow

  4. Use of Space Technology in Flood Mitigation (Western Province, Zambia)

    Science.gov (United States)

    Mulando, A.

    2001-05-01

    Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.

  5. Impacts of the 2013 Extreme Flood in Northeast China on Regional Groundwater Depth and Quality

    Directory of Open Access Journals (Sweden)

    Xihua Wang

    2015-08-01

    Full Text Available Flooding’s impact on shallow groundwater is not well investigated. In this study, we analyzed changes in the depth and quality of a regional shallow aquifer in the 10.9 × 104 km2 Sanjiang Plain, Northeast China, following a large flood in the summer of 2013. Pre- (2008–2012 and post-flood records on groundwater table depth and groundwater chemistry were gathered from 20 wells across the region. Spatial variability of groundwater recharge after the flood was assessed and the changes in groundwater quality in the post-flood period were determined. The study found a considerable increase in the groundwater table after the 2013 summer flood across the region, with the largest (3.20 m and fastest (0.80 m·s−1 rising height occurring in western Sanjiang Plain. The rising height and velocity gradually declined from the west to the east of the plain. For the entire region, we estimated an average recharge height of 1.24 m for the four flood months (June to September of 2013. Furthermore, we found that the extreme flood reduced nitrate (NO3− and chloride (Cl− concentrations and electrical conductivity (EC in shallow groundwater in the areas that were close to rivers, but increased NO3− and Cl− concentrations and EC in the areas that were under intensive agricultural practices. As the region’s groundwater storage and quality have been declining due to the rapidly increasing rice cultivation, this study shows that floods should be managed as water resources to ease the local water shortage as well as shallow groundwater pollution.

  6. Flood Hazard Management: British and International Perspectives

    Science.gov (United States)

    James, L. Douglas

    This proceedings of an international workshop at the Flood Hazard Research Centre (Queensway, Enfield, Middlesex, U.K.) begins by noting how past British research on flood problems concentrated on refining techniques to implement established policy. In contrast, research covered in North American and Australian publications involved normative issues on policy alternatives and administrative implementation. The workshop's participants included 16 widely recognized scientists, whose origins were about equally divided between Britain and overseas; from this group the workshop's organizers expertly drew ideas for refining British urban riverine flood hazard management and for cultivating links among researchers everywhere. Such intellectual exchange should be of keen interest to flood hazard program managers around the world, to students of comparative institutional performance, to those who make policy on protecting people from hazards, and to hydrologists and other geophysicists who must communicate descriptive information for bureaucratic, political, and public decision- making.

  7. Characterization of sediments laid on Solimoes/Amazonas river flood plains, using energy dispersive X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Carneiro, Ana E.V.; Nascimento Filho, Virgilio F. do

    1997-01-01

    This paper proposes sediment analysis with high light elements fraction using dispersive energy X-ray fluorescence technique with radioisotopic excitation, The proposed procedure is based on the Fundamental Parameters for analytical elements (Z ≥ 13) evaluation, and coherent and incoherent scattered radiation for quantification of the light fraction of the matrix (Z < 13). Laid sediments samples on Solimoes/Amazonas river flood plains were analyzed, determining simultaneously the Al, Si, K, Ca, Ti, Fe, Sc, V, Mn, Cu, Zn, Rb, Sr and Zr element concentrations, thus allowing chemical characterization and spatial variability, and some mineralogical and weathering sediments aspects. (author). 15 refs., 11 tabs

  8. Developing a national programme of flood risk management measures: Moldova

    Directory of Open Access Journals (Sweden)

    Ramsbottom David

    2016-01-01

    Full Text Available A Technical Assistance project funded by the European Investment Bank has been undertaken to develop a programme of flood risk management measures for Moldova that will address the main shortcomings in the present flood management system, and provide the basis for long-term improvement. Areas of significant flood risk were identified using national hydraulic and flood risk modelling, and flood hazard and flood risk maps were then prepared for these high risk areas. The flood risk was calculated using 12 indicators representing social, economic and environmental impacts of flooding. Indicator values were combined to provide overall estimates of flood risk. Strategic approaches to flood risk management were identified for each river basin using a multi-criteria analysis. Measures were then identified to achieve the strategic approaches. A programme of measures covering a 20-year period was developed together with a more detailed Short-Term Investment Plan covering the first seven years of the programme. Arrangements are now being made to implement the programme. The technical achievements of the project included national hydrological and hydraulic modelling covering 12,000 km of river, the development of 2-dimensional channel and floodplain hydraulic models from a range of topographic and bathymetric data, and an integrated flood risk assessment that takes account of both economic and non-monetary impacts.

  9. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  10. Evaluating the Aquatic Habitat Potential of Flooded Polders in the Sacramento-San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    John R. Durand

    2017-12-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss4art4Large tracts of land in the Sacramento-San Joaquin Delta are subsided due to agricultural practices, creating polders up to 10 m below sea level that are vulnerable to flooding. As protective dikes breach, these become shallow, open water habitats that will not resemble any historical state. I investigated physical and biotic drivers of novel flooded polder habitat, using a Native Species Benefit Index (NSBI to predict the nature of future Delta ecosystems. Results suggest that flooded polders in the north Delta will have the ecology and fish community composition of a tidal river plain, those in the Cache-Lindsey Complex will have that of a tidal backwater, those in the confluence of the Sacramento and San Joaquin Rivers a brackish estuary, and those in the south Delta a fresh water lake. Flooded east-side Delta polders will likely be a transitional zone between south Delta lake-like ecosystems and north Delta tidal river plains. I compared each regional zone with the limited available literature and data on local fish assemblies to find support for NSBI predictions. Because flood probabilities and repair prioritization analyses suggest that polders in the south Delta are most likely to flood and be abandoned, without extensive intervention, much of the Delta will become a freshwater lake ecosystem, dominated by alien species. Proactive management of flooded tracts will nearly always hedge risks, save money and offer more functional habitats in the future; however, without proper immediate incentives, it will be difficult to encourage strong management practices.

  11. Feedback on flood risk management

    Science.gov (United States)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    For several years, as floods were increasing in South of France, local communities felt deprive to assume their mission of protection and information of citizens, and were looking for assistance in flood management. In term of flood disaster, the fact is that physical protection is necessary but inevitably limited. Tools and structures of assistance to anticipation remain slightly developed. To manage repeated crisis, local authorities need to be able to base their policy against flood on prevention, warnings, post-crisis analysis and feedback from former experience. In this objective, after 3 years of test and improvement since 2003, the initiative Predict-Services was developped in South of France: it aims at helping communities and companies to face repeated flood crisis. The principle is to prepare emergency plans, to organize crisis management and reduce risks; to help and assist communities and companies during crisis to activate and adapt their emergency plans with enough of anticipation; and to analyse floods effects and improve emergency plans afterwards. In order to reduce risks, and to keep the benefits of such an initiative, local communities and companies have to maintain the awareness of risk of the citizens and employees. They also have to maintain their safety plans to keep them constantly operational. This is a part of the message relayed. Companies, Local communities, local government authorities and basin stakeholders are the decision makers. Companies and local communities have to involve themselves in the elaboration of safety plans. They are also completely involved in their activation that is their own responsability. This applies to other local government authorities, like districts one's and basin stakeholders, which participle in the financing community safety plans and adminitrative district which are responsible of the transmission of meteorological alert and of rescue actions. In the crossing of the géo-information stemming from the

  12. Flash flood characterisation of the Haor area of Bangladesh

    Science.gov (United States)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  13. Danish risk management plans of the EU Floods Directive

    DEFF Research Database (Denmark)

    Jebens, Martin; Sørensen, Carlo Sass; Piontkowitz, Thorsten

    2016-01-01

    We evaluate the impact and effect of the EU Flood’s Directive (2007/60/EC) in Denmark and the flood risk management plans that are the result of the national implementation. In a qualitative research approach, the flood risk management plans published by 22 Danish municipalities are reviewed...... and analyzed regarding main objectives and structural and non-structural mitigation measures. From the analyses conclusions are drawn on the non-structural risk management measures still to be improved to obtain the full benefits from the Directive. Conclusions point to the need of introducing better decision...... and cross-sectorial working platform for dealing with risks from floods....

  14. FLOOD CHARACTERISTICS AND MANAGEMENT ADAPTATIONS ...

    African Journals Online (AJOL)

    Dr Osondu

    2011-10-26

    Oct 26, 2011 ... Ethiopian Journal of Environmental Studies and Management Vol. ... people are estimated to be at such risk by 2080 .... SCS-CN method is based on the water balance .... and psychological burden of flood hazard often fall.

  15. The contribution of disaster management to integrated flood risk management strategies: lessons learned from the Netherlands

    NARCIS (Netherlands)

    Kolen, B.; van Alphen, J

    2017-01-01

    An integrated flood risk management (IFRM) strategy consist of a comprehensive set of measures to reduce the risk: protective measures (to reduce the probability of a flood), and land use planning and disaster management (to reduce the consequences of a flood. In the Netherlands this is called a

  16. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines

    Science.gov (United States)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.

    2016-12-01

    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the

  17. Sustainability appraisal and flood risk management

    International Nuclear Information System (INIS)

    Carter, Jeremy G.; White, Iain; Richards, Juliet

    2009-01-01

    This research establishes that sustainability appraisal (SA) has a role to play in strengthening spatial plans in the context of flooding issues. Indeed, evidence has been gathered to indicate that tentative steps are being taken in this direction during the SA of English regional spatial plans, which are used as an illustrative case study. In England as in many other countries, appraisal procedures including SA and strategic environmental assessment (SEA) are enshrined in planning law. An opportunity therefore exists to utilise existing and familiar planning tools to embed flooding considerations within spatial plans at an early stage in the planning process. SA (and similar appraisal tools such as SEA) can therefore usefully aid in the implementation of decision making principles and government policy relating to flooding. Moreover, with the threats associated with climate change becoming increasingly apparent, of which increased flood risk is a particular concern in many countries, there is a need develop appropriate adaptation responses. This article emphasizes the role that SA can play in managing future flood risk in this context

  18. Collaborative multi-stakeholder approach to drafting flood risk management plans in Wallonia, Belgium

    Science.gov (United States)

    Maroy, Edith; Javaux, Mathieu; Vandermosten, Pierre; Englebert, Benjamin

    2015-04-01

    The Flood Directive 2007/60/CE establishes a common framework within the European Union for assessing and reducing risks posed by floods on human health, the environment, economic activity and cultural heritage. For that purpose, Member States had to establish flood areas and flood risk maps, and subsequently, flood risk management plans (due December 2015). According to the Directive, special attention is to be paid to international coordination for transboundary water courses, integrated management approaches at the catchment scale, cost-effectiveness of measures and public involvement. Management measures must focus on reducing the probability of flooding and the potential consequences of flooding. They must cover prevention, protection and preparedness and must take into account relevant aspects, such as water management, soil management, spatial planning, land use and nature conservation. Floods in Wallonia mostly originate from overflowing of both little sloped rivers and highly reactive rivers but also, from concentrated runoff in the intensely cultivated and erosion-prone region north of the Sambre-Meuse axis. Consequently, walloon flood area maps not only show flood areas based on hydraulic modelling and observations but also runoff concentration axis in agricultural areas. Now released to the public, this information can be used to assess the risk of damage for land planning and erosion control strategies. Incidentally, some 166 km2 were mapped as flood hazard area with a return period of 25 years, 28.8 of which are urbanized or destined to urbanisation and counting of number of approximatively 39.000 people living in those areas. Flood area and flood risk maps should be the starting point of elaborating flood risk management plans. In order to involve the diversity of water managers and stakeholders in the drafting of a management plan for hydrographic districts in Wallonia, responsible authorities decided to mandate scientists and engineers to organize

  19. Linking events, science and media for flood and drought management

    Science.gov (United States)

    Ding, M.; Wei, Y.; Zheng, H.; Zhao, Y.

    2017-12-01

    Throughout history, floods and droughts have been closely related to the development of human riparian civilization. The socio-economic damage caused by floods/droughts appears to be on the rise and the frequency of floods/droughts increases due to global climate change. In this paper, we take a fresh perspective to examine the (dis)connection between events (floods and droughts), research papers and media reports in globally 42 river basins between 1990 and 2012 for better solutions in floods and droughts management. We collected hydrological data from NOAA/ESPL Physical Sciences Division (PSD) and CPC Merged Analysis of Precipitation (CMAP), all relevant scientific papers from Web of Science (WOS) and media records from Emergency Events Database (EM-DAT) during the study period, presented the temporal variability at annual level of these three groups of data, and analysed the (connection) among these three groups of data in typical river basins. We found that 1) the number of flood related reports on both media and research is much more than those on droughts; 2) the concerns of media reports just focused on partial topics (death, severity and damage) and partial catchments (Mediterranean Sea and Nile River); 3) the scientific contribution on floods and droughts were limited within some river basins such as Nile River Basin, Parana River Basin, Savannah River Basin and Murray-Darling River Basin; 4) the scientific contribution on floods and droughts were limited within only a few of disciplines such as Geology, Environmental Sciences & Ecology, Agriculture, Engineering and Forestry. It is recommended that multiple disciplinary contribution and collaboration should be promoted to achieve comprehensive flood/drought management, and science and media should interactively play their valuable roles and in flood/drought issues. Keywords: Floods, droughts, events, science, media, flood and drought management

  20. Promoting adaptive flood risk management: the role and potential of flood recovery mechanisms

    Directory of Open Access Journals (Sweden)

    Priest Sally J

    2016-01-01

    Full Text Available There is a high potential for recovery mechanisms to be used to incentivise the uptake of flood mitigation and loss reduction measures, undertake adaptation and promote community resilience. Indeed, creating a resilient response to flooding requires flood risk management approaches to be aligned and it needs to be ensured that recovery mechanisms to not provide disincentives for individuals and business to take proactive action to reduce risk. However, the degree to which it is desirable and effective for insurers and governments providing compensation to promote resilience and risk reduction depends upon how the cover or compensation is organised and the premiums which are charged. A review of international flood recovery mechanisms has been undertaken to identify firstly the types of schemes that exist and their characteristics. Analysis of existing instruments highlights that there are various potential approaches to encourage or require the uptake of flood mitigation and also discourage the construction of new development in high flood risk. However despite the presence of these instruments, those organising recovery mechanisms could be doing much more to incentivise increased resilience.

  1. Flash flood forecasting, warning and risk management: the HYDRATE project

    International Nuclear Information System (INIS)

    Borga, M.; Anagnostou, E.N.; Bloeschl, G.; Creutin, J.-D.

    2011-01-01

    Highlights: → We characterize flash flood events in various regions of Europe. → We provide guidance to improve observations and monitoring of flash floods. → Flash floods are associated to orography and are influenced by initial soil moisture conditions. → Models for flash flood forecasting and flash flood hazard assessment are illustrated and discussed. → We examine implications for flood risk policy and discuss recommendations received from end users. - Abstract: The management of flash flood hazards and risks is a critical component of public safety and quality of life. Flash-floods develop at space and time scales that conventional observation systems are not able to monitor for rainfall and river discharge. Consequently, the atmospheric and hydrological generating mechanisms of flash-floods are poorly understood, leading to highly uncertain forecasts of these events. The objective of the HYDRATE project has been to improve the scientific basis of flash flood forecasting by advancing and harmonising a European-wide innovative flash flood observation strategy and developing a coherent set of technologies and tools for effective early warning systems. To this end, the project included actions on the organization of the existing flash flood data patrimony across Europe. The final aim of HYDRATE was to enhance the capability of flash flood forecasting in ungauged basins by exploiting the extended availability of flash flood data and the improved process understanding. This paper provides a review of the work conducted in HYDRATE with a special emphasis on how this body of research can contribute to guide the policy-life cycle concerning flash flood risk management.

  2. SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa

    Science.gov (United States)

    Macharia, Daniel; Korme, Tesfaye; Policelli, Fritz; Irwin, Dan; Adler, Bob; Hong, Yang

    2010-01-01

    SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management.

  3. Comprehensive flood mitigation and management in the Chi River Basin, Thailand

    NARCIS (Netherlands)

    Kunitiyawichai, K.; Schultz, B.; Uhlenbrook, S.; Suryadi, F.X.; Corzo, G.A.

    2011-01-01

    Severe flooding of the flat downstream area of the Chi River Basin occurs frequently. This flooding is causing catastrophic loss of human lives, damage and economic loss. Effective flood management requires a broad and practical approach. Although flood disasters cannot completely be prevented,

  4. The pattern of spatial flood disaster region in DKI Jakarta

    Science.gov (United States)

    Tambunan, M. P.

    2017-02-01

    in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone

  5. Flood management of Dongting Lake after operation of Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Xi-jun Lai

    2017-10-01

    Full Text Available Full operation of the Three Gorges Dam (TGD reduces flood risk of the middle and lower parts of the Yangtze River Basin. However, Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.

  6. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    Science.gov (United States)

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  7. Damage-reducing measures to manage flood risks in a changing climate

    Science.gov (United States)

    Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans

    2014-05-01

    Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P

  8. Flood Risk Management In Europe: an exploration of governance challenges

    NARCIS (Netherlands)

    Hegger, D.; Dieperink, C.; Green, C.; Driessen, Peter; Bakker, M.H.; Rijswick, H.F.M.W. van; Crabbé, A.; Ek, K.

    2013-01-01

    In order to make European regions more resilient to flood risks a broadening of Flood Risk Management strategies (FRMSs) might be necessary. The development and implementation of FRMSs like risk prevention, flood defence, mitigation, preparation and recovery is a matter of governance, a process of

  9. Long-term experiences with pluvial flood risk management

    Directory of Open Access Journals (Sweden)

    Fritsch Kathrina

    2016-01-01

    Full Text Available The awareness of pluvial (rain-related flood risk has grown significantly in the past few years but pluvial flooding is not handled with the same intensity throughout Europe. A variety of methods and modelling technologies are used to assess pluvial flood hazard and risk and to develop suggestions for flood mitigation measures. A brief overview of current model approaches is followed by the description of a modelling methodology that has been developed throughout the last 15 years with the focus on processing large scale areas. Experiences from several projects show that only high quality models of whole catchment areas yield results with enough accuracy to gain credibility among stakeholders, planners and the public. As a best practice example shows, the model approach also helps to plan effective decentral flood protection measures. To ensure successful flood risk management, a long-term preservation of flood risk awareness among local authorities and the public is necessary.

  10. Exploitation of Documented Historical Floods for Achieving Better Flood Defense

    Directory of Open Access Journals (Sweden)

    Slobodan Kolaković

    2016-01-01

    Full Text Available Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach, involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods has been exploited in this study. The short presentation of the catchment of the Tisza River in this paper is followed by the overview of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of different extreme flood scenarios and to establish the Base Flood Elevation. The calibration has shown that the coefficient of friction in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the expected maximum water levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again. The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.

  11. Impacts of Extreme Flooding on Hydrologic Connectivity and Water Quality in the Atlantic Coastal Plain and Implications for Vulnerable Populations

    Science.gov (United States)

    Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.

    2017-12-01

    In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.

  12. Flood Risk Management Policy in Scotland: Research Questions Past, Present and Future

    Science.gov (United States)

    Wilkinson, Mark; Hastings, Emily; MacDonald, Jannette

    2016-04-01

    Scotland's Centre of Expertise for Waters (CREW) delivers accessible research and expert opinion to support the Scottish Government and its delivery partners in the development and implementation of water policy. It was established in 2011 by the Scottish Government (Rural and Environmental Science and Analytical Services) in recognition of a gap in the provision of short term advice and research to policy (development and implementation). Key policy areas include the Water Framework Directive, Floods Directive, Drinking Water Directive, Habitats Directive and Scotland's Hydro Nation Strategy. CREW is unique in its demand-driven and free service for policy makers and practitioners, managing the engagement between scientists, policy makers and practitioners to work effectively across this interface. The users of CREW are the Scottish Government, Scottish Environment Protection Agency, Scottish Natural Heritage and Scottish Water. CREW has funded around 100 projects relating to water policy since its inception in 2011. Of these, a significant number relate to flood risk management policy. Based on a review of work to date, this poster will give an overview of these projects and a forward look at the challenges that remain. From learning from community led flood risk management to surface water flood forecasting for urban communities, links will be made between sustainable and traditional flood risk management while considering the perceptions of stakeholders to flood risk management. How can we deliver fully integrated flood risk management options? How policy makers, scientists and land managers can better work together will also be explored.

  13. Integrating a Typhoon Event Database with an Optimal Flood Operation Model on the Real-Time Flood Control of the Tseng-Wen Reservoir

    Science.gov (United States)

    Chen, Y. W.; Chang, L. C.

    2012-04-01

    Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of

  14. THE EFFECT OF THE GEOMETRIC STRUCTURE OF FLOOD PLAIN VEGETATION ON THE PROBABILITY OF PASSING FOR PLANT DEBRIS

    Directory of Open Access Journals (Sweden)

    Natalia Walczak

    2016-09-01

    Full Text Available Flood plains are a specific sedimentary environment. They are a natural clarifier and filter for rivers carrying large amounts of heavy metals, biogenic elements and other contaminants transported during high water and floods. Plenty of it is accumulated in the riverbank zone of channels i.e. a buffer strip. This is a relatively narrow strip of land situated along watercourses, often covered with riparian plants. It is functionally associated with river flooding and it forms a transition zone to ecosystems of mixed (oak-lime-hornbeam forest plants. These plants unquestionably grow into a natural protective system of surface waters against contamination flowing down from areas used for agricultural purposes. Buffer zones provide the opportunity for self-cleaning, and according researchers they are among the most efficient natural tools to protect a catchment area. They can reduce the amount of sediments and nutrients carried by surface water flowing down from agricultural areas. Besides positive effects, the zones are accompanied by the phenomenon of flow blockage, which is particularly hazardous in case of directing great water away from its main channel. Shrubby vegetation retains small elements of plant origin and thus the free flow of water stopped. The article analyses the effect of vegetation structure density on flow conditions for small plant debris on a laboratory scale.

  15. The European Union approach to flood risk management and improving societal resilience: lessons from the implementation of the Floods Directive in six European countries

    Directory of Open Access Journals (Sweden)

    Sally J. Priest

    2016-12-01

    Full Text Available Diversity in flood risk management approaches is often considered to be a strength. However, in some national settings, and especially for transboundary rivers, variability and incompatibility of approaches can reduce the effectiveness of flood risk management. Placed in the context of increasing flood risks, as well as the potential for flooding to undermine the European Union's sustainable development goals, a desire to increase societal resilience to flooding has prompted the introduction of a common European Framework. We provide a legal and policy analysis of the implementation of the Floods Directive (2007/60/EC in six countries: Belgium (Flemish region, England, France, the Netherlands, Poland, and Sweden. Evaluation criteria from existing legal and policy literature frame the study of the Directive and its effect on enhancing or constraining societal resilience by using an adaptive governance approach. These criteria are initially used to analyze the key components of the EU approach, before providing insight of the implementation of the Directive at a national level. Similarities and differences in the legal translation of European goals into existing flood risk management are analyzed alongside their relative influence on policy and practice. The research highlights that the effect of the Floods Directive on increasing societal resilience has been nationally variable, in part because of its focus on procedural obligations, rather than on more substantive requirements. Analysis shows that despite a focus on transboundary river basin management, existing traditions of flood risk management have overridden objectives to harmonize flood risk management in some cases. The Directive could be strengthened by requiring more stringent cooperation and providing the competent authorities in international river basin districts with more power. Despite some shortcomings in directly affecting flood risk outcomes, the Directive has positively

  16. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  17. Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India).

    Science.gov (United States)

    Haloi, Nabanita; Sarma, H P

    2012-10-01

    A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  18. Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria ...

    African Journals Online (AJOL)

    jen

    ABSTRACT: The study has the major objective of evaluating flood risk mitigation strategies in the Niger. Delta, a coastal region of Nigeria that suffers from perennial flooding. The Raper argues that the structural methods of flood control tends to give a false sense of security to flood plain dwellers and thereby encouraging.

  19. Advancing Flood Risk Communication and Management through Collaboration and Public Participation

    OpenAIRE

    Cheung, Wing

    2017-01-01

    Flooding has been a pressing problem for communities around the world. The problem is expected to worsen due to climate change and sea level rise. Despite decades of research on risk communication and management, the toll of flooding continues to mount. In order to advance flood management to minimize future damages, there is a need to foster collaboration among research communities, promote the genuine engagement of local stakeholders, and co-develop targeted risk communication and mitigatio...

  20. Integrated Climate Smart Flood Management for Accra, Ghana ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · What we do ... The research team will use evidence to develop an integrated climate smart flood management framework to support policymaking. ... The Ministry of Environment, Science, Technology, and Innovation will manage the ...

  1. The added value of system robustness analysis for flood risk management

    NARCIS (Netherlands)

    Mens, M.J.P.; Klijn, F.

    2014-01-01

    Decision makers in fluvial flood risk management increasingly acknowledge that they have to prepare for extreme events. Flood risk is the most common basis on which to compare flood risk-reducing strategies. To take uncertainties into account the criteria of robustness and flexibility are advocated

  2. Observations on the effect of flood on animals

    Science.gov (United States)

    Stickel, L.F.

    1948-01-01

    Summary. The flood plain of the Patuxent River is washed over periodically, and occasionally the entire bottomland is submerged to a depth of several feet. The effects of an unusually severe flood on the populations and home ranges of wood mice (Peromyscus leucopus) and box turtles (Terrapene carolina) were studied by means of collecting the animals before, during, and after the flood. The flood had little or no effect on the size of the populations, and individuals showed remarkable ability to remain within their home ranges despite the flood.

  3. Danish risk management plans of the EU Floods Directive

    Directory of Open Access Journals (Sweden)

    Jebens Martin

    2016-01-01

    Full Text Available We evaluate the impact and effect of the EU Flood’s Directive (2007/60/EC in Denmark and the flood risk management plans that are the result of the national implementation. In a qualitative research approach, the flood risk management plans published by 22 Danish municipalities are reviewed and analyzed regarding main objectives and structural and non-structural mitigation measures. From the analyses conclusions are drawn on the non-structural risk management measures still to be improved to obtain the full benefits from the Directive. Conclusions point to the need of introducing better decision support systems, a need to define acceptable risks, and a need to enhance coordi-nation between municipal and cross-sectorial actors as well as an increased effort to involve civil society is necessary. In general, the implementation of the Directive has significantly advanced the national scientific and cross-sectorial working platform for dealing with risks from floods.

  4. Polders as active element of flood control

    International Nuclear Information System (INIS)

    Zilavy, M.

    2004-01-01

    In this presentation author deals with use of the polders as active element of flood control on the example Kysuca River and Podluzianka River (Slovakia). It was concluded that it is necessary: - dense network of rain gauge stations; - network of water level recorders; revision of design process for hydraulic objects - degree of safety; changes in legislation - permission for construction in flood-plains; maintenance of channel capacity; early flood forecasting - forecasting and warning service; river training works and maintenance; design of retention areas; preparation of retention areas prior to flood propagation

  5. Urban Floods in Lowlands—Levee Systems, Unplanned Urban Growth and River Restoration Alternative: A Case Study in Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Gomes Miguez

    2015-08-01

    Full Text Available The development of cities has always had a very close relation with water. However, cities directly impact land use patterns and greatly change natural landscapes, aggravating floods. Considering this situation, this paper intends to discuss lowland occupation and city sustainability in what regards urban stormwater management, fluvial space, and river restoration, aiming at minimizing flood risks and improving natural and built environment conditions. River plains tend to be attractive places for a city to grow. From ancient times, levees have been used to protect lowland areas along major watercourses to allow their occupation. However, urban rivers demand space for temporary flood storage. From a systemic point of view, levees along extensive river reaches act as canalization works, limiting river connectivity with flood plains, rising water levels, increasing overtopping risks and transferring floods downstream. Departing from this discussion, four case studies in the Iguaçu-Sarapuí River Basin, a lowland area of Rio de Janeiro State, Brazil, are used to compose a perspective in which the central point refers to the need of respecting watershed limits and giving space to rivers. Different aspects of low-lying city planning are discussed and analyzed concerning the integration of the built and natural environments.

  6. Application of flood-intensity-duration curve, rainfall-intensity-duration curve and time of concentration to analyze the pattern of storms and their corresponding floods for the natural flood events

    Science.gov (United States)

    Kim, Nam Won; Shin, Mun-Ju; Lee, Jeong Eun

    2016-04-01

    The analysis of storm effects on floods is essential step for designing hydraulic structure and flood plain. There are previous studies for analyzing the relationship between the storm patterns and peak flow, flood volume and durations for various sizes of the catchments, but they are not enough to analyze the natural storm effects on flood responses quantitatively. This study suggests a novel method of quantitative analysis using unique factors extracted from the time series of storms and floods to investigate the relationship between natural storms and their corresponding flood responses. We used a distributed rainfall-runoff model of Grid based Rainfall-runoff Model (GRM) to generate the simulated flow and areal rainfall for 50 catchments in Republic of Korea size from 5.6 km2 to 1584.2 km2, which are including overlapped dependent catchments and non-overlapped independent catchments. The parameters of the GRM model were calibrated to get the good model performances of Nash-Sutcliffe efficiency. Then Flood-Intensity-Duration Curve (FIDC) and Rainfall-Intensity-Duration Curve (RIDC) were generated by Flood-Duration-Frequency and Intensity-Duration-Frequency methods respectively using the time series of hydrographs and hyetographs. Time of concentration developed for the Korea catchments was used as a consistent measure to extract the unique factors from the FIDC and RIDC over the different size of catchments. These unique factors for the storms and floods were analyzed against the different size of catchments to investigate the natural storm effects on floods. This method can be easily used to get the intuition of the natural storm effects with various patterns on flood responses. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  7. Satellites, tweets, forecasts: the future of flood disaster management?

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.

  8. From flood protection to flood risk management: condition-based and performance-based regulations in German water law

    NARCIS (Netherlands)

    Hartmann, T.; Albrecht, J.

    2014-01-01

    In many European countries, a paradigm shift from technically oriented flood protection to a holistic approach of flood risk management is taking place. In Germany, this approach is currently being implemented after several amendments of the Federal Water Act. The paradigm shift is also reflected in

  9. The value of plain abdominal radiographs in management of abdominal emergencies in Luth.

    Science.gov (United States)

    Ashindoitiang, J A; Atoyebi, A O; Arogundade, R A

    2008-01-01

    The plain abdominal x-ray is still the first imaging modality in diagnosis of acute abdomen. The aim of this study was to find the value of plain abdominal x-ray in the management of abdominal emergencies seen in Lagos university teaching hospital. The accurate diagnosis of the cause of acute abdominal pain is one of the most challenging undertakings in emergency medicine. This is due to overlapping of clinical presentation and non-specific findings of physical and even laboratory data of the multifarious causes. Plain abdominal radiography is one investigation that can be obtained readily and within a short period of time to help the physician arrive at a correct diagnosis The relevance of plain abdominal radiography was therefore evaluated in the management of abdominal emergencies seen in Lagos over a 12 month period (April 2002 to March 2003). A prospective study of 100 consecutively presenting patients with acute abdominal conditions treated by the general surgical unit of Lagos University Teaching Hospital was undertaken. All patients had supine and erect abdominal x-ray before any therapeutic intervention was undertaken. The diagnostic features of the plain films were compared with final diagnosis to determine the usefulness of the plain x-ray There were 54 males and 46 females (M:F 1.2:1). Twenty-four percent of the patients had intestinal obstruction, 20% perforated typhoid enteritis; gunshot injuries and generalized peritonitis each occurred in 13%, blunt abdominal trauma in 12%, while 8% and 10% had acute appendicitis and perforated peptic ulcer disease respectively. Of 100 patients studied, 54% had plain abdominal radiographs that showed positive diagnostic features. Plain abdominal radiograph showed high sensitivity in patients with intestinal obstruction 100% and perforated peptic ulcer 90% but was less sensitive in patients with perforated typhoid, acute appendicitis, and blunt abdominal trauma and generalized peritonitis. In conclusion, this study

  10. System robustness analysis in support of flood and drought risk management

    CERN Document Server

    Mens, MJP

    2015-01-01

    Floods and droughts have an increasing impact on societies worldwide. It is unlikely that the provision of flood protection infrastructure and reservoirs will eliminate this problem, especially as extreme events are expected to increase in probability and magnitude as a result of climate change. For this reason, the focus of water management has shifted to a risk-based approach in recent years; but this also has its limitations.This book examines system robustness as a new perspective on flood and drought risk management. The concept of robustness is familiar from other areas, such as engineer

  11. Spatiotemporal hazard mapping of a flood event "migration" in a transboundary river basin as an operational tool in flood risk management

    Science.gov (United States)

    Perrou, Theodora; Papastergios, Asterios; Parcharidis, Issaak; Chini, Marco

    2017-10-01

    Flood disaster is one of the heaviest disasters in the world. It is necessary to monitor and evaluate the flood disaster in order to mitigate the consequences. As floods do not recognize borders, transboundary flood risk management is imperative in shared river basins. Disaster management is highly dependent on early information and requires data from the whole river basin. Based on the hypothesis that the flood events over the same area with same magnitude have almost identical evolution, it is crucial to develop a repository database of historical flood events. This tool, in the case of extended transboundary river basins, could constitute an operational warning system for the downstream area. The utility of SAR images for flood mapping, was demonstrated by previous studies but the SAR systems in orbit were not characterized by high operational capacity. Copernicus system will fill this gap in operational service for risk management, especially during emergency phase. The operational capabilities have been significantly improved by newly available satellite constellation, such as the Sentinel-1A AB mission, which is able to provide systematic acquisitions with a very high temporal resolution in a wide swath coverage. The present study deals with the monitoring of a transboundary flood event in Evros basin. The objective of the study is to create the "migration story" of the flooded areas on the basis of the evolution in time for the event occurred from October 2014 till May 2015. Flood hazard maps will be created, using SAR-based semi-automatic algorithms and then through the synthesis of the related maps in a GIS-system, a spatiotemporal thematic map of the event will be produced. The thematic map combined with TanDEM-X DEM, 12m/pixel spatial resolution, will define the non- affected areas which is a very useful information for the emergency planning and emergency response phases. The Sentinels meet the main requirements to be an effective and suitable

  12. Flood Risk Assessment as a Part of Integrated Flood and Drought Analysis. Case Study: Southern Thailand

    Science.gov (United States)

    Prabnakorn, Saowanit; Suryadi, Fransiscus X.; de Fraiture, Charlotte

    2015-04-01

    Flood and drought are two main meteorological catastrophes that have created adverse consequences to more than 80% of total casualties universally, 50% by flood and 31% by drought. Those natural hazards have the tendency of increasing frequency and degree of severity and it is expected that climate change will exacerbate their occurrences and impacts. In addition, growing population and society interference are the other key factors that pressure on and exacerbate the adverse impacts. Consequently, nowadays, the loss from any disasters becomes less and less acceptable bringing about more people's consciousness on mitigation measures and management strategies and policies. In general, due to the difference in their inherent characteristics and time occurrences flood and drought mitigation and protection have been separately implemented, managed, and supervised by different group of authorities. Therefore, the objective of this research is to develop an integrated mitigation measure or a management policy able to surmount both problems to acceptable levels and is conveniently monitored by the same group of civil servants which will be economical in both short- and long-term. As aforementioned of the distinction of fundamental peculiarities and occurrence, the assessment processes of floods and droughts are separately performed using their own specific techniques. In the first part of the research flood risk assessment is focused in order to delineate the flood prone area. The study area is a river plain in southern Thailand where flooding is influenced by monsoon and depression. The work is mainly concentrated on physically-based computational modeling and an assortment of tools was applied for: data completion, areal rainfall interpolation, statistical distribution, rainfall-runoff analysis and flow model simulation. The outcome from the simulation can be concluded that the flood prone areas susceptible to inundation are along the riparian areas, particularly at the

  13. Collaborative modelling for active involvement of stakeholders in urban flood risk management

    Directory of Open Access Journals (Sweden)

    M. Evers

    2012-09-01

    Full Text Available This paper presents an approach to enhance the role of local stakeholders in dealing with urban floods. The concept is based on the DIANE-CM project (Decentralised Integrated Analysis and Enhancement of Awareness through Collaborative Modelling and Management of Flood Risk of the 2nd ERANET CRUE funding initiative. The main objective of the project was to develop and test an advanced methodology for enhancing the resilience of local communities to flooding. Through collaborative modelling, a social learning process was initiated that enhances the social capacity of the stakeholders due to the interaction process. The other aim of the project was to better understand how data from hazard and vulnerability analyses and improved maps, as well as from the near real-time flood prediction, can be used to initiate a public dialogue (i.e. collaborative mapping and planning activities in order to carry out more informed and shared decision-making processes and to enhance flood risk awareness. The concept of collaborative modelling was applied in two case studies: (1 the Cranbrook catchment in the UK, with focus on pluvial flooding; and (2 the Alster catchment in Germany, with focus on fluvial flooding. As a result of the interactive and social learning process, supported by sociotechnical instruments, an understanding of flood risk was developed amongst the stakeholders and alternatives for flood risk management for the respective case study area were jointly developed and ranked as a basis for further planning and management.

  14. Coastal flood protection management under uncertainty – the Danish case

    DEFF Research Database (Denmark)

    Jumppanen Andersen, Kaija; Sørensen, Carlo Sass; Piontkowitz, Thorsten

    Local stakeholders responsible for coastal management. In Denmark, the responsibility of defining, planning and implementing coastal flood protection lies with the local stakeholders, such as landowners and municipalities. Similarly, it is a municipal responsibility to define building foundation...... and flood protection levels in urban planning and long term development. These planning and protection levels are most often defined from the hazard instead of a risk perspective.The Danish Coastal Authority (DCA) guides local stakeholders on general coastal flood protection and implements the EU Flood...... Directive on flood risk reduction in appointed areas of significant flood risk. DCA is obligated to communicate the concept of risk and, in a thorough and easily comprehendible way, the hazards and uncertainties relating to this today and in the future....

  15. Improving Flood Management Planning in Thailand | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    According to World Bank estimates, this disaster caused US$46.5 billion in ... This project seeks to improve the Flood Management Master Plan, proposing ... New Dutch-Canadian funding for the Climate and Development Knowledge Network.

  16. Betwixt Droughts and Floods: Flood Management Politics in Thailand

    Directory of Open Access Journals (Sweden)

    Naila Maier-Knapp

    2015-01-01

    Full Text Available Attempting to create greater understanding of the political dynamics that influence domestic disaster relief and management (DRM in Thailand, this article takes a closer look at these dynamics by outlining the main actors involved in flood-related DRM. It acknowledges the importance of international and military actors but emphasises the role of national and subnational authorities. The article then identifies the central issues of DRM governance as capacity and bureaucracy and discusses these through a chronological assessment of the flood crisis in Thailand in 2011, interweaving the colourful domestic politics with various political cleavages and dichotomies, and thereby distinguishing between three main dichotomies which it considers as the central drivers of the political dynamics and institutional development of DRM. These issues can be summarised as old versus new institutions, technocracy versus bureaucracy and centralised (but with direct people-orientation through greater channels of citizenry participation versus decentralised bureaucracy with an indirect orientation towards people.

  17. Comprehensive flood mitigation and management in the Chi River Basin, Thailand

    OpenAIRE

    Kunitiyawichai, K.; Schultz, B.; Uhlenbrook, S.; Suryadi, F.X.; Corzo, G.A.

    2011-01-01

    Severe flooding of the flat downstream area of the Chi River Basin occurs frequently. This flooding is causing catastrophic loss of human lives, damage and economic loss. Effective flood management requires a broad and practical approach. Although flood disasters cannot completely be prevented, major part of potential loss of lives and damages can be reduced by comprehensive mitigation measures. In this paper, the effects of river normalisation, reservoir operation, green river (bypass), and ...

  18. Geospatial Analysis for the Determination of Hydro-Morphological Characteristics and Assessment of Flash Flood Potentiality in Arid Coastal Plains: A Case in Southwestern Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Wahid

    2016-01-01

    Full Text Available Coastal plains with a unique geographic setting and renewable natural resources are promising for sustainable development; however, these areas may be subjected to some environmental hazards due to their geological setting. One of those hazards is the seasonal flash flood that can threaten existing and future development projects in such critical areas. Southwestern Sinai, Egypt, is a coastal plain that is characterized by complex geological setting an arid climate with seasonal rainfall which can result in a high runoff. The aim of this work is to model spatially the runoff amount and density related to flash flood development and to create a flash flood hazard map of the plain as an example of coastal plain in a desert environment with large and complex hydrologic setting. In this research, ASTER images are used to develop a digital elevation model (DEM and land use/land cover (LULC data sets of the study area. Geographic information system (GIS was used to perform runoff and ash potential flood analyses of the created databases and to show distributed runoff and flooding potential in spatial maps. A module was created in a GIS environment to develop a flash flood potential index map. It was clear that the main two factors controlling runoff amounts and flash flood potential in such kinds of areas are the slope and soil types. The final dataset map procedure by this work can be very helpful in land use planning by highlighting the areas subjected to flash floods.    Análisis Geoespacial para Determinar las Características Hidromorfológicas y Evaluar las Inundaciones Potenciales en Llanuras Costeras Áridas: Caso de Estudio en el Suroccidente de Sinaí, Egipto  Resumen Las llanuras costeras que poseen recursos naturales renovables y una configuración geográfíca única son promisorias para el desarrollo sostenible. Estas áreas, sin embargo, son objeto de algunas amenazas ambientales debido a su escenario geológico. Una de

  19. Governance in support of integrated flood risk management? The case of Romania

    NARCIS (Netherlands)

    Vinke-de Kruijf, Joanne; Kuks, Stefanus M.M.; Augustijn, Dionysius C.M.

    2015-01-01

    Building on an existing model of governance, this paper aims to assess the supportiveness of Romania׳s structural flood risk governance context towards integrated flood risk management. We assert that a governance structure supports the development and implementation of integrated flood risk

  20. Managing flood risk through collaborative governance | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-05-21

    May 21, 2013 ... Managing flood risk through collaborative governance ... This article profiles a project supported by IDRC's Climate Change and Water program, ... and in the intensity of extreme weather events are resulting in the erosion of lo.

  1. Remote sensing of drivers of spring snowmelt flooding in the North Central US

    Science.gov (United States)

    Spring snowmelt poses an annual flood risk in non-mountainous regions, such as the northern Great Plains of North America. However, ground observations are often not sufficient to characterize the spatiotemporal variation of drivers of snowmelt floods for operational flood forecasting purposes. Re...

  2. 44 CFR 60.13 - Noncompliance.

    Science.gov (United States)

    2010-10-01

    ... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.13 Noncompliance. If a State fails to submit adequate flood plain management regulations applicable to State-owned properties pursuant...

  3. The 3D Elevation Program—Flood risk management

    Science.gov (United States)

    Carswell, William J.; Lukas, Vicki

    2018-01-25

    Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these

  4. Impacts of dyke development in flood prone areas in the Vietnamese Mekong Delta to downstream flood hazard

    Science.gov (United States)

    Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan

  5. Managing the Risk of Flooding and Sea-level Rise in Cape Town ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Studies. Managing disasters in the context of climate change : towards sustainable urban flood management in Cape Town ... Moving through the city : gender and floods at play; a case study in Sweet Home Farm informal settlement, Cape Town ... public health, and health systems research relevant to the emerging crisis.

  6. Levee Setbacks: An Innovative, Cost Effective, and Sustainable Solution for Improved Flood Risk management

    Science.gov (United States)

    2017-06-30

    ER D C/ EL S R- 17 -3 Levee Setbacks: An Innovative , Cost-Effective, and Sustainable Solution for Improved Flood Risk Management En vi...EL SR-17-3 June 2017 Levee Setbacks: An Innovative , Cost-Effective, and Sustainable Solution for Improved Flood Risk Management David L. Smith...alternative view point is necessary. ERDC/EL SR-17-3 4 Levee setbacks are a relatively recent innovation in Corps flood risk management practice

  7. Development of flood index by characterisation of flood hydrographs

    Science.gov (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  8. Decision Support for Flood Event Prediction and Monitoring

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Liang, Gengsheng

    2007-01-01

    In this paper the development of Web GIS based decision support system for flood events is presented. To improve flood prediction we developed the decision support system for flood prediction and monitoring that integrates hydrological modelling and CARIS GIS. We present the methodology for data...... integration, floodplain delineation, and online map interfaces. Our Web-based GIS model can dynamically display observed and predicted flood extents for decision makers and the general public. The users can access Web-based GIS that models current flood events and displays satellite imagery and digital...... elevation model integrated with flood plain area. The system can show how the flooding prediction based on the output from hydrological modeling for the next 48 hours along the lower Saint John River Valley....

  9. Impacts of adaptive flood management strategies on the Socio-Hydrological system in Ganges - Brahmaputra river basin, Bangladesh

    Science.gov (United States)

    Sung, K.; Jeong, H.; Sangwan, N.; Yu, D. J.

    2017-12-01

    Human societies have tried to prevent floods by building robust infrastructure such as levees or dams. However, some scholars raise a doubt to this approach because of a lack of adaptiveness to environmental and societal changes in a long-term. Thus, a growing number of studies now suggest adopting new strategies in flood management to reinforce an adapt capacity to the long-term flood risk. This study addresses this issue by developing a conceptual mathematical model exploring how flood management strategies effect to the dynamics human-flood interaction, ultimately the flood resilience in a long-term. Especially, our model is motivated by the community-based flood protection system in southwest coastal area in Bangladesh. We developed several conceptual flood management strategies and investigated the interplay between those strategies and community's capacity to cope with floods. We additionally analyzed how external disturbances (sea level rise, water tide level change, and outside economic development) alter the adaptive capacity to flood risks. The results of this study reveal that the conventional flood management has potential vulnerabilities as external disturbances increase. Our results also highlight the needs of the adaptive strategy as a new paradigm in flood management which is able to feedback to the social and hydrological conditions. These findings provide insights on the resilience-based, adaptive strategies which can build flood resilience under global change.

  10. Flood impact assessment on the development of Archaia Olympia riparian area in Greece.

    Science.gov (United States)

    Pasaporti, Christina; Podimata, Marianthi; Yannopoulos, Panayotis

    2013-04-01

    A long list of articles in the literature examines several issues of flood risk management and applications of flood scenarios, taking into consideration the climate changes, as well as decision making tools in flood planning. The present study tries to highlight the conversation concerning flood impacts on the development rate of a riparian area. More specifically, Archaia (Ancient) Olympia watershed was selected as a case study area, since it is considered as a region of special interest and international significance. In addition, Alfeios River, which is the longest river of Peloponnisos Peninsula, passes through the plain of Archaia Olympia. Flood risk scenarios allow scientists and practitioners to understand the adverse effects of flooding on development activities such as farming, tourism etc. and infrastructures in the area such as road and railway networks, Flokas dam and the hydroelectric power plant, bridges, settlements and other properties. Flood risks cause adverse consequences on the region of Archaia Olympia (Ancient Olympic stadium) and Natura 2000 site area. Furthermore, SWOT analysis was used in order to quantify multicriteria and socio-economic characteristics of the study area. SWOT analysis, as a planning method, indicates the development perspective by identifying the strengths, weaknesses, threads and opportunities. Subsequent steps in the process of intergraded River Management Plan of Archaia Olympia could be derived from SWOT analysis. The recognition and analysis of hydro-geomorphological influences on riparian development activities can lead to the definition of hazardous and vulnerability zones and special warning equipment. The former information combined with the use of the spatial database for the catchment area of the River Alfeios, which aims to gather multiple watershed data, could serve in preparing the Management Plan of River Basin District 01 where Alfeios R. belongs. Greece has to fulfill the obligation of implementing River

  11. The Irma-sponge Program: Methodologies For Sustainable Flood Risk Management Along The Rhine and Meuse Rivers

    Science.gov (United States)

    Hooijer, A.; van Os, A. G.

    Recent flood events and socio-economic developments have increased the awareness of the need for improved flood risk management along the Rhine and Meuse Rivers. In response to this, the IRMA-SPONGE program incorporated 13 research projects in which over 30 organisations from all 6 River Basin Countries co-operated. The pro- gram is financed partly by the European INTERREG Rhine-Meuse Activities (IRMA). The main aim of IRMA-SPONGE is defined as: "The development of methodologies and tools to assess the impact of flood risk reduction measures and of land-use and climate change scenarios. This to support the spatial planning process in establish- ing alternative strategies for an optimal realisation of the hydraulic, economical and ecological functions of the Rhine and Meuse River Basins." Further important objec- tives are to promote transboundary co-operation in flood risk management by both scientific and management organisations, and to promote public participation in flood management issues. The projects in the program are grouped in three clusters, looking at measures from different scientific angles. The results of the projects in each cluster have been evaluated to define recommendations for flood risk management; some of these outcomes call for a change to current practices, e.g.: 1. (Flood Risk and Hydrol- ogy cluster): hydrological changes due to climate change exceed those due to further land use change, and are significant enough to necessitate a change in flood risk man- agement strategies if the currently claimed protection levels are to be sustained. 2. (Flood Protection and Ecology cluster): to not only provide flood protection but also enhance the ecological quality of rivers and floodplains, new flood risk management concepts ought to integrate ecological knowledge from start to finish, with a clear perspective on the type of nature desired and the spatial and time scales considered. 3. (Flood Risk Management and Spatial Planning cluster): extreme

  12. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    Science.gov (United States)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  13. Upstream structural management measures for an urban area flooding in Turkey

    Science.gov (United States)

    Akyurek, Z.; Bozoğlu, B.; Sürer, S.; Mumcu, H.

    2015-06-01

    In recent years, flooding has become an increasing concern across many parts of the world of both the general public and their governments. The climate change inducing more intense rainfall events occurring in short period of time lead flooding in rural and urban areas. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is performed. MIKE21 with flexible grid is used in 2-dimensional shallow water flow modelling. 1 × 1000-1 scaled maps with the buildings for the urbanized area and 1 × 5000-1 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of 500 m3 s-1 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The upstream structural base precautions against flooding are modelled. The effect of four main upstream catchments on the flooding in the downstream urban area are modelled as different scenarios. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in one of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed.

  14. Flood risk management in the Souss watershed

    Science.gov (United States)

    Bouaakkaz, Brahim; El Abidine El Morjani, Zine; Bouchaou, Lhoussaine; Elhimri, Hamza

    2018-05-01

    Flooding is the most devasting natural hazards that causes more damage throughout the world. In 2016, for the fourth year in a row, it was the most costly natural disaster, in terms of global economic losses: 62 billion, according to a Benfield's 2016 annual report on climate and natural disasters [1]. The semi-arid to arid Souss watershed is vulnerable to floods, whose the intensity is becoming increasingly alarming and this area does not escape to the effects of this extreme event.. Indeed, the susceptibility of this region to this type of hazard is accentuated by its rapid evolution in terms of demography, uncontrolled land use, anthropogenic actions (uncontrolled urbanization, encroachment of the hydraulic public domain, overgrazing, clearing and deforestation).), and physical behavior of the environment (higher slope, impermeable rocks, etc.). It is in this context, that we have developed a strategic plan of action to manage this risk in the Souss basin in order to reduce the human, economic and environmental losses, after the modeling of the flood hazard in the study area, using georeferenced information systems (GIS), satellite remote sensing space and multi-criteria analysis techniques, as well as the history of major floods. This study, which generated the high resolution 30m flood hazard spatial distribution map of with accuracy of 85%, represents a decision tool to identify and prioririze area with high probability of hazard occurrence. It can also serve as a basis for urban evacuation plans for anticipating and preventing flood risk in the region, in order to ovoid any dramatic disaster.

  15. Modeling flood events for long-term stability

    International Nuclear Information System (INIS)

    Schruben, T.; Portillo, R.

    1985-01-01

    The primary objective for the disposal of uranium mill tailings in the Uranium Mill Tailings Remedial Action (UMTRA) Project is isolation and stabilization to prevent their misuse by man and dispersal by natural forces such as wind, rain, and flood waters (40 CFR-192). Stabilization of sites that are located in or near flood plains presents unique problems in design for long-term performance. This paper discusses the process involved with the selection and hydrologic modeling of the design flood event; and hydraulic modeling with geomorphic considerations of the design flood event. The Gunnison, Colorado, and Riverton, Wyoming, sites will be used as examples in describing the process

  16. The spatial turn and the scenario approach in flood risk management : Implementing the European Floods Directive in the Netherlands

    NARCIS (Netherlands)

    van Ruiten, Leon; Hartmann, T.

    2016-01-01

    The European Floods Directive requires member states to prepare flood risk management plans for their river catchments. The first generation of those plans was just developed at the end of 2015; the next revision is due in 2021. The new instrument institutionalizes an ongoing paradigm shift from

  17. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?

    Directory of Open Access Journals (Sweden)

    Dries L. T. Hegger

    2016-12-01

    Full Text Available European countries face increasing flood risks because of urbanization, increase of exposure and damage potential, and the effects of climate change. In literature and in practice, it is argued that a diversification of strategies for flood risk management (FRM, including flood risk prevention (through proactive spatial planning, flood defense, flood risk mitigation, flood preparation, and flood recovery, makes countries more flood resilient. Although this thesis is plausible, it should still be empirically scrutinized. We aim to do this. Drawing on existing literature we operationalize the notion of "flood resilience" into three capacities: capacity to resist; capacity to absorb and recover; and capacity to transform and adapt. Based on findings from the EU FP7 project STAR-FLOOD, we explore the degree of diversification of FRM strategies and related flood risk governance arrangements at the national level in Belgium, England, France, the Netherlands, Poland, and Sweden, as well as these countries' achievement in terms of the three capacities. We found that the Netherlands and to a lesser extent Belgium have a strong capacity to resist, France a strong capacity to absorb and recover, and especially England a high capacity to transform and adapt. Having a diverse portfolio of FRM strategies in place may be conducive to high achievements related to the capacities to absorb/recover and to transform and adapt. Hence, we conclude that diversification of FRM strategies contributes to resilience. However, the diversification thesis should be nuanced in the sense that there are different ways to be resilient. First, the three capacities imply different rationales and normative starting points for flood risk governance, the choice between which is inherently political. Second, we found trade-offs between the three capacities, e.g., being resistant seems to lower the possibility to be absorbent. Third, to explain countries' achievements in terms of

  18. The efficiency of asset management strategies to reduce urban flood risk.

    Science.gov (United States)

    ten Veldhuis, J A E; Clemens, F H L R

    2011-01-01

    In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.

  19. Reflecting Societal Values in Designing Flood Risk Management Strategies

    Directory of Open Access Journals (Sweden)

    Adamson Mark

    2016-01-01

    Full Text Available In 2006, the Office of Public Works (OPW began the National Catchment-based Flood Risk Assessment and Management (CFRAM Programme through a series of pilot studies. A Multi-Criteria Analysis (MCA Framework was developed through the pilot studies that integrated a number of objectives related to a wide range of potential impacts and benefits into the core of process of appraising and selecting suitable flood risk management measures for a given area or location, and then for prioritising national investments for different schemes and projects. This MCA Framework, that provides a systematic process of developing a non-monetised but numerical indicator of benefit and impact, has since been implemented nationally in the preparation of the Flood Risk Management Plans (FRMPs. A key feature of the MCA is that it should represent societal values. To this end, nationally representative quantitative research was undertaken to determine global weights that reflect the perceived importance of each of the objectives for reducing economic, social and environmental / cultural risks in flood management strategies. Saaty’s Analytical Hierarchy Process (AHP, in conjunction with a pair-wise comparison of criteria relating to these risks, was utilised to determine weights. In excess of 1,000 structured interviews were completed where the relative importance of these objectives were assessed using a seven-point scale. The weighting given to each of the 13 specific objectives identified broadly followed expectations, with risk to people followed by risk to homes and properties being respectively the first and second most important, although some were given greater or less weighting than expected. The national application of the MCA Framework, using the weighted objectives based on this process, through the CFRAM Programme has generally lead to the identification of appropriate and, based on local consultation, acceptable options for each community.

  20. 77 FR 71404 - Intent To Prepare an Environmental Impact Statement for the Proposed Flood Risk Management Study...

    Science.gov (United States)

    2012-11-30

    ... Environmental Impact Statement for the Proposed Flood Risk Management Study for the Blanchard River Watershed... the subject Flood Risk Management Study. The Buffalo District of the U.S. Army Corps of Engineers... with the proposed Flood Risk Management Study in the Blanchard River Watershed including the...

  1. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Science.gov (United States)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  2. Imagining flood futures: risk assessment and management in practice.

    Science.gov (United States)

    Lane, Stuart N; Landström, Catharina; Whatmore, Sarah J

    2011-05-13

    The mantra that policy and management should be 'evidence-based' is well established. Less so are the implications that follow from 'evidence' being predictions of the future (forecasts, scenarios, horizons) even though such futures define the actions taken today to make the future sustainable. Here, we consider the tension between 'evidence', reliable because it is observed, and predictions of the future, unobservable in conventional terms. For flood risk management in England and Wales, we show that futures are actively constituted, and so imagined, through 'suites of practices' entwining policy, management and scientific analysis. Management has to constrain analysis because of the many ways in which flood futures can be constructed, but also because of commitment to an accounting calculus, which requires risk to be expressed in monetary terms. It is grounded in numerical simulation, undertaken by scientific consultants who follow policy/management guidelines that define the futures to be considered. Historical evidence is needed to deal with process and parameter uncertainties and the futures imagined are tied to pasts experienced. Reliance on past events is a challenge for prediction, given changing probability (e.g. climate change) and consequence (e.g. development on floodplains). So, risk management allows some elements of risk analysis to become unstable (notably in relation to climate change) but forces others to remain stable (e.g. invoking regulation to prevent inappropriate floodplain development). We conclude that the assumed separation of risk assessment and management is false because the risk calculation has to be defined by management. Making this process accountable requires openness about the procedures that make flood risk analysis more (or less) reliable to those we entrust to produce and act upon them such that, unlike the 'pseudosciences', they can be put to the test of public interrogation by those who have to live with their consequences

  3. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE, Federal Emergency Management Agency (FEMA) - Flood Insurance Rate Maps (FIRM), Published in 2011, 1:1200 (1in=100ft) scale, Polk County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE dataset current as of 2011. Federal Emergency Management Agency (FEMA) - Flood Insurance Rate...

  4. Understanding the geomorphology of macrochannel systems for flood risk management in Queensland, Australia

    Science.gov (United States)

    Thompson, Chris; Croke, Jacky

    2016-04-01

    The year 2010-2011 was the wettest on record for the state of Queensland, Australia producing catastrophic floods. A tropical low pressure system in 2013 delivered further extreme flood events across South East Queensland (SEQ) which prompted state and local governments to conduct studies into flood magnitude and frequency in the region and catchment factors contributing to flood hazards. The floods in the region are strongly influenced by El Nino-Southern Oscillation (ENSO) phenomenon, but also modulated by the Interdecadal Pacific Oscillation (IPO) which leads to flood and drought dominated regimes and high hydrological variability. One geomorphic feature in particular exerted a significant control on the transmission speed, the magnitude of flood inundation and resultant landscape resilience. This feature was referred to as a 'macrochannel', a term used to describe a 'large-channel' which has bankfull recurrence intervals generally greater than 10 years. The macrochannels display non-linear downstream hydraulic geometry which leads to zones of flood expansion (when hydraulic geometry decreases) and zones of flood contraction (when hydraulic geometry increases). The pattern of contraction and expansion zones determines flood hazard zones. The floods caused significant wet flow bank mass failures that mobilised over 1,000,000 m3 of sediment in one subcatchment. Results suggest that the wetflow bank mass failures are a stage in a cyclical evolution process which maintains the macrochannel morphology, hence channel resilience to floods. Chronological investigations further show the macrochannels are laterally stable and identify periods of heightened flood activity over the past millennium and upper limits on flood magnitude. This paper elaborates on the results of the geomorphic investigations on Lockyer Creek in SEQ and how the results have alerted managers and policy makers to the different flood responses of these systems and how flood risk management plans can

  5. Sele coastal plain flood risk due to wave storm and river flow interaction

    Science.gov (United States)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  6. Flooded native pastures of the northern region of the Pantanal of Mato Grosso: biomass and primary productivity variations

    Directory of Open Access Journals (Sweden)

    C. G. Pozer

    Full Text Available The Pantanal comprises a number of landscape units, submitted to a flood pulse with variable intensity or regularity. One of these units, the flooded plains, is important in cattle raising. This study was carried out in the northern portion of the Pantanal and presents data related to the productive dynamics of the flooded native pastures both protected from and exposed to cattle. The greatest total biomass values were for the protected pasture due to accumulated dead biomass. Net primary production presented smaller values at the flood-season start and increasing gradually beginning in the subsequent rainy season. However, consumption by cattle was also more intense during the months of greater precipitation. The effect of cattle in pastures is of fundamental importance to management since it prevents the dead biomass excess that increases fire risks.

  7. Recurrent Governance Challenges in the Implementation and Alignment of Flood Risk Management Strategies: a Review

    NARCIS (Netherlands)

    Dieperink, C.; Hegger, D.L.T.; Bakker, M.H.N.; Kundzewicz, Zbigniew W.; Green, Colin; Driessen, P.P.J.

    2016-01-01

    In Europe increasing flood risks challenge societies to diversify their Flood Risk Management Strategies (FRMSs). Such a diversification implies that actors not only focus on flood defence, but also and simultaneously on flood risk prevention, mitigation, preparation and recovery. There is much

  8. Specifying risk management standard for flood risk assessment: a framework for resources allocation

    Directory of Open Access Journals (Sweden)

    Yunika Anastasia

    2017-01-01

    Full Text Available General risk management standard, e.g. ISO 31000:2009, approaches risk as a coin with a pair of two sides, i.e. the threat and the opportunity. However, it is hardly the case of flood events which mainly come as threats. Despite the contrary, this study explores the potential applicability of the available risk management standards specifically for flood. It then also synthesizes the components to result a framework for allocating resources among various strategies to result the optimum flood risk reduction. In order to review its applicability, the framework is then reviewed using several historic flood risk reduction cases. Its results are qualitatively discussed and summarized including the possible improvement of the framework for further applications.

  9. Recent floods in the Middle Ebro River, Spain: hydrometeorological aspects and floodplain management

    Science.gov (United States)

    Domenech, S.; Espejo, F.; Ollero, A.; Sánchez-Fabre, M.

    2009-09-01

    The Ebro River has the largest Mediterranean basin in the Iberian Peninsula and the third one by surface among those of the Mediterranean Sea. The middle stretch of this river is especially interesting because it constitutes a very economically important axis of population in a semi-arid environment context. Flooding processes are common in the Middle Ebro River, but the combination among decrease of discharges, dam construction and expansion and reinforcement of defences created an unusually quiet period as regards flooding events during the last quarter of the previous century. Nevertheless, with the turn of the century it seems that the Middle Ebro River has entered into new dynamics, with bigger and more frequent floods, the appearance of which has changed its seasonal nature. The most relevant examples are those of February 2003 and March-April 2007. The present paper examines these recent trends and discusses their possible causes from the points of view of hydro-meteorology, flood management through the use of reservoirs, and floodplain management. The consequences of recent floods in the Middle Ebro River have reopened the debate about possible risk management measures.

  10. Groundwater Management Innovations in the High Plains Aquifer, USA: A possible path towards sustainability? (Invited)

    Science.gov (United States)

    Sophocleous, M. A.

    2009-12-01

    The U.S. High Plains aquifer, one of the largest freshwater aquifer systems in the world covering parts of eight US states, continues to decline, threatening the long-term viability of the region’s irrigation-based economy. The theory of the commons has meaningful messages for High-Plains jurisdictions as no private incentive exists to save for tomorrow, and agricultural prosperity depends on mining water from large portions of the aquifer. The eight High Plains states take different approaches to the development and management of the aquifer based on each state’s body of water laws that abide by different legal doctrines, on which Federal laws are superposed, thus creating difficulties in integrated regional water management efforts. Although accumulating hydrologic stresses and competing demands on groundwater resources are making groundwater management increasingly complex, they are also leading to innovative approaches to the management of groundwater supplies, and those are highlighted in this presentation as good examples for emulation in managing groundwater resources. The highlighted innovations include (1) the Texas Groundwater Availability Modeling program, (2) Colorado’s water-augmentation program, (3) Kansas’ Intensive Groundwater Use Control Area policy, (4) the Kansas Groundwater Management Districts’ “safe yield” policies, (5) the water-use reporting program in Kansas, (6) the Aquifer Storage and Recovery program of the City of Wichita, Kansas, and (7) Nebraska’s Natural Resources Districts. It is concluded that the fragmented and piecemeal institutional arrangements for managing the supplies and quality of water are unlikely to be sufficient to meet the water challenges of the future. A number of recommendations for enhancing the sustainability of the aquifer are presented, including the formation of an interstate groundwater commission for the High Plains aquifer along the lines of the Delaware and Susquehanna River Basins

  11. Towards a diversification of Flood Risk Management in Europe: an exploration of governance challenges

    NARCIS (Netherlands)

    Dieperink, C.; Hegger, D.L.T.; Bakker, M.H.N.; Driessen, P.P.J.

    2014-01-01

    In order to make European regions more resilient to flood risks a broadening of Flood Risk Management strategies (FRMSs) might be necessary. The development and implementation of FRMSs like risk prevention, flood defence, mitigation, preparation and recovery is a matter of governance, a process of

  12. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yao Wei J

    2009-04-01

    Full Text Available Abstract Background Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48 and isolated lakes (0.50. The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708, and the lowest was between Tangxun and Dongting lakes (0.1807. The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion The

  13. Flood Risk Management in the UK%英国的洪水风险管理

    Institute of Scientific and Technical Information of China (English)

    史芳斌

    2006-01-01

    Approaches to reduce disruption and damage from flooding have changed significantly in recent years. Worldwide, there has been a significant move from a strategy of flood defence to one of flood risk management. Flood risk management includes the use of flood defences, where appropriate, but also recognizes that more managed flooding is essential to meeting goals for biodiversity and to sustain good ecological status in river and coastal systems. The author reviews the flood risk management and analyzes its development and future strategy in the UK. The study shows that flooding and its impacts seem to be increasing with the global climate change and social-economic development. Flood risk management therefore requires a holistic approach, addressing the scientific and engineering issues of rainfall, runoff, rivers and flood inundation as well as the human and socio-economic issues of planning, development and management.%为了减少洪水造成的破坏和损失,近年来世界各国的洪水管理已从单一的防洪工程向洪水风险管理转变.除了能进行有效的洪水防御外,洪水风险管理还被认为是维持生物多样性、河流及海岸生态系统的重要手段.回顾了英国的洪水风险管理及其组成体系,并分析讨论了未来可能面临的问题及应对措施.结果表明,随着全球气候变化及社会经济发展,洪水发生的频率及其影响正在增加.因此,如何全面综合考虑降雨、径流、河流、洪泛区以及人类活动、社会经济规划、发展和管理等诸多因素是实施洪水风险管理面临的重要课题.

  14. Flood Prediction for the Tam Nong District in Mekong Delta Using Hydrological Modelling and Hydrologic Remote Sensing Technique

    Science.gov (United States)

    Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar

    2017-04-01

    There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing

  15. Between tradition and innovation : Developing Flood Risk Management Plans in the Netherlands

    NARCIS (Netherlands)

    Jong, Pieter; Brink, Margo Van Den

    2013-01-01

    Traditionally, governmental authorities in the Netherlands have a strong focus on the construction and maintenance of flood defences, such as dikes and dams. The last decades, however, there has been a growing awareness of the importance of spatial planning for flood risk management. With the

  16. {sup 210}Pb geochronology and chemical characterization of sediment cores from lakes of the Parana river alluvial plain

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.F.L.; Damatto, S.R.; Scapin, M.A. [IPEN - Instituto de Pesquisas Energeticas e Nucleares (Brazil); Remor, M.B.; Sampaio, S.C. [UNIOESTE - Universidade Estadual do Oeste do Parana (Brazil)

    2014-07-01

    The flood plain of the upper Parana River is located among the lakes formed by the Brazilian hydroelectric plants being the last part of the Parana river, in Brazil, where there is an ecosystem with interaction river-flood plain. This flood plain has considerable habitat variability, with great diversity of terrestrial and aquatic species, and the floods are the main factor that regulates the operation of this ecosystem. The seasonality of the flood pulses is mainly influenced by the El Nino phenomenon, which increases precipitation in the drainage basin of the flood plain of the upper Parana River. Because of its unique characteristics this ecosystem is the subject of intense study since 1980, mainly from the ecological point of view. Therefore, two sediment cores were collected in the ponds formed by the floods, Patos pond and Garcas pond, in order to characterize the sediment chemically and evaluate a possible historic contamination. The trace element concentrations As, Ba, Br, Ce, Co, Cr, Cs, Eu, Hf, La, Lu, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn (mg.kg{sup -1}) and the major elements Si, Al, Fe, Ti, K, Ca, Mg, P, V, Mn, and Na (%) were determined in the sediment cores dated by {sup 210}Pb method, using instrumental neutron activation analysis, X-ray fluorescence and gross beta counting, respectively. The results obtained for the elements Ce, Cr, Cs, La, Nd, Sc, Sm and Th are higher than the values of Upper Continental Crust for both ponds. The sedimentation rates obtained for Garca pond, 0.77 cm.y{sup -1}, and Patos pond, 0.62 cm.y{sup -1} are in agreement with studies performed in sedimentary environments similar to the present work, such as Brazilian wetland Pantanal. The enrichment factor and the geo-accumulation index were used to assess the presence of anthropogenic sources of pollution. Document available in abstract form only. (authors)

  17. Predicting geomorphically-induced flood risk for the Nepalese Terai communities

    Science.gov (United States)

    Dingle, Elizabeth; Creed, Maggie; Attal, Mikael; Sinclair, Hugh; Mudd, Simon; Borthwick, Alistair; Dugar, Sumit; Brown, Sarah

    2017-04-01

    Rivers sourced from the Himalaya irrigate the Indo-Gangetic Plain via major river networks that support 10% of the global population. However, many of these rivers are also the source of devastating floods. During the 2014 Karnali River floods in west Nepal, the Karnali rose to around 16 m at Chisapani (where it enters the Indo-Gangetic Plain), 1 m higher than the previous record in 1983; the return interval for this event was estimated to be 1000 years. Flood risk may currently be underestimated in this region, primarily because changes to the channel bed are not included when identifying areas at risk of flooding from events of varying recurrence intervals. Our observations in the field, corroborated by satellite imagery, show that river beds are highly mobile and constantly evolve through each monsoon. Increased bed levels due to sediment aggradation decreases the capacity of the river, increasing significantly the risk of devastating flood events; we refer to these as 'geomorphically-induced floods'. Major, short-lived episodes of sediment accumulation in channels are caused by stochastic variability in sediment flux generated by storms, earthquakes and glacial outburst floods from upstream parts of the catchment. Here, we generate a field-calibrated, geomorphic flood risk model for varying upstream scenarios, and predict changing flood risk for the Karnali River. A numerical model is used to carry out a sensitivity analysis of changes in channel geometry (particularly aggradation or degradation) based on realistic flood scenarios. In these scenarios, water and sediment discharge are varied within a range of plausible values, up to extreme sediment and water fluxes caused by widespread landsliding and/or intense monsoon precipitation based on existing records. The results of this sensitivity analysis will be used to inform flood hazard maps of the Karnali River floodplain and assess the vulnerability of the populations in the region.

  18. Propagation and composition of the flood wave on the upper Mississippi River, 1993

    Science.gov (United States)

    Moody, John A.

    1995-01-01

    . During the flood, the USGS provided continuous streamflow and related information to the National Weather Service (NWS), the U.S. Army Corps of Engineers, the Federal Emergency Management Agency (FEMA), and many State and local agencies as part of its role to provide basic information on the Nation's surface- and ground-water resources at thousands of locations across the United States. The NWS has used the data in forecasting floods and issuing flood warnings. The data have been used by the Corps of Engineers to operate water diversions, dams, locks, and levees. The FEMA and many State and local emergency management agencies have used USGS hydrologic data and NWS forecasts as part of the basis of their local flood-response activities. In addition, USGS hydrologists are conducting a series of investigations to document the effects of the flooding and to improve understanding of the related processes. The major initial findings from these studies will be reported in this Circular series as results become available.U.S. Geological Survey Circular 1120, Floods in the Upper Mississippi River Basin, 1993, consists of individually published chapters that will document the effects of the 1993 flooding. The series includes data and findings on the magnitude and frequency of peak discharges; precipitation; water-quality characteristics, including nutrients and man-made contaminants; transport of sediment; assessment of sediment deposited on flood plains; effects of inundation on ground-water quality; flood-discharge volume; effects of reservoir storage on flood peaks; stream-channel scour at selected bridges; extent of floodplain inundation; and documentation of geomorphologic changes.

  19. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  20. Flood Inundation Mapping and Management using RISAT-1 derived Flood Inundation Areas, Cartosat-1 DEM and a River Flow Model

    Science.gov (United States)

    Kuldeep, K.; Garg, P. K.; Garg, R. D.

    2017-12-01

    The frequent occurrence of repeated flood events in many regions of the world causing damage to human life and property has augmented the need for effective flood risk management. Microwave satellite data is becoming an indispensable asset for monitoring of many environmental and climatic applications as numerous space-borne synthetic aperture radar (SAR) sensors are offering the data with high spatial resolutions and multi-polarization capabilities. The implementation and execution of Flood mapping, monitoring and management applications has become easier with the availability of SAR data which has obvious advantages over optical data due to its all weather, day and night capabilities. In this study, the exploitation of the SAR dataset for hydraulic modelling and disaster management has been highlighted using feature extraction techniques for water area identification and water level extraction within the floodplain. The availability of high precision digital elevation model generated from the Cartosat-1 stereo pairs has enhanced the capability of retrieving the water depth maps by incorporating the SAR derived flood extent maps. This paper illustrates the flood event on June 2013 in Yamuna River, Haryana, India. The water surface profile computed by combining the topographic data with the RISAT-1 data accurately reflects the true water line. Water levels that were computed by carrying out the modelling using hydraulic model in HECRAS also suggest that the water surface profiles provided by the combined use of topographic data and SAR accurately reflect the true water line. The proposed approach has also been found better in extraction of inundation within vegetated areas.

  1. Assessment of adaptation measures against flooding in the city of Dhaka, Bangladesh

    NARCIS (Netherlands)

    A. Nasra Haque (Anika); S. Grafakos (Stelios); M. Huijsman (Marijk)

    2010-01-01

    textabstractDhaka is one of the world’s largest megacities with a high rate of urbanization. Due to the setting of greater Dhaka in a deltaic plain, it is extremely prone to detrimental flooding. Risks associated with flood are expected to increase in the coming years because of the global climate

  2. Interactive modelling with stakeholders in two cases in flood management

    Science.gov (United States)

    Leskens, Johannes; Brugnach, Marcela

    2013-04-01

    New policies on flood management called Multi-Level Safety (MLS), demand for an integral and collaborative approach. The goal of MLS is to minimize flood risks by a coherent package of protection measures, crisis management and flood resilience measures. To achieve this, various stakeholders, such as water boards, municipalities and provinces, have to collaborate in composing these measures. Besides the many advances this integral and collaborative approach gives, the decision-making environment becomes also more complex. Participants have to consider more criteria than they used to do and have to take a wide network of participants into account, all with specific perspectives, cultures and preferences. In response, sophisticated models are developed to support decision-makers in grasping this complexity. These models provide predictions of flood events and offer the opportunity to test the effectiveness of various measures under different criteria. Recent model advances in computation speed and model flexibility allow stakeholders to directly interact with a hydrological hydraulic model during meetings. Besides a better understanding of the decision content, these interactive models are supposed to support the incorporation of stakeholder knowledge in modelling and to support mutual understanding of different perspectives of stakeholders To explore the support of interactive modelling in integral and collaborate policies, such as MLS, we tested a prototype of an interactive flood model (3Di) with respect to a conventional model (Sobek) in two cases. The two cases included the designing of flood protection measures in Amsterdam and a flood event exercise in Delft. These case studies yielded two main results. First, we observed that in the exploration phase of a decision-making process, stakeholders participated actively in interactive modelling sessions. This increased the technical understanding of complex problems and the insight in the effectiveness of various

  3. Dealing with uncertainty in flood management through diversification

    NARCIS (Netherlands)

    Aerts, Jeroen C.J.H.; Botzen, Wouter; van der Veen, A.; Krywkow, Jorg; Werners, Saskia

    2008-01-01

    This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands. The paper shows a method based on Modern Portfolio Theory (MPT) that contributes to

  4. Dealing with Uncertainty in Flood Management Through Diversification

    NARCIS (Netherlands)

    Aerts, J.C.J.H.; Botzen, W.; Veen, van der A.; Krywkow, J.; Werners, S.E.

    2008-01-01

    This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands. The paper shows a method based on Modern Portfolio Theory (MPT) that contributes to

  5. A risk-based approach to flood management decisions in a nonstationary world

    Science.gov (United States)

    Rosner, Ana; Vogel, Richard M.; Kirshen, Paul H.

    2014-03-01

    Traditional approaches to flood management in a nonstationary world begin with a null hypothesis test of "no trend" and its likelihood, with little or no attention given to the likelihood that we might ignore a trend if it really existed. Concluding a trend exists when it does not, or rejecting a trend when it exists are known as type I and type II errors, respectively. Decision-makers are poorly served by statistical and/or decision methods that do not carefully consider both over- and under-preparation errors, respectively. Similarly, little attention is given to how to integrate uncertainty in our ability to detect trends into a flood management decision context. We show how trend hypothesis test results can be combined with an adaptation's infrastructure costs and damages avoided to provide a rational decision approach in a nonstationary world. The criterion of expected regret is shown to be a useful metric that integrates the statistical, economic, and hydrological aspects of the flood management problem in a nonstationary world.

  6. Flood management in urban Senegal: an actor-oriented perspective on national and transnational adaptation interventions

    DEFF Research Database (Denmark)

    Schaer, Caroline; Thiam, Mame Demba; Nygaard, Ivan

    2018-01-01

    In Senegal, considerable development assistance has been allocated to addressing the problem of repeated flooding in urban areas, involving changing thematic objectives, from short-term disaster relief to wide-ranging sanitation and drainage programmes. In spite of these numerous flood management....... These include, but are not restricted to, the political and personal appropriation of flood management-related processes, the reinforcement of the dichotomy between central government and municipalities, and a fragmented institutional framework with overlapping institutions....

  7. Creating Flood Inundation Maps For Lower Sakarya River

    Directory of Open Access Journals (Sweden)

    Osman Sönmez

    2013-06-01

    Full Text Available The Sakarya River Basin in Turkey frequently floods. The allure of riverside settlement and of nutrient-rich riverbank soil has led to extensive residential and agricultural development in flood plains. In this study, the 100 years return period possible flood carrying capacites of last 113 km of the Lower Sakarya Riverbed were investigated, also dam break and risk analyses were performed by applying different scenarios for the floods likely to occur. Flooding scenarios and water depth within the floodplain during these scenarios were calculated with the HEC-RAS software program and results were converted into a map in HEC-GeoRAS,ArcGIS 9x and ArcView 3.2 programs. As a result, it was observed that the Lower Sakarya River is susceptible to flooding. Recent observations of the study area confirm the study findings. This study tries to underscore the importance of taking into account the different scenarios regarding flood prevention and reduction studies.

  8. Flood Risk Management in Remote and Impoverished Areas—A Case Study of Onaville, Haiti

    Directory of Open Access Journals (Sweden)

    Valentin Heimhuber

    2015-07-01

    Full Text Available In this study, geographic information system (GIS-based hydrologic and hydraulic modeling was used to perform a flood risk assessment for Onaville, which is a fairly new, rapidly growing informal settlement that is exposed to dangerous flash-flood events. Since records of historic floods did not exist for the study area, design storms with a variety of significant average return intervals (ARIs were derived from intensity-duration-frequency (IDF curves and transformed into design floods via rainfall-runoff modeling in hydrologic engineering center’s hydrologic modeling system (HEC-HMS. The hydraulic modeling software hydrologic engineering center’s river analysis system (HEC-RAS was used to perform one-dimensional, unsteady-flow simulations of the design floods in the Ravine Lan Couline, which is the major drainage channel of the area. Topographic data comprised a 12 m spatial resolution TanDEM-X digital elevation model (DEM and a 30 cm spatial resolution DEM created with mapping drones. The flow simulations revealed that large areas of the settlement are currently exposed to flood hazard. The results of the hydrologic and hydraulic modeling were incorporated into a flood hazard map which formed the basis for flood risk management. We present a grassroots approach for preventive flood risk management on a community level, which comprises the elaboration of a neighborhood contingency plan and a flood risk awareness campaign together with representatives of the local community of Onaville.

  9. Evaluation Of Management Properties Of Wetland Soils Of Akwa ...

    African Journals Online (AJOL)

    Evaluation Of Management Properties Of Wetland Soils Of Akwa Ibom State, Nigeria For Sustainable Crop Production. ... Organic matter content values were high with mean of 12.59, 60.01, and 3.20 percent for Inland valley, Flood plain and mangrove soils respectively. Effective cation exchange capacity (ECEC) was below ...

  10. HISTORICAL FLOOD RISK MANAGEMENT: SPATIAL EXPANSION OF GHERGHIȚA VILLAGE (LOWER PRAHOVA RIVER

    Directory of Open Access Journals (Sweden)

    IOANA-TOROIMAC GABRIELA

    2015-03-01

    Full Text Available This paper analyses settlements expansion in flood zones during historical time. We focused on the example of Gherghiţa village on Lower Prahova River by using a diachronic study in GIS. It revealed three major periods of extension of Gherghița village and flood risk management: (1 from Middle Age to the end of the 19th century – prevention against floods by expansion outside the flood-prone area; (2 during the major part of the 20th – flood negligence by expansion inside the flood-prone area; (3 at the end of the 20th century and at the beginning of the 21th century – protection against floods by extension inside the flood-prone area with structural measures (i.e. levees. As a consequence, human pressure on Lower Prahova River grew since the beginning of the 20th century, especially for agricultural purposes.

  11. Mapping flood hazards under uncertainty through probabilistic flood inundation maps

    Science.gov (United States)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.

    2017-12-01

    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  12. Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta River

    Science.gov (United States)

    D'Alpaos, L.; Martini, P.; Carniello, L.

    2003-04-01

    The paper deals with numerical modelling of flood waves and suspended sediment in plain river basins. The two dimensional depth integrated momentum and continuity equations, modified to take into account of the bottom irregularities that strongly affect the hydrodynamic and the continuity in partially dry areas (for example, during the first stages of a plain flooding and in tidal flows), are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme and considering the role both of the small channel network and the regulation dispositive on the flooding wave propagation. Transport of suspended sediment and bed evolution are coupled with the flood propagation through the convection-dispersion equation and the Exner's equation. Results of a real case study are presented in which the effects of extreme flood of Brenta River (Italy) are examinated. The flooded areas (urban and rural areas) are identified and a mitigation solution based on a diversion channel flowing into Venice Lagoon is proposed. We show that this solution strongly reduces the flood risk in the downstream areas and can provide an important sediment source to the Venice Lagoon. Finally, preliminary results of the sediment dispersion in the Venice Lagoon are presented.

  13. MODIS-based multi-parametric platform for mapping of flood affected areas. Case study: 2006 Danube extreme flood in Romania

    Directory of Open Access Journals (Sweden)

    Craciunescu Vasile

    2016-12-01

    Full Text Available Flooding remains the most widely distributed natural hazard in Europe, leading to significant economic and social impact. Earth observation data is presently capable of making fundamental contributions towards reducing the detrimental effects of extreme floods. Technological advance makes development of online services able to process high volumes of satellite data without the need of dedicated desktop software licenses possible. The main objective of the case study is to present and evaluate a methodology for mapping of flooded areas based on MODIS satellite images derived indices and using state-of-the-art geospatial web services. The methodology and the developed platform were tested with data for the historical flood event that affected the Danube floodplain in 2006 in Romania. The results proved that, despite the relative coarse resolution, MODIS data is very useful for mapping the development flooded area in large plain floods. Moreover it was shown, that the possibility to adapt and combine the existing global algorithms for flood detection to fit the local conditions is extremely important to obtain accurate results.

  14. ISSUES CONCERNING OCCURRENCE OF FLOODS ON THE VEDEA RIVER

    Directory of Open Access Journals (Sweden)

    TOMA FLORENTINA-MARIANA

    2011-03-01

    Full Text Available Aspects of flood occurrence on the Vedea River. This study addresses several aspects of floods on the Vedea River, located in the Central Romanian Plain, located between Olt and Argeş rivers. Data recorded in the most important hydrological stations (Buzeşti, Văleni, Alexandria along the Vedea River were used, for a period of 40 years (1970-2009. Flood generating conditions, their typology and parameters were analyzed. Cavis software developed by specialists from INHGA Bucharest was employed, in order to draft the flood hydrographs and calculate the floods parameters. Also, we calculated the multi-annual and seasonal frequencies of flood occurrence. There are two main conclusions emerging from specific analysis. First, the most floods occur in late winter and early spring while the least are specific to autumn season. Second conclusion is that the highest flash floods recorded along the Vedea River are associated to heavy rainfall periods and they occurred in late spring and early summer.

  15. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    Science.gov (United States)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  16. Flood Risk Management in Iowa through an Integrated Flood Information System

    Science.gov (United States)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  17. Performance of the Taber South polymer flood

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R A; Stright, Jr, D H

    1975-01-01

    A polymer flood was initiated in the Taber South Manville B Pool in Feb. 1967. The reservoir, which contains a viscous, highly undersaturated crude oil with no bottom water was depleted to the bubble-point pressure of 400 psig prior to polymer flooding. A 20% hydrocarbon pore volume slug of polyacrylamide (Pusher 700) was injected at the center of this long, narrow Lower Cretaceous sandstone reservoir. In early 1972, injection was converted to plain water by gradually reducing polymer concentration. The reservoir was studied with numerical reservoir simulation models in an attempt to evaluate the polymer flood performance. Additional laboratory work was initiated to evaluate polymer quality and to investigate wettability. The study results are presented.

  18. Distributional effects of flood risk management - a cross-country comparison of preflood compensation

    Directory of Open Access Journals (Sweden)

    Willemijn J. van Doorn-Hoekveld

    2016-12-01

    Full Text Available We seek to examine the manner in which either the EU member states of France, the Netherlands, Poland, and Sweden or parts of them, such as the country of England in the UK or the Flemish Region in Belgium, deal with the distributional effects of the flood risk management strategies prevention, defense, and mitigation. Measures carried out in each of these strategies can cause preflood harm, as in the devaluation of property or loss of income. However, different member states and authorities address this harm in different ways. A descriptive overview of the different compensation regimes in the field of flood risk management is followed by an analysis of these differences and an explanation of what may cause them, such as the geographical differences that lead to differences in the way that they interfere with private rights and the dominant legal principles that underlie compensation regimes. An elaborated compensation regime could lead to more equitable and legitimate flood risk management because the burdens are fairly spread and all interests - including those of injured parties - are considered in the decision-making process. Our aim is to stimulate the hardly existent discussion on the financial harm that is caused by measures to prevent floods (preflood, in addition to the already existing discussion on the ex post flood distributional effects.

  19. Explaining differences in flood management approaches in Europe and the USA – A comparative analysis

    NARCIS (Netherlands)

    Bubeck, P.; Kreibich, H.; Penning-Rowsell, E; Botzen, W.J.W.; de Moel, H.; Klijn, F.

    2017-01-01

    Flood risk management in Europe and worldwide is not static but constantly in a state of flux. There has been a trend towards more integrated flood risk management in many countries. However, the initial situation and the pace and direction of change is very different in the various countries. In

  20. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management

    NARCIS (Netherlands)

    Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W.

    2015-01-01

    Flood risk assessments provide inputs for the evaluation of flood risk management (FRM) strategies. Traditionally, such risk assessments provide estimates of loss of life and economic damage. However, the effect of policy measures aimed at reducing risk also depends on the capacity of households to

  1. How Multilevel Societal Learning Processes Facilitate Transformative Change: A Comparative Case Study Analysis on Flood Management

    Directory of Open Access Journals (Sweden)

    Claudia Pahl-Wostl

    2013-12-01

    Full Text Available Sustainable resources management requires a major transformation of existing resource governance and management systems. These have evolved over a long time under an unsustainable management paradigm, e.g., the transformation from the traditionally prevailing technocratic flood protection toward the holistic integrated flood management approach. We analyzed such transformative changes using three case studies in Europe with a long history of severe flooding: the Hungarian Tisza and the German and Dutch Rhine. A framework based on societal learning and on an evolutionary understanding of societal change was applied to identify drivers and barriers for change. Results confirmed the importance of informal learning and actor networks and their connection to formal policy processes. Enhancing a society's capacity to adapt is a long-term process that evolves over decades, and in this case, was punctuated by disastrous flood events that promoted windows of opportunity for change.

  2. Distributional Effects of EU Flood Risk Management and the Law : The Netherlands, Flanders and France as case studies

    NARCIS (Netherlands)

    van Doorn-Hoekveld, Willemijn

    2018-01-01

    Flood risk management is a policy field in which the distribution of burdens and benefits plays an important role. As flood risks are distributed unequally among the members of society, people in risk areas benefit more from flood risk management than people living in a relatively ‘risk-free’ area.

  3. Floods in Colorado

    Science.gov (United States)

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    resulting from a cloudburst rises so quickly that it is usually described as a 'wall of water.' It has a peak duration of only a few minutes, followed by a rapid subsidence. Nearly 90 cloudburst floods in Colorado are described in varying detail in this report. The earliest recorded cloudburst--called at that time a waterspout--occurred in Golden Gate Gulch, July 14, 1872. The 'wall of water' was described as a 'perpendicular breast of 10 or 12 feet.' A cloudburst flood on Kiowa Creek in May 1878 caused the loss of a standard-gage locomotive, and although search was made by means of long metallic rods, the locomotive was never recovered, as bedrock was about 50 feet below the creek bed. All available information relative to floods in Colorado, beginning with the flood of 1826 on the Arkansas River, is presented in this report, although for many of the earlier floods estimates of discharge are lacking. Floods throughout a large part of the State have occurred in 1844, June 1864, June 1884, May 1894, and June 1921. The highest floods of record were on the larger streams and occurred as follows: South Platte River, June 1921; Rio Grande, June 1927; Colorado River, June and July 1884; San Juan River, October 1911. The greatest floods on the plains streams occurred during May and June 1935 and were caused by cloudbursts. Ranchers living in the vicinity noted rainfalls as high as 24 inches in a 13-hour period, measurements being made in a stock tank. The effect of settlement on channel capacities can be clearly traced. When settlement began, and with it the beginning of the livestock industry, the plains were thickly covered with a luxuriant growth of grasses. With the development of the livestock industry the grass cover was grazed so closely that it afforded little protection against erosion during the violent rains and resulting floods. The intensive grazing packed the soil so hard as to increase greatly the percentage of rainfall that entered the streams. This co

  4. Flexibility in flood management design: proactive planning under uncertainty

    Science.gov (United States)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2016-12-01

    This paper presents a value-enhancing approach for proactive planning and design of long-lived flood management infrastructure given uncertain future flooding threats. Designing infrastructure that can be adapted over time is a method to safeguard the efficacy of current design decisions given future uncertainties. We explore the value of embedding "options" in a physical structure, where an option is the right but not the obligation to do something at a later date (e.g. over-dimensioning a floodwall foundation now facilitates a future height addition in response to observed increases in sea level; building extra pump bays in a drainage pumping station enables the easy addition of pumping capacity whenever increased precipitation warrants an expansion.) The proposed approach couples a simulation model that captures future climate induced changes to the hydrologic operating environment of a structure, with an economic model that estimates the lifetime economic performance of alternative investment strategies. The economic model uses Real "In" Options analysis, a type of cash flow analysis that quantifies the implicit value of options and the flexibility they provide. We demonstrate the approach using replacement planning for the multi-functional pumping station IJmuiden on the North Sea Canal in the Netherlands. The analysis models flexibility in design decisions, varying the size and specific options included in the new structure. Results indicate that the incorporation of options within the structural design has the potential to improve its economic performance, as compared to more traditional, "build it once and build it big" designs where flexibility is not an explicit design criterion. The added value resulting from the incorporation of flexibility varies with the range of future conditions considered, and the specific options examined. This approach could be applied to explore investment strategies for the design of other flood management structures, as well

  5. Coastal risk management: how to motivate individual economic decisions to lower flood risk?

    NARCIS (Netherlands)

    Filatova, Tatiana; Mulder, J.P.M. P.M.; van der Veen, A.

    2011-01-01

    Coastal flood risk is defined as a product of probability of event and its effect, measured in terms of damage. The paper is focused on coastal management strategies aimed to decrease risk by decreasing potential damage. We review socio-economic literature to show that total flood damage depends on

  6. Legitimizing differentiated flood protection levels

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo

    2016-01-01

    The European flood risk management plan is a new instrument introduced by the Floods Directive. It introduces a spatial turn and a scenario approach in flood risk management, ultimately leading to differentiated flood protection levels on a catchment basis. This challenges the traditional sources of

  7. The Effects of Saltwater Intrusion to Flood Mitigation Project

    Science.gov (United States)

    Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad

    2018-03-01

    The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.

  8. Flood Management and Protection from the Social Point of View: Case Study from Ukraine

    Science.gov (United States)

    Manukalo, V.; Gerasymenko, H.

    2012-12-01

    to their regions of residence (low- or high- flood risk areas, cities or villages), education level; c) a lot of peoples don't know distribution of duties between governmental bodies on central and local levels in the field of flood management and protection; d) the most of peoples don't know which Ukrainian governmental bodies are responsible for the elaboration of National adaptation strategy to the expected climate change; e) many recipient estimate as inefficient activities of Ukrainian authorities on local, national and international levels as well as a public participation in the flood management and protection policy. The results of this study have been rather unexpected for Ukrainian central and local governmental bodies responsible for flood management and protection policies. This underlines the importance of having the alternative flood risk management and protection policies studied not only from aspects of technical and economic rational, but also from that of social acceptability, before any decision is made. Practical Application Results of study have been used in preparation of: a) the State Program on the protection against floods in the Dniester, Prut and Siret river basins; b) of the "National Action Plan for Adaptation to Climate Change for period 2011-2015".

  9. Flood study of the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, 2009

    Science.gov (United States)

    Flynn, Robert H.

    2010-01-01

    On May 15, 2006, a breach in the riverbank caused an avulsion in the Suncook River in Epsom, NH. The breach in the riverbank and subsequent avulsion changed the established flood zones along the Suncook River; therefore, a new flood study was needed to reflect this change and aid in flood recovery and restoration. For this flood study, the hydrologic and hydraulic analyses for the Suncook River were conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency. This report presents water-surface elevations and profiles determined using the U.S. Army Corps of Engineers one-dimensional Hydrologic Engineering Center River Analysis System model, also known as HEC-RAS. Steady-state water-surface profiles were developed for the Suncook River from its confluence with the Merrimack River in the Village of Suncook (in Allenstown and Pembroke, NH) to the upstream corporate limit of the town of Epsom, NH (approximately 15.9 river miles). Floods of magnitudes that are expected to be equaled or exceeded once on the average during any 2-, 5-, 10-, 25-, 50-, 100-, or 500-year period (recurrence interval) were modeled using HEC-RAS. These flood events are referred to as the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods and have a 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. The 10-, 50-, 100-, and 500-year flood events are important for flood-plain management, determination of flood-insurance rates, and design of structures such as bridges and culverts. The analyses in this study reflect flooding potentials that are based on existing conditions in the communities of Epsom, Pembroke, and Allenstown at the time of completion of this study (2009). Changes in the 100-year recurrence-interval flood elevation from the 1979 flood study were typically less than 2 feet with the exception of a location 900 feet upstream from the avulsion that, because of backwater from the dams in the

  10. Response of Vegetation on Gravel Bars to Management Measures and Floods: Case Study From the Czech Republic

    Directory of Open Access Journals (Sweden)

    Eremiášová Renata

    2014-08-01

    Full Text Available This article investigates response of vegetation on gravel bars to management measures and floods. The management measures consisted of the partial removal of gravel and vegetation cover, and were applied to six gravel bars on the Ostravice River, Czech Republic. Unexpected floods occu-rred in 2010, with the amplitude of 5- to 50-year repetition. Research of vegetation on the gravel bars consisted of vegetation survey before the management works; the monitoring of vegetation development over the following year and the verification of the relationships of species diversity, successional stages and the biotope conditions with the help of multivariate analysis (detrended correspondence analysis. Vegetation on the gravel bars was at different successional stages, and had higher diversity and vegetation cover before the management measures and floods. The mul-tivariate analysis revealed a shift toward initial successional stages with high demand on moisture, temperature and light after both management measures and floods.

  11. Improving flood risk mapping in Italy: the FloodRisk open-source software

    Science.gov (United States)

    Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru

    2017-04-01

    Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood

  12. Natural resources management in flood-prone fragile ecology of Eastern India

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2001-04-01

    On most of the flood-prone areas in India no crops other than rice can be grown in wet seasons. Productivity is however poor due to unpredictable growing conditions. One of the options to increase productivity is to devise effective flood control measure and develop better water management practices. This option would require an enormous investment. Agricultural scientists consider another option of productivity increase through developing suitable crop technologies without changing the existing crop growing conditions

  13. Flood Label for buildings : a tool for more flood-resilient cities

    NARCIS (Netherlands)

    Hartmann, T.; Scheibel, Marc

    2016-01-01

    River floods are among the most expensive natural disasters in Europe. Traditional flood protection methods are not sufficient anymore. It is widely acknowledged in the scholarly debate and in practice of flood risk management that traditional flood protection measures such as dikes need to be

  14. Evaluating relationships between natural resource management, land use changes, and flooding in the Appalachian region

    Science.gov (United States)

    Nicolas P. Zegre; Samuel J. Lamont

    2013-01-01

    Th e Appalachian Region has a long history of natural resource management and recurrent history of frequent and large-scale floods. Land use activities such as urbanization, mining, forest harvesting, and agriculture can have a noticeable effect on the volume, magnitude, timing, and frequency of floods. Determining the effects of land use on flooding is difficult for...

  15. Integrated flood disaster management and spatial information : Case studies of Netherlands and India

    NARCIS (Netherlands)

    Zlatanova, S.; Ghawana, T.; Kaur, A.; Neuvel, J.M.M.

    2014-01-01

    Spatial Information is an integral part of flood management practices which include risk management & emergency response processes. Although risk & emergency management activities have their own characteristics, for example, related to the time scales, time pressure, activities & actors involved, it

  16. Effects of Mineral N and P Fertilizers on Yield and Yield Components of Flooded Lowland Rice on Vertisols of Fogera Plain, Ethiopia

    Directory of Open Access Journals (Sweden)

    Heluf Gebrekidan

    2006-10-01

    Full Text Available Despite its very recent history of cultivation in Ethiopia, rice is one of the potential grain crops that could contribute to the efforts for the realization of food security in the country. However, the scientific information available with regards to the response of flooded rice to N and P fertilizers for its optimum production on Vertisols of Fogera Plain is very limited. Therefore, a field experiment was conducted on Vertisols of Fogera plain, northern Ethiopia to study the yield and yield components response of rice and to establish the optimum N and P fertilizer levels required for improved grain yield of flooded rice. Six levels of N (0, 30, 60, 90, 120 and 150 kg ha−1 and five levels of P (0, 13.2, 26.4, 39.6 and 52.8 kg ha−1 laid down in a randomized complete block design with four replications were used as treatments. Nitrogen was applied in two equal splits (50% basal and 50% at maximum tillering as urea and the entire dose of P was applied basal as triple super phosphate at sowing. The main effects of N and P fertilizer levels showed significant differences (P ≤ 0.01 for all yield and yield components studied. The effects of N by P interaction were significant only for grain yield (P ≤ 0.05, number of panicles per m2 (P ≤ 0.01, number of spikelets per panicle (P ≤ 0.05 and plant height (P ≤ 0.01 among the different yield and yield components studied. Application of N and P significantly (P ≤ 0.01 increased grain yield of rice up to the levels of 60 kg N and 13.2 kg P ha−1. However, maximum grain yield (4282 kg ha−1 was obtained with the combined application of 60 kg N and 13.2 kg P ha−1, and the yield advantage over the control was 38.49% (1190 kg ha−1. Moreover, application of both N and P fertilizers have increased the magnitudes of the important yield attributes including number of panicles per m2, number of spikelets per panicle, panicle length, dry matter accumulation, straw yield and plant height

  17. Flood management selections for the Yangtze River midstream after the Three Gorges Project operation

    Science.gov (United States)

    Fang, Hongwei; Han, Dong; He, Guojian; Chen, Minghong

    2012-04-01

    SummaryAfter the Yangtze River was closed by the Three Gorges Project (TGP) in 2003, erosion occurred from the dam site to the river mouth, especially in the middle and lower reaches of the Yangtze River. However, in some local areas of Chenglingji reach which holds the key position for flood management, there is actually deposition in contrast to the expected erosion. In this paper, a one dimensional mathematical model of the river network with sediment transport is used as the tool to simulate flow and fluvial processes. The calculation domain is from Yichang, which is downstream of the dam, to Hankou, the controlling node of flood management, 694 km long in total. The model is calibrated based on the field data of hydrology and sediment transport during the period from October 2003 to October 2008. Then the model is utilized to simulate the erosion and deposition of the middle and lower reaches of the Yangtze River in the next two decades, and produce the results of a new river channel after river bed deformation occurs. The typical flood processes of 1954 and 1998 in the Yangtze River basin are used to check the flood management scheme for the research area, and results show that water storage of Three Gorges Reservoir (TGR) and a flood diversion program downstream of the Yangtze River should be taken into consideration.

  18. The introduction of catchment-wide co-operations : Scalar reconstructions and transformation in Austria in flood risk management

    NARCIS (Netherlands)

    Thaler, Thomas; Löschner, Lukas; Hartmann, T.

    2017-01-01

    The management of flood risk in Europe is changing. In several European Member States there are significant ongoing processes to shift certain flood risk management duties and responsibilities from the national to the local level. Previously, national authorities dominated the discourse about

  19. Risk-based planning and optimization of flood management measures in developing countries : Case Pakistan

    NARCIS (Netherlands)

    Tariq, M.A.U.R.

    2011-01-01

    About 95-97% of all deaths and a significant part of the economic losses caused by floods occur in developing countries. Despite the resources spent on different measures, flood management arrangements in developing countries are still unable to deliver satisfactory results. The objective of this

  20. Collaborative Strategies for Sustainable EU Flood Risk Management: FOSS and Geospatial Tools—Challenges and Opportunities for Operative Risk Analysis

    Directory of Open Access Journals (Sweden)

    Raffaele Albano

    2015-12-01

    Full Text Available An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to mitigate the impact of natural hazards on European economies and societies, improved risk assessment, and management needs to be pursued. With the recent transition to a more risk-based approach in European flood management policy, flood analysis models have become an important part of flood risk management (FRM. In this context, free and open-source (FOSS geospatial models provide better and more complete information to stakeholders regarding their compliance with the Flood Directive (2007/60/EC for effective and collaborative FRM. A geospatial model is an essential tool to address the European challenge for comprehensive and sustainable FRM because it allows for the use of integrated social and economic quantitative risk outcomes in a spatio-temporal domain. Moreover, a FOSS model can support governance processes using an interactive, transparent and collaborative approach, providing a meaningful experience that both promotes learning and generates knowledge through a process of guided discovery regarding flood risk management. This article aims to organize the available knowledge and characteristics of the methods available to give operational recommendations and principles that can support authorities, local entities, and the stakeholders involved in decision-making with regard to flood risk management in their compliance with the Floods Directive (2007/60/EC.

  1. Natural disaster management in India with focus on floods and cyclones

    Science.gov (United States)

    Thattai, Deeptha V.; Sathyanathan, R.; Dinesh, R.; Harshit Kumar, L.

    2017-07-01

    Disasters are of two major kinds, natural and manmade, and affect the community. Natural disasters are caused by natural earth processes like floods, droughts, cyclones, tsunamis, earthquakes and epidemics. Manmade disasters occur due to chemical spills, accidents, terrorism activities etc. India is prone to almost all the major natural disasters. The high population density combined with poor preparedness, planning and management, and rescue and relief measures inevitably lead to huge losses of lives and property every year in the country. This paper analyses the disaster management policy of India and its implementation using two recent case studies - one where a relative degree of success has been achieved (cyclones) and the other where we are still struggling to have even a basic preparedness system in place (floods).

  2. Citizen involvement in flood risk governance: flood groups and networks

    Directory of Open Access Journals (Sweden)

    Twigger-Ross Clare

    2016-01-01

    Full Text Available Over the past decade has been a policy shift withinUK flood risk management towards localism with an emphasis on communities taking ownership of flood risk. There is also an increased focus on resilience and, more specifically, on community resilience to flooding. This paper draws on research carried out for UK Department for Environment Food and Rural Affairs to evaluate the Flood Resilience Community Pathfinder (FRCP scheme in England. Resilience is conceptualised as multidimensional and linked to exisiting capacities within a community. Creating resilience to flooding is an ongoing process of adaptation, learning from past events and preparing for future risks. This paper focusses on the development of formal and informal institutions to support improved flood risk management: institutional resilience capacity. It includes new institutions: e.g. flood groups, as well as activities that help to build inter- and intra- institutional resilience capacity e.g. community flood planning. The pathfinder scheme consisted of 13 projects across England led by local authorities aimed at developing community resilience to flood risk between 2013 – 2015. This paper discusses the nature and structure of flood groups, the process of their development, and the extent of their linkages with formal institutions, drawing out the barriers and facilitators to developing institutional resilience at the local level.

  3. Topographic Rise in the Northern Smooth Plains of Mercury: Characteristics from Messenger Image and Altimetry Data and Candidate Modes of Origin

    Science.gov (United States)

    Dickson, James L.; Head, James W.; Whitten, Jennifer L.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Phillips, Roger J.

    2012-01-01

    MESSENGER observations from orbit around Mercury have revealed that a large contiguous area of smooth plains occupies much of the high northern latitudes and covers an area in excess of approx.6% of the surface of the planet [1] (Fig. 1). Smooth surface morphology, embayment relationships, color data, candidate flow fronts, and a population of partly to wholly buried craters provide evidence for the volcanic origin of these plains and their emplacement in a flood lava mode to depths at least locally in excess of 1 km. The age of these plains is similar to that of plains associated with and postdating the Caloris impact basin, confirming that volcanism was a globally extensive process in the post-heavy bombardment history of Mercury [1]. No specific effusive vent structures, constructional volcanic edifices, or lava distributary features (leveed flow fronts or sinuous rilles) have been identified in the contiguous plains, although vent structures and evidence of high-effusion-rate flood eruptions are seen in adjacent areas [1]. Subsequent to the identification and mapping of the extensive north polar smooth plains, data from the Mercury Laser Altimeter (MLA) on MESSENGER revealed the presence of a broad topographic rise in the northern smooth plains that is 1,000 km across and rises more than 1.5 km above the surrounding smooth plains [2] (Fig. 2). The purpose of this contribution is to characterize the northern plains rise and to outline a range of hypotheses for its origin.

  4. The Role of Green Infrastructure Solutions in Urban Flood Risk Management

    OpenAIRE

    Soz, Salman Anees; Kryspin-Watson, Jolanta; Stanton-Geddes, Zuzana

    2016-01-01

    This Knowledge Note explores the role of green infrastructure solutions in urban flood risk management. Green infrastructure solutions represent an approach that focuses on using natural processes for managing wet weather impacts while delivering environmental, social, and economic benefits. Green infrastructure solutions, such as wetlands, bioshields, buffer zones, green roofing, street s...

  5. Lessons learnt from past Flash Floods and Debris Flow events to propose future strategies on risk management

    Science.gov (United States)

    Cabello, Angels; Velasco, Marc; Escaler, Isabel

    2010-05-01

    Floods, including flash floods and debris flow events, are one of the most important hazards in Europe regarding both economic and life loss. Moreover, changes in precipitation patterns and intensity are very likely to increase due to the observed and predicted global warming, rising the risk in areas that are already vulnerable to floods. Therefore, it is very important to carry out new strategies to improve flood protection, but it is also crucial to take into account historical data to identify high risk areas. The main objective of this paper is to show a comparative analysis of the flood risk management information compiled in four test-bed basins (Llobregat, Guadalhorce, Gardon d'Anduze and Linth basins) from three different European countries (Spain, France and Switzerland) and to identify which are the lessons learnt from their past experiences in order to propose future strategies on risk management. This work is part of the EU 7th FP project IMPRINTS which aims at reducing loss of life and economic damage through the improvement of the preparedness and the operational risk management of flash flood and debris flow (FF & DF) events. The methodology followed includes the following steps: o Specific survey on the effectivity of the implemented emergency plans and risk management procedures sent to the test-bed basin authorities that participate in the project o Analysis of the answers from the questionnaire and further research on their methodologies for risk evaluation o Compilation of available follow-up studies carried out after major flood events in the four test-bed basins analyzed o Collection of the lessons learnt through a comparative analysis of the previous information o Recommendations for future strategies on risk management based on lessons learnt and management gaps detected through the process As the Floods Directive (FD) already states, the flood risks associated to FF & DF events should be assessed through the elaboration of Flood Risk

  6. A Synoptic Climatology of Combined Severe/Weather/Flash Flood Events

    Science.gov (United States)

    Pallozzi, Kyle J.

    Classical forms of severe weather such as tornadoes, damaging convective wind gusts, and large hail, as well as flash flooding events, all have potentially large societal impacts. This impact is further magnified when these hazards occur simultaneously in time and space. A major challenge for operational forecasters is how to accurately predict the occurrence of combined storm hazards, and how to communicate the associated multiple threat hazards to the public. A seven-year climatology (2009-2015) of combined severe weather/flash flooding (SVR/FF) events across the contiguous United States was developed in attempt to study the combined SVR/FF event hazards further. A total of 211 total cases were identified and sub-divided into seven subcategories based on their convective morphology and meteorological characteristics. Heatmaps of event report frequency were created to extract spatial, seasonal and interannual patterns in SVR/FF event activity. Diurnal trends were examined from time series plots of tornado, hail, wind and flash flood/flood reports. Event-centered composites of environmental variables were created for each subcategory from 13 km RUC/RAP analyses. Representative cases studies were conducted for each subcategory. A "ring of fire" with the highest levels of SVR/FF event activity was noted across the central United States. SVR/FF events were least common in the Southeast, High Plains, and Northern Plains. Enhanced SVR/FF activity reflected contributions from synoptic events during the cool and shoulder seasons over the Lower Mississippi, Arkansas and Tennessee Valleys, and MCS activity during the warm season over the lower Great Plains, and the Upper Mississippi, Missouri and Ohio River Valleys. Results from the composite analyses indicated that relatively high values of CAPE, surface-500 hPa shear and precipitable water were observed for all subcategories. Case studies show that many high-end SVR/FF events featured slow-moving, or quasi

  7. Operational flood forecasting, warning and response for multi-scale flood risks in developing cities

    NARCIS (Netherlands)

    Rogelis Prada, M.C.

    2016-01-01

    Flood early warning systems are recognized as one of the most effective flood risk management instruments when correctly embedded in comprehensive flood risk management strategies and policies. Many efforts around the world are being put in place to advance the components that determine the

  8. Flood risk management in Italy

    DEFF Research Database (Denmark)

    Mysiak, J.; Testella, F.; Bonaiuto, M.

    2013-01-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina...

  9. Flooding and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  10. Using Role-Play for Expert Science Communication with Professional Stakeholders in Flood Risk Management

    Science.gov (United States)

    McEwen, Lindsey; Stokes, Alison; Crowley, Kate; Roberts, Carolyn

    2014-01-01

    This paper explores role-play pedagogies in learning and communicating about cutting-edge flood science by flood risk management professionals in local government. It outlines role-play process/structure and evaluates participant perceptions of their learning experiences. Issues were impacts of prior role-play experience on attitudes brought to…

  11. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  12. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil

    Science.gov (United States)

    1982-01-01

    By means of aerial photography and MSS-LANDSAT data a land use/land cover classification was applied to the Tubarao River coastal plain. The following classes were identified: coal related areas, permanently flooded wetlands, periodically flooded wetlands, agricultural lands, bare soils, water bodies, urban areas, forestlands.

  13. Dam-breach analysis and flood-inundation mapping for Lakes Ellsworth and Lawtonka near Lawton, Oklahoma

    Science.gov (United States)

    Rendon, Samuel H.; Ashworth, Chad E.; Smith, S. Jerrod

    2012-01-01

    Dams provide beneficial functions such as flood control, recreation, and reliable water supplies, but they also entail risk: dam breaches and resultant floods can cause substantial property damage and loss of life. The State of Oklahoma requires each owner of a high-hazard dam, which the Federal Emergency Management Agency defines as dams for which failure or misoperation probably will cause loss of human life, to develop an emergency action plan specific to that dam. Components of an emergency action plan are to simulate a flood resulting from a possible dam breach and map the resulting downstream flood-inundation areas. The resulting flood-inundation maps can provide valuable information to city officials, emergency managers, and local residents for planning the emergency response if a dam breach occurs. Accurate topographic data are vital for developing flood-inundation maps. This report presents results of a cooperative study by the city of Lawton, Oklahoma, and the U.S. Geological Survey (USGS) to model dam-breach scenarios at Lakes Ellsworth and Lawtonka near Lawton and to map the potential flood-inundation areas of such dam breaches. To assist the city of Lawton with completion of the emergency action plans for Lakes Ellsworth and Lawtonka Dams, the USGS collected light detection and ranging (lidar) data that were used to develop a high-resolution digital elevation model and a 1-foot contour elevation map for the flood plains downstream from Lakes Ellsworth and Lawtonka. This digital elevation model and field measurements, streamflow-gaging station data (USGS streamflow-gaging station 07311000, East Cache Creek near Walters, Okla.), and hydraulic values were used as inputs for the dynamic (unsteady-flow) model, Hydrologic Engineering Center's River Analysis System (HEC-RAS). The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum

  14. Effectiveness of flood damage mitigation measures: Empirical evidence from French flood disasters

    NARCIS (Netherlands)

    Poussin, J.K.; Botzen, W.J.W.; Aerts, J.C.J.H.

    2015-01-01

    Recent destructive flood events and projected increases in flood risks as a result of climate change in many regions around the world demonstrate the importance of improving flood risk management. Flood-proofing of buildings is often advocated as an effective strategy for limiting damage caused by

  15. The role of risk perception in making flood risk management more effective

    Science.gov (United States)

    Buchecker, M.; Salvini, G.; Di Baldassarre, G.; Semenzin, E.; Maidl, E.; Marcomini, A.

    2013-11-01

    Over the last few decades, Europe has suffered from a number of severe flood events and, as a result, there has been a growing interest in probing alternative approaches to managing flood risk via prevention measures. A literature review reveals that, although in the last decades risk evaluation has been recognized as key element of risk management, and risk assessment methodologies (including risk analysis and evaluation) have been improved by including social, economic, cultural, historical and political conditions, the theoretical schemes are not yet applied in practice. One main reason for this shortcoming is that risk perception literature is mainly of universal and theoretical nature and cannot provide the necessary details to implement a comprehensive risk evaluation. This paper therefore aims to explore a procedure that allows the inclusion of stakeholders' perceptions of prevention measures in risk assessment. It proposes to adopt methods of risk communication (both one-way and two-way communication) in risk assessment with the final aim of making flood risk management more effective. The proposed procedure not only focuses on the effect of discursive risk communication on risk perception, and on achieving a shared assessment of the prevention alternatives, but also considers the effects of the communication process on perceived uncertainties, accepted risk levels, and trust in the managing institutions. The effectiveness of this combined procedure has been studied and illustrated using the example of the participatory flood prevention assessment process on the Sihl River in Zurich, Switzerland. The main findings of the case study suggest that the proposed procedure performed well, but that it needs some adaptations for it to be applicable in different contexts and to allow a (semi-) quantitative estimation of risk perception to be used as an indicator of adaptive capacity.

  16. FLCNDEMF: An Event Metamodel for Flood Process Information Management under the Sensor Web Environment

    Directory of Open Access Journals (Sweden)

    Nengcheng Chen

    2015-06-01

    Full Text Available Significant economic losses, large affected populations, and serious environmental damage caused by recurrent natural disaster events (NDE worldwide indicate insufficiency in emergency preparedness and response. The barrier of full life cycle data preparation and information support is one of the main reasons. This paper adopts the method of integrated environmental modeling, incorporates information from existing event protocols, languages, and models, analyzes observation demands from different event stages, and forms the abstract full life cycle natural disaster event metamodel (FLCNDEM based on meta-object facility. Then task library and knowledge base for floods are built to instantiate FLCNDEM, forming the FLCNDEM for floods (FLCNDEMF. FLCNDEMF is formalized according to Event Pattern Markup Language, and a prototype system, Natural Disaster Event Manager, is developed to assist in the template-based modeling and management. The flood in Liangzi (LZ Lake of Hubei, China on 16 July 2010 is adopted to illustrate how to apply FLCNDEM in real scenarios. FLCNDEM-based modeling is realized, and the candidate remote sensing (RS dataset for different observing missions are provided for LZ Lake flood. Taking the mission of flood area extraction as an example, the appropriate RS data are selected via the model of simplified general perturbation version 4, and the flood area in different phases are calculated and displayed on the map. The phase-based modeling and visualization intuitively display the spatial-temporal distribution and the evolution process of the LZ Lake flood, and it is of great significance for flood responding. In addition, through the extension mechanism, FLCNDEM can also be applied in other environmental applications, providing important support for full life cycle information sharing and rapid responding.

  17. Regional flood reconstruction in Kullu District (Himachal Pradesh, India): implication for Disaster Risk Management

    Science.gov (United States)

    Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Trappmann, Daniel; Shekhar, Mayank; Bhattacharyya, Amalava

    2016-04-01

    Floods are a common natural hazard in the Western Indian Himalayas. They usually occur when humid monsoon airs are lifted along the Himalayan relief, thereby creating intense orographic rainfall and runoff, a process which is often enhanced by simultaneous snowmelt. Monsoon floods are considered a major threat in the region and frequently affect inhabited valleys, disturbing the status quo of communities, stressing the future welfare and condition of their economic development. Given the assumption that ongoing and future climatic changes may impact on monsoon patterns and extreme precipitation, the implementation of adaptation policies in this region is critically needed in order to improve local resilience of Himalayan communities. However, its success implementation is highly dependent on system knowledge and hence reliable baseline data of past disasters. In this communication, we demonstrate how newly gained knowledge on past flood incidents may improve flood hazard and risk assessments. Based on growth-ring analysis of trees growing in the floodplains and other, more classical paleo-hydrology techniques, we reconstruct the regional flood activity for the last decades. This information is then included as non-systematic data into the regional flood frequency by using Bayesian Markov Monte Carlo Chain algorithms, so as to analyse the impact of the additional data on flood hazard assessments. Moreover, through a detailed analysis of three flood risk hotspots, we demonstrate how the newly gained knowledge on past flood disasters derived from indirect proxies can explain failures in the implementation of disaster risk management (DRM). Our methodology allowed identification of thirty-four unrecorded flood events at the study sites located in the upper reaches since the early 20th century, and thus completion of the existing flood history in the region based on flow measurements in the lower part of the catchment. We observe that 56% of the floods occurred

  18. Using open source data for flood risk mapping and management in Brazil

    Science.gov (United States)

    Whitley, Alison; Malloy, James; Chirouze, Manuel

    2013-04-01

    Whitley, A., Malloy, J. and Chirouze, M. Worldwide the frequency and severity of major natural disasters, particularly flooding, has increased. Concurrently, countries such as Brazil are experiencing rapid socio-economic development with growing and increasingly concentrated populations, particularly in urban areas. Hence, it is unsurprising that Brazil has experienced a number of major floods in the past 30 years such as the January 2011 floods which killed 900 people and resulted in significant economic losses of approximately 1 billion US dollars. Understanding, mitigating against and even preventing flood risk is high priority. There is a demand for flood models in many developing economies worldwide for a range of uses including risk management, emergency planning and provision of insurance solutions. However, developing them can be expensive. With an increasing supply of freely-available, open source data, the costs can be significantly reduced, making the tools required for natural hazard risk assessment more accessible. By presenting a flood model developed for eight urban areas of Brazil as part of a collaboration between JBA Risk Management and Guy Carpenter, we explore the value of open source data and demonstrate its usability in a business context within the insurance industry. We begin by detailing the open source data available and compare its suitability to commercially-available equivalents for datasets including digital terrain models and river gauge records. We present flood simulation outputs in order to demonstrate the impact of the choice of dataset on the results obtained and its use in a business context. Via use of the 2D hydraulic model JFlow+, our examples also show how advanced modelling techniques can be used on relatively crude datasets to obtain robust and good quality results. In combination with accessible, standard specification GPU technology and open source data, use of JFlow+ has enabled us to produce large-scale hazard maps

  19. Modelling the benefits of flood emergency management measures in reducing damages: a case study on Sondrio, Italy

    Directory of Open Access Journals (Sweden)

    D. Molinari

    2013-08-01

    Full Text Available The European "Floods Directive" 2007/60/EU has produced an important shift from a traditional approach to flood risk management centred only on hazard analysis and forecast to a newer one which encompasses other aspects relevant to decision-making and which reflect recent research advances in both hydraulic engineering and social studies on disaster risk. This paper accordingly proposes a way of modelling the benefits of flood emergency management interventions calculating the possible damages by taking into account exposure, vulnerability, and expected damage reduction. The results of this model can be used to inform decisions and choices for the implementation of flood emergency management measures. A central role is played by expected damages, which are the direct and indirect consequence of the occurrence of floods in exposed and vulnerable urban systems. How damages should be defined and measured is a key question that this paper tries to address. The Floods Directive suggests that mitigation measures taken to reduce flood impact need to be evaluated also by means of a cost–benefit analysis. The paper presents a methodology for assessing the effectiveness of early warning for flash floods, considering its potential impact in reducing direct physical damage, and it assesses the general benefit in regard to other types of damages and losses compared with the emergency management costs. The methodology is applied to the case study area of the city of Sondrio in the northern Alpine region of Italy. A critical discussion follows the application. Its purpose is to highlight the strengths and weaknesses of available models for quantifying direct physical damage and of the general model proposed, given the current state of the art in damage and loss assessment.

  20. Surface water flood risk and management strategies for London: An Agent-Based Model approach

    Directory of Open Access Journals (Sweden)

    Jenkins Katie

    2016-01-01

    Full Text Available Flooding is recognised as one of the most common and costliest natural disasters in England. Flooding in urban areas during heavy rainfall is known as ‘surface water flooding’, considered to be the most likely cause of flood events and one of the greatest short-term climate risks for London. In this paper we present results from a novel Agent-Based Model designed to assess the interplay between different adaptation options, different agents, and the role of flood insurance and the flood insurance pool, Flood Re, in the context of climate change. The model illustrates how investment in adaptation options could reduce London’s surface water flood risk, today and in the future. However, benefits can be outweighed by continued development in high risk areas and the effects of climate change. Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, it offers no additional benefits in terms of overall risk reduction, and will face increasing pressure due to rising surface water flood risk in the future. The modelling approach and findings are highly relevant for reviewing the proposed Flood Re scheme, as well as for wider discussions on the potential of insurance schemes, and broader multi-sectoral partnerships, to incentivise flood risk management in the UK and internationally.

  1. Hydrology, geomorphology, and vegetation of Coastal Plain rivers in the southeastern United States

    Science.gov (United States)

    Cliff R. Hupp

    2000-01-01

    Rivers of the Coastal Plain of the southeastern United States are characteristically low-gradient meandering systems that develop broad floodplains subjected to frequent and prolonged flooding. These floodplains support a relatively unique forested wetland (Bottomland Hardwoods), which have received considerable ecological study, but distinctly less hydrogeomorphic...

  2. Flood risk management in Italy: challenges and opportunities for the implementation of the EU Floods Directive (2007/60/EC)

    Science.gov (United States)

    Mysiak, J.; Testella, F.; Bonaiuto, M.; Carrus, G.; De Dominicis, S.; Ganucci Cancellieri, U.; Firus, K.; Grifoni, P.

    2013-11-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina (1987), Piedmont (1994), Crotone (1996), Sarno (1998), Soverato (2000), and Piedmont (2000) events have contributed to shaping the country's flood risk governance. Insufficient resources and capacity, slow implementation of the (at that time) novel risk prevention and protection framework, embodied in the law 183/89 of 18 May 1989, increased the reliance on the response and recovery operations of the civil protection. As a result, the importance of the Civil Protection Mechanism and the relative body of norms and regulation developed rapidly in the 1990s. In the aftermath of the Sarno (1998) and Soverato (2000) disasters, the Department for Civil Protection (DCP) installed a network of advanced early warning and alerting centres, the cornerstones of Italy's preparedness for natural hazards and a best practice worth following. However, deep convective clouds, not uncommon in Italy, producing intense rainfall and rapidly developing localised floods still lead to considerable damage and loss of life that can only be reduced by stepping up the risk prevention efforts. The implementation of the EU Floods Directive (2007/60/EC) provides an opportunity to revise the model of flood risk governance and confront the shortcomings encountered during more than 20 yr of organised flood risk management. This brief communication offers joint recommendations towards this end from three projects funded by the 2nd CRUE ERA-NET (http://www.crue-eranet.net/) Funding Initiative: FREEMAN, IMRA and URFlood.

  3. Evaluating natural flood management measures using an ecosystem based adaptation framework: a meta-analysis

    Science.gov (United States)

    Iacob, Oana; Rowan, John; Brown, Iain; Ellis, Chris

    2014-05-01

    Climate change is projected to alter river flows and the magnitude/frequency characteristics of floods and droughts. As a result flood risk is expected to increase with environmental, social and economic impacts. Traditionally flood risk management has been heavily relying on engineering measures, however with climate change their capacity to provide protection is expected to decrease. Ecosystem-based adaptation highlights the interdependence of human and natural systems, and the potential to buffer the impacts of climate change by maintaining functioning ecosystems that continue to provide multiple societal benefits. Natural flood management measures have the potential to provide a greater adaptive capacity to negate the impacts of climate change and provide ancillary benefits. To understand the impacts of different NFM measures on ecosystem services a meta-analysis was undertaken. Twenty five studies from across the world were pulled together to assess their effectiveness on reducing the flood risk but also on other ecosystems services as defined by the UK National Ecosystem Assessment, which distinguishes between provisioning, regulating, cultural and supporting services. Four categories of NFM measures were considered: (i) afforestation measures, (ii) drainage and blocking the drains, (iii) wetland restoration and (iv) combined measures. Woodland expansion measures provide significant benefits for flood protection more pronounced for low magnitude events, but also for other services such as carbon sequestration and water quality. These measures however will come at a cost for livestock and crop provisioning services as a result of land use changes. Drainage operations and blocking the drains have mixed impacts on carbon sequestration and water quality depending on soil type, landscape settings and local characteristics. Wetland and floodplain restoration measures have generally a few disbenefits and provide improvements for regulating and supporting services

  4. Flood damage in Italy: towards an assessment model of reconstruction costs

    Science.gov (United States)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto

    2016-04-01

    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy

  5. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Science.gov (United States)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  6. Networked environments for stakeholder participation in water resources and flood management

    NARCIS (Netherlands)

    Almoradie, A.D.S.

    2014-01-01

    Stakeholders’ awareness and participation is important in the planning and management of water resources and floods. Stakeholders’ spatial distribution and diverse stakeholders’ interest (even opposed) are some of the hindrances in stakeholder participation. This research developed and implemented

  7. Tracking sedimentation from the historic A.D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA

    Science.gov (United States)

    Khan, Nicole S.; Horton, Benjamin P.; McKee, Karen L.; Jerolmack, Douglas; Falcini, Federico; Enache, Mihaela D.; Vane, Christopher H.

    2013-01-01

    Management and restoration of the Mississippi River deltaic plain (southern United States) and associated wetlands require a quantitative understanding of sediment delivery during large flood events, past and present. Here, we investigate the sedimentary fingerprint of the 2011 Mississippi River flood across the Louisiana coast (Atchafalaya Delta, Terrebonne, Barataria, and Mississippi River Delta basins) to assess spatial patterns of sedimentation and to identify key indicators of sediment provenance. The sediment deposited in wetlands during the 2011 flood was distinguished from earlier deposits based on biological characteristics, primarily absence of plant roots and increased presence of centric (planktonic) diatoms indicative of riverine origin. By comparison, the lithological (bulk density, organic matter content, and grain size) and chemical (stable carbon isotopes of bulk organic matter) properties of flood sediments were nearly identical to the underlying deposit. Flood sediment deposition was greatest in wetlands near the Atchafalaya and Mississippi Rivers and accounted for a substantial portion (37% to 85%) of the annual accretion measured at nearby monitoring stations. The amount of sediment delivered to those basins (1.1–1.6 g cm−2) was comparable to that reported previously for hurricane sedimentation along the Louisiana coast (0.8–2.1 g cm−2). Our findings not only provide insight into how large-scale river floods influence wetland sedimentation, they lay the groundwork for identifying previous flood events in the stratigraphic record.

  8. Uncertainty and sensitivity analysis of flood risk management decisions based on stationary and nonstationary model choices

    Directory of Open Access Journals (Sweden)

    Rehan Balqis M.

    2016-01-01

    Full Text Available Current practice in flood frequency analysis assumes that the stochastic properties of extreme floods follow that of stationary conditions. As human intervention and anthropogenic climate change influences in hydrometeorological variables are becoming evident in some places, there have been suggestions that nonstationary statistics would be better to represent the stochastic properties of the extreme floods. The probabilistic estimation of non-stationary models, however, is surrounded with uncertainty related to scarcity of observations and modelling complexities hence the difficulty to project the future condition. In the face of uncertain future and the subjectivity of model choices, this study attempts to demonstrate the practical implications of applying a nonstationary model and compares it with a stationary model in flood risk assessment. A fully integrated framework to simulate decision makers’ behaviour in flood frequency analysis is thereby developed. The framework is applied to hypothetical flood risk management decisions and the outcomes are compared with those of known underlying future conditions. Uncertainty of the economic performance of the risk-based decisions is assessed through Monte Carlo simulations. Sensitivity of the results is also tested by varying the possible magnitude of future changes. The application provides quantitative and qualitative comparative results that satisfy a preliminary analysis of whether the nonstationary model complexity should be applied to improve the economic performance of decisions. Results obtained from the case study shows that the relative differences of competing models for all considered possible future changes are small, suggesting that stationary assumptions are preferred to a shift to nonstationary statistics for practical application of flood risk management. Nevertheless, nonstationary assumption should also be considered during a planning stage in addition to stationary assumption

  9. Augmenting Austrian flood management practices through geospatial predictive analytics: a study in Carinthia

    Science.gov (United States)

    Ward, S. M.; Paulus, G.

    2013-06-01

    The Danube River basin has long been the location of significant flooding problems across central Europe. The last decade has seen a sharp increase in the frequency, duration and intensity of these flood events, unveiling a dire need for enhanced flood management policy and tools in the region. Located in the southern portion of Austria, the state of Carinthia has experienced a significant volume of intense flood impacts over the last decade. Although the Austrian government has acknowledged these issues, their remedial actions have been primarily structural to date. Continued focus on controlling the natural environment through infrastructure while disregarding the need to consider alternative forms of assessing flood exposure will only act as a provisional solution to this inescapable risk. In an attempt to remedy this flaw, this paper highlights the application of geospatial predictive analytics and spatial recovery index as a proxy for community resilience, as well as the cultural challenges associated with the application of foreign models within an Austrian environment.

  10. Augmenting Austrian flood management practices through geospatial predictive analytics: a study in Carinthia

    Directory of Open Access Journals (Sweden)

    S. M. Ward

    2013-06-01

    Full Text Available The Danube River basin has long been the location of significant flooding problems across central Europe. The last decade has seen a sharp increase in the frequency, duration and intensity of these flood events, unveiling a dire need for enhanced flood management policy and tools in the region. Located in the southern portion of Austria, the state of Carinthia has experienced a significant volume of intense flood impacts over the last decade. Although the Austrian government has acknowledged these issues, their remedial actions have been primarily structural to date. Continued focus on controlling the natural environment through infrastructure while disregarding the need to consider alternative forms of assessing flood exposure will only act as a provisional solution to this inescapable risk. In an attempt to remedy this flaw, this paper highlights the application of geospatial predictive analytics and spatial recovery index as a proxy for community resilience, as well as the cultural challenges associated with the application of foreign models within an Austrian environment.

  11. A programme management approach for supporting a transition to integrated flood management in the Netherlands

    NARCIS (Netherlands)

    Rijke, J.S.; Van Herk, S.; Zevenbergen, C.; Ashley, R.

    2012-01-01

    In the Netherlands and many other developed countries, flood management is transitioning from sectoral engineering approaches to more integrated approaches. The 2.3 billion Euro Room for the River programme plays an important role in this transition, because it is the first large scale

  12. Does reporting of plain chest radiographs affect the immediate management of patients admitted to a medical assessment unit?

    International Nuclear Information System (INIS)

    Grosvenor, L.J.; Verma, R.; O'Brien, R.; Entwisle, J.J.; Finlay, D.

    2003-01-01

    AIM: The purpose of our study was to investigate whether reporting of plain chest radiographs affects immediate management of patients admitted to a medical assessment unit. MATERIALS AND METHODS: During a 3 month period we prospectively evaluated 200 patients who had a plain chest radiograph on admission. After the post on-call ward round, an independent medical specialist registrar reviewed the notes, retrieving relevant clinical details. The plain chest films were reported independently by a trainee radiologist and consultant, reaching a consensus report. RESULTS: There was 93% agreement between trainee and consultant radiologists (95% CI=89-96%). Seventy percent had documented reports by the on-call medical team. There was disagreement between radiology and medical reports in 49% of reported films (95% CI=40-57%). The radiologist's report led to a direct change in the immediate management of 22 patients (11%). CONCLUSION: Only 70% of films had documented reports in the clinical notes despite this being a legal requirement. Radiology reporting does cause a direct change in patient management. Chest radiographs of patients admitted to a medical admissions unit should be reported by a radiologist with the minimum of delay

  13. Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota

    Science.gov (United States)

    Vecchia, Aldo V.

    2008-01-01

    Devils Lake and Stump Lake in northeastern North Dakota receive surface runoff from a 3,810-square-mile drainage basin, and evaporation provides the only major water loss unless the lakes are above their natural spill elevation to the Sheyenne River. In September 2007, flow from Devils Lake to Stump Lake had filled Stump Lake and the two lakes consisted of essentially one water body with an elevation of 1,447.1 feet, about 3 feet below the existing base flood elevation (1,450 feet) and about 12 feet below the natural outlet elevation to the Sheyenne River (1,459 feet).Devils Lake could continue to rise, causing extensive additional flood damages in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin. This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, to evaluate future flood risk for Devils Lake and provide information for developing updated flood-insurance rate maps and planning flood-mitigation activities such as raising levees or roads.In about 1980, a large, abrupt, and highly significant increase in precipitation occurred in the Devils Lake Basin and elsewhere in the Northern Great Plains, and wetter-than-normal conditions have persisted through the present (2007). Although future precipitation is impossible to predict, paleoclimatic evidence and recent research on climate dynamics indicate the current wet conditions are not likely to end anytime soon. For example, there is about a 72-percent chance wet conditions will last at least 10 more years and about a 37-percent chance wet conditions will last at least 30 more years.A stochastic simulation model for Devils Lake and Stump Lake developed in a previous study was updated and used to generate 10,000 potential future realizations, or traces, of precipitation, evaporation, inflow, and lake levels given existing conditions on September 30, 2007, and randomly

  14. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. WMO's activities in gender mainstreaming in geosciences, with a special focus on integrated flood management

    Science.gov (United States)

    Manaenkova, Elena; Caponi, Claudio; Alexieva, Assia; Poissonnier, Maud; Tripathi, Ramesh

    2017-04-01

    Statistics show that women represent a minority in science, technology, engineering and mathematics (STEM). They are significantly underrepresented in governance, management and international negotiations. They further comprise only a third of the global workforce at National Meteorological and Hydrological Services and only one out of five senior managers is a woman. This paper presents historical trends and statistics on the participation of women and men in all structures and activities of the World Meteorological Organization (WMO). It explores the root causes of women's underrepresentation in the meteorological, hydrological and climatological profession as well as analyzes its adverse effects in terms of the scarcity of role models for young female professionals and the lack of gender considerations in the provision of weather, hydrological and climate services. The paper presents WMO's approach to addressing these issues through the adoption of a WMO Gender Equality Policy, a comprehensive Gender Action Plan, targeted leadership training, a series of awareness raising campaigns, and specific recommendations on how to make weather, hydrological and climate services more gender-sensitive. As a specific example, the Associated Programme on Flood Management (APFM) of WMO and the Global Water Partnership (GWP) is in the process of developing a training manual for gender mainstreaming in integrated flood management. This generic, instructive, at the same time informative training manual and facilitator's guide will strive to fill gaps in practical knowledge, decision-making and further provide assistance in gender sensitive approaches for both local policy makers and communities affected by floods. The format and contents of the manual are particularly focused on every phase of the flood management cycle, incorporating gender based needs, strategies and actions/approaches. The facilitator or training instructor is encouraged to adapt the materials with local case

  16. Flood Early Warning in Bridge Management System: from idea to implementation

    Science.gov (United States)

    Kerin, Igor; Bekić, Damir; Michalis, Panagiotis; Šolman, Hrvoje; Cahill, Paul; Gilja, Gordon; Pakrashi, Vikram; Lapthorne, John; McKeogh, Eamon

    2017-04-01

    Recent advances in computational speed, cloud systems and GPRS data are some of the factors that have resulted in an increased number of operational and fully automatized Flood Early Warning Systems (FEWS). Flood forecasting is becoming a well-recognised solution for flood management as an indirect measure for minimising the risk should preventive or defence measures prove ineffective or are not feasible for implementation. Public acceptance of FEWS as a standalone solution is still considered to be at low level. Further public engagement regarding engineering risks and providing timely notifications and warnings can, however, establish the true value of such a system to the society in general. Flood risks can be direct, resulting in damage to buildings, infrastructure and natural resources, or indirect, which can be related to disaster losses leading to declines in commercial output or revenue and impact on wellbeing of people, typically from disruptions to the flow of goods and services. Flood risk and structural risks are closely related, thereby impacting the maintenance and management of bridges assets over watercourses. Many studies indicate that most bridge collapses are related to hydraulic effects and consequently scour issues (i.e. the removal of riverbed around bridge foundations due to flowing water). Consequently, hydraulic, hydrologic and geotechnical expertise and knowledge can lead to introducing FEWS as a key tool for Bridge Scour Management System (BSMS), forming a part of a BMS. The implementation of this concept was initiated with the EU/FP7 funded project BRIDGE SMS. The project introduces BSMS into the overall BMS to develop a reliable decision support tool which would efficiently manage bridge failure risks in a cost-effective way. This is accomplished through the development of FEWS, alongside monitoring systems that can provide important information about environmental and structural conditions at the catchment area and bridge site

  17. Using decadal climate prediction to characterize and manage changing drought and flood risks in Colorado

    Science.gov (United States)

    Lazrus, H.; Done, J.; Morss, R. E.

    2017-12-01

    A new branch of climate science, known as decadal prediction, seeks to predict the time-varying trajectory of climate over the next 3-30 years and not just the longer-term trends. Decadal predictions bring climate information into the time horizon of decision makers, particularly those tasked with managing water resources and floods whose master planning is often on the timescale of decades. Information from decadal predictions may help alleviate some aspects of vulnerability by helping to inform decisions that reduce drought and flood exposure and increase adaptive capacities including preparedness, response, and recovery. This presentation will highlight an interdisciplinary project - involving atmospheric and social scientists - on the development of decadal climate information and its use in decision making. The presentation will explore the skill and utility of decadal drought and flood prediction along Colorado's Front Range, an area experiencing rapid population growth and uncertain climate variability and climate change impacts. Innovative statistical and dynamical atmospheric modeling techniques explore the extent to which Colorado precipitation can be predicted on decadal scales using remote Pacific Ocean surface temperature patterns. Concurrently, stakeholder interviews with flood managers in Colorado are being used to explore the potential utility of decadal climate information. Combining the modeling results with results from the stakeholder interviews shows that while there is still significant uncertainty surrounding precipitation on decadal time scales, relevant and well communicated decadal information has potential to be useful for drought and flood management.

  18. Social vulnerability analysis of the event flood puddle (case study in Lamongan regency, East Java province)

    Science.gov (United States)

    Soegiyanto; Rindawati

    2018-01-01

    This research was conducted in the flood plain Bonorowo in Lamongan East Java Province. The area was inundated almost every year, but people still survive and remain settled at the sites. This research is to identify and analyze the social vulnerability in the flood plains on the characteristics puddle Bonorowo This research method is the study of the characteristics and livelihood strategies of the communities living on marginal lands (floodplains Bonorowo) are regions prone to flooding / inundation. Based on the object of this study is a survey research method mix / mix method, which merge or combination of methods of quantitative and qualitative methods, so it will be obtained a description of a more comprehensive and holistic. The results obtained in this study are; Social vulnerability is not affected by the heightened puddles. Social capital is abundant making society safer and more comfortable to keep their activities and settle in the region

  19. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    Science.gov (United States)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  20. Teaching flood risk management to secondary school students via the web

    Science.gov (United States)

    Junier, S.

    2009-04-01

    Websites are getting increasingly important as a means to inform different groups in society about a large range of subjects. Especially young people use the internet frequently as a source of knowledge. When asked to develop educational material about flood risk management, we therefore chose to develop a website. Junior Floodsite, part of the larger Floodsite project, is developed for secondary school students around 15 or 16 years old, and their teachers, in all countries in Europe. Websites are common, but not for an audience and purpose like this. We asked a group of teachers and students to advise us and test the material we developed. Although children this age use the web a lot, this does not mean that anything you put on, will be used. To reach secondary school children about natural hazards such as floods, is not an easy thing. Amongst the masses of fun things to do on the internet, flood risk management will not stand out automatically. For students it had to be interesting, fun and useful. But not every student wants the same thing. Teachers informed us that for them it is important that the material fits seamlessly into the curriculum. They will then more readily employ the material. But in every country the curriculum is different (and even within countries they differ) and we could not make material for each individual country. To tackle these problems we decided to take a dual approach. On the one hand, we made the website flexible and modular with blocks of information and also activities like assignments, a virtual tour in Google Earth and games. Students and teachers can use those parts that they find interesting, fun or useful. On the other hand, we developed sets of structured lessons that teachers can directly put to use in their classrooms. The material on the website is written in English because most European students learn that language in school, but besides that it is also available in Dutch. Translations into other languages is welcomed

  1. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    Science.gov (United States)

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the

  2. Advancing Coordination Between DRM and CCA in Integrated Flood Risk Management

    DEFF Research Database (Denmark)

    Flood hazards in coastal regions induce risks toward lives, property, economy and the environment. In need of sustainable and holistic actions to reduce risks, these should include innovative Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) measures. While differing on important...

  3. Flood prediction, its risk and mitigation for the Babura River with GIS

    Science.gov (United States)

    Tarigan, A. P. M.; Hanie, M. Z.; Khair, H.; Iskandar, R.

    2018-03-01

    This paper describes the flood prediction along the Babura River, the catchment of which is within the comparatively larger watershed of the Deli River which crosses the centre part of Medan City. The flood plain and ensuing inundation area were simulated using HECRAS based on the available data of rainfall, catchment, and river cross-sections. The results were shown in a GIS format in which the city map of Medan and other infrastructure layers were stacked for spatial analysis. From the resulting GIS, it can be seen that 13 sub-districts were likely affected by the flood, and then the risk calculation of the flood damage could be estimated. In the spirit of flood mitigation thoughts, 6 locations of evacuation centres were identified and 15 evacuation routes were recommended to reach the centres. It is hoped that the flood prediction and its risk estimation in this study will inspire the preparedness of the stakeholders for the probable threat of flood disaster.

  4. Remote sensing analysis for flood risk management in urban sprawl contexts

    Directory of Open Access Journals (Sweden)

    Francesca Franci

    2015-07-01

    Full Text Available Remote sensing can play a key role in risk assessment and management, especially when several concurrent factors coexist, such as a predisposition to natural disasters and the urban sprawl, spreading over highly vulnerable areas. In this context, multitemporal analysis can provide decision-makers with tools and information to reduce the impacts of disasters (e.g. flooding and to encourage a sustainable development. The present work focuses on the employment of multispectral satellite imagery to produce multitemporal land use/cover maps for the city of Dhaka, which is subject to frequent flooding events. In particular, the evaluation of the urban growth, the analysis of the annual dynamics of flooding and the study of the 2004 catastrophic event were performed. For the change-detection procedure, Landsat images were used. These images allow the quantification of the very rapid growth of the metropolis, with an increase in built-up areas from 75 to 111 km2. The image of 2009 showed that an ordinary flood affects about 115 km2 (on a studied area of 591 km2. On the other hand, the analysis of the 2004 extreme flooding event, performed on a wider area, showed that the affected lands added up to 750 km2 (on about 3845 km2.

  5. Development of a Data Warehouse for Riverine and Coastal Flood Risk Management

    Science.gov (United States)

    McGrath, H.; Stefanakis, E.; Nastev, M.

    2014-11-01

    In New Brunswick flooding occurs typically during the spring freshet, though, in recent years, midwinter thaws have led to flooding in January or February. Municipalities are therefore facing a pressing need to perform risk assessments in order to identify communities at risk of flooding. In addition to the identification of communities at risk, quantitative measures of potential structural damage and societal losses are necessary for these identified communities. Furthermore, tools which allow for analysis and processing of possible mitigation plans are needed. Natural Resources Canada is in the process of adapting Hazus-MH to respond to the need for risk management. This requires extensive data from a variety of municipal, provincial, and national agencies in order to provide valid estimates. The aim is to establish a data warehouse to store relevant flood prediction data which may be accessed thru Hazus. Additionally, this data warehouse will contain tools for On-Line Analytical Processing (OLAP) and knowledge discovery to quantitatively determine areas at risk and discover unexpected dependencies between datasets. The third application of the data warehouse is to provide data for online visualization capabilities: web-based thematic maps of Hazus results, historical flood visualizations, and mitigation tools; thus making flood hazard information and tools more accessible to emergency responders, planners, and residents. This paper represents the first step of the process: locating and collecting the appropriate datasets.

  6. Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk

    Directory of Open Access Journals (Sweden)

    McEwen Lindsey

    2016-01-01

    Full Text Available Shifts to devolved flood risk management in the UK pose questions about how the changing role of floodplain residents in community-led adaptation planning can be supported and strengthened. This paper shares insights from an interdisciplinary research project that has proposed the concept of ‘sustainable flood memory’ in the context of effective flood risk management. The research aimed to increase understanding of whether and how flood memories from the UK Summer 2007 extreme floods provide a platform for developing lay knowledges and flood resilience. The project investigated what factors link flood memory and lay knowledges of flooding, and how these connect and disconnect during and after flood events. In particular, and relation to flood governance directions, we sought to explore how such memories might play a part in individual and community resilience. The research presented here explores some key themes drawn from semi-structured interviews with floodplain residents with recent flood experiences in contrasting demographic and physical settings in the lower River Severn catchment. These include changing practices in making flood memories and materialising flood knowledge and the roles of active remembering and active forgetting.

  7. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Directory of Open Access Journals (Sweden)

    A. Luke

    2018-04-01

    Full Text Available Flood hazard mapping in the United States (US is deeply tied to the National Flood Insurance Program (NFIP. Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1 legends that frame flood intensity both qualitatively and quantitatively, and (2 flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1 standing water depths following the flood, (2 the erosive potential of flowing water, and (3 pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating

  8. Mathematical modelling of flooding at Magela Creek

    International Nuclear Information System (INIS)

    Vardavas, I.

    1989-01-01

    The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills

  9. On the use of InSAR technology to assess land subsidence in Jakarta coastal flood plain

    Science.gov (United States)

    Koudogbo, Fifame; Duro, Javier; Garcia Robles, Javier; Arnaud, Alain; Abidin, Hasanuddin Z.

    2014-05-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. It is situated on the northern coastal alluvial plane of Java which shares boundaries with West Java Province in the south and in the east, and with Banten Province in the west. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. The southern part of the city is hilly. Thirteen major rivers flow through Jakarta to the Java Sea. The Ciliwung River is the most significant river and divides the city West to East. In the last three decades, urban growing of Jakarta has been very fast in sectors as industry, trade, transportation, real estate, among others. This exponential development has caused several environmental issues; land subsidence is one of them. Subsidence in Jakarta has been known since the early part of the 20th century. It is mainly due to groundwater extraction, the fast development (construction load), soil natural consolidation and tectonics. Evidence of land subsidence exists through monitoring with GPS, level surveys and InSAR investigations. InSAR states for "Interferometric Synthetic Aperture Radar". Its principle is based on comparing the distance between the satellite and the ground in consecutive satellite passes over the same area on the Earth's surface. Radar satellites images record, with very high precision, the distance travelled by the radar signal that is emitted by the satellite is registered. When this distance is compared through time, InSAR technology can provide highly accurate ground deformation measurements. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion

  10. Thirty Years Later: Reflections of the Big Thompson Flood, Colorado, 1976 to 2006

    Science.gov (United States)

    Jarrett, R. D.; Costa, J. E.; Brunstein, F. C.; Quesenberry, C. A.; Vandas, S. J.; Capesius, J. P.; O'Neill, G. B.

    2006-12-01

    . When substantial flooding occurs, the USGS mobilizes personnel to collect streamflow data in affected areas. Streamflow data improve flood forecasting and provide data for flood-frequency analysis for floodplain management, design of structures located in floodplains, and related water studies. An important lesson learned is that nature provides environmental signs before and during floods that can help people avoid hazard areas. Important contributions to flood science as a result of the 1976 flood include development of paleoflood methods to interpret the preserved flood-plain stratigraphy to document the number, magnitude, and age of floods that occurred prior to streamflow monitoring. These methods and data on large floods can be used in many mountain-river systems to help us better understand flood hazards and plan for the future. For example, according to conventional flood-frequency analysis, the 1976 Big Thompson flood had a flood recurrence interval of about 100 years. However, paleoflood research indicated the 1976 flood was the largest in about the last 10,000 years in the basin and had a flood recurrence interval in excess of 1,000 years.

  11. Application of Flood Nomograph for Flood Forecasting in Urban Areas

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee

    2018-01-01

    Full Text Available Imperviousness has increased due to urbanization, as has the frequency of extreme rainfall events by climate change. Various countermeasures, such as structural and nonstructural measures, are required to prepare for these effects. Flood forecasting is a representative nonstructural measure. Flood forecasting techniques have been developed for the prevention of repetitive flood damage in urban areas. It is difficult to apply some flood forecasting techniques using training processes because training needs to be applied at every usage. The other flood forecasting techniques that use rainfall data predicted by radar are not appropriate for small areas, such as single drainage basins. In this study, a new flood forecasting technique is suggested to reduce flood damage in urban areas. The flood nomograph consists of the first flooding nodes in rainfall runoff simulations with synthetic rainfall data at each duration. When selecting the first flooding node, the initial amount of synthetic rainfall is 1 mm, which increases in 1 mm increments until flooding occurs. The advantage of this flood forecasting technique is its simple application using real-time rainfall data. This technique can be used to prepare a preemptive response in the process of urban flood management.

  12. A Methodology to Support Decision Making in Flood Plan Mitigation

    Science.gov (United States)

    Biscarini, C.; di Francesco, S.; Manciola, P.

    2009-04-01

    The focus of the present document is on specific decision-making aspects of flood risk analysis. A flood is the result of runoff from rainfall in quantities too great to be confined in the low-water channels of streams. Little can be done to prevent a major flood, but we may be able to minimize damage within the flood plain of the river. This broad definition encompasses many possible mitigation measures. Floodplain management considers the integrated view of all engineering, nonstructural, and administrative measures for managing (minimizing) losses due to flooding on a comprehensive scale. The structural measures are the flood-control facilities designed according to flood characteristics and they include reservoirs, diversions, levees or dikes, and channel modifications. Flood-control measures that modify the damage susceptibility of floodplains are usually referred to as nonstructural measures and may require minor engineering works. On the other hand, those measures designed to modify the damage potential of permanent facilities are called non-structural and allow reducing potential damage during a flood event. Technical information is required to support the tasks of problem definition, plan formulation, and plan evaluation. The specific information needed and the related level of detail are dependent on the nature of the problem, the potential solutions, and the sensitivity of the findings to the basic information. Actions performed to set up and lay out the study are preliminary to the detailed analysis. They include: defining the study scope and detail, the field data collection, a review of previous studies and reports, and the assembly of needed maps and surveys. Risk analysis can be viewed as having many components: risk assessment, risk communication and risk management. Risk assessment comprises an analysis of the technical aspects of the problem, risk communication deals with conveying the information and risk management involves the decision process

  13. Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability

    Directory of Open Access Journals (Sweden)

    Hyomin Kim

    2016-01-01

    Full Text Available Countermeasures to urban flooding should consider long-term perspectives, because climate change impacts are unpredictable and complex. Urban green spaces have emerged as a potential option to reduce urban flood risks, and their effectiveness has been highlighted in notable urban water management studies. In this study, flooded areas in Seoul, Korea, were divided into four flooded area types by cluster analysis based on topographic and physical characteristics and verified using discriminant analysis. After division by flooded area type, logistic regression analysis was performed to determine how the flooding probability changes with variations in green space area. Type 1 included regions where flooding occurred in a drainage basin that had a flood risk management infrastructure (FRMI. In Type 2, the slope was steep; the TWI (Topographic Wetness Index was relatively low; and soil drainage was favorable. Type 3 represented the gentlest sloping areas, and these were associated with the highest TWI values. In addition, these areas had the worst soil drainage. Type 4 had moderate slopes, imperfect soil drainage and lower than average TWI values. We found that green spaces exerted a considerable influence on urban flooding probabilities in Seoul, and flooding probabilities could be reduced by over 50% depending on the green space area and the locations where green spaces were introduced. Increasing the area of green spaces was the most effective method of decreasing flooding probability in Type 3 areas. In Type 2 areas, the maximum hourly precipitation affected the flooding probability significantly, and the flooding probability in these areas was high despite the extensive green space area. These findings can contribute towards establishing guidelines for urban spatial planning to respond to urban flooding.

  14. Importance of Small Isolated Wetlands for Herpetofaunal Diversity in Managed, Young Growth Forests in the Coastal Plain of South Carolina

    International Nuclear Information System (INIS)

    Russell, K.R.; Guynn, D.C. Jr.; Hanlin, H.G.

    2002-01-01

    Assessment and comparison of richness, abundance and difference of herpetofauna at five small isolated wetlands located within a commercial forest landscape in the South Carolina Coastal Plain. Data indicates small isolated wetlands are focal points of herpetofaunal richness and abundance in managed coastal plain forest and contribute more to regional biodiversity than is implied by their small size or ephemeral hydrology

  15. Belford proactive flood solutions: scientific evidence to influence local and national policy by multi-purpose runoff management

    Science.gov (United States)

    Wilkinson, M.; Quinn, P. F.; Jonczyk, J.

    2010-12-01

    The increased risk from flooding continues to be of concern to governments all around the world and flood protection is becoming more of a challenge. In the UK, climate change projections indicate more extremes within the weather systems. In addition, there is an increased demand for using land in urban areas beside channels. These developments both put pressure on our flood defences and there is a need for new solutions to managing flood risk. There is currently support within the England and Wales Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features (referred to here as Runoff Attenuation Features, or RAFs). However the effectiveness of RAFs are not known at the catchment scale since they have only really been trailed at the plot scale. These types of mitigation measure can offer benefits to water quality and create ecological habitats. The village of Belford, situated in the Belford Burn catchment (6km2), northern England, has suffered from numerous flood events. In addition, the catchment suffers from water quality issues within the channel and high sediment loads are having an impact on the ecology of the nearby estuary. There was a desire by the Local Environment Agency Flood Levy team to deliver an alternative catchment-based solution to the problem. With funding from the Northumbria Regional Flood Defence Committee, the Environment Agency North East Local Levy team and Newcastle University have created a partnership to address the flood problem trailing soft engineered RAF’s at the catchment scale. The partnership project, “Belford proactive flood solutions” is testing novel techniques in reducing flood risk in small sub-catchments for the Environment Agency. The project provides the information needed to understand whether the multi-functional mitigation measures are working at the sub-catchment scale. Data suggest that the mitigation measures present have delayed the

  16. Shock events and flood risk management: a media analysis of the institutional long-term effects of flood events in the Netherlands and Poland

    Directory of Open Access Journals (Sweden)

    Maria Kaufmann

    2016-12-01

    Full Text Available Flood events that have proven to create shock waves in society, which we will call shock events, can open windows of opportunity that allow different actor groups to introduce new ideas. Shock events, however, can also strengthen the status quo. We will take flood events as our object of study. Whereas others focus mainly on the immediate impact and disaster management, we will focus on the long-term impact on and resilience of flood risk governance arrangements. Over the last 25 years, both the Netherlands and Poland have suffered several flood-related events. These triggered strategic and institutional changes, but to different degrees. In a comparative analysis these endogenous processes, i.e., the importance of framing of the flood event, its exploitation by different actor groups, and the extent to which arrangements are actually changing, are examined. In line with previous research, our analysis revealed that shock events test the capacity to resist and bounce back and provide opportunities for adapting and learning. They "open up" institutional arrangements and make them more susceptible to change, increasing the opportunity for adaptation. In this way they can facilitate a shift toward different degrees of resilience, i.e., by adjusting the current strategic approach or by moving toward another strategic approach. The direction of change is influenced by the actors and the frames they introduce, and their ability to increase the resonance of the frame. The persistence of change seems to be influenced by the evolution of the initial management approach, the availability of resources, or the willingness to allocate resources.

  17. Geostatistical analysis of the flood risk perception queries in the village of Navaluenga (Central Spain)

    Science.gov (United States)

    Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria

    2017-04-01

    Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and

  18. Flood vulnerability, local perception and gender role judgment using multivariate analysis: A problem-based “participatory action to Future Skill Management” to cope with flood impacts

    Directory of Open Access Journals (Sweden)

    M.A. Rakib

    2017-12-01

    Full Text Available Flood impacts and social vulnerability are substantial threats for the sustainable development of the developing world. This study focuses on some particular points of flood impacts and the local concept towards existing management capacity. Additionally, significant focus was given to gender roles and how they may impact measures that aim towards reducing flood risks. Both qualitative and quantitative techniques were applied during the research, in order to understand the perception of the char-land communities on natural hazards, social crisis, resource accessibility, climatic uncertainty and the gender role to cope with flood consequences. Concurrently the questionnaire survey and focus group discussion (FGD was performed among the local people. This study revealed that majority of the people was directly threatened by the destructive consequences of flood hazards, which in turn, badly influenced the household economies, alongside its education, security and infrastructural prospects. Some decades ago, the application of indigenous techniques was deemed successful as the communities managed to effectively reduce the risk involved with potential floods. However, now the solution is no longer clear as it is disturbed by external climate components. Results showed the vulnerability of the local communities in terms of knowledge, resource access, communication system, proper information dissemination, health, and livelihood. The gender variability is believed to have significant value in terms of flood disaster risk reduction, household development, and family caring activities. Principal component analysis (PCA and cluster analysis (CA has clearly identified the gender role in the char-land community. The women's activities are profoundly focused in terms of the flood risk management, and the families generally do not properly appreciate the value of women and their role. However, the problem-based “Participatory Action to Future Skill

  19. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    Science.gov (United States)

    Kochilakis, Giorgos; Poursanidis, Dimitris; Chrysoulakis, Nektarios; Varella, Vassiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas; Papathanasiou, Chrysoula; Karavokyros, George; Aivazoglou, Maria; Makropoulos, Christos; Mimikou, Maria

    2016-01-01

    A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement "what-if" scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of "what-if" scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its robust architecture and its

  20. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    Directory of Open Access Journals (Sweden)

    Kochilakis Giorgos

    2016-01-01

    Full Text Available A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement “what-if” scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of “what-if” scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its

  1. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  2. Climatic and hydrologic aspects of the 2008 Midwest floods

    Science.gov (United States)

    Budikova, D.; Coleman, J.; Strope, S. A.

    2010-12-01

    Between May and June 2008 the Midwest region of the United States (U.S.) experienced record flooding. The event was produced by distinct hydroclimatic conditions that included saturated antecedent soil moisture conditions and atmospheric circulation that guided moist air from the Gulf of Mexico into the area between late May and mid-June. The latter included a well-developed trough over the central/west U.S., a strong Great Plains Low Level Jet (GPLLJ), and unseasonably strong westerlies that promoted upper level divergence in regions of positive vorticity advection. The flooding coincided with a strongly negative phase of the North Atlantic Oscillation linked to the strength of the GPLLJ. The atmospheric flow contributed to flooding within three river basins across nine states. Iowa, southern Wisconsin, and central Indiana located within the Upper Mississippi River Basin (UMRB) and the Wabash River Basin were most impacted and also recorded the greatest anomalies in rainfall. Record rainfall, persistent multi-day precipitation events, high frequency of localized high-intensity rainfall events all contributed to the severity of the flooding. Conditions peaked between May 21 and June 13 when rain fell somewhere within the region each day. River discharge rates reached record levels in June at many locations; return periods throughout Iowa, southern Wisconsin and in central Indiana were estimated to exceed 100 years, and often times 200 years. Record river stage levels were observed during this time in similar areas. Conditions began to recover into July and August. The timing of occurrence of the precipitation and hydrological anomalies towards late spring and into early summer in the Midwest was rather unusual. The 2008 flood event occurred 15 years after the infamous 1993 event. The importance of its occurrence is underscored by the observed increasing trends in extreme and flood-related precipitation characteristics during the 20th century and the anticipated

  3. Analysis of characteristic of flood evolution in Weihe middle and lower reaches in 2003

    International Nuclear Information System (INIS)

    Xinhui Jiang; Shiqing Huo; Yuebin Hu; Suqin Xu

    2004-01-01

    Due to the effects of continual strong rainfall, 4 floods are generated in partial area of upper and middle reaches of Weihe, the largest branch in Yellow River, from Aug. 26 to Sep. 22 in 2003. The biggest flood peak of Huaxian station, which is 3570 m 3 /s, occurred 11:00 in Sep. 1. It is the 33 rd among all historical biggest flood peaks, but the stage, 342.76 m, is the 1 st. During the evolution process of the flood, because of the effects of flood plain, inverse of branch flood, levee breach of partial branch etc. the largest cut down of flood peak of Lintong and Huaxian is 53.1 %, and the longest travel time is 52.3 h. Both are 1 st in history. The evolution characteristics of the flood and the most reasons of large cut down and long travel time are analyzed in this paper.(Author)

  4. Responses of an Agricultural Soil Microbiome to Flooding with Seawater after Managed Coastal Realignment

    Directory of Open Access Journals (Sweden)

    Kamilla S. Sjøgaard

    2018-01-01

    Full Text Available Coastal areas have become more prone to flooding with seawater due to climate-change-induced sea-level rise and intensified storm surges. One way to cope with this issue is by “managed coastal realignment”, where low-lying coastal areas are no longer protected and instead flooded with seawater. How flooding with seawater impacts soil microbiomes and the biogeochemical cycling of elements is poorly understood. To address this, we conducted a microcosm experiment using soil cores collected at the nature restoration project site Gyldensteen Strand (Denmark, which were flooded with seawater and monitored over six months. Throughout the experiment, biogeochemical analyses, microbial community fingerprinting and the quantification of marker genes documented clear shifts in microbiome composition and activity. The flooding with seawater initially resulted in accelerated heterotrophic activity that entailed high ammonium production and net removal of nitrogen from the system, also demonstrated by a concurrent increase in the abundances of marker genes for ammonium oxidation and denitrification. Due to the depletion of labile soil organic matter, microbial activity decreased after approximately four months. The event of flooding caused the largest shifts in microbiome composition with the availability of labile organic matter subsequently being the most important driver for the succession in microbiome composition in soils flooded with seawater.

  5. 41 CFR 102-2.140 - What elements of plain language appear in the FMR?

    Science.gov (United States)

    2010-07-01

    ... MANAGEMENT REGULATION SYSTEM Plain Language Regulatory Style § 102-2.140 What elements of plain language... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What elements of plain language appear in the FMR? 102-2.140 Section 102-2.140 Public Contracts and Property Management Federal...

  6. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  7. Stakeholders and public involvement for flood protection: traditional river management organisations for a better consideration of local knowledge?

    Science.gov (United States)

    Utz, Stephan; Lane, Stuart; Reynard, Emmanuel

    2016-04-01

    This research explores participatory processes in the domain of river management in Switzerland. The main objective is to understand how traditional, highly participatory, local organisations for flood protection have been institutionalised into current river management policy, and to what extent this has impacted on wider participatory processes of producing knowledge. Traditionally, flood protection strategies have been based upon scientific knowledge but have often ignored the capacities of local actors to contribute to the development of the policy. Thus, there may be a gap between scientists, stakeholders and the public that favours controversies and leads to opposition to flood protection projects. In order to reduce this gap and to increase incorporation of local knowledge, participatory processes are set up. They are considered as allowing the integration of all the actors concerned by flood risks to discuss their positions and to develop alternative solutions. This is a particularly important goal in the Swiss political system where direct democracy (the possibility of calling the decision of any level of government into question through a popular vote) means that a reasonable level of project acceptance is a necessary element of project. In order to support implementation of participatory processes, federal funding includes a special grant to cover the additional costs due to these actions. It is considered that, since its introduction in 2008, this grant certainly furthered participatory processes for flood protection projects and fostered water management policy implementation. However, the implication of stakeholders and public in decision-making processes is much well-established than modern river management often assumes. In some regions, flood protection tasks have been traditionally assumed by local organisations such as dyke corporations (DCs). These comprise land and property owners who are DC members and have to participate in flood protection

  8. [Aboveground biomass of Tamarix on piedmont plain of Tianshan Mountains south slope].

    Science.gov (United States)

    Zhao, Zhenyong; Wang, Ranghui; Zhang, Huizhi; Wang, Lei

    2006-09-01

    Based on the geo-morphological and hydro-geological characteristics, the piedmont plain of Tianshan Mountains south slope was classified into 4 geo-morphological belts, i.e., flood erosion belt, groundwater spill belt, delta belt, and the joining belt of piedmont plain and Tarim floodplain. A field investigation on the Tamarix shrub in this region showed that there was a significant difference in its aboveground biomass among the four belts, ranged from 1428.53 kg x hm(-2) at groundwater spill belt to 111.18 kg x hm(-2) at the joining belt of piedmont plain and Tarim floodplain. The main reason for such a big difference might be the different density of Tamarix shrub on different belts. Both the Tamarix aboveground biomass and the topsoil's salinity were decreased with increasing groundwater level. Groundwater level was the main factor limiting Tamarix growth, while soil salinity was not.

  9. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    Science.gov (United States)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  10. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    Science.gov (United States)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  11. Economic analysis of adaptive strategies for flood risk management under climate change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.

    2017-01-01

    Climate change requires reconsideration of flood risk management strategies. Cost-benefit analysis (CBA), an economic decision-support tool, has been widely applied to assess these strategies. This paper aims to describe and discuss probabilistic extensions of CBA to identify welfare-maximising

  12. A Review on Applications of Remote Sensing and Geographic Information Systems (GIS in Water Resources and Flood Risk Management

    Directory of Open Access Journals (Sweden)

    Xianwei Wang

    2018-05-01

    Full Text Available Water is one of the most critical natural resources that maintain the ecosystem and support people’s daily life. Pressures on water resources and disaster management are rising primarily due to the unequal spatial and temporal distribution of water resources and pollution, and also partially due to our poor knowledge about the distribution of water resources and poor management of their usage. Remote sensing provides critical data for mapping water resources, measuring hydrological fluxes, monitoring drought and flooding inundation, while geographic information systems (GIS provide the best tools for water resources, drought and flood risk management. This special issue presents the best practices, cutting-edge technologies and applications of remote sensing, GIS and hydrological models for water resource mapping, satellite rainfall measurements, runoff simulation, water body and flood inundation mapping, and risk management. The latest technologies applied include 3D surface model analysis and visualization of glaciers, unmanned aerial vehicle (UAV video image classification for turfgrass mapping and irrigation planning, ground penetration radar for soil moisture estimation, the Tropical Rainfall Measuring Mission (TRMM and the Global Precipitation Measurement (GPM satellite rainfall measurements, storm hyetography analysis, rainfall runoff and urban flooding simulation, and satellite radar and optical image classification for urban water bodies and flooding inundation. The application of those technologies is expected to greatly relieve the pressures on water resources and allow better mitigation of and adaptation to the disastrous impact of droughts and flooding.

  13. The spatial turn and the scenario approach in flood risk management—Implementing the European Floods Directive in the Netherlands

    Directory of Open Access Journals (Sweden)

    Leon J. van Ruiten

    2016-10-01

    Full Text Available The European Floods Directive requires member states to prepare flood risk management plans for their river catchments. The first generation of those plans was just developed at the end of 2015; the next revision is due in 2021. The new instrument institutionalizes an ongoing paradigm shift from flood protection to flood risk management in Europe. It implies two major governance challenges: the spatial turn and the scenario approach. This contribution studies the implementation of these two governance challenges in the Netherlands, where the paradigm shift is considered to be advanced. Therefore, the spatial turn and the scenario approach are operationalized. The spatial turn consists of three aspects: space for the river, an integrated approach, and beyond structural measures. The scenario approach introduces the vulnerability of society in flood risk management. It is discussed how the challenges of spatial turn and the scenario approach—and thus the shift towards flood risk management—have an effect on the prevailing modes of governance in water management in the Netherlands. This helps understand the tensions and frictions with implementing the plans, but also illustrates how the European Floods Directive institutionalizes the shift towards flood risk management. The analytical scheme, consists mainly of operationalization, can foster future comparative studies with other countries and over time, to trace the changes in approaches to flood risks in Europe.

  14. Public perception of flood risks, flood forecasting and mitigation

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2005-01-01

    Full Text Available A multidisciplinary and integrated approach to the flood mitigation decision making process should provide the best response of society in a flood hazard situation including preparation works and post hazard mitigation. In Slovenia, there is a great lack of data on social aspects and public response to flood mitigation measures and information management. In this paper, two studies of flood perception in the Slovenian town Celje are represented. During its history, Celje was often exposed to floods, the most recent serious floods being in 1990 and in 1998, with a hundred and fifty return period and more than ten year return period, respectively. Two surveys were conducted in 1997 and 2003, with 157 participants from different areas of the town in the first, and 208 in the second study, aiming at finding the general attitude toward the floods. The surveys revealed that floods present a serious threat in the eyes of the inhabitants, and that the perception of threat depends, to a certain degree, on the place of residence. The surveys also highlighted, among the other measures, solidarity and the importance of insurance against floods.

  15. Managing runoff and flow pathways in a small rural catchment to reduce flood risk with other multi-purpose benefits

    Science.gov (United States)

    Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine

    2010-05-01

    From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in

  16. Compensation in Flood Risk Management with a Focus on Shifts in Compensation Regimes Regarding Prevention, Mitigation and Disaster Management

    Directory of Open Access Journals (Sweden)

    Willemijn van Doorn-Hoekveld

    2014-05-01

    Full Text Available In the Netherlands, the history of water management and water safety especially, goes back centuries. Compensation of damage caused by lawful acts of an administrative body (no-fault liability is developed mostly in the field of water management and has quite a long history as well. The compensation of no-fault liability in the Netherlands since its introduction has been part of public law and not of civil law. This does not mean that the administration cannot be held liable for wrongful actions, in which case private law is applied. There is a strict distinction between wrongful and lawful acts of the administration: both can cause damage, but the way they are compensated differs: for lawful acts, public law is applied and for wrongful acts civil law (tort law is applied. This article only considers public law, because it is the most important branch of law for the compensation of damage caused in the field of water safety. The field of water safety and flood risk management has seen many new developments, of which integration is the latest one. However, the course of flood risk management tends towards more segmentation of responsibilities. No-fault liability and other questions of compensation are also areas that are developing towards more integration. Assessment of  no-fault liability in the field of water safety management cannot be made without taking into consideration the historical development of the responsibility of the state for water management tasks in general. In this contribution, the author addresses the historical development of responsibilities of the state for water management tasks, recent developments in this area and the system of no-fault liability regarding measures to prevent flooding.

  17. Regional Sediment Management (RSM) Principles in Flood Recovery: Incorporating RSM after the 2011 Missouri River Flood

    Science.gov (United States)

    2013-06-01

    project also included adding seepage blankets in mul- tiple areas along the landward side of the lev- ee. At the Upper Hamburg Chute site, less than...that served as the downstream shore of the spillway pond. The pond is part of a recreation area and serves as a wa- ter intake for the Garrison fish ...Corps of Engineers (USACE) Re- gional Sediment Management (RSM) principles into a wide variety of projects as part of flood recov- ery and

  18. Identification of stakeholder perspectives on future flood management in the Rhine basin using Q methodology

    Science.gov (United States)

    Raadgever, G. T.; Mostert, E.; van de Giesen, N. C.

    2008-08-01

    This article identifies different stakeholder perspectives on future flood management in the downstream parts of the Rhine basin in Germany and The Netherlands. The perspectives were identified using Q methodology, which proved to be a good, but time-intensive, method for eliciting and analyzing stakeholder perspectives in a structured and unbiased way. Three shared perspectives were found: A) "Anticipation and institutions", B) "Space for flooding" and C) "Knowledge and engineering". These three perspectives share a central concern for the provision of safety against flooding, but disagree on the expected autonomous developments and the preferred measures. In perspective A, the expected climate change and economic growth call for fast action. To deal with the increasing flood risk, mostly institutional measures are proposed, such as the development of a stronger basin commission. In perspective B, an increasing spatial pressure on the river area is expected, and the proposed measures are focused on mitigating damage, e.g., through controlled flooding and compartmentalization. In perspective C, the role of expert knowledge and technological improvements is emphasized. Preferred strategies include strengthening the dikes and differentiation of safety standards. An overview of stakeholder perspectives can be useful in natural resources management for 1) setting the research agenda, 2) identifying differences in values and interests that need to be discussed, 3) creating awareness among a broad range of stakeholders, and 4) developing scenarios.

  19. The Complex Relationship Between Heavy Storms and Floods: Implication on Stormwater Drainage design and Management

    Science.gov (United States)

    Demissie, Y.; Mortuza, M. R.; Moges, E.; Yan, E.; Li, H. Y.

    2017-12-01

    Due to the lack of historical and future streamflow data for flood frequency analysis at or near most drainage sites, it is a common practice to directly estimate the design flood (maximum discharge or volume of stream for a given return period) based on storm frequency analysis and the resulted Intensity-Duration-Frequency (IDF) curves. Such analysis assumes a direct relationship between storms and floods with, for example, the 10-year rainfall expected to produce the 10-year flood. However, in reality, a storm is just one factor among the many other hydrological and metrological factors that can affect the peak flow and hydrograph. Consequently, a heavy storm does not necessarily always lead to flooding or a flood events with the same frequency. This is evident by the observed difference in the seasonality of heavy storms and floods in most regions. In order to understand site specific causal-effect relationship between heavy storms and floods and improve the flood analysis for stormwater drainage design and management, we have examined the contributions of various factors that affect floods using statistical and information theory methods. Based on the identified dominant causal-effect relationships, hydrologic and probability analyses were conducted to develop the runoff IDF curves taking into consideration the snowmelt and rain-on-snow effect, the difference in the storm and flood seasonality, soil moisture conditions, and catchment potential for flash and riverine flooding. The approach was demonstrated using data from military installations located in different parts of the United States. The accuracy of the flood frequency analysis and the resulted runoff IDF curves were evaluated based on the runoff IDF curves developed from streamflow measurements.

  20. Colombia Mi Pronostico Flood Application: Updating and Improving the Mi Pronostico Flood Web Application to Include an Assessment of Flood Risk

    Science.gov (United States)

    Rushley, Stephanie; Carter, Matthew; Chiou, Charles; Farmer, Richard; Haywood, Kevin; Pototzky, Anthony, Jr.; White, Adam; Winker, Daniel

    2014-01-01

    Colombia is a country with highly variable terrain, from the Andes Mountains to plains and coastal areas, many of these areas are prone to flooding disasters. To identify these risk areas NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to construct a digital elevation model (DEM) for the study region. The preliminary risk assessment was applied to a pilot study area, the La Mosca River basin. Precipitation data from the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM)'s near-real-time rainfall products as well as precipitation data from the Instituto de Hidrologia, Meteorologia y Estudios Ambientales (the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM) and stations in the La Mosca River Basin were used to create rainfall distribution maps for the region. Using the precipitation data and the ASTER DEM, the web application, Mi Pronóstico, run by IDEAM, was updated to include an interactive map which currently allows users to search for a location and view the vulnerability and current weather and flooding conditions. The geospatial information was linked to an early warning system in Mi Pronóstico that can alert the public of flood warnings and identify locations of nearby shelters.

  1. Managing flood risks in the Mekong Delta: How to address emerging challenges under climate change and socioeconomic developments

    OpenAIRE

    Hoang, L.P.; Biesbroek, R.; Tri, V.P.D.; Kummu, M.; van Vliet, M.T.H.; Leemans, R.; Kabat, P.; Ludwig, F.

    2018-01-01

    Climate change and accelerating socioeconomic developments increasingly challenge flood-risk management in the Vietnamese Mekong River Delta—a typical large, economically dynamic and highly vulnerable delta. This study identifies and addresses the emerging challenges for flood-risk management. Furthermore, we identify and analyse response solutions, focusing on meaningful configurations of the individual solutions and how they can be tailored to specific challenges using expert surveys, conte...

  2. Applying the Flood Vulnerability Index as a Knowledge base for flood risk assessment

    NARCIS (Netherlands)

    Balica, S-F.

    2012-01-01

    Floods are one of the most common and widely distributed natural risks to life and property worldwide. An important part of modern flood risk management is to evaluate vulnerability to floods. This evaluation can be done only by using a parametric approach. Worldwide there is a need to enhance our

  3. Reconstruction of the 1945 Wieringermeer Flood

    Science.gov (United States)

    Hoes, O. A. C.; Hut, R. W.; van de Giesen, N. C.; Boomgaard, M.

    2013-03-01

    The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. Such reference data can either be historic data, or can be obtained from controlled experiments. The inundation of the Wieringermeer polder in the Netherlands in April 1945 is one of the few examples for which sufficient historical information is available. The objective of this article is to compare the flood simulation with flood data from 1945. The context, the breach growth process and the flood propagation are explained. Key findings for current flood risk management addresses the importance of the drainage canal network during the inundation of a polder, and the uncertainty that follows from not knowing the breach growth parameters. This case study shows that historical floods provide valuable data for the validation of models and reveal lessons that are applicable in current day flood risk management.

  4. Equal distribution of burdens in flood risk management : The application of the 'égalité principle' in the compensation regimes of the Netherlands, Flanders and France

    NARCIS (Netherlands)

    van Doorn-Hoekveld, Willemijn|info:eu-repo/dai/nl/344848752

    2017-01-01

    Flood risk management is an eminent example of a policy field in which the distribution of burdens and benefits takes place. Flood risks are distributed unequally among society and measures that reduce or prevent flood risks also distribute burdens and benefits. Flood risk management measures may

  5. Implementing new flood protection standards: obstacles to adaptive management and how to overcome these

    Directory of Open Access Journals (Sweden)

    Klijn Frans

    2016-01-01

    Full Text Available The Netherlands is updating its flood protection, whilst fully taking into account climate change and socioeconomic development. This translates in ‘anticipatory standards’ which need to be met in 2050, and which apply for the then foreseen climate and economy. Whilst the government maintains to have adopted a policy of adaptive planning and management, the new standards are thus based on one future situation, which qualifies as a ‘high end scenario’ from a flood risk management perspective. The consequences of adopting these new standards are now becoming clear. It is expected that many hundreds of kilometres of primary flood defences need to be reinforced and/or raised, at an estimated investment of about 9-14 billion euros. The many uncertainties about actual future development, however, complicate the decision making about the implementation of individual reinforcement projects: should one aim at immediately meeting the new standard or gradually improve and grow towards it? In this paper we discuss the uncertain decision making context, show that lawfulness (working according to procedures, rules and regulations and expediency (towards a purpose may jeopardize the good intentions of adaptive management, and argue that optimization may not provide the most useful answer to this decision making problem.

  6. Aggradation of Leveed Channels and Their Flood Plains in Arroyo Bottoms

    Science.gov (United States)

    Vincent, K. R.

    2005-12-01

    the emerging flood plain became dominated by silt (or clay) while the levees next to the channel remained dominated by fine or very fine sand. Furthermore, the channel and floodplain aggraded at similar rates and thus had come into geomorphic equilibrium. Vertical accretion of the channel banks, which are the flanks of channel-margin levees, was accomplished by deposition of inclined lamina and very thin beds dominated by silt that have fairly uniform thickness. This may have been promoted by rapid infiltration of stream water into the banks, filtering fine suspended sediment at the solid interface.

  7. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  8. Flood Resilient Systems and their Application for Flood Resilient Planning

    Science.gov (United States)

    Manojlovic, N.; Gabalda, V.; Antanaskovic, D.; Gershovich, I.; Pasche, E.

    2012-04-01

    Following the paradigm shift in flood management from traditional to more integrated approaches, and considering the uncertainties of future development due to drivers such as climate change, one of the main emerging tasks of flood managers becomes the development of (flood) resilient cities. It can be achieved by application of non-structural - flood resilience measures, summarised in the 4As: assistance, alleviation, awareness and avoidance (FIAC, 2007). As a part of this strategy, the key aspect of development of resilient cities - resilient built environment can be reached by efficient application of Flood Resilience Technology (FReT) and its meaningful combination into flood resilient systems (FRS). FRS are given as [an interconnecting network of FReT which facilitates resilience (including both restorative and adaptive capacity) to flooding, addressing physical and social systems and considering different flood typologies] (SMARTeST, http://www.floodresilience.eu/). Applying the system approach (e.g. Zevenbergen, 2008), FRS can be developed at different scales from the building to the city level. Still, a matter of research is a method to define and systematise different FRS crossing those scales. Further, the decision on which resilient system is to be applied for the given conditions and given scale is a complex task, calling for utilisation of decision support tools. This process of decision-making should follow the steps of flood risk assessment (1) and development of a flood resilience plan (2) (Manojlovic et al, 2009). The key problem in (2) is how to match the input parameters that describe physical&social system and flood typology to the appropriate flood resilient system. Additionally, an open issue is how to integrate the advances in FReT and findings on its efficiency into decision support tools. This paper presents a way to define, systematise and make decisions on FRS at different scales of an urban system developed within the 7th FP Project

  9. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    Science.gov (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  10. Disaster management in flash floods in Leh (Ladakh: A case study

    Directory of Open Access Journals (Sweden)

    Preeti Gupta

    2012-01-01

    Full Text Available Background: On August 6, 2010, in the dark of the midnight, there were flash floods due to cloud burst in Leh in Ladakh region of North India. It rained 14 inches in 2 hours, causing loss of human life and destruction. The civil hospital of Leh was badly damaged and rendered dysfunctional. Search and rescue operations were launched by the Indian Army immediately after the disaster. The injured and the dead were shifted to Army Hospital, Leh, and mass casualty management was started by the army doctors while relief work was mounted by the army and civil administration. Objective: The present study was done to document disaster management strategies and approaches and to assesses the impact of flash floods on human lives, health hazards, and future implications of a natural disaster. Materials and Methods: The approach used was both quantitative as well as qualitative. It included data collection from the primary sources of the district collectorate, interviews with the district civil administration, health officials, and army officials who organized rescue operations, restoration of communication and transport, mass casualty management, and informal discussions with local residents. Results: 234 persons died and over 800 were reported missing. Almost half of the people who died were local residents (49.6% and foreigners (10.2%. Age-wise analysis of the deaths shows that the majority of deaths were reported in the age group of 25-50 years, accounting for 44.4% of deaths, followed by the 11-25-year age group with 22.2% deaths. The gender analysis showed that 61.5% were males and 38.5% were females. A further analysis showed that more females died in the age groups <10 years and ≥50 years. Conclusions: Disaster preparedness is critical, particularly in natural disasters. The Army′s immediate search, rescue, and relief operations and mass casualty management effectively and efficiently mitigated the impact of flash floods, and restored normal

  11. The European Flood Risk Directive and Ethics

    NARCIS (Netherlands)

    Mostert, E.; Doorn, N.

    2012-01-01

    The European Flood risk directive (2007/60/EC) requires EU Member States to review their system of flood risk management. In doing so, they will have to face ethical issues inherent in flood risk management. This paper discusses three such issues, using examples from the Netherlands. These issues

  12. Climate change adaptation options for sustainable management of agriculture in the Eastern Lower Danube Plain, Romania

    Science.gov (United States)

    Popovici, Elena-Ana; Sima, Mihaela; Balteanu, Dan; Dragota, Carmen-Sofia; Grigorescu, Ines; Kucsicsa, Gheorghe

    2013-04-01

    The current study was carried out within the FP7 ECLISE project in the Eastern Lower Danube Plain (Bărăgan Plain), one of the major agricultural areas in Romania. In this region, climate change signals are becoming more evident being predominantly characterized by increasing temperatures, decreasing of precipitations and intensification of extreme events in terms of frequency, intensity and duration. Over the past decades, the effects of extreme climatic phenomena on crop production have been ever more severe (very low outputs in the droughty years, significant crop losses during flooding periods, hailstorms, etc.). Concurrently, these effects have been the result of a whole range of complex interactions with other environmental, social, economic and political factors over the post-communist period. Using questionnaires survey for small individual households and large agricultural farms, focus group interviews and direct field observation, this study analyses the farmers' perception in terms of climate change, the impact of climate change on agriculture and how the farmers react and adapt to these changes. The current study have revealed that all farmers believe drought as being by far the most important climatic factor with major impact on agricultural production, followed by acid rains, hail storms and ground frost, facts evidenced also by the climatic diagnosis of the region. The majority of respondents have taken adaptation agricultural measures in response to changes in climate conditions (drought resistant seeds, modern technology to keep the moisture in the soil, etc.), but they consider that a national strategy for mitigating the effects of climate change would be more effective in this respect. Also, in order to correlate the farmers' perception of climate change and climatic factors, the authors used and processed a wide range of meteorological data (daily, monthly and annual from the most representative meteorological stations in the study-area), as

  13. Adjustable Robust Strategies for Flood Protection

    NARCIS (Netherlands)

    Postek, Krzysztof; den Hertog, Dick; Kind, J.; Pustjens, Chris

    2016-01-01

    Flood protection is of major importance to many flood-prone regions and involves substantial investment and maintenance costs. Modern flood risk management requires often to determine a cost-efficient protection strategy, i.e., one with lowest possible long run cost and satisfying flood protection

  14. Pittsfield Local Flood Protection, West Branch and Southwest Branch, Housatonic River, Pittsfield, Massachusetts. Detailed Project Report for Water Resources Development.

    Science.gov (United States)

    1980-10-01

    a bakery , a gas station, and the Linden Street bridge were flooded during the March 1977 storm. Flooding also occurred on the Southwest Branch...and service station, one bakery , and five other commercial establishments. Most of these structures are not suited to being elevated above the design...of a shopping plaza and a fast-food franchise in the flood plain on West Housatonic Street (Route 20). The following three alternate plans of

  15. Hydraulic description of a flood event with optical remote sensors: a constructive constraint on modelling uncertainties

    Science.gov (United States)

    Battiston, Stéphanie; Allenbach, Bernard

    2010-05-01

    The exceptional characteristics of the December 2003 Rhône flood event (particularly high water flows, extent of the affected area, important damages especially in the region of Arles) make it be considered as a reference flood episode of this French river and a very well-known event. During the crisis, the International Charter "Space and Major Disasters" was triggered by the French Civil Protection for the rapid mapping of the flooding using Earth Observation imagery in order to facilitate crisis operations. As a result, more than 60 satellite images covering the flood were acquired over a 10 days period following the peak flow. Using the opportunity provided by this incomparable data coverage, the French Ministry of the Environment ordered a study on the evaluation of remote sensing's potential benefits for flood management. One of the questions asked by the risk managers was: what type of flood information can be provided by the different remote sensing platforms? Elements of response were delivered mainly in the form of a comprehensive compilation of maps and illustrations, displaying the main hydraulic elements (static ones as well as dynamic ones), initially listed and requested by hydrologists (more precisely, by a regional engineering society specialised in hydraulics and hydrology and in charge of a field campaign during the event), observed on different optical images of the flood event having affected the plain between Tarascon (upstream) and Arles (downstream). It is seen that a careful mapping of all flood traces visible on remote sensing event imagery - apparent water, moisture traces, breaches, overflows, stream directions, impermeable boundaries … - delivers a valuable vision of the flood's occurrence combining accuracy and comprehensiveness. In fact, optical imagery offers a detailed vision of the event : moisture traces complete flood traces extent; the observation of draw-off directions through waterproof barriers reveals hydraulic

  16. Advancing Coordination Between DRM and CCA in Integrated Flood Risk Management

    DEFF Research Database (Denmark)

    Jebens, Martin; Sørensen, Carlo Sass

    Flood hazards in coastal regions induce risks toward lives, property, economy and the environment. In need of sustainable and holistic actions to reduce risks, these should include innovative Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) measures. While differing on important...... flood events to exert pressure on the national government, and in a top-down approach the government could identify the needs among the civil society to include these in the decision-making process.......-structural measures is hampered by lack in coordination that should be improved to agree e.g. on an acceptable risk definition and to avoid duplicating efforts. To advance awareness and coordination between DRM and CCA and to improve measures, a bottom-up approach could by initiated by civil society using recent...

  17. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    Science.gov (United States)

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  18. Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate

    Science.gov (United States)

    Mullan, Donal; Vandaele, Karel; Boardman, John; Meneely, John; Crossley, Laura H.

    2016-10-01

    Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.

  19. 'Are you prepared?' Representations and management of floods in Lomanikoro, Rewa (Fiji).

    Science.gov (United States)

    Nolet, Emilie

    2016-10-01

    The islands of Fiji, in the Western Pacific, are exposed to a wide range of natural hazards. Tropical storms and associated floods are recurring natural phenomena, but it has been regularly alleged that Fijians lack preparation, over-rely on state assistance in post-disaster situations or engage in risky behaviours that aggravate the negative impact of floods. Risk reduction strategies, which are now implemented by government authorities and international organisations, heavily promote the principle of 'community preparedness'. Both community awareness programmes and capacity-building programmes are conducted throughout the country in the most vulnerable communities. This paper analyses how the inhabitants of Lomanikoro village, in the low areas of the Rewa Delta, perceive and manage existing flood risks. It examines social and cultural factors that contribute to shape risk response locally-in particular, why villagers may be reluctant to adopt some recommended preparedness measures and resettle in higher, safer zones. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  20. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    NARCIS (Netherlands)

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of

  1. Of floods, sandbags and simulations: Urban resilience to natural disasters and the performance of disaster management organisations under change.

    Science.gov (United States)

    Dressler, Gunnar; Mueller, Birgit; Frank, Karin; Kuhlicke, Christian

    2015-04-01

    Natural disasters and in particular floods have become a strong threat to urban communities in the last decades. In just eleven years (2002, 2013) two centenary river floods have hit Eastern Germany, causing damages of 9.1 billion € (2002) and 6.7 billion € (2013, first estimate), making them the most costly flood events in German history. Many cities in the Free State of Saxony that were strongly hit by both floods are additionally challenged by demographic change with an ageing society and outmigration leading to population shrinkage. This also constrains the coping capacity of disaster management services, especially those of volunteer-based disaster management organisations such as fire brigades, leading to an increased vulnerability of the community at risk. On the other hand, new technologies such as social media have led to rapid information spread and self-organisation of tremendous numbers of civil volunteers willing to help. How do responsible organisations deal with the challenges associated with demographic change, as well as with expected increases in flood frequency and intensity, and what strategies could enhance their performance in the future? To explore these questions, we developed an agent-based simulation model. It is based on socio-demographic settings of the community, communication and coordination structures of disaster management as well as transportation infrastructure for resources and emergency forces. The model is developed in exchange with relevant stakeholders including experts of local disaster management organisations and authority representatives. The goal of the model is to a) assess the performance of disaster management organisations and determine performance limits with respect to forecast lead times and respective coping times of disaster management organisations and b) use it as a discussion tool with these organisations and authorities to identify weak points as well as new options and strategies to ensure protection

  2. The framing of two major flood episodes in the Irish print news media: Implications for societal adaptation to living with flood risk.

    Science.gov (United States)

    Devitt, Catherine; O'Neill, Eoin

    2017-10-01

    Societal adaptation to flooding is a critical component of contemporary flood policy. Using content analysis, this article identifies how two major flooding episodes (2009 and 2014) are framed in the Irish broadsheet news media. The article considers the extent to which these frames reflect shifts in contemporary flood policy away from protection towards risk management, and the possible implications for adaptation to living with flood risk. Frames help us make sense of the social world, and within the media, framing is an essential tool for communication. Five frames were identified: flood resistance and structural defences, politicisation of flood risk, citizen as risk manager, citizen as victim and emerging trade-offs. These frames suggest that public debates on flood management do not fully reflect shifts in contemporary flood policy, with negative implications for the direction of societal adaptation. Greater discussion is required on the influence of the media on achieving policy objectives.

  3. Urban floods: a case study in the Savigliano area (North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Audisio

    2011-11-01

    Full Text Available Flood processes and effects are examined, concerning two rivers in an urbanized area in North-Western Italy (Piedmont – Cuneo Plain. In May 2008, some areas in Northern Italy were struck by intense and persistent rainfall. In the Cuneo province (Southern Piedmont, floodplain with some urban areas was inundated over ca. ten square kilometres, and the city of Savigliano (about 21 000 inhabitants was particularly hit by flood. A purposely-made historical research has evidenced approximately fifty flood events as having occurred since 1350 in the Savigliano area. Based upon historical data, both documents and maps, GIS (Geographical Information System technique and field surveys were used to quantitatively assess the growing urbanization of the city and to describe flood processes and effects over years. This work aims to describe the dynamic behaviour of the 2008 flood, also comparing it to past events, in particular those that occurred in 1896. It is emphasized how the knowledge of past events can be helpful in reducing urban flooding.

  4. Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure

    Science.gov (United States)

    Tsai, C.; Yeh, J. J. J.

    2017-12-01

    A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.

  5. The Rieti Land Reclamation Authority relevance in the management of surface waters for the irrigation purposes of the Rieti Plain (Central Italy

    Directory of Open Access Journals (Sweden)

    Lucio Martarelli

    2016-09-01

    Full Text Available The Rieti Plain is crowned by calcareous-marly reliefs (Rieti and Sabini Mountains and represents an intra-Apennine Plio- Quaternary alluvial and fluvial-lacustrine basin formed after multistage extensional tectonic processes. This territory presents huge amounts of water resources (Velino and Turano rivers; several springs; Lungo and Ripasottile lakes, relics of ancient Lacus Velinus. The aquifers occurring in the reliefs often have hydraulic continuity with the Rieti plain groundwater (detected at about 1-4 m below ground surface, which has general flow directions converging from the reliefs to the lake sector. Hydraulic exchanges between groundwater and surface waters are variable in space and time and play a relevant role for groundwater resource distribution. The Rieti Land Reclamation Authority was instituted in 1929 by Royal Decree N. 34171-3835, and integrates eight former authorities, dating the end of 1800s. It contributes to maintain the reclamation actions in the Rieti Plain, which started with the realization of the Salto and Turano artificial reservoirs, along two left tributaries of Velino River. The hydroelectric energy production purposes struggle with the reclamation and flood mitigation activities in the plain. The Land Reclamation Authority actuated the Integrated Reclamation General Project through the realization of pumping stations, connection and drainage canals, forestry-hydraulic works, rural roads, movable dams along Velino River and irrigation ditches. The irrigation activities, granted by the derivation of 5 m3/s from the Velino River, are carried out through 194,000 hectares within the territory of 42 municipalities of the Rieti Province. The Rieti Land Reclamation Authority contributes to the irrigation needs and to the environmental and hydrogeological protection and monitoring.

  6. Integration of social vulnerability into emergency management plans: designing of evacuation routes against flood disasters

    Science.gov (United States)

    Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres

    2017-04-01

    Flash floods are highly spatio-temporal localized flood events characterized by reaching a high peak flow in a very short period of time, i.e., generally with times of concentration lower than six hours. Its short duration, which limits or even voids any warning time, means that flash floods are considered to be one of the most destructive natural hazards with the greatest capacity to generate risk, either in terms of the number of people affected globally or the proportion of individual fatalities. The above highlights the importance of a realistic and appropriate design of evacuation strategies in order to reduce flood-related losses, being evacuation planning considered of critical importance for disaster management. Traditionally, evacuation maps have been based on flood-prone areas, shelters or emergency residences location and evacuation routes information. However, evacuation plans rarely consider the spatial distribution of vulnerable population (i.e., people with special needs, mobility constraints or economic difficulties), which usually require assistance from emergency responders. The goal of this research is to elaborate an evacuation map against the occurrence of flash floods by combining geographic information (e.g. roads, health facilities location, sanitary helicopters) and social vulnerability patterns, which are previously obtained from socioeconomic variables (e.g. population, unemployment, dwelling characteristics). To do this, ArcGis Network Analyst tool is used, which allows to calculate the optimal evacuation routes. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2). Urban areas prone to flash flooding are identified taking into account the following requirements: i) city centers are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1; ii) city centers are potentially affected by flash floods; and iii) city centers are affected by an area with low or exceptional probability

  7. Tidal River Management (TRM and Tidal Basin Management (TBM: A case study on Bangladesh

    Directory of Open Access Journals (Sweden)

    Talchabhadel Rocky

    2016-01-01

    Full Text Available Bangladesh is the biggest delta of the world. Construction of numbers of polders is one of the flood resilient approach. But the presence of coastal polders de-linked the flood plain. The siltation in river causes riverbeds to become higher than the adjacent crop lands, and vast area under the polders became permanently water logged rendering large tract of land uncultivable. The current practice is temporarily de-poldering by cutting embankment. This is a natural water management process with very little human interventions but it needs strong participation and consensus with a great deal of sacrifice by the stakeholders for a specific period (3 to 5 years or even more[1]. An attempt has been made to study the phenomena of tidal basin management reviewing some secondary data and processes involved in successfully operated tidal basins of Bangladesh. And preliminary laboratory experiments are carried out to precisely look into the suspended sediment transport. With varying outflow discharge and sediment supply, the transport processes are investigated. 3D sediment transport model developed using openFOAM has good agreement with experimental result and can be used to better understand effectiveness of tidal basin management.

  8. Probabilistic Flood Defence Assessment Tools

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available The WTI2017 project is responsible for the development of flood defence assessment tools for the 3600 km of Dutch primary flood defences, dikes/levees, dunes and hydraulic structures. These tools are necessary, as per January 1st 2017, the new flood risk management policy for the Netherlands will be implemented. Then, the seven decades old design practice (maximum water level methodology of 1958 and two decades old safety standards (and maximum hydraulic load methodology of 1996 will formally be replaced by a more risked based approach for the national policy in flood risk management. The formal flood defence assessment is an important part of this new policy, especially for flood defence managers, since national and regional funding for reinforcement is based on this assessment. This new flood defence policy is based on a maximum allowable probability of flooding. For this, a maximum acceptable individual risk was determined at 1/100 000 per year, this is the probability of life loss of for every protected area in the Netherlands. Safety standards of flood defences were then determined based on this acceptable individual risk. The results were adjusted based on information from cost -benefit analysis, societal risk and large scale societal disruption due to the failure of critical infrastructure e.g. power stations. The resulting riskbased flood defence safety standards range from a 300 to a 100 000 year return period for failure. Two policy studies, WV21 (Safety from floods in the 21st century and VNK-2 (the National Flood Risk in 2010 provided the essential information to determine the new risk based safety standards for flood defences. The WTI2017 project will provide the safety assessment tools based on these new standards and is thus an essential element for the implementation of this policy change. A major issue to be tackled was the development of user-friendly tools, as the new assessment is to be carried out by personnel of the

  9. Long-term changes to flood conditions due to varying management strategies, Rock River, WI

    Science.gov (United States)

    Fredrick, K. C.

    2015-12-01

    The Rock River is a 300-mile tributary of the Mississippi River in southern Wisconsin. Its source is a protected migratory bird habitat called the Horicon National Wildlife Refuge. Below the refuge, the Rock River flows through mostly rural, agricultural areas, with wide floodplain of mixed land use. Between the dam at Horicon and a hydroelectric dam in Watertown, WI, lie the townships of Lebanon, Ashippun, and Ixonia. These rural townships boast productive agricultural lands of mostly corn, soybeans, and alfalfa. Large portions of their land are within the floodplain, underlain by vast expanses of outwash sands and gravels, glaciolacustrine deposits, and tills. Throughout the region, spring floods are common from snowmelt and spring rain. These annual floods may be exacerbated by frozen ground and slow infiltration, making it an accepted part of life for residents. Over the last 8 years, and possibly as many as 20, this segment of the Rock River has seen an increase in flooding both in periodicity and retention of flood waters. Due to the delicate habitat of the wildlife refuge and the commissioned hydroelectric installation at the upper dam in Watertown, the residents and local governments of the Lebanon/Ashippun/Ixonia segment of the river have mostly been left to their own devices to monitor and manage flood events. Lebanon Township has been recording water levels for several years. Recent events at the hydroelectric plant seem to indicate that it may be playing a more important role in the flooding. High water events and flood retention do not correlate well with precipitation for the region. It appears that releases at the dam, or periods of water retention, are driving the long flooding periods upstream. Negative impacts to the region from the flooding include property damage, loss of arable land, and environmental effects.

  10. Natural flood management in Southwell (Nottinghamshire, UK): an interdisciplinary approach in a rural-urban catchment

    Science.gov (United States)

    Wells, Josh; Labadz, Jillian; Islam, Mofa; Smith, Amanda; Disney, Andrew; Thorne, Colin

    2017-04-01

    The town of Southwell (Nottinghamshire, UK) is situated within a rural catchment and has experienced multiple flood events. In summer 2013 an extreme event occurred in which 107.6mm of rain fell within two hours, flooding up to 300 homes. As a result, a voluntary flood action group was established in the community (Southwell Flood Forum). An experimental natural flood management research project has been developed within the Potwell Dyke catchment (above Southwell). This has led to the creation of a catchment partnership of relevant stakeholders (academics, community, statutory bodies, local government and conservation organisations). Prior to intervention, water level monitoring was installed at five locations and flows were gauged for approximately one year. Rainfall data are available from the university weather station within the catchment. Ten large woody debris dams were installed on two of the streams within the catchment in summer 2016. In November, a stream restoration took place to reinstate historic meanders and create online storage in a previously ditched channel reach, together with the construction of five earth bunds in the corners of the fields. These interventions are designed to store and slow water whilst promoting ecological gains. The research takes an interdisciplinary approach. The aims are to assess the extent to which natural food management (NFM) can reduce fluvial flood occurrence but also identify and analyse current barriers to NFM uptake. Interviews with landowners in the catchment have taken place. Practitioners have also been interviewed in order to discuss the barriers to current uptake from an industry perspective. This study therefore not only addresses the evidence gap but also draws upon current barriers to advise future NFM projects. This paper will present preliminary findings from the hydrological monitoring and summarise barriers identified and lessons learned from stakeholder engagement activities.

  11. Climate change, uncertainty and investment in flood risk reduction

    OpenAIRE

    Pol, van der, T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies. Chapter 2 provides an overview of cost-benefit analysis (CBA) of flood risk management strategies under climate change uncertainty and new information. CBA is applied to determine optimal dike height...

  12. Classification and assessment of water bodies as adaptive structural measures for flood risk management planning.

    Science.gov (United States)

    McMinn, William R; Yang, Qinli; Scholz, Miklas

    2010-09-01

    Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders. 2010 Elsevier Ltd. All rights reserved.

  13. Exploring local risk managers' use of flood hazard maps for risk communication purposes in Baden-Württemberg

    Directory of Open Access Journals (Sweden)

    S. Kjellgren

    2013-07-01

    Full Text Available In response to the EU Floods Directive (2007/60/EC, flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address – in research as well as in practice – since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.

  14. Exploring local risk managers' use of flood hazard maps for risk communication purposes in Baden-Württemberg

    Science.gov (United States)

    Kjellgren, S.

    2013-07-01

    In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address - in research as well as in practice - since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.

  15. Management of health care services for flood victims: the case of the shelter at Nakhon Pathom Rajabhat University Central Thailand.

    Science.gov (United States)

    Buajaroen, Hathaichanok

    2013-08-01

    In Central Thailand basic health care services were affected by a natural disaster in the form of a flood situation. Flood Relief Operations Centers were established from the crisis. Nakhon Pathom Rajabhat University and including the faculty of nursing volunteered to care for those affected and assist in re-establishing a functioning health care system. The aim of this study was to make explicit knowledge of concept, lesson learned, and the process of management for re-establishing a health care service system at a flood victims at Relief Operations Center, Nakhon Pathom Rajabhat University. We used a qualitative design with mixed methods. This involved in-depth interviews, focus group, observational participation and non-observational participation. Key informants included university administrators, instructors, leaders of flood victims and the flood victims. Data was collected during October-December, 2010. Data were analysed using content analysis and compared matrix. We found that the concept and principle of health care services management were community based and involved home care and field hospital services. We had prepared a management system that placed emphasise on a community based approach and holistic caring such as 24h Nursing Clinic Home, visits with family, a referral system, field hospital. The core of management was to achieve integrated instruction started from nursing students were practiced skills as Health promotion and nursing techniques practicum. Rules were established regarding the health care service system. The outcomes of Health Care Service at the Flood Relief Operations Center were direct and sincere help without conditions, administrations concerned and volunteer nursing students instructors, University Officer have sympathetic and charitable with flood victims and environment. Copyright © 2013 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  16. An iron-age cultural hiatus enigma: mega-flooding and human settlement abandonment over the last millennium in the Lanyang Drainage System, northeastern Taiwan

    Science.gov (United States)

    Huang, Jyh-Jaan; Wei, Kuo-Yen; Löwemark, Ludvig; Song, Sheng-Rong; Huh, Chih-An; Chuang, Chih-Kai; Yang, Tien-Nan; Lee, Meng-Yang; Chen, Yu-Be; Lee, Teh-Quei

    2015-04-01

    Active tectonic activities and frequent typhoon landfalls make Taiwan unique in having very high rates of uplift, precipitation, denudation and sedimentation. Particularly, intense rainfall associated with typhoons often causes flooding, large-scale landslides, and debris flows in river systems. Such natural disasters have affected human societies both at present and in the past; the Typhoon Morakot in 2009 may serve as a modern example of such events. Kiwulan is a newly discovered archaeological site from the Iron Age situated on the Lanyang Plain in NE Taiwan. In the deposits from this society, a cultural hiatus centered around 1200-1500 cal. yr AD is found, suggesting that the settlement was abandoned for a period of a few hundred years before being recolonized. Until now it has remained a mystery what caused this cultural hiatus. This study assembles radiocarbon dates of upland river terraces, organic proxies in flood plain lake sediments, and content of wood shreds in nearby marine sediments from the continental slope off NE Taiwan. These records are synthesized to infer the frequency and magnitude of ancient flood events over the past 1250 years in the Lanyang Drainage System in northeastern Taiwan. Alluvial fan terraces distributed along the banks of the upper Lanyang River are considered to be the results of ancient debris flow events, and their radiocarbon dates fall in two time ranges: 850-1100 and 1400-1600 cal. yr AD. Organic proxies which representing terrestrial organic input were measured from bulk sediments of Lake Dahu and Lake Meihua in the Lanyang Plain. Peak values of TOC, C/N ratio and organic indicator (inc/coh) from Itrax-XRF core scanner measurements are conspicuous during 900-950, and 1400-1500 cal. yr AD, implying frequent flood events. Moreover, abundance peaks of wood shreds and peaks in the C/N ratio in marine box core ORI-801-7A from the continental slope SE of the Lanyang Plain are dated to about 950-1050 and 1450-1550 cal. yr AD

  17. A free and open source QGIS plugin for flood risk analysis: FloodRisk

    Science.gov (United States)

    Albano, Raffaele; Sole, Aurelia; Mancusi, Leonardo

    2016-04-01

    An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to increase the resilience of European economies and societies, the improvement of risk assessment and management has been pursued in the last years. This results in a wide range of flood analysis models of different complexities with substantial differences in underlying components needed for its implementation, as geographical, hydrological and social differences demand specific approaches in the different countries. At present, it is emerging the need of promote the creation of open, transparent, reliable and extensible tools for a comprehensive, context-specific and applicable flood risk analysis. In this context, the free and open-source Quantum GIS (QGIS) plugin "FloodRisk" is a good starting point to address this objective. The vision of the developers of this free and open source software (FOSS) is to combine the main features of state-of-the-art science, collaboration, transparency and interoperability in an initiative to assess and communicate flood risk worldwide and to assist authorities to facilitate the quality and fairness of flood risk management at multiple scales. Among the scientific community, this type of activity can be labelled as "participatory research", intended as adopting a set of techniques that "are interactive and collaborative" and reproducible, "providing a meaningful research experience that both promotes learning and generates knowledge and research data through a process of guided discovery"' (Albano et al., 2015). Moreover, this FOSS geospatial approach can lowering the financial barriers to understanding risks at national and sub-national levels through a spatio-temporal domain and can provide better and more complete

  18. Mechanisms of vegetation removal by floods on bars of a heavily managed gravel bed river (The Isere River, France)

    Science.gov (United States)

    Jourdain, Camille; Belleudy, Philippe; Tal, Michal; Malavoi, Jean-René

    2016-04-01

    In natural alpine gravel bed rivers, floods and their associated bedload transport maintain channels active and free of mature woody vegetation. In managed rivers, where flood regime and sediment supply have been modified by hydroelectric infrastructures and sediment mining, river beds tend to stabilize. As a result, in the recent past, mature vegetation has established on gravel bars of many gravel bed rivers worldwide. This established vegetation increases the risk of flooding by decreasing flow velocity and increasing water levels. In addition, the associated reduction in availability of pioneer habitats characteristic of these environments typically degrades biodiversity. Managing hydrology in a way that would limit vegetation establishment on bars presents an interesting management option. In this context, our study aims at understanding the impacts of floods of varying magnitude on vegetation removal, and identifying and quantifying the underlying mechanisms. Our study site is the Isère River, a heavily managed gravel bed river flowing in the western part of the French Alps. We studied the impact of floods on sediment transport and vegetation survival at the bar scale through field monitoring from 2014 to 2015, focusing on young salicaceous vegetation (chains, and topographic surveys. Hourly water discharge was obtained from the national gauging network. The hydraulics of monitored floods was characterized using a combination of field measurements and 2D hydraulic modeling: water levels were measured with pressure sensors and Large Scale Particle Velocimetry was used to measure flow velocities. These data were used to calibrate 2D hydrodynamic model using TELEMAC2D. At the reach scale, removal of mature vegetation was assed using a series of historical aerial photographs between 2001 and 2015. Our monitoring period covered a series of floods with recurrence intervals of 2 to 4 times per year, as well as one large flood with a 10 year return period. Only the

  19. Prospects for development of unified global flood observation and prediction systems (Invited)

    Science.gov (United States)

    Lettenmaier, D. P.

    2013-12-01

    Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.

  20. LAND SUITABILITY SCENARIOS FOR ARID COASTAL PLAINS USING GIS MODELING: SOUTHWESTERN SINAI COASTAL PLAIN, EGYPT

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Wahid

    2009-12-01

    Full Text Available Site selection analysis was carried out to find the best suitable lands for development activities in an example of promising coastal plains, southwestern Sinai, Egypt. Two GIS models were developed to represent two scenarios of land use suitability in the study area using GIS Multi Criteria Analysis Modeling. The factors contributed in the analysis are the Topography, Land cover, Existing Land use, Flash flood index, Drainage lines and Water points. The first scenario was to classify the area according to various gradual ranges of suitability. According to this scenario, the area is classified into five classes of suitability. The percentage of suitability values are 51.16, 6.13, 22.32, 18.49 and 1.89% for unsuitable, least suitable, low suitable, suitable and high suitable, respectively. The second scenario is developed for a particular kind of land use planning; tourism and recreation projects. The suitability map of this scenario was classified into five values. Unsuitable areas represent 51.18% of the study area, least suitable 16.67%, low suitable 22.85%, suitable 8.61%, and high suitable 0.68%. The best area for locating development projects is the area surrounding El-Tor City and close to the coast. This area could be an urban extension of El-Tor City with more economical and environmental management.

  1. Future flood risk estimates along the river Rhine

    NARCIS (Netherlands)

    te Linde, A.H.; Bubeck, P.; Dekkers, J.E.C.; de Moel, H.; Aerts, J.C.J.H.

    2011-01-01

    In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine

  2. Improving Flood Plain Management through Adaptive Learning ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will explore how an adaptive learning approach can improve CBO governance ... for improving resource sustainability and productivity, and facilitate learning and an exchange ... Middlesex University Higher Education Corporation.

  3. Improving Flood Plain Management through Adaptive Learning ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le CRDI lance un nouveau projet dans la région de l'ANASE. L'honorable Chrystia Freeland, ministre du Commerce international, a annoncé le lancement d'un nouveau projet financé par le Centre de recherches pour le développement international (CRDI). Voir davantageLe CRDI lance un nouveau projet dans la région ...

  4. Long-term strategies for flood risk management: scenario definition and strategic alternative design

    NARCIS (Netherlands)

    Bruijn, de K.; Klijn, F.; McGahey, C.; Mens, M.; Wolfert, H.P.

    2008-01-01

    This report reviews some mainstream existing methods of scenario development and use, as well as experiences with the design and assessment of strategic alternatives for flood risk management. Next, a procedure and methods are proposed and discussed. Thirdly, the procedure and methods are tried on

  5. FEMA DFIRM Flood Hazard Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  6. Recent advances in flood forecasting and flood risk assessment

    Directory of Open Access Journals (Sweden)

    G. Arduino

    2005-01-01

    Full Text Available Recent large floods in Europe have led to increased interest in research and development of flood forecasting systems. Some of these events have been provoked by some of the wettest rainfall periods on record which has led to speculation that such extremes are attributable in some measure to anthropogenic global warming and represent the beginning of a period of higher flood frequency. Whilst current trends in extreme event statistics will be difficult to discern, conclusively, there has been a substantial increase in the frequency of high floods in the 20th century for basins greater than 2x105 km2. There is also increasing that anthropogenic forcing of climate change may lead to an increased probability of extreme precipitation and, hence, of flooding. There is, therefore, major emphasis on the improvement of operational flood forecasting systems in Europe, with significant European Community spending on research and development on prototype forecasting systems and flood risk management projects. This Special Issue synthesises the most relevant scientific and technological results presented at the International Conference on Flood Forecasting in Europe held in Rotterdam from 3-5 March 2003. During that meeting 150 scientists, forecasters and stakeholders from four continents assembled to present their work and current operational best practice and to discuss future directions of scientific and technological efforts in flood prediction and prevention. The papers presented at the conference fall into seven themes, as follows.

  7. Prescriptions for adaptive comanagement: the case of flood management in the German Rhine basin

    Directory of Open Access Journals (Sweden)

    Gert Becker

    2015-09-01

    Full Text Available Centrally administered bureaucracies are ill suited to managing the environmental resources of complex social-ecological systems. Therefore management approaches are required that can better deal with its complexity and uncertainty, which are further exacerbated by developments such as climate change. Adaptive comanagement (ACM has emerged as a relatively novel governance approach and potential solution to the challenges arising. Adaptive comanagement hinges on certain institutional prescriptions intended to enhance the adaptability of management by improving the comprehension of and response to the complex context and surprises of social-ecological systems. The ACM literature describes that for enhanced adaptability, institutional arrangements should be polycentric, aligned with the scale of ecosystems (the bioregional approach, feature open and participatory governance, and involve much experimentation. The case of flood management in the German part of the Rhine basin is used to provide an assessment of these ideas. We analyze whether and to what degree the prescriptions have been implemented and whether or not certain fundamental changes seen in German flood management can be traced back to the application of the prescriptions. Our study demonstrates a transition from the traditional engineering and "flood control" approach to a more holistic management concept based on a risk perspective. In this process, the four ACM prescriptions have made an important contribution in preparing or facilitating policy changes. The findings suggest that the application of the prescriptions requires the right supporting context before they can be applied to the fullest extent possible, such as a high problem pressure, new discourses, or leading actors. A major constraint arises in the misalignment of political power and of the different interests of the actors, which contribute to reactive management and inadequate interplay. To address this, we recommend

  8. 44 CFR 78.5 - Flood Mitigation Plan development.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...

  9. Analysis of High Plains Resource Risk and Economic Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dealy, Bern Caudill [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaneyfelt, Calvin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Braeton James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moreland, Barbara Denise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-01

    The importance of the High Plains Aquifer is broadly recognized as is its vulnerability to continued overuse. T his study e xplore s how continued depletions of the High Plains Aquifer might impact both critical infrastructure and the economy at the local, r egional , and national scale. This analysis is conducted at the county level over a broad geographic region within the states of Kansas and Nebraska. In total , 140 counties that overlie the High Plains Aquifer in these two states are analyzed. The analysis utilizes future climate projections to estimate crop production. Current water use and management practices are projected into the future to explore their related impact on the High Plains Aquifer , barring any changes in water management practices, regulat ion, or policy. Finally, the impact of declining water levels and even exhaustion of groundwater resources are projected for specific sectors of the economy as well as particular elements of the region's critical infrastructure.

  10. Katrina's Lessons in California: Social and Political Trajectories of Flood Management in the Sacramento River Watershed since 2005

    Science.gov (United States)

    Comby, E.; Le Lay, Y. F.; Piegay, H.

    2017-12-01

    Over the last decade, major changes have occurred in the way that environments are managed. They can be linked with external or internal events which may shape public perception. An external event can reveal a forgotten risk and create a social problem (Hilgartner et Bosk 1988). Following the Advocacy Coalition Framework (Sabatier 1988), we studied the role of Hurricane Katrina in flood management in California from 2005 to 2013. How do policies intend to increase the city's resilience? We compared different flood policies of the Sacramento River from 2005 to 2013, by combining field observations with a principal dataset of 340 regional newspaper items (Sacramento Bee). Media coverage was analyzed using content, quotation, and textometry as well as GIS. We underlined temporal variability in public perceptions towards floods. Some planning choices (such as levees) became controversial, while journalists praised weirs, bypasses, and dams. However, Katrina does not seem to have a real impact on urban sprawl strategies in three Sacramento neighborhoods (Fig.1). We analyzed also the limits of the comparison between New Orleans and Sacramento. Dialog between stakeholders existed in space and time between here (California) and elsewhere (Louisiana), present (post-2005) and past (Katrina catastrophe), and risk and disaster. Katrina was a national scandal with political announcements. However, flood policy was developed first at a regional and then local scales. After Katrina awareness, conflicts appear: some California residents refuse to have a policy linked to Katrina applied to them. We underlined that different stakeholders became prominent: it may be useless to tackle with only one institution. Some institutions had an integrated river management, while others kept a traditional risk management. We assessed the changes in river management while using discourse to understand the (potential) shift in human-river relationships from risk management to integrated river

  11. A Methodology to Define Flood Resilience

    Science.gov (United States)

    Tourbier, J.

    2012-04-01

    Flood resilience has become an internationally used term with an ever-increasing number of entries on the Internet. The SMARTeST Project is looking at approaches to flood resilience through case studies at cities in various countries, including Washington D.C. in the United States. In light of U.S. experiences a methodology is being proposed by the author that is intended to meet ecologic, spatial, structural, social, disaster relief and flood risk aspects. It concludes that: "Flood resilience combines (1) spatial, (2) structural, (3) social, and (4) risk management levels of flood preparedness." Flood resilience should incorporate all four levels, but not necessarily with equal emphasis. Stakeholders can assign priorities within different flood resilience levels and the considerations they contain, dividing 100% emphasis into four levels. This evaluation would be applied to planned and completed projects, considering existing conditions, goals and concepts. We have long known that the "road to market" for the implementation of flood resilience is linked to capacity building of stakeholders. It is a multidisciplinary enterprise, involving the integration of all the above aspects into the decision-making process. Traditional flood management has largely been influenced by what in the UK has been called "Silo Thinking", involving constituent organizations that are responsible for different elements, and are interested only in their defined part of the system. This barrier to innovation also has been called the "entrapment effect". Flood resilience is being defined as (1) SPATIAL FLOOD RESILIENCE implying the management of land by floodplain zoning, urban greening and management to reduce storm runoff through depression storage and by practicing Sustainable Urban Drainage (SUD's), Best Management Practices (BMP's, or Low Impact Development (LID). Ecologic processes and cultural elements are included. (2) STRUCTURAL FLOOD RESILIENCE referring to permanent flood defense

  12. Designing and operating infrastructure for nonstationary flood risk management

    Science.gov (United States)

    Doss-Gollin, J.; Farnham, D. J.; Lall, U.

    2017-12-01

    Climate exhibits organized low-frequency and regime-like variability at multiple time scales, causing the risk associated with climate extremes such as floods and droughts to vary in time. Despite broad recognition of this nonstationarity, there has been little theoretical development of ideas for the design and operation of infrastructure considering the regime structure of such changes and their potential predictability. We use paleo streamflow reconstructions to illustrate an approach to the design and operation of infrastructure to address nonstationary flood and drought risk. Specifically, we consider the tradeoff between flood control and conservation storage, and develop design and operation principles for allocating these storage volumes considering both a m-year project planning period and a n-year historical sampling record. As n increases, the potential uncertainty in probabilistic estimates of the return periods associated with the T-year extreme event decreases. As the duration m of the future operation period decreases, the uncertainty associated with the occurrence of the T-year event also increases. Finally, given the quasi-periodic nature of the system it may be possible to offer probabilistic predictions of the conditions in the m-year future period, especially if m is small. In the context of such predictions, one can consider that a m-year prediction may have lower bias, but higher variance, than would be associated with using a stationary estimate from the preceding n years. This bias-variance trade-off, and the potential for considering risk management for multiple values of m, provides an interesting system design challenge. We use wavelet-based simulation models in a Bayesian framework to estimate these biases and uncertainty distributions and devise a risk-optimized decision rule for the allocation of flood and conservation storage. The associated theoretical development also provides a methodology for the sizing of storage for new

  13. Is flood defense changing in nature? Shifts in the flood defense strategy in six European countries

    Directory of Open Access Journals (Sweden)

    Mathilde Gralepois

    2016-12-01

    Full Text Available In many countries, flood defense has historically formed the core of flood risk management but this strategy is now evolving with the changing approach to risk management. This paper focuses on the neglected analysis of institutional changes within the flood defense strategies formulated and implemented in six European countries (Belgium, England, France, the Netherlands, Poland, and Sweden. The evolutions within the defense strategy over the last 30 years have been analyzed with the help of three mainstream institutional theories: a policy dynamics-oriented framework, a structure-oriented institutional theory on path dependency, and a policy actors-oriented analysis called the advocacy coalitions framework. We characterize the stability and evolution of the trends that affect the defense strategy in the six countries through four dimensions of a policy arrangement approach: actors, rules, resources, and discourses. We ask whether the strategy itself is changing radically, i.e., toward a discontinuous situation, and whether the processes of change are more incremental or radical. Our findings indicate that in the European countries studied, the position of defense strategy is continuous, as the classical role of flood defense remains dominant. With changing approaches to risk, integrated risk management, climate change, urban growth, participation in governance, and socioeconomic challenges, the flood defense strategy is increasingly under pressure to change. However, these changes can be defined as part of an adaptation of the defense strategy rather than as a real change in the nature of flood risk management.

  14. Evaluation of a severe accident management strategy for boiling water reactors -- Drywell flooding

    International Nuclear Information System (INIS)

    Yu, D.; Xing, L.; Kastenberg, W.E.; Okrent, D.

    1994-01-01

    Flooding of the drywell has been suggested as a strategy to prevent reactor vessel and containment failure in boiling water reactors. To evaluate the candidate strategy, this study considers accident management as a decision problem (''drywell flooding'' versus ''do nothing'') and develops a decision-oriented framework, namely, the influence diagram approach. This analysis chooses the long-term station blackout sequence for a Mark 1 nuclear power plant (Peach Bottom), and an influence diagram with a single decision node is constructed. The node probabilities in the influence diagram are obtained from US Nuclear Regulatory Commission reports or estimated by probabilistic risk assessment methodology. In assessing potential benefits compared with adverse effects, this analysis uses two consequence measures, i.e., early and late fatalities, as decision criteria. The analysis concludes that even though potential adverse effects exist, such as ex-vessel steam explosions and containment isolation failure, the drywell flooding strategy is preferred to ''do nothing'' when evaluated in terms of these consequence measures

  15. Climate change, uncertainty and investment in flood risk reduction

    NARCIS (Netherlands)

    Pol, van der T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies.

  16. Critical systems for public health management of floods, North Dakota.

    Science.gov (United States)

    Wiedrich, Tim W; Sickler, Juli L; Vossler, Brenda L; Pickard, Stephen P

    2013-01-01

    Availability of emergency preparedness funding between 2002 and 2009 allowed the North Dakota Department of Health to build public health response capabilities. Five of the 15 public health preparedness capability areas identified by the Centers for Disease Control and Prevention in 2011 have been thoroughly tested by responses to flooding in North Dakota in 2009, 2010, and 2011; those capability areas are information sharing, emergency operations coordination, medical surge, material management and distribution, and volunteer management. Increasing response effectiveness has depended on planning, implementation of new information technology, changes to command and control procedures, containerized response materials, and rapid contract procedures. Continued improvement in response and maintenance of response capabilities is dependent on ongoing funding.

  17. FEMA Q3 Flood Data

    Data.gov (United States)

    Kansas Data Access and Support Center — The Q3 Flood Data are derived from the Flood Insurance Rate Maps (FIRMS) published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to...

  18. A decision‐making framework for flood risk management based on a Bayesian Influence Diagram

    DEFF Research Database (Denmark)

    Åstrøm, Helena Lisa Alexandra; Madsen, Henrik; Friis-Hansen, Peter

    2014-01-01

    We develop a Bayesian Influence Diagram (ID) approach for risk‐based decision‐ making in flood management. We show that it is a flexible decision‐making tool to assess flood risk in a non‐stationary environment and with an ability to test different adaptation measures in order to agree on the best...... means to describe uncertainty in the system. Hence, an ID contributes with several advantages in risk assessment and decision‐making. We present an ID approach for risk‐ based decision‐making in which we improve conventional flood risk assessments by including several types of hazards...... measures and combinations of these. Adaptation options can be tested at different points in time (in different time slices) which allows for finding the optimal time to invest. The usefulness of our decision‐making framework was exemplified through case studies in Aarhus and Copenhagen. Risk‐based decision‐making...

  19. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    Science.gov (United States)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  20. Flood Risk Mapping Using Flow Energy Equation and Geographic Information System

    Directory of Open Access Journals (Sweden)

    pourya Javan

    2013-09-01

    Full Text Available Flooding and its damages are not only found uplift water level in a region. In other words, the depth and speed parameters together have determining the level of flood risk at each point. This subject is visible in flooded plain with low height and high speed of 2 meters per second, which damages are extensive. According to the criteria of having both velocity and flow depth in the governing equation to the flows energy, this equation seems appropriate to analysis in this study. Various methods have been proposed for increase accuracy in flood zoning with different return periods and risks associated with it in land border of river. For example, some of these methods are considered factors such as analysis of past flooding in the area affected by floods, hydrological factors and consideration of hydraulic elements affecting in flood zoning (such as flow velocity. This paper investigates the effect of flood zoning by the energy flow in the areas affected by floods. Also risk due to flood based on energy flow in each section of the river is compared by the proposed graphs of hazard interval and other done flood zoning in this field. In this study, the FORDO river has been selected as the case study. This river is part of the rivers located in the city of QOM KAHAK. The characteristics of river in upstream and downstream are mountain, young and stable and adult, respectively. Also this river in different seasons is exposed the flood damage. The proposed method in this study can be improving recognition accuracy of flood risk in areas affected by flood. Also, this method facilitate the identify parts of the river bed, that is affected by severe flooding, for decision making to improve rivers organizing.

  1. Appropriate rehabilitation strategy for a traditional irrigation supply system: a case from the Babai area in Nepal.

    Science.gov (United States)

    Adhikari, B; Verhoeven, R; Troch, P

    2009-01-01

    This paper studies primary canals of three traditional irrigation systems in the southern plains of Nepal. It offers a scientific interpretation of the indigenous technology applied to the systems, which facilitates to use the same channel network for irrigation, drainage and flood management. The flood management technology of the farmers by diverting as much discharge as possible to the field channels results in the reduction of discharge towards the downstream part of the main channel. It is depicted in the simulation study that uses the river analysis program HEC-RAS 4.0. A cascade of weirs is found to be the most cost effective and user-friendly option to upgrade these systems preserving the existing irrigation, drainage as well as flood management functions. This study suggests that the conventional irrigation design principles should be applied very cautiously with full knowledge of the existing socio-institutional setting, hydro-ecological regime and indigenous technology for upgrading any traditional irrigation system successfully. The indigenous flood management technology strengthens the emerging concept that the floods in the Ganges plain are to be managed, not controlled.

  2. Towards sustainable flood risk management in the Rhine and Meuse river basins: synopsis of the findings of IRMA-SPONGE

    NARCIS (Netherlands)

    Hooijer, A.; Klijn, F.; Pedroli, G.B.M.; Os, van A.G.

    2004-01-01

    Recent flood events in western Europe have shown the need for improved flood risk management along the Rhine and Meuse rivers. In response, the IRMA-SPONGE research programme was established, consisting of 13 research projects, in which over 30 organizations from six countries co-operated. The aim

  3. Local Flood Action Groups: Governance And Resilience

    NARCIS (Netherlands)

    Forrest, Steven; Trell, Elen-Maarja; Woltjer, Johan; Macoun, Milan; Maier, Karel

    2015-01-01

    A diverse range of citizen groups focusing on flood risk management have been identified in several European countries. The paper discusses the role of flood action (citizen) groups in the context of flood resilience and will do this by analysing the UK and its diverse range of flood groups. These

  4. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling

    Directory of Open Access Journals (Sweden)

    Jingxuan Zhu

    2018-05-01

    Full Text Available In many countries, industrialization has led to rapid urbanization. Increased frequency of urban flooding is one consequence of the expansion of urban areas which can seriously affect the productivity and livelihoods of urban residents. Therefore, it is of vital importance to study the effects of rainfall and urban flooding on traffic congestion and driver behavior. In this study, a comprehensive method to analyze the influence of urban flooding on traffic congestion was developed. First, a flood simulation was conducted to predict the spatiotemporal distribution of flooding based on Storm Water Management Model (SWMM and TELAMAC-2D. Second, an agent-based model (ABM was used to simulate driver behavior during a period of urban flooding, and a car-following model was established. Finally, in order to study the mechanisms behind how urban flooding affects traffic congestion, the impact of flooding on urban traffic was investigated based on a case study of the urban area of Lishui, China, covering an area of 4.4 km2. It was found that for most events, two-hour rainfall has a certain impact on traffic congestion over a five-hour period, with the greatest impact during the hour following the cessation of the rain. Furthermore, the effects of rainfall with 10- and 20-year return periods were found to be similar and small, whereas the effects with a 50-year return period were obvious. Based on a combined analysis of hydrology and transportation, the proposed methods and conclusions could help to reduce traffic congestion during flood seasons, to facilitate early warning and risk management of urban flooding, and to assist users in making informed decisions regarding travel.

  5. Controlling geological and hydrogeological processes in an arsenic contaminated aquifer on the Red River flood plain, Vietnam

    International Nuclear Information System (INIS)

    Larsen, Flemming; Nhan Quy Pham; Nhan Duc Dang; Postma, Dieke; Jessen, Soren; Viet Hung Pham; Nguyen, Thao Bach; Trieu, Huy Duc; Luu Thi Tran; Hoan Nguyen; Chambon, Julie; Hoan Van Nguyen; Dang Hoang Ha; Nguyen Thi Hue; Mai Thanh Duc; Refsgaard, Jens Christian

    2008-01-01

    Geological and hydrogeological processes controlling recharge and the mobilization of As were investigated in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The geology was investigated using surface resistivity methods, geophysical borehole logging, drilling of boreholes and installation of more than 200 piezometers. Recharge processes and surface-groundwater interaction were studied using (i) time-series of hydraulic head distribution in surface water and aquifers, (ii) the stable isotope composition of waters and (iii) numerical groundwater modeling. The Red River and two of its distributaries run through the field site and control the groundwater flow pattern. For most of the year, there is a regional groundwater flow towards the Red River. During the monsoon the Red River water stage rises up to 6 m and stalls the regional groundwater flow. The two distributaries recharge the aquifer from perched water tables in the dry season, whilst in the flooding period surface water enters the aquifer through highly permeable bank sediments. The result is a dynamic groundwater flow pattern with rapid fluctuations in the groundwater table. A transient numerical model of the groundwater flow yields an average recharge rate of 60-100 mm/a through the confining clay, and a total recharge of approximately 200 mm/a was estimated from 3 H/ 3 He dating of the shallow groundwater. Thus in the model area, recharge of surface water from the river distributaries and recharge through a confining clay is of the same magnitude, being on average around 100 mm/a. The thickness of the confining clay varies between 2 and 10 m, and affects the recharge rate and the transport of electron acceptors (O 2 , NO 3 - and SO 4 2- ) into the aquifer. Where the clay layer is thin, an up to 2 m thick oxic zone develops in the shallow aquifer. In the oxic zone the As concentration is less than 1 μg/L but increases in the reduced zone below to 550 μg/L. In the Holocene

  6. Interpreting the impact of flood forecasts by combining policy analysis studies and flood defence

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available Flood forecasting is necessary to save lives and reduce damages. Reducing damages is important to save livelihoods and to reduce the recovery time. Flood alerts should contain expected time of the event, location and extent of the event. A flood alert is not only one message but part of a rehearsed flow of information using multiple canals. First people have to accept the fact that there might be a threat and what the threat is about. People need a reference to understand the situation and be aware of possible measures they can take to assure their own safety and reduce damages. Information to the general public has to be consistent with the information used by emergency services and has to be very clear about consequences and context of possible measures (as shelter in place or preventive evacuation. Emergency services should monitor how the public is responding to adapt their communication en operation during a crisis. Flood warnings and emergency services are often coordinated by different government organisations. This is an extra handicap for having consistent information out on time for people to use. In an information based society, where everyone has twitter, email and a camera, public organisations may have to trust the public more and send out the correct information as it comes in. In the Netherlands Rijkswaterstaat, the National Water Authority and the National Public Works Department, is responsible for or involved in forecasting in case of floods, policy studies on flood risk, policy studies on maintenance, assessment and design of flood defences, elaborating rules and regulations for flood defences, advice on crisis management to the national government and for maintaining the main infrastructure in the Netherlands (high ways and water ways. The Water Management Center in the Netherlands (WMCN has developed a number of models to provide flood forecasts. WMCN is run for and by all managers of flood defences and is hosted by

  7. Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010

    Science.gov (United States)

    Zarriello, Phillip J.; Ahearn, Elizabeth A.; Levin, Sara B.

    2012-01-01

    Heavy persistent rains from late February through March 2010 caused severe widespread flooding in Rhode Island that set or nearly set record flows and water levels at many long-term streamgages in the State. In response, the U.S. Geological Survey, in partnership with the Federal Emergency Management Agency, conducted a study to update estimates of flood magnitudes at streamgages and regional equations for estimating flood flows at ungaged locations. This report provides information needed for flood plain management, transportation infrastructure design, flood insurance studies, and other purposes that can help minimize future flood damages and risks. The magnitudes of floods were determined from the annual peak flows at 43 streamgages in Rhode Island (20 sites), Connecticut (14 sites), and Massachusetts (9 sites) using the standard Bulletin 17B log-Pearson type III method and a modification of this method called the expected moments algorithm (EMA) for 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability (AEP) floods. Annual-peak flows were analyzed for the period of record through the 2010 water year; however, records were extended at 23 streamgages using the maintenance of variance extension (MOVE) procedure to best represent the longest period possible for determining the generalized skew and flood magnitudes. Generalized least square regression equations were developed from the flood quantiles computed at 41 streamgages (2 streamgages in Rhode Island with reported flood quantiles were not used in the regional regression because of regulation or redundancy) and their respective basin characteristics to estimate magnitude of floods at ungaged sites. Of 55 basin characteristics evaluated as potential explanatory variables, 3 were statistically significant—drainage area, stream density, and basin storage. The pseudo-coefficient of determination (pseudo-R2) indicates these three explanatory variables explain 95 to 96 percent of the variance

  8. Proteomic Techniques and Management of Flooding Tolerance in Soybean.

    Science.gov (United States)

    Komatsu, Setsuko; Tougou, Makoto; Nanjo, Yohei

    2015-09-04

    Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.

  9. National Flood Hazard Layer (NFHL)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are...

  10. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  11. Corps Water Management System (CWMS) Decision Support Modeling and Integration Use in the June 2007 Texas Floods

    Science.gov (United States)

    Charley, W. J.; Luna, M.

    2007-12-01

    The U.S. Army Corps of Engineers Corps Water Management System (CWMS) is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. CWMS uses an Oracle database and Sun Solaris workstations for data processes, storage and the execution of models, with a client application (the Control and Visualization Interface, or CAVI) that can run on a Windows PC. CWMS was used by the Lower Colorado River Authority (LCRA) to make hydrologic forecasts of flows on the Lower Colorado River and operate reservoirs during the June 2007 event in Texas. The LCRA receives real-time observed gridded spatial rainfall data from OneRain, Inc. that which is a result of adjusting NexRad rainfall data with precipitation gages. This data is used, along with future precipitation estimates, for hydrologic forecasting by the rainfall-runoff modeling program HEC-HMS. Forecasted flows from HEC-HMS and combined with observed flows and reservoir information to simulate LCRA's reservoir operations and help engineers make release decisions based on the results. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for the computed flow. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. What was described as an "extraordinary cluster of thunderstorms" that stalled over Burnet and Llano counties in Texas on June 27, 2007, dropped 17 to 19 inches of rainfall over a 6-hour period. The storm was classified over a 500-year event and the resulting flow over some of the smaller tributaries as a 100-year or better. CWMS was used by LCRA for flood forecasting and

  12. Collecting data for quantitative research on pluvial flooding

    NARCIS (Netherlands)

    Spekkers, M.H.; Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.

    2011-01-01

    Urban pluvial flood management requires detailed spatial and temporal information on flood characteristics and damaging consequences. There is lack of quantitative field data on pluvial flooding resulting in large uncertainties in urban flood model calculations and ensuing decisions for investments

  13. Dynamic flood webmapping: an operational and cost-limited tool to optimize crisis management

    Directory of Open Access Journals (Sweden)

    Strappazzon Quentin

    2016-01-01

    Full Text Available Due to strong climate variations and the multiplication of flood events, protection based strategies are no longer sufficient to handle a watershed scale crisis. Monitoring, prediction and alert procedures are required to ensure effective crisis and post-crisis management which explains the recent interest for real time predictions systems. Nevertheless, this kind of system, when fully implemented with in-situ monitoring network, meteorological forecast inputs, hydrological and hydraulic modelling and flood mapping, are often postponed or cancelled because of both their cost and time scale. That is why Prolog Ingénierie and the SyAGE have developed, as an economical and technical sustainable alternative, a tool providing shared access to a real time mapping of current and predicted flooded areas along with a dynamic listing of exposed stakes (such as public buildings, sensible infrastructures, environmental buildings, roads. The update of these maps is performed from the combination of predicted water levels in the river and a flood envelop library (based on 1D/2D hydraulic model results for a wide panel of discharges and hydraulic structures states conditions. This tool has already been implemented on the downstream part of the Yerres River, a tributary of the Seine River in France.

  14. Towards a Risk Governance Culture in Flood Policy—Findings from the Implementation of the “Floods Directive” in Germany

    Directory of Open Access Journals (Sweden)

    Klaus Wagner

    2012-02-01

    Full Text Available The European Directive on the Assessment and Management of Flood Risks is likely to cause changes to flood policy in Germany and other member states. With its risk governance approach, it introduces a holistic and catchment-oriented flood risk management and tries to overcome shortcomings of the past, such as the event-driven construction of mainly structural measures. However, there is leeway for interpretation in implementing the directive. The present paper gives an overview on the implementation of the floods directive in Germany and is divided into two qualitative empirical case studies. Case Study I investigates the level of acceptance of the floods directive among decision-makers in the German part of the Rhine river basin. Findings show that the federal states respond differently to the impulse given by the floods directive. Whereas some decision-makers opt for a pro-forma implementation, others take it as a starting point to systematically improve their flood policy. Case Study II presents recommendations for a successful implementation of flood risk management plans that have been developed within a project for the water authority in Bavaria and might be interesting for other federal/member states. For a participation of the interested parties on the level of shared decision-making, the planning process has to work on sub-management-plan level (15–20 communities. The water resources authority has to adopt a multi-faceted role (expert, responsible or interested party depending on the discussed topics.

  15. Evaluation of the Benefit of Flood Reduction by Artificial Groundwater Recharge Lake Operation in a Coastal Area

    Science.gov (United States)

    Chen, Ching-Nuo; Tsai, Chih-Heng

    2017-04-01

    Inundation disasters often occur in the southwestern coastal plains of Taiwan. The coastal plains suffers mostly from land-subsidence, surface water is difficult to be drained during the typhoon period, leading to more severe flood disasters. Global climate warming has become more significant, which in turn has resulted in the increase in amplitude and frequency of climate change related disasters. In addition, climate change also induces a rise in sea water level year by year. The rise in sea water level does not only weakens the function of existing drainage system but also increases tidal levels and storm tide levels, which increases the probability and amount of inundation disasters. The serious land subsidence area at Linbian river basin was selected as the study area. An artificial groundwater recharge lake has been set up in Linbian river basin by Pingtung government. The development area of this lake is 58 hectare and the storage volume is 2.1 million cubic meters (210 × 104m3). The surface water from Linbian basin during a wet season is led into the artificial groundwater recharge lake by water diversion project, and then employ special hydro-geological conditions of the area for groundwater recharge, increase groundwater supply and decrease land subsidence rate, and incidentally some of the flood diversion, detention, reduce flooding. In this study, a Real-time Interactive Inundation Model is applied to simulate different flooding storage volume and gate operations to estimate the benefits of flood mitigation. According to the simulation results, the hydrograph shape, peak-flow reduction and time lag to peak of the flood reduction hydrograph into the lake are apparently different for each case of different gate operation at the same storage volume. Therefore, the effect of flood control and disaster mitigation is different. The flood control and disaster mitigation benefits are evaluated by different operation modes, which provide decision makers to

  16. The potential of tidal barrages and lagoons to manage future coastal flood risk

    Science.gov (United States)

    Prime, Thomas; Wolf, Judith; Lyddon, Charlotte; Plater, Andrew; Brown, Jennifer

    2017-04-01

    Wirral peninsula will still be present in 2100. It is therefore important to consider long time horizons and the associated climate change. Both business as usual i.e. no adaptation measures and the presence of a tidal barrage or lagoon at two locations were simulated. Three different representative concentration pathways were used to derive an increase of mean sea-level by 2100. To accurately assess the economic impact, a number of different extreme events with varying annual probabilities of occurrence were simulated, these range from 1 in 1 year to 1 in 1000 years probability of exceedance. The flood inundation model LISFLOOD-FP was used to simulate these extreme events and the economic impact resulting from any inundation in the flood plain was calculated and compared alongside the cost and revenue from projected electricity generation to see if the flood protection benefits would contribute positively to a cost benefit analysis, assessing the building of the barrage. This preliminary study shows that tidal lagoons and barrages do have the potential to offer flood risk benefit and become part of integrated strategies to minimise flood risk in coastal areas, but this is site specific and detailed modelling studies are required. The benefits of these structures are dependent on their shape, size and location, and feasibility studies should consider impacts in the near and far-field.

  17. Flexibility in Flood Management Design: Proactive Planning Under Climate Change Uncertainty

    Science.gov (United States)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2015-12-01

    This paper presents an innovative, value-enhancing procedure for effective planning and design of long-lived flood management infrastructure given uncertain future flooding threats due to climate change. Designing infrastructure that can be adapted over time is a method to safeguard the efficacy of current design decisions given uncertainty about rates and future impacts of climate change. This paper explores the value of embedding "options" in a physical structure, where an option is the right but not the obligation to do something at a later date (e.g. over-dimensioning a floodwall foundation now facilitates a future height addition in response to observed increases in sea level; building of extra pump bays in a pumping station now enables the addition of pumping capacity whenever increased precipitation warrants an expansion.) The proposed procedure couples a simulation model that captures future climate induced changes to the hydrologic operating environment of a structure, with an economic model that estimates the lifetime economic performance of alternative investments. The economic model uses Real "In" Options analysis, a type of cash flow analysis that quantifies the implicit value of options and the flexibility they provide. This procedure is demonstrated using replacement planning for the multi-functional pumping station IJmuiden on the North Sea Canal in the Netherlands. Flexibility in design decisions is modelled, varying the size and specific options included in the new structure. Results indicate that the incorporation of options within the structural design has the potential to improve its economic performance, as compared to more traditional, "build it once and build it big" designs where flexibility is not an explicit design criterion. The added value resulting from the incorporation of flexibility varies with the range of future conditions considered, as well as the options examined. This procedure could be applied more broadly to explore

  18. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon

    Science.gov (United States)

    Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott

    2011-01-01

    necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.

  19. The vulnerability of groundwater of the Crau plain in a context of change in land use

    Science.gov (United States)

    Beltrando, Gérard

    2016-04-01

    In the Crau plain (520 km², Western part of the region of Marseille), With the arrangement of canals which began at the end of the 17th century, the irrigation by flood in a part of the plain has allowed the production of an quality hay and the preservation of a performing traditional socio-ecological system named "Pastoralism - Foin de Crau" between the arid part (steppe) and the Green Car with a voluminous groundwater in the Green Crau. During the second part of the XXth century the traditional economical functions have quickly changed in a context of uncertainty about the future of climate and a strong pressure on this territory, characterized by an irrigated part (the Green Crau) and a dry part (the steppe named Coussoul) : (1) the surface used for the regular flood (irrigation) in hot season of meadows for hay has decreased, while this water allows the alimentation of an important groundwater in which 80 million of m³ of water are taken every year; (2) the arid steppe, used seasonally by the ovine pastoralism, allows the preservation of a unique biodiversity. These fast changes in the land use raise the question of the durability of this groundwater today which offers numerous ecosystem advantages to the populations but also, the preservation, even the reconstruction, a rare biophysics environment and the major ecological interest. The management of the groundwater of Crau just like the conservation of the agro-system of the dry steppe thus constitutes an inseparable territorial stake. The impact of Man on this old ecosystem modelled slowly by the man is very vulnerable in front of exogenous disturbances. What are today the threats generated by the evolution of the land uses for the groundwater but also on the preservation of the unique and ancestral agro-ecosystem of the steppe?

  20. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  1. Rapid-response flood mapping during Hurricanes Harvey, Irma and Maria by the Global Flood Partnership (GFP)

    Science.gov (United States)

    Cohen, S.; Alfieri, L.; Brakenridge, G. R.; Coughlan, E.; Galantowicz, J. F.; Hong, Y.; Kettner, A.; Nghiem, S. V.; Prados, A. I.; Rudari, R.; Salamon, P.; Trigg, M.; Weerts, A.

    2017-12-01

    The Global Flood Partnership (GFP; https://gfp.jrc.ec.europa.eu) is a multi-disciplinary group of scientists, operational agencies and flood risk managers focused on developing efficient and effective global flood management tools. Launched in 2014, its aim is to establish a partnership for global flood forecasting, monitoring and impact assessment to strengthen preparedness and response and to reduce global disaster losses. International organizations, the private sector, national authorities, universities and research agencies contribute to the GFP on a voluntary basis and benefit from a global network focused on flood risk reduction. At the onset of Hurricane Harvey, GFP was `activated' using email requests via its mailing service. Soon after, flood inundation maps, based on remote sensing analysis and modeling, were shared by different agencies, institutions, and individuals. These products were disseminated, to varying degrees of effectiveness, to federal, state and local agencies via emails and data-sharing services. This generated a broad data-sharing network which was utilized at the early stages of Hurricane Irma's impact, just two weeks after Harvey. In this presentation, we will describe the extent and chronology of the GFP response to both Hurricanes Harvey, Irma and Maria. We will assess the potential usefulness of this effort for event managers in various types of organizations and discuss future improvements to be implemented.

  2. Next generation paradigm for urban pluvial flood modelling, prediction, management and vulnerability reduction - Interaction between RainGain and Blue Green Dream projects

    Science.gov (United States)

    Maksimovic, C.

    2012-04-01

    The effects of climate change and increasing urbanisation call for a new paradigm for efficient planning, management and retrofitting of urban developments to increase resilience to climate change and to maximize ecosystem services. Improved management of urban floods from all sources in required. Time scale for well documented fluvial and coastal floods allows for timely response but surface (pluvial) flooding caused by intense local storms had not been given appropriate attention, Pitt Review (UK). Urban surface floods predictions require fine scale data and model resolutions. They have to be tackled locally by combining central inputs (meteorological services) with the efforts of the local entities. Although significant breakthrough in modelling of pluvial flooding was made there is a need to further enhance short term prediction of both rainfall and surface flooding. These issues are dealt with in the EU Iterreg project Rain Gain (RG). Breakthrough in urban flood mitigation can only be achieved by combined effects of advanced planning design, construction and management of urban water (blue) assets in interaction with urban vegetated areas' (green) assets. Changes in design and operation of blue and green assets, currently operating as two separate systems, is urgently required. Gaps in knowledge and technology will be introduced by EIT's Climate-KIC Blue Green Dream (BGD) project. The RG and BGD projects provide synergy of the "decoupled" blue and green systems to enhance multiple benefits to: urban amenity, flood management, heat island, biodiversity, resilience to drought thus energy requirements, thus increased quality of urban life at lower costs. Urban pluvial flood management will address two priority areas: Short Term rainfall Forecast and Short term flood surface forecast. Spatial resolution of short term rainfall forecast below 0.5 km2 and lead time of a few hours are needed. Improvements are achievable by combining data sources of raingauge networks

  3. The role of fire in managing for biological diversity on native rangelands of the Northern Great Plains

    Science.gov (United States)

    Carolyn Hull Sieg

    1997-01-01

    A strategy for using fire to manage for biological diversity on native rangelands in the Northern Great Plains incorporates an understanding of its past frequency, timing and intensity. Historically, lightning and humans were the major fire setters, and the role of fire varied both in space and time. A burning regime that includes fires at various intervals, seasons...

  4. After the flood is before the next flood - post event review of the Central European Floods of June 2013. Insights, recommendations and next steps for future flood prevention

    Science.gov (United States)

    Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian

    2015-04-01

    In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk

  5. Integrated flood disaster management and spatial information : Case studies of Netherlands and India

    NARCIS (Netherlands)

    Ghawana, T. (T.); Kaur, A. (A.); Neuvel, J.M.M. (J.M.M.); Ziatanova, Z. (Z.)

    2014-01-01

    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 147-154, 2014www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/147/2014/doi:10.5194/isprsarchives-XL-8-147-2014Integrated flood disaster management and spatial information: Case studies ofNetherlands and IndiaS. Zlatanova1, T.

  6. Flood Response System—A Case Study

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Singh

    2017-06-01

    Full Text Available Flood Response System (FRS is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of damage. The inputs to FRS are provided using two components: (1 a semi-automated application developed indigenously, to delineate inundated areas for Near-Real Time Flood Monitoring using Active Microwave Remote Sensing data and (2 a two-dimensional (2D hydrodynamic river model generated outputs for water depth and velocity in flooded areas for an embankment breach scenario. The 2D Hydrodynamic model, CCHE2D (Center for Computational Hydroscience and Engineering Two-Dimensional model, was used to simulate an area of 600 km2 in the flood-prone zone of the Brahmaputra basin. The resultant inundated area from the model was found to be 85% accurate when validated with post-flood optical satellite data.

  7. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    Science.gov (United States)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  8. 33 CFR 238.9 - Local cooperation.

    Science.gov (United States)

    2010-07-01

    ... DEFENSE WATER RESOURCES POLICIES AND AUTHORITIES: FLOOD DAMAGE REDUCTION MEASURES IN URBAN AREAS § 238.9... with applicable regulations for structural and non-structural flood damage reduction measures. (b..., enforce, and adhere to a sound, comprehensive plan for flood plain management for overflow areas of...

  9. Reconstructing the 2015 Flash Flood event of Salgar Colombia, The Case of a Poor Gauged Basin

    Science.gov (United States)

    Velasquez, N.; Zapata, E.; Hoyos Ortiz, C. D.; Velez, J. I.

    2017-12-01

    Flash floods events associated with severe precipitation events are highly destructive, often resulting in significant human and economic losses. Due to their nature, flash floods trend to occur in medium to small basins located within complex high mountainous regions. In the Colombian Andean region these basins are very common, with the aggravating factor that the vulnerability is considerably high as some important human settlements are located within these basins, frequently occupating flood plains and other flash-flood prone areas. During the dawn of May 18 of 2015 two severe rainfall events generated a flash flood event in the municipality ofSalgar, La Liboriana basin, locatedin the northwestern Colombian Andes, resulting in more than 100 human casualties and significant economic losses. The present work is a reconstruction of the hydrological processes that took place before and during the Liboriana flash flood event, analyzed as a case of poorly gauged basin.The event conditions where recreated based on radar retrievals and a hydrological distributed model, linked with a proposed 1D hydraulic model and simple shallow landslide model. Results suggest that the flash flood event was caused by the occurrence of two successive severe convective events over the same basin, with an important modulation associated with soil characteristics and water storage.Despite of its simplicity, the proposed hydraulic model achieves a good representation of the flooded area during the event, with limitations due to the adopted spatial scale (12.7 meters, from ALOS PALSAR images). Observed landslides were obtained from satellite images; for this case the model simulates skillfully the landslide occurrence regions with small differences in the exact locations.To understand this case, radar data shows to be key due to specific convective cores location and rainfall intensity estimation.In mountainous regions, there exists a significant number of settlements with similar

  10. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...

  11. A methodology for urban flood resilience assessment

    Science.gov (United States)

    Lhomme, Serge; Serre, Damien; Diab, Youssef; Laganier, Richard

    2010-05-01

    In Europe, river floods have been increasing in frequency and severity [Szöllösi-Nagy and Zevenbergen, 2005]. Moreover, climate change is expected to exacerbate the frequency and intensity of hydro meteorological disaster [IPCC, 2007]. Despite efforts made to maintain the flood defense assets, we often observe levee failures leading to finally increase flood risk in protected area. Furthermore, flood forecasting models, although benefiting continuous improvements, remain partly inaccurate due to uncertainties arising all along data calculation processes. In the same time, the year 2007 marks a turning point in history: half of the world population now lives in cities (UN-Habitat, 2007). Moreover, the total urban population is expected to double from two to four billion over the next 30 to 35 years (United Nations, 2006). This growing rate is equivalent to the creation of a new city of one million inhabitants every week, and this during the next four decades [Flood resilience Group]. So, this quick urban development coupled with technical failures and climate change have increased flood risk and corresponding challenges to urban flood risk management [Ashley et al., 2007], [Nie et al., 2009]. These circumstances oblige to manage flood risk by integrating new concepts like urban resilience. In recent years, resilience has become a central concept for risk management. This concept has emerged because a more resilient system is less vulnerable to risk and, therefore, more sustainable [Serre et al., 2010]. But urban flood resilience is a concept that has not yet been directly assessed. Therefore, when decision makers decide to use the resilience concept to manage urban flood, they have no tool to help them. That is why this paper proposes a methodology to assess urban flood resilience in order to make this concept operational. Networks affect the well-being of the people and the smooth functioning of services and, more generally, of economical activities. Yet

  12. The Global Flood Model

    Science.gov (United States)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  13. Review Article: Multi-criteria decision making for flood risk management: a survey of the current state-of-the-art

    Science.gov (United States)

    de Brito, M. M.; Evers, M.

    2015-11-01

    This paper provides a review of Multi-Criteria Decision Making (MCDM) applications to flood risk management, seeking to highlight trends and identify research gaps. Totally, 128 peer-reviewed papers published from 1995 to June 2015 were systematically analysed and classified into the following application areas: (1) ranking of alternatives for flood mitigation, (2) reservoir flood control, (3) susceptibility, (4) hazard, (5) vulnerability, (6) risk, (7) coping capacity, and (8) emergency management. Additionally, the articles were categorized based on the publication year, MCDM method, whether they were or were not carried out in a participatory process, and if uncertainty and sensitivity analysis were performed. Results showed that the number of flood MCDM publications has exponentially grown during this period, with over 82 % of all papers published since 2009. The Analytical Hierarchy Process (AHP) was the most popular technique, followed by Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and Simple Additive Weighting (SAW). Although there is greater interest on MCDM, uncertainty analysis remains an issue and is seldom applied in flood-related studies. In addition, participation of multiple stakeholders has been generally fragmented, focusing on particular stages of the decision-making process, especially on the definition of criteria weights. Based on the survey, some suggestions for further investigation are provided.

  14. Filling the gap between disaster preparedness and response networks of urban emergency management: Following the 2013 Seoul Floods.

    Science.gov (United States)

    Song, Minsun; Jung, Kyujin

    2015-01-01

    To examine the gap between disaster preparedness and response networks following the 2013 Seoul Floods in which the rapid transmission of disaster information and resources was impeded by severe changes of interorganizational collaboration networks. This research uses the 2013 Seoul Emergency Management Survey data that were collected before and after the floods, and total 94 organizations involving in coping with the floods were analyzed in bootstrap independent-sample t-test and social network analysis through UCINET 6 and STATA 12. The findings show that despite the primary network form that is more hierarchical, horizontal collaboration has been relatively invigorated in actual response. Also, interorganizational collaboration networks for response operations seem to be more flexible grounded on improvisation to coping with unexpected victims and damages. Local organizations under urban emergency management are recommended to tightly build a strong commitment for joint response operations through full-size exercises at the metropolitan level before a catastrophic event. Also, interorganizational emergency management networks need to be restructured by reflecting the actual response networks to reduce collaboration risk during a disaster. This research presents a critical insight into inverse thinking of the view designing urban emergency management networks and provides original evidences for filling the gap between previously coordinated networks for disaster preparedness and practical response operations after a disaster.

  15. A methodology for flood risk appraisal in Lithuania

    Directory of Open Access Journals (Sweden)

    Kriščiukaitienė Irena

    2015-06-01

    Full Text Available This paper presents a methodology for flood risk mapping as envisaged by the Directive on the Assessment and Management of Flood Risks [Directive 2007/60/EC]. Specifically, we aimed at identifying the types of flood damage that can be estimated given data availability in Lithuania. Furthermore, we present the main sources of data and the associated cost functions. The methodology covers the following main types of flood threats: risk to inhabitants, risk to economic activity, and social risk. A multi-criteria framework for aggregation of different risks is proposed to provide a comprehensive appraisal of flood risk. On the basis of the proposed research, flood risk maps have been prepared for Lithuania. These maps are available for each type of flood risk (i.e. inhabitants, economic losses, social risk as well as for aggregate risk. The results indicate that flood risk management is crucial for western and central Lithuania, whereas other parts of the country are not likely to suffer from significant losses due to flooding.

  16. DIGITAL FLOOD INSURANCE RATE MAP DATABASE,

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk Information And supporting data used to develop the risk data. The primary risk;...

  17. Decreasing flood risk perception in Porto Alegre - Brazil and its influence on water resource management decisions

    Science.gov (United States)

    Allasia, D. G.; Tassi, R.; Bemfica, D.; Goldenfum, J. A.

    2015-06-01

    Porto Alegre is the capital and largest city in the Brazilian state of Rio Grande do Sul in Southern Brazil with approximately 1.5 million inhabitants. The city lies on the eastern bank of the Guaiba Lake, formed by the convergence of five rivers and leading to the Lagoa dos Patos, a giant freshwater lagoon navigable by even the largest of ships. This river junction has become an important alluvial port as well as a chief industrial and commercial centre. However, this strategic location resulted in severe damage because of its exposure to flooding from the river system, affecting the city in the years 1873, 1928, 1936, 1941 and 1967. In order to reduce flood risk, a complex system of levees and pump stations was implemented during 1960s and 1970s. Since its construction, not a single large flood event occurred. However, in recent years, the levees in the downtown region of Porto Alegre were severally criticized by city planners and population. Several projects have been proposed to demolish the Mauá Wall due to the false perception of lack of flood risk. Similar opinions and reactions against flood infrastructure have been observed in other cities in Brazil, such as Itajaí and Blumenau, with disastrous consequences. This paper illustrates how the perception of flood risk in Porto Alegre has changed over recent years as a result of flood infrastructure, and how such changes in perceptions can influence water management decisions.

  18. Anthropogenic influences on the flood of 1997 in the river Rivillas (Badajoz). Land uses changes and geomorphic impact

    International Nuclear Information System (INIS)

    Ortega Becerril, J. A.; Garzon Heydt, M. G.

    2009-01-01

    The Rivillas Stream, a tributary of the Guadiana River, is a small, seasonal watercourse that sporadically floods. The flooding that occurred on the 5th November 1977 was catastrophic; 22 deaths were recorded in the rivers basin plus another 15 in neighbouring basins. The intense transformation of the basin through agriculture and construction near the city of Badajoz have led to this river system becoming very unstable. This is equally true of its flood plain, its main course, its effluents, the slopes around the basin, and the remainder of the basin. The geomorphic impact of these changes only become noticeable when the flash-flood occurred ut to intense rainfall, highlighting the important negative effects of human activity in such sensitive environments. (Author) 7 refs.

  19. Economic Assessment of Mitigating Damage of Flood Events : Cost–Benefit Analysis of Flood-Proofing Commercial Buildings in Umbria, Italy

    NARCIS (Netherlands)

    Botzen, W. J.Wouter; Monteiro, Érika; Estrada, Francisco; Pesaro, Giulia; Menoni, Scira

    2017-01-01

    Floods are among the costliest natural disasters worldwide. Integrated flood risk management approaches involving both public and private measures have been proposed to cope with trends in flood risk. These approaches are hampered by a lack of information about the cost-effectiveness of private

  20. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    Science.gov (United States)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  1. A framework to assess plan implementation maturity with an application to flood management in Vietnam

    NARCIS (Netherlands)

    Phi, Ho Long; Hermans, L.M.; Douven, W.J.A.M.; Halsema, Van G.E.; Khan, Malik Fida

    2015-01-01

    Implementation failure is a long-known Achilles’ heel of water and flood management plans. Contemporary planning approaches address the implementation challenge by using more participatory planning processes to ensure support for plans, assuming that this support will also benefit plan

  2. Case studies of extended model-based flood forecasting: prediction of dike strength and flood impacts

    Science.gov (United States)

    Stuparu, Dana; Bachmann, Daniel; Bogaard, Tom; Twigt, Daniel; Verkade, Jan; de Bruijn, Karin; de Leeuw, Annemargreet

    2017-04-01

    Flood forecasts, warning and emergency response are important components in flood risk management. Most flood forecasting systems use models to translate weather predictions to forecasted discharges or water levels. However, this information is often not sufficient for real time decisions. A sound understanding of the reliability of embankments and flood dynamics is needed to react timely and reduce the negative effects of the flood. Where are the weak points in the dike system? When, how much and where the water will flow? When and where is the greatest impact expected? Model-based flood impact forecasting tries to answer these questions by adding new dimensions to the existing forecasting systems by providing forecasted information about: (a) the dike strength during the event (reliability), (b) the flood extent in case of an overflow or a dike failure (flood spread) and (c) the assets at risk (impacts). This work presents three study-cases in which such a set-up is applied. Special features are highlighted. Forecasting of dike strength. The first study-case focusses on the forecast of dike strength in the Netherlands for the river Rhine branches Waal, Nederrijn and IJssel. A so-called reliability transformation is used to translate the predicted water levels at selected dike sections into failure probabilities during a flood event. The reliability of a dike section is defined by fragility curves - a summary of the dike strength conditional to the water level. The reliability information enhances the emergency management and inspections of embankments. Ensemble forecasting. The second study-case shows the setup of a flood impact forecasting system in Dumfries, Scotland. The existing forecasting system is extended with a 2D flood spreading model in combination with the Delft-FIAT impact model. Ensemble forecasts are used to make use of the uncertainty in the precipitation forecasts, which is useful to quantify the certainty of a forecasted flood event. From global

  3. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars

    1998-12-31

    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  4. Coping with Complex Environmental and Societal Flood Risk Management Decisions: An Integrated Multi-criteria Framework

    Directory of Open Access Journals (Sweden)

    Love Ekenberg

    2011-08-01

    Full Text Available During recent years, a great deal of attention has been focused on the financial risk management of natural disasters. One reason behind is that the economic losses from floods, windstorms, earthquakes and other disasters in both the developing and developed countries are escalating dramatically. It has become apparent that an integrated water resource management approach would be beneficial in order to take both the best interests of society and of the environment into consideration. One improvement consists of models capable of handling multiple criteria (conflicting objectives as well as multiple stakeholders (conflicting interests. A systems approach is applied for coping with complex environmental and societal risk management decisions with respect to flood catastrophe policy formation, wherein the emphasis is on computer-based modeling and simulation techniques combined with methods for evaluating strategies where numerous stakeholders are incorporated in the process. The resulting framework consists of a simulation model, a decision analytical tool, and a set of suggested policy strategies for policy formulation. The framework will aid decision makers with high risk complex environmental decisions subject to significant uncertainties.

  5. Capturing the multiple benefits associated with nature-based solutions: lessons from natural flood management project in the Cotswolds, UK

    Science.gov (United States)

    Short, Chrisopher; Clarke, Lucy; Uttley, Chris; Smith, Brian

    2017-04-01

    Following severe flooding in 2007, and subsequent smaller flood events, a decision was taken in 2012 to explore nature-based solutions in 250km2 river catchment in the southern Cotswolds in the UK. A major tributary within the catchment has been designated as rapid response; with a primarily limestone geology limestone and a mixture of spring and surface drained sources along a number of tributaries feeding in the river, with one main population centre where the water bodies converge. The project involves landscape and land management interventions aimed at attenuating high flows to reduce flood risk through changes in land management practices in both agriculture and forestry and slowing peak flows in surface flows through increased infiltration and attenuation areas. After three years of the project it is clear that the threshold for effectiveness requires the majority of the upstream catchment area to be implementing these measures. However, the cost effectiveness of the approach seems to be substantial compared to traditional hard-engineering approaches. The level of community involvement, including local flood forums, is high and the social, and natural, capital has been enhanced through the project. Early results suggest that there have been localized improvements in water quality and biodiversity as well as a reduction in peak flow but such changes are difficult to directly associate to the project. What is clear is the role of communities, landowners and partners to implement natural flood management on a catchment wide scale. In this sense the project has adopted a co-management or adaptive management approach which brings together the knowledges of hydrologists, ecologists, farmers, woodland owners and the local community to implement locally be-spoke solutions within a broader project framework. This paper will outline the initial findings and the governance structure that has assisted in the early success of the project within a theoretical framework of

  6. Sediment transport and deposition in the lower Missouri River during the 2011 flood

    Science.gov (United States)

    Alexander, Jason S.; Jacobson, Robert B.; Rus, David L.

    2013-01-01

    Hermann, Missouri. Measurements made in early January, when SSC was low, indicate that suspended sediment mostly was composed of bed material, but by mid-February, runoff from the plains caused PW to increase at most streamgages. Total suspended-sediment discharge (SSD) during water year 2011 at the selected streamgages in the lower Missouri River ranged from approximately 29 to 64 million tons. Total estimated SSD had the lowest exceedance frequencies in the reaches between Gavins Point Dam and Nebraska City, Nebraska, but exceedance frequencies increased substantially downstream. In 2011, total SSD with low exceedance frequencies were reported at Sioux City, Iowa, Omaha, Nebraska, and Nebraska City, Nebraska, despite moderate-to-high exceedance frequencies for annual average SSC, indicating that the duration of high-magnitude flooding was the primary driver of total SSD. Comparison of median SSC for samples from water year 2011 with samples in the 20 years prior indicated that median SSC for high-action streamflows (streamflows likely to produce a stage exceeding the National Weather Service’s “action stage”) in 2011 were lower than those typical for high-action streamflows. Multiple-comparison analysis indicated that median SSC values for low-action streamflows (streamflows likely to produce stages lower than the National Weather Service’s “action stage”) and high-action streamflows sampled in 2011 at 4 of 6 streamgages were not significantly distinguishable from median SSC values for low-action streamflows in the previous 20 years. Longitudinal comparison of streamflow and SSD exceedance frequencies for 2011 with corresponding frequencies for 2008 and 1993 indicated the important role of tributary contributions to total SSD in the lower Missouri River. In 1993 and 2008, tributaries were the primary source of floodwater in the lower Missouri River, which resulted in a 20-fold increase in total SSD from Sioux City, Iowa, to Hermann, Missouri. In 2011

  7. Impact of modelling scale on probabilistic flood risk assessment: the Malawi case

    Directory of Open Access Journals (Sweden)

    Rudari Roberto

    2016-01-01

    Full Text Available In the early months of 2015, destructive floods hit Malawi, causing deaths and economic losses. Flood risk assessment outcomes can be used to increase scientific-supported awareness of risk. The recent increase in availability of high resolution data such as TanDEM-X at 12m resolution makes possible the use of detailed physical based flood hazard models in risk assessment. Nonetheless the scale of hazard modelling still remains an issue, which requires a compromise between level of detail and computational efforts. This work presents two different approaches on hazard modelling. Both methods rely on 32-years of numeric weather re-analysis and rainfall-runoff transformation through a fully distributed WFLOW-type hydrological model. The first method, applied at national scale, uses fast post-processing routines, which estimate flood water depth at a resolution of about 1×1km. The second method applies a full 2D hydraulic model to propagate water discharge into the flood plains and best suites for small areas where assets are concentrated. At the 12m resolution, three hot spots with a model area of approximately 10×10 km are analysed. Flood hazard maps obtained with both approaches are combined with flood impact models at the same resolution to generate indicators for flood risk. A quantitative comparison of the two approaches is presented in order to show the effects of modelling scale on both hazard and impact losses.

  8. Delivering Integrated Flood Risk Management : Governance for collaboration, learning and adaptation

    NARCIS (Netherlands)

    Van Herk, S.

    2014-01-01

    The frequency and consequences of extreme flood events have increased rapidly worldwide in recent decades and climate change and economic growth are likely to exacerbate this trend. Flood protection measures alone cannot accommodate the future frequencies and impacts of flooding. Integrated flood

  9. Delivering Integrated Flood Risk Management: Governance for collaboration, learning and adaptation

    NARCIS (Netherlands)

    Van Herk, S.

    2014-01-01

    The frequency and consequences of extreme flood events have increased rapidly worldwide in recent decades and climate change and economic growth are likely to exacerbate this trend. Flood protection measures alone cannot accommodate the future frequencies and impacts of flooding. Integrated flood

  10. Sediment records of Yellow River channel migration and Holocene environmental evolution of the Hetao Plain, northern China

    Science.gov (United States)

    Wang, Jingzhong; Wu, Jinglu; Pan, Baotian; Jia, Hongjuan; Li, Xiao; Wei, Hao

    2018-05-01

    The origin and evolution of lakes in the Hetao Plain, northern China, were influenced by climate variation, channel migration, and human activity. We analyzed a suite of sediment cores from the region to investigate Yellow River channel migration and environmental change in this region over the Holocene. Short sediment cores show that environmental indicators changed markedly around CE 1850, a time that corresponds to flood events, when large amounts of river water accumulated in the western part of the Hetao Plain, giving rise to abundant small lakes. Multiple sediment variables (environmental proxies) from two long cores collected in the Tushenze Paleolake area show that sediments deposited between 12.0 and 9.0 cal ka BP were yellow clay, indicative of fluvial deposition and channel migration. From 9.0 to 7.5 cal ka BP, sand was deposited, reflecting a desert environment. From 7.5 to 2.2 cal ka BP, however, the sediments were blue-gray clay that represents lacustrine facies of Lake Tushenze, which owes its origin to an increase in strength of the East Asian monsoon. At about 2.2 cal ka BP, the north branch of the Yellow River was flooded, and the Tushenze Paleolake developed further. Around 2.0 cal ka BP, the paleolake shrank and eolian sedimentation was recorded. The analyzed sediment records are consistent with the written history from the region, which documents channel migration and environmental changes in the Hetao Plain over the Holocene.

  11. Flood Catastrophe Model for Designing Optimal Flood Insurance Program : Estimating Location-Specific Premiums in the Netherlands

    NARCIS (Netherlands)

    Ermolieva, T.; Filatova, Tatiana; Ermoliev, Y.; Obersteiner, M.; de Bruijn, K.M.; Jeuken, A.

    2017-01-01

    As flood risks grow worldwide, a well-designed insurance program engaging various stakeholders becomes a vital instrument in flood risk management. The main challenge concerns the applicability of standard approaches for calculating insurance premiums of rare catastrophic losses. This article

  12. Social vulnerability in the flood-prone anthropogenic landscape of Northern Italy

    Science.gov (United States)

    Roder, Giulia; Sofia, Giulia; Wu, Zhifeng; Tarolli, Paolo

    2017-04-01

    probability distribution. Within the floodplain, it has been found that only 22 municipalities are located in a high-risk location: Lombardia (10; 12.5 %), Piemonte (9; 2.7 %) and Veneto (3; 10.7 %) region. These regions are the most economically competitive regions within the North of Italy with elevated levels of human-landscape interactions. Low scores of susceptibility coupled with high flood exposure areas (i.e. the Polesine region) need to be taken into account in flood reduction policies. For this reason, smallest areas can be used as macro-scale analysis with a municipality-scale subdivision to examine the societal characteristics of the community and their locations. This would benefit practitioners and managers to produce rapid flood emergency evaluations and focused land plans. Undeniably, social vulnerability and risk maps are only a part of the efforts needed to reduce the risk posed by environmental hazards. In fact, there is the need of a multi-stakeholder participation at all levels, from managers to politicians to plan, finance and finalise those actions aiming at empowering the most vulnerable people that live in flood-prone regions. Also, there is a need to stimulate researchers to contribute qualitatively to quantitative researches as documented by the EU Flood Directive 2007/60/EC. References: Carminati, E., and G. Martinelli, 2002: Subsidence rates in the Po Plain, northern Italy: The relative impact of natural and anthropogenic causation. Eng. Geol., 66, 241-255, doi:10.1016/S0013-7952(02)00031-5. Cutter, S., B. Boruff, and W. Shirley, 2003: Social vulnerability to environmental hazards. Soc. Sci. Q., 84, 242-261, doi:10.1111/1540-6237.8402002. Dankers, R., and L. Feyen, 2008: Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res. Atmos., 113, 1-17, doi:10.1029/2007JD009719. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), 2015: Geoportale ISPRA Ambiente. Accesso

  13. The index-flood and the GRADEX methods combination for flood frequency analysis.

    Science.gov (United States)

    Fuentes, Diana; Di Baldassarre, Giuliano; Quesada, Beatriz; Xu, Chong-Yu; Halldin, Sven; Beven, Keith

    2017-04-01

    Flood frequency analysis is used in many applications, including flood risk management, design of hydraulic structures, and urban planning. However, such analysis requires of long series of observed discharge data which are often not available in many basins around the world. In this study, we tested the usefulness of combining regional discharge and local precipitation data to estimate the event flood volume frequency curve for 63 catchments in Mexico, Central America and the Caribbean. This was achieved by combining two existing flood frequency analysis methods, the regionalization index-flood approach with the GRADEX method. For up to 10-years return period, similar shape of the scaled flood frequency curve for catchments with similar flood behaviour was assumed from the index-flood approach. For return periods larger than 10-years the probability distribution of rainfall and discharge volumes were assumed to be asymptotically and exponential-type functions with the same scale parameter from the GRADEX method. Results showed that if the mean annual flood (MAF), used as index-flood, is known, the index-flood approach performed well for up to 10 years return periods, resulting in 25% mean relative error in prediction. For larger return periods the prediction capability decreased but could be improved by the use of the GRADEX method. As the MAF is unknown at ungauged and short-period measured basins, we tested predicting the MAF using catchments climate-physical characteristics, and discharge statistics, the latter when observations were available for only 8 years. Only the use of discharge statistics resulted in acceptable predictions.

  14. Trends in flood risk management in deltas around the world: Are we going ‘soft’?

    NARCIS (Netherlands)

    Wesselink, A.; Warner, J.F.; Syed, M.A.; Chan, F.; Tran, D.D.; Huq, H.; Huthoff, F.; Thuy, Le N.; Pinter, N.; Staveren, van M.F.; Wester, P.; Zegwaard, A.

    2015-01-01

    Flood-risk management (FRM) is shaped by context: a society’s cultural background; physical possibilities and constraints; and the historical development of that society’s economy, politi- cal system, education, etc. These provide different drivers for change, in interaction with more global

  15. Flash floods and debris flow: how the risk could can be better managed? The case of the events in Sicily on October 2009

    Science.gov (United States)

    Aronica, Giuseppe T.; Brigandi', Giuseppina

    2010-05-01

    Flash floods are phenomena in which the important hydrologic processes are occurring on the same spatial and temporal scales as the intense precipitation. Most of the catchments of the Messina area in the North-East part of Sicily (Italy), are prone to flash flood formation. They are, in fact, small, with a steep slope, and characterised by short concentration times. Moreover, those catchments are predominantly rural in the upper mountainous part, while the areas next to the outlet are highly urbanized with areas that cover not only the floodplain but also the river bed itself as the main roads were previously part of the torrent. This situation involve an high risk of economic losses and human life in case of flash flood in these areas. In the last years the area around Messina has been interested by severe flash floods and debris flow. The events occurred on 25th October 2007 in the Mastroguglielmo torrent and 1st October 2009 on Racinazzi and Gianpilieri torrents are an example of flash floods and debris flow events that caused not only significant economic damages to property, buildings, roads and bridges but also, for this that concern the 1st October 2009 flash flood, loss of human life. The main focus of this work is, basing on the post event analysis of the 2009 flash flood event, to try to understand which could be the better preventive measures and mitigation strategies that can be provided for a better risk management in these areas too many times affected by devastating events. Flood management can be controlled by either structural or non-structural measures. Adoption of a certain measure depends critically on the hydrological and hydraulic characteristics of the river system and the region. Flash flood management includes a number of phases that should be included in any management strategy like prevention, mitigation, preparedness, response and recovery. Forecasting based on hydrological precursors based on the soil moisture condition at the

  16. Stakeholder initiatives in flood risk management: exploring the role and impact of bottom-up initiatives in three ‘Room for the River’ projects in the Netherlands

    NARCIS (Netherlands)

    J. Edelenbos (Jurian); M.W. van Buuren (Arwin); D. Roth (Dik); M.H. Winnubst (Madelinde)

    2017-01-01

    textabstractIn recent years stakeholder participation has become a popular topic in flood management. Little is known about how and under which circumstances local stakeholders initiate and develop successful flood management strategies and how governmental actors respond to them. Drawing on

  17. Characterization of remarkable floods in France, a transdisciplinary approach applied on generalized floods of January 1910

    Science.gov (United States)

    Boudou, Martin; Lang, Michel; Vinet, Freddy; Coeur, Denis

    2014-05-01

    The 2007 Flood Directive promotes the integration and valorization of historical and significant floods in flood risk management (Flood Directive Text, chapter II, and article 4). Taking into account extreme past floods analysis seems necessary in the mitigation process of vulnerability face to flooding risk. In France, this aspect of the Directive was carried out through the elaboration of Preliminary Flood Risk Assessment (PFRA) and the establishment of a 2000 floods list. From this first list, a sample of 176 floods, considered as remarkable has been selected. These floods were compiled in discussion with local authorities in charge of flood management (Lang et al., 2012) and have to be integrated in priority in local risk management policies. However, a consideration emerges about this classification: how a remarkable flood can be defined? According which criteria can it be considered as remarkable? To answer these questions, a methodology has been established by building an evaluation grid of remarkable floods in France. The primary objective of this grid is to analyze the remarkable flood's characteristics (hydrological and meteorological characteristics, sociological- political and economic impacts), and secondly to propose a classification of significant floods selected in the 2011 PFRA. To elaborate this evaluation grid, several issues had to be taken into account. First, the objective is to allow the comparison of events from various periods. These temporal disparities include the integration of various kinds of data and point out the importance of historical hydrology. It is possible to evaluate accurately the characteristics of recent floods by interpreting quantitative data (for example hydrological records. However, for floods that occurred before the 1960's it is necessary resorting to qualitative information such as written sources is necessary (Coeur, Lang, 2008). In a second part the evaluation grid requires equitable criteria in order not to

  18. Namibian Flood Early Warning SensorWeb Pilot

    Science.gov (United States)

    Mandl, Daniel; Policelli, Fritz; Frye, Stuart; Cappelare, Pat; Langenhove, Guido Van; Szarzynski, Joerg; Sohlberg, Rob

    2010-01-01

    The major goal of the Namibia SensorWeb Pilot Project is a scientifically sound, operational trans-boundary flood management decision support system for Southern African region to provide useful flood and waterborne disease forecasting tools for local decision makers. The Pilot Project established under the auspices of: Namibian Ministry of Agriculture Water and Forestry (MAWF), Department of Water Affairs; Committee on Earth Observing Satellites (CEOS), Working Group on Information Systems and Services (WGISS); and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort consists of identifying and prototyping technology which enables the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management.

  19. Summary of floods in the United States during 1958

    Science.gov (United States)

    Hendricks, E.L.

    1964-01-01

    This report describes the most outstanding floods that occurred in the United States during 1958.A series of storms from January 23 to February 16 brought large amounts of precipitation to northern California and produced damaging floods, particularly in the Lower Sacramento Valley where losses totaled about \\$12 million.Major floods, notable because of the large area affected, occurred on many small streams in central and south Texas, following heavy general rains in late February. Extensive flooding occurred along the Gulf Coastal plain on the lower reaches of the major streams from the Brazos River to the Nueces River. Two lives were lost, and property damage exceeded \\$1 million.Damaging floods of April 1-7 followed one of the wettest winters in California history. Swollen streams overflowed their banks throughout the central part of the State, and discharge peaks on many streams exceeded those .of the floods of December 1955. Most severely flooded was the San Francisco Bay area. Total flood damage was estimated at \\$23 million.The storms and floods of April-May in Louisiana and adjacent States outranked all other floods in the United States during 1958 with respect to intensity of rain over a large area, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount (\\$21 million) of resultant damage.Heavy rains on June 8-15 caused one of the greatest summer floods of record in central Indiana. Peak discharges were high and of rare occurrences. Failure of numerous levees along the Wabash River caused great damage. Crop damage alone was estimated at \\$48 million.Intense rains of July 1-2 caused record-breaking floods in southwestern Iowa. Rapid rises and the great magnitude of the floods on small streams resulted in 18 deaths and many injuries. Six towns and cities along the East Nishnabotna River and its tributaries were particularly hard hit; rural damage was also high. Total damage was estimated at \\$15 million

  20. Improving the active involvement of stakeholders and the public in flood risk management – tools of an involvement strategy and case study results from Austria, Germany and Italy

    Directory of Open Access Journals (Sweden)

    V. Vitale

    2012-09-01

    Full Text Available The EU Flood Risk Management Directive 2007/60/EC aims at an active involvement of interested parties in the setting up of flood risk management plans and thus calls for more governance-related decision-making. This requirement has two perspectives. On the one hand, there is (1 the question of how decision-makers can improve the quality of their governance process. On the other hand, there is (2 the question of how the public shall be appropriately informed and involved. These questions were the centre of the ERA-Net CRUE-funded project IMRA (integrative flood risk governance approach for improvement of risk awareness that aimed at an optimisation of the flood risk management process by increasing procedural efficiency with an explicit involvement strategy. To reach this goal, the IMRA project partners developed two new approaches that were implemented in three case study areas for the first time in flood risk management: 1. risk governance assessment tool: An indicator-based benchmarking and monitoring tool was used to evaluate the performance of a flood risk management system in regard to ideal risk governance principles; 2. social milieu approach: The concept of social milieus was used to gain a picture of the people living in the case study regions to learn more about their lifestyles, attitudes and values and to use this knowledge to plan custom-made information and participation activities for the broad public. This paper presents basic elements and the application of two innovative approaches as a part of an "involvement strategy" that aims at the active involvement of all interested parties (stakeholders for assessing, reviewing and updating flood risk management plans, as formulated in the EU Flood Risk Management Directive 2007/60/EC.

  1. Geological setting control of flood dynamics in lowland rivers (Poland).

    Science.gov (United States)

    Wierzbicki, Grzegorz; Ostrowski, Piotr; Falkowski, Tomasz; Mazgajski, Michał

    2018-04-27

    We aim to answer a question: how does the geological setting affect flood dynamics in lowland alluvial rivers? The study area covers three river reaches: not trained, relatively large on the European scale, flowing in broad valleys cut in the landscape of old glacial plains. We focus on the locations where levees [both: a) natural or b) artificial] were breached during flood. In these locations we identify (1) the erosional traces of flood (crevasse channels) on the floodplain displayed on DEM derived from ALS LIDAR. In the main river channel, we perform drillings in order to measure the depth of the suballuvial surface and to locate (2) the protrusions of bedrock resistant to erosion. We juxtapose on one map: (1) the floodplain geomorphology with (2) the geological data from the river channel. The results from each of the three study reaches are presented on maps prepared in the same manner in order to enable a comparison of the regularities of fluvial processes written in (1) the landscape and driven by (2) the geological setting. These processes act in different river reaches: (a) not embanked and dominated by ice jam floods, (b) embanked and dominated by rainfall and ice jam floods. We also analyse hydrological data to present hydrodynamic descriptions of the flood. Our principal results indicate similarity of (1) distinctive erosional patterns and (2) specific geological features in all three study reaches. We draw the conclusion: protrusions of suballuvial bedrock control the flood dynamics in alluvial rivers. It happens in both types of rivers. In areas where the floodplain remains natural, the river inundates freely during every flood. In other areas the floodplain has been reclaimed by humans who constructed an artificial levee system, which protects the flood-prone area from inundation, until levee breach occurs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3 s−1. Channel cross-section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre-dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre-dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Hydrology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Science.gov (United States)

    Scott V. Harder; Devendra M Amatya; Callahan Timothy J.; Carl C. Trettin; Hakkila Jon

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  4. Hyrdology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Science.gov (United States)

    Scott V. Harder; Devendra M. Amatya; Timothy J. Callahan; Carl C. Trettin; Jon Hakkila

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  5. Guidelines for the adaptation to floods in changing climate

    Science.gov (United States)

    Doroszkiewicz, Joanna; Romanowicz, Renata J.

    2017-08-01

    A decrease of flood damages in the future requires not only adaptation to flood caused by present day climate, but also climate change effects on floods should be taken into account. The paper illustrates the need to take into account changing climate conditions in flood adaptation strategies and to apply in practice the concept of integrated water resource management (IWRM). IWRM is based on a number of policy instruments, economic instruments, political signals, and also, on the effects of climate change on floods and collaboration across national, regional and local administrative units. The guidelines for a country adaptation to floods in a changing climate are outlined. A comparison of the adaptive capacities in Poland and Norway is used to illustrate the need for the implementation of proposed guidelines to assure flood risk management under climate change in a sustainable way.

  6. Effects on the upstream flood inundation caused from the operation of Chao Phraya Dam

    Directory of Open Access Journals (Sweden)

    Sutham Visutimeteegorn

    2007-11-01

    Full Text Available During the flooding events, the operation of Chao Phraya Dam to control downstream water discharge is one of the causes of the inundation occuring over the upstream area. The purposes of this research are to study the effects of the operation of Chao Phraya Dam upon the upstream flood inundation and to find out the new measures of the flood mitigation in the upstream areas of Chao Phraya Dam by using a hydrodynamic model. The results show that Manning's n in the Chao Phraya River and its tributaries is 0.030-0.035 in the main channels and 0.050-0.070 in the flood plain areas. The backwater due to the operation of the Chao Praya dam affects as far as 110 kilometers upstream. New methods of water diversion can mitigate the flood inundation without the effect on the floating rice fields. The construction of reservoirs in the Upper Sakaekang River Basin and the Upper Yom River Basin will mitigate the flood not only in their own basins but also in the Lower Chao Phraya River Basin. The coordinated operation of the Chao Phraya Dam, the regulators and the upper basin reservoirs will efficiently mitigate the flood inundation.

  7. Three Points Approach (3PA) for urban flood risk management: A tool to support climate change adaptation through transdisciplinarity and multifunctionality

    DEFF Research Database (Denmark)

    Fratini, Chiara; Geldof, Govert Daan; Kluck, J.

    2012-01-01

    Urban flood risk is increasing as a consequence of climate change and growing impervious surfaces. Increasing complexity of the urban context, gradual loss of tacit knowledge and decreasing social awareness are at the same time leading to inadequate choices with respect to urban flood risk...... management (UFRM). The European Flood Risk Directive emphasises the need for non-structural measures aimed at urban resilience and social preparedness. The Three Points Approach (3PA) provides a structure facilitating the decision making processes dealing with UFRM. It helps to accept the complexity...... water managers and operators an efficient communication tool and thinking system, which helps to reduce complexity to a level suitable when organising strategy plans for UFRM and urban adaptation to climate change....

  8. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    Science.gov (United States)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  9. Increasing resilience through participative flood risk map design

    Science.gov (United States)

    Fuchs, Sven; Spira, Yvonne; Stickler, Therese

    2013-04-01

    In recent years, an increasing number of flood hazards has shown to the European Commission and the Member States of the European Union the importance of flood risk management strategies in order to reduce losses and to protect the environment and the citizens. Exposure to floods as well as flood vulnerability might increase across Europe due to the ongoing economic development in many EU countries. Thus even without taking climate change into account an increase of flood disasters in Europe might be foreseeable. These circumstances have produced a reaction in the European Commission, and a Directive on the Assessment and Management of Flood Risks was issued as one of the three components of the European Action Programme on Flood Risk Management. Floods have the potential to jeopardise economic development, above all due to an increase of human activities in floodplains and the reduction of natural water retention by land use activities. As a result, an increase in the likelihood and adverse impacts of flood events is expected. Therefore, concentrated action is needed at the European level to avoid severe impacts on human life and property. In order to have an effective tool available for gathering information, as well as a valuable basis for priority setting and further technical, financial and political decisions regarding flood risk mitigation and management, it is necessary to provide for the establishment of flood risk maps which show the potential adverse consequences associated with different flood scenarios. So far, hazard and risk maps are compiled in terms of a top-down linear approach: planning authorities take the responsibility to create and implement these maps on different national and local scales, and the general public will only be informed about the outcomes (EU Floods Directive, Article 10). For the flood risk management plans, however, an "active involvement of interested parties" is required, which means at least some kind of multilateral

  10. Rhine Cities - Urban Flood Integration (UFI)

    NARCIS (Netherlands)

    Redeker, C.

    2013-01-01

    While agglomerations along the Rhine are confronted with the uncertainties of an increasing flood risk due to climate change, different programs are claiming urban river front sites. Simultaneously, urban development, flood management, as well as navigation and environmental protection are

  11. Influence of spreading urbanization in flood areas on flood damage in Slovenia

    International Nuclear Information System (INIS)

    Komac, B; Zorn, M; Natek, K

    2008-01-01

    Damage caused by natural disasters in Slovenia is frequently linked to the ignoring of natural factors in spatial planning. Historically, the construction of buildings and settlements avoided dangerous flood areas, but later we see increasing construction in dangerous areas. During the floods in 1990, the most affected buildings were located on ill-considered locations, and the majority was built in more recent times. A similar situation occurred during the floods of September 2007. Comparing the effects of these floods, we determined that damage was always greater due to the urbanization of flood areas. This process furthermore increasingly limits the 'manoeuvring space' for water management authorities, who due to the torrential nature of Slovenia's rivers can not ensure the required level of safety from flooding for unsuitably located settlements and infrastructure. Every year, the Environmental Agency of the Republic of Slovenia issues more than one thousand permits for interventions in areas that affect the water regime, and through decrees the government allows construction in riparian zones, which is supposedly forbidden by the Law on Water. If we do not take measures with more suitable policies for spatial planning, we will no long have the possibility in future to reduce the negative consequences of floods. Given that torrential floods strike certain Slovene regions every three years on average and that larger floods occur at least once a decade, it is senseless to lay the blame on climate change.

  12. The application of enhanced conveyance calculations in flood prediction

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, G.; Pender, G. [Glasgow Univ. (United Kingdom). Dept. of Civil Engineering

    2000-07-01

    Over the past twenty years extensive research has been conducted on overbank flow behaviour during river floods. When the main channel flow interacts with flood plain flow, secondary losses other than bed friction act to retard the flow. Traditional one-dimensional modelling tools commonly used in the UK, such as ISIS or HEC-RAS, currently take no account of these secondary losses In an attempt to establish the nature and significance of secondary losses the flood channel facility (FCF) was constructed at HR Wallingford in 1987. As a direct result of the meandering channel series B experiments the James and Wark Method (1992) was developed to predict stage discharge relationships. For a given water level, this method will calculate a value of discharge taking into account the secondary losses. The paper will report on the modification of the method to fit into the river modelling software ISIS. Within the ISIS framework the James and Wark Method is used to calculate conveyance. The aim is to produce a more accurate flood prediction tool than currently exists. The newly developed software has been tested on laboratory data and shown to be highly accurate in both stage discharge and water level prediction. The software has since been applied to natural rivers that have experienced significant flood events. The paper will illustrate the significance of applying flume based conveyance calculation methods at the field scale. (orig.)

  13. Flood-resilient waterfront development in New York City: bridging flood insurance, building codes, and flood zoning.

    Science.gov (United States)

    Aerts, Jeroen C J H; Botzen, W J Wouter

    2011-06-01

    Waterfronts are attractive areas for many-often competing-uses in New York City (NYC) and are seen as multifunctional locations for economic, environmental, and social activities on the interface between land and water. The NYC waterfront plays a crucial role as a first line of flood defense and in managing flood risk and protecting the city from future climate change and sea-level rise. The city of New York has embarked on a climate adaptation program (PlaNYC) outlining the policies needed to anticipate the impacts of climate change. As part of this policy, the Department of City Planning has recently prepared Vision 2020: New York City Comprehensive Waterfront Plan for the over 500 miles of NYC waterfront (NYC-DCP, 2011). An integral part of the vision is to improve resilience to climate change and sea-level rise. This study seeks to provide guidance for advancing the goals of NYC Vision 2020 by assessing how flood insurance, flood zoning, and building code policies can contribute to waterfront development that is more resilient to climate change. © 2011 New York Academy of Sciences.

  14. The role of water and sediment connectivity in integrated flood management: a case study on the island of Saint Lucia

    Science.gov (United States)

    Jetten, Victor; van Westen, Cees; Ettema, Janneke; van den Bout, Bastian

    2016-04-01

    Disaster Risk Management combines the effects of natural hazards in time and space, with elements at risk, such as ourselves, infrastructure or other elements that have a value in our society. The risk in this case is defined as the sum of potential consequences of one or more hazards and can be expressed as potential damages. Generally, we attempt to reduce risk by better risk management, such as increase of resilience, protection and spatial planning. Caribbean islands are hit by hurricanes and tropical storms with a frequency of 1 to 2 every 10 years, with devastating consequences in terms of flash floods and landslides. The islands basically consist of a central (volcanic) mountain range, with medium and small sized catchments radiating outward towards the ocean. The coastal zone is inhabited, while the ring road network is essential for functioning of the island. An example of a case study is given for the island of Saint Lucia. Recorded rainfall intensities during tropical storms of 12 rainfall stations surpass 200 mm/h, causing immediate flash floods. Very often however, sediment is a forgotten variable in flash flood management: protection and mitigation measures as well as spatial planning all focus on the hydrology, the extent and depth of flood water, and sometimes of flood velocities. With recent developments, the opensource model LISEM includes hydrology and runoff, flooding, and erosion, transport and deposition both in runoff, channel flow and flood waters. We will discuss the practical solutions we implemented in connecting slopes, river channels and floodplains in terms of water and sediment, and the strength and weaknesses we have encountered so far. Catchment analysis shows two main effects: on the one hand in almost all cases upstream flooding serves as a temporary water storage that prevents further damage downstream, while on the other hand, erosion upstream often blocks bridges and decreases channel storage downstream, which increases the

  15. When surging seas meet stronger rain: Nuclear techniques in flood management

    International Nuclear Information System (INIS)

    Quevenco, Rodolfo

    2015-01-01

    Unusually high rainfall in many parts of the world is a result of climate change, scientists say. Since warmer air can hold more water, the rationale goes, increased temperatures will increase the chances of stronger rainfall events. And when surging seas combine with stronger rain, the outcome is almost certain: floods. Floods are the most frequently occurring natural disasters, and south-east Asia is particularly vulnerable. Climate change and variability are expected to bring about increased typhoon activities, rising sea levels and off-season monsoon rains in southeast Asia and other regions. These can cause devastating floods in countries like Cambodia, Laos, Pakistan, the Philippines, Thailand and Viet Nam. For the residents of these countries who have survived the ravages of major floods, the road to recovery can be long and arduous. As the flood water recedes, they have to contend with new forms of flood: floods of concern and worries as to how to rebuild their houses, their lives and their cities. Governments, too, face huge challenges in rebuilding roads, public buildings, infrastructure and natural resources destroyed or polluted by the flood.

  16. Long-lasting floods buffer the thermal regime of the Pampas

    Science.gov (United States)

    Houspanossian, Javier; Kuppel, Sylvain; Nosetto, Marcelo; Di Bella, Carlos; Oricchio, Patricio; Barrucand, Mariana; Rusticucci, Matilde; Jobbágy, Esteban

    2018-01-01

    The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape ( 2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.

  17. Hydrologic and geochemical characterization of the Santa Rosa Plain watershed, Sonoma County, California

    Science.gov (United States)

    Nishikawa, Tracy

    2013-01-01

    The Santa Rosa Plain is home to approximately half of the population of Sonoma County, California, and faces growth in population and demand for water. Water managers are confronted with the challenge of meeting the increasing water demand with a combination of water sources, including local groundwater, whose future availability could be uncertain. To meet this challenge, water managers are seeking to acquire the knowledge and tools needed to understand the likely effects of future groundwater development in the Santa Rosa Plain and to identify efficient strategies for surface- and groundwater management that will ensure the long-term viability of the water supply. The U.S. Geological Survey, in cooperation with the Sonoma County Water Agency and other stakeholders in the area (cities of Cotati, Rohnert Park, Santa Rosa, and Sebastopol, town of Windsor, Cal-American Water Company, and the County of Sonoma), undertook this study to characterize the hydrology of the Santa Rosa Plain and to develop tools to better understand and manage the groundwater system. The objectives of the study are: (1) to develop an updated assessment of the hydrogeology and geochemistry of the Santa Rosa Plain; (2) to develop a fully coupled surface-water and groundwater-flow model for the Santa Rosa Plain watershed; and (3) to evaluate the potential hydrologic effects of alternative groundwater-management strategies for the basin. The purpose of this report is to describe the surface-water and groundwater hydrology, hydrogeology, and water-quality characteristics of the Santa Rosa Plain watershed and to develop a conceptual model of the hydrologic system in support of the first objective. The results from completing the second and third objectives will be described in a separate report.

  18. Towards an integrated flood management approach to address trade-offs between ecosystem services: Insights from the Dutch and German Rhine, Hungarian Tisza, and Chinese Yangtze basins

    Science.gov (United States)

    Halbe, Johannes; Knüppe, Kathrin; Knieper, Christian; Pahl-Wostl, Claudia

    2018-04-01

    The utilization of ecosystem services in flood management is challenged by the complexity of human-nature interactions and practical implementation barriers towards more ecosystem-based solutions, such as riverine urban areas or technical infrastructure. This paper analyses how flood management has dealt with trade-offs between ecosystem services and practical constrains towards more ecosystem-based solutions. To this end, we study the evolution of flood management in four case studies in the Dutch and German Rhine, the Hungarian Tisza, and the Chinese Yangtze basins during the last decades, focusing on the development and implementation of institutions and their link to ecosystem services. The complexity of human-nature interactions is addressed by exploring the impacts on ecosystem services through the lens of three management paradigms: (1) the control paradigm, (2) the ecosystem-based paradigm, and (3) the stakeholder involvement paradigm. Case study data from expert interviews and a literature search were structured using a database approach prior to qualitative interpretation. Results show the growing importance of the ecosystem-based and stakeholder involvement paradigms which has led to the consideration of a range of regulating and cultural ecosystem services that had previously been neglected. We detected a trend in flood management practice towards the combination of the different paradigms under the umbrella of integrated flood management, which aims at finding the most suitable solution depending on the respective regional conditions.

  19. Decreasing flood risk perception in Porto Alegre – Brazil and its influence on water resource management decisions

    Directory of Open Access Journals (Sweden)

    D. G. Allasia

    2015-06-01

    Full Text Available Porto Alegre is the capital and largest city in the Brazilian state of Rio Grande do Sul in Southern Brazil with approximately 1.5 million inhabitants. The city lies on the eastern bank of the Guaiba Lake, formed by the convergence of five rivers and leading to the Lagoa dos Patos, a giant freshwater lagoon navigable by even the largest of ships. This river junction has become an important alluvial port as well as a chief industrial and commercial centre. However, this strategic location resulted in severe damage because of its exposure to flooding from the river system, affecting the city in the years 1873, 1928, 1936, 1941 and 1967. In order to reduce flood risk, a complex system of levees and pump stations was implemented during 1960s and 1970s. Since its construction, not a single large flood event occurred. However, in recent years, the levees in the downtown region of Porto Alegre were severally criticized by city planners and population. Several projects have been proposed to demolish the Mauá Wall due to the false perception of lack of flood risk. Similar opinions and reactions against flood infrastructure have been observed in other cities in Brazil, such as Itajaí and Blumenau, with disastrous consequences. This paper illustrates how the perception of flood risk in Porto Alegre has changed over recent years as a result of flood infrastructure, and how such changes in perceptions can influence water management decisions.

  20. Citizen Science into Action - Robust Data with Affordable Technologies for Flood Risks Management in the Himalayas

    Science.gov (United States)

    Pandeya, B.; Uprety, M.; Paul, J. D.; Dugar, S.; Buytaert, W.

    2017-12-01

    With a robust and affordable monitoring system, a wealth of hydrological data can be generated which is fundamental to predict flood risks more accurately. Since the Himalayan region is characterized by data deficiency and unpredictable hydrological behaviour, a locally based participatory monitoring system is a necessity to deal with frequently occurring flooding incidents. A gap in hydrological data is the main bottleneck for establishing any effective flood early warning system. Therefore, an alternative and affordable technical solution can only overcome the situation and support flood risks management activities in the region. In coordination with local people, government authorities and NGOs, we have established a citizen science monitoring system, in which we tested two types of low-cost sensors, ultrasound and LiDAR, in the Karnali river basin of Nepal. The results confirm the robustness of sensor data when compared to conventional radar system based monitoring data. Additionally, our findings also confirmed that the ultrasound sensors are only useful to small rivers whereas the LiDAR sensors are suitable to large river basins with highly variable local climatic conditions. Since the collected sensor data can be directly used in operational flood early warning system in the basin, an opportunity has been created for integrating both affordable technology and citizen science into existing hydrological monitoring practice. Finally, a successful integration could become a testament for upscaling the practice and building flood risk resilient communities in the region.

  1. The Integration of the Adaptation Approach into EU and Dutch Legislation on Flood Risk Management

    NARCIS (Netherlands)

    Gilissen, Herman Kasper

    2015-01-01

    Climate change, worldwide, gives rise to multifarious issues concerning water management. This will lead to both an increase of flood risks and risks related to drought and water scarcity, mostly as a result of sea level rise, increasing river discharges and heavy rainfall, respectively longer, more

  2. Disaster management in practice- concerning 5th ICC&GIS flood and evacuation of 92 participants

    NARCIS (Netherlands)

    Bandrova, Temenujka; Konecny, Milan; Zlatanova, S.; Bandrova, T.; Konecny, M.

    2016-01-01

    This paper describes lessons learned during the floods in 2014 in Bulgaria where a large group of professionals and researchers working in early warning and crises management (EWCM) got involved. The paper describes the site and the chronological order of the events, which disturbed the Seminar on

  3. Assessing uncertainties in flood forecasts for decision making: prototype of an operational flood management system integrating ensemble predictions

    Directory of Open Access Journals (Sweden)

    J. Dietrich

    2009-08-01

    Full Text Available Ensemble forecasts aim at framing the uncertainties of the potential future development of the hydro-meteorological situation. A probabilistic evaluation can be used to communicate forecast uncertainty to decision makers. Here an operational system for ensemble based flood forecasting is presented, which combines forecasts from the European COSMO-LEPS, SRNWP-PEPS and COSMO-DE prediction systems. A multi-model lagged average super-ensemble is generated by recombining members from different runs of these meteorological forecast systems. A subset of the super-ensemble is selected based on a priori model weights, which are obtained from ensemble calibration. Flood forecasts are simulated by the conceptual rainfall-runoff-model ArcEGMO. Parameter uncertainty of the model is represented by a parameter ensemble, which is a priori generated from a comprehensive uncertainty analysis during model calibration. The use of a computationally efficient hydrological model within a flood management system allows us to compute the hydro-meteorological model chain for all members of the sub-ensemble. The model chain is not re-computed before new ensemble forecasts are available, but the probabilistic assessment of the output is updated when new information from deterministic short range forecasts or from assimilation of measured data becomes available. For hydraulic modelling, with the desired result of a probabilistic inundation map with high spatial resolution, a replacement model can help to overcome computational limitations. A prototype of the developed framework has been applied for a case study in the Mulde river basin. However these techniques, in particular the probabilistic assessment and the derivation of decision rules are still in their infancy. Further research is necessary and promising.

  4. Hierarchical Modelling of Flood Risk for Engineering Decision Analysis

    DEFF Research Database (Denmark)

    Custer, Rocco

    protection structures in the hierarchical flood protection system - is identified. To optimise the design of protection structures, fragility and vulnerability models must allow for consideration of decision alternatives. While such vulnerability models are available for large protection structures (e...... systems, as well as the implementation of the flood risk analysis methodology and the vulnerability modelling approach are illustrated with an example application. In summary, the present thesis provides a characterisation of hierarchical flood protection systems as well as several methodologies to model...... and robust. Traditional risk management solutions, e.g. dike construction, are not particularly flexible, as they are difficult to adapt to changing risk. Conversely, the recent concept of integrated flood risk management, entailing a combination of several structural and non-structural risk management...

  5. Flood Insurance Rate Map, Scott County, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  6. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, , USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk Information And supporting data used to develop the risk data. The primary risk;...

  7. Vistula River bed erosion processes and their influence on Warsaw’s flood safety

    Directory of Open Access Journals (Sweden)

    A. Magnuszewski

    2015-03-01

    Full Text Available Large cities have historically been well protected against floods as a function of their importance to society. In Warsaw, Poland, located on a narrow passage of the Vistula River valley, urban flood disasters were not unusual. Beginning at the end of the 19th century, the construction of river embankment and training works caused the narrowing of the flood passage path in the downtown reach of the river. The process of bed erosion lowered the elevation of the river bed by 205 cm over the 20th century, and the consequences of bed lowering are reflected by the rating curve change. Conditions of the flood passage have been analysed by the CCHE2D hydrodynamic model both in retro-modelling and scenario simulation modelling. The high water mark of the 1844 flood and iterative calculations in retro-modelling made possible estimation of the discharge, Q = 8250 m3 s−1. This highest observed historical flood in a natural river has been compared to recent conditions of the Vistula River in Warsaw by scenario modelling. The result shows dramatic changes in water surface elevation, velocities, and shear stress. The vertical velocity in the proximity of Port Praski gauge at km 513 can reach 3.5 m s−1, a very high value for a lowland river. The average flow conveyance is improving due to channel erosion but also declining in the case of extreme floods due to high resistance from vegetation on the flood plains.

  8. FloodProBE: technologies for improved safety of the built environment in relation to flood events

    International Nuclear Information System (INIS)

    Ree, C.C.D.F. van; Van, M.A.; Heilemann, K.; Morris, M.W.; Royet, P.; Zevenbergen, C.

    2011-01-01

    The FloodProBE project started as a FP7 research project in November 2009. Floods, together with wind related storms, are considered the major natural hazard in the EU in terms of risk to people and assets. In order to adapt urban areas (in river and coastal zones) to prevent flooding or to be better prepared for floods, decision makers need to determine how to upgrade flood defences and increasing flood resilience of protected buildings and critical infrastructure (power supplies, communications, water, transport, etc.) and assess the expected risk reduction from these measures. The aim of the FloodProBE-project is to improve knowledge on flood resilience and flood protection performance for balancing investments in flood risk management in urban areas. To this end, technologies, methods and tools for assessment purposes and for the adaptation of new and existing buildings and critical infrastructure are developed, tested and disseminated. Three priority areas are addressed by FloodProBE. These are: (i) vulnerability of critical infrastructure and high-density value assets including direct and indirect damage, (ii) the assessment and reliability of urban flood defences including the use of geophysical methods and remote sensing techniques and (iii) concepts and technologies for upgrading weak links in flood defences as well as construction technologies for flood proofing buildings and infrastructure networks to increase the flood resilience of the urban system. The primary impact of FloodProBE in advancing knowledge in these areas is an increase in the cost-effectiveness (i.e. performance) of new and existing flood protection structures and flood resilience measures.

  9. Geometric and frequency EMI sounding of estuarine earthen flood defence embankments in Ireland using 1D inversion models

    Science.gov (United States)

    Viganotti, Matteo; Jackson, Ruth; Krahn, Hartmut; Dyer, Mark

    2013-05-01

    Earthen flood defence embankments are linear structures, raised above the flood plain, that are commonly used as flood defences in rural settings; these are often relatively old structures constructed using locally garnered material and of which little is known in terms of design and construction. Alarmingly, it is generally reported that a number of urban developments have expanded to previously rural areas; hence, acquiring knowledge about the flood defences protecting these areas has risen significantly in the agendas of basin and asset managers. This paper focusses, by reporting two case studies, on electromagnetic induction (EMI) methods that would efficiently complement routine visual inspections and would represent a first step to more detailed investigations. Evaluation of the results is presented by comparison with ERT profiles and intrusive investigation data. The EM data, acquired using a GEM-2 apparatus for frequency sounding and an EM-31 apparatus for geometrical sounding, has been handled using the prototype eGMS software tool, being developed by the eGMS international research consortium; the depth sounding data interpretation was assisted by 1D inversions obtained with the EM1DFM software developed by the University of British Columbia. Although both sounding methods showed some limitations, the models obtained were consistent with ERT models and the techniques were useful screening methods for the identification of areas of interest, such as material interfaces or potential seepage areas, within the embankment structure: 1D modelling improved the rapid assessment of earthen flood defence embankments in an estuarine environment; evidence that EMI sounding could play an important role as a monitoring tool or as a first step towards more detailed investigations.

  10. Flood Catastrophe Model for Designing Optimal Flood Insurance Program: Estimating Location-Specific Premiums in the Netherlands.

    Science.gov (United States)

    Ermolieva, T; Filatova, T; Ermoliev, Y; Obersteiner, M; de Bruijn, K M; Jeuken, A

    2017-01-01

    As flood risks grow worldwide, a well-designed insurance program engaging various stakeholders becomes a vital instrument in flood risk management. The main challenge concerns the applicability of standard approaches for calculating insurance premiums of rare catastrophic losses. This article focuses on the design of a flood-loss-sharing program involving private insurance based on location-specific exposures. The analysis is guided by a developed integrated catastrophe risk management (ICRM) model consisting of a GIS-based flood model and a stochastic optimization procedure with respect to location-specific risk exposures. To achieve the stability and robustness of the program towards floods with various recurrences, the ICRM uses stochastic optimization procedure, which relies on quantile-related risk functions of a systemic insolvency involving overpayments and underpayments of the stakeholders. Two alternative ways of calculating insurance premiums are compared: the robust derived with the ICRM and the traditional average annual loss approach. The applicability of the proposed model is illustrated in a case study of a Rotterdam area outside the main flood protection system in the Netherlands. Our numerical experiments demonstrate essential advantages of the robust premiums, namely, that they: (1) guarantee the program's solvency under all relevant flood scenarios rather than one average event; (2) establish a tradeoff between the security of the program and the welfare of locations; and (3) decrease the need for other risk transfer and risk reduction measures. © 2016 Society for Risk Analysis.

  11. Flood maps in Europe - methods, availability and use

    Science.gov (United States)

    de Moel, H.; van Alphen, J.; Aerts, J. C. J. H.

    2009-03-01

    To support the transition from traditional flood defence strategies to a flood risk management approach at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC) at the end of 2007. One of the major tasks which member states must carry out in order to comply with this Directive is to map flood hazards and risks in their territory, which will form the basis of future flood risk management plans. This paper gives an overview of existing flood mapping practices in 29 countries in Europe and shows what maps are already available and how such maps are used. Roughly half of the countries considered have maps covering as good as their entire territory, and another third have maps covering significant parts of their territory. Only five countries have very limited or no flood maps available yet. Of the different flood maps distinguished, it appears that flood extent maps are the most commonly produced floods maps (in 23 countries), but flood depth maps are also regularly created (in seven countries). Very few countries have developed flood risk maps that include information on the consequences of flooding. The available flood maps are mostly developed by governmental organizations and primarily used for emergency planning, spatial planning, and awareness raising. In spatial planning, flood zones delimited on flood maps mainly serve as guidelines and are not binding. Even in the few countries (e.g. France, Poland) where there is a legal basis to regulate floodplain developments using flood zones, practical problems are often faced which reduce the mitigating effect of such binding legislation. Flood maps, also mainly extent maps, are also created by the insurance industry in Europe and used to determine insurability, differentiate premiums, or to assess long-term financial solvency. Finally, flood maps are also produced by international river commissions. With respect to the EU Flood Directive, many countries already have a good starting point to map

  12. Flood risk governance arrangements in Europe

    Science.gov (United States)

    Matczak, P.; Lewandowski, J.; Choryński, A.; Szwed, M.; Kundzewicz, Z. W.

    2015-06-01

    The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements) project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency) of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  13. Flood risk governance arrangements in Europe

    Directory of Open Access Journals (Sweden)

    P. Matczak

    2015-06-01

    Full Text Available The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  14. Species Composition, Tree Quality and Wood Properties of Southern Pine Stands Under Ecosystemm Management on National Forests in the Peidmont and Coastal Plain

    Science.gov (United States)

    Alexander Clark; James W. McMinn

    1999-01-01

    National Forests in the United States are under sustainable ecosystem management to conserve biodiversity, achieve sustainable conditions and improve the balance among forest values. This paper reports on a study established to identify the implications of ecosystem management strategies on natural stands in the Piedmont and Coastal Plain. The impact of partial...

  15. Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.

    Science.gov (United States)

    Balaji Bhaskar, M. S.

    2017-12-01

    Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.Urban flooding is a hazard that causes major destruction and loss of life. High intense precipitation events have increased significantly in Houston, Texas in recent years resulting in frequent river and bayou flooding. Many of the historical storm events such as Allison, Rita and Ike have caused several billion dollars in losses for the Houston-Galveston Region. A category 4 Hurricane Harvey made landfall on South Texas resulting in heavy precipitation from Aug 25 to 29 of 2017. About 1 trillion gallons of water fell across Harris County over a 4-day period. This amount of water covers Harris County's 1,800 square miles with an average of 33 inches of water. The long rain event resulted in an average 40inch rainfall across the area in several rain gauges and the maximum rainfall of 49.6 inches was recorded near Clear Creek. The objectives of our study are to 1) Process the Geographic Information System (GIS) and satellite data from the pre and post Hurricane Harvey event in Houston, Texas and 2) Analyze the satellite imagery to map the nature and pattern of the flooding in Houston-Galveston Region. The GIS data of the study area was downloaded and processed from the various publicly available resources such as Houston Galveston Area Council (HGAC), Texas Commission of Environmental Quality (TCEQ) and Texas Natural Resource Information Systems (TNRIS). The satellite data collected soon after the Harvey flooding event were downloaded and processed using the ERDAS image processing software. The flood plain areas surrounding the Brazos River, Buffalo Bayou and the Addicks Barker reservoirs showed severe inundation. The different watershed areas affected by the catastrophic flooding in the wake of Hurricane Harvey were mapped and compared with the pre flooding event.

  16. Multi-dimensional perspectives of flood risk - using a participatory framework to develop new approaches to flood risk communication

    Science.gov (United States)

    Rollason, Edward; Bracken, Louise; Hardy, Richard; Large, Andy

    2017-04-01

    Flooding is a major hazard across Europe which, since, 1998 has caused over €52 million in damages and displaced over half a million people. Climate change is predicted to increase the risks posed by flooding in the future. The 2007 EU Flood Directive cemented the use of flood risk maps as a central tool in understanding and communicating flood risk. Following recent flooding in England, an urgent need to integrate people living at risk from flooding into flood management approaches, encouraging flood resilience and the up-take of resilient activities has been acknowledged. The effective communication of flood risk information plays a major role in allowing those at risk to make effective decisions about flood risk and increase their resilience, however, there are emerging concerns over the effectiveness of current approaches. The research presented explores current approaches to flood risk communication in England and the effectiveness of these methods in encouraging resilient actions before and during flooding events. The research also investigates how flood risk communications could be undertaken more effectively, using a novel participatory framework to integrate the perspectives of those living at risk. The research uses co-production between local communities and researchers in the environmental sciences, using a participatory framework to bring together local knowledge of flood risk and flood communications. Using a local competency group, the research explores what those living at risk from flooding want from flood communications in order to develop new approaches to help those at risk understand and respond to floods. Suggestions for practice are refined by the communities to co-produce recommendations. The research finds that current approaches to real-time flood risk communication fail to forecast the significance of predicted floods, whilst flood maps lack detailed information about how floods occur, or use scientific terminology which people at risk

  17. Crowdsourcing detailed flood data

    Science.gov (United States)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  18. Impact of agricultural management on pluvial flash floods - Case study of an extreme event observed in Austria in 2016

    Science.gov (United States)

    Lumassegger, Simon; Achleitner, Stefan; Kohl, Bernhard

    2017-04-01

    Central Europe was affected by extreme flash floods in summer 2016 triggered by short, high-intensity storm cells. Besides fluvial runoff, local pluvial floods appear to increase recently. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) surface runoff and pluvial flooding is assessed using a coupled hydrological/2D hydrodynamic model for the severely affected municipality of Schwertberg, Upper Austria. In this small catchment several flooding events occurred in the last years, where the most severe event occurred during summer 2016. Several areas could only be reached after the flood wave subsided with observed flood marks up to one meter. The modeled catchment is intensively cultivated with maize, sugar beets, winter wheat and soy on the hillside and hence highly vulnerable to water erosion. The average inclination is relatively steep with 15 % leading to high flow velocities of surface runoff associated with large amounts of transported sediments. To assess the influence of land use and soil conservation on flash floods, field experiments with a portable irrigation spray installation were carried out at different locations. The test plots were subjected to rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour lasting, rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h. Surface runoff was collected and measured in a tank and water samples were taken to determine the suspended material load. Large differences of runoff coefficients were determined depending on the agricultural management. The largest discharge was measured in a maize field, where surface runoff occurred immediately after start of irrigation. The determined runoff coefficients ranged from 0.22 for soy up to 0.65 for maize for the same soil type and inclination. The conclusion that runoff is

  19. May flood-poor periods be more dangerous than flood-rich periods?

    Science.gov (United States)

    Salinas, Jose Luis; Di Baldassarre, Giuliano; Viglione, Alberto; Kuil, Linda; Bloeschl, Guenter

    2014-05-01

    River floods are among the most devastating natural hazards experienced by populations that, since the earliest recorded civilisations, have settled in floodplains because they offer favourable conditions for trade, agriculture, and economic development. The occurrence of a flood may cause loss of lives and tremendous economic damages and, therefore, is rightly seen as a very negative event by the communities involved. Occurrence of many floods in a row is, of course, even more frustrating and is rightly considered a unbearable calamity. Unfortunately, the occurrence of many floods in a limited number of consecutive years is not unusual. In many places in the world, it has been observed that extreme floods do not arrive randomly but cluster in time into flood-poor and flood-rich periods consistent with the Hurst effect. If this is the case, when are the people more in danger? When should people be more scared? In flood-poor or flood-rich periods? In this work, a Socio-Hydrology model (Di Baldassarre et al., 2013; Viglione et al., 2014) is used to show that, maybe counter-intuitively, flood-poor periods may be more dangerous than flood-rich periods. The model is a conceptualisation of a hypothetical setting of a city at a river where a community evolves, making choices between flood management options on the floodplain. The most important feedbacks between the economic, political, technological and hydrological processes of the evolution of that community are represented in the model. In particular, the model also accounts in a dynamic way for the evolution of the the community awareness to flood risk. Occurrence of floods tends to increase peoples' recognition that their property is in an area that is potentially at risk of flooding, both at the scales of individuals and communities, which is one of the main reasons why flood coping actions are taken. It is shown through examples that frequent flood events may result in moderate damages because they ensure that the

  20. Development of a spatial decision support system for flood risk management in Brazil that combines volunteered geographic information with wireless sensor networks

    Science.gov (United States)

    Horita, Flávio E. A.; Albuquerque, João Porto de; Degrossi, Lívia C.; Mendiondo, Eduardo M.; Ueyama, Jó

    2015-07-01

    Effective flood risk management requires updated information to ensure that the correct decisions can be made. This can be provided by Wireless Sensor Networks (WSN) which are a low-cost means of collecting updated information about rivers. Another valuable resource is Volunteered Geographic Information (VGI) which is a comparatively new means of improving the coverage of monitored areas because it is able to supply supplementary information to the WSN and thus support decision-making in flood risk management. However, there still remains the problem of how to combine WSN data with VGI. In this paper, an attempt is made to investigate AGORA-DS, which is a Spatial Decision Support System (SDSS) that is able to make flood risk management more effective by combining these data sources, i.e. WSN with VGI. This approach is built over a conceptual model that complies with the interoperable standards laid down by the Open Geospatial Consortium (OGC) - e.g. Sensor Observation Service (SOS) and Web Feature Service (WFS) - and seeks to combine and present unified information in a web-based decision support tool. This work was deployed in a real scenario of flood risk management in the town of São Carlos in Brazil. The evidence obtained from this deployment confirmed that interoperable standards can support the integration of data from distinct data sources. In addition, they also show that VGI is able to provide information about areas of the river basin which lack data since there is no appropriate station in the area. Hence it provides a valuable support for the WSN data. It can thus be concluded that AGORA-DS is able to combine information provided by WSN and VGI, and provide useful information for supporting flood risk management.

  1. 44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Insurance Policy Interpretations. 61.14 Section 61.14 Emergency Management and Assistance FEDERAL EMERGENCY...) Definition. A Standard Flood Insurance Policy Interpretation is a written determination by the Federal...

  2. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  3. Private adaptation strategies and implementation in flood risk management: why people do nothing?

    Science.gov (United States)

    Karagiorgos, Konstantinos; Thaler, Thomas; Maris, Fotios; Paparrizos, Spyros; Fuchs, Sven

    2015-04-01

    In the past decades, vulnerability assessment has emerged as an important field of research in flood risk management, in particular with respect to climate change and necessary adaptation strategies for the society. Probably starting with Chamber's seminal article on vulnerability, coping and policy (Chambers 1989), and further developed as the causal structure of vulnerability by Bohle (2001) and others, at least two research paradigms exist: an internal side focusing on societal resilience and coping capacities, and an external side targeted at a reduction of negative effects in terms of loss reduction (Fuchs 2009). Despite considerable research effects, however, different definitions and concepts still dominate the debate; it is surely that different scientific disciplines are working with this term: natural scientists, engineers, social scientists or economists, to name just a few. Each discipline defines vulnerability in a way which fits to their disciplinary purposes (Fuchs et al. 2011). But why has there been so little progress in our ability to adapt to flood hazards? White et al. (2001) summarised this paradox in an article with the title "Knowing better and losing even more - the use of knowledge in hazard management". One of the fundamental reasons for the lack of progress is the continuing separation of research on natural processes and socio-economic processes without considering interaction between these systems (Fuchs & Keiler 2013), as well as between scientific research results and the policy implementation (Medd & Marvin 2005). Moreover, as many studies were focused on the vulnerability of least developed societies to natural hazards (O'Brien et al. 2008), there is a particular lack in studies targeted at an implementation of existing adaptation frameworks at the level of highly-developed countries (Field et al. 2012; Scolobig et al. 2012). This gap results in a challenge for attempts to develop formal models into practical application and policy

  4. Simulating Catchment Scale Afforestation for Mitigating Flooding

    Science.gov (United States)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  5. Trapped between institutions and politics : The role of politics and social dynamics in institutional performance for flood defense management in Jakarta, Indonesia

    NARCIS (Netherlands)

    Simanjuntak, I.; Frantzeskaki, N.; Enserink, B.; Ravesteijn, W.

    2011-01-01

    Flood defense management in Jakarta is a critical governmental activity given that Jakarta is a low-lying delta metropolis and trade center which relies on its safety for the continuity of the economic activities. Despite the urgency for action flood defense policy implementation was a lengthy and

  6. Flood Response System—A Case Study

    OpenAIRE

    Yogesh Kumar Singh; Upasana Dutta; T. S. Murugesh Prabhu; I. Prabu; Jitendra Mhatre; Manoj Khare; Sandeep Srivastava; Subasisha Dutta

    2017-01-01

    Flood Response System (FRS) is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the critica...

  7. Development of a flood-induced health risk prediction model for Africa

    Science.gov (United States)

    Lee, D.; Block, P. J.

    2017-12-01

    Globally, many floods occur in developing or tropical regions where the impact on public health is substantial, including death and injury, drinking water, endemic disease, and so on. Although these flood impacts on public health have been investigated, integrated management of floods and flood-induced health risks is technically and institutionally limited. Specifically, while the use of climatic and hydrologic forecasts for disaster management has been highlighted, analogous predictions for forecasting the magnitude and impact of health risks are lacking, as is the infrastructure for health early warning systems, particularly in developing countries. In this study, we develop flood-induced health risk prediction model for African regions using season-ahead flood predictions with climate drivers and a variety of physical and socio-economic information, such as local hazard, exposure, resilience, and health vulnerability indicators. Skillful prediction of flood and flood-induced health risks can contribute to practical pre- and post-disaster responses in both local- and global-scales, and may eventually be integrated into multi-hazard early warning systems for informed advanced planning and management. This is especially attractive for areas with limited observations and/or little capacity to develop flood-induced health risk warning systems.

  8. Future flood risk estimates along the river Rhine

    Directory of Open Access Journals (Sweden)

    A. H. te Linde

    2011-02-01

    Full Text Available In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine basin. To optimize spatial planning and flood management measures, studies are needed that quantify future flood risks and estimate their uncertainties. In this paper, we estimated the current and future fluvial flood risk in 2030 for the entire Rhine basin in a scenario study. The change in value at risk is based on two land-use projections derived from a land-use model representing two different socio-economic scenarios. Potential damage was calculated by a damage model, and changes in flood probabilities were derived from two climate scenarios and hydrological modeling. We aggregated the results into seven sections along the Rhine. It was found that the annual expected damage in the Rhine basin may increase by between 54% and 230%, of which the major part (~ three-quarters can be accounted for by climate change. The highest current potential damage can be found in the Netherlands (110 billion €, compared with the second (80 billion € and third (62 billion € highest values in two areas in Germany. Results further show that the area with the highest fluvial flood risk is located in the Lower Rhine in Nordrhein-Westfalen in Germany, and not in the Netherlands, as is often perceived. This is mainly due to the higher flood protection standards in the Netherlands as compared to Germany.

  9. A Strategy for a Parametric Flood Insurance Using Proxies

    Science.gov (United States)

    Haraguchi, M.; Lall, U.

    2017-12-01

    Traditionally, the design of flood control infrastructure and flood plain zoning require the estimation of return periods, which have been calculated by river hydraulic models with rainfall-runoff models. However, this multi-step modeling process leads to significant uncertainty to assess inundation. In addition, land use change and changing climate alter the potential losses, as well as make the modeling results obsolete. For these reasons, there is a strong need to create parametric indexes for the financial risk transfer for large flood events, to enable rapid response and recovery. Hence, this study examines the possibility of developing a parametric flood index at the national or regional level in Asia, which can be quickly mobilized after catastrophic floods. Specifically, we compare a single trigger based on rainfall index with multiple triggers using rainfall and streamflow indices by conducting case studies in Bangladesh and Thailand. The proposed methodology is 1) selecting suitable indices of rainfall and streamflow (if available), 2) identifying trigger levels for specified return periods for losses using stepwise and logistic regressions, 3) measuring the performance of indices, and 4) deriving return periods of selected windows and trigger levels. Based on the methodology, actual trigger levels were identified for Bangladesh and Thailand. Models based on multiple triggers reduced basis risks, an inherent problem in an index insurance. The proposed parametric flood index can be applied to countries with similar geographic and meteorological characteristics, and serve as a promising method for ex-ante risk financing for developing countries. This work is intended to be a preliminary work supporting future work on pricing risk transfer mechanisms in ex-ante risk finance.

  10. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  11. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  12. Solidarity in transboundary flood risk management: A view from the Dutch North Rhine–Westphalian catchment area

    NARCIS (Netherlands)

    Van Eerd, M.C.J.; Wiering, M.A.|info:eu-repo/dai/nl/181450100; Dieperink, C.|info:eu-repo/dai/nl/074013130

    2017-01-01

    limate change is putting pressure on water systems, and its effects transcend man-made boundaries, making cooperation across territorial borders essential. The governance of transboundary flood risk management calls for solidarity among riparians, as climate change will make river basins more prone

  13. Adapting Floods Management to Climate Change: Comparing Policy Frames and Governance Practices in the Low Countries

    NARCIS (Netherlands)

    Crabbé, A.; Wiering, M.A.; Liefferink, J.D.

    2015-01-01

    Belgium and the Netherlands together form the Low Countries. Empirical research in Flanders (the Dutch-speaking part of Belgium) and the Netherlands proves that there are substantive differences in the organization of governance processes regarding flood management in response to climate change.

  14. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    Science.gov (United States)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  15. Groundwater Management at Varamin Plain: The Consideration of Stochastic and Environmental Effects

    International Nuclear Information System (INIS)

    Najafi Alamdarlo, H.; Ahmadian, M.; Khalilian, S.

    2016-01-01

    Groundwater is one of the common resources in Varamin Plain, but due to over extraction it has been exposed to ruin. This phenomenon will lead to economic and environmental problems. On the other hand, the world is expected to face with more stochastic events of water supply. Furthermore, incorporating stochastic consideration of water supply becomes more acute in designing water facilities. Therefore, the strategies should be applied to improve managing resources and increase the efficiency of irrigation system. Hence, in this study the effect of efficiency improvement of irrigation system on the exploitation of groundwater and cropping pattern is examined in deterministic and stochastic condition using Nash bargaining theory. The results showed that farmers in B scenario are more willing to cooperate and as a result of their cooperation, they lose only 3 percentages of their present value of the objective function. Therefore, the efficiency improvement of irrigation system can result in improving the cooperation between farmers and increasing the amount of reserves.Groundwater is one of the common resources in Varamin Plain, but due to over extraction it has been exposed to ruin. This phenomenon will lead to economic and environmental problems. On the other hand, the world is expected to face with more stochastic events of water supply. Furthermore, incorporating stochastic consideration of water supply becomes more acute in designing water facilities. Therefore, the strategies should be applied to improve managing resources and increase the efficiency of irrigation system. Hence, in this study the effect of efficiency improvement of irrigation system on the exploitation of groundwater and cropping pattern is examined in deterministic and stochastic condition using Nash bargaining theory. The results showed that farmers in B scenario are more willing to cooperate and as a result of their cooperation, they lose only 3 percentages of their present value of the

  16. Flood Risk Management: Exploring the Impacts of the Community Rating System Program on Poverty and Income Inequality.

    Science.gov (United States)

    Noonan, Douglas S; Sadiq, Abdul-Akeem A

    2018-03-01

    Flooding remains a major problem for the United States, causing numerous deaths and damaging countless properties. To reduce the impact of flooding on communities, the U.S. government established the Community Rating System (CRS) in 1990 to reduce flood damages by incentivizing communities to engage in flood risk management initiatives that surpass those required by the National Flood Insurance Program. In return, communities enjoy discounted flood insurance premiums. Despite the fact that the CRS raises concerns about the potential for unevenly distributed impacts across different income groups, no study has examined the equity implications of the CRS. This study thus investigates the possibility of unintended consequences of the CRS by answering the question: What is the effect of the CRS on poverty and income inequality? Understanding the impacts of the CRS on poverty and income inequality is useful in fully assessing the unintended consequences of the CRS. The study estimates four fixed-effects regression models using a panel data set of neighborhood-level observations from 1970 to 2010. The results indicate that median incomes are lower in CRS communities, but rise in floodplains. Also, the CRS attracts poor residents, but relocates them away from floodplains. Additionally, the CRS attracts top earners, including in floodplains. Finally, the CRS encourages income inequality, but discourages income inequality in floodplains. A better understanding of these unintended consequences of the CRS on poverty and income inequality can help to improve the design and performance of the CRS and, ultimately, increase community resilience to flood disasters. © 2017 Society for Risk Analysis.

  17. Flood risk managment strategies across boundaries : a research approach

    NARCIS (Netherlands)

    Bakker, M.H.N.; Hegger, D.L.T.; Dieperink, C.; Driessen, P.P.J.; Raadgever, G.T.; Wiering, M.

    2013-01-01

    Floods are the most frequent and damaging of all types of natural disasters and annually affect the lives of millions all over the globe. Against this background, enhanced climate variability and climate change are expected to increase the frequency and intensity of floods. The situation is further

  18. Improving Flood Risk Management for California's Central Valley: How the State Developed a Toolbox for Large, System-wide Studies

    Science.gov (United States)

    Pingel, N.; Liang, Y.; Bindra, A.

    2016-12-01

    More than 1 million Californians live and work in the floodplains of the Sacramento-San Joaquin Valley where flood risks are among the highest in the nation. In response to this threat to people, property and the environment, the Department of Water Resources (DWR) has been called to action to improve flood risk management. This has transpired through significant advances in development of flood information and tools, analysis, and planning. Senate Bill 5 directed DWR to prepare the Central Valley Flood Protection Plan (CVFPP) and update it every 5 years. A key component of this aggressive planning approach is answering the question: What is the current flood risk, and how would proposed improvements change flood risk throughout the system? Answering this question is a substantial challenge due to the size and complexity of the watershed and flood control system. The watershed is roughly 42,000 sq mi, and flows are controlled by numerous reservoirs, bypasses, and levees. To overcome this challenge, the State invested in development of a comprehensive analysis "tool box" through various DWR programs. Development of the tool box included: collection of hydro-meteorological, topographic, geotechnical, and economic data; development of rainfall-runoff, reservoir operation, hydraulic routing, and flood risk analysis models; and development of specialized applications and computing schemes to accelerate the analysis. With this toolbox, DWR is analyzing flood hazard, flood control system performance, exposure and vulnerability of people and property to flooding, consequence of flooding for specific events, and finally flood risk for a range of CVFPP alternatives. Based on the results, DWR will put forward a State Recommended Plan in the 2017 CVFPP. Further, the value of the analysis tool box extends beyond the CVFPP. It will serve as a foundation for other flood studies for years to come and has already been successfully applied for inundation mapping to support emergency

  19. Amplification of flood frequencies with local sea level rise and emerging flood regimes

    Science.gov (United States)

    Buchanan, Maya K.; Oppenheimer, Michael; Kopp, Robert E.

    2017-06-01

    The amplification of flood frequencies by sea level rise (SLR) is expected to become one of the most economically damaging impacts of climate change for many coastal locations. Understanding the magnitude and pattern by which the frequency of current flood levels increase is important for developing more resilient coastal settlements, particularly since flood risk management (e.g. infrastructure, insurance, communications) is often tied to estimates of flood return periods. The Intergovernmental Panel on Climate Change’s Fifth Assessment Report characterized the multiplication factor by which the frequency of flooding of a given height increases (referred to here as an amplification factor; AF). However, this characterization neither rigorously considered uncertainty in SLR nor distinguished between the amplification of different flooding levels (such as the 10% versus 0.2% annual chance floods); therefore, it may be seriously misleading. Because both historical flood frequency and projected SLR are uncertain, we combine joint probability distributions of the two to calculate AFs and their uncertainties over time. Under probabilistic relative sea level projections, while maintaining storm frequency fixed, we estimate a median 40-fold increase (ranging from 1- to 1314-fold) in the expected annual number of local 100-year floods for tide-gauge locations along the contiguous US coastline by 2050. While some places can expect disproportionate amplification of higher frequency events and thus primarily a greater number of historically precedented floods, others face amplification of lower frequency events and thus a particularly fast growing risk of historically unprecedented flooding. For example, with 50 cm of SLR, the 10%, 1%, and 0.2% annual chance floods are expected respectively to recur 108, 335, and 814 times as often in Seattle, but 148, 16, and 4 times as often in Charleston, SC.

  20. Adaptation measures and pathways for flood risk in Dordrecht

    NARCIS (Netherlands)

    Gersonius, B.; Kelder, E.; Anema, K.; van Herk, S.; Zevenbergen, C.

    2014-01-01

    In line with the Adaptive Delta Management approach of the Dutch Delta Programme, Dordrecht has developed a multi-layer safety strategy to meet the future tasking for flood risk management. This strategy puts greater emphasis on limiting the consequences of floods through spatial planning (layer 2)