WorldWideScience

Sample records for flood plain management

  1. 18 CFR 801.8 - Flood plain management and protection.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  2. 7 CFR 650.25 - Flood-plain management.

    Science.gov (United States)

    2010-01-01

    ... valuable for maintaining agricultural and forest products for food and fiber, fish and wildlife habitat... flood plain. Department of Housing and Urban Development (HUD) flood insurance maps, other available... if the intended action is in the base flood plain by using HUD flood insurance maps, and other...

  3. 13 CFR 120.172 - Flood-plain and wetlands management.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Flood-plain and wetlands... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3...

  4. 44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance... National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood...

  5. 44 CFR 60.2 - Minimum compliance with flood plain management criteria.

    Science.gov (United States)

    2010-10-01

    ... assure that its comprehensive plan is consistent with the flood plain management objectives of this part... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Minimum compliance with flood plain management criteria. 60.2 Section 60.2 Emergency Management and Assistance FEDERAL...

  6. 2003 Pearl River County, Mississippi Lidar: Flood Plain Management Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This lidar data was collected primarily for flood plain mapping within Pearl River County, MS. The data were processed into separate Bare Earth and First Surface...

  7. Application of flood index in monitoring Flood-plain ecosystems (by the example of the Middle Ob flood-plain)

    OpenAIRE

    Bolotnov, V. P.

    2007-01-01

    The concept of regional hydroecological monitoring has been developed for the flood-plain of the Middle Ob. Its object is to control the state of flood-plain ecosystem productivity for organization of scientific, regional-adopted and ecologically regulated nature management. For this purpose hydroecological zoning of flood-plain territory performed, the most representative stations of water-gauge observations for each flood-plain zone organized, the scheme of flood-plain flooding was prepared...

  8. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44...

  9. 44 CFR 60.3 - Flood plain management criteria for flood-prone areas.

    Science.gov (United States)

    2010-10-01

    ... without causing collapse, displacement, or other structural damage to the elevated portion of the building...) The elevated portion of the building and supporting foundation system shall not be subject to collapse... proposed building sites will be reasonably safe from flooding. If a proposed building site is in a flood...

  10. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  11. Risks associated with rainfall and floods in the Moldavian Plain

    Directory of Open Access Journals (Sweden)

    Dan BURUIANĂ

    2015-03-01

    Full Text Available Climate changes, less effective land exploitation and insufficient security infrastructure against extreme phenomena induce vulnerabilities for the Moldavian Plain, where floods are relatively frequent. The middle and lower segments of the major streams dispose of improved hydro-technical infrastructure to prevent floods, still, the secondary streams and tributaries, with pronounced torrential characterremain vulnerable. The torrential character of the majority of rivers inthe Moldavian Plain results in management difficulties related with risksat maximum flow, especially on the first rank tributaries. Our studyanalyzes the main causes and consequences of floods in the MoldavianPlain and identifies potentially significant flood risks areas.

  12. Adaptive flood risk management in urban areas

    NARCIS (Netherlands)

    Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C.

    2012-01-01

    In recent times a shift has occurred from traditional flood management focused on the prevention of flooding (reduction of the probability) only, to more adaptive strategies focused on the reduction of the impacts of floods as a means to improve the resilience of occupied flood plains to increased r

  13. Flood hazard and management: a UK perspective.

    Science.gov (United States)

    Wheater, Howard S

    2006-08-15

    This paper discusses whether flood hazard in the UK is increasing and considers issues of flood risk management. Urban development is known to increase fluvial flood frequency, hence design measures are routinely implemented to minimize the impact. Studies suggest that historical effects, while potentially large at small scale, are not significant for large river basins. Storm water flooding within the urban environment is an area where flood hazard is inadequately defined; new methods are needed to assess and manage flood risk. Development on flood plains has led to major capital expenditure on flood protection, but government is attempting to strengthen the planning role of the environmental regulator to prevent this. Rural land use management has intensified significantly over the past 30 years, leading to concerns that flood risk has increased, at least at local scale; the implications for catchment-scale flooding are unclear. New research is addressing this issue, and more broadly, the role of land management in reducing flood risk. Climate change impacts on flooding and current guidelines for UK practice are reviewed. Large uncertainties remain, not least for the occurrence of extreme precipitation, but precautionary guidance is in place. Finally, current levels of flood protection are discussed. Reassessment of flood hazard has led to targets for increased flood protection, but despite important developments to communicate flood risk to the public, much remains to be done to increase public awareness of flood hazard.

  14. Flood hydrology and methylmercury availability in coastal plain rivers.

    Science.gov (United States)

    Bradley, Paul M; Journey, Celeste A; Chapelle, Francis H; Lowery, Mark A; Conrads, Paul A

    2010-12-15

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  15. Flood hydrology and methylmercury availability in Coastal Plain rivers

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.; Chapelle, Francis H.; Lowery, Mark A.; Conrads, Paul A.

    2010-01-01

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  16. Pennypack Watershed, Pennsylvania. Expanded Flood Plain Information.

    Science.gov (United States)

    1980-09-01

    individual cell regulatory agencies at the local, state and Federal damage functions to an index location within each level have recognized the need to...34." ; - . .. . . . .’" " ~ ENVIRONMENTAL EVALUATION General In addition to recognizing the flood hazard and functions such as storm water infiltration, flood...Alternative C land use wild mustard, milkweed , ironweed, bull thistle, plan, which represents the greatest density of future blackberry, barberry and

  17. Water impoundment modes of flood utilization for the Songnen Plain

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Taking the Songnen Plain as the research region and basing on the structural division of river water resources, the impounding models of flood water utilization are proposed. Considering the water requirement, potential impoundage and the degree of risk, two modes of the flood water utilization are developed: full impounding and partial impounding. A risk assessment method is put forward according to variation of the flood storage capacity before and after impounding water. A representative hydrological year is taken as an example to analyze the application of the model at the downstream of the Nenjiang River. It is found that the model is very useful for the flood utilization and protection. For flood utilization, the spring drought can be relieved and the risk of impounding water is also acceptable. For flood protection, the river flood peak can be largely reduced and the impounding water can increase the river discharge at the low water period, at the same time the structure of river water resources can be improved as well.

  18. Water impoundment modes of flood utilization for the Songnen Plain

    Institute of Scientific and Technical Information of China (English)

    XU ShiGuo; LI WenYi

    2008-01-01

    Taking the Songnen Plain as the research region and basing on the structural divi-sion of river water resources,the impounding models of flood water utilization are proposed.Considering the water requirement,potential impoundage and the de-gree of risk,two modes of the flood water utilization are developed:full impounding and partial impounding.A risk assessment method is put forward according to variation of the flood storage capacity before and after impounding water.A representative hydro-logical year is taken as an example to analyze the application of the model at the down-stream of the Nenjiang River.It is found that the model is very useful for the flood utiliza-tion and protection.For flood utilization,the spring drought can be relieved and the risk of impounding water is also acceptable.For flood protection,the river flood peak can be largely reduced and the impounding water can increase the river discharge at the low water period,at the same time the structure of river water resources can be improved as well.

  19. Costs of Placing Fill in a Flood Plain.

    Science.gov (United States)

    1975-05-01

    Computation 5 Engineering. Enviromental and Legal Aspects of Filling 6 STUDY CONCLUSIONS 8 APPENDIX "Guidelines for Filling Floodplains," Bauer Engineering...Various attempts have been made to estimate an economic value of the ecosystem and from this the economic loss or gain due to its modification. Whether...or not an economic value is estimated, the changes - quantitative and qualitative - should be recognized. An examination of several flood plain

  20. Flood Impact Modelling and Natural Flood Management

    Science.gov (United States)

    Owen, Gareth; Quinn, Paul; ODonnell, Greg

    2016-04-01

    Local implementation of Natural Flood Management methods are now being proposed in many flood schemes. In principal it offers a cost effective solution to a number of catchment based problem as NFM tackles both flood risk and WFD issues. However within larger catchments there is the issue of which subcatchments to target first and how much NFM to implement. If each catchment has its own configuration of subcatchment and rivers how can the issues of flood synchronisation and strategic investment be addressed? In this study we will show two key aspects to resolving these issues. Firstly, a multi-scale network water level recorder is placed throughout the system to capture the flow concentration and travel time operating in the catchment being studied. The second is a Flood Impact Model (FIM), which is a subcatchment based model that can generate runoff in any location using any hydrological model. The key aspect to the model is that it has a function to represent the impact of NFM in any subcatchment and the ability to route that flood wave to the outfall. This function allows a realistic representation of the synchronisation issues for that catchment. By running the model in interactive mode the user can define an appropriate scheme that minimises or removes the risk of synchornisation and gives confidence that the NFM investment is having a good level of impact downstream in large flood events.

  1. Deposition of radiocesium on the river flood plains around Fukushima.

    Science.gov (United States)

    Saegusa, Hiromitsu; Ohyama, Takuya; Iijima, Kazuki; Onoe, Hironori; Takeuchi, Ryuji; Hagiwara, Hiroki

    2016-11-01

    The environment in the area around Fukushima Daiichi Nuclear Power Plant has been contaminated by widely deposited significant amount of radioactive materials, which were released to the atmosphere caused by the Fukushima Daiichi Nuclear Power Plant accident due to the Great East Japan Earthquake, which occurred on March 11, 2011. The radiocesium released in the accident mainly affects radiation dose in the environment. Decontamination work in the contaminated area except a mountain forests has been conducted to decrease the radiation dose. However, there are concerns that the redistribution of this radiation due to water discharge will occur due to the resulting transport of radiocesium. In particular, the deposition of soil particles containing radiocesium on the flood plains in the downstream areas of Fukushima's rivers can potentially increase the local radiation dose. Therefore, it is important to understand the influence of the deposition behavior of radiocesium on the radiation dose. Investigations of rivers have been performed to enhance the understanding of the mechanisms by which radiocesium is deposited on these flood plains. It was found that the spatial distribution of the radiocesium concentration on the flood plain along the river is heterogeneous with a dependence on the depositional condition and that the number of points with high air dose rates is limited. In detail, the radiocesium concentration and air dose rates in flood channels are higher than those at the edges of the river channels. Based on these heterogeneity and hydrological events, the deposition and transport mechanisms of the radiocesium due to water discharge at rivers were also interpreted, and a conceptual model was constructed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Floods, floodplains, delta plains — A satellite imaging approach

    Science.gov (United States)

    Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark

    2012-08-01

    Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.

  3. A participatory approach of flood vulnerability assessment in the Banat Plain, Romania

    Science.gov (United States)

    Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines

    2014-05-01

    The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as

  4. Flood Plain Topography Affects Establishment Success of Direct-Seeded Bottomland Oaks

    Science.gov (United States)

    Emile S. Gardiner; John D. Hodges; T. Conner Fristoe

    2004-01-01

    Five bottomland oak species were direct seeded along a topographical gradient in a flood plain to determine if environmental factors related to relative position in the flood plain influenced seedling establishment and survival. Two years after installation of the plantation, seedling establishment rates ranged from 12±1.6 (mean ± standard error) percent for overcup...

  5. Global Aspects of Flood Risk Management

    Institute of Scientific and Technical Information of China (English)

    Wolfgang Kron

    2015-01-01

    Various flood disasters in the last decade have confirmed that the risk from flooding has been increasing significantly worldwide. The driving factors for the risk are the unabated increase in global population, the concentration of people in high-risk areas such as coasts and flood plains, the rise in vulnerability of assets, infrastructure and social systems, and the consequences of climate change. Risk reduction is based on comprehensive risk management from identification of the hazard and assessing the risk to building defenses. To achieve this, general awareness at all levels in a society is key. It is not sufficient merely to be aware of the situation-findings must be acted upon with no significant delay. Flood-related computations have progressed considerably in recent years, but model results can only be as good as their input data. Modeling floods and flood losses is very complex, as model parameters are subject to change during an event and conditions sometimes greatly depend on small-scale factors.

  6. Impact of sedimentation in the Dommel flood plain on heavy metal availability and bioaccumulation in flora and fauna

    NARCIS (Netherlands)

    Vink, J.; Klaver, G.; Joziasse, J.

    2007-01-01

    This report describes the application of the BioChem-DSS, being developed in the EU KP6-programme AquaTerra, BASIN R3 work package, with the aim to assist in the definition and improvement of management options for the Meuse region. A case study was carried out in a flood plain site of the river Dom

  7. Metal concentrations in the groundwater in Birjand flood plain, Iran.

    Science.gov (United States)

    Mansouri, Borhan; Salehi, Javad; Etebari, Behrooz; Moghaddam, Hamid Kardan

    2012-07-01

    The objective of the present study was to investigate the concentration of metals (cadmium, lead, chromium, zinc, copper, and iron) were measured in groundwater at 30 sites from the Birjand flood plain of eastern Iran during the November 2010; identify any relationships between metals and pH, total hardness. Metal concentrations in the groundwater samples were decreased in sequence of Zn > Fe > Cu > Cr > Pb > Cd, respectively. The results showed that the overall mean concentrations of Cd, Pb, and Cr were at 0.000, 0.023, and 0.049 mg l(-1), respectively. The mean concentration of Cu, Zn, and Fe were 0.109, 0.192, and 0.174 mg l(-1), respectively. Results also indicated that there were correlations among Cd, Cu, and Zn metals.

  8. Evidence of floods on the Potomac River from anatomical abnormalities in the wood of flood-plain trees

    Science.gov (United States)

    Yanosky, Thomas M.

    1983-01-01

    Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)

  9. Localized Flood Management

    Science.gov (United States)

    practitioners will cover a range of practices that can help communities build flood resilience, from small scale interventions such as rain gardens and permeable pavement to coordinated open space and floodplain preservation

  10. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.

    2013-01-01

    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  11. Flood risk mitigation and anthropogenic modifications of a coastal plain in southern Italy: combined effects over the past 150 years

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2007-06-01

    Full Text Available A study of the effects of human modification of a coastal plain mainly involving land reclamation and flood protection is proposed. The approach involves historical, geomorphological and hydrological data as a whole, taking into account the equilibrium of rivers, plains and coastal areas.

    The test area, a telling example of profound economic and social transformation of a coastal plain, is the Piana di Sibari (Calabria, southern Italy, subject to major human modifications over the last 150 years. The study area, at most 300 m a.s.l., is 450 km2 wide and comprises 24 hydrographic basins.

    The approach is based on the creation and analysis of four databases: 1 a historical series of geo-coded flood damage (DAMAGES database, concerning damaging floods which occurred over the past few centuries in the study area; 2 a geocoded series of protection works for land reclamation, protection from floods and improvement of soil stability in steep areas (WORKS database, gathered from the archives of the agencies that carried out the works, organized in a GIS-format; 3 a historical series of maximum flood discharges and extreme rainy events (HYMAX database aimed at defining the trends of occurrence and the intensity of flooding; 4 a coastal line position and migration over time (COASTAL database, created using mainly literature data based on discontinuous data such as historical maps and images.

    The work describes the complex succession of floods, protection and reclamation works, human transformation of the plain and major land use changes over the last two centuries in the test area. The new characteristics of the plain and its modifications, including major engineering works, land-use transformation and urbanisation, are illustrated. The damaging floods of the last 200 years, the modifications of runoff and flooding due to works built over the basins, hydrological data and the records concerning coastal

  12. Scales of Natural Flood Management

    Science.gov (United States)

    Nicholson, Alex; Quinn, Paul; Owen, Gareth; Hetherington, David; Piedra Lara, Miguel; O'Donnell, Greg

    2016-04-01

    The scientific field of Natural flood Management (NFM) is receiving much attention and is now widely seen as a valid solution to sustainably manage flood risk whilst offering significant multiple benefits. However, few examples exist looking at NFM on a large scale (>10km2). Well-implemented NFM has the effect of restoring more natural catchment hydrological and sedimentological processes, which in turn can have significant flood risk and WFD benefits for catchment waterbodies. These catchment scale improvements in-turn allow more 'natural' processes to be returned to rivers and streams, creating a more resilient system. Although certain NFM interventions may appear distant and disconnected from main stem waterbodies, they will undoubtedly be contributing to WFD at the catchment waterbody scale. This paper offers examples of NFM, and explains how they can be maximised through practical design across many scales (from feature up to the whole catchment). New tools to assist in the selection of measures and their location, and to appreciate firstly, the flooding benefit at the local catchment scale and then show a Flood Impact Model that can best reflect the impacts of local changes further downstream. The tools will be discussed in the context of our most recent experiences on NFM projects including river catchments in the north east of England and in Scotland. This work has encouraged a more integrated approach to flood management planning that can use both traditional and novel NFM strategies in an effective and convincing way.

  13. Vegetation line transects of Goose Pasture and Pool No. 1: Part of Wildlife Management Study – Project 2: Evaluating production of moist soil plants in the Mississippi River Flood Plain and their subsequent use by waterfowl

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Wildlife Management Study - Project No. 2 dated May 15, 1969 was developed to evaluate the production of moist soil food plants in the Mississippi River flood...

  14. Geohazards (floods and landslides) in the Ndop plain, Cameroon volcanic line

    Science.gov (United States)

    Wotchoko, Pierre; Bardintzeff, Jacques-Marie; Itiga, Zénon; Nkouathio, David Guimolaire; Guedjeo, Christian Suh; Ngnoupeck, Gerald; Dongmo, Armand Kagou; Wandji, Pierre

    2016-07-01

    The Ndop Plain, located along the Cameroon Volcanic Line (CVL), is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually) and landslides (occasionally) occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people) tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide) maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered. The hazard maps revealed that 25% of the area is exposed to flood hazard (13% exposed to high flood hazard, 12% to moderate) and 5% of the area is exposed to landslide hazard (2% exposed to high landslide hazard, 3% to moderate). Some mitigation measures for floods (building of artificial levees, raising foundations of buildings and the meticulous regulation of the flood guards at Bamendjing Dam) and landslides (slope terracing, planting of trees, and building retaining walls) are proposed.

  15. Geohazards (floods and landslides in the Ndop plain, Cameroon volcanic line

    Directory of Open Access Journals (Sweden)

    Wotchoko Pierre

    2016-07-01

    Full Text Available The Ndop Plain, located along the Cameroon Volcanic Line (CVL, is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually and landslides (occasionally occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered.

  16. Rethinking the relationship between flood risk perception and flood management.

    Science.gov (United States)

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions.

  17. Multilevel integrated flood management aproach

    Science.gov (United States)

    Brilly, Mitja; Rusjan, Simon

    2013-04-01

    The optimal solution for complex flood management is integrated approach. Word »integration« used very often when we try to put something together, but should distinguish full multiple integrated approach of integration by parts when we put together and analyse only two variables. In doing so, we lost complexity of the phenomenon. Otherwise if we try to put together all variables we should take so much effort and time and we never finish the job properly. Solution is in multiple integration captures the essential factors, which are different on a case-by-case (Brilly, 2000). Physical planning is one of most important activity in which flood management should be integrated. The physical planning is crucial for vulnerability and its future development and on other hand our structural measures must be incorporate in space and will very often dominated in. The best solution is if space development derived on same time with development of structural measures. There are good examples with such approach (Vienna, Belgrade, Zagreb, and Ljubljana). Problems stared when we try incorporating flood management in already urbanised area or we would like to decrease risk to some lower level. Looking to practice we learn that middle Ages practices were much better than to day. There is also »disaster by design« when hazard increased as consequence of upstream development or in stream construction or remediation. In such situation we have risk on areas well protected in the past. Good preparation is essential for integration otherwise we just lost time what is essential for decision making and development. We should develop clear picture about physical characteristics of phenomena and possible solutions. We should develop not only the flood maps; we should know how fast phenomena could develop, in hour, day or more. Do we need to analyse ground water - surface water relations, we would like to protected area that was later flooded by ground water. Do we need to take care about

  18. Floods Risk Management in Colombia

    Directory of Open Access Journals (Sweden)

    Leonardo Güiza Suárez

    2013-10-01

    Full Text Available The last rainy season 2010-2011 resulted in Colombia in around 500 casualties and more than 3.6 million of victims. Although this rainfall term accounted for one of the strongest it was not an unprecedented event since for more than fifty years this phenomenon has been taking place in the same Colombian regions producing casualties and victims. This fact makes us to think about the public management by authorities regarding flooding prevention in our country. This article elaborates on this topic explaining the risk management system in case of flooding in Colombia. It shows some national figures of the main ravages brought about by the 2010 2011 rainy seasons. Finally the article analyzes two cases of study of how operational is this public policy in risk management: La Mojana and Canal del Dique regions. It was evident that the state failed in managing the risk management from flooding because despite the important investment, every year the victims, casualties and material damages are increasing steadily.

  19. Flood insurance in Canada: implications for flood management and residential vulnerability to flood hazards.

    Science.gov (United States)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  20. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards

    Science.gov (United States)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  1. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    Science.gov (United States)

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    This study provides information on channel and flood-plain processes and historical trends to guide effective restoration and monitoring strategies for the Sprague River Basin, a primary tributary (via the lower Williamson River) of Upper Klamath Lake, Oregon. The study area covered the lower, alluvial segments of the Sprague River system, including the lower parts of the Sycan River, North Fork Sprague River, South Fork Sprague River, and the entire main-stem Sprague River between the confluence of the North Fork Sprague and the South Fork Sprague Rivers and its confluence with the Williamson River at Chiloquin, Oregon. The study included mapping and stratigraphic analysis of flood-plain deposits and flanking features; evaluation of historical records, maps and photographs; mapping and analysis of flood-plain and channel characteristics (including morphologic and vegetation conditions); and a 2006 survey of depositional features left by high flows during the winter and spring of 2005–06.

  2. Feedback on flood risk management

    Science.gov (United States)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    For several years, as floods were increasing in South of France, local communities felt deprive to assume their mission of protection and information of citizens, and were looking for assistance in flood management. In term of flood disaster, the fact is that physical protection is necessary but inevitably limited. Tools and structures of assistance to anticipation remain slightly developed. To manage repeated crisis, local authorities need to be able to base their policy against flood on prevention, warnings, post-crisis analysis and feedback from former experience. In this objective, after 3 years of test and improvement since 2003, the initiative Predict-Services was developped in South of France: it aims at helping communities and companies to face repeated flood crisis. The principle is to prepare emergency plans, to organize crisis management and reduce risks; to help and assist communities and companies during crisis to activate and adapt their emergency plans with enough of anticipation; and to analyse floods effects and improve emergency plans afterwards. In order to reduce risks, and to keep the benefits of such an initiative, local communities and companies have to maintain the awareness of risk of the citizens and employees. They also have to maintain their safety plans to keep them constantly operational. This is a part of the message relayed. Companies, Local communities, local government authorities and basin stakeholders are the decision makers. Companies and local communities have to involve themselves in the elaboration of safety plans. They are also completely involved in their activation that is their own responsability. This applies to other local government authorities, like districts one's and basin stakeholders, which participle in the financing community safety plans and adminitrative district which are responsible of the transmission of meteorological alert and of rescue actions. In the crossing of the géo-information stemming from the

  3. A study of farmers' flood perceptions based on the entropy method: an application from Jianghan Plain, China.

    Science.gov (United States)

    Luo, Xiaofeng; Lone, Todd; Jiang, Songying; Li, Rongrong; Berends, Patrick

    2016-07-01

    Using survey data from 280 farmers in Jianghan Plain, China, this paper establishes an evaluation index system for three dimensions of farmers' flood perceptions and then uses the entropy method to estimate their overall flood perception. Farmers' flood perceptions exhibit the following characteristics: (i) their flood-occurrence, flood-prevention, and overall flood perceptions gradually increase with age, whereas their flood-effects perception gradually decreases; (ii) their flood-occurrence and flood-effects perceptions gradually increase with a higher level of education, whereas their flood-prevention perception gradually decreases and their overall flood perception shows nonlinear change; (iii) flood-occurrence, flood-effects, and overall flood perceptions are higher among farmers who serve in public offices than among those who do not do so; (iv) the flood-occurrence, flood-effects, and overall flood perceptions of farmers who work off-farm are higher than those of farmers who work solely on-farm, contrary to the flood-prevention perception; and (v) the flood-effects and flood-prevention perceptions of male farmers are lower than those of female farmers, but the flood-occurrence and overall flood perceptions of male farmers are higher than those of female farmers.

  4. Economic optimisation of flood risk management projects

    NARCIS (Netherlands)

    Tsimopoulou, V.

    2015-01-01

    The Netherlands has developed a flood risk management policy based on an economic rationale. After the flood disaster of 1953, when a large area of the south-western part of the country was flooded and more than 1800 people lost their lives, the so-called Delta Committee was installed, whose main pu

  5. Economic optimisation of flood risk management projects

    NARCIS (Netherlands)

    Tsimopoulou, V.

    2015-01-01

    The Netherlands has developed a flood risk management policy based on an economic rationale. After the flood disaster of 1953, when a large area of the south-western part of the country was flooded and more than 1800 people lost their lives, the so-called Delta Committee was installed, whose main

  6. Economic optimisation of flood risk management projects

    NARCIS (Netherlands)

    Tsimopoulou, V.

    2015-01-01

    The Netherlands has developed a flood risk management policy based on an economic rationale. After the flood disaster of 1953, when a large area of the south-western part of the country was flooded and more than 1800 people lost their lives, the so-called Delta Committee was installed, whose main pu

  7. Preliminary assessment of metal toxicity in the middle Tisza river (Hungary) flood plain

    Energy Technology Data Exchange (ETDEWEB)

    Black, M.C.; Williams, P.L. [Dept. of Environmental Health Science, Univ. of Georgia, Athens, GA (United States)

    2001-07-01

    Cyanide and heavy metals were accidentally released from a mine waste lagoon in Romania into tributaries ultimately draining into the Tisza River. Within two months of the cyanide accident two subsequent heavy metal waste spills further contaminated the Tisza River, followed by severe spring flooding, which potentially spread the contamination to soils adjacent to the river. Flood plain soils and shoreline sediments were sampled from two locations on the middle Tisza River and a reference site to conduct a preliminary assessment of metal content and toxicity. Ten-day sediment toxicity tests were conducted with the amphipod, Hyalella azteca and 24 h soil toxicity tests were conducted with the nematode (Caenorhabditis elegans). High concentrations of cadmium, copper, zinc, lead and arsenic were detected in soil and sediment samples. However, no mortality was observed in Hyalella exposed to Tisza River sediments and only up to 27% mortality of C. elegans was observed in flood plain soils. Low mortalities are attributed to reduced metal bioavailability caused by high soil cation exchange capacities and possible interactions with sediment organic matter or sulfides. Future studies should focus on factors that alter metal bioavailability and their relationship to potential toxicity of organisms exposed to Tisza River sediments and flood plain soils. (orig.)

  8. Microbially mediated cycling of iron in flood plains and other wetlands

    Science.gov (United States)

    Szewzyk, Ulrich; Braun, Burga; Schmidt, Bertram; Schaudin, Christoph

    2010-05-01

    Floodplains are subjected to alternating changes of flooding and partly drying of the soil systems and are therefore prominent examples of ecosystems undergoing dramatic changes in redox conditions. During the last 5 years the flood plains and associated water systems of the National Park "Untere Oder" were examined for the presence and relevance of bacteria associated with the redox cycling of iron and manganese. Biofilms grown at different locations in the national park were used as source material for examinations on the diversity of iron bacteria. Besides classical microbiological cultivation techniques, culture independent methods were used to explore the phylogenetic diversity of bacteria in ochreous depositions. The natural grown biofilms were intensely examined and documented by light and scanning electron microscopy. Many of the classical morphotypes of iron bacteria were observed and documented. Parallel the biofilms were used for cultivation of iron related bacteria under various conditions. The 16s rDNA of the isolated strains was sequenced and phylogenetically affiliated. In addition, these biofilms were used for establishing 16S rDNA clone libraries. In comparison of the results from direct microscopic examinations, cultivation and culture independent detection methods (FISH) certain of the morphotypes from the biofilms could be assigned to phylogenetic lineages. Besides the biofilms from the Oder flood plains, ochreous depositing biofilms from Berlin drinking water wells, flood plains in Norway and various wetlands in terra de fuego were examined. The cultures and 16S rDNA-clones from the different sampling sites are being compared for biogeographic differences.

  9. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida

    Science.gov (United States)

    Elder, J.F.; Cairns, D.J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly in five different forest types in swamp and levee areas. Leaves from 42 species of trees and other plants accounted for 58 percent of total litter fall. The remaining 42 percent was nonleaf material. Average litter fall was 800 grams per square meter per year in the flood plain. Tupelo (Nyssa), baldcypress (Taxodium), and ash (Fraxinus), all swamp-adapted trees, produce over 50 percent of the leaf fall. Common levee species such as sweetgum (Liquidambar styraciflua) and diamond-leaf oak (Quercus laurifolia) are also major contributors to total flood-plain litter fall. Annual flooding of the river provides an important mechanism for mobilization of the litter-fall products. Leaf decomposition rates were greatly reduced in dry environments. Carbon loss was nearly linear over a 6-month period, but nitrogen and phosphorus loss was exponential and nearly complete within 1 month. (USGS)

  10. Re-thinking urban flood management

    DEFF Research Database (Denmark)

    Sörensen, Johanna; Persson, Andreas; Sternudd, Catharina

    2016-01-01

    Urban flooding is of growing concern due to increasing densification of urban areas, changes in land use, and climate change. The traditional engineering approach to flooding is designing single-purpose drainage systems, dams, and levees. These methods, however, are known to increase the long......-term flood risk and harm the riverine ecosystems in urban as well as rural areas. In the present paper, we depart from resilience theory and suggest a concept to improve urban flood resilience. We identify areas where contemporary challenges call for improved collaborative urban flood management. The concept...

  11. Stakeholder initiatives in flood risk management

    NARCIS (Netherlands)

    Edelenbos, Jurian; Buuren, Van Arwin; Roth, Dik; Winnubst, Madelinde

    2017-01-01

    In recent years stakeholder participation has become a popular topic in flood management. Little is known about how and under which circumstances local stakeholders initiate and develop successful flood management strategies and how governmental actors respond to them. Drawing on theories of soci

  12. FLOOD CHARACTERISTICS AND MANAGEMENT ADAPTATIONS ...

    African Journals Online (AJOL)

    Dr Osondu

    2011-10-26

    , bearing flood losses and land ... Engineering control of the major tributaries of the Imo River system is required to ..... on previous knowledge of physical nature of flood ... uptake; other factors include a lack of formal titles to.

  13. Issues and challenges in flood risk management: Editorial for the special issue on flood risk management

    NARCIS (Netherlands)

    Jonkman, S.N.; Dawson, R.J.

    2012-01-01

    Recent flood-related disasters (Japan, Thailand, US, Australia) emphasize the need for an effective management of flood risks. As an introduction to this special issue, this editorial summarizes some of the key challenges in the field. Flood risk management needs to recognize the interconnections be

  14. Issues and challenges in flood risk management: Editorial for the special issue on flood risk management

    NARCIS (Netherlands)

    Jonkman, S.N.; Dawson, R.J.

    2012-01-01

    Recent flood-related disasters (Japan, Thailand, US, Australia) emphasize the need for an effective management of flood risks. As an introduction to this special issue, this editorial summarizes some of the key challenges in the field. Flood risk management needs to recognize the interconnections be

  15. Investigating organic micropollutants in a peri-urban flood plain aquifer

    OpenAIRE

    Manamsa, Katya; Lapworth, Dan; Stuart, Marianne

    2011-01-01

    This poster describes a pilot study to develop the sampling methodology required to investigate the occurrence and distribution of “emerging organic contaminants” in groundwater in an area of anticipated contamination. The study site was the BGS Oxford Observatory on the Port Meadow, within a peri-urban setting, including an area of ancient grassland on the gravels of the flood plain of the River Thames to the northwest of Oxford. Groundwater levels suggest that the regional groundwater flow ...

  16. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; Molins, Sergi; Bill, Markus; Conrad, Mark E.; Dong, Wenming; Faybishenko, Boris; Tokunaga, Tetsu K.; Wan, Jiamin; Williams, Kenneth H.; Yabusaki, Steven B.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Model simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.

  17. A 2D simulation model for urban flood management

    Science.gov (United States)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  18. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    Science.gov (United States)

    Leitman, Helen M.; Sohm, James E.; Franklin, Marvin A.

    1984-01-01

    The Apalachicola River in northwest Florida is part of a three-State drainage basin encompassing 50,800 km 2 in Alabama, Georgia, and Florida. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam from which it flows 171 km to Apalachicola Bay in the Gulf of Mexico. Its average annual discharge at Chattahoochee, Fla., is 690 m3/s (1958-80) with annual high flows averaging nearly 3,000 m3/s. Its flood plain supports 450 km 2 of bottom-land hardwood and tupelo-cypress forests. The Apalachicola River Quality Assessment focuses on the hydrology and productivity of the flood-plain forest. The purpose of this part of the assessment is to address river and flood-plain hydrology, flood-plain tree species and forest types, and water and tree relations. Seasonal stage fluctuations in the upper river are three times greater than in the lower river. Analysis of long-term streamflow record revealed that 1958-79 average annual and monthly flows and flow durations were significantly greater than those of 1929-57, probably because of climatic changes. However, stage durations for the later period were equal to or less than those of the earlier period. Height of natural riverbank levees and the size and distribution of breaks in the levees have a major controlling effect on flood-plain hydrology. Thirty-two kilometers upstream of the bay, a flood-plain stream called the Brothers River was commonly under tidal influence during times of low flow in the 1980 water year. At the same distance upstream of the bay, the Apalachicola River was not under tidal influence during the 1980 water year. Of the 47 species of trees sampled, the five most common were wet-site species constituting 62 percent of the total basal area. In order of abundance, they were water tupelo, Ogeechee tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak

  19. Flood Risk and Asset Management

    Science.gov (United States)

    2012-09-01

    Within the UK for example, the flooding of the village of Boscastle (August, 2004), that took place over a day, Roca -Collel and Davison (2010), can...Hazard Research Centre. Roca -Collel, M. and Davison, M. (2010). "Two dimensional model analysis of flash- flood processes: application to the Boscastle

  20. Natural Flood Management in context: evaluating and enhancing the impact.

    Science.gov (United States)

    Metcalfe, Peter; Beven, Keith; Hankin, Barry; Lamb, Rob

    2016-04-01

    The series of flood events in the UK throughout December 2015 have led to calls for a reappraisal of the country's approach to flood management. In parts of Cumbria so-called "1 in 100" year floods have occurred three times in the last ten years, leading to significant infrastructure damage. Hard-engineered defences upgraded to cope with an anticipated 20% increase in peak flows and these 1% AEP events have been overwhelmed. It has become more widely acknowledged that unsympathetic agricultural and upland management practices, mainly since the Second World War, have led to a significant loss of storage in mid and upper catchments and their consequent ability to retain and slow storm run-off. Natural Flood Management (NFM) is a nature-based solution to restoring this storage and flood peak attenuation through a network of small-scale features exploiting natural topography and materials. Combined with other "soft" interventions such as restoring flood plain roughness and tree-planting, NFM offers the attractive prospect of an intervention that can target both the ecological and chemical objectives of the Water Framework Directive and the resilience demanded by the Floods Directive. We developed a simple computerised physical routing model that can account for the presence of in-channel and offline features such as would be found in a NFM scheme. These will add storage to the channel and floodplain and throttle the downstream discharge at storm flows. The model was applied to the heavily-modified channel network of an agricultural catchment in North Yorkshire using the run-off simulated for two storm events that caused flooding downstream in the autumn of 2012. Using up to 60 online features we demonstrated some gains in channel storage and a small impact on the flood hydrograph which would, however, have been insufficient to prevent the downstream floods in either of the storms. Complementary research at JBA has applied their hydrodynamic model JFLOW+ to identify

  1. Re-thinking urban flood management

    DEFF Research Database (Denmark)

    Sörensen, Johanna; Persson, Andreas; Sternudd, Catharina

    2016-01-01

    Urban flooding is of growing concern due to increasing densification of urban areas, changes in land use, and climate change. The traditional engineering approach to flooding is designing single-purpose drainage systems, dams, and levees. These methods, however, are known to increase the long......-term flood risk and harm the riverine ecosystems in urban as well as rural areas. In the present paper, we depart from resilience theory and suggest a concept to improve urban flood resilience. We identify areas where contemporary challenges call for improved collaborative urban flood management. The concept...... emphasizes resiliency and achieved synergy between increased capacity to handle stormwater runoff and improved experiential and functional quality of the urban environments. We identify research needs as well as experiments for improved sustainable and resilient stormwater management namely, flexibility...

  2. Effects of flooding and drought on water quality in Gulf Coastal Plain streams in Georgia.

    Science.gov (United States)

    Golladay, Stephen W; Battle, Juliann

    2002-01-01

    Since 1994, water-quality constituents have been measured monthly in three adjacent Coastal Plain watersheds in southwestern Georgia. During 1994, rainfall was 650 mm above annual average and the highest flows on record were observed. From November 1998 through November 2000, 19 months had below average rainfall. Lowest flows on record were observed during the summer of 2000. The watersheds are human-dominated with row-crop agriculture and managed forestlands being the major land uses. However, one watershed (Chickasawhatchee Creek) had 10 to 13% less agriculture and greater wetland area, especially along the stream. Suspended particles, dissolved organic carbon, NH4-N, and soluble reactive phosphorus concentrations were greater during wet and flood periods compared with dry and drought periods for each stream. Regional hydrologic conditions had little effect on NO3-N or dissolved inorganic carbon. Chickasawhatchee Creek had significantly lower suspended sediment and NO3-N concentrations and greater organic and inorganic carbon concentrations, reflecting greater wetland area and stronger connection to a regional aquifer system. Even though substantial human land use occurred within all watersheds, water quality was generally good and can be attributed to low stream drainage density and relatively intact floodplain forests. Low drainage density minimizes surface run-off into streams. Floodplain forests reduce nonpoint-source pollutants through biological and physical absorption. In addition to preserving water quality, floodplain forests provide important ecological functions through the export of nutrients and organic carbon to streams. Extreme low flows may be disruptive to aquatic life due to both the lack of water and to the scarcity of biologically important materials originating from floodplain forests.

  3. Taenia spp. infections in wildlife in the Bangweulu and Kafue flood plains ecosystems of Zambia.

    Science.gov (United States)

    Muma, J B; Gabriël, S; Munyeme, M; Munang'andu, H M; Victor, B; Dorny, P; Nalubamba, K S; Siamudaala, V; Mwape, K E

    2014-09-15

    Taenia spp. have an indirect life cycle, cycling between a definitive and an intermediate host with zoonotic species causing public health problems in many developing countries. During the course of 2 separate surveys in Zambia (2004 and 2009), the presence of Taenia larval stages (cysticerci) was examined in Kafue lechwe (Kobus leche kafuensis), Black lechwe (Kobus leche smithermani) and other wildlife species from the Kafue and Bangweulu flood plains. Examinations involved post-mortem inspection and serum specific antigen detection. The recovered cysts from seven carcasses were characterised using PCR and DNA sequence analysis. The overall proportion of infection in wildlife on post-mortem examination was 19.0% (95% CI: 9.1-29.0%). The proportion of infected wildlife based on post-mortem examinations in the Kafue flood plains was estimated at 28.6% (95% CI: 13.3-43.9%), while the seroprevalence was estimated at 25.0% (95% CI: 2.9-47.1%). The seroprevalence for cattle in the Kafue flood plains was estimated at 61.5% (95% CI: 42.0-81.0%) while that of Kafue lechwe in the same ecosystem was estimated at 66.6% (95% CI: 45.6-85.7%). Infection rates were higher in Kafue lechwe than in Black lechwe suggesting differences in the exposure patterns. The sequencing results indicated that none of the recovered cysts were either Taenia solium or Taenia saginata. We therefore conclude they most likely belong to a less studied (wildlife) Taenia species that requires further characterisation.

  4. Flood Risk Management in the People’s Republic of China: Learning to Live with Flood Risk

    OpenAIRE

    Asian Development Bank

    2012-01-01

    This publication presents a shift in the People’s Republic of China from flood control depending on structural measures to integrated flood management using both structural and non-structural measures. The core of the new concept of integrated flood management is flood risk management. Flood risk management is based on an analysis of flood hazard, exposure to flood hazard, and vulnerability of people and property to danger. It is recommended that people learn to live with flood risks, gaining...

  5. From flood management systems to flood resilient systems: integration of flood resilient technologies

    Science.gov (United States)

    Salagnac, J.-L.; Diez, J.; Tourbier, J.

    2012-04-01

    Flooding has always been a major risk world-wide. Humans chose to live and develop settlements close to water (rivers, seas) due to the resources water brings, i.e. food, energy, capacity to economically transport persons and goods, and recreation. However, the risk from flooding, including pluvial flooding, often offsets these huge advantages. Floods sometimes have terrible consequences from both a human and economic point of view. The permanence and growth of urban areas in flood-prone zones despite these risks is a clear indication of the choices of concerned human groups. The observed growing concentration of population along the sea shore, the increase of urban population worldwide, the exponential growth of the world population and possibly climate change are factors that confirm flood will remain a major issue for the next decades. Flood management systems are designed and implemented to cope with such situations. In spite of frequent events, lessons look to be difficult to draw out and progresses are rather slow. The list of potential triggers to improve flood management systems is nevertheless well established: information, education, awareness raising, alert, prevention, protection, feedback from events, ... Many disciplines are concerned which cover a wide range of soft and hard sciences. A huge amount of both printed and electronic literature is available. Regulations are abundant. In spite of all these potentially favourable elements, similar questions spring up after each new significant event: • Was the event forecast precise enough? • Was the alert system efficient? • Why were buildings built in identified flood prone areas? • Why did the concerned population not follow instructions? • Why did the dike break? • What should we do to avoid it happens again? • What about damages evaluation, wastes and debris evacuation, infrastructures and buildings repair, activity recovery, temporary relocation of inhabitants, health concerns, insurance

  6. Betwixt Droughts and Floods: Flood Management Politics in Thailand

    Directory of Open Access Journals (Sweden)

    Naila Maier-Knapp

    2015-01-01

    Full Text Available Attempting to create greater understanding of the political dynamics that influence domestic disaster relief and management (DRM in Thailand, this article takes a closer look at these dynamics by outlining the main actors involved in flood-related DRM. It acknowledges the importance of international and military actors but emphasises the role of national and subnational authorities. The article then identifies the central issues of DRM governance as capacity and bureaucracy and discusses these through a chronological assessment of the flood crisis in Thailand in 2011, interweaving the colourful domestic politics with various political cleavages and dichotomies, and thereby distinguishing between three main dichotomies which it considers as the central drivers of the political dynamics and institutional development of DRM. These issues can be summarised as old versus new institutions, technocracy versus bureaucracy and centralised (but with direct people-orientation through greater channels of citizenry participation versus decentralised bureaucracy with an indirect orientation towards people.

  7. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    Science.gov (United States)

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  8. Advances in Operational Flood Risk Management in the Netherlands

    NARCIS (Netherlands)

    Wojciechowska, K.A.

    2015-01-01

    Operational flood risk management refers to activities that aim to reduce the probability and/or negative consequences of flooding just prior to the expected flood event. An inherent feature of operational flood risk management is that outcomes of decisions taken are uncertain. The main goal of this

  9. Raptor habitat use in the Lake Chad Basin : insights into the effect of flood-plain transformation on Afrotropical and Palearctic raptors

    NARCIS (Netherlands)

    Buij, Ralph; Croes, Barbara M.

    2013-01-01

    West African flood-plains have undergone major land-use transformations in the second half of the 20th century. To obtain insight in the effect of flood-plain development for irrigated rice cultivation on the abundance, richness, and diversity of Palearctic and Afrotropical raptors, we conducted mon

  10. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse

    NARCIS (Netherlands)

    Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.

    2005-01-01

    The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected

  11. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse

    NARCIS (Netherlands)

    Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.

    2005-01-01

    The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected

  12. Ice jam-caused fluvial gullies and scour holes on northern river flood plains

    Science.gov (United States)

    Smith, Derald G.; Pearce, Cheryl M.

    2002-01-01

    Two anomalous fluvial landforms, gullies and scour holes, eroded into flood plains bordering meandering and braiding river channels have not been previously reported. We observed these features along the Milk River in southern Alberta, Canada, and northern Montana, USA, which has a history of frequent (50% probability of recurrence) and high-magnitude (12% probability of recurrence greater than bankfull) ice jam floods. Gullies have palmate and narrow linear shapes with open-ends downvalley and measure up to 208 m long×139 m wide×3.5 m deep (below bankfull). Channel ice jams reroute river water across meander lobes and cause headward gully erosion where flow returns to the main channel. Erosion of the most recent gully was observed during the record 1996 ice breakup flood and ice jams. Scour holes (bowl-shaped, closed depressions), eroded by water vortices beneath and between grounded ice jam blocks, measure up to 91 m long×22 m wide×4.5 m deep. Ice jam-caused gullies may be precursors to the formation of U-shaped oxbow lakes and multiple channels, common in many northern rivers.

  13. Achieving Natural Flood Management through collaboration

    Science.gov (United States)

    Nicholson, Alex; Byers, Samantha; Thomas, Ted; Welton, Phil

    2016-04-01

    Recent flooding in the UK has brought much attention to the field of Natural flood Management (NFM) as a means of helping to reduce flood risk to communities. Key questions exist in the field, which include quantifying the impact of NFM and maintaining it. In addition, agencies and at-risk communities look for ways of delivering NFM in a tightly stretched financial climate. Well-implemented NFM has the effect of restoring more natural catchment hydrological and sedimentological processes, which in turn can have significant flood risk and WFD benefits for catchment waterbodies. These catchment scale improvements in-turn allow more 'natural' processes to be returned to rivers and streams, creating a more resilient system. NFM can tick many boxes and target many funding opportunities. This paper discusses the NFM component of the Lustrum Beck Flood Alleviation Scheme (Stockton-On-Tees, UK), and explains how a multi-agency approach had to be considered to allow elements of the scheme to be delivered. A startling 70 different landowners and agencies manage the land in the Lustrum Beck catchment (~40km2). A partnership between the Environment Agency and the Forestry Commission is planning to work on a demonstration site in the centre of the catchment. The paper goes on to explain the importance of this demonstration area in the context of the wider scheme.

  14. Use of documentary sources on past flood events for flood risk management and land planning

    Science.gov (United States)

    Cœur, Denis; Lang, Michel

    2008-09-01

    The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.

  15. Natural Flood Management Plus: Scaling Up Nature Based Solutions to Larger Catchments

    Science.gov (United States)

    Quinn, Paul; Nicholson, Alex; Adams, Russ

    2017-04-01

    It has been established that networks NFM features, such as ponds and wetlands, can have a significant effect on flood flow and pollution at local scales (less than 10km2). However, it is much less certain that NFM and NBS can impact at larger scales and protect larger cities. This is especially true for recent storms in the UK such as storm Desmond that caused devastation across the north of England. It is possible using observed rainfall and runoff data to estimate the amounts of storage that would be required to impact on extreme flood events. Here we will how a toolkit that will estimate the amount of storage that can be accrued through a dense networks of NFM features. The analysis suggest that the use of many hundreds of small NFM features can have a significant impact on peak flow, however we still require more storage in order to address extreme events and to satisfy flood engineers who may propose more traditional flood defences. We will also show case studies of larger NFM feature positioned on flood plains that can store significantly more flood flow. Examples designs of NFM plus feature will be shown. The storage aggregation tool will then show the degree to which storing large amounts of flood flow in NFM plus features can contribute to flood management and estimate the likely costs. Together smaller and larger NFM features if used together can produce significant flood storage and at a much lower cost than traditional schemes.

  16. Nature-based flood risk management -challenges in implementing catchment-wide management concepts

    Science.gov (United States)

    Thaler, Thomas; Fuchs, Sven

    2017-04-01

    Traditionally, flood risk management focused on coping with the flow at a given point by, for example, building dikes or straightening the watercourse. Increasingly the emphasis has shifted to measures within the flood plain to delay the flow through storage. As such the fluent boundaries imposed by the behaviour of the catchment at a certain point are relocated upstream by the human intervention. Therefore, the implementation of flood storages and the use of natural retention areas are promoted as mitigation measures to support sustainable flood risk management. They aimed at reducing the effluent boundaries on the floodplain by increasing the effluent boundaries upstream. However, beyond the simple change of practices it is indeed often a question of land use change which is at stake in water management. As such, it poses the questions on how to govern both water and land to satisfy the different stakeholders. Nature-based strategies often follow with voluntary agreements, which are promoted as an alternative instrument to the traditional top-down command and control regulation. Voluntary agreements aim at bringing more efficiency, participatory and transparency in solving problems between different social groups. In natural hazard risk management voluntary agreements are now receiving high interests to complement the existing policy instruments in order to achieve the objectives the EU WFD and of the Floods Directive. This paper investigates the use of voluntary agreements as an alternative instrument to the traditional top-down command and control regulation in the implementation of flood storages in Austria. The paper provides a framework of analysis to reveal barriers and opportunities associated with such approach. The paper concludes that institution and power are the central elements to tackle for allowing the success of voluntary agreement.

  17. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    Science.gov (United States)

    Chen, H. L.; Ito, Y.; Sawamukai, M.; Su, T.; Tokunaga, T.

    2015-11-01

    Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  18. Implementing the EU Floods Directive (2007/60/EC) in Austria: Flood Risk Management Plans

    Science.gov (United States)

    Neuhold, Clemens

    2013-04-01

    he Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (EFD) aims at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the Community. This task is to be achieved based on three process steps (1) preliminary flood risk assessment (finalised by the end of 2011), (2) flood hazard maps and flood risk maps (due 2013) and (3) flood risk management plans (due 2015). Currently, an interdisciplinary national working group is defining the methodological framework for flood risk management plans in Austria supported by a constant exchange with international bodies and experts. Referring to the EFD the components of the flood risk management plan are (excerpt): 1. conclusions of the preliminary flood risk assessment 2. flood hazard maps and flood risk maps and the conclusions that can be drawn from those maps 3. a description of the appropriate objectives of flood risk management 4. a summary of measures and their prioritisation aiming to achieve the appropriate objectives of flood risk management The poster refers to some of the major challenges in this process, such as the legal provisions, coordination of administrative units, definition of public relations, etc. The implementation of the EFD requires the harmonisation of legal instruments of various disciplines (e.g. water management, spatial planning, civil protection) enabling a coordinated - and ideally binding - practice of flood risk management. This process is highly influenced by the administrative organisation in Austria - federal, provincial and municipality level. The Austrian approach meets this organisational framework by structuring the development of the flood risk management plan into 3 time-steps: (a) federal blueprint, (b) provincial editing and (c) federal finishing as well as reporting to the European Commission. Each time

  19. Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain

    Science.gov (United States)

    Auerbach, L. W.; Goodbred, S. L., Jr.; Mondal, D. R.; Wilson, C. A.; Ahmed, K. R.; Roy, K.; Steckler, M. S.; Small, C.; Gilligan, J. M.; Ackerly, B. A.

    2015-02-01

    The Ganges-Brahmaputra river delta, with 170 million people and a vast, low-lying coastal plain, is perceived to be at great risk of increased flooding and submergence from sea-level rise. However, human alteration of the landscape can create similar risks to sea-level rise. Here, we report that islands in southwest Bangladesh, enclosed by embankments in the 1960s, have lost 1.0-1.5 m of elevation, whereas the neighbouring Sundarban mangrove forest has remained comparatively stable. We attribute this elevation loss to interruption of sedimentation inside the embankments, combined with accelerated compaction, removal of forest biomass, and a regionally increased tidal range. One major consequence of this elevation loss occurred in 2009 when the embankments of several large islands failed during Cyclone Aila, leaving large areas of land tidally inundated for up to two years until embankments were repaired. Despite sustained human suffering during this time, the newly reconnected landscape received tens of centimetres of tidally deposited sediment, equivalent to decades’ worth of normal sedimentation. Although many areas still lie well below mean high water and remain at risk of severe flooding, we conclude that elevation recovery may be possible through controlled embankment breaches.

  20. Danish risk management plans of the EU Floods Directive

    DEFF Research Database (Denmark)

    Jebens, Martin; Sørensen, Carlo Sass; Piontkowitz, Thorsten

    2016-01-01

    We evaluate the impact and effect of the EU Flood’s Directive (2007/60/EC) in Denmark and the flood risk management plans that are the result of the national implementation. In a qualitative research approach, the flood risk management plans published by 22 Danish municipalities are reviewed...... and cross-sectorial working platform for dealing with risks from floods....

  1. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?

    NARCIS (Netherlands)

    Hegger, D.; Driessen, P.P.J.; Wiering, M.A.; Rijswick, H.F.M.W. van; Kundzewicz, P.; Matczak, A.; Crabbé, A.; Raadgever, T.; Bakker, M.H.N.; Priest, S.; Larrue, C.; Ek, K.

    2016-01-01

    ABSTRACT. European countries face increasing flood risks because of urbanization, increase of exposure and damage potential, and the effects of climate change. In literature and in practice, it is argued that a diversification of strategies for flood risk management (FRM), including flood risk preve

  2. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?

    NARCIS (Netherlands)

    Hegger, D.L.T.; Driessen, P.P.J.; Wiering, Mark; van Rijswick, H.F.M.W.; Kundzewicz, Zbigniew W.; Matczak, Piotr; Crabbé, Ann; Raadgever, G.T.; Bakker, M.H.N.; Priest, Sally; Larrue, Corinne; Ek, Kristina

    2016-01-01

    European countries face increasing flood risks because of urbanization, increase of exposure and damage potential, and the effects of climate change. In literature and in practice, it is argued that a diversification of strategies for flood risk management (FRM), including flood risk prevention (thr

  3. Floods and climate: emerging perspectives for flood risk assessment and management

    DEFF Research Database (Denmark)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, Karsten

    2014-01-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction...... context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical...... approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics...

  4. The role of Natural Flood Management in managing floods in large scale basins during extreme events

    Science.gov (United States)

    Quinn, Paul; Owen, Gareth; ODonnell, Greg; Nicholson, Alex; Hetherington, David

    2016-04-01

    There is a strong evidence database showing the negative impacts of land use intensification and soil degradation in NW European river basins on hydrological response and to flood impact downstream. However, the ability to target zones of high runoff production and the extent to which we can manage flood risk using nature-based flood management solution are less known. A move to planting more trees and having less intense farmed landscapes is part of natural flood management (NFM) solutions and these methods suggest that flood risk can be managed in alternative and more holistic ways. So what local NFM management methods should be used, where in large scale basin should they be deployed and how does flow is propagate to any point downstream? Generally, how much intervention is needed and will it compromise food production systems? If we are observing record levels of rainfall and flow, for example during Storm Desmond in Dec 2015 in the North West of England, what other flood management options are really needed to complement our traditional defences in large basins for the future? In this paper we will show examples of NFM interventions in the UK that have impacted at local scale sites. We will demonstrate the impact of interventions at local, sub-catchment (meso-scale) and finally at the large scale. These tools include observations, process based models and more generalised Flood Impact Models. Issues of synchronisation and the design level of protection will be debated. By reworking observed rainfall and discharge (runoff) for observed extreme events in the River Eden and River Tyne, during Storm Desmond, we will show how much flood protection is needed in large scale basins. The research will thus pose a number of key questions as to how floods may have to be managed in large scale basins in the future. We will seek to support a method of catchment systems engineering that holds water back across the whole landscape as a major opportunity to management water

  5. Floods and climate: emerging perspectives for flood risk assessment and management

    Directory of Open Access Journals (Sweden)

    B. Merz

    2014-02-01

    Full Text Available Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches have abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We conclude: (1 extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2 Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristic. (3 Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of a dynamic, climate informed flood risk management. (4 Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability, and to better understand the interactions between society and floods. (5 Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data sharing initiative to understand further the links between climate and flooding and to advance flood research.

  6. Vegetation line transects of Goose Pasture and Pool No. 1: Clarence Cannon National Wildlife Refuge: Part of Wildlife Management Study – Project 2: Evaluating production of moist soil plants in the Mississippi River Flood Plain and their subsequent use by waterfowl

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Wildlife Management Study - Project No. 2 dated May 15, 1969 was developed to evaluate the production of moist soil food plants in the Mississippi River flood...

  7. Application Of Geographic Information Systems Towards Flood Management In Shkodër, Albania

    Directory of Open Access Journals (Sweden)

    Medjon HYSENAJ

    2012-06-01

    Full Text Available The aim of this paper is to show the advantages of GIS in monitoring and improving flood response management in Albania. A full statistic overview of the last flooding occured in the region of Shkodra will be presented. The delicate area balances as far as water management is concerned, have turned into repetitive problematic that have become endemic to the region. The flooding in 2010 and 2011 due to heavy rain, snow melting and hydropower management caused a strong impact in the socio-economic life of the population. According to the last statistics, numbers referring to population displacement, house inundation, property damages seems to be a growing concern for the State Emergency Service. This scenario involves the role of the government institutions in both planning and the operational contexts. Uncoordinated measures between emergency groups, delayed actions from the hydropower specialists, the lack of updated geoinformation followed by a limited remote control occur due to a continuous distant approach created toward GIS technology in our country. As a solution to this scenario it will be presented a concrete platform based on calculations and statistics of dam capacity, allowed water levels, maximum rainfall levels, climate factors, population density and movements. GIS carriesthe potential for flood plain management, flood mapping and forecasting, also population education and awareness. Geospatial information and remote sensing utilization serves as bridge between flooding security measures and damage evaluation. Integration of the population distribution model toward flooding classification which aims the developing of an index mapping is the first step to be initiated. In our case it is important to denote that the usage ofGIS utilities is more effective in the pre-flood than the post-flood phase.

  8. Flood Induced Disasters and Stakeholder Involvement to Implement Integrated Food Management in Nepal

    Science.gov (United States)

    Gautam, N. P.

    2016-12-01

    Nepal, a landlocked country in South Asia covers an area of 147, 181 square kilometers. Its elevation ranges from 61m as the lowest to 8848m, the highest peak Everest in the world. More than 80% of the annual rainfall occurs in the monsoon season from June to September. Thus, due to the intense rainfall that occurs within a short period, monsoon acts as the biggest cause for the occurrence of different disastrous events including flood. Beyond it, Nepal lies at the center and southern edge of Hindu-Kush Himalayan (HKH) region, which is the youngest geological formation in the world. Hence, floods and landslides are common in this region. In Nepal, from the records of 1971-2010, floods and landslides are the second biggest cause for casualties after epidemics. Hawaii based Center of Excellence in disaster management and humanitarian assistance in 2015 has declared Nepal as 30th vulnerable country from the aspect of floods. According to WMO definition, integrated flood management (IFM) is a process of promoting an integrated rather than a fragmented approach to flood management, integrating land and water resource development in a river basin within the context of integrated water resources management (IWRM), with the aim of maximizing the net benefits from flood plains while minimizing loss of life from flooding. That is the reason why the IFM is one of the important countermeasures to be implemented in Nepal to reduce the adverse effects of floods. This study emphasizes on the existing conditions along with the challenges of IFM with respect to stakeholder involvement in the context of Nepal. It can be assured that all the highlighted issues coming out from this study will be highly valuable to policy makers, implementing agencies along with scientific and local communities to enhance IFM works in the nation for the benefits of societies.

  9. Review of the flood risk management system in Germany after the major flood in 2013

    Directory of Open Access Journals (Sweden)

    Annegret H. Thieken

    2016-06-01

    Full Text Available Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1 an increased consideration of flood hazards in spatial planning and urban development, (2 comprehensive property-level mitigation and preparedness measures, (3 more effective flood warnings and improved coordination of disaster response, and (4 a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.

  10. Extreme flood events and climate change around 3500 aBP in the Central Plains of China

    Institute of Scientific and Technical Information of China (English)

    XIA; Zhengkai; WANG; Zanhong

    2004-01-01

    The Xinzhai Period (3550-3400 aBP) belongs to Late Neolithic Culture, which bridges the Longshan Culture and the Xia Culture in the Central Plains of China. By studying the living environment of ancient human beings at the Xinzhai site, Henan Province, this paper presents the discovery of extreme floods which threatened and destroyed the living environment of the ancient human beings during the Xinzhai Period. Pollen analysis and carbon-oxygen isotope measurement suggest that the climate was warm and wet during the Xinzhai Period, in contrast to the warm and arid climate during the Longshan Culture Period. The frequent flood events were the response of abrupt climate change during the Xinzhai Period. The conclusions drawn from this study not only help better understand the environmental change in the Central Plains of China around 3500 aBP, but also provide important clues to the environmental background for the origin of Chinese civilization.

  11. The politics of flood insecurity : framing contested river management projects

    NARCIS (Netherlands)

    Warner, J.F.

    2008-01-01

    The study thus analyses and organises how states oscillate between security logic (‘logic of war’) and non-security logic (‘logic of peace’) in flood security governance. The way floods are managed and politicised are a reflection of how society is organised. Therefore, one should look at flood prot

  12. Flood Risk Management In Europe: an exploration of governance challenges

    NARCIS (Netherlands)

    Hegger, D.; Dieperink, C.; Green, C.; Driessen, Peter; Bakker, M.H.; Rijswick, H.F.M.W. van; Crabbé, A.; Ek, K.

    2013-01-01

    In order to make European regions more resilient to flood risks a broadening of Flood Risk Management strategies (FRMSs) might be necessary. The development and implementation of FRMSs like risk prevention, flood defence, mitigation, preparation and recovery is a matter of governance, a process of

  13. Sele coastal plain flood risk due to wave storm and river flow interaction

    Science.gov (United States)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  14. Representativeness of soil samples collected to assess mining-related contamination of flood plains in southeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2015-01-01

    Historical lead and zinc mining in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of lead and zinc to the environment (Juracek, 2006; Juracek and Becker, 2009). In response to concern about the mining-related contamination, southeast Cherokee County, Kansas, was listed on the U.S. Environmental Protection Agency’s (USEPA) National Priority List as a Superfund hazardous waste site (fig. 1). To provide some of the information needed to support remediation efforts in the Cherokee County Superfund site, a study was begun in 2009 by the U.S. Geological Survey (USGS) that was requested and funded by USEPA. As part of the study, surficial-soil sampling was used to investigate the extent and magnitude of mining-related lead and zinc contamination in the flood plains of the Spring River and several tributaries within the Superfund site. In mining-affected areas, flood-plain soils had lead and zinc concentrations that far exceeded background levels as well as probable-effects guidelines for toxic aquatic biological effects (Juracek, 2013). Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment.

  15. The economic importance of products extracted from Amazonian flood plain forests.

    Science.gov (United States)

    Gram, S; Kvist, L P; Cáseres, A

    2001-09-01

    Rural people in the Peruvian Amazon practice agriculture and extract a wide range of products from natural forests, rivers and lakes. Their diversified livelihood system includes fish, game, and plant products. In 2 flood-plain villages, data for one year have been collected to compare the economy of local agriculture with the economy of extracted forest products for subsistence as well as for commerce. The study includes both fauna (game and fish) and flora (timber as well as nontimber). The results show that extracted forest products for subsistence, especially fish, are a main factor in the local economy. The daily net income from extraction activities exceeds both income from cultivation and the normal daily wages for unskilled workers, emphasizing the need for thorough socioeconomic investigations before any alternative land-use option is implemented. The average value per ha of natural forest used for extraction is in the order of USD 13 yr-1, and the average extraction area is 113 ha household-1. When yield from agriculture is included in the calculations, the total per ha value of current extraction and agricultural activities increases to USD 21 yr-1.

  16. Calibration of stormwater management model using flood extent data

    OpenAIRE

    Han, Kunyeun; Kim, YoungJoo; Kim, Byunhyun; Famiglietti, James S.; Sanders, Brett F.

    2014-01-01

    The Seogu (western) portion of Daegu, Korea experiences chronic urban flooding and there is a need to increase flood detention and storage to reduce flood impacts. Since the site is densely developed, use of an underground car park as a cistern has been proposed. The stormwater management model (SWMM) is applied to study alternative hydraulic designs and overall performance, and it is shown that by linking SWMM to a two-dimensional flood inundation model, SWMM parameters can be calibrated fro...

  17. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida: Chapter B, Apalachicola River quality assessment

    Science.gov (United States)

    Elder, John F.; Cairns, Duncan J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the bottom-land hardwood swamp of the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly from nets located in 16 study plots. The plots represented five forest types in the swamp and levee areas of the Apalachicola River flood plain. Forty-three species of trees, vines, and other plants contributed to the total litter fall, but more than 90 percent of the leaf material originated from 12 species. Nonleaf material made up 42 percent of the total litter fall. Average litter fall was determined to be 800 grams per square meter per year, resulting in an annual deposition of 3.6 ? 105 metric tons of organic material in the 454-square-kilometer flood plain. The levee communities have less tree biomass but greater tree diversity than do swamp communities. The levee vegetation, containing less tree biomass, produces slightly more litter fall per unit of ground surface area than does the swamp vegetation. The swamps are dominated by three genera: tupelo (Nyssa), cypress (Taxodium) and ash (Fraxinus). These genera account for more than 50 percent of the total leaf fall in the flood plain, but they are the least productive, on a weight-perbiomass basis, of any of the 12 major leaf producers. Decomposition rates of leaves from five common floodplain tree species were measured using a standard leaf-bag technique. Leaf decomposition was highly species dependent. Tupelo (Nyssa spp.) and sweetgum (Liquidambar styraciflua) leaves decomposed completely in 6 months when flooded by river water. Leaves of baldcypress (Taxodium distichum) and diamond-leaf oak (Quercus laurifolia) were much more resistant. Water hickory (Carya aquatica) leaves showed intermediate decomposition rates. Decomposition of all species was greatly reduced in dry environments. Carbon and biomass loss rates from the leaves were nearly linear over a 6-month period, but nitrogen

  18. Developing a national programme of flood risk management measures: Moldova

    Directory of Open Access Journals (Sweden)

    Ramsbottom David

    2016-01-01

    Full Text Available A Technical Assistance project funded by the European Investment Bank has been undertaken to develop a programme of flood risk management measures for Moldova that will address the main shortcomings in the present flood management system, and provide the basis for long-term improvement. Areas of significant flood risk were identified using national hydraulic and flood risk modelling, and flood hazard and flood risk maps were then prepared for these high risk areas. The flood risk was calculated using 12 indicators representing social, economic and environmental impacts of flooding. Indicator values were combined to provide overall estimates of flood risk. Strategic approaches to flood risk management were identified for each river basin using a multi-criteria analysis. Measures were then identified to achieve the strategic approaches. A programme of measures covering a 20-year period was developed together with a more detailed Short-Term Investment Plan covering the first seven years of the programme. Arrangements are now being made to implement the programme. The technical achievements of the project included national hydrological and hydraulic modelling covering 12,000 km of river, the development of 2-dimensional channel and floodplain hydraulic models from a range of topographic and bathymetric data, and an integrated flood risk assessment that takes account of both economic and non-monetary impacts.

  19. Risk-trading in flood management: An economic model.

    Science.gov (United States)

    Chang, Chiung Ting

    2017-09-15

    Although flood management is no longer exclusively a topic of engineering, flood mitigation continues to be associated with hard engineering options. Flood adaptation or the capacity to adapt to flood risk, as well as a demand for internalizing externalities caused by flood risk between regions, complicate flood management activities. Even though integrated river basin management has long been recommended to resolve the above issues, it has proven difficult to apply widely, and sometimes even to bring into existence. This article explores how internalization of externalities as well as the realization of integrated river basin management can be encouraged via the use of a market-based approach, namely a flood risk trading program. In addition to maintaining efficiency of optimal resource allocation, a flood risk trading program may also provide a more equitable distribution of benefits by facilitating decentralization. This article employs a graphical analysis to show how flood risk trading can be implemented to encourage mitigation measures that increase infiltration and storage capacity. A theoretical model is presented to demonstrate the economic conditions necessary for flood risk trading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Holocene climatic fluctuations from Lower Brahmaputra flood plain of Assam, northeast India

    Indian Academy of Sciences (India)

    Swati Dixit; S K Bera

    2012-02-01

    Pollen analysis of a 3.2-m deep sedimentary profile cored from the Dabaka Swamp, Nagaon District, Lower Brahmaputra flood plain, Assam has revealed persistent fluvial activity during 14,120–12,700 cal years BP which may be attributed to the paucity of pollen and spores with encounterance of fluvial marker taxa like Ludwigia octavalvis and Botryococcus. Later, fluvial activity was succeeded by the tropical tree savanna under cool and dry climate between 12,700 and 11,600 cal years BP corresponding to that of global Younger Dryas. Between 11,600 and 8310 cal years BP, relatively less cool and dry climate prevailed with inception of tropical mixed deciduous taxa like Shorea robusta and Lagerstroemia parviflora. This phase is further followed by a fluvial activity between 8310 and 7100 cal years BP as evidenced by trace values of pollen and spores. Fluvial activity was further succeeded by enrichment of tropical mixed deciduous forest under warm and humid climatic regime between 7100 and 1550 cal years BP which is well-matched with the peak period of the Holocene climatic optimum. However, during 1550–768 cal years BP, final settlement of tropical mixed deciduous forest occurred under increased warm and humid climate followed by deterioration in tropical mixed deciduous forest under warm and relatively dry climatic regime since 768 cal years BP onwards due to acceleration in human settlement as evidenced by Cerealia. Increase in Melastoma, Ziziphus and Areca catechu imply forest clearance at this phase. The occurrence of degraded pollen-spore along with adequate fungal elements especially, Xylaria, Nigrospora and Microthyriaceous fruiting body is suggestive of aerobic microbial digenesis of rich organic debris during sedimentation.

  1. An empirical assessment of which inland floods can be managed.

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A; Hoegh, Andrew B; Angermeier, Paul L

    2016-02-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m(3)/s) but quicker (0.41 days) floods than non-urban watersheds (50 m(3)/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m(3)/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m(3)/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help

  2. An empirical assessment of which inland floods can be managed

    Science.gov (United States)

    Mogollon, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul

    2016-01-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that

  3. Conceptualization of a Collaborative Decision Making for Flood Disaster Management

    Science.gov (United States)

    Nur Aishah Zubir, Siti; Thiruchelvam, Sivadass; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Hakimie, Hazlinda; Razak, Normy Norfiza Abdul; Aziz Mat Isa, Abdul; Hasini, Hasril; Sahari, Khairul Salleh Mohamed; Mat Husin, Norhayati; Ezanee Rusli, Mohd; Sabri Muda, Rahsidi; Mohd Sidek, Lariyah; Basri, Hidayah; Tukiman, Izawati

    2016-03-01

    Flooding is the utmost major natural hazard in Malaysia in terms of populations affected, frequency, area extent, flood duration and social economic damage. The recent flood devastation towards the end of 2014 witnessed almost 250,000 people being displaced from eight states in Peninsular Malaysia. The affected victims required evacuation within a short period of time to the designated evacuation centres. An effective and efficient flood disaster management would assure non-futile efforts for life-saving. Effective flood disaster management requires collective and cooperative emergency teamwork from various government agencies. Intergovernmental collaborations among government agencies at different levels have become part of flood disaster management due to the need for sharing resources and coordinating efforts. Collaborative decision making during disaster is an integral element in providing prompt and effective response for evacuating the victims.

  4. Urban Drainage Modeling and Flood Risk Management

    Science.gov (United States)

    Schmitt, Theo G.; Thomas, Martin

    The European research project in the EUREKA framework, RisUrSim (Σ!2255) has been worked out by a project consortium including industrial mathematics and water engineering research institutes, municipal drainage works as well as an insurance company. The overall objective has been the development of a simulation to allow flood risk analysis and cost-effective management for urban drainage systems. In view of the regulatory background of European Standard EN 752, the phenomenon of urban flooding caused by surcharged sewer systems in urban drainage systems is analyzed, leading to the necessity of dual drainage modeling. A detailed dual drainage simulation model is described based upon hydraulic flow routing procedures for surface flow and pipe flow. Special consideration is given to the interaction between surface and sewer flow in order to most accurately compute water levels above ground as a basis for further assessment of possible damage costs. The model application is presented for small case study in terms of data needs, model verification, and first simulation results.

  5. Tangible Results and Progress in Flood Risks Management with the PACTES Initiative

    Science.gov (United States)

    Costes, Murielle; Abadie, Jean-Paul; Ducuing, Jean-Louis; Denier, Jean-Paul; Stéphane

    The PACTES project (Prévention et Anticipation des Crues au moyen des Techniques Spatiales), initiated by CNES and the French Ministry of Research, aims at improving flood risk management, over the following three main phases : - Prevention : support and facilitate the analysis of flood risks and socio-economic impacts (risk - Forecasting and alert : improve the capability to predict and anticipate the flooding event - Crisis management : allow better situation awareness, communication and sharing of In order to achieve its ambitious objectives, PACTES: - integrates state-of-the-art techniques and systems (integration of the overall processing chains, - takes advantage of integrating recent model developments in wheather forecasting, rainfall, In this approach, space technology is thus used in three main ways : - radar and optical earth observation data are used to produce Digital Elevation Maps, land use - earth observation data are also an input to wheather forecasting, together with ground sensors; - satellite-based telecommunication and mobile positioning. Started in December 2000, the approach taken in PACTES is to work closely with users such as civil security and civil protection organisms, fire fighter brigades and city councils for requirements gathering and during the validation phase. It has lead to the development and experimentation of an integrated pre-operational demonstrator, delivered to different types of operational users. Experimentation has taken place in three watersheds representative of different types of floods (flash and plain floods). After a breaf reminder of what the PACTES project organization and aims are, the PACTES integrated pre-operational demonstrator is presented. The main scientific inputs to flood risk management are summarized. Validation studies for the three watersheds covered by PACTES (Moselle, Hérault and Thoré) are detailed. Feedback on the PACTES tangible results on flood risk management from an user point of view

  6. Sustainable flood risk management – What is sustainable?

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Brudler, Sarah; Lerer, Sara Maria

    2016-01-01

    Sustainable flood risk management has to be achieved since flood protection is a fundamental societal service that we must deliver. Based on the discourse within the fields of risk management and sustainable urban water management, we discuss the necessity of assessing the sustainability of flood...... risk management, and propose an evaluation framework for doing so. We argue that it is necessary to include quantitative sustainability measures in flood risk management in order to exclude unsustainable solutions. Furthermore, we use the concept of absolute sustainability to discuss the prospects...... of maintaining current service levels without compromising future generation’s entitlement of services. Discussions on the sustainability of different overall flood risk schemes must take place. Fundamental changes in the approaches will require fundamental changes in the mind-sets of practitioners as well...

  7. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE, flood plains, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other...

  8. Households' Perceived Responsibilities in Flood Risk Management in The Netherlands

    NARCIS (Netherlands)

    Terpstra, Teun; Gutteling, Jan M.

    2008-01-01

    Flood risk management in the Netherlands is on the eve of shifting primarily from prevention towards risk management, including disaster preparedness and response and citizen participation. This study explores Dutch households' perceived responsibility for taking private protection measures. Survey

  9. Flood Zones, Floodway, 100 year flood plain,, Published in 2014, 1:4800 (1in=400ft) scale, GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Flood Zones dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Other information as of 2014. It is described as 'Floodway, 100...

  10. Long-term experiences with pluvial flood risk management

    Directory of Open Access Journals (Sweden)

    Fritsch Kathrina

    2016-01-01

    Full Text Available The awareness of pluvial (rain-related flood risk has grown significantly in the past few years but pluvial flooding is not handled with the same intensity throughout Europe. A variety of methods and modelling technologies are used to assess pluvial flood hazard and risk and to develop suggestions for flood mitigation measures. A brief overview of current model approaches is followed by the description of a modelling methodology that has been developed throughout the last 15 years with the focus on processing large scale areas. Experiences from several projects show that only high quality models of whole catchment areas yield results with enough accuracy to gain credibility among stakeholders, planners and the public. As a best practice example shows, the model approach also helps to plan effective decentral flood protection measures. To ensure successful flood risk management, a long-term preservation of flood risk awareness among local authorities and the public is necessary.

  11. Flood management: prediction of microbial contamination in large-scale floods in urban environments.

    Science.gov (United States)

    Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip

    2011-07-01

    With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities

  12. Comprehensive Flood Plain Studies Using Spatial Data Management Techniques.

    Science.gov (United States)

    1978-06-01

    and subbasin hydraulic length. The technique adopted is a modest extension and automation of the method developed for San Diego County (Franziniet al...land classified as 14 I ____.4_ natural vegetation under existing conditions is 272 acres while the total amount of landA classified as natural

  13. FLOOD RISK ASSESSMENT AND MANAGEMENT IN SLOVAK REPUBLIC

    OpenAIRE

    Martina ZELENAKOVA

    2011-01-01

    Recent history has shown that extreme hydrological events as flood and droughts can create additional stress on water supplies essential for human and ecosystem health. Floods have caused immense economic and social losses, mainly as a result of unplanned urbanization, uncontrolled population density and not strictly inspected construction by authorities. The purpose of Directive 2007/60/EC is to establish a framework for the assessment and management of flood risks, aiming at the reduction o...

  14. An analysis on the relationship between land subsidence and floods at the Kujukuri Plain in Chiba Prefecture, Japan

    Science.gov (United States)

    Ito, Y.; Chen, H.; Sawamukai, M.; Su, T.; Tokunaga, T.

    2015-11-01

    Surface environments at the Kujukuri Plain in Chiba Prefecture, Japan, in 1970, 2004, and 2013, were analyzed and compared to discuss the possible impact of land subsidence on the occurrence of floods. The study area has been suffered from land subsidence due to ground deformation from paleo-earthquakes, tectonic activities, and human-induced subsidence by groundwater exploitation. Meteorological data, geomorphological data including DEM obtained from the airborne laser scanning (1-m spatial resolution), leveling data, and the result of our assessment map (Chen et al., 2015) were used in this study. Clear relationship between floods and land subsidence was not recognized, while geomorphological setting, urbanization, and change of precipitation pattern were found to contribute to the floods. The flood prone-area is distributed on the characteristic geomorphological setting such as floodplain and back swamp. It was revealed that the urban area has been expanded on these geomorphological setting in recent years. The frequency of hourly precipitation was also shown to be increased in the past ca. 40 years, and this could induce rapid freshet and overflow of small- and medium-sized rivers and sewerage lines. The distribution of depression areas was increased from 2004 to 2013. This change could be associated with the ground deformation after the Tohoku earthquake (Mw = 9.0) in 2011.

  15. Designing Flood Management Systems for Joint Economic and Ecological Robustness

    Science.gov (United States)

    Spence, C. M.; Grantham, T.; Brown, C. M.; Poff, N. L.

    2015-12-01

    Freshwater ecosystems across the United States are threatened by hydrologic change caused by water management operations and non-stationary climate trends. Nonstationary hydrology also threatens flood management systems' performance. Ecosystem managers and flood risk managers need tools to design systems that achieve flood risk reduction objectives while sustaining ecosystem functions and services in an uncertain hydrologic future. Robust optimization is used in water resources engineering to guide system design under climate change uncertainty. Using principles introduced by Eco-Engineering Decision Scaling (EEDS), we extend robust optimization techniques to design flood management systems that meet both economic and ecological goals simultaneously across a broad range of future climate conditions. We use three alternative robustness indices to identify flood risk management solutions that preserve critical ecosystem functions in a case study from the Iowa River, where recent severe flooding has tested the limits of the existing flood management system. We seek design modifications to the system that both reduce expected cost of flood damage while increasing ecologically beneficial inundation of riparian floodplains across a wide range of plausible climate futures. The first robustness index measures robustness as the fraction of potential climate scenarios in which both engineering and ecological performance goals are met, implicitly weighting each climate scenario equally. The second index builds on the first by using climate projections to weight each climate scenario, prioritizing acceptable performance in climate scenarios most consistent with climate projections. The last index measures robustness as mean performance across all climate scenarios, but penalizes scenarios with worse performance than average, rewarding consistency. Results stemming from alternate robustness indices reflect implicit assumptions about attitudes toward risk and reveal the

  16. Coastal flood protection management under uncertainty – the Danish case

    DEFF Research Database (Denmark)

    Jumppanen Andersen, Kaija; Sørensen, Carlo Sass; Piontkowitz, Thorsten

    Local stakeholders responsible for coastal management. In Denmark, the responsibility of defining, planning and implementing coastal flood protection lies with the local stakeholders, such as landowners and municipalities. Similarly, it is a municipal responsibility to define building foundation...... and flood protection levels in urban planning and long term development. These planning and protection levels are most often defined from the hazard instead of a risk perspective.The Danish Coastal Authority (DCA) guides local stakeholders on general coastal flood protection and implements the EU Flood...... Directive on flood risk reduction in appointed areas of significant flood risk. DCA is obligated to communicate the concept of risk and, in a thorough and easily comprehendible way, the hazards and uncertainties relating to this today and in the future....

  17. Investigation of Soil Permeability and Hydrological Properties of Flood Plain Deposits of the Rio Grande in EL Paso TX

    Science.gov (United States)

    Schacht, D.; Jin, L.; Doser, D. I.

    2013-12-01

    The various soil types within the flood plains of Rio Grande in El Paso 's Lower Valley have long been utilized by local farmers. These soils are typically more conducive to farming than the more recent (Pliocene) sandy soils outside of the flood plain region. This project will explore the various properties of these soils types such as their grain size, depths, extent, and hydrological conductivity utilizing various geophysical and geochemical methods. The study site is located in El Paso 's Lower Valley and is situated in an actively farmed area. Soil maps from the Natural Resource Conservation Service (NRCS) and variations in vegetation growth will help delineate locations of soil types in the study area. The information that will be collected will produce baseline data to help track expected seasonal variations in the soil's moisture content and in the depth of the local water table. This project represents a collaboration between El Paso Community College's and the University of Texas at El Paso's Departments of Geological Sciences as a means for students majoring in Geological Sciences at El Paso Community College to gain hands on experience in researching geological issues through partnerships with their future institution and faculty.

  18. Glacial conditioning of stream position and flooding in the braid plain of the Exit Glacier foreland, Alaska

    Science.gov (United States)

    Curran, Janet H.; Loso, Michael G.; Williams, Haley B.

    2017-09-01

    Flow spilling out of an active braid plain often signals the onset of channel migration or avulsion to previously occupied areas. In a recently deglaciated environment, distinguishing between shifts in active braid plain location, considered reversible by fluvial processes at short timescales, and more permanent glacier-conditioned changes in stream position can be critical to understanding flood hazards. Between 2009 and 2014, increased spilling from the Exit Creek braid plain in Kenai Fjords National Park, Alaska, repeatedly overtopped the only access road to the popular Exit Glacier visitor facilities and trails. To understand the likely cause of road flooding, we consider recent processes and the interplay between glacier and fluvial system dynamics since the maximum advance of the Little Ice Age, around 1815. Patterns of temperature and precipitation, the variables that drive high streamflow via snowmelt, glacier meltwater runoff, and rainfall, could not fully explain the timing of road floods. Comparison of high-resolution topographic data between 2008 and 2012 showed a strong pattern of braid plain aggradation along 3 km of glacier foreland, not unexpected at the base of mountainous glaciers and likely an impetus for channel migration. Historically, a dynamic zone follows the retreating glacier in which channel positions shift rapidly in response to changes in the glacier margin and fresh morainal deposits. This period of paraglacial adjustment lasts one to several decades at Exit Glacier. Subsequently, as moraine breaches consolidate and lock the channel into position, and as the stream regains the lower-elevation valley center, upper-elevation surfaces are abandoned as terraces inaccessible by fluvial processes for timescales of decades to centuries. Where not constrained by these terraces and moraines, the channel is free to migrate, which in this aggradational setting generates an alluvial fan at the breach of the final prominent moraine. The position of

  19. Assessment of bioavailable metals in the sediments of Yamuna flood plain using two different single extraction procedures

    Directory of Open Access Journals (Sweden)

    Sudesh Chaudhary

    2016-01-01

    Full Text Available Though flood plains are considered as most fertile areas across the world but they have come under severe stress due to the flow of untreated domestic and industrial effluents and therefore, needed attention for its characterisation and subsequent treatment plans. The sediment samples, collected at 0–15, 15–35 and 30–60 cm depth levels during pre and post monsoon season from east and west sides of the river Yamuna around the national capital region of Delhi, were assessed for bioavailability of lead (Pb, zinc (Zn and nickel (Ni using Ethylene Diamine Tetra Acetic Acid (EDTA and acetic acid. The average concentrations of Zn (25 ± 6 mg kg−1 and Pb (33 ± 6 mg kg−1 leached in EDTA were higher than that of in acetic acid (Zn: 22 ± 6 mg kg−1; Pb: 24 ± 5 mg kg−1 whereas Ni (24 ± 6 mg kg−1 leached more in acetic acid compared to EDTA (Ni: 21 ± 4 mg kg−1. The bioavailable concentrations of metals were comparable among 0–15 and 15–35 cm depth samples but decreased in 35–60 cm depth samples. The post monsoon samples contained lower amounts of total metals in comparison to pre-monsoon samples, an indication of washout/dilution effects of flood/high water flow during monsoon season. The percentages of metals, with reference to their respective total concentrations, in the flood plain sediments as extracted by EDTA were in the range of 14–47% for Pb, 17–54% for Zn, and 15–39% for Ni. The Zn, Ni and Pb were soluble in acetic acid in the range of 12–39%, 16.7–36.5% and 14–36%, respectively. The chemical nature of extracting agent affected the metal leaching. Acetic acid, a weak acid, extracted the metals that were present in exchangeable fraction and easily movable whereas EDTA, hexa-dentate complexing agent, extracted metals from carbonate and organically bound fractions of the sediment samples. This could result in metal accumulation in the floodplains, biomagnification, adverse

  20. Incorporating infiltration modelling in urban flood management

    Directory of Open Access Journals (Sweden)

    A. S. Jumadar

    2008-06-01

    Full Text Available Increasing frequency and intensity of flood events in urban areas can be linked to increase in impervious area due to urbanization, exacerbated by climate change. The established approach of conveying storm water by conventional drainage systems has contributed to magnification of runoff volume and peak flows beyond those of undeveloped catchments. Furthermore, the continuous upgrading of such conventional systems is costly and unsustainable in the long term. Sustainable drainage systems aim at addressing the adverse effects associated with conventional systems, by mimicking the natural drainage processes, encouraging infiltration and storage of storm water. In this study we model one of the key components of SuDS, the infiltration basins, in order to assert the benefits of the approach. Infiltration modelling was incorporated in the detention storage unit within the one-dimensional urban storm water management model, EPA-SWMM 5.0. By introduction of infiltration modelling in the storage, the flow attenuation performance of the unit was considerably improved. The study also examines the catchment scale impact of both source and regional control storage/infiltration systems. Based on the findings of two case study areas modelled with the proposed options, it was observed that source control systems have a greater and much more natural impact at a catchment level, with respect to flow attenuation, compared to regional control systems of which capacity is equivalent to the sum of source control capacity at the catchment.

  1. Dealing with Uncertainty in Flood Management Through Diversification

    National Research Council Canada - National Science Library

    Aerts, J.C.J.H; Botzen, W; Veen, van der, A; Krywkow, J; Werners, S.E

    2008-01-01

    This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands...

  2. Satellites, tweets, forecasts: the future of flood disaster management?

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.

  3. The use of Natural Flood Management to mitigate local flooding in the rural landscape

    Science.gov (United States)

    Wilkinson, Mark; Quinn, Paul; Ghimire, Sohan; Nicholson, Alex; Addy, Steve

    2014-05-01

    The past decade has seen increases in the occurrence of flood events across Europe, putting a growing number of settlements of varying sizes at risk. The issue of flooding in smaller villages is usually not well publicised. In these small communities, the cost of constructing and maintaining traditional flood defences often outweigh the potential benefits, which has led to a growing quest for more cost effective and sustainable approaches. Here we aim to provide such an approach that alongside flood risk reduction, also has multipurpose benefits of sediment control, water quality amelioration, and habitat creation. Natural flood management (NFM) aims to reduce flooding by working with natural features and characteristics to slow down or temporarily store flood waters. NFM measures include dynamic water storage ponds and wetlands, interception bunds, channel restoration and instream wood placement, and increasing soil infiltration through soil management and tree planting. Based on integrated monitoring and modelling studies, we demonstrate the potential to manage runoff locally using NFM in rural systems by effectively managing flow pathways (hill slopes and small channels) and by exploiting floodplains and buffers strips. Case studies from across the UK show that temporary storage ponds (ranging from 300 to 3000m3) and other NFM measures can reduce peak flows in small catchments (5 to 10 km2) by up to 15 to 30 percent. In addition, increasing the overall effective storage capacity by a network of NFM measures was found to be most effective for total reduction of local flood peaks. Hydraulic modelling has shown that the positioning of such features within the catchment, and how they are connected to the main channel, may also affect their effectiveness. Field evidence has shown that these ponds can collect significant accumulations of fine sediment during flood events. On the other hand, measures such as wetlands could also play an important role during low flow

  4. Watershed basin management and agriculture practices: an application case for flooding areas in Piemonte.

    Science.gov (United States)

    Bianco, G.; Franzi, L.; Valvassore, U.

    2009-04-01

    Watershed basin management in Piemonte (Italy) is a challenging issue that forces the local Authorities to a careful land planning in the frame of a sustainable economy. Different and contrasting objectives should be taken into account and balanced in order to find the best or the most "reasonable" choice under many constraints. Frequently the need for flood risk reduction and the demand for economical exploitation of floodplain areas represent the most conflicting aspects that influence watershed management politics. Actually, flood plains have been the preferred places for socio-economical activities, due to the availability of water, fertility of soil and the easiness of agricultural soil exploitation. Sometimes the bed and planform profile adjustments of a river, as a consequence of natural processes, can impede some anthropogenic activities in agriculture, such as the erosion of areas used for crops, the impossibility of water diversion, the deposition of pollutants on the ground, with effects on the economy and on the social life of local communities. In these cases watershed basin management should either balance the opposite demands, as the protection of economic activities (that implies generally canalized rivers and levees construction) and the need of favouring the river morphological stability, allowing the flooding in the inundation areas. In the paper a case study in Piemonte region (Tortona irrigation district) is shown and discussed. The effects of the Scrivia river planform adjustment on water diversion and soil erodibility force the local community and the authority of the irrigation district to ask for flood protection and river bed excavation. A mathematical model is also applied to study the effects of local river channel excavation on flood risk. Some countermeasures are also suggested to properly balance the opposite needs in the frame of a watershed basin management.

  5. Flow simulation and flood plain analysis using HEC-RAS model

    National Research Council Canada - National Science Library

    Samira Moradzadeh; Mohsen Irandoust

    2016-01-01

    .... This study is a combination of HEC-RAS hydrological modeling by GIS Software through HEC-GEORAS Amendment, which will estimate the flood zoning, and the due economical damages in the 10kms distance...

  6. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?

    Directory of Open Access Journals (Sweden)

    Dries L. T. Hegger

    2016-12-01

    Full Text Available European countries face increasing flood risks because of urbanization, increase of exposure and damage potential, and the effects of climate change. In literature and in practice, it is argued that a diversification of strategies for flood risk management (FRM, including flood risk prevention (through proactive spatial planning, flood defense, flood risk mitigation, flood preparation, and flood recovery, makes countries more flood resilient. Although this thesis is plausible, it should still be empirically scrutinized. We aim to do this. Drawing on existing literature we operationalize the notion of "flood resilience" into three capacities: capacity to resist; capacity to absorb and recover; and capacity to transform and adapt. Based on findings from the EU FP7 project STAR-FLOOD, we explore the degree of diversification of FRM strategies and related flood risk governance arrangements at the national level in Belgium, England, France, the Netherlands, Poland, and Sweden, as well as these countries' achievement in terms of the three capacities. We found that the Netherlands and to a lesser extent Belgium have a strong capacity to resist, France a strong capacity to absorb and recover, and especially England a high capacity to transform and adapt. Having a diverse portfolio of FRM strategies in place may be conducive to high achievements related to the capacities to absorb/recover and to transform and adapt. Hence, we conclude that diversification of FRM strategies contributes to resilience. However, the diversification thesis should be nuanced in the sense that there are different ways to be resilient. First, the three capacities imply different rationales and normative starting points for flood risk governance, the choice between which is inherently political. Second, we found trade-offs between the three capacities, e.g., being resistant seems to lower the possibility to be absorbent. Third, to explain countries' achievements in terms of

  7. Modeling the Impact of Biogeochemical Hotspots and Hot Moments on Subsurface Carbon Fluxes from a Flood Plain Site

    Science.gov (United States)

    Arora, B.; Spycher, N.; Steefel, C. I.; King, E.; Conrad, M. E.

    2015-12-01

    Biogeochemical hotspots and hot moments are known to account for a high percentage of carbon and nutrient cycling within flood plain environments. To quantify the impact of these hotspots and hot moments on the carbon cycle, a 2D reactive transport model was developed for the saturated-unsaturated zone of a flood plain site in Rifle, CO. Previous studies have identified naturally reduced zones (NRZs) in the saturated zone of the Rifle site to be hotspots and important regions for subsurface biogeochemical cycling. Wavelet analysis of geochemical concentrations at the site suggested that hydrologic and temperature variations are hot moments and exert an important control on biogeochemical conditions in the Rifle aquifer. Here, we describe the development of a reactive transport model that couples hydrologic and biogeochemical processes to microbial functional distributions inferred from site-specific 'omic' data. The model includes microbial contributions from heterotrophic and chemolithoautotrophic processes. We use Monod based formulations to represent biomass formation and consider energy partitioning between catabolic and anabolic processes. We use this model to explore community emergence at the Rifle site and further constrain the extent and rates of nutrient uptake as well as abiotic and biotic reactions using stable carbon isotopes. Results from 2D model simulations with only abiotic reactions predict lower CO2 partial pressures in the unsaturated zone and severely underpredict (~200%) carbon fluxes to the river compared to simulations with chemolithoautotrophic pathways. δ13C-CO2 profiles also point to biotic sources for the locally observed high CO2 concentrations above NRZs. Results further indicate that groundwater carbon fluxes from the Rifle site to the river are underestimated by almost 180% (to 3.3 g m-2 d-1) when temperature fluctuations are ignored in the simulations. Preliminary results demonstrate the emergence of denitrifiers at specific depths

  8. On the use of InSAR technology to assess land subsidence in Jakarta coastal flood plain

    Science.gov (United States)

    Koudogbo, Fifame; Duro, Javier; Garcia Robles, Javier; Arnaud, Alain; Abidin, Hasanuddin Z.

    2014-05-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. It is situated on the northern coastal alluvial plane of Java which shares boundaries with West Java Province in the south and in the east, and with Banten Province in the west. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. The southern part of the city is hilly. Thirteen major rivers flow through Jakarta to the Java Sea. The Ciliwung River is the most significant river and divides the city West to East. In the last three decades, urban growing of Jakarta has been very fast in sectors as industry, trade, transportation, real estate, among others. This exponential development has caused several environmental issues; land subsidence is one of them. Subsidence in Jakarta has been known since the early part of the 20th century. It is mainly due to groundwater extraction, the fast development (construction load), soil natural consolidation and tectonics. Evidence of land subsidence exists through monitoring with GPS, level surveys and InSAR investigations. InSAR states for "Interferometric Synthetic Aperture Radar". Its principle is based on comparing the distance between the satellite and the ground in consecutive satellite passes over the same area on the Earth's surface. Radar satellites images record, with very high precision, the distance travelled by the radar signal that is emitted by the satellite is registered. When this distance is compared through time, InSAR technology can provide highly accurate ground deformation measurements. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion

  9. Flood Risk Management in Hungary's Upper Tisza Basin: the Potential Use of a Flood Catastrophe Model

    Science.gov (United States)

    Linerooth-Bayer, J.; Ermoliev, Y.; Ermolieva, T.; Galambos, I.

    2001-05-01

    This paper is based on the preliminary results of an IIASA-based study of flood-risk management for the Hungarian Upper Tisza River, where recent devastating floods have been exacerbated by cyanide and heavy metal pollution episodes originating in Romania. Hungary ranks only behind countries like Bangladesh and the Netherlands with regard to the extent of its territory exposed to flood risks, yet the government does not have a clear risk-management strategy in place. In the past, the national government has taken full responsibility for flood prevention, mainly through the construction of dikes, as well as for the post-disaster compensation of losses. This policy, however, is placing an increasing strain on the national budget. Like in many other countries, Hungarians recognize that a national flood program must be developed that effectively links private and public responsibility for the losses, private insurance and loss mitigation. The development of an insurance/mitigation program, however, faces distributive-value problems (the Hungarian public is skeptical of private insurance). Moreover, if private insurance is to be a policy option, it is necessary to devise improved tools and models for estimating spatially dependent risks in cases of little historical data. This is an area in which hydrologic models can be particularly useful. In this discussion, we describe a flood catastrophe model based on Monte Carlo simulation that can be of use in analyzing policy options for reducing the losses of floods in the Upper Tisza region, as well as for improving the insurability of the losses. The policy scenarios examined in the model, which are limited by data availability, have been developed by Hungarian policy makers. While the results are modest, the study demonstrates a methodology and process that may have considerable potential for aiding Hungarian policy makers in designing a national flood program.

  10. Dealing with Uncertainty in Flood Management Through Diversification

    Directory of Open Access Journals (Sweden)

    Jeroen C. J. H. Aerts

    2008-06-01

    Full Text Available This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands. The paper shows a method based on Modern Portfolio Theory (MPT that contributes to developing flood management strategies. MPT aims at finding sets of investments that diversify risks thereby reducing the overall risk of the total portfolio of investments. This paper shows that through systematically combining four different flood protection measures in portfolios containing three or four measures; risk is reduced compared with portfolios that only contain one or two measures. Adding partly uncorrelated measures to the portfolio diversifies risk. We demonstrate how MPT encourages a systematic discussion of the relationship between the return and risk of individual flood mitigation activities and the return and risk of complete portfolios. It is also shown how important it is to understand the correlation of the returns of various flood management activities. The MPT approach, therefore, fits well with the notion of adaptive water management, which perceives the future as inherently uncertain. Through applying MPT on flood protection strategies current vulnerability will be reduced by diversifying risk.

  11. Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India).

    Science.gov (United States)

    Haloi, Nabanita; Sarma, H P

    2012-10-01

    A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  12. Natural flood risk management in flashy headwater catchments: managing runoff peaks, timing, water quality and sediment regimes

    Science.gov (United States)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen

    2013-04-01

    catchments are known for their rapid runoff generation and have downstream local communities at risk of flash flooding. In Bowmont, NFM measures are currently being put in place to restore river bars and to store water more effectively on the flood plains during these flashy events. For example, Apex engineered wood structure in the river channel and riparian zones are designed to trap sediment and log bank protection structures are being installed to stop bank erosion. Tree planting in the catchment is also taking place. In the Belford catchment storage ponds and woody debris have been installed over the past five years to help to reduce the flood risk to the village of Belford. A dense instrumentation network has provided data for analysis and modelling which shows evidence of local scale flood peak reductions along with the collection of large amounts of sediment. A modelling study carried out (using a pond network model) during an intense summer storm showed that 30 small scale pond features used in sequence could reduce the flood peak by ~35% at the local scale. Findings show that managing surface runoff and local ditch flow at local scale headwater catchments is a cost effective way of managing flashy catchment for flood risk and sediment control. Working with catchment stakeholders is vital. Information given by the local community post flooding has been useful in placing NFM measures throughout the catchments. Involving the local communities in these projects and giving them access to the data and model outputs has helped to develop these projects further.

  13. The use of novel wooden structures to manage flooding and coarse sediment problems in responsive upland headwater catchments

    Science.gov (United States)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Watson, Helen; Stutter, Marc

    2014-05-01

    Over the past decade economic losses from floods have greatly increased, with sediment related impacts as a key feature of such events. Impacts include changes in river channel course, scour of river banks, sedimentation of infrastructure (e.g. bridges), and deposition of sand and gravel on farmland. Sediment deposition can in turn reduce conveyance capacity and lead to further increased flood risk. The EU Water Framework Directive and Floods Directive highlights that sustainable approaches to flood risk reduction should be used alongside and, where possible, replace traditional structural flood defences and activities that address sediment problems. Natural Flood Management(NFM) is promoted as a method that can reduce flood risk and manage sediment by incorporating natural hydrological and morphological processes. As such, NFM measures are designed to use these fluvial processes to manage the sources and pathways of flood waters and sediments. Techniques include the restoration, enhancement and alteration of natural features and characteristics, but exclude traditional flood defence engineering that works against or disrupts these natural processes. Here we aim to assess the effectiveness of novel flood mitigation measures for reducing flood risk and capturing coarse sediment in rapidly responding headwater catchments. We present preliminary research findings from a densely instrumented research site (Bowmont catchment, Scotland (85km2)) which regularly experiences flood events with associated coarse sediment problems. NFM measures have been installed to capture course sediment and to store water more effectively on the flood plains during these flood events. For example, novel engineered wooden structures ('bar apex log jams') constructed in the river corridor are designed to trap sediment and log bank protection structures have been installed to stop bank erosion. Within a tributary catchment of the Bowmont (0.7km2), new flow restrictors have been installed on a

  14. Upstream Structural Management Measures for an Urban Area Flooding in Turkey and their Consequences on Flood Risk Management

    Science.gov (United States)

    Akyurek, Z.; Bozoglu, B.; Girayhan, T.

    2015-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies

  15. Aboveground production and nutrient circulation along a flooding gradient in a South Carolina Coastal Plain forest

    Science.gov (United States)

    Marianne K. Burke; B. Graeme Lockaby; William H. Conner

    1999-01-01

    Relative to effects of flooding, little is known about the influence of hydrology-nutrient interactions on aboveground net primary production (NPP) in forested wetlands. The authors found that nutrient circulation and NPP were closely related along a complex physical, chemical, and hydrologic gradient in a bottomland hardwood forest with four distinct communities....

  16. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  17. The geochemistry in the Manzanares river flood plain sediments as a way to assess environmental impact; La geoquimica en los sedimentos de la llanura de inundacion del Manzanares como medio para evaluar el impacto ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, P.; Garcia Cortes, A.; Locutura, J.

    2009-07-01

    Flood plains are an important component of drainage systems, as they act like transport channels and stores or sinks for suspended sediment deposited during the floods. A geochemical study in flood plain sediments is a reliable method to reconstruct the evolution of anthropic contamination through time in a basin. As an application of this method, the flood plain of the Manzanares River (Madrid) has been examined, as an example of urban environment. Samples have been collected through the flood plain vertical profile at two different selected sites upstream and downstream the city of Madrid. The samples have been sieved at six sizes of grain in which trace elements have been analysed by ICP-MS and INAA. This study highlights an increase in the contents of contaminant elements in the profile sampled downstream as well as an enrichment of these elements as the sediment is younger. (Author) 19 refs.

  18. Study on Flood Management Plan in Surabaya City

    Directory of Open Access Journals (Sweden)

    Anton Dharma Pusaka Mas

    2015-05-01

    Full Text Available The area alongside the Gunung Sari Channel has an important meaning to the development of Surabaya City. The rising development in this area which causes the increase of flood events induces negative impacts on the growth of Surabaya City. The flood management plan in Gunung Sari Channel has been conducted by Brantas Project since 1988. This planning was reviewed in 1993 and 1999. This research was conducted to analyze the performance of flood management plan by Brantas Project. It was constructively done by HEC-FDA Software which can develop risk analysis by including economic consideration. Hydro-Economy approach integrated with the HEC-FDA analysis can yield the indicator of flood management plan performance in the form of total cost and risk cost (Expected Annual Damage/EAD. The best total cost yielded from the analysis was Rp. 893,692,230, while the risk cost was Rp. 384,238,410/year. It is expected that this research result can used for achieving best performance for floods management in Gunung Sari Channel.

  19. Danish risk management plans of the EU Floods Directive

    Directory of Open Access Journals (Sweden)

    Jebens Martin

    2016-01-01

    Full Text Available We evaluate the impact and effect of the EU Flood’s Directive (2007/60/EC in Denmark and the flood risk management plans that are the result of the national implementation. In a qualitative research approach, the flood risk management plans published by 22 Danish municipalities are reviewed and analyzed regarding main objectives and structural and non-structural mitigation measures. From the analyses conclusions are drawn on the non-structural risk management measures still to be improved to obtain the full benefits from the Directive. Conclusions point to the need of introducing better decision support systems, a need to define acceptable risks, and a need to enhance coordi-nation between municipal and cross-sectorial actors as well as an increased effort to involve civil society is necessary. In general, the implementation of the Directive has significantly advanced the national scientific and cross-sectorial working platform for dealing with risks from floods.

  20. Integrated water resource and flood risk management: comparing the US and the EU

    OpenAIRE

    Serra-Llobet Anna; Conrad Esther; Schaefer Kathleen

    2016-01-01

    Floods are the most important natural hazard in the EU and US, causing 700 deaths and at least €25 billion in insured economic losses in Europe since 1998, and causing nearly $10 billion annual average flood losses in the US. Flood control is commonly viewed as a matter of building dykes, dams, and other structures, but effective flood management within the perspective of Integrated Water Resource Management (IWRM) must address multiple components of the flood risk management cycle (Figure 1)...

  1. Flood risk management: cases studies in French Mediterranean area

    Directory of Open Access Journals (Sweden)

    Defossez Stéphanie

    2016-01-01

    Full Text Available In France, for a long time, flood risk management has only oriented to controlling flood hazard with structural measures such as dikes. But since 1990’s many events have proved they have not totally efficient measures. So, institutions decided it’s necessary to manage flood risk with others ways like prevention. Risk management is so organize about holistic policies with different stakeholders and societies exposed at risk. Our study have the aim to demonstrate through several examples how flood risk is manage in French Mediterranean area. Post event feedback permit us to evaluate damage and crisis management. This method is use for show if this strategies is efficient or not. This study demonstrate how is risk management in France. Regulations are they efficient, so have they an influence about the reduction of deaths and damages? Individual measures are they more important than collective action? Finally, what policies and strategies are used and effective? The main results about cases studies show that natural event has most important that publics policies and it determines preventive policies.

  2. Management of flood victims: Chainat Province, central Thailand.

    Science.gov (United States)

    Wisitwong, Anchaleeporn; McMillan, Margaret

    2010-03-01

    This article focuses on the processes of flood management and the experiences of flood victims in Chainat Province, central Thailand, so as to develop knowledge about the future handling of such disasters. A phenomenological qualitative approach was used to describe the processes of providing assistance to flood victims. In-depth interviews and observation were used to collect the data. Criterion sampling was used to select 23 participants. Content analysis of the data revealed that some flood victims could predict flooding based on prior experiences, so they prepared themselves. The data revealed six themes that demonstrated that those who could not predict how floods would impact on them were unprepared and suffered losses and disruption to their daily life. Damaged routes meant people could not go to work, resulting in the loss of income. There was a lack of sanitary appliances and clean drinking water, people were sick, and experienced stress. At the community level, people helped one another, making sandbags and building walls as a defense against water. They formed support groups to enable the processing of stressful experiences. However, later, the water became stagnant and contaminated, creating an offensive smell. The government provided assistance to cut off electricity services, food and water, toilets and health services, and water drainage. In the recovery phase, the victims needed money for investment, employment opportunities, books for children, extra time to pay off loans, reconnection of electricity, surveys of damage, and pensions to deal with damage and recovery.

  3. Toward generalized decision support systems for flood risk management

    Directory of Open Access Journals (Sweden)

    Muste Marian V.

    2016-01-01

    Full Text Available Despite the emergence of a large number of specialized decision-support systems (DSS in the last decades, currently there are fewer efforts made for integrating the flood risk management relevant sciences with information and communication technologies into generalized DSS. Such systems are expected to formulate decision options for prevention, mitigation, preparation, response, and recovery from flood impacts with consideration of climate change, socio-economic evolution, and stakeholders’ input. Currently, there is no unified vision on the architecture, components, and the needed computer and communications technologies for attaining generic DSS for flood mitigation and resilience. Moreover, there is no guidance of what components should be developed first and in what order and how to efficiently include human-computer interfaces for efficient stakeholder engagement and consensus. This paper calls for the formation of a strategic global partnership for framing and subsequently assisting in the development of a generalized flood DSS (FLOODSS that can overcome the current flood DSS limitations. The call is preceded by a review of the flood decision-support terminology and context. Subsequently, an initial vision on the FLOODSS is outlined and the steps for transitioning such a system from vision to practice are proposed.

  4. An Estimation of the Size Composition and Condition Factor of Ophiocara Porocephala from Amassoma Flood Plains, Niger Delta, Nigeria

    Directory of Open Access Journals (Sweden)

    E.N. Ogamba

    2013-06-01

    Full Text Available An estimation of the size composition and condition factor of Ophiocara porocephala from Amassoma flood plains, Niger Delta, Nigeria was carried out for a period of six months (April-June 2010 and November, 2011- January, 2012 to assess aspects of the fishery status. The flood plain of Amassoma is one of the low lands in Niger Delta providing nursery and breeding grounds for variety of both finfish and shell fish species. Fish plays on important role in the development of a nation. Apart from being a cheap source of highly nutritive protein, it also contains other essential nutrients required by the body. Therefore the study of condition factor and size composition of Ophiocara porocephala from Amassoma flood plains will provide information on the amount of stock available for the fishery, evaluation of production, information for stock sizes, an important information for the evaluation of mortalities and status of the fish population, estimating the average weight at a given length group and an index of growth and feeding intensity. Length measurement values ranged from 8.2-15.3 cm; while width, weight and condition factor measurement values ranged from 1.2-2.5 cm, 3.98 g–40.35 g and 0.29-1.78. The highest length frequency (26 was estimated for values ranging from 11.5-12.5 with class mark 12.0 mm. The lowest length frequency (1 was estimated for length range 14.8-15.8 mm with class mark 15.3 mm. The highest width frequency (27 was estimated for values ranging 1.8-1.9 mm with class mark 1.85 mm. The lowest width frequency (2 was estimated for values ranging from 2.2-2.4 and 2.5 -2.6 mm with class marks 2.45 and 2.65 mm, respectively. The highest weight frequency (31 was estimated for values ranging from 10.0-14.9 g with class mark 12.45 g. The lowest weight frequency (2 was estimated for values ranging 6. 0-10.9 g with class mark 8.45 g. The highest condition factor frequency (49 was estimated for values ranging from 0.9-1.1 with class mark 1

  5. Floods

    Science.gov (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  6. Dealing with Uncertainty in Flood Management Through Diversification

    NARCIS (Netherlands)

    Aerts, J.C.J.H.; Botzen, W.; Veen, van der A.; Krywkow, J.; Werners, S.E.

    2008-01-01

    This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands. The paper shows a method based on Modern Portfolio Theory (MPT) that contributes to de

  7. Dealing with uncertainty in flood management through diversification

    NARCIS (Netherlands)

    Aerts, Jeroen C.J.H.; Botzen, Wouter; van der Veen, A.; Krywkow, Jorg; Werners, Saskia

    2008-01-01

    This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands. The paper shows a method based on Modern Portfolio Theory (MPT) that contributes to

  8. Dealing with Uncertainty in Flood Management Through Diversification

    NARCIS (Netherlands)

    Aerts, J.C.J.H.; Botzen, W.; Veen, van der A.; Krywkow, J.; Werners, S.E.

    2008-01-01

    This paper shows, through a numerical example, how to develop portfolios of flood management activities that generate the highest return under an acceptable risk for an area in the central part of the Netherlands. The paper shows a method based on Modern Portfolio Theory (MPT) that contributes to

  9. How to manage the cumulative flood safety of catchment dams

    African Journals Online (AJOL)

    2008-09-15

    Sep 15, 2008 ... Sustainable Law and Engineering Group, Centre for Accounting, Governance and Sustainability, ... associated with small-dam safety and practical feedback from ... catchment dams nor the supervision over the management of .... same time in an extreme design flood event of only 1-in-200 ..... These guide-.

  10. Texas High Plains Initiative for Strategic and Innovative Irrigation Management and Conservation

    National Research Council Canada - National Science Library

    Weinheimer, Justin; Johnson, Phillip; Mitchell, Donna; Johnson, Jeff; Kellison, Rick

    2013-01-01

    The strategic management of irrigation applications to improve water‐use efficiency and meet economic objectives has been identified as a key factor in the conservation of water resources in the Texas High Plains region...

  11. Efficient Management of Nitrogen Fertilizers for Flooded Rice in Relation to Nitrogen Transformations in Flooded Soils

    Institute of Scientific and Technical Information of China (English)

    ZHUZHAO-LIANG

    1992-01-01

    Recent progresses in efficient management of nitrogen fertilizers for flooded rice in relation to nitrogen transformations in flooded soil were reviewed.Considerable progress has been achieved in the investigation on the mechanism of ammonia loss and the factors affecting it .However,little progress has been obtained in the investigations on nitrification-denitrification loss owing to the lack of method for estimating the fluxes of gaseous N products.Thus,so far the management practices developed or under investigation primarily for reducing ammonia loss are feasible or promising,while those for reducing nitrification-denitrification loss seem obscure,except the point deep placement. In addition,it was emphasized that the prediction of soil N supply and the recommendation of the optimal rate of N application based on it are only semi-quantitative.The priorities in research for improving the prediction are indicated.

  12. Heavy rainfall induced flash flood management

    Science.gov (United States)

    Weiler, Markus; Steinbrich, Andreas; Stölzle, Michael; Leistert, Hannes

    2016-04-01

    Heavy rain induced flash floods are still a serious hazard. In context of climate change even a rise of threat potential of flash flood must be suspected. To improve prediction of endangered areas hydraulic models was developed in the past that implement topography information in heigh resolution, gathered by laser scan applications. To run such models it is crucial to estimate the runoff input spatial distributed. However, this information is usually derived with relatively simple models lacking the process rigour that is required for prediction in engaged basins. Though available rain runoff models are able to model runoff response integral for measured catchments they do not indicate the spatial distribution of processes. Moreover they are commonly calibrated to measured runoff data and not applicable in other environments. Since runoff generation is commonly not measured, a calibration on it is hardly possible. In this study, we present a new approach for quantification of runoff generation in height spatial and temporal resolution. A suited model needs to work without calibration in every given environment under any given conditions. It is possible to develop such a model by combining spatial distributed input data of land surface properties (e.g. soil, geology, land use, …) with worldwide findings of runoff generation research. We developed such a model for the state of Baden-Württemberg, what has an extensive pool of spatial data. E.g. a digital elevation model of 1*1m² resolution, degree of sealing of the earth surface in 1*1m² resolution, soil properties (1:50.000) and geology (1:200.000). Within the state of Baden-Württemberg different regions are situated, with distinct environmental characteristics concerning as well climate, soil properties, land use, topography and geology. The model was tested and validated by modelling 36 observed flood events in 13 mesoscale catchments representing the different regions of Baden-Württemberg as well as by

  13. SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa

    Science.gov (United States)

    Macharia, Daniel; Korme, Tesfaye; Policelli, Fritz; Irwin, Dan; Adler, Bob; Hong, Yang

    2010-01-01

    SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management.

  14. Recurrent Governance Challenges in the Implementation and Alignment of Flood Risk Management Strategies: a Review

    NARCIS (Netherlands)

    Dieperink, C.; Hegger, D.L.T.; Bakker, M.H.N.; Kundzewicz, Zbigniew W.; Green, Colin; Driessen, P.P.J.

    2016-01-01

    In Europe increasing flood risks challenge societies to diversify their Flood Risk Management Strategies (FRMSs). Such a diversification implies that actors not only focus on flood defence, but also and simultaneously on flood risk prevention, mitigation, preparation and recovery. There is much lite

  15. A review of flood disaster management in India using remote sensing

    Science.gov (United States)

    Singh, K.; Trivedi, R.

    On going account of the geographical position, climate and geological setting, India from time immemo rial, has been hit by natural disaster, occasionally with fury. There is hardly a year when some part of the country or other does not face the specter of either drought or flood due to either the failure or the abundance of monsoons in vulnerable areas respectively. OF the total annual rainfall, 75% is received during 4 months of monsoon (June to September) and, as a result, almost all the rivers carry heavy discharge during this period. The flood hazard is compounded by sediment deposition, drainage congestion and synchronization of river floods with sea tides in the coastal plains. While the area liable to floods is more than 40 million hectares. The average area affected by floods annually is about 8 million hectares. Due to the erratic behavior of the monsoons, low and medium rainfall regions constituting 68% of the country's total area are rendered vulnerable to periodical droughts. India has a long coastline of 8041kms.On an average, 5 to 6 tropical cyclones from in the Bay of Bengal and Arabian Sea every year; 2 to 3 of them are being very severe. The Himalayan Mountain considered being the world's youngest fold belt in the east and the Chaman fault in the west, constitute one of the most seismically active region in the world. Earthquake, land sliders and avalanches are not uncommon. On an average, these natural disasters take to a heavy toll of human and animal lives, affect few million hectares of crop area and have damaged millions of houses annually during the last decade alone. In the context of the perpetual risk emanating from the recurring natural calamities, the country needs to develop an effective preparedness to manage the impact of natural disaster. The emergence of India as an advance country in the arena of remote sensing with its own satellite in orbit supplemented by the Indian Metrological department in relatively accurate prediction of

  16. Biotopes of Aedes vexans development in the long flood-plain forest of the Dnipro river

    Directory of Open Access Journals (Sweden)

    N. V. Voronova

    2005-02-01

    Full Text Available The aim of the research was to estimate the role of different types of biotopes in a formation of the Aedes vexans high ecological valency. The greatest number of Ae. vexans mosquitoes procreate in basins with the moderate density of larvae (49.6–70.2 %, less mosquitoes procreate in basins with the high one (15.9–19.0 %. The optimal and effective density for the development of mosquitoes larvae in temporary basins of a long while flooded forest of the Dnipro river is 350–1700 specimens/m2, that’s why it is necessary just to pay attention to them during taking measures on reducing their numbers.

  17. Compared leaf anatomy of Nymphaea (Nymphaeaceae) species from Brazilian flood plain.

    Science.gov (United States)

    Catian, G; Scremin-Dias, E

    2013-11-01

    Nymphaea has seven species already catalogued in the flood prone areas of the Brazilian Pantanal. However, some species remain difficult to identify and descriptions of the anatomy of vegetative organs are an important tool for infrageneric separation to aid in group taxonomy. The species collected in the Pantanal and prepared according to the usual techniques for anatomical studies showed similar structural characteristics, and data on the arrangement of vascular bundles in the midrib and petiole, as well as the form and distribution of sclereids, were consistent. Nymphaea oxypetala stands out from the other evaluated species for having a greater number of differential characters, including angular collenchyma and the absence of bicollateral bundles in the petiole. Nymphaea lingulata stands out as the only species to feature bicollateral bundles in the leaf blade. The results, summarised in the dichotomous key, facilitate the identification of species that use the flower as the main differentiation, but are in a vegetative stage.

  18. Compared leaf anatomy of Nymphaea (Nymphaeaceae species from Brazilian flood plain

    Directory of Open Access Journals (Sweden)

    G Catian

    Full Text Available Nymphaea has seven species already catalogued in the flood prone areas of the Brazilian Pantanal. However, some species remain difficult to identify and descriptions of the anatomy of vegetative organs are an important tool for infrageneric separation to aid in group taxonomy. The species collected in the Pantanal and prepared according to the usual techniques for anatomical studies showed similar structural characteristics, and data on the arrangement of vascular bundles in the midrib and petiole, as well as the form and distribution of sclereids, were consistent. Nymphaea oxypetala stands out from the other evaluated species for having a greater number of differential characters, including angular collenchyma and the absence of bicollateral bundles in the petiole. Nymphaea lingulata stands out as the only species to feature bicollateral bundles in the leaf blade. The results, summarised in the dichotomous key, facilitate the identification of species that use the flower as the main differentiation, but are in a vegetative stage.

  19. Alternative business models for flood risk management infrastructure

    Directory of Open Access Journals (Sweden)

    Walsh Claire

    2016-01-01

    Full Text Available Over the next 100 years, it is estimated that England will need £30.6-1bn annual investment to manage flood and coastal erosion risk. Given constraints on central government spending following the 2008 financial crisis, the full burden of this is unlikely to be met by government alone. There is therefore a need to consider the potential for alternative business models for flood risk management infrastructure. An infrastructure business model describes how value is created, delivered and captured over the life cycle of the infrastructure system – this includes but is not limited to funding and financing. Alternative business models are starting to emerge across a range of infrastructure sectors, predominantly motivated by two key factors: (i mainstream approaches do not deliver the benefits that communities want, (ii tax payer funds are too constrained to deliver all the infrastructure investment that is sought. This paper presents and discusses a number of alternative business models for flood risk management infrastructure. Those currently under consideration focus on funding and financing, important though these issues are, it is only by capturing social, environmental and other values of infrastructure will flood risk stakeholders be able to identify approaches that are best suited to deliver their objectives and for alternative business models to emerge in practise.

  20. Spatial variability and uncertainty in ecological risk assessment: a case study on the potential risk of cadmium for the little owl in a Dutch river flood plain.

    Science.gov (United States)

    Kooistra, Lammert; Huijbregts, Mark A J; Ragas, Ad M J; Wehrens, Ron; Leuven, Rob S E W

    2005-04-01

    This paper outlines a procedure that quantifies the impact of different sources of spatial variability and uncertainty on ecological risk estimates. The procedure is illustrated in a case study that estimates the risks of cadmium for a little owl (Athene noctua vidalli) living in a Dutch river flood plain along the river Rhine. A geographical information system (GIS) was used to quantify spatial variability in contaminant concentrations and habitats. It was combined with an exposure and effect model that uses Monte Carlo simulation to quantify parameter uncertainty. Spatial model uncertainty was assessed by the application of two different spatial interpolation methods (classification and kriging) and foraging ranges. The results of the case study show that parameter uncertainty is the main type of uncertainty influencing the risk estimate, and to a lesser extent spatial variability, while spatial model uncertainty was of minor importance. Compared to the deterministically calculated hazard index for the little owl (0.9), inclusion of spatial variability resulted in a median hazard index that can vary between 0.8 and 1.4. It is concluded that a single estimator for a whole flood plain may over- or underestimate risks for specific parts within the flood plain. Further research that expands the procedure presented in this paper is necessary to improve the incorporation of spatial factors in ecological risk assessment.

  1. From flood protection to flood risk management: condition-based and performance-based regulations in German water law

    NARCIS (Netherlands)

    Hartmann, T.; Albrecht, J.

    2014-01-01

    In many European countries, a paradigm shift from technically oriented flood protection to a holistic approach of flood risk management is taking place. In Germany, this approach is currently being implemented after several amendments of the Federal Water Act. The paradigm shift is also reflected in

  2. Geomorphic variation in riparian tree mortality and stream coarse woody debris recruitment from record flooding in a coastal plain stream

    Science.gov (United States)

    Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor

    1998-01-01

    Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...

  3. 2011 floods of the central United States

    Science.gov (United States)

    ,

    2013-01-01

    The Central United States experienced record-setting flooding during 2011, with floods that extended from headwater streams in the Rocky Mountains, to transboundary rivers in the upper Midwest and Northern Plains, to the deep and wide sand-bedded lower Mississippi River. The U.S. Geological Survey (USGS), as part of its mission, collected extensive information during and in the aftermath of the 2011 floods to support scientific analysis of the origins and consequences of extreme floods. The information collected for the 2011 floods, combined with decades of past data, enables scientists and engineers from the USGS to provide syntheses and scientific analyses to inform emergency managers, planners, and policy makers about life-safety, economic, and environmental-health issues surrounding flood hazards for the 2011 floods and future floods like it. USGS data, information, and scientific analyses provide context and understanding of the effect of floods on complex societal issues such as ecosystem and human health, flood-plain management, climate-change adaptation, economic security, and the associated policies enacted for mitigation. Among the largest societal questions is "How do we balance agricultural, economic, life-safety, and environmental needs in and along our rivers?" To address this issue, many scientific questions have to be answered including the following: * How do the 2011 weather and flood conditions compare to the past weather and flood conditions and what can we reasonably expect in the future for flood magnitudes?

  4. The European flood risk management plan : Between spatial planning and water engineering

    NARCIS (Netherlands)

    Hartmann, Thomas; Juepner, R.

    2014-01-01

    In response to the extreme flood events of recent decades, the European Floods Directive (2007/60/EC) requires Member States of the European Union to develop Flood Risk Management Plans (Dworak & Görlach 2005). These plans need to be in place by 2015 and set‘appropriate objectives for the management

  5. The European flood risk management plan : Between spatial planning and water engineering

    NARCIS (Netherlands)

    Hartmann, Thomas; Juepner, R.

    2014-01-01

    In response to the extreme flood events of recent decades, the European Floods Directive (2007/60/EC) requires Member States of the European Union to develop Flood Risk Management Plans (Dworak & Görlach 2005). These plans need to be in place by 2015 and set‘appropriate objectives for the management

  6. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines

    Science.gov (United States)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.

    2016-12-01

    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the

  7. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    Science.gov (United States)

    Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil

    2015-04-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more

  8. Land-use change and floods: what do we need most, research or management?

    Science.gov (United States)

    Tollan, Arne

    2002-01-01

    Land-cover change (urbanisation, deforestation, and cultivation) results in increased flood frequency and severity. Mechanisms include reduced infiltration capacity, lower soil porosity, loss of vegetation, and forest clearing, meaning lower evapotranspiration. Major research challenges lie in quantification of effects in terms of flood characteristics under various conditions, ascertaining the combined effects of gradual changes over long time periods, and developing model tools suitable for land-use management. Large floods during the 1990s gave a new focus on these problems. Reference is made to the Norwegian HYDRA research programme on human impacts on floods and flood damage. The paper concludes that land-use change effects on floods are most pronounced at small scale and for frequent flood magnitudes. Model simulations of effects of land-use change can now be used to reduce flood risk. Modern flood management strategies have abandoned the position that dams and dikes are the only answers to mitigating flood disasters. Today, the strategic approach is more often: do not keep the water away from the people, keep people away from the water. Flood management strategies should include flood warnings, efficient communication, risk awareness, civil protection and flood preparedness routines, effective land-use policies, flood risk mapping, ... as well as structural measures.

  9. Small watershed management as a tool of flood risk prevention

    Science.gov (United States)

    Jakubinsky, J.; Bacova, R.; Svobodova, E.; Kubicek, P.; Herber, V.

    2014-09-01

    According to the International Disaster Database (CRED 2009) frequency of extreme hydrological situations on a global scale is constantly increasing. The most typical example of a natural risk in Europe is flood - there is a decrease in the number of victims, but a significant increase in economic damage. A decrease in the number of victims is caused by the application of current hydrological management that focuses its attention primarily on large rivers and elimination of the damages caused by major flood situations. The growing economic losses, however, are a manifestation of the increasing intensity of floods on small watercourses, which are usually not sufficiently taken into account by the management approaches. The research of small streams should focus both on the study of the watercourse itself, especially its ecomorphological properties, and in particular on the possibility of flood control measures and their effectiveness. An important part of society's access to sustainable development is also the evolution of knowledge about the river landscape area, which is perceived as a significant component of global environmental security and resilience, thanks to its high compensatory potential for mitigation of environmental change. The findings discussed under this contribution are based on data obtained during implementation of the project "GeoRISK" (Geo-analysis of landscape level degradation and natural risks formation), which takes into account the above approaches applied in different case studies - catchments of small streams in different parts of the Czech Republic. Our findings offer an opportunity for practical application of field research knowledge in decision making processes within the national level of current water management.

  10. EFFECTIVE FLOOD RISK MANAGEMENT IN THE REPUBLIC OF MOLDOVA: A STRATEGIC IMPERATIV

    Directory of Open Access Journals (Sweden)

    Lucia CĂPĂŢÎNĂ

    2011-03-01

    Full Text Available Effective flood risk management in Republic of Moldova: astrategic imperativ. The current status regarding flood risk management in theRepublic of Moldova allows to highlight the inefficacy of existent plans. As a result, itis necessary to develop a medium and long-term strategy, for a more efficientmanagement of flood risks that are continuously increasing (2008, 2010. RealizingFlood Risk and Hazard maps would contribute to the establishment of a quick andeffective Decision Support Spatial System. The scenarios used in flood mapping in EUmember states, the standards linked with flood risk management from EU FloodDirective (2007, could serve as an example for the Republic of Moldova in order toreduce the floods impact on the health of people, on the economic activities and on theenvironment, as well.

  11. The management of urban surface water flood risks: SUDS performance in flood reduction from extreme events.

    Science.gov (United States)

    Viavattene, C; Ellis, J B

    2013-01-01

    The need to improve the urban drainage network to meet recent urban growth and the redevelopment of old industrial and commercial areas provides an opportunity for managing urban surface water infrastructure in a more sustainable way. The use of sustainable urban drainage systems (SUDS) can reduce urban surface water flooding as well as the pollution impact of urban discharges on receiving waters. However, these techniques are not yet well known by many stakeholders involved in the decision-making process, or at least the evidence of their performance effectiveness may be doubted compared with more traditional engineering solutions often promoted by existing 1D/2D drainage models. The use of geographic information systems (GIS) in facilitating the inter-related risk analysis of sewer surface water overflows and urban flooding as well as in better communication with stakeholders is demonstrated in this paper. An innovative coupled 1D/2D urban sewer/overland flow model has been developed and tested in conjunction with a SUDS selection and location tool (SUDSLOC) to enable a robust management approach to surface water flood risks and to improve the resilience of the urban drainage infrastructure. The paper demonstrates the numerical and modelling basis of the integrated 1D/2D and SUDSLOC approach and the working assumptions and flexibility of the application together with some limitations and uncertainties. The role of the SUDSLOC modelling component in quantifying flow, and surcharge reduction benefits arising from the strategic selection and location of differing SUDS controls are also demonstrated for an extreme storm event scenario.

  12. Techniques for estimating magnitude and frequency of floods for Wisconsin streams

    Science.gov (United States)

    Conger, Duane H.

    1981-01-01

    This report provides improved methods for estimating the magnitude and frequency of floods for Wisconsin streams. Proper design of hydraulic structures and adequate flood-plain management depend on this information. Multiple-regression techniques were used to develop equations for estimating flood frequencies at ungaged sites.

  13. Geographic Information System and Remote Sensing Applications in Flood Hazards Management: A Review

    Directory of Open Access Journals (Sweden)

    Dano Umar Lawal

    2011-09-01

    Full Text Available The purpose of this study is to examine and review the various applications of GIS and remote sensing tools in flood disaster management as opposed to the conventional means of recording the hydrological parameters, which in many cases failed to capture an extreme event. In the recent years, GIS along with remote sensing has become the key tools in flood disaster monitoring and management. Advancement particularly in the area of remote sensing application has developed gradually from optical remote sensing to microwave or radar remote sensing, which has proved a profound capability of penetrating a clouded sky and provided all weather capabilities compared to the later (optical remote sensing in flood monitoring, mapping, and management. The main concern here is delineation of flood prone areas and development of flood hazard maps indicating the risk areas likely to be inundated by significant flooding along with the damageable objects maps for the flood susceptible areas. Actually, flood depth is always considered to be the basic aspect in flood hazard mapping, and therefore in determining or estimating the flood depth, a Digital Elevation Model data (DEM is considered to be the most appropriate means of determining the flood depth from a remotely sensed data or hydrological data. Accuracy of flood depth estimation depends mainly on the resolution of the DEM data in a flat terrain and in the regions that experiences monsoon seasons such as the developing countries of Asia where there is a high dependence on agriculture, which made any effort for flood estimation or flood hazard mapping difficult due to poor availability of high resolution DEM. More so the idea of Web-based GIS is gradually becoming a reality, which plays an important role in the flood hazard management. Therefore, this paper provides a review of applications of GIS and remote sensing technology in flood disaster monitoring and management.

  14. Flood management in the Lower Incomati river basin, Mozambique: Two alternatives

    NARCIS (Netherlands)

    van Ogtrop, Floris Frederik; Hoekstra, Arjen Ysbert; van der Meulen, Frank

    2005-01-01

    The aim of this paper is to compare two views of flood management and thus add to the present thinking of living with floods as opposed to the traditional approach of flood control. The traditional pathway has widely been adopted in developed countries and aims to control floodwaters by means of

  15. Towards a diversification of Flood Risk Management in Europe: an exploration of governance challenges

    NARCIS (Netherlands)

    Dieperink, C.|info:eu-repo/dai/nl/074013130; Hegger, D.L.T.; Bakker, M.H.N.|info:eu-repo/dai/nl/307694771; Driessen, P.P.J.|info:eu-repo/dai/nl/069081417

    2014-01-01

    In order to make European regions more resilient to flood risks a broadening of Flood Risk Management strategies (FRMSs) might be necessary. The development and implementation of FRMSs like risk prevention, flood defence, mitigation, preparation and recovery is a matter of governance, a process of

  16. Towards a diversification of Flood Risk Management in Europe: an exploration of governance challenges

    NARCIS (Netherlands)

    Dieperink, C.; Hegger, D.L.T.; Bakker, M.H.N.; Driessen, P.P.J.

    2014-01-01

    In order to make European regions more resilient to flood risks a broadening of Flood Risk Management strategies (FRMSs) might be necessary. The development and implementation of FRMSs like risk prevention, flood defence, mitigation, preparation and recovery is a matter of governance, a process of m

  17. The storyline approach : a new way to analyse and improve flood event management

    NARCIS (Netherlands)

    de Bruijn, K. M.; Lips, N.; Gersonius, B.; Middelkoop, H.

    2016-01-01

    Common flood risk analyses often focus on direct impacts corresponding to the maximum depths of flood events. However, this information is not sufficient for risk communication, for the design of flood emergency plans and for the selection of risk management measures. For those issues, not only a

  18. The storyline approach : a new way to analyse and improve flood event management

    NARCIS (Netherlands)

    de Bruijn, K. M.; Lips, N.; Gersonius, B.; Middelkoop, H.

    2016-01-01

    Common flood risk analyses often focus on direct impacts corresponding to the maximum depths of flood events. However, this information is not sufficient for risk communication, for the design of flood emergency plans and for the selection of risk management measures. For those issues, not only a st

  19. Governance in support of integrated flood risk management? The case of Romania

    NARCIS (Netherlands)

    Vinke-de Kruijf, Joanne; Kuks, Stefanus M.M.; Augustijn, Dionysius C.M.

    2015-01-01

    Building on an existing model of governance, this paper aims to assess the supportiveness of Romania׳s structural flood risk governance context towards integrated flood risk management. We assert that a governance structure supports the development and implementation of integrated flood risk

  20. Flood management in the Lower Incomati river basin, Mozambique: Two alternatives

    NARCIS (Netherlands)

    Ogtrop, van Floris Frederik; Hoekstra, Arjen Y.; Meulen, van der Frank

    2005-01-01

    The aim of this paper is to compare two views of flood management and thus add to the present thinking of living with floods as opposed to the traditional approach of flood control. The traditional pathway has widely been adopted in developed countries and aims to control floodwaters by means of dam

  1. Management of plains cottonwood at Theodore Roosevelt National Park, North Dakota

    Science.gov (United States)

    Friedman, Jonathan M.; Griffin, Eleanor R.

    2017-01-01

    Establishment of cottonwood trees is driven by flood-induced channel migration, which provides the new surfaces necessary for successful germination and survival. Along the Little Missouri River the largest floods typically result from snowmelt in March or April. Seed release occurs in early summer, and seedlings usually germinate in moist, open locations on point bars at relatively low elevations above the channel. Subsequent channel migration allows seedlings to mature by protecting them from scour in floods and ice jams. Management actions that decrease channel movement will reduce cottonwood reproduction.

  2. Flood management in urban Senegal: an actor-oriented perspective on national and transnational adaptation interventions

    DEFF Research Database (Denmark)

    Schaer, Caroline; Thiam, Mame Demba; Nygaard, Ivan

    2016-01-01

    In Senegal, considerable development assistance has been allocated to addressing the problem of repeated flooding in urban areas, involving changing thematic objectives, from short-term disaster relief to wide-ranging sanitation and drainage programmes. In spite of these numerous flood management...... interventions, the number of flood victims in Senegal’s urban centres has increased steadily since 1999. This article contributes empirically and conceptually to recent studies highlighting poor national disaster risk-management frameworks in West Africa, by investigating how floods have been managed in Senegal...... and why this management has not led to the results expected by the population. The article finds that the configuration of flood management policies and programmes in urban Senegal points towards three key intertwined issues which have influenced the limited achievements of flood management in urban areas...

  3. Levee Setbacks: An Innovative, Cost Effective, and Sustainable Solution for Improved Flood Risk management

    Science.gov (United States)

    2017-06-30

    ER D C/ EL S R- 17 -3 Levee Setbacks: An Innovative, Cost-Effective, and Sustainable Solution for Improved Flood Risk Management En vi...EL SR-17-3 June 2017 Levee Setbacks: An Innovative, Cost-Effective, and Sustainable Solution for Improved Flood Risk Management David L. Smith...describes levee setbacks as alternatives to traditional levees for flood risk management and environmental benefits. It is organized into five sections

  4. Using participatory agent-based models to measure flood managers' decision thresholds in extreme event response

    Science.gov (United States)

    Metzger, A.; Douglass, E.; Gray, S. G.

    2016-12-01

    Extreme flooding impacts to coastal cities are not only a function of storm characteristics, but are heavily influenced by decision-making and preparedness in event-level response. While recent advances in climate and hydrological modeling make it possible to predict the influence of climate change on storm and flooding patterns, flood managers still face a great deal of uncertainty related to adapting organizational responses and decision thresholds to these changing conditions. Some decision thresholds related to mitigation of extreme flood impacts are well-understood and defined by organizational protocol, but others are difficult to quantify due to reliance on contextual expert knowledge, experience, and complexity of information necessary to make certain decisions. Our research attempts to address this issue by demonstrating participatory modeling methods designed to help flood managers (1) better understand and parameterize local decision thresholds in extreme flood management situations, (2) collectively learn about scaling management decision thresholds to future local flooding scenarios and (3) identify effective strategies for adaptating flood mitigation actions and organizational response to climate change-intensified flooding. Our agent-based system dynamic models rely on expert knowledge from local flood managers and sophisticated, climate change-informed hydrological models to simulate current and future flood scenarios. Local flood managers from interact with these models by receiving dynamic information and making management decisions as a flood scenario progresses, allowing parametrization of decision thresholds under different scenarios. Flooding impacts are calculated in each iteration as a means of discussing effectiveness of responses and prioritizing response alternatives. We discuss the findings of this participatory modeling and educational process from a case study of Boston, MA, and discuss transferability of these methods to other types

  5. The value of integrating information from multiple hazards for flood risk analysis and management

    Science.gov (United States)

    Castillo-Rodríguez, J. T.; Escuder-Bueno, I.; Altarejos-García, L.; Serrano-Lombillo, A.

    2014-02-01

    This article presents a methodology for estimating flood risk in urban areas integrating pluvial flooding, river flooding and failure of both small and large dams. The first part includes a review of basic concepts on flood risk analysis, evaluation and management. Flood risk analyses may be developed at local, regional and national level, however a general methodology to perform a quantitative flood risk analysis including different flood hazards is still required. The second part describes the proposed methodology, which presents an integrated approach - combining pluvial, river flooding and flooding from dam failure, as applied to a case study: an urban area located downstream of a dam under construction. The methodology enhances the approach developed within the SUFRI project ("Sustainable Strategies of Urban Flood Risk Management to cope with the residual risk", 2009-2011). This article also shows how outcomes from flood risk analysis provide better and more complete information to inform authorities, local entities and the stakeholders involved in decision-making with regard to flood risk management.

  6. Integrated flood disaster management and spatial information: Case studies of Netherlands and India

    NARCIS (Netherlands)

    Zlatanova, S.; Ghawana, T.; Kaur, A.; Neuvel, J.M.M.

    2014-01-01

    Spatial Information is an integral part of flood management practices which include risk management & emergency response processes. Although risk & emergency management activities have their own characteristics, for example, related to the time scales, time pressure, activities & actors involved, it

  7. Integrated flood disaster management and spatial information: Case studies of Netherlands and India

    NARCIS (Netherlands)

    Zlatanova, S.; Ghawana, T.; Kaur, A.; Neuvel, J.M.M.

    2014-01-01

    Spatial Information is an integral part of flood management practices which include risk management & emergency response processes. Although risk & emergency management activities have their own characteristics, for example, related to the time scales, time pressure, activities & actors involved, it

  8. Flood Risk Management in Europe: Similarities and Differences between the STAR-FLOOD consortium countries

    NARCIS (Netherlands)

    Hegger, D.L.T.; Green, C.; Driessen, P.P.J.; Bakker, M.H.N.; Dieperink, C.; Crabbe, A.; Deketelaere, K.; Delvaux, B.; Suykens, C.; Beyers, J-C.; Fournier, M.; Larrue, C.; Manson, C.; van Doorn-Hoekveld, W.; van Rijswick, H.F.M.W.; Kundzewicz, Z.W.; Goytia Casermeiro, S.

    2013-01-01

    This report has been compiled as part of the STAR-FLOOD project, a European FP7 project focused on flood risk governance. The project investigates strategies for dealing with flood risks in 18 vulnerable urban regions in six European countries: Belgium, The UK (more precisely: England and Scotland),

  9. Integrated water resource and flood risk management: comparing the US and the EU

    Directory of Open Access Journals (Sweden)

    Serra-Llobet Anna

    2016-01-01

    Full Text Available Floods are the most important natural hazard in the EU and US, causing 700 deaths and at least €25 billion in insured economic losses in Europe since 1998, and causing nearly $10 billion annual average flood losses in the US. Flood control is commonly viewed as a matter of building dykes, dams, and other structures, but effective flood management within the perspective of Integrated Water Resource Management (IWRM must address multiple components of the flood risk management cycle (Figure 1. We systematically reviewed governance structures, guidance documents, and mapping products in both the EU and US, drawing particular examples from California and Spain, to determine how the US and the EU approach the flood risk management within different IWRM initiatives, which strategies and agencies are involved in the different phases –characterization (flood hazard and risk assessment and mapping, mitigation (prevention and protection, emergency (preparation and response, and (short and long term recovery-, and how these agencies relate to each other. The regions have strong similarities in economy and environmental values, but have evolved very different approaches to cope with floods. The US and EU have similar organizational structures, but very different legislative frameworks. In the US overarching policy and large scale infrastructure funding have traditionally resided at the federal level with state and local agencies exercising strong land use control. EU member states have arguably advanced ahead of the US in some significant ways since adoption of the EU Floods Directive in 2007, a more top-down approach. Among the Directive’s many components, one important requirement is submission of flood risk management plans (by the end of 2015, which, for first time, take into account all phases of flood management. This umbrella strategy to cope with floods is creating a more consistent and integrated flood risk management approach in Europe. In

  10. An Outcome-Driven Approach to Flood Management in California's Central Valley

    Science.gov (United States)

    Van Lienden, B.; Jimenez, M.; Mierzwa, M.; Grimm, R.

    2016-12-01

    The Central Valley Flood Protection Plan (CVFPP) is a long-range plan originally adopted in 2012 that guides California's participation in managing flood risk iin areas protected by the State-federal flood management system in the Central Valley. The 2017 Update to the CVFPP incorporates an outcome-driven approach that will help the State move towards sustainable flood management while delivering the best value for public investment. Application of this outcome-driven approach includes identification of flood-specific outcomes that help to accomplish societal goals (including public safety, economic stability, ecosystem vitality, and enriching experiences). To help build efficiency into the flood management system, the CVFPP identifies and supports implementation of a comprehensive set of individual but interrelated management actions that - when implemented together - work in concert to contribute to these flood-specific outcomes and societal goals to improve performance of the State-federal flood management system. To accomplish multiple intended outcomes and contribute in a resilient way towards all societal goals, it is necessary to invest in a diversity of actions (including both large-scale multi-benefit projects and smaller scale local projects) with varying strengths that complement and balance one another. The 2017 CVFPP Update describes what effective and resilient management action portfolios would look like on a systemwide scale and for urban, rural and small community regions in order to reconcile public safety, economic and environmental goals across the Central Valley flood management system.

  11. FLOOD RISK MANAGEMENT IN LARGE RIVER SYSTEMS——GERMAN EXPERIENCES(IN BRIEF)%大河系统洪水风险管理——德国的经验(论文摘编)

    Institute of Scientific and Technical Information of China (English)

    WERNER Buck

    2006-01-01

    @@ Problems with extreme floods have been aggravated in Germany mainly due to loss of flood retaining areas caused by river regulation measures in former centuries, and by intensified use of the former natural flood plains.

  12. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Science.gov (United States)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  13. Flood Zones, Villa Rica, Georgia Flood Plain Map, Published in 2005, 1:12000 (1in=1000ft) scale, Chattahoochee-Flint Regional Development.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Flood Zones dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from Hardcopy Maps information as of 2005. It is described as 'Villa...

  14. HISTORICAL FLOOD RISK MANAGEMENT: SPATIAL EXPANSION OF GHERGHIȚA VILLAGE (LOWER PRAHOVA RIVER

    Directory of Open Access Journals (Sweden)

    IOANA-TOROIMAC GABRIELA

    2015-03-01

    Full Text Available This paper analyses settlements expansion in flood zones during historical time. We focused on the example of Gherghiţa village on Lower Prahova River by using a diachronic study in GIS. It revealed three major periods of extension of Gherghița village and flood risk management: (1 from Middle Age to the end of the 19th century – prevention against floods by expansion outside the flood-prone area; (2 during the major part of the 20th – flood negligence by expansion inside the flood-prone area; (3 at the end of the 20th century and at the beginning of the 21th century – protection against floods by extension inside the flood-prone area with structural measures (i.e. levees. As a consequence, human pressure on Lower Prahova River grew since the beginning of the 20th century, especially for agricultural purposes.

  15. Flood damage assessment – Literature review and recommended procedure

    DEFF Research Database (Denmark)

    Olesen, Lea; Löwe, Roland; Arnbjerg-Nielsen, Karsten

    The assessment of flood risk is an essential tool in evaluating the potential consequences of a flood. The analysis of the risk can be applied as part of the flood plain management, but can also be used in a cost-benefit analysis, when comparing different adaption strategies. This analysis...... is therefore important when assessing flood disaster mitigation options and economical optimizations of possible measures. A common definition is that the flood risk is found with the use of a flood hazard assessment and a flood vulnerability assessment (Apel, Merz and Thieken, 2008). The flood hazard...... is the quantification of amount, extent, and location of flooding expected to occur with a given return period. This means that the spatial distribution of the calculated inundation depth as a function of the return period can be used to describe the flood hazard. The vulnerability is the susceptibility of the area...

  16. Critical systems for public health management of floods, North Dakota.

    Science.gov (United States)

    Wiedrich, Tim W; Sickler, Juli L; Vossler, Brenda L; Pickard, Stephen P

    2013-01-01

    Availability of emergency preparedness funding between 2002 and 2009 allowed the North Dakota Department of Health to build public health response capabilities. Five of the 15 public health preparedness capability areas identified by the Centers for Disease Control and Prevention in 2011 have been thoroughly tested by responses to flooding in North Dakota in 2009, 2010, and 2011; those capability areas are information sharing, emergency operations coordination, medical surge, material management and distribution, and volunteer management. Increasing response effectiveness has depended on planning, implementation of new information technology, changes to command and control procedures, containerized response materials, and rapid contract procedures. Continued improvement in response and maintenance of response capabilities is dependent on ongoing funding.

  17. Hydrodynamic system behaviour: its analysis and implications for flood risk management

    Directory of Open Access Journals (Sweden)

    de Bruijn Karin M.

    2016-01-01

    Full Text Available Knowledge on the different components of flood risk has much improved over the last decades, but research which fully takes into account not only the interactions between those components but also between different areas in a catchment or delta is still rare. Integrated analyses based on a complete system’s approach at sufficiently large scale will improve our understanding of how flood risk systems with flood protection infrastructure in place behave under extreme conditions, it may help to develop sensible long-term strategies, and allows us to better prepare for flood events of all magnitudes. To illustrate the relevance of a hydrodynamic system’s approach for flood risk management we analyse the effect of defence breaches on flood risks elsewhere along the lower Rhine River and discuss the use of this knowledge for flood risk management.

  18. Understanding the geomorphology of macrochannel systems for flood risk management in Queensland, Australia

    Science.gov (United States)

    Thompson, Chris; Croke, Jacky

    2016-04-01

    The year 2010-2011 was the wettest on record for the state of Queensland, Australia producing catastrophic floods. A tropical low pressure system in 2013 delivered further extreme flood events across South East Queensland (SEQ) which prompted state and local governments to conduct studies into flood magnitude and frequency in the region and catchment factors contributing to flood hazards. The floods in the region are strongly influenced by El Nino-Southern Oscillation (ENSO) phenomenon, but also modulated by the Interdecadal Pacific Oscillation (IPO) which leads to flood and drought dominated regimes and high hydrological variability. One geomorphic feature in particular exerted a significant control on the transmission speed, the magnitude of flood inundation and resultant landscape resilience. This feature was referred to as a 'macrochannel', a term used to describe a 'large-channel' which has bankfull recurrence intervals generally greater than 10 years. The macrochannels display non-linear downstream hydraulic geometry which leads to zones of flood expansion (when hydraulic geometry decreases) and zones of flood contraction (when hydraulic geometry increases). The pattern of contraction and expansion zones determines flood hazard zones. The floods caused significant wet flow bank mass failures that mobilised over 1,000,000 m3 of sediment in one subcatchment. Results suggest that the wetflow bank mass failures are a stage in a cyclical evolution process which maintains the macrochannel morphology, hence channel resilience to floods. Chronological investigations further show the macrochannels are laterally stable and identify periods of heightened flood activity over the past millennium and upper limits on flood magnitude. This paper elaborates on the results of the geomorphic investigations on Lockyer Creek in SEQ and how the results have alerted managers and policy makers to the different flood responses of these systems and how flood risk management plans can

  19. Treading water: Flood hazard management and adapting to climate change in BC’s Lower Mainland

    OpenAIRE

    Arros, Pomme Mira

    2013-01-01

    Increases in coastal flooding from climate change related sea level rise and increased rainfall will stress local government’s resources. While local governments are planning for expected climate change effects through the use of adaptation and flood management tools, a number of barriers limit long-term adaptation planning. This study examines which flood management tools are currently used in four municipalities in the Lower Mainland: the City of Vancouver, Delta, Richmond and Surrey. The s...

  20. Sustainable groundwater development and management in the Quaternary Hang-Jia-Hu Plain, China

    Institute of Scientific and Technical Information of China (English)

    朱琰

    2002-01-01

    Based on the results of study on regional water supply system, water quality assessments, Quaternary aquifers investigation, and correlation analysis of groundwater depression resulting from land subsidence in the Hang-Jia-Hu Quaternary Plain, this paper presents the groundwater resources policy and sustainable management methods suitable for this area. Suggestions for controlling land subsidence by implementation of wise groundwater policy and management measures are also given.

  1. Investigation of the 2006 drought and 2007 flood extremes at the Southern Great Plains through an integrative analysis of observations

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Feng, Zhe; Entin, Jared K.; Houser, Paul R.; Schiffer, Robert A.; L'Ecuyer, Tristan; Olson, William S.; Hsu, Kuo-Lin; Liu, W. Timothy; Lin, Bing; Deng, Yi; Jiang, Tianyu

    2011-02-01

    Hydrological years 2006 (HY06; October 2005 to September 2006) and 2007 (HY07; October 2006 to September 2007) provide a unique opportunity to examine hydrological extremes in the central United States because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 as the second-driest year in the record. In particular, the total precipitation during the winter of 2005-2006 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal, and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (11/2005-02/2006), a dipole pattern in the 500 hPa geopotential height anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern United States, which shows a robust relationship with the western Pacific teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low-level jet, and enhanced the frequency of thunderstorms and their

  2. 100-Year Floodplains, flood plain, Published in 2009, 1:24000 (1in=2000ft) scale, Washington County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This 100-Year Floodplains dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as 'flood...

  3. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    Science.gov (United States)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  4. Flood Management: A technical solution for the flooding problems encountered in the Lower Moshi area

    NARCIS (Netherlands)

    Eitjes, W.T.A.M.; Elshof, A.A.; Guijt, K.; Van Loon, O.D.M.; Mureau, M.D.A.

    2016-01-01

    This report focuses on the flooding problems in the Lower Moshi area, Tanzania. These floods are the result of the extremely large catchment of the Kilimanjaro region in combination with large peaks in precipitation during the short and the long rainy seasons. The river bordering the area of interes

  5. Damage-reducing measures to manage flood risks in a changing climate

    Science.gov (United States)

    Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans

    2014-05-01

    Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P

  6. Flood Risk Management in Iowa through an Integrated Flood Information System

    Science.gov (United States)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  7. Flood Risk Management in Remote and Impoverished Areas—A Case Study of Onaville, Haiti

    Directory of Open Access Journals (Sweden)

    Valentin Heimhuber

    2015-07-01

    Full Text Available In this study, geographic information system (GIS-based hydrologic and hydraulic modeling was used to perform a flood risk assessment for Onaville, which is a fairly new, rapidly growing informal settlement that is exposed to dangerous flash-flood events. Since records of historic floods did not exist for the study area, design storms with a variety of significant average return intervals (ARIs were derived from intensity-duration-frequency (IDF curves and transformed into design floods via rainfall-runoff modeling in hydrologic engineering center’s hydrologic modeling system (HEC-HMS. The hydraulic modeling software hydrologic engineering center’s river analysis system (HEC-RAS was used to perform one-dimensional, unsteady-flow simulations of the design floods in the Ravine Lan Couline, which is the major drainage channel of the area. Topographic data comprised a 12 m spatial resolution TanDEM-X digital elevation model (DEM and a 30 cm spatial resolution DEM created with mapping drones. The flow simulations revealed that large areas of the settlement are currently exposed to flood hazard. The results of the hydrologic and hydraulic modeling were incorporated into a flood hazard map which formed the basis for flood risk management. We present a grassroots approach for preventive flood risk management on a community level, which comprises the elaboration of a neighborhood contingency plan and a flood risk awareness campaign together with representatives of the local community of Onaville.

  8. The value of integrating information from multiple hazards for flood risk management

    Directory of Open Access Journals (Sweden)

    J. T. Castillo-Rodríguez

    2013-07-01

    Full Text Available This article presents a methodology for estimating flood risk in urban areas integrating pluvial flooding, river flooding and failure of both small and large dams. The first part includes a review of basic concepts and existing methods on flood risk analysis, evaluation and management. Traditionally, flood risk analyses have focused on specific site studies and qualitative or semi-quantitative approaches. However, in this context, a general methodology to perform a quantitative flood risk analysis including different flood hazards was still required. The second part describes the proposed methodology, which presents an integrated approach – combining pluvial, river flooding and dam failure, as applied to a case study: a urban area located downstream a dam under construction. Such methodology represents an upgrade of the methodological piece developed within the SUFRI project. This article shows how outcomes from flood risk analysis provide better and more complete information to inform authorities, local entities and the stakeholders involved on decision-making with regard to flood risk management.

  9. Community Participation Tourism Management Model of Tapee Plain Community

    Directory of Open Access Journals (Sweden)

    W. Srisuwan

    2011-01-01

    Full Text Available Problem statement: Cultural tourism plays an important role in the economy system of Thailand. This study, therefore, aims to investigate the following: (1 The tourism conditions in the community of Taa-Pee River Basin and also; (2 The possible guideline of organizing the cultural tourism, by all means, seeking active cooperation among the Taa-Pee River Basin community people who subsist or have been subject to the river basin and the surrounding conditions. Approach: This research was conducted in Surat-Thani Province. The sample consisted of 370 subjects obtained by Specified Random Sampling. The instruments used in data collection included the interview form and the observation forms constructed by the researcher. The data were also gathered by means of the Focus Group Discussion and the Participatory Workshop. The data obtained were then examined by the Qualitative Analysis. Then, the examined data were presented in Descriptive Analysis. Results: The results obtained and examined indicated the following: (1 The Taa-Pee River Basin community had long been the international trade/commercial center into which the transactions between the Arabian nations and China had entered into from the time before the seventh B.E. Most of the community people were of Sino-Thai, Semang and Malayan. They earned their living by doing agricultural farms or fishery. The community had their own outstanding unique, typical identity, advantageous for tourism. (2 The important problems of tourism management included the following: the tourist attractions were not fascinatingly attractive; There were few tourism activities; The tourism attractions were scarcely pioneered, renovated, improved and developed; Lack of exact personnel in charge who could be consecutively on duty; Lack the central sector to do the work related to management and providing massive wholeheartedly support. In brief, such deficiency accounted for the imperfect tourism

  10. Spatial Analysis of Chinese Grain Production for Sustainable Land Management in Plain, Hill, and Mountain Counties

    Directory of Open Access Journals (Sweden)

    Jinlang Zou

    2017-02-01

    Full Text Available In the context of China’s food security, spatially explicit information on grain production is an important asset to achieve the sustainable management of cultivated land. Previous studies have shown that spatial mismatches exist between grain production and water and cultivated land resources. In this paper, county-level data are used to investigate the degree of spatial (mismatch between grain output and the geographical distribution patterns of plain, hill, and mountain counties. We estimate the difference in grain output between these different types of counties with a Spatial Autoregression Model. The results indicate that plain counties have the highest grain output, followed by hill counties and mountain counties subsequently. The reasons for the higher production in plain counties lie in the presence of more cultivated land, as well as a higher degree of irrigation and agricultural mechanization. The current pattern of Chinese total grain production follows the law of substituting labor with mechanization. Improving efficiency in the use of water resources and chemical fertilizer is both urgent and crucial. In this paper, we propose that the future roles for total grain production in relation to landforms should be: increased production and competitiveness in plain counties, a stabilization of capacity in hill counties, and a decrease in grain production in mountain counties.

  11. Flood risk management in Italy: challenges and opportunities for the implementation of the EU Floods Directive (2007/60/EC)

    Science.gov (United States)

    Mysiak, J.; Testella, F.; Bonaiuto, M.; Carrus, G.; De Dominicis, S.; Ganucci Cancellieri, U.; Firus, K.; Grifoni, P.

    2013-11-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina (1987), Piedmont (1994), Crotone (1996), Sarno (1998), Soverato (2000), and Piedmont (2000) events have contributed to shaping the country's flood risk governance. Insufficient resources and capacity, slow implementation of the (at that time) novel risk prevention and protection framework, embodied in the law 183/89 of 18 May 1989, increased the reliance on the response and recovery operations of the civil protection. As a result, the importance of the Civil Protection Mechanism and the relative body of norms and regulation developed rapidly in the 1990s. In the aftermath of the Sarno (1998) and Soverato (2000) disasters, the Department for Civil Protection (DCP) installed a network of advanced early warning and alerting centres, the cornerstones of Italy's preparedness for natural hazards and a best practice worth following. However, deep convective clouds, not uncommon in Italy, producing intense rainfall and rapidly developing localised floods still lead to considerable damage and loss of life that can only be reduced by stepping up the risk prevention efforts. The implementation of the EU Floods Directive (2007/60/EC) provides an opportunity to revise the model of flood risk governance and confront the shortcomings encountered during more than 20 yr of organised flood risk management. This brief communication offers joint recommendations towards this end from three projects funded by the 2nd CRUE ERA-NET (http://www.crue-eranet.net/) Funding Initiative: FREEMAN, IMRA and URFlood.

  12. Plant Date, Yield, and Nitrogen Management for Strawberries in the Coastal Plain of Virignia

    OpenAIRE

    Deitch, Ursula

    2016-01-01

    Fresh market strawberry (Fragaria × ananassa) availability in mid to late -April signals the beginning of locally available fresh fruit and vegetables for the mid-Atlantic region. Of the 290 acres of fresh market strawberries grown in Virginia annually, the majority are produced in the coastal plain of Virginia using intensely managed annual hill production systems. The objective of this study was to evaluate the potential yield of strawberries, determine how yield components change with pl...

  13. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    Science.gov (United States)

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  14. Collaborative modelling for active involvement of stakeholders in urban flood risk management

    Directory of Open Access Journals (Sweden)

    M. Evers

    2012-09-01

    Full Text Available This paper presents an approach to enhance the role of local stakeholders in dealing with urban floods. The concept is based on the DIANE-CM project (Decentralised Integrated Analysis and Enhancement of Awareness through Collaborative Modelling and Management of Flood Risk of the 2nd ERANET CRUE funding initiative. The main objective of the project was to develop and test an advanced methodology for enhancing the resilience of local communities to flooding. Through collaborative modelling, a social learning process was initiated that enhances the social capacity of the stakeholders due to the interaction process. The other aim of the project was to better understand how data from hazard and vulnerability analyses and improved maps, as well as from the near real-time flood prediction, can be used to initiate a public dialogue (i.e. collaborative mapping and planning activities in order to carry out more informed and shared decision-making processes and to enhance flood risk awareness. The concept of collaborative modelling was applied in two case studies: (1 the Cranbrook catchment in the UK, with focus on pluvial flooding; and (2 the Alster catchment in Germany, with focus on fluvial flooding. As a result of the interactive and social learning process, supported by sociotechnical instruments, an understanding of flood risk was developed amongst the stakeholders and alternatives for flood risk management for the respective case study area were jointly developed and ranked as a basis for further planning and management.

  15. The artificial and natural isotopes distribution in sedge (Carex L.) biomass from the Yenisei River flood-plain: Adaptation of the sequential elution technique.

    Science.gov (United States)

    Kropacheva, Marya; Melgunov, Mikhail; Makarova, Irina

    2017-02-01

    The study of migration pathways of artificial isotopes in the flood-plain biogeocoenoses, impacted by the nuclear fuel cycle plants, requires determination of isotope speciations in the biomass of higher terrestrial plants. The optimal method for their determination is the sequential elution technique (SET). The technique was originally developed to study atmospheric pollution by metals and has been applied to lichens, terrestrial and aquatic bryophytes. Due to morphological and physiological differences, it was necessary to adapt SET for new objects: coastal macrophytes growing on the banks of the Yenisei flood-plain islands in the near impact zone of Krasnoyarsk Mining and Chemical Combine (KMCC). In the first version of SET, 20 mM Na2EDTA was used as a reagent at the first stage; in the second version of SET, it was 1 M CH3COONH4. Four fractions were extracted. Fraction I included elements from the intercellular space and those connected with the outer side of the cell wall. Fraction II contained intracellular elements; fraction III contained elements firmly bound in the cell wall and associated structures; fraction IV contained insoluble residue. Adaptation of SET has shown that the first stage should be performed immediately after sampling. Separation of fractions III and IV can be neglected, since the output of isotopes into the IV fraction is at the level of error detection. The most adequate version of SET for terrestrial vascular plants is the version using 20 mM Na2EDTA at the first stage. Isotope (90)Sr is most sensitive to the technique changes. Its distribution depends strongly on both the extractant used at stage 1 and duration of the first stage. Distribution of artificial radionuclides in the biomass of terrestrial vascular plants can vary from year to year and depends significantly on the age of the plant.

  16. Flood Risk Management Policy in Scotland: Research Questions Past, Present and Future

    Science.gov (United States)

    Wilkinson, Mark; Hastings, Emily; MacDonald, Jannette

    2016-04-01

    Scotland's Centre of Expertise for Waters (CREW) delivers accessible research and expert opinion to support the Scottish Government and its delivery partners in the development and implementation of water policy. It was established in 2011 by the Scottish Government (Rural and Environmental Science and Analytical Services) in recognition of a gap in the provision of short term advice and research to policy (development and implementation). Key policy areas include the Water Framework Directive, Floods Directive, Drinking Water Directive, Habitats Directive and Scotland's Hydro Nation Strategy. CREW is unique in its demand-driven and free service for policy makers and practitioners, managing the engagement between scientists, policy makers and practitioners to work effectively across this interface. The users of CREW are the Scottish Government, Scottish Environment Protection Agency, Scottish Natural Heritage and Scottish Water. CREW has funded around 100 projects relating to water policy since its inception in 2011. Of these, a significant number relate to flood risk management policy. Based on a review of work to date, this poster will give an overview of these projects and a forward look at the challenges that remain. From learning from community led flood risk management to surface water flood forecasting for urban communities, links will be made between sustainable and traditional flood risk management while considering the perceptions of stakeholders to flood risk management. How can we deliver fully integrated flood risk management options? How policy makers, scientists and land managers can better work together will also be explored.

  17. Basic Study on Flood Management Assessment in Metro Manila, Philippines

    OpenAIRE

    Romeo Libunao, Gilbuena Jr

    2013-01-01

    Flooding is the most frequent and damaging natural hazard worldwide. The resulting impact of flood disasters on society depends on the economic strength of the affected country prior to the disaster. The larger the disaster and the smaller the economy, the more significant is the impact. This is very clearly seen in developing countries, like the Philippines, where weak economies become much weaker after a devastating flood event. In 2009, tropical storm Ondoy, brought heavy rainfalls that pr...

  18. Coastal risk management: how to motivate individual economic decisions to lower flood risk?

    NARCIS (Netherlands)

    Filatova, Tatiana; Mulder, J.P.M. P.M.; van der Veen, A.

    2011-01-01

    Coastal flood risk is defined as a product of probability of event and its effect, measured in terms of damage. The paper is focused on coastal management strategies aimed to decrease risk by decreasing potential damage. We review socio-economic literature to show that total flood damage depends on

  19. Using Role-Play for Expert Science Communication with Professional Stakeholders in Flood Risk Management

    Science.gov (United States)

    McEwen, Lindsey; Stokes, Alison; Crowley, Kate; Roberts, Carolyn

    2014-01-01

    This paper explores role-play pedagogies in learning and communicating about cutting-edge flood science by flood risk management professionals in local government. It outlines role-play process/structure and evaluates participant perceptions of their learning experiences. Issues were impacts of prior role-play experience on attitudes brought to…

  20. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management

    NARCIS (Netherlands)

    Koks, E. E.; Jongman, B.; Husby, T. G.; Botzen, W. J W

    2015-01-01

    Flood risk assessments provide inputs for the evaluation of flood risk management (FRM) strategies. Traditionally, such risk assessments provide estimates of loss of life and economic damage. However, the effect of policy measures aimed at reducing risk also depends on the capacity of households to

  1. Between tradition and innovation : Developing Flood Risk Management Plans in the Netherlands

    NARCIS (Netherlands)

    Jong, Pieter; Brink, Margo Van Den

    2013-01-01

    Traditionally, governmental authorities in the Netherlands have a strong focus on the construction and maintenance of flood defences, such as dikes and dams. The last decades, however, there has been a growing awareness of the importance of spatial planning for flood risk management. With the arriva

  2. Using Role-Play for Expert Science Communication with Professional Stakeholders in Flood Risk Management

    Science.gov (United States)

    McEwen, Lindsey; Stokes, Alison; Crowley, Kate; Roberts, Carolyn

    2014-01-01

    This paper explores role-play pedagogies in learning and communicating about cutting-edge flood science by flood risk management professionals in local government. It outlines role-play process/structure and evaluates participant perceptions of their learning experiences. Issues were impacts of prior role-play experience on attitudes brought to…

  3. Between tradition and innovation : Developing Flood Risk Management Plans in the Netherlands

    NARCIS (Netherlands)

    Jong, Pieter; Brink, Margo Van Den

    2013-01-01

    Traditionally, governmental authorities in the Netherlands have a strong focus on the construction and maintenance of flood defences, such as dikes and dams. The last decades, however, there has been a growing awareness of the importance of spatial planning for flood risk management. With the

  4. The role of fine sediment in managing catchment scale flood risk.

    Science.gov (United States)

    Twohig, Sarah; Pattison, Ian

    2016-04-01

    Increases in sediment delivery to river channels from changes in land use and climate must be accounted for by catchment managers. Recent flooding of the Somerset Levels, UK highlighted the impacts of reduced channel capacity as a result of sedimentation. Sediment entering river systems needs to be carefully managed in order to sustainably mitigate flood risk. Geomorphological drivers have previously been neglected when proposing methods to reduce flood risk. Understanding the connections between hydrology, geomorphology and engineering is fundamental to predicating sediment transfer within river catchments and thus successfully implementing sustainable flood management. This study focuses on catchment scale fine sediment delivery, changes to channel capacity and its implications for existing flood defence infrastructure. Furthermore, fine sediment accumulations in river channels have been found to reduce water quality due to the presence of nutrients and heavy metals and degrade spawning and invertebrate habitats. Locating the sources of fine sediment within a catchment will enable catchment managers to target resources effectively at reducing sedimentation in rivers and appraise natural flood alleviation measures. This study investigates whether changes in channel capacity due to sedimentation influence flood risk of the River Eye catchment, Leicestershire. Using a combination of field, laboratory and modelling methods this study 1) identifies the sources of fine sediment within the catchment, using sediment fingerprinting techniques; 2) quantifies the spatial and temporal changes in channel capacity at a reach scale with a history of flooding in Melton Mowbray, and 3) monitors existing flood defences designed to prevent downstream sedimentation to determine the longevity and success of the sustainable flood defence scheme. These results will be used to predict the long term flood risk to the catchment, using a series of hydraulic inundation scenarios.

  5. Quantification of increased flood risk due to global climate change for urban river management planning.

    Science.gov (United States)

    Morita, M

    2011-01-01

    Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.

  6. The added value of system robustness analysis for flood risk management illustrated by a case on the IJssel River

    OpenAIRE

    M. J. P. Mens; Klijn, F.

    2015-01-01

    Decision makers in fluvial flood risk management increasingly acknowledge that they have to prepare for extreme events. Flood risk is the most common basis on which to compare flood risk-reducing strategies. To take uncertainties into account the criteria of robustness and flexibility are advocated as well. This paper discusses the added value of robustness as an additional decision criterion compared to single-value flood risk only. We do so by quantifying flood risk and sy...

  7. Flood risk managment strategies across boundaries : a research approach

    NARCIS (Netherlands)

    Bakker, M.H.N.; Hegger, D.L.T.; Dieperink, C.; Driessen, P.P.J.; Raadgever, G.T.; Wiering, M.

    2013-01-01

    Floods are the most frequent and damaging of all types of natural disasters and annually affect the lives of millions all over the globe. Against this background, enhanced climate variability and climate change are expected to increase the frequency and intensity of floods. The situation is further

  8. Stakeholder views on flood risk management in Hungary's Upper Tisza Basin.

    Science.gov (United States)

    Vari, Anna; Linnerooth-Bayer, Joanne; Ferencz, Zoltan

    2003-06-01

    With escalating costs of flood mitigation and relief, a challenge for the Hungarian government is to develop a flood mitigation and insurance/relief system that is viewed as efficient and fair by the many stakeholders involved. To aid policymakers in this task, this article reports on a recent study to elicit stakeholder views on flood risk management in the Upper Tisza Basin, including views on appropriate means of reducing losses and for transferring the residual losses from the direct victims to taxpayers or an insurance pool. This study is part of a project to develop an integrated approach to flood risk management coordinated by the International Institute of Applied Systems Analysis (IIASA) in collaboration with Swedish and Hungarian researchers. The discussion begins by describing the background of flood risk management problems in the Upper Tisza Basin. The results of interviews carried out with selected key stakeholders and the results of a public survey eliciting views on flood risk management are reported. The final section draws conclusions on incorporating stakeholder views into a flood risk management model, which will be used to illustrate policy paths at an upcoming stakeholder workshop. The conclusions are also of direct interest to Hungarian policymakers.

  9. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    DEFF Research Database (Denmark)

    Sjøgaard, Kamilla Schneekloth; Treusch, Alexander H.; Valdemarsen, Thomas Bruun

    2017-01-01

    Climate change induced sea level rise is expected to continue for centuries and cause permanent flooding of low lying coastal areas. Furthermore, intentional flooding of coastal areas through ‘managed coastal realignment’, may also become a common solution to protect coastal areas. So far...... Strand) that was planned to be flooded in a coastal realignment project. We found rapid carbon degradation almost immediately after flooding and microbial sulfate reduction rapidly established as the dominant mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe...... degradation after 6 months. During the experiment only 6–7 % of the initial organic carbon pools were degraded. On this basis we suggest that flooding of coastal soils through sea level rise or managed coastal realignment, will cause significant C-preservation and create a negative feedback on atmospheric...

  10. How Multilevel Societal Learning Processes Facilitate Transformative Change: A Comparative Case Study Analysis on Flood Management

    Directory of Open Access Journals (Sweden)

    Claudia Pahl-Wostl

    2013-12-01

    Full Text Available Sustainable resources management requires a major transformation of existing resource governance and management systems. These have evolved over a long time under an unsustainable management paradigm, e.g., the transformation from the traditionally prevailing technocratic flood protection toward the holistic integrated flood management approach. We analyzed such transformative changes using three case studies in Europe with a long history of severe flooding: the Hungarian Tisza and the German and Dutch Rhine. A framework based on societal learning and on an evolutionary understanding of societal change was applied to identify drivers and barriers for change. Results confirmed the importance of informal learning and actor networks and their connection to formal policy processes. Enhancing a society's capacity to adapt is a long-term process that evolves over decades, and in this case, was punctuated by disastrous flood events that promoted windows of opportunity for change.

  11. A simulation/optimization model for groundwater resources management in the Afram Plains area, Ghana

    Science.gov (United States)

    Yidana, S.M.

    2008-01-01

    A groundwater flow simulation model was developed using available hydrogeo logical data to A groundwater flow simulation model was developed using available hydrogeological data to describe groundwater flow in the Afram Plains area. A nonlinear optimization model was then developed and solved for the management of groundwater resources to meet irrigation and household needs. The objective was to maximize groundwater extraction for irrigation activities from the shallow aquifers of the southern Voltaian Sedimentary Basin that underly the area This would improve food security, raise the standard of living and ultimately alleviate poverty in the Afram Plains. The calibrated flow model is in tandem with the general hydrochemical evolution of groundwater in the area and fits the observed data with about a 98% degree of confidence. Groundwater resources may not be the limiting factor in the development of irrigated agriculture. Groundwater has tremendous potential to meet current and future irrigation needs. It was determined from this study that profit from maize irrigation in the Afram Plains area could rise from US$301, 000 in 2007 to over US$3.5 million by the end of the last management period (2013) as irrigation practice is improved, and the economic strength to increase the acreage for irrigation improves. Even with these margins of profit, the drawdown constraint was not reached in any of the management periods. It is expected that rechargefrom the irrigation water would reclaim the lost hydraulic head. The single significant constraint was the amount of land area that could be developed for irrigation in the area. The profit obtained per unit cubic meter of water used also improved over the same management period.

  12. "Dry feet for all": flood management and chronic time in Semarang, Indonesia

    OpenAIRE

    Lukas Ley

    2016-01-01

    "This article describes flood management in poor communities of Semarang, a second-tier city on the north coast of Central Java, Indonesia. Using ethnographic material from participant observation and interviews, the article argues that flood management upholds an ecological status quo - a socioecological system that perpetuates the potential of crisis and structures of vulnerability. While poor residents have developed coping mechanisms, such community efforts follow the logic of maintaining...

  13. System robustness analysis in support of flood and drought risk management

    CERN Document Server

    Mens, MJP

    2015-01-01

    Floods and droughts have an increasing impact on societies worldwide. It is unlikely that the provision of flood protection infrastructure and reservoirs will eliminate this problem, especially as extreme events are expected to increase in probability and magnitude as a result of climate change. For this reason, the focus of water management has shifted to a risk-based approach in recent years; but this also has its limitations.This book examines system robustness as a new perspective on flood and drought risk management. The concept of robustness is familiar from other areas, such as engineer

  14. Collaborative multi-stakeholder approach to drafting flood risk management plans in Wallonia, Belgium

    Science.gov (United States)

    Maroy, Edith; Javaux, Mathieu; Vandermosten, Pierre; Englebert, Benjamin

    2015-04-01

    The Flood Directive 2007/60/CE establishes a common framework within the European Union for assessing and reducing risks posed by floods on human health, the environment, economic activity and cultural heritage. For that purpose, Member States had to establish flood areas and flood risk maps, and subsequently, flood risk management plans (due December 2015). According to the Directive, special attention is to be paid to international coordination for transboundary water courses, integrated management approaches at the catchment scale, cost-effectiveness of measures and public involvement. Management measures must focus on reducing the probability of flooding and the potential consequences of flooding. They must cover prevention, protection and preparedness and must take into account relevant aspects, such as water management, soil management, spatial planning, land use and nature conservation. Floods in Wallonia mostly originate from overflowing of both little sloped rivers and highly reactive rivers but also, from concentrated runoff in the intensely cultivated and erosion-prone region north of the Sambre-Meuse axis. Consequently, walloon flood area maps not only show flood areas based on hydraulic modelling and observations but also runoff concentration axis in agricultural areas. Now released to the public, this information can be used to assess the risk of damage for land planning and erosion control strategies. Incidentally, some 166 km2 were mapped as flood hazard area with a return period of 25 years, 28.8 of which are urbanized or destined to urbanisation and counting of number of approximatively 39.000 people living in those areas. Flood area and flood risk maps should be the starting point of elaborating flood risk management plans. In order to involve the diversity of water managers and stakeholders in the drafting of a management plan for hydrographic districts in Wallonia, responsible authorities decided to mandate scientists and engineers to organize

  15. The efficiency of asset management strategies to reduce urban flood risk.

    Science.gov (United States)

    ten Veldhuis, J A E; Clemens, F H L R

    2011-01-01

    In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.

  16. An approach to the implementation of European Directive 2007/60/EC on flood risk management in the Czech Republic

    Directory of Open Access Journals (Sweden)

    A. Dráb

    2010-09-01

    Full Text Available Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (the Flood Risk Directive signifies that flood risk analysis methods are gaining ground in EC Member States and, therefore, also in the Czech Republic (CR. Procedures of flood risk analysis have been developed in the Czech Republic since the catastrophic floods of 1997 in line with European and worldwide trends and have been tested and applied in hundreds of case studies to date. Currently, the Flood Risk Directive Guideline based on past experience with flood risk analysis applications is being processed.

    The aim of the paper is to present flood risk analysis procedures and specially developed techniques for the assembly of flood hazard, danger and flood risk maps. Methods related to flood risk management plans are briefly mentioned as well. The following particular problems are discussed in more detail: an application and extension of the "danger matrix" approach, the definition of residual danger, the formulation of efficiency criteria and preliminary multi-criteria flood risk assessment. These issues were tested in practical applications at pilot locations in the Czech Republic. Present experience provides evidence that the flood risk analysis methods used in the Czech Republic are in harmony with the requirements of the Flood Risk Directive. The proposed and applied methods are based primarily on existing available data such as flood extent maps, cadastral maps, the Register of Census Districts and Structures and others.

  17. Paleotsunami Inundation of a Beach Ridge Plain: Cobble Ridge Overtopping and Interridge Valley Flooding in Seaside, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Curt D. Peterson

    2010-01-01

    Full Text Available The Seaside beach ridge plain was inundated by six paleotsunamis during the last ~2500 years. Large runups (adjusted >10 m in height overtopped seawardmost cobble beach ridges (7 m elevation at ~1.3 and ~2.6 ka before present. Smaller paleotsunami (6–8 m in height likely entered the beach plain interior (4-5 m elevation through the paleo-Necanicum bay mouth. The AD 1700 Cascadia paleotsunami had a modest runup (6-7 m height, yet it locally inundated to 1.5 km landward distance. Bed shear stresses (100–3,300 dyne cm−2 are estimated for paleotsunami surges (0.5–2 m depths that flowed down slopes (0.002–0.017 gradient on the landward side of the cobble beach ridges. Critical entrainment shear stresses of 1,130–1,260 dyne cm−2 were needed to dislodge the largest clasts (26–32 cm diameter in paleotsunami coulees that were cut (100–200 m width into the landward side of the cobble ridges.

  18. Costs and benefits of river flood risk management at the global scale

    Science.gov (United States)

    Ward, P.

    2015-12-01

    Floods cause billions of dollars of economic damage each year, and this is expected to increase in the future due to socioeconomic development and climate change‎. To limit these losses, and to protect people and their livelihoods from flooding, adaptation in flood risk management systems is required that takes into account both current and future risk. Whilst several global scale flood risk models have now been developed to assess both current and future river flood risk, to date none of these include currently installed or future flood risk management measures, nor their costs and benefits. In this contribution, a new modelling framework is presented for assessing both the costs and benefits of flood risk management at the global scale, which employs a cascade of models to provide first-cut estimates of the costs and benefits of adaptation by means of hazard reduction through the construction of dikes. The modeling framework is first used to assess what protection standards would be required in the future per state, in order to keep future flood risk constant at today's levels, and the costs and benefits associated with such a strategy. In a second analysis, flood risk protection standards are calculated per state that optimize the net present value of adaptation. The potential usefulness and limitations of the results for practical applications are discussed, as well as key avenues for future developments. In particular, recent research has shown flood risk itself to be non-stationary, being influenced by oscillations in climate variability caused by phenomenon such as El Niño Southern Oscillation (ENSO). The results of the research will be discussed within the context of climate-driven ENSO variability.

  19. The shifting sands of coastal flood management in South Africa

    CSIR Research Space (South Africa)

    Slinger, JH

    2013-01-01

    Full Text Available In this paper, the authors do not examine the safety of these coastal systems and the vulnerability of estuaries to flooding from the usual engineering, environmental science or public administration perspective. Instead, the authors adopt a game...

  20. Simulation of Flood Profiles for Fivemile Creek at Tarrant, Alabama, 2006

    Science.gov (United States)

    Lee, K.G.; Hedgecock, T.S.

    2007-01-01

    A one-dimensional step-backwater model was used to simulate flooding conditions for Fivemile Creek at Tarrant, Alabama. The 100-year flood stage published in the current flood insurance study for Tarrant by the Federal Emergency Management Agency was significantly exceeded by the March 2000 and May 2003 floods in this area. A peak flow of 14,100 cubic feet per second was computed by the U.S. Geological Survey for the May 2003 flood in the vicinity of Lawson Road. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and the surveyed high-water profile for the May 2003 flood, a flow model was calibrated to closely match this known event. The calibrated model was then used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence interval floods. The results indicate that for the 100-year recurrence interval, the flood profile is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The absolute maximum and minimum difference is 6.80 feet and 0.67 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency, except for cross section H. The results of this study provide the community with flood-profile information that can be used for existing flood-plain mitigation, future development, and safety plans for the city.

  1. Effects of Mineral N and P Fertilizers on Yield and Yield Components of Flooded Lowland Rice on Vertisols of Fogera Plain, Ethiopia

    Directory of Open Access Journals (Sweden)

    Heluf Gebrekidan

    2006-10-01

    Full Text Available Despite its very recent history of cultivation in Ethiopia, rice is one of the potential grain crops that could contribute to the efforts for the realization of food security in the country. However, the scientific information available with regards to the response of flooded rice to N and P fertilizers for its optimum production on Vertisols of Fogera Plain is very limited. Therefore, a field experiment was conducted on Vertisols of Fogera plain, northern Ethiopia to study the yield and yield components response of rice and to establish the optimum N and P fertilizer levels required for improved grain yield of flooded rice. Six levels of N (0, 30, 60, 90, 120 and 150 kg ha−1 and five levels of P (0, 13.2, 26.4, 39.6 and 52.8 kg ha−1 laid down in a randomized complete block design with four replications were used as treatments. Nitrogen was applied in two equal splits (50% basal and 50% at maximum tillering as urea and the entire dose of P was applied basal as triple super phosphate at sowing. The main effects of N and P fertilizer levels showed significant differences (P ≤ 0.01 for all yield and yield components studied. The effects of N by P interaction were significant only for grain yield (P ≤ 0.05, number of panicles per m2 (P ≤ 0.01, number of spikelets per panicle (P ≤ 0.05 and plant height (P ≤ 0.01 among the different yield and yield components studied. Application of N and P significantly (P ≤ 0.01 increased grain yield of rice up to the levels of 60 kg N and 13.2 kg P ha−1. However, maximum grain yield (4282 kg ha−1 was obtained with the combined application of 60 kg N and 13.2 kg P ha−1, and the yield advantage over the control was 38.49% (1190 kg ha−1. Moreover, application of both N and P fertilizers have increased the magnitudes of the important yield attributes including number of panicles per m2, number of spikelets per panicle, panicle length, dry matter accumulation, straw yield and plant height

  2. Proteomic Techniques and Management of Flooding Tolerance in Soybean.

    Science.gov (United States)

    Komatsu, Setsuko; Tougou, Makoto; Nanjo, Yohei

    2015-09-04

    Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.

  3. Managing ecological drought and flood within a nature-based approach. Reality or illusion?

    Science.gov (United States)

    Halbac-Cotoara-Zamfir, Rares; Finger, David; Stolte, Jannes

    2017-04-01

    Water hazards events, emphasized by an improperly implemented water management, may lead to ecological degradation of ecosystems. Traditional water management has generally sought to dampen the natural variability of water flows in different types of ecosystems to attain steady and dependable water supplies for domestic and industrial uses, irrigation, navigation, and hydropower, and to moderate extreme water conditions such as floods and droughts. Ecological drought can be defined as a prolonged and widespread deficit in available water supplies — including changes in natural and managed hydrology — that create multiple stresses across ecosystems, becomes a critical concern among researchers being a phenomenon much more complex than the other types of drought and requesting a specific approach. The impact of drought on ecosystem services lead to the necessity of identifying and implementing eco-reclamation measures which can generate better ecological answers to droughts. Ecological flood is the type of flood analyzed in full consideration with ecological issues, in the analyze process being approached 4 key aspects: connectivity of water system, landscapes of river and lakes, mobility of water bodies, and safety of flood control. As a consequence, both ecological drought and ecological flood represents high challenges for ecological sustainable water management in the process of identifying structural and non-structural measures for covering human demands without causing affected ecosystems to degrade or simplify. An ecological flood and drought control system will combine both the needs of the ecosystems as well as and flood and drought control measures. The components ecosystems' natural flow regime defined by magnitude, frequency, duration and peak timing (high or low flows) interact to maintain the ecosystem productivity. This productivity can be impaired by altered flow regimes generally due to structural measures designed to control flooding. However

  4. Influence of dem in Watershed Management as Flood Zonation Mapping

    Science.gov (United States)

    Alrajhi, Muhamad; Khan, Mudasir; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Despite of valuable efforts from working groups and research organizations towards flood hazard reduction through its program, still minimal diminution from these hazards has been realized. This is mainly due to the fact that with rapid increase in population and urbanization coupled with climate change, flood hazards are becoming increasingly catastrophic. Therefore there is a need to understand and access flood hazards and develop means to deal with it through proper preparations, and preventive measures. To achieve this aim, Geographical Information System (GIS), geospatial and hydrological models were used as tools to tackle with influence of flash floods in the Kingdom of Saudi Arabia due to existence of large valleys (Wadis) which is a matter of great concern. In this research paper, Digital Elevation Models (DEMs) of different resolution (30m, 20m,10m and 5m) have been used, which have proven to be valuable tool for the topographic parameterization of hydrological models which are the basis for any flood modelling process. The DEM was used as input for performing spatial analysis and obtaining derivative products and delineate watershed characteristics of the study area using ArcGIS desktop and its Arc Hydro extension tools to check comparability of different elevation models for flood Zonation mapping. The derived drainage patterns have been overlaid over aerial imagery of study area, to check influence of greater amount of precipitation which can turn into massive destructions. The flow accumulation maps derived provide zones of highest accumulation and possible flow directions. This approach provide simplified means of predicting extent of inundation during flood events for emergency action especially for large areas because of large coverage area of the remotely sensed data.

  5. Partnership approaches in flood risk management: lessons from the Eastern Alps

    Directory of Open Access Journals (Sweden)

    Thaler Thomas

    2016-01-01

    Full Text Available In the past decades flood risk management has taken a paradigm shift away from a structural, securitybased approach towards more an integrated, risk-based approach. While the ‘traditional’ approach was informed by afirm belief in controlling rivers via engineering solutions, flood risk management today increasingly acknowledgesthe importance of providing ‘more space for the rivers’. The new policy agenda has been implemented to enhance the development of catchment-wide management plans in flood risk management and at the same time to reduce the controlling role of central national governments. The aim of the paper is to examine the new role of these local authorities and organisations in flood risk management as well as how the nature of partnerships are established and operate, focusing especially on the main barriers and challenges. The current goal of this partnership approach lies with the conservation of regionally important retention areas for protective measures on an inter-local level. An important issue is that of compensation measures between upstream and downstream communities, which at present is causing many conflicts. We conclude that although a catchment-wide management approach may be seen as an ‘optimal’ solution for flood risk management. However, in practice there are many limitations and barriers in establishing these collaborations and making them effective.

  6. Operational flood management under large-scale extreme conditions, using the example of the Middle Elbe

    Directory of Open Access Journals (Sweden)

    A. Kron

    2010-06-01

    Full Text Available In addition to precautionary or technical flood protection measures, short-term strategies of the operational management, i.e. the initiation and co-ordination of preventive measures during and/or before a flood event are crucially for the reduction of the flood damages. This applies especially for extreme flood events. These events are rare, but may cause a protection measure to be overtopped or even to fail and be destroyed. In such extreme cases, reliable decisions must be made and emergency measures need to be carried out to prevent even larger damages from occurring.

    Based on improved methods for meteorological and hydrological modelling a range of (physically based extreme flood scenarios can be derived from historical events by modification of air temperature and humidity, shifting of weather fields and recombination of flood relevant event characteristics. By coupling the large scale models with hydraulic and geotechnical models, the whole flood-process-chain can be analysed right down to the local scale. With the developed GIS-based tools for hydraulic modelling FlowGIS and the Dike-Information-System, (IS-dikes it is possible to quantify the endangering shortly before or even during a flood event, so the decision makers can evaluate possible options for action in operational mode.

  7. Classification and assessment of water bodies as adaptive structural measures for flood risk management planning.

    Science.gov (United States)

    McMinn, William R; Yang, Qinli; Scholz, Miklas

    2010-09-01

    Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders.

  8. Improving flood risk management through risk communication strategies

    Science.gov (United States)

    Bodoque, Jose Maria; Diez Herrero, Andres; Amerigo, Maria; Garcia, Juan Antonio; Olcina, Jorge; Cortes, Beatriz

    2016-04-01

    A suitable level of social perception about flood risk and awareness of Civil Protection Plans are critical to minimize disasters and damages due to flash floods. In order to improve risk perception, awareness and, as a result, the effectiveness of Civil Protection Plans, it is often required the implementation of communication plans. This research proposes a guide recommendation framework to enhance local population preparedness, prevention and response when a flash flood occurs. The research setting was a village (Navaluenga) located in Central Spain with 2,027 inhabitants. It is crossed by the Alberche river and Chorreron stream (both tributaries of the Tagus river), which are prone to flash floods. In a first phase, we assessed citizens' flash-flood risk perception and level of awareness regarding some key variables of the Civil Protection Plan. To this end, a questionnaire survey was designed and 254 adults, a sample representing roughly 12% of the population census, were interviewed. Responses were analysed, comparing awareness regarding preparedness and response actions with those previously defined in the Civil Protection Plan. In addition, we carried out a latent class cluster analysis aimed at identifying the different groups present among the respondents. Next, a risk communication plan was designed and implemented. It aimed to improve the understanding of flood risk among local people; and it comprises briefings, quiz-answers, contests of stories and flood images and intergenerational workshops. Finally, participants in the first phase were reached again and a new survey was performed. The results derived from these second questionnaires were statistically treated using the same approach of the first phase. Additionally, a t-test for paired samples and Pearson Chi-Square test was implemented in order to detect possible improvements in the perception and awareness. Preliminary results indicate that in Navaluenga there is a low social perception of flood

  9. Integrated flood disaster management and spatial information: Case studies of Netherlands and India

    OpenAIRE

    S. Zlatanova; Ghawana, T.; Kaur, A.; Neuvel, J. M. M.

    2014-01-01

    Spatial Information is an integral part of flood management practices which include risk management & emergency response processes. Although risk & emergency management activities have their own characteristics, for example, related to the time scales, time pressure, activities & actors involved, it is still possible to identify at least one common challenge that constrains the ability of risk & emergency management to plan for & manage emergencies effectively and efficiently i.e. the need fo...

  10. Rehabilitation and flood management planning in a steep, boulder-bedded stream.

    Science.gov (United States)

    Caruso, Brian S; Downs, Peter W

    2007-08-01

    This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.

  11. Flash floods, hydro-geomorphic response and risk management

    Science.gov (United States)

    Braud, Isabelle; Borga, Marco; Gourley, Jonathan; Hürlimann, Marcel; Zappa, Massimilano; Gallart, Francesc

    2016-10-01

    Each year, natural disasters are responsible for fatalities and economic losses worldwide with 101 billion USD in economic losses and 7000 fatalities reported for 2014 (SwissRE, 2015). Even if earthquakes are responsible for most of these fatalities, flash floods and landslides are recognized as a significant source of threat to human lives (SwissRE, 2015). Jonkman (2005), in a global assessment of flood-related casualties, showed that flash floods lead to the highest mortality (number of fatalities divided by the number of affected people). They are also often associated with shallow landslides and geomorphic processes that can increase threat to human lives. Analysis of a global data set of fatalities from non-seismically triggered landslides (Petley, 2012) shows that 2620 fatal landslides were recorded worldwide in the period 2004-2010, causing a total of 32,322 recorded fatalities. In addition, heavy precipitation events, at the origin of flash floods and shallow landsliding are expected to increase in the future (e.g. Scoccimarro et al., 2016 for a recent study in Europe). Progress in flash floods and landslides understanding, forecasting and warning is therefore still needed to disentangle the complex interactions between hazards, exposure and vulnerability and to increase resilience (Borga et al., 2014).

  12. Urban Flood Risk Insurance Models as a Strategy for Proactive Water Management Policies

    Science.gov (United States)

    Graciosa, M. C.; Mendiondo, E. M.

    2006-12-01

    To improve the water management through hydrological sciences, novel integration strategies could be underpinned to bridge up both engineering and economics. This is especially significant in developing nations where hydrologic extremes are expressive while the financial resources to mitigate that variability are scarce. One example of this problem is related to floods and their global and regional consequences. Floods mainly cause disasters in terms of human and material losses. In 2002, more than 30% of extreme climatic events occurred worldwide were floods, representing 42% of fatalities and 66% of material losses, mostly related to reactive policies. Throughout the last century, hydrological variability and rapidly growing of urban areas have developed new environmental problems in Brazilian cities, such as inundation occurrences on non-planned river basins. One of the causes of flood impacts is that public funds (national, state or municipal) have barely introduced wise proactive polices to follow up rapidly growing urban areas. Inexistent flood-risk-transfer mechanisms have caused the so-called `flood poverty cycle' due to reactive polices that have been increasing flood losses and, sometimes, became flood disasters. Flood risk management (FRM) is part of pro-active policies to mitigate inundation losses, in order to sustain environmental, social and economic aspects. Concepts and principles of FRM are part of a process that encompasses three phases: (1) preparedness stage, that consists in structural and non-structural actions to prevent and protect potential risk areas, such as early warning systems and scenarios development; (2) control stage, that refers to help actions and protection facilities during the event, and (3) restoration stage, that is related to rebuild affected areas, restore the river dynamics and transfer the socio-economic risks through flood insurances. Flood risk insurances agree to the goals of losses mitigation programs. Their use is

  13. Evaluating coping capacity and benefits of flood-prone land use to support Integrated Flood Management in developing countries: community assessment in Candaba, Philippines

    Science.gov (United States)

    Juarez, A. M.; Kibler, K. M.; Ohara, M.

    2015-12-01

    Flood risk reduction strategies such as zoning and land use restrictions reduce exposure by "keeping people away from floods". However, in many developing countries, benefits provided by floods and use of flood-prone land are essential, particularly where livelihoods are tied to natural hydrologic cycles. We propose integrating coping capacity and benefits of floodplain use into risk assessments in developing countries. We assess flood damages and identify local strategies for living with and benefitting from floods in Candaba, Philippines. We use a physically-based rainfall-runoff model and remotely-sensed data to characterize flooding. At the village scale, we evaluate potential damages to agriculture and fisheries. Through community surveys and focus groups, we identify adaptations that allow people to cope with and benefit from flooding. Seeking to integrate these adaptations into standard risk assessments, we explore valuation methods to appraise floodplain-derived benefits. We find that some communities adapt their livelihoods to seasonal inundation, for instance, by using land alternately for agriculture and wild-catch fisheries during dry and wet seasons respectively. To integrate the role of coping capacity into our assessment, we consider dynamics of seasonal land use and evaluate damages and benefits of adapted (high coping capacity) and non-adapted (low coping capacity) conditions. We find that coping strategies minimize flood losses while allowing valuable flood-related benefit capture. We conclude that neglecting coping capacity and benefits of floodplain use can lead to poor characterization of risk, which may result in misguided management. Acknowledging local capacity to live with and benefit from floods may support flood risk management, sustainable livelihoods and ecosystem services in developing countries.

  14. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    Science.gov (United States)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  15. In search of robust flood risk management alternatives for the Netherlands

    Directory of Open Access Journals (Sweden)

    F. Klijn

    2012-05-01

    Full Text Available The Netherlands' policy for flood risk management is being revised in view of a sustainable development against a background of climate change, sea level rise and increasing socio-economic vulnerability to floods. This calls for a thorough policy analysis, which can only be adequate when there is agreement about the "framing" of the problem and about the strategic alternatives that should be taken into account.

    In support of this framing, we performed an exploratory policy analysis, applying future climate and socio-economic scenarios to account for the autonomous development of flood risks, and defined a number of different strategic alternatives for flood risk management at the national level. These alternatives, ranging from flood protection by brute force to reduction of the vulnerability by spatial planning only, were compared with continuation of the current policy on a number of criteria, comprising costs, the reduction of fatality risk and economic risk, and their robustness in relation to uncertainties.

    We found that a change of policy away from conventional embankments towards gaining control over the flooding process by making the embankments unbreachable is attractive. By thus influencing exposure to flooding, the fatality risk can be effectively reduced at even lower net societal costs than by continuation of the present policy or by raising the protection standards where cost-effective.

  16. Evaluation of Four Water Management Policies for Ogallala Aquifer Sustainability in the Texas High Plains

    Science.gov (United States)

    Hernandez, J. E.; Gowda, P. H.; Howell, T. A.; Marek, T. H.; Ha, W.; Almas, L. K.

    2010-12-01

    Diminishing groundwater supply in the Ogallala Aquifer will severely reduce regional crop and animal production in the absence of a sustainable water management policy. It is essential to mitigate adverse impacts on the regional economy due to future withdrawals of the limited groundwater resource. Currently, approximately ten alternative water management policies are being debated by policy makers in the Central and Southern High Plains of the Ogallala Aquifer region. Before implementing any new policy or modifying current policies, newer alternative policies should be evaluated for their impact on groundwater levels with eventual extension to regional economic impacts. The main objective of this study was to evaluate four water management policies, from the debated ones, on future groundwater levels in the Ogallala Aquifer beneath four heavily irrigated counties (Dallam, Sherman, Hartley, and Moore) located in the northwest corner of the Texas High Plains using a calibrated ModFlow model. The four water management policies were (1) voluntary permanent conversion to dry land production up to 10% of the total irrigated area, (2) adoption of advances in biotechnology that allow water use reductions at a rate of 1% per year up to 10% of current use, (3) mandatory water use reduction to decrease the total water pumped by 10% (volume per unit land area per year), and (4) voluntary temporary conversion to dry land production during 15 years for a maximum area of 10% of the total irrigated area. The water management policies were converted into water demand rates for ModFlow model inputs. Simulations were conducted for a 50-year (2010-2060) period. Preliminary results indicate that a combination of more than one policy will be required to produce a significant reduction in the current groundwater depletion rates.

  17. Status of organochlorine pesticides in the drinking water well-field located in the Delhi region of the flood plains of river Yamuna

    Directory of Open Access Journals (Sweden)

    P. K. Mutiyar

    2011-08-01

    Full Text Available This study presents the occurrence of pesticides in a well-field located in Yamuna flood plain of Delhi region. Ground water sampling campaigns were carried out during pre-monsoon and post-monsoon periods covering 21 bore-wells and 5 Ranney wells. Major 17 organochlorine pesticides (OCP's along with other water quality parameters were monitored during this period. Pesticide concentrations were determined using GC- ECD, while GC-MS was used for confirmatory purposes. OCP's groups like ∑HCH, ∑DDT, endosulfan and aldrin were observed in this well-field. Concentration of OCPs from Ranney wells exceeded the limit (1 μg l−1 prescribed by the Bureau of Indian Standards (BIS in pre-monsoon season, though OCP levels in bore wells were within BIS limits. However, these levels were very close to the World Health Organisation (WHO and European Union (EU limit of for pesticides (0.5 μg l−1 in many samples. Bore well produced better quality water compared to the water from Ranney wells. Although, the level of OCP's was slightly lower than prescribed limit of national regulatory agency but such low doses may cause long-term damage to human populations if such water is consumed for longer durations. At low doses OCP's acts as endocrine disrupting agent and cause metabolic disorders in local population.

  18. Lessons learned from the preparation of the flood risk management plans on the Seine basin and perspectives

    Directory of Open Access Journals (Sweden)

    Dupray Sébastien

    2016-01-01

    Full Text Available The present paper presents how the flood directive has been implemented on the Seine and coastal rivers of Normandy basin. It presents the various steps and details the elaboration of the basin flood risk management plan (PGRI. Though out of the scope of the present paper, the new responsibility in term of flood prevention given to local authorities will be briefly introduced and discussed with reference to the implementation of the flood directive.

  19. Investigating hillslope afforestation as a potential natural flood management strategy in the Eddleston Water catchment, Scottish Borders

    OpenAIRE

    Sharp, Rosa

    2014-01-01

    Natural Flood Management (NFM) represents a sustainable alternative to traditional ‘hard- engineered’ flood defences. NFM has come to the forefront of environmental policy interest in recent years, particularly in light of projected increases in flood risk due to changes in climate and land use. Afforestation of hillslopes has been proposed as one such method of flood alleviation. However, the scientific evidence base for its effectiveness is limited. This project seeks to address this knowle...

  20. Spatio-temporal variability of CH4 fluxes and environmental drivers on a modern flood plain of the Siberian Lena River Delta

    Science.gov (United States)

    Rößger, Norman; Wille, Christian; Kutzbach, Lars

    2016-04-01

    In the course of the amplified climate change in the Arctic, methane emissions may considerably increase due to more suitable production conditions comprising enhanced temperatures, greater abundance of moisture and increased availability of the carbon stock to microorganisms. Since methane exhibits a much higher global warming potential than carbon dioxide, a comprehensive understanding of its spatio-temporal dynamics as well as its key controls is of great importance. We study the carbon turnover with a focus on methane on the modern flood plain of Samoylov Island in the Lena River Delta (72°22'N, 126°28'E) using the eddy covariance technique. The heterogeneous area around the flux tower (footprint) is characterised by annual flooding, a variety of non-cryoturbated permafrost-affected soils with different degrees of organic matter accumulation, a tundra vegetation dominated by shrubs and sedges and a slightly undulating relief forming elevated, well drained areas und wet, partially inundated depressions. The measurements ran between June 2014 and September 2015 when methane fluxes were determined using a LICOR 7700 open-path CH4 analyser. The main emissions occurred between June and September determined by spring thaw and refreezing in autumn. The highest methane emissions took place in early August reaching up to 0.03 μmol m-2 s-1. Over the season, the mean methane flux amounted to 0.012 μmol m-2 s-1. This average is based on a large variability of methane fluxes which is to be attributed to the complexity of the footprint. The methane sources are unevenly distributed; thus, the capture of methane fluxes is highly dependent on atmospheric conditions such as stratification and wind direction. Explaining the variability in methane fluxes is based on three modelling approaches: step-wise regression, neural network and deterministic modelling using exponential relationships for flux drivers. For the identification of suitable flux drivers, a comprehensive data

  1. Upstream structural management measures for an urban area flooding in Turkey

    Science.gov (United States)

    Akyurek, Z.; Bozoğlu, B.; Sürer, S.; Mumcu, H.

    2015-06-01

    In recent years, flooding has become an increasing concern across many parts of the world of both the general public and their governments. The climate change inducing more intense rainfall events occurring in short period of time lead flooding in rural and urban areas. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is performed. MIKE21 with flexible grid is used in 2-dimensional shallow water flow modelling. 1 × 1000-1 scaled maps with the buildings for the urbanized area and 1 × 5000-1 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of 500 m3 s-1 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The upstream structural base precautions against flooding are modelled. The effect of four main upstream catchments on the flooding in the downstream urban area are modelled as different scenarios. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in one of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed.

  2. Starting a Dialoque on Future Flood Management in Thailand

    NARCIS (Netherlands)

    Jonkman, S.N.

    2012-01-01

    Publication of the exhibition and symposium on water adaptive urban planning and architecture in Bangkok. It is an inconvenient trutli tliat societies appear to be willing to invest in adequate flood risk reduction only after devastating disasters. The Netherlands has constructed an extensive syste

  3. Flood resilience urban territories. Flood resilience urban territories.

    Science.gov (United States)

    Beraud, Hélène; Barroca, Bruno; Hubert, Gilles

    2010-05-01

    flood but also to restart as fast as possible (for example, the clearing of roads is a prerequisite for electricity's restoration which is a vital network for territory's functioning). While the waste management is a main stage of post crisis, these questions are still without answer. The extend of this network influence also leads us to think about the means to prevent from waste production and service's dysfunction. How to develop the territory to limit the floods' impact on the waste management network? Are there techniques or equipments allowing stakeholders to limit these impacts? How to increase population's, entrepreneur's or farmer's awareness to get ready to face floods, to limit the waste production, but also to react well during and after the floods? Throughout means of prevention and thanks to actor's technical and organizational adaptations towards the waste network, or by raising population's awareness and preparation, economic and institutional actors of urban territories might improve the waste's network flood resilience, and thus, cities' flood resilience. Through experience feedbacks about countries recently affected by large-extended floods and field reflection with local actors, the stakes of this PhD research are thus to think about means (1) to maintain the activity out of flood plains during a flood, (2) to increase the waste management network's activity in post crisis period in order to be able to deal with a new waste production both by its quality and its quantity, but also (3) to study the means to prevent this new production. This work will use the concept of urban system to describe urban territory because it allows us to study both its behaviour and functioning. The interest of this methodological choice is to take into account the impacts of the disruption of waste management networks on cities' functioning, and thus, on cities' flood resilience.

  4. Regional flood reconstruction in Kullu District (Himachal Pradesh, India): implication for Disaster Risk Management

    Science.gov (United States)

    Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Trappmann, Daniel; Shekhar, Mayank; Bhattacharyya, Amalava

    2016-04-01

    Floods are a common natural hazard in the Western Indian Himalayas. They usually occur when humid monsoon airs are lifted along the Himalayan relief, thereby creating intense orographic rainfall and runoff, a process which is often enhanced by simultaneous snowmelt. Monsoon floods are considered a major threat in the region and frequently affect inhabited valleys, disturbing the status quo of communities, stressing the future welfare and condition of their economic development. Given the assumption that ongoing and future climatic changes may impact on monsoon patterns and extreme precipitation, the implementation of adaptation policies in this region is critically needed in order to improve local resilience of Himalayan communities. However, its success implementation is highly dependent on system knowledge and hence reliable baseline data of past disasters. In this communication, we demonstrate how newly gained knowledge on past flood incidents may improve flood hazard and risk assessments. Based on growth-ring analysis of trees growing in the floodplains and other, more classical paleo-hydrology techniques, we reconstruct the regional flood activity for the last decades. This information is then included as non-systematic data into the regional flood frequency by using Bayesian Markov Monte Carlo Chain algorithms, so as to analyse the impact of the additional data on flood hazard assessments. Moreover, through a detailed analysis of three flood risk hotspots, we demonstrate how the newly gained knowledge on past flood disasters derived from indirect proxies can explain failures in the implementation of disaster risk management (DRM). Our methodology allowed identification of thirty-four unrecorded flood events at the study sites located in the upper reaches since the early 20th century, and thus completion of the existing flood history in the region based on flow measurements in the lower part of the catchment. We observe that 56% of the floods occurred

  5. Decreasing flood risk perception in Porto Alegre - Brazil and its influence on water resource management decisions

    Science.gov (United States)

    Allasia, D. G.; Tassi, R.; Bemfica, D.; Goldenfum, J. A.

    2015-06-01

    Porto Alegre is the capital and largest city in the Brazilian state of Rio Grande do Sul in Southern Brazil with approximately 1.5 million inhabitants. The city lies on the eastern bank of the Guaiba Lake, formed by the convergence of five rivers and leading to the Lagoa dos Patos, a giant freshwater lagoon navigable by even the largest of ships. This river junction has become an important alluvial port as well as a chief industrial and commercial centre. However, this strategic location resulted in severe damage because of its exposure to flooding from the river system, affecting the city in the years 1873, 1928, 1936, 1941 and 1967. In order to reduce flood risk, a complex system of levees and pump stations was implemented during 1960s and 1970s. Since its construction, not a single large flood event occurred. However, in recent years, the levees in the downtown region of Porto Alegre were severally criticized by city planners and population. Several projects have been proposed to demolish the Mauá Wall due to the false perception of lack of flood risk. Similar opinions and reactions against flood infrastructure have been observed in other cities in Brazil, such as Itajaí and Blumenau, with disastrous consequences. This paper illustrates how the perception of flood risk in Porto Alegre has changed over recent years as a result of flood infrastructure, and how such changes in perceptions can influence water management decisions.

  6. Assessing hyporheic zone dynamics in two alluvial flood plains of the Southern Alps using water temperature and tracers

    Directory of Open Access Journals (Sweden)

    E. Hoehn

    2006-03-01

    Full Text Available Water temperature can be used as a tracer for the interaction between river water and groundwater, interpreting time shifts in temperature signals as retarded travel times. The water temperature fluctuates on different time scales, the most pronounced of which are the seasonal and diurnal ones. While seasonal fluctuations can be found in any type of shallow groundwater, high-frequency components are more typical for freshly infiltrated river water, or hyporheic groundwater, and are thus better suited for evaluating the travel time of the youngest groundwater component in alluvial aquifer systems. We present temperature time series collected at two sites in the alpine floodplain aquifers of the river Brenno in Southern Switzerland. At the first site, we determine apparent travel times of temperature for both the seasonal and high-frequency components of the temperature signals in several wells. The seasonal signal appears to travel more slowly, indicating a mixture of older and younger groundwater components, which is confirmed by sulphate measurements. The travel times of the high-frequency component qualitatively agree with the groundwater age derived from radon concentrations, which exclusively reflects young water components. Directly after minor floods, the amplitude of temperature fluctuations in an observation well nearby the river is the highest. Within a week, the riverbed is being clogged, leading to stronger attenuation of the temperature fluctuations in the observation well. At the second site, very fast infiltration to depths of 1.9m under the riverbed could be inferred from the time shift of the diurnal temperature signal.

  7. Geospatial Analysis for Flood-Risk Management, Resilience, and US Policy

    Science.gov (United States)

    Pinter, N.; Hui, R.; Conrad, D. R.; Schaefer, K.

    2016-12-01

    The National Flood Insurance Program (NFIP) was established in 1968 to curtail unfettered development on US floodplains and spiraling taxpayer expenditures for disaster relief. Currently NFIP underwrites >5 million policies, providing >1.25 trillion in coverage, and taking in >3.5 billion in annual premiums. Cumulative flood-damage payouts to date exceed premiums collected by >$20 billion. Our group has obtained nationwide databases of NFIP flood-damage claims back to 1972, annual policies since 1994, and selective Federal Emergency Management Agency (FEMA) repetitive losses. Attributes include property, claims, and loss characteristics. Other attributes were stripped to maintain policyholder anonymity. At present, locations are to the nearest 0.1° lat/long, zip code, and by community. We combine NFIP data with GIS information from a variety of other sources. Over the past 44 years, 1,625,470 non-zero flood claims are documented. Numbers of claims and losses have increased over time, even with extreme events (Hurricanes Katrina and Sandy) excluded. Flood losses have occurred within 100-year floodplains (1% annual exceedance), in coastal hazard zones, and 25% of claims occur outside of mapped flood-hazard areas. We hypothesize that a many losses outside of FEMA's designated Special Flood Hazard Area (SFHA) correlate with (1) outdated map panels, (2) contrasting levels of enforcement and mitigation by state. Other distributed flood losses represent stormwater/drainage damage. Claim rates substantially exceed 1%, both in and outside the SFHA, and for "pre-FIRM" and "post-FIRM" structures. This suggests that ≥100-year floods are occurring more frequently than statutory frequencies suggest. For US homeowners, this suggests that flood insurance is a good deal in a variety of settings. The NFIP data analyzed here contrasts with our group's previous, largely model-driven research. Such empirical flood data exclude model assumptions, but add dizzying array of human and

  8. Equal distribution of burdens in flood risk management : The application of the 'égalité principle' in the compensation regimes of the Netherlands, Flanders and France

    NARCIS (Netherlands)

    van Doorn-Hoekveld, Willemijn|info:eu-repo/dai/nl/344848752

    2017-01-01

    Flood risk management is an eminent example of a policy field in which the distribution of burdens and benefits takes place. Flood risks are distributed unequally among society and measures that reduce or prevent flood risks also distribute burdens and benefits. Flood risk management measures may

  9. Changing Climate; Bangladesh Facing the Challenge of Severe Flood Problems; A Comparison of Flood Management between Bangladesh and the Netherlands

    OpenAIRE

    BISWAS, KALLOL KUMAR

    2010-01-01

    Both Bangladesh and the Netherlands are the most flood prone countries in two continents Asia and Europe. Bangladesh is known to be highly vulnerable to floods. Frequent floods have put enormous constraints on its development potential. Unfortunately, the frequency of high intensity floods is increasing every year. So far the country has struggled to put a sizeable infrastructure in place to prevent flooding in many parts of the country with limited success. Where, the Netherlands has develop...

  10. Community based Low-cost Hydrological Sensors for Improving Flood Risk Management Activities in Nepal

    Science.gov (United States)

    Pandeya, B.; Dugar, S.; Buytaert, W.

    2016-12-01

    Generating actionable data and knowledge is crucial to major river basins in Nepal where flood risk management is closely linked to safeguarding local livelihoods and improving societal well-being. A lack of redundancy in conventional hydro-meteorological monitoring system is a major constraint to predict floods downstream when existing sensors fail to transmit real time data to flood forecasting and early warning systems. Our team is currently implementing citizen science based low-cost sensors for water level monitoring in the Karnali River Basin in Western Nepal. Key local stakeholders are actively participating in monitoring of water level which could directly underpin an operational flood forecasting and early warning system in the basin. We strongly believe that a successful integration of citizen science practices can provide both robust and user-friendly hydrological instruments for local stakeholders to generate locally relevant data. These practices will also improve local communities' adaptive capabilities to cope with future flood risk and potential damages. We conclude that facilitating citizen science based hydrological monitoring could be an effective strategy to improve country's flood risk management activities in the long-term.

  11. Assessing the Impact of Seasonal Population Fluctuation on Regional Flood Risk Management

    Directory of Open Access Journals (Sweden)

    Alan Smith

    2015-07-01

    Full Text Available Human populations are not static or uniformly distributed across space and time. This consideration has a notable impact on natural hazard analyses which seek to determine population exposure and risk. This paper focuses on the coupling of population and environmental models to address the effect of seasonally varying populations on exposure to flood risk. A spatiotemporal population modelling tool, SurfaceBuilder247, has been combined with LISFLOOD-FP flood inundation model outputs for a study area centred on the coastal resort town of St Austell, Cornwall, United Kingdom (UK. Results indicate strong seasonal cycles in populations and their exposure to flood hazard which are not accounted for in traditional population datasets and flood hazard assessments. Therefore, this paper identifies and demonstrates considerable enhancements to the current handling of spatiotemporal population variation within hazard exposure assessment and disaster risk management.

  12. Managing Floods and Resources at the Arroyo Las Positas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, L; Van Hattem, M; Mathews, S

    2002-03-05

    Engineers and water resource professionals are challenged with protecting facilities from flood events within environmental resource protection, regulatory, and economic constraints. One case in point is the Arroyo Las Positas (ALP), an intermittent stream that traverses the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. Increased runoff from post-drought rainfall, upstream development, and new perennial discharges from LLNL activities have resulted in increased dry weather flows and wetland vegetation. These new conditions have recently begun to provide improved habitat for the federally threatened California red-legged frog (Rana aurora draytonii; CRLF), but the additional vegetation diminishes the channel's drainage capacity and increases flood risk. When LLNL proposed to re-grade the channel to reestablish the 100-year flood capacity, traditional dredging practices were no longer being advocated by environmental regulatory agencies. LLNL therefore designed a desilting maintenance plan to protect LLNL facility areas from flooding, while minimizing impacts to wetland resources and habitat. The result was a combination of structural upland improvements and the ALP Five Year Maintenance Plan (Maintenance Plan), which includes phased desilting in segments so that the entire ALP is desilted after five years. A unique feature of the Maintenance Plan is the variable length of the segments designed to minimize LLNL's impact on CRLF movement. State and federal permits also added monitoring requirements and additional constraints on desilting activities. Two years into the Maintenance Plan, LLNL is examining the lessons learned on the cost-effectiveness of these maintenance measures and restrictions and reevaluating the direction of future maintenance activities.

  13. Modeling flash floods in southern France for road management purposes

    Science.gov (United States)

    Vincendon, Béatrice; Édouard, Simon; Dewaele, Hélène; Ducrocq, Véronique; Lespinas, Franck; Delrieu, Guy; Anquetin, Sandrine

    2016-10-01

    Flash-floods are among the most devastating hazards in the Mediterranean. A major subset of damage and casualties caused by flooding is related to road submersion. Distributed hydrological nowcasting can be used for road flooding monitoring. This requires rainfall-runoff simulations at a high space and time resolution. Distributed hydrological models, such as the ISBA-TOP coupled system used in this study, are designed to simulate discharges for any cross-section of a river but they are generally calibrated for certain outlets and give deteriorated results for the sub-catchment outlets. The paper first analyses ISBA-TOP discharge simulations in the French Mediterranean region for target points different from the outlets used for calibration. The sensitivity of the model to its governing factors is examined to highlight the validity of results obtained for ungauged river sections compared with those obtained for the main gauged outlets. The use of improved model inputs is found beneficial for sub-catchments simulation. The calibration procedure however provides the parameters' values for the main outlets only and these choices influence the simulations for ungauged catchments or sub-catchments. As a result, a new version of ISBA-TOP system without any parameter to calibrate is used to produce diagnostics relevant for quantifying the risk of road submersion. A first diagnostic is the simulated runoff spatial distribution, it provides a useful information about areas with a high risk of submersion. Then an indicator of the flood severity is given by simulated discharges presented with respect to return periods. The latter has to be used together with information about the vulnerability of road-river cross-sections.

  14. FLCNDEMF: An Event Metamodel for Flood Process Information Management under the Sensor Web Environment

    Directory of Open Access Journals (Sweden)

    Nengcheng Chen

    2015-06-01

    Full Text Available Significant economic losses, large affected populations, and serious environmental damage caused by recurrent natural disaster events (NDE worldwide indicate insufficiency in emergency preparedness and response. The barrier of full life cycle data preparation and information support is one of the main reasons. This paper adopts the method of integrated environmental modeling, incorporates information from existing event protocols, languages, and models, analyzes observation demands from different event stages, and forms the abstract full life cycle natural disaster event metamodel (FLCNDEM based on meta-object facility. Then task library and knowledge base for floods are built to instantiate FLCNDEM, forming the FLCNDEM for floods (FLCNDEMF. FLCNDEMF is formalized according to Event Pattern Markup Language, and a prototype system, Natural Disaster Event Manager, is developed to assist in the template-based modeling and management. The flood in Liangzi (LZ Lake of Hubei, China on 16 July 2010 is adopted to illustrate how to apply FLCNDEM in real scenarios. FLCNDEM-based modeling is realized, and the candidate remote sensing (RS dataset for different observing missions are provided for LZ Lake flood. Taking the mission of flood area extraction as an example, the appropriate RS data are selected via the model of simplified general perturbation version 4, and the flood area in different phases are calculated and displayed on the map. The phase-based modeling and visualization intuitively display the spatial-temporal distribution and the evolution process of the LZ Lake flood, and it is of great significance for flood responding. In addition, through the extension mechanism, FLCNDEM can also be applied in other environmental applications, providing important support for full life cycle information sharing and rapid responding.

  15. A restatement of the natural science evidence concerning catchment-based ‘natural’ flood management in the UK

    Science.gov (United States)

    Hall, Jim W.; Murgatroyd, Anna; Acreman, Mike; Bates, Paul; Beven, Keith; Heathwaite, Louise; Holden, Joseph; Holman, Ian P.; Lane, Stuart N.; O'Connell, Enda; Penning-Rowsell, Edmund; Reynard, Nick; Sear, David; Thorne, Colin; Wilby, Rob

    2017-01-01

    Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based ‘natural’ flood management in the UK. The evidence summary is designed to be read by an informed but not technically specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material. PMID:28413336

  16. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  17. Simulated responses of soil organic carbon stock to tillage management scenarios in the Northwest Great Plains

    Directory of Open Access Journals (Sweden)

    Li Zhengpeng

    2007-07-01

    Full Text Available Abstract Background Tillage practices greatly affect carbon (C stocks in agricultural soils. Quantification of the impacts of tillage on C stocks at a regional scale has been challenging because of the spatial heterogeneity of soil, climate, and management conditions. We evaluated the effects of tillage management on the dynamics of soil organic carbon (SOC in croplands of the Northwest Great Plains ecoregion of the United States using the General Ensemble biogeochemical Modeling System (GEMS. Tillage management scenarios included actual tillage management (ATM, conventional tillage (CT, and no-till (NT. Results Model simulations show that the average amount of C (kg C ha-1yr-1 released from croplands between 1972 and 2000 was 246 with ATM, 261 with CT, and 210 with NT. The reduction in the rate of C emissions with conversion of CT to NT at the ecoregion scale is much smaller than those reported at plot scale and simulated for other regions. Results indicate that the response of SOC to tillage practices depends significantly on baseline SOC levels: the conversion of CT to NT had less influence on SOC stocks in soils having lower baseline SOC levels but would lead to higher potentials to mitigate C release from soils having higher baseline SOC levels. Conclusion For assessing the potential of agricultural soils to mitigate C emissions with conservation tillage practices, it is critical to consider both the crop rotations being used at a local scale and the composition of all cropping systems at a regional scale.

  18. Groundwater Management under Meteorological Drought Conditions in Aleshtar Plain, Lorestan Province, Iran

    Science.gov (United States)

    Soleimani Motlagh, M.; Ghasemian, D.; Winter, C.; Taie Semiromi, M.

    2013-12-01

    The lack of precipitation causes low soil moisture content and low groundwater recharge. The resulting shortage in precipitation propagates through the hydrological system, causing a drought in different segments of the hydrological system. The aim of this study was to provide efficient groundwater management techniques during drought situations in Aleshtar plain located in Lorestan province, Iran. With the purpose of finding solutions during drought conditions, first of all a groundwater model was constructed using MODFLOW with historical groundwater levels recorded from October 1982 to September 2010. By studying precipitation fluctuation over several times, four meteorological drought scenarios including wet, normal, moderate and severe drought were considered and then each drought option was imposed to the model separately and the reaction of aquifer was forecasted by both groundwater budget and level. Results showed that the groundwater budget will be dwindling under normal condition in which the plain receives the average precipitation. Similarly, the groundwater level and water balance would be decreasing under moderate and severe drought situations so that the groundwater budget is expected to be reduced 22.24 and 33.21 Mm3 under moderate and severe drought conditions respectively if it is extended for one hydrological year. Groundwater management techniques like cutting the groundwater abstraction by 38 percent will alleviate the impacts of normal condition and moderate drought while combined scenario consisting of reducing of the groundwater utilization to 38 percent and recharging the aquifer artificially will work and as a result, not only the dropping of the groundwater level will be controlled but it also becomes considerably positive. For instance, under the combined scenario, the groundwater balance will be raised up to 15.34 Mm3 in the case of one year long severe drought.

  19. Assessment of reproductive capacity of estuarine plants Butomus umbellatus L. and Alisma plantago-aquatica L. from radioactively contaminated flood plains

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Majstrenko, T.A.; Rachkova, N.G.; Belykh, E.S.; Zainullin, V.G. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation)

    2014-07-01

    It is known that the vegetation, along with the climatic conditions and soil type, is one of the key components of terrestrial ecosystems. They are also first to respond to the substrate contamination with radionuclides, metals and organic substances. Biological effects observed in natural plant populations are associated with both presence of mobile compounds of pollutants in abiotic components of the ecosystem and their role in the metabolism of the plant. The goal of the study was to assess the impact of water and sediment contamination with artificial radionuclides and toxic non-radioactive compounds, on the reproductive capacity of estuarial plants using seed germination. Contaminated sites are located in flood plain of the Techa River (Chelabinsk region, Russia) between Muslumovo and Brodokalmak settlements. Radioactive contamination of the territory resulted from increased specific activities of {sup 137}Cs and {sup 90}Sr in water and sediments due to the accidents on the Mayak Production Association. Reference sites were chosen in the flood plains of Brusianka and Sysert' rivers (Sverdlovsk region, Russia). Reference sites are located out of the Eastern Ural Radioactive Trace. Seeds of Butomus umbellatus L. and Alisma plantago-aquatica L., which are common estuarine plant communities in this area, were collected. Specific activities of dose-forming radionuclides in the Techa river water vary from 120 up to 200 mBq/l for {sup 137}Cs and from 26 up to 45 mBq/l for {sup 90}Sr; and in sediments 720-10150 Bq/kg and 600-1500 Bq/kg for {sup 137}Cs and {sup 90}Sr correspondingly. Specific activities of {sup 137}Cs and {sup 90}Sr in water and sediments of both reference rivers do not exceed global fallout levels. B. umbellatus seeds germination was low for plant populations of both reference and contaminated sites. However, a significant (p<0.01) difference was found - the value was higher for reference populations (17.4 ±3.5 %) as compared with the ones from

  20. Flood Management and Protection from the Social Point of View: Case Study from Ukraine

    Science.gov (United States)

    Manukalo, V.; Gerasymenko, H.

    2012-12-01

    to their regions of residence (low- or high- flood risk areas, cities or villages), education level; c) a lot of peoples don't know distribution of duties between governmental bodies on central and local levels in the field of flood management and protection; d) the most of peoples don't know which Ukrainian governmental bodies are responsible for the elaboration of National adaptation strategy to the expected climate change; e) many recipient estimate as inefficient activities of Ukrainian authorities on local, national and international levels as well as a public participation in the flood management and protection policy. The results of this study have been rather unexpected for Ukrainian central and local governmental bodies responsible for flood management and protection policies. This underlines the importance of having the alternative flood risk management and protection policies studied not only from aspects of technical and economic rational, but also from that of social acceptability, before any decision is made. Practical Application Results of study have been used in preparation of: a) the State Program on the protection against floods in the Dniester, Prut and Siret river basins; b) of the "National Action Plan for Adaptation to Climate Change for period 2011-2015".

  1. Integration of social vulnerability into emergency management plans: designing of evacuation routes against flood disasters

    Science.gov (United States)

    Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres

    2017-04-01

    Flash floods are highly spatio-temporal localized flood events characterized by reaching a high peak flow in a very short period of time, i.e., generally with times of concentration lower than six hours. Its short duration, which limits or even voids any warning time, means that flash floods are considered to be one of the most destructive natural hazards with the greatest capacity to generate risk, either in terms of the number of people affected globally or the proportion of individual fatalities. The above highlights the importance of a realistic and appropriate design of evacuation strategies in order to reduce flood-related losses, being evacuation planning considered of critical importance for disaster management. Traditionally, evacuation maps have been based on flood-prone areas, shelters or emergency residences location and evacuation routes information. However, evacuation plans rarely consider the spatial distribution of vulnerable population (i.e., people with special needs, mobility constraints or economic difficulties), which usually require assistance from emergency responders. The goal of this research is to elaborate an evacuation map against the occurrence of flash floods by combining geographic information (e.g. roads, health facilities location, sanitary helicopters) and social vulnerability patterns, which are previously obtained from socioeconomic variables (e.g. population, unemployment, dwelling characteristics). To do this, ArcGis Network Analyst tool is used, which allows to calculate the optimal evacuation routes. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2). Urban areas prone to flash flooding are identified taking into account the following requirements: i) city centers are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1; ii) city centers are potentially affected by flash floods; and iii) city centers are affected by an area with low or exceptional probability

  2. “Dry Feet for All”: Flood Management and Chronic Time in Semarang, Indonesia

    Directory of Open Access Journals (Sweden)

    Lukas Ley

    2016-06-01

    Full Text Available This article describes flood management in poor communities of Semarang, a second-tier city on the north coast of Central Java, Indonesia. Using ethnographic material from participant observation and interviews, the article argues that flood management upholds an ecological status quo – a socioecological system that perpetuates the potential of crisis and structures of vulnerability. While poor residents have developed coping mechanisms, such community efforts follow the logic of maintaining a precarious minimum of safety. Designed in 2009, Dutch-Indonesian anti-flood infrastructure (polder is supposed to put an end to tidal flooding, locally called rob. As a short-term project, the polder promises to regulate water levels and improve the lives of local residents. While it wants to make flood control transparent and accountable to riverside communities, the project ultimately fails to escape the institutional logic of chronic crisis management. By investigating the temporality and politics of the polder project, this article aims at contributing empirical and theoretical insights to scholarship on socioecological conflicts and crisis.

  3. Distributional effects of flood risk management - a cross-country comparison of preflood compensation

    Directory of Open Access Journals (Sweden)

    Willemijn J. van Doorn-Hoekveld

    2016-12-01

    Full Text Available We seek to examine the manner in which either the EU member states of France, the Netherlands, Poland, and Sweden or parts of them, such as the country of England in the UK or the Flemish Region in Belgium, deal with the distributional effects of the flood risk management strategies prevention, defense, and mitigation. Measures carried out in each of these strategies can cause preflood harm, as in the devaluation of property or loss of income. However, different member states and authorities address this harm in different ways. A descriptive overview of the different compensation regimes in the field of flood risk management is followed by an analysis of these differences and an explanation of what may cause them, such as the geographical differences that lead to differences in the way that they interfere with private rights and the dominant legal principles that underlie compensation regimes. An elaborated compensation regime could lead to more equitable and legitimate flood risk management because the burdens are fairly spread and all interests - including those of injured parties - are considered in the decision-making process. Our aim is to stimulate the hardly existent discussion on the financial harm that is caused by measures to prevent floods (preflood, in addition to the already existing discussion on the ex post flood distributional effects.

  4. Eliciting knowledge on soft flood-risk management strategies in the Ukrainian Tisza river basin

    Science.gov (United States)

    Haase, D.; Kuptsova, S.; Bharwani, S.; Fischer, M. E.; Downing, T. E.

    2009-04-01

    This paper focuses on a participatory knowledge elicitation process (KnETs) to explore decision-making criteria regarding ‘soft' techniques for flood risk management in the Ukrainian Tisza river basin. Communities in this region are faced with frequent floods and limited governmental budgets to cope with flood impacts. To identify the potential for soft flood protection measures as opposed to traditional technical solutions, we explored the decision-making heuristics of village council heads and the conditions under which they do or do not prepare for a flood event. Tacit knowledge, which is often unconscious and therefore difficult to describe, is complex to uncover through conventional interview techniques. To address this issue, a participatory process has been designed to reveal this knowledge without losing its connection to the context in which it is applied. That is, the KnETs process has been designed to understand context-relevant adaptive strategies and the reasons they are chosen in a natural resource management context. The process can be adapted to explore the contextual specificities of many situations ranging from flood and drought risk management to livelihood choices and the adaptation options considered in each set of circumstances. This interdisciplinary approach integrates ethnographic methods from the social sciences domain with classical computer science knowledge engineering techniques to address current bottlenecks (related to time and resource requirements) in both areas of research. This provides a participatory process, from knowledge elicitation to knowledge representation, verification and validation, providing a greater clarity of local data and thus possibly a greater understanding of social vulnerability and adaptive behaviour in flood situations.

  5. Hydrological characteristics and flood plain vegetation of human impacted wetlands: A case study from Okhla Bird Sanctuary, National Capital Region, India

    Directory of Open Access Journals (Sweden)

    Upma Manral

    2012-12-01

    Full Text Available Yamuna River has been subjected to severe anthropogenic pressures such as water abstraction, discharge of wastewater, development activities on river floodplains, deforestation in the river basin resulting in reduced flow, loss of habitat, deterioration of water quality and loss of biological diversity. We studied hydrological characteristics such as river flow, water depth and quality and floodplain vegetation characteristics of Okhla Bird Sanctuary (OBS, a human modified floodplain wetland formed due to the construction of Okhla barrage across the Yamuna River in National Capital Region (NCR, on the Delhi-Uttar Pradesh border. The flow data for Yamuna was collected from Delhi Jal board and irrigation department of Uttar Pradesh. Study indicates reduced flow in the river downstream Wazirabad with no release of water in the summers of 2006 and 2010. For bathymetry, GARMIN 160 C Fish Finder was used after dividing study area into 50 m x 50 m grids. About 65% area had depth less than 2 m indicating more of shallower areas. Results for water quality analysis show a dissolved oxygen level at 1.6 ± 0.84 mgl-1, Biological and Chemical Oxygen demand at 16.72 ± 4.28 mgl-1 and 39.8 ± 7.71 mgl-1 respectively, indicating a high organic load in the river. The Sanctuary is facing serious threats from the rapid proliferation of Typha angustifolia and Eichhornia crassipes which were dominant species in shallow water and open water habitats, respectively. Thus, the remaining Yamuna river flood plain in the NCR, Delhi should be declared as ecologically sensitive area and appropriate measures should be taken to maintain its integrity.

  6. An integrated framework of operational ET remote sensing program for irrigation management in the Texas High Plains

    Science.gov (United States)

    Irrigated agriculture and management of limited groundwater are critical issues in the Texas High Plains where irrigation accounts for more than 90% of groundwater use. With low recharge rates, groundwater levels in the underlain Ogallala aquifer are declining at unsustainable rates. Daily field-sca...

  7. Simulating evapotranspiration (ET) and corn yield response to irrigation management in the Texas High Plains using DSSAT

    Science.gov (United States)

    Grain corn (Zea mays L) continues to be a major irrigated crop in the northern Texas High Plains. Improvements in irrigation system efficiency, irrigation management, and plant genetics have increased average yields while decreasing seasonal water use in the last 40 years. However, declining water l...

  8. Assessing uncertainties in flood forecasts for decision making: prototype of an operational flood management system integrating ensemble predictions

    Directory of Open Access Journals (Sweden)

    J. Dietrich

    2009-08-01

    Full Text Available Ensemble forecasts aim at framing the uncertainties of the potential future development of the hydro-meteorological situation. A probabilistic evaluation can be used to communicate forecast uncertainty to decision makers. Here an operational system for ensemble based flood forecasting is presented, which combines forecasts from the European COSMO-LEPS, SRNWP-PEPS and COSMO-DE prediction systems. A multi-model lagged average super-ensemble is generated by recombining members from different runs of these meteorological forecast systems. A subset of the super-ensemble is selected based on a priori model weights, which are obtained from ensemble calibration. Flood forecasts are simulated by the conceptual rainfall-runoff-model ArcEGMO. Parameter uncertainty of the model is represented by a parameter ensemble, which is a priori generated from a comprehensive uncertainty analysis during model calibration. The use of a computationally efficient hydrological model within a flood management system allows us to compute the hydro-meteorological model chain for all members of the sub-ensemble. The model chain is not re-computed before new ensemble forecasts are available, but the probabilistic assessment of the output is updated when new information from deterministic short range forecasts or from assimilation of measured data becomes available. For hydraulic modelling, with the desired result of a probabilistic inundation map with high spatial resolution, a replacement model can help to overcome computational limitations. A prototype of the developed framework has been applied for a case study in the Mulde river basin. However these techniques, in particular the probabilistic assessment and the derivation of decision rules are still in their infancy. Further research is necessary and promising.

  9. Moisture management properties of plain knitted fabrics made of natural and regenerated cellulose fibres

    Directory of Open Access Journals (Sweden)

    Novaković Milada S.

    2015-01-01

    Full Text Available Moisture management is a complicated process which is known to be influenced by a variety of fabric characteristics such as fibre nature (hydrophilic or hydrophobic, porosity and thickness. There are different aspects of the moisture management properties of textile materials since water transport in textile materials can be in the form of liquid and vapour. The ability of textile materials to transfer water vapour allows the human body to keep thermal balance due to evaporation. With stronger physical activity of a person when the body produces a large amount of heat, the skin perspiration increases (in order to regulate the body temperature and liquid sweat should be taken from the skin, otherwise it will worsen the sense of comfort. The aim of this research was to investigate the factors influencing moisture management properties of plain knitted fabrics at the three scale levels, i.e. microscopic (fibre type, mesoscopic (yarn geometry and macroscopic (fabric porosity levels. Plain knitted fabrics were produced from the two-assembled hemp, cotton and viscose yarns under controlled conditions so as to be comparable in basic construction characteristics, but varying in yarns geometry. Evaporative resistance test reflecting vapour transport and water distribution test reflecting liquid transport in the knitted fabrics were conducted. To determine the statistical importance of the results, analysis of variance (ANOVA was applied. As a consequence of the geometry and deformation behaviour of the fibres used and spinning techniques applied, the yarns differed in both packing density and surface geometry, thus determining the pore distribution. Due to loose structure of the cotton yarn, the cotton knitted fabric was characterised by the lowest free open surface (macroporosity exhibiting the lowest both water vapour and liquid permeability. Although having the highest macroporosity, the water vapour and liquid transport capability of the hemp knitted

  10. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100

    Science.gov (United States)

    Antonioli, F.; Anzidei, M.; Amorosi, A.; Lo Presti, V.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; Marsico, A.; Moretti, M.; Orrù, P. E.; Sannino, G. M.; Serpelloni, E.; Vecchio, A.

    2017-02-01

    We depict the relative sea-level rise scenarios for the year 2100 from four areas of the Italian peninsula. Our estimates are based on the Rahmstorf (2007) and IPCC-AR5 reports 2013 for the RCP-8.5 scenarios (http://www.ipcc.ch) The subsequent loss of land will impact the environment and local infrastructures, suggesting land planners and decision makers to take into account these scenarios for a cognizant coastal management. Our method developed for the Italian coast can be applied worldwide in other coastal areas expected to be affected by marine ingression due to global climate change.

  11. Development of a Data Warehouse for Riverine and Coastal Flood Risk Management

    Science.gov (United States)

    McGrath, H.; Stefanakis, E.; Nastev, M.

    2014-11-01

    In New Brunswick flooding occurs typically during the spring freshet, though, in recent years, midwinter thaws have led to flooding in January or February. Municipalities are therefore facing a pressing need to perform risk assessments in order to identify communities at risk of flooding. In addition to the identification of communities at risk, quantitative measures of potential structural damage and societal losses are necessary for these identified communities. Furthermore, tools which allow for analysis and processing of possible mitigation plans are needed. Natural Resources Canada is in the process of adapting Hazus-MH to respond to the need for risk management. This requires extensive data from a variety of municipal, provincial, and national agencies in order to provide valid estimates. The aim is to establish a data warehouse to store relevant flood prediction data which may be accessed thru Hazus. Additionally, this data warehouse will contain tools for On-Line Analytical Processing (OLAP) and knowledge discovery to quantitatively determine areas at risk and discover unexpected dependencies between datasets. The third application of the data warehouse is to provide data for online visualization capabilities: web-based thematic maps of Hazus results, historical flood visualizations, and mitigation tools; thus making flood hazard information and tools more accessible to emergency responders, planners, and residents. This paper represents the first step of the process: locating and collecting the appropriate datasets.

  12. A decision‐making framework for flood risk management based on a Bayesian Influence Diagram

    DEFF Research Database (Denmark)

    Åstrøm, Helena Lisa Alexandra; Madsen, Henrik; Friis-Hansen, Peter

    2014-01-01

    ‐making is difficult, and considering the partly unknown processes related to anthropogenic climate change we need to model a very complex system. In our study we showed that IDs are a noteworthy alternative as decision‐making method in flood risk management and is a useful method when several hazards......We develop a Bayesian Influence Diagram (ID) approach for risk‐based decision‐ making in flood management. We show that it is a flexible decision‐making tool to assess flood risk in a non‐stationary environment and with an ability to test different adaptation measures in order to agree on the best...... for assessing the risk of something we ?believe? may occur in the future. An ID has two layers; 1) a graphical description of the system built up by system variables, adaptation measures, costs/benefits of these measures and the dependencies of all these, which is an effective means to communicate the system...

  13. Management Effects on Soil Respiration in North Carolina Coastal Plain Loblolly Pine Plantations

    Science.gov (United States)

    Gavazzi, M.; McNulty, S.; Noormets, A.; Treasure, E.

    2012-12-01

    Loblolly pine is the most widely planted tree for plantation management in the southern US. In the southern coastal plain, where much of the original longleaf pine and bottomland hardwood forests have been converted to loblolly pine plantations, inland areas are commonly characterized by deep organic soils that can store up to 80 kg C m-2. Intensive management activities on these sites disturb the forest floor and soil and their impact on soil respiration rates and long term soil storage capabilities is unclear. We measured soil respiration rates in three loblolly pine plantations being managed with a combination of ditching, bedding, clearcutting, thinning and fertilization. Sites and management regimes represented a wide range of real world conditions found in managed southern US forestry plantations. Soil efflux rates along with soil temperature and moisture were measured throughout the year at four to six plots on each site and best fit relationships were developed. Annual soil respiration rates where modeled using 30-minute soil temperature and moisture measurements recorded at a centralized meteorological station on each site. Soil efflux rates were highly correlated with soil temperature and moisture, but interaction between the two effects was uncommon. Soil temperature was the primary driver of soil respiration rates, but rates were suppressed under high soil moisture content. Modeled annual soil efflux rates were higher the first two years following clearcut harvest and thinning operations, but lower two years following fertilization. Rates were lower in the gaps, where entire tree rows were removed, compared to thinned areas, especially on the unfertilized site. Results indicate that soil respiration rates can be strongly impacted by forest management practices; however, the period of increased soil CO2 efflux due to site disturbance may last only a few years.

  14. Investigation into rainwater use by cotton under multiple irrigation management conditions in the Texas High Plains

    Science.gov (United States)

    Goebel, T.; Lascano, R. J.

    2012-12-01

    Irrigation management practices in the Texas High Plains (THP) might be improved if we could ascertain the proportion of rainfall utilized by the crop in any given rainfall event. For instance, the primary source of irrigation water in the THP is pumped from the Ogallala Aquifer (OA), and can be enriched in 18O compared to rainfall-captured water. Given this expected difference, it should be possible to determine if the crop is utilizing the water from a rainfall event. To this end, cotton was grown using three irrigation management practices: subsurface drip, center pivot, and no irrigation (dry land). The water used for irrigation was pumped from the Ogallala aquifer, and rainfall was gathered in a rain gauge with mineral oil to prevent evaporation. Additionally, plant and soil samples were collected following each precipitation event every two hours and every eight hours respectively. Water was then extracted from the soil and plant samples using cryogenic vacuum distillation, and analyzed for 18O/16O ratios using the DLT-100 Liquid-Water Isotope Analyzer from Los Gatos Research Inc. The difference in isotope concentrations in the extracts from soils was used to determine infiltration depth into the soil profile at each location. The isotopic composition of the plant water was used to determine if the was used to compare rainwater use across the different irrigation management practices. Results might suggest changes to the way in which we apply irrigation water that would improve root growth and distribution to enhance the capture of rainfall.

  15. Using open source data for flood risk mapping and management in Brazil

    Science.gov (United States)

    Whitley, Alison; Malloy, James; Chirouze, Manuel

    2013-04-01

    Whitley, A., Malloy, J. and Chirouze, M. Worldwide the frequency and severity of major natural disasters, particularly flooding, has increased. Concurrently, countries such as Brazil are experiencing rapid socio-economic development with growing and increasingly concentrated populations, particularly in urban areas. Hence, it is unsurprising that Brazil has experienced a number of major floods in the past 30 years such as the January 2011 floods which killed 900 people and resulted in significant economic losses of approximately 1 billion US dollars. Understanding, mitigating against and even preventing flood risk is high priority. There is a demand for flood models in many developing economies worldwide for a range of uses including risk management, emergency planning and provision of insurance solutions. However, developing them can be expensive. With an increasing supply of freely-available, open source data, the costs can be significantly reduced, making the tools required for natural hazard risk assessment more accessible. By presenting a flood model developed for eight urban areas of Brazil as part of a collaboration between JBA Risk Management and Guy Carpenter, we explore the value of open source data and demonstrate its usability in a business context within the insurance industry. We begin by detailing the open source data available and compare its suitability to commercially-available equivalents for datasets including digital terrain models and river gauge records. We present flood simulation outputs in order to demonstrate the impact of the choice of dataset on the results obtained and its use in a business context. Via use of the 2D hydraulic model JFlow+, our examples also show how advanced modelling techniques can be used on relatively crude datasets to obtain robust and good quality results. In combination with accessible, standard specification GPU technology and open source data, use of JFlow+ has enabled us to produce large-scale hazard maps

  16. Integrated hydrological modeling of the North China Plain and implications for sustainable water management

    Directory of Open Access Journals (Sweden)

    H. Qin

    2013-10-01

    Full Text Available Groundwater overdraft has caused fast water level decline in the North China Plain (NCP since the 1980s. Although many hydrological models have been developed for the NCP in the past few decades, most of them deal only with the groundwater component or only at local scales. In the present study, a coupled surface water–groundwater model using the MIKE SHE code has been developed for the entire alluvial plain of the NCP. All the major processes in the land phase of the hydrological cycle are considered in the integrated modeling approach. The most important parameters of the model are first identified by a sensitivity analysis process and then calibrated for the period 2000–2005. The calibrated model is validated for the period 2006–2008 against daily observations of groundwater heads. The simulation results compare well with the observations where acceptable values of root mean square error (RMSE (most values lie below 4 m and correlation coefficient (R (0.36–0.97 are obtained. The simulated evapotranspiration (ET is then compared with the remote sensing (RS-based ET data to further validate the model simulation. The comparison result with a R2 value of 0.93 between the monthly averaged values of simulated actual evapotranspiration (AET and RS AET for the entire NCP shows a good performance of the model. The water balance results indicate that more than 70% of water leaving the flow system is attributed to the ET component, of which about 0.25% is taken from the saturated zone (SZ; about 29% comes from pumping, including irrigation pumping and non-irrigation pumping (net pumping. Sustainable water management analysis of the NCP is conducted using the simulation results obtained from the integrated model. An effective approach to improve water use efficiency in the NCP is by reducing the actual ET, e.g. by introducing water-saving technologies and changes in cropping.

  17. WMO's activities in gender mainstreaming in geosciences, with a special focus on integrated flood management

    Science.gov (United States)

    Manaenkova, Elena; Caponi, Claudio; Alexieva, Assia; Poissonnier, Maud; Tripathi, Ramesh

    2017-04-01

    Statistics show that women represent a minority in science, technology, engineering and mathematics (STEM). They are significantly underrepresented in governance, management and international negotiations. They further comprise only a third of the global workforce at National Meteorological and Hydrological Services and only one out of five senior managers is a woman. This paper presents historical trends and statistics on the participation of women and men in all structures and activities of the World Meteorological Organization (WMO). It explores the root causes of women's underrepresentation in the meteorological, hydrological and climatological profession as well as analyzes its adverse effects in terms of the scarcity of role models for young female professionals and the lack of gender considerations in the provision of weather, hydrological and climate services. The paper presents WMO's approach to addressing these issues through the adoption of a WMO Gender Equality Policy, a comprehensive Gender Action Plan, targeted leadership training, a series of awareness raising campaigns, and specific recommendations on how to make weather, hydrological and climate services more gender-sensitive. As a specific example, the Associated Programme on Flood Management (APFM) of WMO and the Global Water Partnership (GWP) is in the process of developing a training manual for gender mainstreaming in integrated flood management. This generic, instructive, at the same time informative training manual and facilitator's guide will strive to fill gaps in practical knowledge, decision-making and further provide assistance in gender sensitive approaches for both local policy makers and communities affected by floods. The format and contents of the manual are particularly focused on every phase of the flood management cycle, incorporating gender based needs, strategies and actions/approaches. The facilitator or training instructor is encouraged to adapt the materials with local case

  18. Coproducing flood risk management through citizen involvement: insights from cross-country comparison in Europe

    NARCIS (Netherlands)

    Mees, H.; Crabbé, A.; Alexander, M.; Kaufmann, M.; Bruzzone, S.; Lévy, L.; Lewandowski, J.

    2016-01-01

    Across Europe, citizens are increasingly expected to participate in the implementation of flood risk management (FRM), by engaging in voluntary-based activities to enhance preparedness, implementing property-level measures, and so forth. Although citizen participation in FRM decision making is widel

  19. Competence based learning for an on-line course on flood modelling for management

    NARCIS (Netherlands)

    Popescu, Ioanna; Jonoski, Andreja; Keuls, Carel

    2009-01-01

    Popescu, I., Jonoski, A., & Keuls, C. (2009). Competence based learning for an on-line course on flood modelling for management. Proceedings of the 33rd International Association of Hydraulic Engineering & Research (IAHR Congress). August, 9-14, 2009, Vancouver, Canada: TENCompetence.

  20. Distributional effects of flood risk management - a cross-country comparison of preflood compensation

    NARCIS (Netherlands)

    van Doorn - Hoekveld, Willemijn; Goytia, Susana; Suykens, C.B.R.; Homewood, Stephen; Thuillier, Thomas; Manson, Corinne; Chmielewski, Piotr; Matczak, Piotr; van Rijswick, H.F.M.W.

    2016-01-01

    We seek to examine the manner in which either the EU member states of France, the Netherlands, Poland, and Sweden or parts of them, such as the country of England in the UK or the Flemish Region in Belgium, deal with the distributional effects of the flood risk management strategies prevention, defe

  1. Long-term strategies for flood risk management: scenario definition and strategic alternative design

    NARCIS (Netherlands)

    Bruijn, de K.; Klijn, F.; McGahey, C.; Mens, M.; Wolfert, H.P.

    2008-01-01

    This report reviews some mainstream existing methods of scenario development and use, as well as experiences with the design and assessment of strategic alternatives for flood risk management. Next, a procedure and methods are proposed and discussed. Thirdly, the procedure and methods are tried on t

  2. Long-term strategies for flood risk management: scenario definition and strategic alternative design

    NARCIS (Netherlands)

    Bruijn, de K.; Klijn, F.; McGahey, C.; Mens, M.; Wolfert, H.P.

    2008-01-01

    This report reviews some mainstream existing methods of scenario development and use, as well as experiences with the design and assessment of strategic alternatives for flood risk management. Next, a procedure and methods are proposed and discussed. Thirdly, the procedure and methods are tried on t

  3. Long-term strategies for flood risk management: scenario definition and strategic alternative design

    NARCIS (Netherlands)

    Bruijn, de K.; Klijn, F.; McGahey, C.; Mens, M.; Wolfert, H.P.

    2008-01-01

    This report reviews some mainstream existing methods of scenario development and use, as well as experiences with the design and assessment of strategic alternatives for flood risk management. Next, a procedure and methods are proposed and discussed. Thirdly, the procedure and methods are tried on

  4. Adapting Floods Management to Climate Change: Comparing Policy Frames and Governance Practices in the Low Countries

    NARCIS (Netherlands)

    Crabbé, A.; Wiering, M.A.; Liefferink, J.D.

    2015-01-01

    Belgium and the Netherlands together form the Low Countries. Empirical research in Flanders (the Dutch-speaking part of Belgium) and the Netherlands proves that there are substantive differences in the organization of governance processes regarding flood management in response to climate change. Thi

  5. Trends in flood risk management in deltas around the world: Are we going ‘soft’?

    NARCIS (Netherlands)

    Wesselink, A.; Warner, J.F.; Syed, M.A.; Chan, F.; Tran, D.D.; Huq, H.; Huthoff, F.; Thuy, Le N.; Pinter, N.; Staveren, van M.F.; Wester, P.; Zegwaard, A.

    2015-01-01

    Flood-risk management (FRM) is shaped by context: a society’s cultural background; physical possibilities and constraints; and the historical development of that society’s economy, politi- cal system, education, etc. These provide different drivers for change, in interaction with more global

  6. Trends in flood risk management in deltas around the world: Are we going ‘soft’?

    NARCIS (Netherlands)

    Wesselink, A.; Warner, J.F.; Syed, M.A.; Chan, F.; Tran, D.D.; Huq, H.; Huthoff, F.; Thuy, Le N.; Pinter, N.; Staveren, van M.F.; Wester, P.; Zegwaard, A.

    2015-01-01

    Flood-risk management (FRM) is shaped by context: a society’s cultural background; physical possibilities and constraints; and the historical development of that society’s economy, politi- cal system, education, etc. These provide different drivers for change, in interaction with more global develop

  7. Assessment of the effects of multiple extreme floods on flow and transport processes under competing flood protection and environmental management strategies.

    Science.gov (United States)

    Tu, Tongbi; Carr, Kara J; Ercan, Ali; Trinh, Toan; Kavvas, M Levent; Nosacka, John

    2017-07-11

    Extreme floods are regarded as one of the most catastrophic natural hazards and can result in significant morphological changes induced by pronounced sediment erosion and deposition processes over the landscape. However, the effects of extreme floods of different return intervals on the floodplain and river channel morphological evolution with the associated sediment transport processes are not well explored. Furthermore, different basin management action plans, such as engineering structure modifications, may also greatly affect the flood inundation, sediment transport, solute transport and morphological processes within extreme flood events. In this study, a coupled two-dimensional hydrodynamic, sediment transport and morphological model is applied to evaluate the impact of different river and basin management strategies on the flood inundation, sediment transport dynamics and morphological changes within extreme flood events of different magnitudes. The 10-year, 50-year, 100-year and 200-year floods are evaluated for the Lower Cache Creek system in California under existing condition and a potential future modification scenario. Modeling results showed that select locations of flood inundation within the study area tend to experience larger inundation depth and more sediment is likely to be trapped in the study area under potential modification scenario. The proposed two dimensional flow and sediment transport modeling approach implemented with a variety of inflow conditions can provide guidance to decision-makers when considering implementation of potential modification plans, especially as they relate to competing management strategies of large water bodies, such as the modeling area in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of an information system for flood defences using a simulation model for operational management

    Energy Technology Data Exchange (ETDEWEB)

    Petkovski, L. [Univ. Sts Cyril and Methodius, Skopje (Yugoslavia). Faculty of Civil Engineering

    2000-07-01

    A flood defense system can be divided in two parts: physical and management. The physical part comprises the catchment area, the natural water network, the dynamism of the manmade structures (housing, infrastructure and industrial facilities) and the passive and active flood defense structures (reservoirs and riverbed alterations). The management part of the flood defense system is an information system for storage and processing of a large number of heterogeneous data which will be used as support in the process of making decisions on the regulated flows in the endangered region. The aim of the presented research is to contribute to the clarification of the basic components (hydrological, hydraulic and water resource related) in the development of the information system in both the planning and the implementation phase. A particular emphasis is given to the water resource module for operational management of a controlled retention space in a flood wave event. In this paper are described the basic approximations of the simulation module and the results of its application on a real water resource system, the flood defense of Skopje (the capital of Macedonia). The flood defense of the city is provided by a combination of two hydro-technical structures: the regulated river bed of Vardar River, with a maximum capacity of 1150 m{sup 3}/s and the Kozjak Reservoir (formed by a 114.1 m tall rock-Earth-fill dam on River Treska, a tributary of Vardar River) with a controlled retention space of 10{sup 8} m{sup 3}. (orig.)

  9. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yao Wei J

    2009-04-01

    Full Text Available Abstract Background Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48 and isolated lakes (0.50. The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708, and the lowest was between Tangxun and Dongting lakes (0.1807. The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion The

  10. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China.

    Science.gov (United States)

    Li, Wen X; Nie, Pin; Wang, Gui T; Yao, Wei J

    2009-04-27

    Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48) and isolated lakes (0.50). The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708), and the lowest was between Tangxun and Dongting lakes (0.1807). The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. The similarity in the helminth communities of this fish in the flood-plain

  11. Fall rice straw management and winter flooding treatment effects on a subsequent soybean crop

    Science.gov (United States)

    Anders, M.M.; Windham, T.E.; McNew, R.W.; Reinecke, K.J.

    2005-01-01

    The effects of fall rice (Oryza sativa L.) straw management and winter flooding on the yield and profitability of subsequent irrigated and dryland soybean [Glycine max (L.) Merr.] crops were studied for 3 years. Rice straw treatments consisted of disking, rolling, or standing stubble. Winter flooding treatments consisted of maintaining a minimum water depth of 10 cm by pumping water when necessary, impounding available rainfall, and draining fields to prevent flooding. The following soybean crop was managed as a conventional-tillage system or no-till system. Tillage system treatments were further divided into irrigated or dryland. Results indicated that there were no significant effects from either fall rice straw management or winter flooding treatments on soybean seed yields. Soybean seed yields for, the conventional tillage system were significantly greater than those for the no-till system for the first 2 yrs and not different in the third year. Irrigated soybean seed yields were significantly greater than those from dryland plots for all years. Net economic returns averaged over the 3 yrs were greatest ($390.00 ha-1) from the irrigated no-till system.

  12. 'Are you prepared?' Representations and management of floods in Lomanikoro, Rewa (Fiji).

    Science.gov (United States)

    Nolet, Emilie

    2016-10-01

    The islands of Fiji, in the Western Pacific, are exposed to a wide range of natural hazards. Tropical storms and associated floods are recurring natural phenomena, but it has been regularly alleged that Fijians lack preparation, over-rely on state assistance in post-disaster situations or engage in risky behaviours that aggravate the negative impact of floods. Risk reduction strategies, which are now implemented by government authorities and international organisations, heavily promote the principle of 'community preparedness'. Both community awareness programmes and capacity-building programmes are conducted throughout the country in the most vulnerable communities. This paper analyses how the inhabitants of Lomanikoro village, in the low areas of the Rewa Delta, perceive and manage existing flood risks. It examines social and cultural factors that contribute to shape risk response locally-in particular, why villagers may be reluctant to adopt some recommended preparedness measures and resettle in higher, safer zones.

  13. Remote sensing analysis for flood risk management in urban sprawl contexts

    Directory of Open Access Journals (Sweden)

    Francesca Franci

    2015-07-01

    Full Text Available Remote sensing can play a key role in risk assessment and management, especially when several concurrent factors coexist, such as a predisposition to natural disasters and the urban sprawl, spreading over highly vulnerable areas. In this context, multitemporal analysis can provide decision-makers with tools and information to reduce the impacts of disasters (e.g. flooding and to encourage a sustainable development. The present work focuses on the employment of multispectral satellite imagery to produce multitemporal land use/cover maps for the city of Dhaka, which is subject to frequent flooding events. In particular, the evaluation of the urban growth, the analysis of the annual dynamics of flooding and the study of the 2004 catastrophic event were performed. For the change-detection procedure, Landsat images were used. These images allow the quantification of the very rapid growth of the metropolis, with an increase in built-up areas from 75 to 111 km2. The image of 2009 showed that an ordinary flood affects about 115 km2 (on a studied area of 591 km2. On the other hand, the analysis of the 2004 extreme flooding event, performed on a wider area, showed that the affected lands added up to 750 km2 (on about 3845 km2.

  14. Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate

    Science.gov (United States)

    Mullan, Donal; Vandaele, Karel; Boardman, John; Meneely, John; Crossley, Laura H.

    2016-10-01

    Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.

  15. Natural flood management in Southwell (Nottinghamshire, UK): an interdisciplinary approach in a rural-urban catchment

    Science.gov (United States)

    Wells, Josh; Labadz, Jillian; Islam, Mofa; Smith, Amanda; Disney, Andrew; Thorne, Colin

    2017-04-01

    The town of Southwell (Nottinghamshire, UK) is situated within a rural catchment and has experienced multiple flood events. In summer 2013 an extreme event occurred in which 107.6mm of rain fell within two hours, flooding up to 300 homes. As a result, a voluntary flood action group was established in the community (Southwell Flood Forum). An experimental natural flood management research project has been developed within the Potwell Dyke catchment (above Southwell). This has led to the creation of a catchment partnership of relevant stakeholders (academics, community, statutory bodies, local government and conservation organisations). Prior to intervention, water level monitoring was installed at five locations and flows were gauged for approximately one year. Rainfall data are available from the university weather station within the catchment. Ten large woody debris dams were installed on two of the streams within the catchment in summer 2016. In November, a stream restoration took place to reinstate historic meanders and create online storage in a previously ditched channel reach, together with the construction of five earth bunds in the corners of the fields. These interventions are designed to store and slow water whilst promoting ecological gains. The research takes an interdisciplinary approach. The aims are to assess the extent to which natural food management (NFM) can reduce fluvial flood occurrence but also identify and analyse current barriers to NFM uptake. Interviews with landowners in the catchment have taken place. Practitioners have also been interviewed in order to discuss the barriers to current uptake from an industry perspective. This study therefore not only addresses the evidence gap but also draws upon current barriers to advise future NFM projects. This paper will present preliminary findings from the hydrological monitoring and summarise barriers identified and lessons learned from stakeholder engagement activities.

  16. Climate change and the response of phenology of Great Tit, Summer Oak and herbivorous caterpillars on flood plain forest ecosystem during 1961-2007

    Science.gov (United States)

    Bartosova, L.; Trnka, M.; Bauer, Z.; Bauerova, J.; Stepanek, P.; Mozny, M.; Zalud, Z.

    2009-04-01

    In this study are presented the phenophases of three animal and plant species, which were observed on research plot Vranovice during 1961 - 2007 (47 years). The observation took place at typical flood plain forest of southern Moravia. These are one common bird Great Tit (Parus major), tree Summer Oak (Quercus robur) and caterpillars Tortrix moth (Tortrix viridana) and Winter Moth (Operophthera brumata). These species are dependent on each other during their development and together create trophic chain. In case of Summer Oak the phenophases were observed since the bud break to full foliage on the same specimen during the whole 47 years. During the same period were observed nesting of 843 nesting pairs of Great Tit. We determined the first laying date (FLD), which was defined as the date when the first clutch in a given year was initiated and mean laying date (MLD), which was defined as the mean initiation date of the all first clutches in the population. The activity of caterpillars was observed indirectly using data on the intensity of caterpillars' frass fall-down that was systematically recorded throughout the study period. As the beginning of peak of excrement fall-down was taken the first day when this event was first observable. The conclusion phase was accompanied by migration of Winter Moth (Operophthera brumata) caterpillars to lower levels of the forest before the cocooning. Tortrix Moth (Tortrix viridana) caterpillars are cocooning (encapsulated) in folds of leaves. The phenophases of all three species has shifted to the earlier time during whole period of observation. The date of full foliage has advanced by 1.9 days per decade. FLD of Great Tit has shifted to the earlier time by 1.6 days and MLD has advanced by 1.5 days per decade. In both cases, the trends are statistically significant at α = 0.01. The dates of activity of caterpillars has shifted at the beginning by 2.02 and at the end by 2.06 days per decade. This trend is statictically highly

  17. Sustainable Management of Groundwater Resources: A Case Study from the North China Plain

    Science.gov (United States)

    Liu, J.; Zheng, C.; Zheng, L.; Wu, J.; Lei, Y.

    2005-12-01

    With the dramatic increase of population and rapid growth of municipal and industrial water demands, global water shortage is becoming more and more acute. One of the most striking examples for groundwater depletion is the North China Plain (NCP). As the most important center of agricultural production and home to more than 200 million people in China, NCP is experiencing a rapid depletion of its groundwater resources. Groundwater levels in many parts of NCP are currently declining at a rate of 1 m/year or even more due to excessive pumping. A numerical groundwater flow model was developed in this study for the Shijiazhuang region, a typical part of NCP where groundwater is the main water supply source for local agriculture irrigation and municipal and industrial water needs. The model indicated unsustainable groundwater utilization as the pumping exceeds recharge by a large amount. In this study, management optimization modeling was conducted to quantify and improve the sustainability of groundwater utilization in the study area. Based on the calibrated flow model, an optimization formulation was first set up to identify the optimal pumping well locations and rates that lead to the maximum total yield subject to a series of water level constraints. A second optimization formulation was then considered to minimize the total management costs required to meet the projected total water demands, also subject to the same set of water level constraints. The optimization models in this study provide a useful tool for developing cost-effective strategies for sustainable management of groundwater resources on the NCP. The findings from this study are of potentially wide interest to other parts of the world under similar hydrogeological and economic conditions.

  18. Water Resource Management in the Intermountain Izeh Plain, Southwest of Iran

    Institute of Scientific and Technical Information of China (English)

    Kalantari. N; Pawar.N.J; Keshavarzi.M.R

    2009-01-01

    Ever growing demand for water for agricultural activities in the Izeh Plain has enhanced the use of groundwater. Due to enormous groundwater abstraction since 1985, the overall static water level has receded by more than 5 meters reflecting that the aquifer is under stress condition. As a result, interest is focused on application of artificial recharge as an option for groundwater management to augment water supply in this area. Therefore, in the present investigations, suitable sites for artificial recharge were selected by an integrated surface and sub-surface assessment of the area. On the basis of the data collected from four target points, it was realized that the selected sites for artificial recharge could not meet water demand of the area. In this study attention was also paid to utilization of the existing Miangran Lake water as an alternative to combat water shortage for irrigation. The study further indicated that the available Miangran Lake water could be used for irrigation of the reclaimed agricultural land and enabling to convert 2000 hectares of rain-fed land into irrigation. The total cost to utilize lake water is USS 9,756,729 and it was estimated that the project could recoup the investment within 5 years which is quite reasonable in this water scarcity prone area.

  19. Towards sustainable flood risk management in the Rhine and Meuse river basins: synopsis of the findings of IRMA-SPONGE

    NARCIS (Netherlands)

    Hooijer, A.; Klijn, F.; Pedroli, G.B.M.; Os, van A.G.

    2004-01-01

    Recent flood events in western Europe have shown the need for improved flood risk management along the Rhine and Meuse rivers. In response, the IRMA-SPONGE research programme was established, consisting of 13 research projects, in which over 30 organizations from six countries co-operated. The aim o

  20. Shifting to ecological engineering in flood management: Introducing new uncertainties in the development of a Building with Nature pilot project

    NARCIS (Netherlands)

    van den Hoek, Ronald; Brugnach, Marcela Fabiana; Hoekstra, Arjen Ysbert

    2012-01-01

    Building with Nature (BwN) is an innovative approach in flood policy, which aims to use natural system dynamics and materials for the design and realization of flood management projects. However, as natural dynamics are inherently unpredictable, the use of BwN design principles requires a

  1. Towards an integrated disaster risk management due to coastal flooding

    OpenAIRE

    González-Riancho Calzada, Pino

    2015-01-01

    ABSTRACT: This thesis deals with the vulnerability and risk assessment of coastal complex systems in order to move towards an integrated and holistic disaster risk management approach. The research carried out covers the entire process from risk assessment to risk management and has resulted in 4 scientific papers published, each one focusing on different risk components on which gaps in literature were identified. • An integrated vulnerability and risk assessment framework has been prop...

  2. From Flood Control to Water Management: A Journey of Bangladesh towards Integrated Water Resources Management

    Directory of Open Access Journals (Sweden)

    Animesh K. Gain

    2017-01-01

    Full Text Available Integrated Water Resources Management (IWRM is considered as a practical approach in solving water-related problems, which are socio-ecologically complex in nature. Bangladesh has also embraced the IWRM approach against its earlier attempt to flood control. In this paper, we evaluate the current status of IWRM in Bangladesh through the lens of policy shifts, institutional transitions and project transformations using seven key dimensions of IWRM. Looking at IWRM from such perspectives is lacking in current literature. A thorough review of policy shifts suggests that all the key dimensions of IWRM are “highly reflected” in the current policy documents. The dimension of “integrated management” is “highly reflected” in both institutional transition and project-level transformation. Most other dimensions are also recognised at both institutional and project levels. However, such reflections gradually weaken as we move from policies to institutions to projects. Despite catchment being considered as a spatial unit of water management at both institutional and project levels, transboundary basin planning is yet to be accomplished. The participation of local people is highly promoted in various recent projects. However, equity and social issues have received less attention at project level, although it has significant potential for supporting some of the key determinants of adaptive capacity. Thus, the IWRM dimensions are in general reflected in recent policies, institutional reforms and project formulation in Bangladesh. However, to solve the complex water-problems, basin scale management through transboundary cooperation and equity and social issues need to be implemented at institutional and project levels.

  3. Sustainability of farmers' soil fertility management practices: a case study in the North China Plain.

    Science.gov (United States)

    Zhen, Lin; Zoebisch, Michael A; Chen, Guibao; Feng, Zhiming

    2006-06-01

    To ensure regional self-sufficiency and adequate rural livelihoods in the North China Plain (NCP), tremendous efforts were made over the last two decades by the Chinese government to raise the productivity of crops, despite increasing pressure on the land caused by a growing population. Emphasis was placed on high external input use, especially for wheat, maize and cotton, ignoring the particularities and limitations of the natural resource base. This study assesses the sustainability of current soil fertility management practices on the basis of selected location-specific indicators, such as fertilizer use, soil pH, soil organic matter content, levels of nitrogen (N), phosphorus (P) and potassium (K) in the soil, and identifies determining factors of the yield and environmental impacts of inputs use. Data used for the analysis were gathered from soil tests, groundwater and chive plant tests, household surveys, and statistical yearbooks. Stepwise multiple regression analysis is applied to determine factors affecting the yields. The study revealed unbalanced use of nutrients. Organic fertilizers (manure, crop residues) and K are insufficiently applied, whereas N and P are considerably overused in comparison with recommended doses. The intensive cropping in the area using high-input technologies -particularly fertilizer- has resulted in a remarkable general enhancement of crop productivity and improvement of soil fertility over the years. The yield of wheat and maize has increased 173 and 180 kg ha(-1) annually from 1982 to 2000, respectively and soil fertility status also improved over the years and the values of the selected indicators are within the borderline for sustainability. Irrigation water, FYM application, and total labor used during the cultivation season (with the exception of cotton and chive) for production are the main factors determining the yields of four major crops under study, while popularly and overly used N did not appear to be a significant

  4. Response of Vegetation on Gravel Bars to Management Measures and Floods: Case Study From the Czech Republic

    Directory of Open Access Journals (Sweden)

    Eremiášová Renata

    2014-08-01

    Full Text Available This article investigates response of vegetation on gravel bars to management measures and floods. The management measures consisted of the partial removal of gravel and vegetation cover, and were applied to six gravel bars on the Ostravice River, Czech Republic. Unexpected floods occu-rred in 2010, with the amplitude of 5- to 50-year repetition. Research of vegetation on the gravel bars consisted of vegetation survey before the management works; the monitoring of vegetation development over the following year and the verification of the relationships of species diversity, successional stages and the biotope conditions with the help of multivariate analysis (detrended correspondence analysis. Vegetation on the gravel bars was at different successional stages, and had higher diversity and vegetation cover before the management measures and floods. The mul-tivariate analysis revealed a shift toward initial successional stages with high demand on moisture, temperature and light after both management measures and floods.

  5. Climate change planning for the Great Plains : Wildlife vulnerability assessment & recommendations for land and grazing management

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is the Great Plains Landscape Conservation Cooperative (GP LCC) Vulnerability Assessment Report The purpose of the GP LCC is to conduct applied science...

  6. Management Plan for the Reintroduction of Plains Sharp-Tailed Grouse (Tympanuchus phasianellus jamesi) at the Rocky Mountain Arsenal National Wildlife Refuge [DRAFT

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The (Comprehensive Management Plan) CMP for Rocky Mountain Arsenal National Wildlife Refuge (RMA) calls for reintroducing plains sharp-tailed grouse (PSTG). This...

  7. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain.

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-03-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)-maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha(-1) of urea for wheat and 225 kg N ha(-1) of urea for maize (U), 180 kg N ha(-1) of urea and 90 kg N ha(-1) of straw for wheat and 180 kg N of urea and 45 kg N ha(-1) of straw for maize (S), 180 kg N ha(-1) of urea and 90 kg N ha(-1) of manure for wheat and 180 kg N ha(-1) of urea and 45 kg N ha(-1) of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and [Formula: see text]-N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on [Formula: see text]-N leaching from the second year and thereafter interacted with N management regimes on [Formula: see text]-N loads during all maize seasons. The average yield-scaled [Formula: see text]-N leaching losses were in order of CTS < NTS< CTU < NTU Plain.

  8. Managing urban flooding in the face of continuous change

    NARCIS (Netherlands)

    Zevenbergen, C.

    2011-01-01

    Many cities around the world are facing the challenges of sustainable living and development and are exploring ways to enhance their ability to manage an uncertain future. Drivers and pressures include relative wealth; population growth; the provision of food; lifestyle expectations; energy and

  9. Managing urban flooding in the face of continuous change

    NARCIS (Netherlands)

    Zevenbergen, C.

    2011-01-01

    Many cities around the world are facing the challenges of sustainable living and development and are exploring ways to enhance their ability to manage an uncertain future. Drivers and pressures include relative wealth; population growth; the provision of food; lifestyle expectations; energy and reso

  10. Natural disaster management in India with focus on floods and cyclones

    Science.gov (United States)

    Thattai, Deeptha V.; Sathyanathan, R.; Dinesh, R.; Harshit Kumar, L.

    2017-07-01

    Disasters are of two major kinds, natural and manmade, and affect the community. Natural disasters are caused by natural earth processes like floods, droughts, cyclones, tsunamis, earthquakes and epidemics. Manmade disasters occur due to chemical spills, accidents, terrorism activities etc. India is prone to almost all the major natural disasters. The high population density combined with poor preparedness, planning and management, and rescue and relief measures inevitably lead to huge losses of lives and property every year in the country. This paper analyses the disaster management policy of India and its implementation using two recent case studies - one where a relative degree of success has been achieved (cyclones) and the other where we are still struggling to have even a basic preparedness system in place (floods).

  11. Flood of October 8, 1962, on Bachman Branch and Joes Creek at Dallas, Texas

    Science.gov (United States)

    Ruggles, Frederick H.

    1966-01-01

    This report presents hydrologic data that enable the user to define areas susceptible to flooding and to evaluate the flood hazard along Bachman Branch and Joes Creek. The data provide a technical basis for making sound decisions concerning the use of flood-plain lands. The report will be useful for preparing building and zoning regulations, locating waste disposal facilities, purchasing unoccupied land, developing recreational areas, and managing surface water in relation to ground-water resources. This is one of the series of reports delineating the flood hazard on streams in the Dallas area.

  12. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    Science.gov (United States)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  13. Selenium removal during a flood experiment: Best management practice for a contaminated wetland?

    Science.gov (United States)

    Naftz, D. L.; Yahnke, J.; Miller, J.; Noyes, S.

    2003-12-01

    Constructed and natural wetlands can accumulate elevated levels of selenium (Se); however, few data are available on cost-effective methods for remobilization and removal of Se from these areas. The experiment was conducted at Stewart Lake Waterfowl Management Area (SLWMA), a Se-contaminated wetland in northeastern Utah. The purpose of the experiment was to assess the effectiveness of flooding on the removal of Se from surface sediments and transport to the chemically reducing ground water 1.8 meters (m) below land surface. The 84-m2 flood-experiment plot contained 10 monitoring wells, a water-quality minimonitor (continuous measurement of pH, specific conductance, water temperature, and dissolved oxygen), a down-hole bromide (Br) electrode, and 2 pressure transducers. Flooding was initiated on August 27, 2002, and a Br tracer was added to water delivered through a pipeline to the flood plot. Standing water depth in the flood plot was maintained at 0.3 m through September 1, 2002. Mean vertical water velocities were estimated to range from 0.3 to 1.3 centimeters per hour. Dissolved (less than 0.45 micron) Se increased from pre-flood concentrations of less than 10 micrograms per liter (ug/L) to greater than 800 ug/L during flooding in samples from deep (1.8 m below land surface) ground water. Se concentrations exceeded 5,500 ug/L in samples from shallow (0.8 m below land surface) ground water. Ratios of Se to Br in water samples indicate that Se moved conservatively during the experiment and was derived from leaching of near-surface sediments. Cumulative Se flux to the deep ground water during the experiment ranged from 54.9 to 172 milligrams per square meter (mg/m2). Pre- and post-flood surface soil sampling indicated a mean Se flux of 750 mg/m2 through the top 15 centimeters of soil. Measurable Se flux to the deep ground water would have increased if the flood experiment had continued beyond September 1, 2002. Water samples from the deep ground water collected in

  14. Climate change impacts and uncertainties in flood risk management: Examples from the North Sea Region

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, D.; Graham, L.P.; Besten, J. Den; Andreasson, J.; Bergstroem, S.; Engen-Skaugen, T.; Foerland, E.; Groen, R.; Jespersen, M.; Jong, K. de; Olsson, J.

    2012-07-01

    This report presents methods used for estimating the hydrological impacts of climate change and their uncertainties, the expected impacts on extreme flows in Norway, and in Sweden with particular reference to Lake Vaenern, and examples of climate change impacts on river discharge and on agriculture in the Netherlands. Work considering changes in extreme precipitation is also reported, as are methods and strategies for communicating climate change impacts in flood management practice. (eb)

  15. Implementing new flood protection standards: obstacles to adaptive management and how to overcome these

    Directory of Open Access Journals (Sweden)

    Klijn Frans

    2016-01-01

    Full Text Available The Netherlands is updating its flood protection, whilst fully taking into account climate change and socioeconomic development. This translates in ‘anticipatory standards’ which need to be met in 2050, and which apply for the then foreseen climate and economy. Whilst the government maintains to have adopted a policy of adaptive planning and management, the new standards are thus based on one future situation, which qualifies as a ‘high end scenario’ from a flood risk management perspective. The consequences of adopting these new standards are now becoming clear. It is expected that many hundreds of kilometres of primary flood defences need to be reinforced and/or raised, at an estimated investment of about 9-14 billion euros. The many uncertainties about actual future development, however, complicate the decision making about the implementation of individual reinforcement projects: should one aim at immediately meeting the new standard or gradually improve and grow towards it? In this paper we discuss the uncertain decision making context, show that lawfulness (working according to procedures, rules and regulations and expediency (towards a purpose may jeopardize the good intentions of adaptive management, and argue that optimization may not provide the most useful answer to this decision making problem.

  16. Prescriptions for adaptive comanagement: the case of flood management in the German Rhine basin

    Directory of Open Access Journals (Sweden)

    Gert Becker

    2015-09-01

    Full Text Available Centrally administered bureaucracies are ill suited to managing the environmental resources of complex social-ecological systems. Therefore management approaches are required that can better deal with its complexity and uncertainty, which are further exacerbated by developments such as climate change. Adaptive comanagement (ACM has emerged as a relatively novel governance approach and potential solution to the challenges arising. Adaptive comanagement hinges on certain institutional prescriptions intended to enhance the adaptability of management by improving the comprehension of and response to the complex context and surprises of social-ecological systems. The ACM literature describes that for enhanced adaptability, institutional arrangements should be polycentric, aligned with the scale of ecosystems (the bioregional approach, feature open and participatory governance, and involve much experimentation. The case of flood management in the German part of the Rhine basin is used to provide an assessment of these ideas. We analyze whether and to what degree the prescriptions have been implemented and whether or not certain fundamental changes seen in German flood management can be traced back to the application of the prescriptions. Our study demonstrates a transition from the traditional engineering and "flood control" approach to a more holistic management concept based on a risk perspective. In this process, the four ACM prescriptions have made an important contribution in preparing or facilitating policy changes. The findings suggest that the application of the prescriptions requires the right supporting context before they can be applied to the fullest extent possible, such as a high problem pressure, new discourses, or leading actors. A major constraint arises in the misalignment of political power and of the different interests of the actors, which contribute to reactive management and inadequate interplay. To address this, we recommend

  17. Dynamic flood webmapping: an operational and cost-limited tool to optimize crisis management

    Directory of Open Access Journals (Sweden)

    Strappazzon Quentin

    2016-01-01

    Full Text Available Due to strong climate variations and the multiplication of flood events, protection based strategies are no longer sufficient to handle a watershed scale crisis. Monitoring, prediction and alert procedures are required to ensure effective crisis and post-crisis management which explains the recent interest for real time predictions systems. Nevertheless, this kind of system, when fully implemented with in-situ monitoring network, meteorological forecast inputs, hydrological and hydraulic modelling and flood mapping, are often postponed or cancelled because of both their cost and time scale. That is why Prolog Ingénierie and the SyAGE have developed, as an economical and technical sustainable alternative, a tool providing shared access to a real time mapping of current and predicted flooded areas along with a dynamic listing of exposed stakes (such as public buildings, sensible infrastructures, environmental buildings, roads. The update of these maps is performed from the combination of predicted water levels in the river and a flood envelop library (based on 1D/2D hydraulic model results for a wide panel of discharges and hydraulic structures states conditions. This tool has already been implemented on the downstream part of the Yerres River, a tributary of the Seine River in France.

  18. The potential of tidal barrages and lagoons to manage future coastal flood risk

    Science.gov (United States)

    Prime, Thomas; Wolf, Judith; Lyddon, Charlotte; Plater, Andrew; Brown, Jennifer

    2017-04-01

    Wirral peninsula will still be present in 2100. It is therefore important to consider long time horizons and the associated climate change. Both business as usual i.e. no adaptation measures and the presence of a tidal barrage or lagoon at two locations were simulated. Three different representative concentration pathways were used to derive an increase of mean sea-level by 2100. To accurately assess the economic impact, a number of different extreme events with varying annual probabilities of occurrence were simulated, these range from 1 in 1 year to 1 in 1000 years probability of exceedance. The flood inundation model LISFLOOD-FP was used to simulate these extreme events and the economic impact resulting from any inundation in the flood plain was calculated and compared alongside the cost and revenue from projected electricity generation to see if the flood protection benefits would contribute positively to a cost benefit analysis, assessing the building of the barrage. This preliminary study shows that tidal lagoons and barrages do have the potential to offer flood risk benefit and become part of integrated strategies to minimise flood risk in coastal areas, but this is site specific and detailed modelling studies are required. The benefits of these structures are dependent on their shape, size and location, and feasibility studies should consider impacts in the near and far-field.

  19. Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Schmeltzer, J. S.; Millier, J. J.; Gustafson, D. L.

    1993-01-01

    A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

  20. Investigation of the 2006 Drought and 2007 Flood Extremes at the Southern Great Plains Through an Integrative Analysis of Observations (Invited)

    Science.gov (United States)

    Dong, X.; Xi, B.; Kennedy, A. D.; Feng, Z.; Entin, J. K.; Houser, P.; Schiffer, R. A.; L'Ecuyer, T.; Olson, W. S.; Hsu, K.; Liu, T. W.; Lin, B.; Deng, Y.; Jiang, T.

    2010-12-01

    Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced the frequency of thunderstorms and their associated latent heat release. Although the drought and pluvial conditions

  1. Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale.

    Science.gov (United States)

    Deasy, Clare; Titman, Andrew; Quinton, John N

    2014-01-01

    As a result of several serious flood events which have occurred since 2000, flooding across Europe is now receiving considerable public and media attention. The impact of land use on hydrology and flood response is significantly under-researched, and the links between land use change and flooding are still unclear. This study considers runoff data available from studies of arable in-field land use management options, applied with the aim of reducing diffuse pollution from arable land, in order to investigate whether these treatments also have potential to reduce downstream flooding. Intensive monitoring of 17 hillslope treatment areas produced a record of flood peak data covering different mitigation treatments for runoff which occurred in the winter of 2007-2008. We investigated event total runoff responses to rainfall, peak runoff, and timing of the runoff peaks from replicates of different treatments, in order to assess whether there is a significant difference in flood peak response between different mitigation options which could be used to mitigate downstream flood risk. A mixed-modelling approach was adopted in order to determine whether differences observed in runoff response were significant. The results of this study suggest that changes in land use management using arable in-field mitigation treatments can affect local-scale runoff generation, with differences observed in the size, duration and timing of flood peaks as a result of different management practices, but the study was unable to allow significant treatment effects to be determined. We suggest that further field studies of the effects of changes in land use and land use management need to upscale towards farm and catchment scale experiments which consider high quality before-and-after data over longer temporal timescales. This type of data collection is essential in order to allow appropriate land use management decisions to be made.

  2. Collaborative Strategies for Sustainable EU Flood Risk Management: FOSS and Geospatial Tools—Challenges and Opportunities for Operative Risk Analysis

    Directory of Open Access Journals (Sweden)

    Raffaele Albano

    2015-12-01

    Full Text Available An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to mitigate the impact of natural hazards on European economies and societies, improved risk assessment, and management needs to be pursued. With the recent transition to a more risk-based approach in European flood management policy, flood analysis models have become an important part of flood risk management (FRM. In this context, free and open-source (FOSS geospatial models provide better and more complete information to stakeholders regarding their compliance with the Flood Directive (2007/60/EC for effective and collaborative FRM. A geospatial model is an essential tool to address the European challenge for comprehensive and sustainable FRM because it allows for the use of integrated social and economic quantitative risk outcomes in a spatio-temporal domain. Moreover, a FOSS model can support governance processes using an interactive, transparent and collaborative approach, providing a meaningful experience that both promotes learning and generates knowledge through a process of guided discovery regarding flood risk management. This article aims to organize the available knowledge and characteristics of the methods available to give operational recommendations and principles that can support authorities, local entities, and the stakeholders involved in decision-making with regard to flood risk management in their compliance with the Floods Directive (2007/60/EC.

  3. Managing runoff and flow pathways in a small rural catchment to reduce flood risk with other multi-purpose benefits

    Science.gov (United States)

    Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine

    2010-05-01

    From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in

  4. Compensation in Flood Risk Management with a Focus on Shifts in Compensation Regimes Regarding Prevention, Mitigation and Disaster Management

    Directory of Open Access Journals (Sweden)

    Willemijn van Doorn-Hoekveld

    2014-05-01

    Full Text Available In the Netherlands, the history of water management and water safety especially, goes back centuries. Compensation of damage caused by lawful acts of an administrative body (no-fault liability is developed mostly in the field of water management and has quite a long history as well. The compensation of no-fault liability in the Netherlands since its introduction has been part of public law and not of civil law. This does not mean that the administration cannot be held liable for wrongful actions, in which case private law is applied. There is a strict distinction between wrongful and lawful acts of the administration: both can cause damage, but the way they are compensated differs: for lawful acts, public law is applied and for wrongful acts civil law (tort law is applied. This article only considers public law, because it is the most important branch of law for the compensation of damage caused in the field of water safety. The field of water safety and flood risk management has seen many new developments, of which integration is the latest one. However, the course of flood risk management tends towards more segmentation of responsibilities. No-fault liability and other questions of compensation are also areas that are developing towards more integration. Assessment of  no-fault liability in the field of water safety management cannot be made without taking into consideration the historical development of the responsibility of the state for water management tasks in general. In this contribution, the author addresses the historical development of responsibilities of the state for water management tasks, recent developments in this area and the system of no-fault liability regarding measures to prevent flooding.

  5. 500-Year Floodplains, Flood plains from FEMA, Published in 2007, 1:600 (1in=50ft) scale, Town of Cary NC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This 500-Year Floodplains dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as 'Flood...

  6. 100-Year Floodplains, Flood plains from FEMA, Published in 2003, 1:600 (1in=50ft) scale, Town of Cary NC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This 100-Year Floodplains dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2003. It is described as 'Flood...

  7. Flood-plain delineation for Occoquan River, Wolf Run, Sandy Run, Elk Horn Run, Giles Run, Kanes Creek, Racoon Creek, and Thompson Creek, Fairfax County, Virginia

    Science.gov (United States)

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Occoquan River and its tributaries within Fairfax County and those streams on Mason Neck within Fairfax County tributary to the Potomac River. (Woodard-USGS)

  8. Flood hazard management from a coevolutionary perspective: exposure and policy response in the European Alps

    Science.gov (United States)

    Fuchs, Sven; Röthlisberger, Veronika; Thaler, Thomas; Zischg, Andreas; Keiler, Margreth

    2017-04-01

    A coevolutionary perspective is adopted to understand the dynamics of exposure to hydrological hazards in the European Alps. A spatially explicit, object-based temporal assessment of elements at risk to flood hazards (river floods, torrential floods and debris flows) in Austria and Switzerland is presented for the 1919-2012 period. The assessment is based on two different datasets, (a) hazard information adhering to legally binding land use planning restrictions and (b) information on building types combined from different national level spatial data. We discuss these transdisciplinary dynamics and focus on economic, social and institutional interdependencies and interactions between human and physical systems. Exposure changes in the response to multiple drivers, including population growth and land use conflicts. The results show that while some regional assets are associated with a strong increase in exposure to hazards, others are characterized by a below-average level of exposure. The spatiotemporal results indicate relatively stable hot spots in the European Alps. These results coincide with the topography of the countries and with the respective range of economic activities and political settings. Furthermore, the differences between management approaches as a result of multiple institutional settings are discussed. A coevolutionary framework widens the explanatory power of multiple drivers to changes in exposure and risk, and supports a shift from structural, security-based policies towards an integrated, risk-based natural hazard management system.

  9. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  10. Teaching flood risk management to secondary school students via the web

    Science.gov (United States)

    Junier, S.

    2009-04-01

    Websites are getting increasingly important as a means to inform different groups in society about a large range of subjects. Especially young people use the internet frequently as a source of knowledge. When asked to develop educational material about flood risk management, we therefore chose to develop a website. Junior Floodsite, part of the larger Floodsite project, is developed for secondary school students around 15 or 16 years old, and their teachers, in all countries in Europe. Websites are common, but not for an audience and purpose like this. We asked a group of teachers and students to advise us and test the material we developed. Although children this age use the web a lot, this does not mean that anything you put on, will be used. To reach secondary school children about natural hazards such as floods, is not an easy thing. Amongst the masses of fun things to do on the internet, flood risk management will not stand out automatically. For students it had to be interesting, fun and useful. But not every student wants the same thing. Teachers informed us that for them it is important that the material fits seamlessly into the curriculum. They will then more readily employ the material. But in every country the curriculum is different (and even within countries they differ) and we could not make material for each individual country. To tackle these problems we decided to take a dual approach. On the one hand, we made the website flexible and modular with blocks of information and also activities like assignments, a virtual tour in Google Earth and games. Students and teachers can use those parts that they find interesting, fun or useful. On the other hand, we developed sets of structured lessons that teachers can directly put to use in their classrooms. The material on the website is written in English because most European students learn that language in school, but besides that it is also available in Dutch. Translations into other languages is welcomed

  11. Insightful monitoring of natural flood risk management features using a low-cost and participatory approach

    Science.gov (United States)

    Starkey, Eleanor; Barnes, Mhari; Quinn, Paul; Large, Andy

    2016-04-01

    Pressures associated with flooding and climate change have significantly increased over recent years. Natural Flood Risk Management (NFRM) is now seen as being a more appropriate and favourable approach in some locations. At the same time, catchment managers are also encouraged to adopt a more integrated, evidence-based and bottom-up approach. This includes engaging with local communities. Although NFRM features are being more readily installed, there is still limited evidence associated with their ability to reduce flood risk and offer multiple benefits. In particular, local communities and land owners are still uncertain about what the features entail and how they will perform, which is a huge barrier affecting widespread uptake. Traditional hydrometric monitoring techniques are well established but they still struggle to successfully monitor and capture NFRM performance spatially and temporally in a visual and more meaningful way for those directly affected on the ground. Two UK-based case studies are presented here where unique NFRM features have been carefully designed and installed in rural headwater catchments. This includes a 1km2 sub-catchment of the Haltwhistle Burn (northern England) and a 2km2 sub-catchment of Eddleston Water (southern Scotland). Both of these pilot sites are subject to prolonged flooding in winter and flash flooding in summer. This exacerbates sediment, debris and water quality issues downstream. Examples of NFRM features include ponds, woody debris and a log feature inspired by the children's game 'Kerplunk'. They have been tested and monitored over the 2015-2016 winter storms using low-cost techniques by both researchers and members of the community ('citizen scientists'). Results show that monitoring techniques such as regular consumer specification time-lapse cameras, photographs, videos and 'kite-cams' are suitable for long-term and low-cost monitoring of a variety of NFRM features. These techniques have been compared against

  12. Improvement of resilience of urban areas by integrating social perception in flash-flood risk management

    Science.gov (United States)

    Bodoque, J. M.; Amérigo, M.; Díez-Herrero, A.; García, J. A.; Cortés, B.; Ballesteros-Cánovas, J. A.; Olcina, J.

    2016-10-01

    In urban areas prone to flash floods, characterization of social resilience is critical to guarantee the success of emergency management plans. In this study, we present the methodological approach that led to the submission and subsequent approval of the Civil Protection Plan of Navaluenga (Central Spain), in which the first phase was to analyse flood hazard by combining the Hydrological Modelling System (HEC-HMS) and the Iber 2D hydrodynamic model. We then analysed social vulnerability and designed measures to put into practice within the framework of the Civil Protection Plan. At a later phase, we assessed citizens' flash-flood risk perception and level of awareness regarding some key variables of the Civil Protection Plan. To this end, 254 adults representing roughly 12% of the population census were interviewed. Responses were analysed descriptively, comparing awareness regarding preparedness and response actions with the corresponding information and behaviours previously defined in the Civil Protection Plan. In addition, we carried out a latent class cluster analysis aimed at identifying the different groups present among the interviewees. Our results showed that risk perception is low. Specifically, 60.8% of the interviewees showed low risk perception and low awareness (cluster 1); 24.4% had high risk perception and low awareness (cluster 2), while the remaining 14.8% presented high long-term risk perception and high awareness (cluster 3). These findings suggest the need for integrating these key variables of social risk perception and local tailored information in emergency management plans, especially in urban areas prone to flash-floods where response times are limited.

  13. Flash flood characterisation of the Haor area of Bangladesh

    Science.gov (United States)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  14. Agricultural water management in the Texas High Plains:Present status, challenges, and opportunities

    Science.gov (United States)

    Evapotranspiration (ET) is an essential component of the water balance, and a major consumptive use of irrigation water and precipitation on cropland. Any attempt to improve water use efficiency must be based on reliable estimates of ET for irrigation scheduling purposes. In the Texas High Plains, i...

  15. A framework for evaluating the effectiveness of flood emergency management systems in Europe

    Directory of Open Access Journals (Sweden)

    Herman Kasper Gilissen

    2016-12-01

    Full Text Available Society is faced with a range of contemporary threats to everyday life, from natural and technological hazards to accidents and terrorism. These are embodied within integrated emergency management arrangements that are designed to enhance preparedness and response to such incidents, and in turn facilitate a prompt recovery. Such arrangements must be inherently dynamic and evolve as new threats emerge or as existing threats change. An example of the latter is the changing nature of flooding, which is projected to increase in both frequency and severity with climate change. Recognizing this evolving threat, we focus on the evaluation of the effectiveness of domestic Flood Emergency Management Systems (FEMS as components of integrated emergency management arrangements. Despite the extensive body of literature that documents success conditions of so-called effective emergency management more broadly, there have been only a few attempts to construct a comprehensive evaluation framework to support objective assessment and cross-country comparison. Addressing this gap, we formulate an evaluation framework specifically tailored to the study of FEMS in Europe, which is then provisionally applied to the study of FEMS in England (UK, France, the Netherlands, Poland, and Sweden. Important differences are observed in how FEMS have evolved in relation to differing contextual backgrounds (political, cultural, administrative, and socio-economic and exposures to flood hazard. From this provisional assessment, a number of opportunities for, and constraints to, enhancing the effectiveness of FEMS in Europe are discerned. The evaluation framework thus serves as an important stepping stone for further indepth inquiry, and as a valuable tool for future comparative study.

  16. Disaster management in flash floods in Leh (Ladakh: A case study

    Directory of Open Access Journals (Sweden)

    Preeti Gupta

    2012-01-01

    Full Text Available Background: On August 6, 2010, in the dark of the midnight, there were flash floods due to cloud burst in Leh in Ladakh region of North India. It rained 14 inches in 2 hours, causing loss of human life and destruction. The civil hospital of Leh was badly damaged and rendered dysfunctional. Search and rescue operations were launched by the Indian Army immediately after the disaster. The injured and the dead were shifted to Army Hospital, Leh, and mass casualty management was started by the army doctors while relief work was mounted by the army and civil administration. Objective: The present study was done to document disaster management strategies and approaches and to assesses the impact of flash floods on human lives, health hazards, and future implications of a natural disaster. Materials and Methods: The approach used was both quantitative as well as qualitative. It included data collection from the primary sources of the district collectorate, interviews with the district civil administration, health officials, and army officials who organized rescue operations, restoration of communication and transport, mass casualty management, and informal discussions with local residents. Results: 234 persons died and over 800 were reported missing. Almost half of the people who died were local residents (49.6% and foreigners (10.2%. Age-wise analysis of the deaths shows that the majority of deaths were reported in the age group of 25-50 years, accounting for 44.4% of deaths, followed by the 11-25-year age group with 22.2% deaths. The gender analysis showed that 61.5% were males and 38.5% were females. A further analysis showed that more females died in the age groups <10 years and ≥50 years. Conclusions: Disaster preparedness is critical, particularly in natural disasters. The Army′s immediate search, rescue, and relief operations and mass casualty management effectively and efficiently mitigated the impact of flash floods, and restored normal

  17. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    Science.gov (United States)

    Kochilakis, Giorgos; Poursanidis, Dimitris; Chrysoulakis, Nektarios; Varella, Vassiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas; Papathanasiou, Chrysoula; Karavokyros, George; Aivazoglou, Maria; Makropoulos, Christos; Mimikou, Maria

    2016-01-01

    A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement "what-if" scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of "what-if" scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its robust architecture and its

  18. Flooding and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  19. Science-policy interface in transformative adaptive flood risk management - decision-making in Austria

    Science.gov (United States)

    Thaler, Thomas; Attems, Marie-Sophie; Rauter, Magdalena; Fuchs, Sven

    2016-04-01

    Facing the challenges of climate change, this paper aims to analyse and to evaluate the multiple use of flood alleviation schemes with respect to social transformation in communities exposed to flood hazards in Europe. The overall goals are: (1) the identification of indicators and parameters necessary for strategies to increase societal resilience, (2) an analysis of the institutional settings needed for societal transformation, and (3) perspectives of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. As such, governance is done by people interacting and defining risk mitigation measures as well as climate change adaptation are therefore simultaneously both outcomes of, and productive to, public and private responsibilities. Building off current knowledge this paper focussed on different dimensions of adaptation and mitigation strategies based on social, economic and institutional incentives and settings, centring on the linkages between these different dimensions and complementing existing flood risk governance arrangements. As such, the challenges of adaptation to flood risk will be tackled by converting scientific frameworks into practical assessment and policy advice. This paper used the Formative Scenario Analysis (FSA) as a method to construct well-defined sets of assumptions to gain insight into a system and its potential future development, based on qualitatively assessed impact factors and rated quantitative relations between these factors, such as impact and consistency analysis. The purpose of this approach was to develop scenarios, where participations develop their own strategies how to implement a transformative adaptation strategy in flood risk management. In particular, the interaction between researcher, the public and policy makers was analysed. Challenges and limitations were assessed, such as benefits on costs of adaptation measures, for the implementation of visions to

  20. Modelling the benefits of flood emergency management measures in reducing damages: a case study on Sondrio, Italy

    Directory of Open Access Journals (Sweden)

    D. Molinari

    2013-08-01

    Full Text Available The European "Floods Directive" 2007/60/EU has produced an important shift from a traditional approach to flood risk management centred only on hazard analysis and forecast to a newer one which encompasses other aspects relevant to decision-making and which reflect recent research advances in both hydraulic engineering and social studies on disaster risk. This paper accordingly proposes a way of modelling the benefits of flood emergency management interventions calculating the possible damages by taking into account exposure, vulnerability, and expected damage reduction. The results of this model can be used to inform decisions and choices for the implementation of flood emergency management measures. A central role is played by expected damages, which are the direct and indirect consequence of the occurrence of floods in exposed and vulnerable urban systems. How damages should be defined and measured is a key question that this paper tries to address. The Floods Directive suggests that mitigation measures taken to reduce flood impact need to be evaluated also by means of a cost–benefit analysis. The paper presents a methodology for assessing the effectiveness of early warning for flash floods, considering its potential impact in reducing direct physical damage, and it assesses the general benefit in regard to other types of damages and losses compared with the emergency management costs. The methodology is applied to the case study area of the city of Sondrio in the northern Alpine region of Italy. A critical discussion follows the application. Its purpose is to highlight the strengths and weaknesses of available models for quantifying direct physical damage and of the general model proposed, given the current state of the art in damage and loss assessment.

  1. Modelling the benefits of flood emergency management measures in reducing damages: a case study on Sondrio, Italy

    Science.gov (United States)

    Molinari, D.; Ballio, F.; Menoni, S.

    2013-08-01

    The European "Floods Directive" 2007/60/EU has produced an important shift from a traditional approach to flood risk management centred only on hazard analysis and forecast to a newer one which encompasses other aspects relevant to decision-making and which reflect recent research advances in both hydraulic engineering and social studies on disaster risk. This paper accordingly proposes a way of modelling the benefits of flood emergency management interventions calculating the possible damages by taking into account exposure, vulnerability, and expected damage reduction. The results of this model can be used to inform decisions and choices for the implementation of flood emergency management measures. A central role is played by expected damages, which are the direct and indirect consequence of the occurrence of floods in exposed and vulnerable urban systems. How damages should be defined and measured is a key question that this paper tries to address. The Floods Directive suggests that mitigation measures taken to reduce flood impact need to be evaluated also by means of a cost-benefit analysis. The paper presents a methodology for assessing the effectiveness of early warning for flash floods, considering its potential impact in reducing direct physical damage, and it assesses the general benefit in regard to other types of damages and losses compared with the emergency management costs. The methodology is applied to the case study area of the city of Sondrio in the northern Alpine region of Italy. A critical discussion follows the application. Its purpose is to highlight the strengths and weaknesses of available models for quantifying direct physical damage and of the general model proposed, given the current state of the art in damage and loss assessment.

  2. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    Science.gov (United States)

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  3. Soil and nutrient retention in winter-flooded ricefields with implications for watershed management

    Science.gov (United States)

    Manley, S.W.; Kaminski, R.M.; Rodrigue, P.B.; Dewey, J.C.; Schoenholtz, S.H.; Gerard, P.D.; Reinecke, K.J.

    2009-01-01

    The ability of water resources to support aquatic life and human needs depends, in part, on reducing nonpoint source pollution amid contemporary agricultural practices. Winter retention of shallow water on rice and other agricultural fields is an accepted management practice for wildlife conservation; however, soil and water conservation benefits are not well documented. We evaluated the ability of four post-harvest ricefield treatment combinations (stubble-flooded, stubble-open, disked-flooded and disked-open) to abate nonpoint source exports into watersheds of the Mississippi Alluvial Valley. Total suspended solid exports were 1,121 kg ha-1 (1,000 lb ac-1) from disked-open fields where rice stubble was disked after harvest and fields were allowed to drain, compared with 35 kg ha-1 (31 lb ac-1) from stubble-flooded fields where stubble was left standing after harvest and fields captured rainfall from November 1 to March 1. Estimates of total suspended solid exports from ricefields based on Landsat imagery and USDA crop data are 0.43 and 0.40 Mg km-2 day-1 in the Big Sunflower and L'Anguille watersheds, respectively. Estimated reductions in total suspended solid exports from ricefields into the Big Sunflower and L'Anguille water-sheds range from 26% to 64% under hypothetical scenarios in which 65% to 100% of the rice production area is managed to capture winter rainfall. Winter ricefield management reduced nonpoint source export by decreasing concentrations of solids and nutrients in, and reducing runoff volume from, ricefields in the Mississippi Alluvial Valley.

  4. Coproducing flood risk management through citizen involvement: insights from cross-country comparison in Europe

    Directory of Open Access Journals (Sweden)

    Hannelore Mees

    2016-09-01

    Full Text Available Across Europe, citizens are increasingly expected to participate in the implementation of flood risk management (FRM, by engaging in voluntary-based activities to enhance preparedness, implementing property-level measures, and so forth. Although citizen participation in FRM decision making is widely addressed in academic literature, citizens' involvement in the delivery of FRM measures is comparatively understudied. Drawing from public administration literature, we adopted the notion of "coproduction" as an analytical framework for studying the interaction between citizens and public authorities, from the decision-making process through to the implementation of FRM in practice. We considered to what extent coproduction is evident in selected European Union (EU member states, drawing from research conducted within the EU project STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices towards Appropriate and Resilient Flood Risk Governance Arrangements. On the basis of a cross-country comparison between Flanders (Belgium, England (United Kingdom, France, the Netherlands, and Poland, we have highlighted the varied forms of coproduction and reflected on how these have been established within divergent settings. Coproduction is most prominent in discourse and practice in England and is emergent in France and Flanders. By contrast, FRM in the Netherlands and Poland remains almost exclusively reliant on governmental protection measures and thereby consultation-based forms of coproduction. Analysis revealed how these actions are motivated by different underlying rationales, which in turn shape the type of approaches and degree of institutionalization of coproduction. In the Netherlands, coproduction is primarily encouraged to increase societal resilience, whereas public authorities in the other countries also use it to improve cost-efficiency and redistribute responsibilities to its beneficiaries.

  5. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    Science.gov (United States)

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production.

  6. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3 s−1. Channel cross-section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre-dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre-dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Partnership Funding in flood risk management: multi-level stakeholder engagement – a question of roles and power

    Directory of Open Access Journals (Sweden)

    Thale Thomas

    2016-01-01

    Full Text Available The paper examines the new flood risk policy discussion in England and Wales. The summer floods in England in 2007 caused large damages to the environment, economy and humanity. Following this key flood event, the Government has started to redefine the national flood and coastal risk management policy in England and Wales. The key issue in the new policy agenda is to encourage the responsibilities of local authorities and reduce the central role of flood risk management. This decentralisation in flood risk management has a series of consequences in the development of new governance structures. The main reason for this shift from central to local level is the belief that local authorities deal with public administration tasks in a more efficient way. Nevertheless, the main problem is the gap between the delegated tasks and the lack of transfer of resources, especially the issue concerning funding is still unclear and unresolved. This constraint will go with fiscal and administration cuts. The consequences will be (1 ‘hollowing out’ of the Government with the downscaling of the responsibility towards local actors and (2 without proportional transfer of resources to local authorities they will not be able to deal with new tasks. Therefore, in practice there are many limitations, barriers and concerns with the new policy direction.

  8. Green infrastructure for flood risk management in Dar es Salaam and Copenhagen

    DEFF Research Database (Denmark)

    Mguni, Patience; Herslund, Lise Byskov; Jensen, Marina Bergen

    2015-01-01

    The risk of flooding in urban areas could be better approached by complementing conventional sewer systems with sustainable urban drainage systems (SUDS) for storm-water management. This may be the case for developing world cities like Dar es Salaam with incomplete sewer services, as well as cities......, a comparison of the opportunities and barriers to the implementation of SUDS in Dar es Salaam and Copenhagen is presented. The results indicate that a bottom-up approach in Dar es Salaam is important, with the community level taking the lead, while in Copenhagen the top-down approach currently employed...

  9. COMPACT: The role of soil management in mitigating catchment flood risk

    Science.gov (United States)

    Pattison, Ian; Coates, Victoria; Frost, Matthew; Demirci, Emrah

    2017-04-01

    This paper reports a new NERC funded research project which addresses the impact of agricultural soil compaction on surface runoff and catchment scale flood risk. The intensification of agriculture, through increasing the number of animals in pasture, and the use of larger, heavier machinery for arable farming, over the past 50 years or so is hypothesised to have had an impact on the severity and frequency of flooding. These land management practices cause soil compaction, which reduces the rate of rainfall infiltration and the volume of water that can be stored within the sub-surface. This results in more rainfall being partitioned into the faster surface runoff pathway into rivers and potentially causing flooding downstream. However, the level of soil compaction is highly heterogeneous over space and time. This is because different animals i.e. cattle, sheep and horses, exert different loads on the soil and are kept at different densities. Furthermore, farm animals are known to exhibit behaviour whereby certain parts of the field are moved over more frequently than others. The same is the case in arable farming practices, whereby ploughing forms tramlines or wheelings, which are more compacted. Different forms of management practice ranging from zero-tillage to conventional cultivation exert different pressures on the soil at different times of year. However, very little is known about this variability of soil compaction levels at the sub-field level and land under different management practices. This research aims to quantify this sub-field variation in compaction severity and depths through using novel Ground Penetrating Radar (GPR) and Animal tracking GPS technology. Combining these with more conventional soil property tests, including bulk density, saturated hydraulic conductivity and using a penetrometer will allow relationships with frequency of load to be developed over different spatial and temporal scales. Furthermore, X-Ray CT scanning will reveal the

  10. Coping with Complex Environmental and Societal Flood Risk Management Decisions: An Integrated Multi-criteria Framework

    Directory of Open Access Journals (Sweden)

    Love Ekenberg

    2011-08-01

    Full Text Available During recent years, a great deal of attention has been focused on the financial risk management of natural disasters. One reason behind is that the economic losses from floods, windstorms, earthquakes and other disasters in both the developing and developed countries are escalating dramatically. It has become apparent that an integrated water resource management approach would be beneficial in order to take both the best interests of society and of the environment into consideration. One improvement consists of models capable of handling multiple criteria (conflicting objectives as well as multiple stakeholders (conflicting interests. A systems approach is applied for coping with complex environmental and societal risk management decisions with respect to flood catastrophe policy formation, wherein the emphasis is on computer-based modeling and simulation techniques combined with methods for evaluating strategies where numerous stakeholders are incorporated in the process. The resulting framework consists of a simulation model, a decision analytical tool, and a set of suggested policy strategies for policy formulation. The framework will aid decision makers with high risk complex environmental decisions subject to significant uncertainties.

  11. Flood Early Warning in Bridge Management System: from idea to implementation

    Science.gov (United States)

    Kerin, Igor; Bekić, Damir; Michalis, Panagiotis; Šolman, Hrvoje; Cahill, Paul; Gilja, Gordon; Pakrashi, Vikram; Lapthorne, John; McKeogh, Eamon

    2017-04-01

    Recent advances in computational speed, cloud systems and GPRS data are some of the factors that have resulted in an increased number of operational and fully automatized Flood Early Warning Systems (FEWS). Flood forecasting is becoming a well-recognised solution for flood management as an indirect measure for minimising the risk should preventive or defence measures prove ineffective or are not feasible for implementation. Public acceptance of FEWS as a standalone solution is still considered to be at low level. Further public engagement regarding engineering risks and providing timely notifications and warnings can, however, establish the true value of such a system to the society in general. Flood risks can be direct, resulting in damage to buildings, infrastructure and natural resources, or indirect, which can be related to disaster losses leading to declines in commercial output or revenue and impact on wellbeing of people, typically from disruptions to the flow of goods and services. Flood risk and structural risks are closely related, thereby impacting the maintenance and management of bridges assets over watercourses. Many studies indicate that most bridge collapses are related to hydraulic effects and consequently scour issues (i.e. the removal of riverbed around bridge foundations due to flowing water). Consequently, hydraulic, hydrologic and geotechnical expertise and knowledge can lead to introducing FEWS as a key tool for Bridge Scour Management System (BSMS), forming a part of a BMS. The implementation of this concept was initiated with the EU/FP7 funded project BRIDGE SMS. The project introduces BSMS into the overall BMS to develop a reliable decision support tool which would efficiently manage bridge failure risks in a cost-effective way. This is accomplished through the development of FEWS, alongside monitoring systems that can provide important information about environmental and structural conditions at the catchment area and bridge site

  12. Risk analysis on agricultural drainage ditch filling and flood disasters in lower plain area of North China%华北低平原农田排水沟平填及洪涝灾害风险分析

    Institute of Scientific and Technical Information of China (English)

    赵晓宇; 张凤荣; 李超

    2016-01-01

    The construction of irrigation and water conservancy was initiated on the North China Plain in the 1950s, which played a significant role in the saline-alkali soil improvement and flood discharge. However, the phenomenon of filling agricultural drainage ditches has become common in the North China Plain since the 1990s. It is necessary to know the condition of filling agricultural drainage ditches and flood disasters related with this phenomenon. Nowadays, there are few researches to analyze the condition of filling agricultural drainage ditches. In order to enrich existing studies, this research took Cangxian County which was battered by flooding and soil salinization in lower plain area as a case study, and explored the condition of filling agricultural drainage ditch and the flood disaster. The changes of drainage ditch area and spatial variation were analyzed based on land use databases of Cangxian County in 1992 and 2010 using the method of GIS (geographic information system). Then, the condition of filling agricultural drainage ditch was investigated by means of the field research in Nan Gutun Village. This village was one of the most densely populated agriculture villages in Cangxian County. Interviewing with the village committee members and the villagers over 70 years old, we learned about the local agricultural production mode, the way of life, the changes of agricultural drainage ditch and its mechanisms from 1960s to now. Finally, we analyzed the risk of flood disasters from the aspects of precipitation trends, percentage of precipitation anomalies, underground water level, drought/flood frequency, relationship between soil water capacity and rainfall, and upland water condition. The results showed that from 1992 to 2010, the area of drainage ditches in Cangxian County reduced by 37.73%. Meanwhile, the proportion of drainage ditches in Cangxian County decreased by 2.03% and the farm ditches was the most serious in being filled. The results of flood

  13. 77 FR 71404 - Intent To Prepare an Environmental Impact Statement for the Proposed Flood Risk Management Study...

    Science.gov (United States)

    2012-11-30

    ... Proposed Flood Risk Management Study for the Blanchard River Watershed Including Communities of Findlay and... Management Study. The Buffalo District of the U.S. Army Corps of Engineers (USACE) will be the lead agency in... Study in the Blanchard River Watershed including the communities of the City of Findlay in...

  14. Spatial variability and uncertainty in ecological risk assessment: A case study on the potential risk of cadmium for the little owl in a Dutch river flood plain

    NARCIS (Netherlands)

    Kooistra, L.; Huijbregts, M.A.J.; Ragas, A.M.J.; Wehrens, H.R.M.J.; Leuven, R.S.E.W.

    2005-01-01

    This paper outlines a procedure that quantifies the impact of different sources of spatial variability and uncertainty on ecological risk estimates. The procedure is illustrated in a case study that estimates the risks of cadmium for a little owl (Athene noctua vidalli) living in a Dutch river flood

  15. Delivering Integrated Flood Risk Management: Governance for collaboration, learning and adaptation

    NARCIS (Netherlands)

    Van Herk, S.

    2014-01-01

    The frequency and consequences of extreme flood events have increased rapidly worldwide in recent decades and climate change and economic growth are likely to exacerbate this trend. Flood protection measures alone cannot accommodate the future frequencies and impacts of flooding. Integrated flood ri

  16. Interactions between land use and flood management in the Chi River Basin

    NARCIS (Netherlands)

    Kuntiyawichai, K.

    2012-01-01

    The damages and hardships caused by floods and flooding remain an issue and are continuously increasing in the Chi River Basin, Thailand. It is difficult to make an accurate assessment of the costs and consequences associated with floods. However, flood hazards can also be seen as an opportunity, a

  17. THE FLOOD RISK IN THE LOWER GIANH RIVER: MODELLING AND FIELD VERIFICATION

    Directory of Open Access Journals (Sweden)

    NGUYEN H. D.

    2016-03-01

    Full Text Available Problems associated with flood risk definitely represent a highly topical issue in Vietnam. The case of the lower Gianh River in the central area of Vietnam, with a watershed area of 353 km2, is particularly interesting. In this area, periodically subject to flood risk, the scientific question is strongly linked to risk management. In addition, flood risk is the consequence of the hydrological hazard of an event and the damages related to this event. For this reason, our approach is based on hydrodynamic modelling using Mike Flood to simulate the runoff during a flood event. Unfortunately the data in the studied area are quite limited. Our computation of the flood risk is based on a three-step modelling process, using rainfall data coming from 8 stations, cross sections, the topographic map and the land-use map. The first step consists of creating a 1-D model using Mike 11, in order to simulate the runoff in the minor river bed. In the second step, we use Mike 21 to create a 2-D model to simulate the runoff in the flood plain. The last step allows us to couple the two models in order to precisely describe the variables for the hazard analysis in the flood plain (the water level, the speed, the extent of the flooding. Moreover the model is calibrated and verified using observational data of the water level at hydrologic stations and field control data (on the one hand flood height measurements, on the other hand interviews with the community and with the local councillors. We then generate GIS maps in order to improve flood hazard management, which allows us to create flood hazard maps by coupling the flood plain map and the runoff speed map. Our results show that: the flood peak, caused by typhoon Nari, reached more than 6 m on October 16th 2013 at 4 p.m. (its area was extended by 149 km². End that the typhoon constitutes an extreme flood hazard for 11.39%, very high for 10.60%, high for 30.79%, medium for 31.91% and a light flood hazard for 15

  18. Flexibility in Flood Management Design: Proactive Planning Under Climate Change Uncertainty

    Science.gov (United States)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2015-12-01

    This paper presents an innovative, value-enhancing procedure for effective planning and design of long-lived flood management infrastructure given uncertain future flooding threats due to climate change. Designing infrastructure that can be adapted over time is a method to safeguard the efficacy of current design decisions given uncertainty about rates and future impacts of climate change. This paper explores the value of embedding "options" in a physical structure, where an option is the right but not the obligation to do something at a later date (e.g. over-dimensioning a floodwall foundation now facilitates a future height addition in response to observed increases in sea level; building of extra pump bays in a pumping station now enables the addition of pumping capacity whenever increased precipitation warrants an expansion.) The proposed procedure couples a simulation model that captures future climate induced changes to the hydrologic operating environment of a structure, with an economic model that estimates the lifetime economic performance of alternative investments. The economic model uses Real "In" Options analysis, a type of cash flow analysis that quantifies the implicit value of options and the flexibility they provide. This procedure is demonstrated using replacement planning for the multi-functional pumping station IJmuiden on the North Sea Canal in the Netherlands. Flexibility in design decisions is modelled, varying the size and specific options included in the new structure. Results indicate that the incorporation of options within the structural design has the potential to improve its economic performance, as compared to more traditional, "build it once and build it big" designs where flexibility is not an explicit design criterion. The added value resulting from the incorporation of flexibility varies with the range of future conditions considered, as well as the options examined. This procedure could be applied more broadly to explore

  19. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  20. A Multi-Hydro simulation for evaluation of the impacts of flood management at Heywood, RU.

    Science.gov (United States)

    Giangola-Murzyn, Agathe; Richard, Julien; Hennermann, Karl; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2013-04-01

    The flooding problems in urban and peri-urban areas have more and more important impacts on city life. Indeed, with the expansion of the latter, the floodplains are more intensively used and floods will generate significant damage very expensive. In the aim to reduce these costs and facilitate a return to normal faster after the flood, the FP7 SMARTeST project aims to provide users of these areas a guide to help them choose the most appropriate protection measures. It is in this context that the Multi-Hydro model has been developed and improved in the Ecole des Ponts ParisTech. This model consists into a coupling between four modules (relying on existing open source and widely validated physically based model): one for the rainfall scenario generation, one for the surface processes, one for the subsurface processes and one for the load of the sewer system. This structure of coupling allows to represent all the parts of the water's path from the surface to the sewer system's pipes and to the soil of the considered catchment and it allows to disconnect one element of the coupling system if it's necessary. Moreover, this model uses some GIS data as the elevation, the land use, the soil description and the sewer system description which can be managed by a dedicated open source SIG allowing to use directly the data in the model. The Multi-Hydro model has been used on a street of Heywood, Rochdale, Greater Manchester urban area. This residential street has known some important events during this last 10 years. Thus, Multi-Hydro has been used to evaluate the effects of the implementation of protection measures supposed to reduce the damages of the flood: a storage basin, located between Wilton Grove and the Egerton street and two barriers across the streets. For a given event, NIMROD radar data have been used to reproduce the flood. Then, the protective measures were put in place virtually. Analysis of water height maps obtained with Multi-Hydro allowed better understand

  1. The Monitoring of River Flows and the Management of Flood Hazards using UAVs

    Science.gov (United States)

    Verosub, K. L.

    2015-12-01

    The increasing occurrence of extreme precipitation events as well as severe droughts, coupled with greater and greater human occupation of flood plains, makes increased monitoring of flows in rivers an important component of assessing the potential for water-related natural disasters as well as responding to them when they do occur. Unfortunately, this increasing need comes at a time when funding for monitoring activities is generally decreasing. In the United States, for example, gauging stations with daily flow records going back several decades or even a hundred years have been abandoned, and new stations in critical areas have not even been established. A methodology based on periodic UAV-based imaging of an entire river offers the prospect of obtaining inexpensive, real-time, high-resolution data for the determination of the river flows. The method makes use of fact that as the flow in a river rises or falls, the areal extent covered by the river changes accordingly. Furthermore, barring anthropogenic changes, the area inundated by a flow of a particular magnitude is invariant in time. For a given stretch of a river, a sequence of images spanning the full range of flow conditions provides the basic template for determining river flows. The actual flow in the river can be calibrated using previously measured flow data corresponding the dates of old aerial or satellite imagery, or calculated from new imagery by using standard flow equations and the topography of the banks of the river, determined by field surveying or Lidar. Once the basic template has been established, determination of "the state-of-the-river" at any point in time can be obtained by comparing newly-acquired UAV images with those in the database. And because a given image encompasses many topographic features that are inundated to differing extents, the resolution of the flow determination is limited only by the completeness of the imagery in the basic template. Repeat flights at weekly

  2. The Chennai floods of 2015: urgent need for ethical disaster management guidelines.

    Science.gov (United States)

    Mariaselvam, Suresh; Gopichandran, Vijayaprasad

    2016-01-01

    India has suffered several natural disasters in recent years. The super cyclone of Orissa in 1999 and the tsunami on the southeastern coast in 2004, both led to major developments in disaster management abilities in the country. Almost a decade after the last major disaster that hit south India, the recent floods in Chennai in 2015 brought to the fore a whole set of ethical considerations. There were issues of inequity in the relief and response activities, conflicts and lack of coordination between the government and non-government relief and response, more emphasis on short-term relief activities rather than rehabilitation and reconstruction, and lack of crisis standards of care in medical services. This paper highlights these ethical issues and the need for ethical guidelines and an ethical oversight mechanism for disaster management and response.

  3. Composite Flood Risk for New Jersery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the...

  4. Composite Flood Risk for Virgin Island

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the...

  5. Exploring local risk managers' use of flood hazard maps for risk communication purposes in Baden-Württemberg

    Science.gov (United States)

    Kjellgren, S.

    2013-07-01

    In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address - in research as well as in practice - since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.

  6. Exploring local risk managers' use of flood hazard maps for risk communication purposes in Baden-Württemberg

    Directory of Open Access Journals (Sweden)

    S. Kjellgren

    2013-07-01

    Full Text Available In response to the EU Floods Directive (2007/60/EC, flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address – in research as well as in practice – since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.

  7. Tool to address green roof widespread implementation effect in flood characteristics for water management planning

    Science.gov (United States)

    Tassi, R.; Lorenzini, F.; Allasia, D. G.

    2015-06-01

    In the last decades, new approaches were adopted to manage stormwater as close to its source as possible through technologies and devices that preserve and recreate natural landscape features. Green Roofs (GR) are examples of these devices that are also incentivized by city's stormwater management plans. Several studies show that GR decreases on-site runoff from impervious surfaces, however, the analysis of the effect of widespread implementation of GR in the flood characteristics at the urban basin scale in subtropical areas are little discussed, mainly because of the absence of data. Thereby, this paper shows results related to the monitoring of an extensive modular GR under subtropical weather conditions, the development of a rainfall-runoff model based on the modified Curve Number (CN) and SCS Triangular Unit Hydrograph (TUH) methods and the analysis of large-scale impact of GR by modelling different basins. The model was calibrated against observed data and showed that GR absorbed almost all the smaller storms and reduced runoff even during the most intense rainfall. The overall CN was estimated in 83 (consistent with available literature) with the shape of hydrographs well reproduced. Large-scale modelling (in basins ranging from 0.03 ha to several square kilometers) showed that the widespread use of GRs reduced peak flows (volumes) around 57% (48%) at source and 38% (32%) at the basin scale. Thus, this research validated a tool for the assessment of structural management measures (specifically GR) to address changes in flood characteristics in the city's water management planning. From the application of this model it was concluded that even if the efficiency of GR decreases as the basin scale increase they still provide a good option to cope with urbanization impact.

  8. Review article: A review and critical analysis of the efforts towards urban flood risk management in the Lagos region of Nigeria

    Science.gov (United States)

    Nkwunonwo, U. C.; Whitworth, M.; Baily, B.

    2016-02-01

    Urban flooding has been and will continue to be a significant problem for many cities across the developed and developing world. Crucial to the amelioration of the effects of these floods is the need to formulate a sound flood management policy, which is driven by knowledge of the frequency and magnitude of impacts of these floods. Within the area of flood research, attempts are being made to gain a better understanding of the causes, impacts, and pattern of urban flooding. According to the United Nations office for disaster reduction (UNISDR), flood risk is conceptualized on the basis of three integral components which are frequently adopted during flood damage estimation. These components are: probability of flood hazard, the level of exposure, and vulnerabilities of elements at risk. Reducing the severity of each of these components is the objective of flood risk management under the UNISDR guideline and idea of "living with floods". On the basis of this framework, the present research reviews flood risk within the Lagos area of Nigeria over the period 1968-2012. During this period, floods have caused harm to millions of people physically, emotionally, and economically. Arguably over this period the efforts of stakeholders to address the challenges appear to have been limited by, amongst other things, a lack of reliable data, a lack of awareness amongst the population affected, and a lack of knowledge of flood risk mitigation. It is the aim of this research to assess the current understanding of flood risk and management in Lagos and to offer recommendations towards future guidance.

  9. Lessons learnt from past Flash Floods and Debris Flow events to propose future strategies on risk management

    Science.gov (United States)

    Cabello, Angels; Velasco, Marc; Escaler, Isabel

    2010-05-01

    Floods, including flash floods and debris flow events, are one of the most important hazards in Europe regarding both economic and life loss. Moreover, changes in precipitation patterns and intensity are very likely to increase due to the observed and predicted global warming, rising the risk in areas that are already vulnerable to floods. Therefore, it is very important to carry out new strategies to improve flood protection, but it is also crucial to take into account historical data to identify high risk areas. The main objective of this paper is to show a comparative analysis of the flood risk management information compiled in four test-bed basins (Llobregat, Guadalhorce, Gardon d'Anduze and Linth basins) from three different European countries (Spain, France and Switzerland) and to identify which are the lessons learnt from their past experiences in order to propose future strategies on risk management. This work is part of the EU 7th FP project IMPRINTS which aims at reducing loss of life and economic damage through the improvement of the preparedness and the operational risk management of flash flood and debris flow (FF & DF) events. The methodology followed includes the following steps: o Specific survey on the effectivity of the implemented emergency plans and risk management procedures sent to the test-bed basin authorities that participate in the project o Analysis of the answers from the questionnaire and further research on their methodologies for risk evaluation o Compilation of available follow-up studies carried out after major flood events in the four test-bed basins analyzed o Collection of the lessons learnt through a comparative analysis of the previous information o Recommendations for future strategies on risk management based on lessons learnt and management gaps detected through the process As the Floods Directive (FD) already states, the flood risks associated to FF & DF events should be assessed through the elaboration of Flood Risk

  10. Monitoring and Management of Coastal Zones Which are Under Flooding Risk with Remote Sensing and GIS

    Science.gov (United States)

    Direk, S.; Seker, D. Z.; Musaoglu, N.; Gazioglu, C.

    2012-12-01

    great flexibility for the display and visualization of data to a wider audience. Today GIS, plays a key role in monitoring and management procedures and re-shaping the environment. The capability of GIS in handling spatial data, presented new opportunities for adaptation of more cost-effective and efficient procedures. By using remote sensing and GIS, coastal zone could be monitored and managed more easily. The map/chart of interested coastal areas could be done more accurately and rapidly. Maps/charts of areas before and after flooding could be done by using satellites or areal images and the effect of damage could be analyzed in a short time.

  11. Spatially quantitative models for vulnerability analyses and resilience measures in flood risk management: Case study Rafina, Greece

    Science.gov (United States)

    Karagiorgos, Konstantinos; Chiari, Michael; Hübl, Johannes; Maris, Fotis; Thaler, Thomas; Fuchs, Sven

    2013-04-01

    We will address spatially quantitative models for vulnerability analyses in flood risk management in the catchment of Rafina, 25 km east of Athens, Greece; and potential measures to reduce damage costs. The evaluation of flood damage losses is relatively advanced. Nevertheless, major problems arise since there are no market prices for the evaluation process available. Moreover, there is particular gap in quantifying the damages and necessary expenditures for the implementation of mitigation measures with respect to flash floods. The key issue is to develop prototypes for assessing flood losses and the impact of mitigation measures on flood resilience by adjusting a vulnerability model and to further develop the method in a Mediterranean region influenced by both, mountain and coastal characteristics of land development. The objective of this study is to create a spatial and temporal analysis of the vulnerability factors based on a method combining spatially explicit loss data, data on the value of exposed elements at risk, and data on flood intensities. In this contribution, a methodology for the development of a flood damage assessment as a function of the process intensity and the degree of loss is presented. It is shown that (1) such relationships for defined object categories are dependent on site-specific and process-specific characteristics, but there is a correlation between process types that have similar characteristics; (2) existing semi-quantitative approaches of vulnerability assessment for elements at risk can be improved based on the proposed quantitative method; and (3) the concept of risk can be enhanced with respect to a standardised and comprehensive implementation by applying the vulnerability functions to be developed within the proposed research. Therefore, loss data were collected from responsible administrative bodies and analysed on an object level. The used model is based on a basin scale approach as well as data on elements at risk exposed

  12. The application of Firefly algorithm in an Adaptive Emergency Evacuation Centre Management (AEECM) for dynamic relocation of flood victims

    Science.gov (United States)

    ChePa, Noraziah; Hashim, Nor Laily; Yusof, Yuhanis; Hussain, Azham

    2016-08-01

    Flood evacuation centre is defined as a temporary location or area of people from disaster particularly flood as a rescue or precautionary measure. Gazetted evacuation centres are normally located at secure places which have small chances from being drowned by flood. However, due to extreme flood several evacuation centres in Kelantan were unexpectedly drowned. Currently, there is no study done on proposing a decision support aid to reallocate victims and resources of the evacuation centre when the situation getting worsens. Therefore, this study proposes a decision aid model to be utilized in realizing an adaptive emergency evacuation centre management system. This study undergoes two main phases; development of algorithm and models, and development of a web-based and mobile app. The proposed model operates using Firefly multi-objective optimization algorithm that creates an optimal schedule for the relocation of victims and resources for an evacuation centre. The proposed decision aid model and the adaptive system can be applied in supporting the National Security Council's respond mechanisms for handling disaster management level II (State level) especially in providing better management of the flood evacuating centres.

  13. ENSO-Based Index Insurance: Approach and Peru Flood Risk Management Application

    Science.gov (United States)

    Khalil, A. F.; Kwon, H.; Lall, U.; Miranda, M. J.; Skees, J. R.

    2006-12-01

    Index insurance has recently been advocated as a useful risk transfer tool for disaster management situations where rapid fiscal relief is desirable, and where estimating insured losses may be difficult, time consuming, or subject to manipulation and falsification. For climate related hazards, a rainfall or temperature index may be proposed. However, rainfall may be highly spatially variable relative to the gauge network, and in many locations data are inadequate to develop an index due to short time-series and the spatial dispersion of stations. In such cases, it may be helpful to consider a climate proxy index as a regional rainfall index. This is particularly useful if a long record is available for the climate index through an independent source and it is well correlated with the regional rainfall hazard. Here, ENSO related climate indices are explored for use as a proxy to extreme rainfall in one of the departments of Peru -- Piura. The ENSO index insurance product may be purchased by banks or microfinance institutions (MFIs) to aid agricultural damage relief in Peru. Crop losses in the region are highly correlated with floods, but are difficult to assess directly. Beyond agriculture, many other sectors suffer as well. Basic infrastructure is destroyed during the most severe events. This disrupts trade for many micro-enterprises. The reliability and quality of the local rainfall data is variable. Averaging the financial risk across the region is desirable. Some issues with the implementation of the proxy ENSO index are identified and discussed. Specifically, we explore (a) the reliability of the index at different levels of probability of exceedance of maximum seasonal rainfall; (b) the potential for clustering of payoffs; (c) the potential that the index could be predicted with some lead time prior to the flood season; and (d) evidence for climate change or non-stationarity in the flood exceedance probability from the long ENSO record. Finally, prospects for

  14. The economic dimensions of integrating flood management and agri-environment through washland creation: a case from Somerset, England.

    Science.gov (United States)

    Morris, J; Bailey, A P; Lawson, C S; Leeds-Harrison, P B; Alsop, D; Vivash, R

    2008-07-01

    In many river floodplains in the UK, there has been a long history of flood defence, land reclamation and water regime management for farming. In recent years, however, changing European and national policies with respect to farming, environment and flood management are encouraging a re-appraisal of land use in rural areas. In particular, there is scope to develop, through the use of appropriate promotional mechanisms, washland areas, which will simultaneously accommodate winter inundation, support extensive farming methods, deliver environmental benefits, and do this in a way which can underpin the rural economy. This paper explores the likely economic impacts of the development of flood storage and washland creation. In doing so, consideration is given to feasibility of this type of development, the environmental implications for a variety of habitats and species, and the financial and institutional mechanisms required to achieve implementation.

  15. Managing urban water crises: adaptive policy responses to drought and flood in Southeast Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Brian W. Head

    2014-06-01

    Full Text Available In this case study, I examine the quality of decision-making under conditions of rapidly evolving urban water crises, and the adaptive policy challenges of building regional resilience in response to both drought and flood. Like other regions of Australia, Southeast Queensland has been subject to substantial cycles of drought and flood. I draw on resilience literature concerning sustainability, together with governance literature on policy change, to explain the changing awareness of urban water crises and the strategic options available for addressing these crises in this case study. The problem of resilience thinking opens up a number of important questions about the efficacy and adaptability of the policy system. The case provides insights into the interplay between the ways in which problems are framed, the knowledge bases required for planning and decision-making, the collaborative governance processes required for managing complex and rapidly evolving issues, and the overall capacity for policy learning over time. Regional resilience was proclaimed as a policy goal by government, but the practices remained largely anchored in traditional technical frameworks. Centralized investment decisions and governance restructures provoked conflict between levels of government, undermining the capacity of stakeholders to create more consensual approaches to problem-solving and limiting the collective learning that could have emerged.

  16. Flood risk assessment and robust management under deep uncertainty: Application to Dhaka City

    Science.gov (United States)

    Mojtahed, Vahid; Gain, Animesh Kumar; Giupponi, Carlo

    2014-05-01

    The socio-economic changes as well as climatic changes have been the main drivers of uncertainty in environmental risk assessment and in particular flood. The level of future uncertainty that researchers face when dealing with problems in a future perspective with focus on climate change is known as Deep Uncertainty (also known as Knightian uncertainty), since nobody has already experienced and undergone those changes before and our knowledge is limited to the extent that we have no notion of probabilities, and therefore consolidated risk management approaches have limited potential.. Deep uncertainty is referred to circumstances that analysts and experts do not know or parties to decision making cannot agree on: i) the appropriate models describing the interaction among system variables, ii) probability distributions to represent uncertainty about key parameters in the model 3) how to value the desirability of alternative outcomes. The need thus emerges to assist policy-makers by providing them with not a single and optimal solution to the problem at hand, such as crisp estimates for the costs of damages of natural hazards considered, but instead ranges of possible future costs, based on the outcomes of ensembles of assessment models and sets of plausible scenarios. Accordingly, we need to substitute optimality as a decision criterion with robustness. Under conditions of deep uncertainty, the decision-makers do not have statistical and mathematical bases to identify optimal solutions, while instead they should prefer to implement "robust" decisions that perform relatively well over all conceivable outcomes out of all future unknown scenarios. Under deep uncertainty, analysts cannot employ probability theory or other statistics that usually can be derived from observed historical data and therefore, we turn to non-statistical measures such as scenario analysis. We construct several plausible scenarios with each scenario being a full description of what may happen

  17. Open Source and Open Standard based decision support system: the example of lake Verbano floods management.

    Science.gov (United States)

    Cannata, Massimiliano; Antonovic, Milan; Pozzoni, Maurizio; Graf, Andrea

    2015-04-01

    others. As a result of this orchestration of data, SITGAP 2.0 serves features that allows, for example, to be informed on active alarms, to visualize lake level forecasts and associated flooding areas, to evaluate and map exposed elements and people, to plan and manage evacuation by searching for people living in particular areas or buildings, by registering evacuation actions and by searching for evacuated people. System architecture and functionalities, and consideration on the integration and accessibility of the beneath information together with the lesson learnt during the usage of the system during the last floods of November 2014, provides interesting discussion points for the identification of current and future needs.

  18. Stakeholders and public involvement for flood protection: traditional river management organisations for a better consideration of local knowledge?

    Science.gov (United States)

    Utz, Stephan; Lane, Stuart; Reynard, Emmanuel

    2016-04-01

    This research explores participatory processes in the domain of river management in Switzerland. The main objective is to understand how traditional, highly participatory, local organisations for flood protection have been institutionalised into current river management policy, and to what extent this has impacted on wider participatory processes of producing knowledge. Traditionally, flood protection strategies have been based upon scientific knowledge but have often ignored the capacities of local actors to contribute to the development of the policy. Thus, there may be a gap between scientists, stakeholders and the public that favours controversies and leads to opposition to flood protection projects. In order to reduce this gap and to increase incorporation of local knowledge, participatory processes are set up. They are considered as allowing the integration of all the actors concerned by flood risks to discuss their positions and to develop alternative solutions. This is a particularly important goal in the Swiss political system where direct democracy (the possibility of calling the decision of any level of government into question through a popular vote) means that a reasonable level of project acceptance is a necessary element of project. In order to support implementation of participatory processes, federal funding includes a special grant to cover the additional costs due to these actions. It is considered that, since its introduction in 2008, this grant certainly furthered participatory processes for flood protection projects and fostered water management policy implementation. However, the implication of stakeholders and public in decision-making processes is much well-established than modern river management often assumes. In some regions, flood protection tasks have been traditionally assumed by local organisations such as dyke corporations (DCs). These comprise land and property owners who are DC members and have to participate in flood protection

  19. Managing the Arroyo Seco for Flood Prevention, Erosion Control, Waterway and Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, L; Wang, C; Laurant, J

    2003-02-06

    One of the most important tasks for a site facility manager is to ensure that appropriate channel erosion controls are applied to on-site drainage channels. These erosion controls must minimize risks to the public and structures. Water and sediment loads commonly originate from off-site sources and many of the traditional reactionary measures (installing rip-rap or some other form of bed or bank armor) simply transfer or delay the problem. State and federal agency requirements further complicate the management solution. One case in point is the Arroyo Seco, an intermittent stream that runs along the southwest corner of the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. In 2001, LLNL contracted Questa Engineering Corporation to conduct hydraulic, geomorphic, and biological investigations and to prepare an alternatives and constraints analysis. From these investigations, LLNL has selected a water management plan that encompasses overall flood prevention, erosion control, and waterway and habitat restoration and enhancement elements. The most unique aspect of the Arroyo Seco management plan is its use of non-traditional and biotechnical techniques.

  20. A Study on Active Disaster Management System for Standardized Emergency Action Plan using BIM and Flood Damage Estimation Techniques

    Science.gov (United States)

    Jeong, C.; Om, J.; Hwang, J.; Joo, K.; Heo, J.

    2013-12-01

    In recent, the frequency of extreme flood has been increasing due to climate change and global warming. Highly flood damages are mainly caused by the collapse of flood control structures such as dam and dike. In order to reduce these disasters, the disaster management system (DMS) through flood forecasting, inundation mapping, EAP (Emergency Action Plan) has been studied. The estimation of inundation damage and practical EAP are especially crucial to the DMS. However, it is difficult to predict inundation and take a proper action through DMS in real emergency situation because several techniques for inundation damage estimation are not integrated and EAP is supplied in the form of a document in Korea. In this study, the integrated simulation system including rainfall frequency analysis, rainfall-runoff modeling, inundation prediction, surface runoff analysis, and inland flood analysis was developed. Using this system coupled with standard GIS data, inundation damage can be estimated comprehensively and automatically. The standard EAP based on BIM (Building Information Modeling) was also established in this system. It is, therefore, expected that the inundation damages through this study over the entire area including buildings can be predicted and managed.

  1. NAA: metals in surface waters, margin sediments, forage and cattle hair in flood plains of the Rio Doce basin, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Maria Adelaide R.V., E-mail: madelaide@fumec.br [Universidade Fundacao Mineira de Educacao e Cultura (FUMEC), Belo Horizonte, MG (Brazil). Mestrado em Construcao Civil, Meio Ambiente; Barbosa, Ana Flavia S.; Ruckert, Gabriela V., E-mail: mariavasc@unilestemg.br [Centro Universitario do Leste de Minas Gerais (UnilesteMG), Coronel Fabriciano, MG (Brazil). Mestrado em Engenharia Industrial; Menezes, Maria Angela B.C.; Silva, Maria Aparecida, E-mail: menezes@cdtn.br, E-mail: cida@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Arno H. de, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Nuclear Belo Horizonte, MG (Brazil)

    2011-07-01

    Metals are toxic and can cause damage to human health when they accumulate in the food chain. The aim of this study was to determine Al, As, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hg, K, Mg, Mn, Na, Rb, Sb, Sc, Ta, Th, Ti, U, V and Zn in different samples: surface waters, margin sediments, forages and cattle hairs in the region of the Rio Doce basin. The metals were analyzed by Neutron Activation Analysis - NAA at the Centre for Development of Nuclear Technology of the National Commission of Nuclear Energy - CDTN / CNEN. The sampling sites were taken at two points: P1- (Pingo D'agua - city, Ponte Queimada, in a no industrial area) and P2 - (Santana do Paraiso city, industrial and pasture areas, subject to frequent floods). The samples were collected in different seasons: July 2009 (dry season - winter) and February 2010 (rainy season - summer). These points were strategically chosen because P1 is located into the Parque Estadual do Rio Doce, considered a no industrial pollution region. Contrariwise, P2 is located in a region of high concentration of industries. In (P2) the Doce River receives its most polluted affluent upstream the Piracicaba River which is charged of several pollutants of industries of Steel Valley region, Brazil. In general, the results showed higher concentrations of the elements in P2 riverside area of livestock production and subject to flood. (author)

  2. Private adaptation strategies and implementation in flood risk management: why people do nothing?

    Science.gov (United States)

    Karagiorgos, Konstantinos; Thaler, Thomas; Maris, Fotios; Paparrizos, Spyros; Fuchs, Sven

    2015-04-01

    In the past decades, vulnerability assessment has emerged as an important field of research in flood risk management, in particular with respect to climate change and necessary adaptation strategies for the society. Probably starting with Chamber's seminal article on vulnerability, coping and policy (Chambers 1989), and further developed as the causal structure of vulnerability by Bohle (2001) and others, at least two research paradigms exist: an internal side focusing on societal resilience and coping capacities, and an external side targeted at a reduction of negative effects in terms of loss reduction (Fuchs 2009). Despite considerable research effects, however, different definitions and concepts still dominate the debate; it is surely that different scientific disciplines are working with this term: natural scientists, engineers, social scientists or economists, to name just a few. Each discipline defines vulnerability in a way which fits to their disciplinary purposes (Fuchs et al. 2011). But why has there been so little progress in our ability to adapt to flood hazards? White et al. (2001) summarised this paradox in an article with the title "Knowing better and losing even more - the use of knowledge in hazard management". One of the fundamental reasons for the lack of progress is the continuing separation of research on natural processes and socio-economic processes without considering interaction between these systems (Fuchs & Keiler 2013), as well as between scientific research results and the policy implementation (Medd & Marvin 2005). Moreover, as many studies were focused on the vulnerability of least developed societies to natural hazards (O'Brien et al. 2008), there is a particular lack in studies targeted at an implementation of existing adaptation frameworks at the level of highly-developed countries (Field et al. 2012; Scolobig et al. 2012). This gap results in a challenge for attempts to develop formal models into practical application and policy

  3. Advancing Coordination Between DRM and CCA in Integrated Flood Risk Management

    DEFF Research Database (Denmark)

    Jebens, Martin; Sørensen, Carlo Sass

    Flood hazards in coastal regions induce risks toward lives, property, economy and the environment. In need of sustainable and holistic actions to reduce risks, these should include innovative Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) measures. While differing on important...... parameters such as political commitment, awareness and uncertainty of the hazard/risk, commonalities between DRM and CCA can also be identified that affect human settlement, institutional adaptation, and the economy. This supports coordination of mitigation and adaptation measures to create resilience...... and sustainable solutions that take into account present and future outcomes. Adaptation must be integrated in existing policymaking and be a planning process priority to become effective, however. In relation to coastal hazards in Denmark, deficits are identified in how DRM is brought into effect, e.g. though...

  4. Advancing Coordination Between DRM and CCA in Integrated Flood Risk Management

    DEFF Research Database (Denmark)

    Jebens, Martin; Sørensen, Carlo Sass

    Flood hazards in coastal regions induce risks toward lives, property, economy and the environment. In need of sustainable and holistic actions to reduce risks, these should include innovative Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) measures. While differing on important...... parameters such as political commitment, awareness and uncertainty of the hazard/risk, commonalities between DRM and CCA can also be identified that affect human settlement, institutional adaptation, and the economy. This supports coordination of mitigation and adaptation measures to create resilience...... and sustainable solutions that take into account present and future outcomes. Adaptation must be integrated in existing policy making and be a planning process priority to become effective, however. In relation to coastal hazards in Denmark, deficits are identified in how DRM is brought into effect, e.g. though...

  5. Advancing Coordination Between DRM and CCA in Integrated Flood Risk Management

    DEFF Research Database (Denmark)

    Flood hazards in coastal regions induce risks toward lives, property, economy and the environment. In need of sustainable and holistic actions to reduce risks, these should include innovative Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) measures. While differing on important...... and sustainable solutions that take into account present and future outcomes. Adaptation must be integrated in existing policy making and be a planning process priority to become effective, however. In relation to coastal hazards in Denmark, deficits are identified in how DRM is brought into effect, e.g. though...... lack of planning and awareness. This, we argue, may be the golden opportunity to improve the national DRM-CCA integration. Past coastal risk mitigation and adaptation in Denmark only focused on structural measures. Due to its long coastline this is neither a sustainable nor an economically feasible...

  6. Advancing Coordination Between DRM and CCA in Integrated Flood Risk Management

    DEFF Research Database (Denmark)

    Flood hazards in coastal regions induce risks toward lives, property, economy and the environment. In need of sustainable and holistic actions to reduce risks, these should include innovative Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) measures. While differing on important...... parameters such as political commitment, awareness and uncertainty of the hazard/risk, commonalities between DRM and CCA can also be identified that affect human settlement, institutional adaptation, and the economy. This supports coordination of mitigation and adaptation measures to create resilience...... and sustainable solutions that take into account present and future outcomes. Adaptation must be integrated in existing policy making and be a planning process priority to become effective, however. In relation to coastal hazards in Denmark, deficits are identified in how DRM is brought into effect, e.g. though...

  7. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-07-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area.

  8. Solidarity in transboundary flood risk management: A view from the Dutch North Rhine–Westphalian catchment area

    NARCIS (Netherlands)

    Eerd, M.C.J. van; Wiering, M.A.; Dieperink, C.

    2015-01-01

    Climate change is putting pressure on water systems, and its effects transcend man-made boundaries, making cooperation across territorial borders essential. The governance of transboundary flood risk management calls for solidarity among riparians, as climate change will make river basins more prone

  9. Solidarity in transboundary flood risk management: A view from the Dutch North Rhine–Westphalian catchment area

    NARCIS (Netherlands)

    Van Eerd, M.C.J.; Wiering, M.A.; Dieperink, C.

    2017-01-01

    limate change is putting pressure on water systems, and its effects transcend man-made boundaries, making cooperation across territorial borders essential. The governance of transboundary flood risk management calls for solidarity among riparians, as climate change will make river basins more prone

  10. Path-dependency and policy learning in the Dutch delta: toward more resilient flood risk management in the Netherlands?

    NARCIS (Netherlands)

    Buuren, Van Arwin; Ellen, Gerald Jan; Warner, Jeroen F.

    2016-01-01

    Dutch flood management policy was for a long time dominated by a protection-oriented approach. However, in the last 10 years a more risk-oriented approach has gained ground, denoted by the introduction of the concept of multilayered safety in 2009 in the National Water Plan. Since then, the dominant

  11. Path-dependency and policy learning in the dutch delta: Toward more resilient flood risk management in the Netherlands?

    NARCIS (Netherlands)

    M.W. van Buuren (Arwin); G.J. Ellen (G.); J. Warner (Jeroen)

    2016-01-01

    textabstractDutch flood management policy was for a long time dominated by a protection-oriented approach. However, in the last 10 years a more risk-oriented approach has gained ground, denoted by the introduction of the concept of multilayered safety in 2009 in the National Water Plan. Since then,

  12. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    Directory of Open Access Journals (Sweden)

    Kochilakis Giorgos

    2016-01-01

    Full Text Available A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement “what-if” scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of “what-if” scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its

  13. The role of water and sediment connectivity in integrated flood management: a case study on the island of Saint Lucia

    Science.gov (United States)

    Jetten, Victor; van Westen, Cees; Ettema, Janneke; van den Bout, Bastian

    2016-04-01

    Disaster Risk Management combines the effects of natural hazards in time and space, with elements at risk, such as ourselves, infrastructure or other elements that have a value in our society. The risk in this case is defined as the sum of potential consequences of one or more hazards and can be expressed as potential damages. Generally, we attempt to reduce risk by better risk management, such as increase of resilience, protection and spatial planning. Caribbean islands are hit by hurricanes and tropical storms with a frequency of 1 to 2 every 10 years, with devastating consequences in terms of flash floods and landslides. The islands basically consist of a central (volcanic) mountain range, with medium and small sized catchments radiating outward towards the ocean. The coastal zone is inhabited, while the ring road network is essential for functioning of the island. An example of a case study is given for the island of Saint Lucia. Recorded rainfall intensities during tropical storms of 12 rainfall stations surpass 200 mm/h, causing immediate flash floods. Very often however, sediment is a forgotten variable in flash flood management: protection and mitigation measures as well as spatial planning all focus on the hydrology, the extent and depth of flood water, and sometimes of flood velocities. With recent developments, the opensource model LISEM includes hydrology and runoff, flooding, and erosion, transport and deposition both in runoff, channel flow and flood waters. We will discuss the practical solutions we implemented in connecting slopes, river channels and floodplains in terms of water and sediment, and the strength and weaknesses we have encountered so far. Catchment analysis shows two main effects: on the one hand in almost all cases upstream flooding serves as a temporary water storage that prevents further damage downstream, while on the other hand, erosion upstream often blocks bridges and decreases channel storage downstream, which increases the

  14. Towards a robust assessment of bridge clogging processes in flood risk management

    Science.gov (United States)

    Gschnitzer, T.; Gems, B.; Mazzorana, B.; Aufleger, M.

    2017-02-01

    River managers are aware that wood-clogging mechanisms frequently trigger damage-causing processes like structural damages at bridges, sudden channel outbursts, and occasionally, major displacements of the water course. To successfully mitigate flood risks related to the transport of large wood (LW), river managers need a guideline for an accurate and reliable risk assessment procedure and the design of river sections and bridges that are endangered of LW clogging. In recent years, comprehensive research dealing with the triggers of wood-clogging mechanisms at bridges and the corresponding impacts on flood risk was accomplished at the University of Innsbruck. A large set of laboratory experiments in a rectangular flume was conducted. In this paper we provide an overall view of these tests and present our findings. By applying a logistic regression analysis, the available knowledge on the influence of geometrical, hydraulic, and wood-related parameters on LW clogging probabilities is processed in a generalized form. Based on the experimental modeling results a practice-oriented guideline that supports the assessment of flood risk induced by LW clogging, is presented. In this context, two specific local structural protection measures at the bridge, aiming for a significant decrease of the entrapment probabilities, are illustrated: (i) a deflecting baffle installed on the upstream face of the bridge and (ii) a channel constriction leading to a change in flow state and a corresponding increase of the flow velocities and the freeboard at the bridge cross section. The presented guideline is based on a three-step approach: estimation of LW potential, entrainment, and transport; clogging scenario at the bridge; and the impact on channel and floodplain hydraulics. For a specific bridge susceptible to potential clogging caused by LW entrapment, it allows for a qualitative evaluation of potential LW entrainment in the upstream river segments, its transport toward the

  15. Sustainable Drainage, Green Infrastructure or Natural Flood Management - which should you choose?

    Science.gov (United States)

    Wingfield, Thea; Potter, Karen; Jones, Gareth; Spees, Jack; Macdonald, Neil

    2016-04-01

    River catchments as management units are more effective than administrative boundaries to integrate and coordinate efforts of organisations that utilise and manage water, soil and habitat quality. The UK government announced a pilot integrated water management initiative called, 'The Catchment Based Approach', on World Water Day 2011. After successful trials the scheme was extended to all river catchments in England during the summer of 2013. This policy has been designed to improve the collaboration, partnership and coordination of organisations involved in water and land management through locally led partnership groups. The lead organisations are all charitable bodies with significantly varying levels of experience of stormwater management; a key component of integrated water management and of great concern to communities at risk. These partnerships have implemented a number of Nature Based Solutions, but these have been presented in different ways by the different groups. In the UK there are three terms commonly used to describe Nature Based Solutions for managing the drainage of stormwater: Sustainable Drainage (SuDS), Green Infrastructure (GI) and Natural Flood Management (NFM). The definitions of each refers to the replication of natural hydrological processes in order to slow the flow of water through the landscape. But, there has been some concerns as to which of these nature based terms should be applied and why they appear to be used interchangeably. This study demonstrates that, despite the definitions of these three terms being almost identical, in practice they are not the same and should not be used interchangeably. The terms were developed by different professional groups in response to their own objectives and histories. The hydrological processes used to manage storm-water may be the same and the suggested interventions may show a degree of convergence. Yet, they operate at different scales, both geographically and organisationally. The different

  16. Impact of agricultural management on pluvial flash floods - Case study of an extreme event observed in Austria in 2016

    Science.gov (United States)

    Lumassegger, Simon; Achleitner, Stefan; Kohl, Bernhard

    2017-04-01

    Central Europe was affected by extreme flash floods in summer 2016 triggered by short, high-intensity storm cells. Besides fluvial runoff, local pluvial floods appear to increase recently. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) surface runoff and pluvial flooding is assessed using a coupled hydrological/2D hydrodynamic model for the severely affected municipality of Schwertberg, Upper Austria. In this small catchment several flooding events occurred in the last years, where the most severe event occurred during summer 2016. Several areas could only be reached after the flood wave subsided with observed flood marks up to one meter. The modeled catchment is intensively cultivated with maize, sugar beets, winter wheat and soy on the hillside and hence highly vulnerable to water erosion. The average inclination is relatively steep with 15 % leading to high flow velocities of surface runoff associated with large amounts of transported sediments. To assess the influence of land use and soil conservation on flash floods, field experiments with a portable irrigation spray installation were carried out at different locations. The test plots were subjected to rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour lasting, rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h. Surface runoff was collected and measured in a tank and water samples were taken to determine the suspended material load. Large differences of runoff coefficients were determined depending on the agricultural management. The largest discharge was measured in a maize field, where surface runoff occurred immediately after start of irrigation. The determined runoff coefficients ranged from 0.22 for soy up to 0.65 for maize for the same soil type and inclination. The conclusion that runoff is

  17. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon

    Science.gov (United States)

    Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott

    2011-01-01

    necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.

  18. Mechanisms of vegetation removal by floods on bars of a heavily managed gravel bed river (The Isere River, France)

    Science.gov (United States)

    Jourdain, Camille; Belleudy, Philippe; Tal, Michal; Malavoi, Jean-René

    2016-04-01

    In natural alpine gravel bed rivers, floods and their associated bedload transport maintain channels active and free of mature woody vegetation. In managed rivers, where flood regime and sediment supply have been modified by hydroelectric infrastructures and sediment mining, river beds tend to stabilize. As a result, in the recent past, mature vegetation has established on gravel bars of many gravel bed rivers worldwide. This established vegetation increases the risk of flooding by decreasing flow velocity and increasing water levels. In addition, the associated reduction in availability of pioneer habitats characteristic of these environments typically degrades biodiversity. Managing hydrology in a way that would limit vegetation establishment on bars presents an interesting management option. In this context, our study aims at understanding the impacts of floods of varying magnitude on vegetation removal, and identifying and quantifying the underlying mechanisms. Our study site is the Isère River, a heavily managed gravel bed river flowing in the western part of the French Alps. We studied the impact of floods on sediment transport and vegetation survival at the bar scale through field monitoring from 2014 to 2015, focusing on young salicaceous vegetation (chains, and topographic surveys. Hourly water discharge was obtained from the national gauging network. The hydraulics of monitored floods was characterized using a combination of field measurements and 2D hydraulic modeling: water levels were measured with pressure sensors and Large Scale Particle Velocimetry was used to measure flow velocities. These data were used to calibrate 2D hydrodynamic model using TELEMAC2D. At the reach scale, removal of mature vegetation was assed using a series of historical aerial photographs between 2001 and 2015. Our monitoring period covered a series of floods with recurrence intervals of 2 to 4 times per year, as well as one large flood with a 10 year return period. Only the

  19. Of floods, sandbags and simulations: Urban resilience to natural disasters and the performance of disaster management organisations under change.

    Science.gov (United States)

    Dressler, Gunnar; Mueller, Birgit; Frank, Karin; Kuhlicke, Christian

    2015-04-01

    Natural disasters and in particular floods have become a strong threat to urban communities in the last decades. In just eleven years (2002, 2013) two centenary river floods have hit Eastern Germany, causing damages of 9.1 billion € (2002) and 6.7 billion € (2013, first estimate), making them the most costly flood events in German history. Many cities in the Free State of Saxony that were strongly hit by both floods are additionally challenged by demographic change with an ageing society and outmigration leading to population shrinkage. This also constrains the coping capacity of disaster management services, especially those of volunteer-based disaster management organisations such as fire brigades, leading to an increased vulnerability of the community at risk. On the other hand, new technologies such as social media have led to rapid information spread and self-organisation of tremendous numbers of civil volunteers willing to help. How do responsible organisations deal with the challenges associated with demographic change, as well as with expected increases in flood frequency and intensity, and what strategies could enhance their performance in the future? To explore these questions, we developed an agent-based simulation model. It is based on socio-demographic settings of the community, communication and coordination structures of disaster management as well as transportation infrastructure for resources and emergency forces. The model is developed in exchange with relevant stakeholders including experts of local disaster management organisations and authority representatives. The goal of the model is to a) assess the performance of disaster management organisations and determine performance limits with respect to forecast lead times and respective coping times of disaster management organisations and b) use it as a discussion tool with these organisations and authorities to identify weak points as well as new options and strategies to ensure protection

  20. Progress in and prospects for fluvial flood modelling.

    Science.gov (United States)

    Wheater, H S

    2002-07-15

    Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis.

  1. Irrelevant water-management scales for flood prevention, water harvesting and eutrophication control.

    Science.gov (United States)

    Andersson, Jafet; Arheimer, Berit

    2017-04-01

    This poster will give three examples of popular water-management methods, which we discovered had very little effect in practice because they were applied on irrelevant scales. They all use small scale solutions to large scale problems, and did not provide expected results due to neglecting the magnitude of components in the large-scale water budget. 1) Flood prevention: ponds are considered to be able to buffer water discharge in catchments and was suggested as a measure to reduce the 20-years return floods in an exposed areas in Sweden. However, when experimenting with several ponds allocation and size in a computational model, we found out that ponds had to cover 5-10% of the catchment to convert the 20-yr flood into an average flood. Most effective was to allocate one single water body at the catchment outlet, but this would correspond to 95 km2 which is by far too big to be called a pond. 2) Water Harvesting: At small-scale it is designed to increase water availability and agricultural productivity in smallholder agriculture. On field scale, we show that water harvesting decreases runoff by 55% on average in 62 investigated field-scale trials of drainage area ≤ 1ha in sub-Saharan Africa (Andersson et al., 2011). When upscaling, to river basin scale in South Africa (8-1.8×106 km2), using a scenario approach and the SWAT hydrological model we found that all smallholder fields would not significantly alter downstream river discharge (effect on low flows). It shows some potential to increase crop yields but only in some water-scarce areas and conditioned on sufficient fertilizers being available (Andersson et al., 2013). 3) Eutrophication control: Constructed wetlands are supposed to remove nutrients from surface water and therefore 1,574 wetlands were constructed in southern Sweden during the years 1996-2006 as a measure to reduce coastal eutrophication. From our detailed calculations, the gross removal was estimated at 140 tonnes Nitrogen per year and 12

  2. Time of Concentration equations: the role of morphometric uncertainties in flood risk analysis and management

    Science.gov (United States)

    Martins, Luciano; Díez-Herrero, Andrés; Bodoque, Jose M.; Bateira, Carlos

    2016-04-01

    The perception of flood risk by the responsible authorities on the flood management disasters and mitigation strategies should be based on an overall evaluation of the uncertainties associated with the procedures for risk assessment and mapping production. This contribution presents the results of the development of mapping evaluation of the time of concentration (tc). This parameter reflects the time-space at which a watershed responds to rainfall events and is the most frequently utilized time parameter, and is of great importance in many hydrologic analysis. Accurate estimates of the tc are very important, for instance, if tc is under-estimated, the result is an over-estimated peak discharge and vice versa, resulting significant variations on the flooded areas, and could have important consequences in terms of the land use and occupation of territory, as management's own flood risk. The methology used evaluate 20 different empirical, semi-empirical and kinematics equations of tc calculation, due to different cartographic scales (1:200000; 1:100000; 1:25000; LIDAR 5x5m &1x1m) in in two hydrographic basins with distinct dimensions and geomorphological characteristics, located in the Gredos Mountain range (Spain). The results suggest that the changes in the cartographic scale, has not influence as significant as one might expect. The most important variations occur in the characteristics of the fequations, use different morphometricparameters in the calculations. Some just are based on geomorphological criteria and other magnify the hydraulic characteristics of the channels, resulting in very different tc values. However, we highlighting the role of cartographic scale particularly in the application of semi-empirical equations that take into account changes in land use and occupation. In this case, the determination of parameters, such as flow coefficient, curve number and roughness coefficient are very sensitive to cartographic scale. Sensitivity analysis

  3. Seawater-flooding events and impact on freshwater lenses of low-lying islands: Controlling factors, basic management and mitigation

    Science.gov (United States)

    Gingerich, Stephen B.; Voss, Clifford I.; Johnson, Adam G.

    2017-08-01

    An unprecedented set of hydrologic observations was collected after the Dec 2008 seawater-flooding event on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands. By two days after the seawater flooding that occurred at the beginning of dry season, the observed salinity of water withdrawn by the island's main skimming well increased to 100% seawater concentration, but by ten days later already decreased to only 10-20% of seawater fraction. However, the damaging impact on the potability of the groundwater supply (when pumped water had concentrations above 1% seawater fraction) lasted 22 months longer. The data collected make possible analyses of the hydrologic factors that control recovery and management of the groundwater-supply quality on Roi-Namur and on similar low-lying islands. With the observed data as a guide, three-dimensional numerical-model simulation analyses reveal how recovery is controlled by the island's hydrology. These also allow evaluation of the efficacy of basic water-quality management/mitigation alternatives and elucidate how groundwater withdrawal and timing of the seawater-flooding event affect the length of recovery. Simulations show that, as might be expected, by adding surplus captured rainwater as artificial recharge, the freshwater-lens recovery period (after which potable groundwater may again be produced) can be shortened, with groundwater salinity remaining lower even during the dry season, a period during which no artificial recharge is applied. Simulations also show that the recovery period is not lengthened appreciably by groundwater withdrawals during recovery. Simulations further show that had the flooding event occurred at the start of the wet season, the recovery period would have been about 25% (5.5 months) shorter than actually occurred during the monitored flood that occurred at the dry-season start. Finally, analyses show that artificial recharge improves freshwater-lens water quality, making possible longer use of

  4. Operational river ice forecasting on the Peace River : managing flood risk and hydropower production

    Energy Technology Data Exchange (ETDEWEB)

    Jasek, M. [BC Hydro, Burnaby, BC (Canada); Friensenhan, E. [Alberta Environment, Edmonton, AB (Canada); Granson, W. [Alberta Environment, Peace River, AB (Canada)

    2007-07-01

    This paper described the procedures used jointly by Alberta Environment and BC Hydro to manage the water flows on the Peace River. The Alberta-British Columbia Joint Task Force on Peace River Ice (JTF) was concerned with the coordination of break-up ice observations along the river as well as ice jam flooding at the Town of Peace River (TPR), resulting from an induced dynamic break-up on the Smoky River, a main tributary of the Peace River. The TPR is the largest community that can be most affected by ice jams on river. As such, river ice processes on the river are monitored and subject to operational procedures of the JTF. These operating procedures are organized into 3 separate sequential phases, notably freeze-up procedures, mid-winter procedures, and break-up procedures. In April 2007, the ice break-up season on the Peace River and Smoky River, was particularly challenging as record high snow cover led to a dynamic break-up of these two streams. Costs due to reduced hydropower production were documented. This paper highlighted the main decision points for mitigation and presented the recommendations that improve mitigation efforts with benefits to both the flood prone community and the power utility. This paper revealed that forecasting the start of control flow by predicting the arrival of the ice front using the Comprehensive River Ice Simulation System Project (CRISSP) model was largely successful. Further work is underway to define the accuracy of forecasting the start of control flow using CRISSP, as accuracy of temperature forecasts appears to be the major uncertainty. The JTF was able to make successful recommendations for flow reductions. However, the need for an accurate hydrologic model for the Smoky River as well as other inflows between Peace Canyon and the TPR was emphasized. 4 refs., 31 figs.

  5. 44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.

    Science.gov (United States)

    2010-10-01

    ... ground water or surface water problems, (iii) the depth and quality of any fill, (iv) the overall slope... engineering, (ii) the proposed grading, excavations, new construction, and substantial improvements are... the Federal Insurance Administrator which (i) regulates the location of foundation systems and...

  6. Evaluating the placement and performance of nature based measures for managing flood runoff in intensively farmed landscapes

    Science.gov (United States)

    Wilkinson, Mark; Quinn, Paul; Hewett, Caspar; Stutter, Marc

    2017-04-01

    Over the past decade economic losses from fluvial floods have greatly increased and it is becoming less viable to use traditional measures for managing flooding solely. This has given rise to increasing interest in alternative, nature based solutions (NBS) for reducing flood risk that aim to manage runoff at the catchment source and deliver multiple benefits. In many cases these measures need to work with current agricultural practices. Intensive agriculture often results in increases in local runoff rates, water quality issues, soil erosion/loss and local flooding problems. However, there is potential for agriculture to play a part in reducing flood risk. This requires knowledge on the effectiveness of NBS at varying scales and tools to communicate the risk of runoff associated with farming. This paper assesses the placement, management and effectiveness of a selection of nature-based measures in the rural landscape. Measures which disconnect overland flow pathways and improve soil infiltration are discussed. Case study examples are presented from the UK where a large number of nature-based measures have been constructed as part of flood protection schemes in catchment scales varying from 50 ha to 25 km2. Practical tools to help locate measures in agricultural landscapes are highlighted including the Floods and Agriculture Risk Matrix (FARM), an interactive communication/visualization tool and FARMPLOT, a GIS mapping tool. These have been used to promote such measures, by showing how and where temporary ponded areas can be located to reduce flood and erosion risk whilst minimising disruption to farming practices. In most cases land managers prefer small ( 100-1000m3) temporary ponding areas which fill during moderate to large storm events since they incur minimal loss of land. They also provide greater resillience to multi-day storm events, as they are designed to drain over 1-2 days and therefore allow for storage capacity for proceeding events. However, the

  7. The Rieti Land Reclamation Authority relevance in the management of surface waters for the irrigation purposes of the Rieti Plain (Central Italy

    Directory of Open Access Journals (Sweden)

    Lucio Martarelli

    2016-09-01

    Full Text Available The Rieti Plain is crowned by calcareous-marly reliefs (Rieti and Sabini Mountains and represents an intra-Apennine Plio- Quaternary alluvial and fluvial-lacustrine basin formed after multistage extensional tectonic processes. This territory presents huge amounts of water resources (Velino and Turano rivers; several springs; Lungo and Ripasottile lakes, relics of ancient Lacus Velinus. The aquifers occurring in the reliefs often have hydraulic continuity with the Rieti plain groundwater (detected at about 1-4 m below ground surface, which has general flow directions converging from the reliefs to the lake sector. Hydraulic exchanges between groundwater and surface waters are variable in space and time and play a relevant role for groundwater resource distribution. The Rieti Land Reclamation Authority was instituted in 1929 by Royal Decree N. 34171-3835, and integrates eight former authorities, dating the end of 1800s. It contributes to maintain the reclamation actions in the Rieti Plain, which started with the realization of the Salto and Turano artificial reservoirs, along two left tributaries of Velino River. The hydroelectric energy production purposes struggle with the reclamation and flood mitigation activities in the plain. The Land Reclamation Authority actuated the Integrated Reclamation General Project through the realization of pumping stations, connection and drainage canals, forestry-hydraulic works, rural roads, movable dams along Velino River and irrigation ditches. The irrigation activities, granted by the derivation of 5 m3/s from the Velino River, are carried out through 194,000 hectares within the territory of 42 municipalities of the Rieti Province. The Rieti Land Reclamation Authority contributes to the irrigation needs and to the environmental and hydrogeological protection and monitoring.

  8. Decision support model for assessing aquifer pollution hazard and prioritizing groundwater resources management in the wet Pampa plain, Argentina.

    Science.gov (United States)

    Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E

    2013-06-01

    This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km(2) encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam-loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.

  9. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques

    Directory of Open Access Journals (Sweden)

    Nabajit Hazarika

    2015-06-01

    Full Text Available This work documents land-use changes driven by river dynamics along two tributaries in the chronically flood affected Upper Brahmaputra floodplain which supports a population of more than half a million. Planform changes for a period of 40 years are documented using topographical map and Landsat data, and the associated land-use change is assessed by utilising hybrid classification in GIS environment. Quantification of bankline migration shows that the river courses are unstable. A reversal in the rate of erosion and deposition is also observed. Hybrid classification of Landsat images yielded a higher level of accuracy as evident from the confusion matrixes. Overall, the accuracy of land-use classification ranged between 88.5% and 96.25%. Land-use change shows that there is an increase in settlement and agriculture and a decrease in the grassland. The area affected by erosion–deposition and river migration comprises primarily of the agricultural land. Effect of river dynamics on settlements is also evident. Loss of agricultural land and homestead led to the loss of livelihood and internal migration in the floodplains. The observed pattern of river dynamics and the consequent land-use change in the recent decades have thrown newer environmental challenges at a pace and magnitude way beyond the coping capabilities of the dwellers.

  10. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009

    Science.gov (United States)

    Xiao, Dengpan; Tao, Fulu

    2016-07-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize ( Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  11. Impacts of agricultural management and climate change on future soil organic carbon dynamics in North China Plain.

    Directory of Open Access Journals (Sweden)

    Guocheng Wang

    Full Text Available Dynamics of cropland soil organic carbon (SOC in response to different management practices and environmental conditions across North China Plain (NCP were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km × 10 km and long time scale (90 years. The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG concentration scenarios. Agricultural practices included different rates of nitrogen (N fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive, manure application (linearly positive and nitrogen fertilization (nonlinearly positive - and the edaphic variable of initial SOC content (linearly negative. Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha-1 yr-1. With a moderate rate of manure application (i.e., 2000 kg ha-1 yr-1, stubble retention (i.e., 50%, and an optimal rate of nitrogen fertilization (i.e., 300 kg ha-1 yr-1, more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha-1 yr-1 and stubble retention rate of 100%, soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha-1 during 2010s to the current worldwide average of ∼ 55 Mg ha-1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.

  12. Modeling Flood & Drought Scenario for Water Management in Porali River Basin, Balochistan

    Directory of Open Access Journals (Sweden)

    Shoaib Ahmed

    2013-12-01

    Full Text Available Recent history shows that floods have become a frequently occurring disaster in Balochistan, especially during monsoon season. Two rivers, river Porali and river Kud overflows, inundating its banks and causing destruction to cultivated land and property. This study is an attempt to identify flood prone areas of Porali river basin for future flood scenario and propose possible reservoir locations for excess flood water storage. Computer-based models Hydrological Simulation Program-FORTRAN (HSPF and HEC-river analysis system (HEC-RAS are used as tools to simulate existing and future flood and drought scenarios. Models are calibrated and validated using data from 3 weather stations, namely Wadh, Bela, and Uthal and stream flow data from two gauging stations. The highest and the lowest 10 years of precipitation data are extracted, from historic dataset of all stations, to attain future flooding and drought scenarios, respectively. Flood inundation map is generated highlighting agricultural prone land and settlements of the watershed. Using Digital Elevation Model (DEM and volume of water calculated from the flood scenario, possible locations for reservoirs are marked that can store excess water for the use in drought years. Flow and volume of water has also been simulated for drought scenario. Analyses show that 3 × 109 m3 of water available due to immense flooding that is sufficient for the survival for one drought year, as the volume of water for latter scenario is 2.9 × 108m3.

  13. SimBethel: Designing a serious game on flood risk management and housing/urban development for the most urbanized islands of the California delta

    NARCIS (Netherlands)

    Hasman, R.; Klerk, W.J.; Schoemaker, M.A.; Smits, E.

    2013-01-01

    Master project report. A serious game on flood risk management and housing/urban development for the most urbanised island of the California coast. In the California Delta the flood protection for most islands is not up to the required standards. This is also the case for Bethel Island, one of the

  14. SimBethel: Designing a serious game on flood risk management and housing/urban development for the most urbanized islands of the California delta

    NARCIS (Netherlands)

    Hasman, R.; Klerk, W.J.; Schoemaker, M.A.; Smits, E.

    2013-01-01

    Master project report. A serious game on flood risk management and housing/urban development for the most urbanised island of the California coast. In the California Delta the flood protection for most islands is not up to the required standards. This is also the case for Bethel Island, one of the m

  15. Geomorphological Impacts of an extreme Flood in Karoon River, Iran

    Science.gov (United States)

    Yousefi, Saleh; Mirzaee, Somaya; Keesstra, Saskia; Piegay, Herve; Pourghasemi, Hamid Reza

    2017-04-01

    An extreme flood occurred on 14.04.2016 in Kroon River. Using the OLI Landsat images on 08.04.2016 (before flood) and 24.04.2016 (after flood) the morphological evolution in different land cover types by this flood event were detected. The results show that the event significantly affected the channel width. The main effect was the high mobilization of channel sediments and severe bank erosion in the studied meandering reach. According to field surveys, the flood occupied the whole channel corridor and even some of the flood plain parts, but the channel pattern was not markedly changed. Results show the average of active channel width increased from 192 m to 256 m respectively for before and after flood. Statistical results indicate a significant change for active channel width and sinuosity index at 99% confidence level for both indexes. Findings show that the channel morphological changes (channel widening) varied significantly in different land cover types along the Karoon River banks. Specifically, the channel has widened less in the residential areas than the other land cover types, which is the result of bank protection activities. Keywords: Remote sensing, fluvial geomorphology, floodplain management, river evolution.

  16. Institutions of farmer participation and environmental sustainability: a multi-level analysis from irrigation management in Harran Plain, Turkey

    NARCIS (Netherlands)

    Özerol, Gül

    2013-01-01

    This paper examines the relationship between farmer participation and environmental sustainability from an institutional perspective in the context of Harran Plain, one of the newest and largest irrigated areas in Turkey. Harran Plain undergoes social, economic and institutional change due to the

  17. Regional summer cooling from agricultural management practices that conserve soil carbon in the northern North American Great Plains

    Science.gov (United States)

    Stoy, Paul; Bromley, Gabriel; Gerken, Tobias; Tang, Angela; Morgan, Mallory; Wood, David; Ahmed, Selena; Bauer, Brad; Brookshire, Jack; Haggerty, Julia; Jarchow, Meghann; Miller, Perry; Peyton, Brent; Rashford, Ben; Spangler, Lee; Swanson, David; Taylor, Suzi; Poulter, Ben

    2017-04-01

    Conserving soil carbon resources while transitioning to a C negative economy is imperative for meeting global climate targets, and can also have critical but under-investigated regional effects. Parts of the North American northern Great Plains have experienced a remarkable 6 W m-2 decrease in summertime radiative forcing since the 1970s. Extreme temperature events now occur less frequently, maximum temperatures have decreased by some 2 ˚ C, and precipitation has increased by 10 mm per decade in some areas. This regional trend toward a cooler and wetter summer climate has coincided with changes in agricultural management. Namely, the practice of keeping fields fallow during summer (hereafter 'summerfallow') has declined by some 23 Mha from the 1970s until the present in the Canadian Prairie Provinces and across the U.S., an area of similar size to the United Kingdom. In addition to potential climate impacts, replacing summerfallow with no-till cropping systems results in lesser soil carbon losses - or even gains - and usually confers economic benefits. In other words, replacing summerfallow with no-till cropping may have resulted in a 'win-win-win' scenario for regional climate, soil carbon conservation, and farm-scale economics. The interaction between carbon, climate, and the economy in this region - and the precise domain that has experienced cooling - are still unknown, which limits our ability to forecast coupled carbon, climate, and human dynamics. Here, we use eddy covariance measurements to demonstrate that summerfallow results in carbon losses during the growing season of the same magnitude as carbon uptake by winter and spring wheat, on the order of 100 - 200 g C m-2 per growing season. We use eddy covariance energy flux measurements to model atmospheric boundary layer and lifted condensation level heights to demonstrate that observed regional changes in near-surface humidity (of up to 7%) are necessary to simulate observed increases in convective

  18. Coupled modelling of subsurface water flux for an integrated flood risk management

    Directory of Open Access Journals (Sweden)

    T. Sommer

    2009-07-01

    Full Text Available Flood events cause significant damage not only on the surface but also underground. Infiltration of surface water into soil, flooding through the urban sewer system and, in consequence, rising groundwater are the main causes of subsurface damage. The modelling of flooding events is an important part of flood risk assessment. The processes of subsurface discharge of infiltrated water necessitate coupled modelling tools of both, surface and subsurface water fluxes. Therefore, codes for surface flooding, for discharge in the sewerage system and for groundwater flow were coupled with each other. A coupling software was used to amalgamate the individual programs in terms of mapping between the different model geometries, time synchronization and data exchange. The coupling of the models was realized on two scales in the Saxon capital of Dresden (Germany. As a result of the coupled modelling it could be shown that surface flooding dominates processes of any flood event. Compared to flood simulations without coupled modelling no substantial changes of the surface inundation area could be determined. Regarding sewerage, the comparison between the influx of groundwater into sewerage and the loading due to infiltration by flood water showed infiltration of surface flood water to be the main reason for sewerage overloading. Concurrent rainfalls can intensify the problem. The infiltration of the sewerage system by rising groundwater contributes only marginally to the loading of the sewerage and the distribution of water by sewerage has only local impacts on groundwater rise. However, the localization of risk areas due to rising groundwater requires the consideration of all components of the subsurface water fluxes. The coupled modelling has shown that high groundwater levels are the result of a multi-causal process that occurs before and during the flood event.

  19. Filling the gap between disaster preparedness and response networks of urban emergency management: Following the 2013 Seoul Floods.

    Science.gov (United States)

    Song, Minsun; Jung, Kyujin

    2015-01-01

    To examine the gap between disaster preparedness and response networks following the 2013 Seoul Floods in which the rapid transmission of disaster information and resources was impeded by severe changes of interorganizational collaboration networks. This research uses the 2013 Seoul Emergency Management Survey data that were collected before and after the floods, and total 94 organizations involving in coping with the floods were analyzed in bootstrap independent-sample t-test and social network analysis through UCINET 6 and STATA 12. The findings show that despite the primary network form that is more hierarchical, horizontal collaboration has been relatively invigorated in actual response. Also, interorganizational collaboration networks for response operations seem to be more flexible grounded on improvisation to coping with unexpected victims and damages. Local organizations under urban emergency management are recommended to tightly build a strong commitment for joint response operations through full-size exercises at the metropolitan level before a catastrophic event. Also, interorganizational emergency management networks need to be restructured by reflecting the actual response networks to reduce collaboration risk during a disaster. This research presents a critical insight into inverse thinking of the view designing urban emergency management networks and provides original evidences for filling the gap between previously coordinated networks for disaster preparedness and practical response operations after a disaster.

  20. Towards a diversification of Flood Risk Management in Europe: a reflection on meta-governance challenges

    NARCIS (Netherlands)

    Dieperink, C.; Hegger, D.L.T.; Bakker, M.H.N.; Driessen, P.P.J.

    2014-01-01

    Because of climate change, extreme weather events and urban sprawl, urban areas have to deal with increasing flood risks. It is argued, both in literature and in practice that these risks can no longer be dealt with by focusing solely on flood defences (building dikes, dams, embankments etc.). Actor

  1. System robustness analysis in support of flood and drought risk management

    NARCIS (Netherlands)

    Mens, Maria Johanna Petronella

    2015-01-01

    Floods and droughts have an increasing impact on societies worldwide. It is unlikely that the provision of flood protection infrastructure and reservoirs will eliminate this problem, especially as extreme events are expected to increase in probability and magnitude as a result of climate change. For

  2. Scaling the Fractal Plain: Towards a General View of Knowledge Management

    Science.gov (United States)

    Griffiths, David; Evans, Peter

    2011-01-01

    Purpose: The purpose of the paper is to explore coherence across key disciplines of knowledge management (KM) for a general model as a way to address performance dissatisfaction in the field. Design/methodology/approach: Research employed an evidence-based meta-analysis (287 aspects of literature), triangulated through an exploratory survey (91…

  3. Academe-Local Government Partnership Towards Effective Application of Geospatial Technologies for Smarter Flood Disaster Management at the Local Level: AN Example from Mindanao, Philippines

    Science.gov (United States)

    Makinano-Santillan, M.; Santillan, J. R.; Morales, E. M. O.; Asube, L. C. S.; Amora, A. M.; Cutamora, L. C.; Makinano, R. M.

    2016-06-01

    In this paper, we discuss how an academe-local government partnership can lead the way for the effective use of geospatial technologies for smarter and geospatially-informed decision making before, during, and after a flood disaster. In Jabonga municipality, in the province of Agusan del Norte, in Mindanao, Philippines, two significant flooding events occurred in the year 2014 which were caused by overflowing water bodies due to continuous heavy rains. These flood events inundated populated areas, caused massive evacuation, made roads un-passable, and greatly damaged sources of incomes such as croplands and other agricultural areas. The partnership between Caraga State University and the local government of Jabonga attempts to improve localized flood disaster management through the development of web-based Near-real Time Flood Event Visualization and Damage Estimations (Flood EViDEns) application. Flood EViDENs utilizes LiDAR-derived elevation and information products as well as other elevation datasets, water level records by monitoring stations, flood simulation models, flood hazard maps, and socio-economic datasets (population, household information, etc.), in order to visualize in near-real time the current and future extent of flooding, to disseminate early warnings, and to provide maps and statistics of areas and communities affected and to be affected by flooding. The development of Flood EViDEns as the main product of the partnership is an important application of geospatial technologies that will allow smarter and geospatially-informed decision making before, during, and after a flood disaster in Jabonga.

  4. Determining which land management practices reduce catchment scale flood risk and where to implement them for optimum effect

    Science.gov (United States)

    Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim

    2010-05-01

    The theoretical basis for why changes in land management might increase flood risk are well known, but proving them through numerical modelling still remains a challenge. In large catchments, like the River Eden in Cumbria, NW England, one of the reasons for this is that it is unfeasible to test multiple scenarios in all their possible locations. We have developed two linked approaches to refine the number of scenarios and locations using 1) spatial downscaling and 2) participatory decision making, which potentially should increase the likelihood of finding a link between land use and downstream flooding. Firstly, land management practices can have both flood reducing and flood increasing effects, depending on their location. As a result some areas of the catchment are more important in determining downstream flood risk than others, depending on the land use and hydrological connectivity. We apply a downscaling approach to identify which sub-catchments are most important in explaining downstream flooding. This is important because it is in these areas that management options are most likely to have a positive and detectable effect. Secondly, once the dominant sub-catchment has been identified, the land management scenarios that are both feasible and likely to impact flood risk need to be determined. This was done through active stakeholder engagement. The stakeholder group undertook a brainstorming exercise, which suggested about 30 different rural land management scenarios, which were mapped on to a literature-based conceptual framework of hydrological processes. Then these options were evaluated based on five criteria: relevance to catchment, scientific effectiveness, testability, robustness/uncertainty and feasibility of implementation. The suitability of each scenario was discussed and prioritised by the stakeholder group based on scientific needs and expectations and local suitability and feasibility. The next stage of the participatory approach was a mapping

  5. Flood routing in an ephemeral channel with compound cross-section

    Indian Academy of Sciences (India)

    M BALAMURUGAN; S MURTY BHALLAMUDI

    2016-07-01

    Natural phenomenon of surface and subsurface flow interaction is an intrinsic component of the hydrological processes in any watershed. It is a highly sensitive process, especially in arid and semi-arid regions, and should be considered while dealing with any water management activity in these regions. This paper describes a novel approach for flood routing in an ephemeral channel with compound cross-sections. The proposed mathematical model couples the numerical solution for complete Saint-Venant equations for surfaceflow with the numerical solution for one-dimensional Richards equation for sub-surface flow through an iterative procedure. Recently developed interactive divided channel (IDC) method is incorporated for simulating the main channel and flood plain flow interactions. In the one-dimensional surface and pseudo two-dimensional subsurface (1DSP2DSS) model presented here, the effect of lateral variation in infiltration rate at a cross section arising due to (i) lateral variation in flow depth and (ii) lateral variation in soil characteristics is incorporated by considering infiltration into different soil columns for main channel and flood plains. The proposed model is verified by comparing the model results with those available in literature for benchmark problems Simulations are presented to demonstrate the capability of the model for flood routing in ephemeral channels with flood plains and the effect of lateral variation in infiltration rate on transmission losses.

  6. Remote sensing and GIS for land use/cover mapping and integrated land management: case from the middle Ganga plain

    Institute of Scientific and Technical Information of China (English)

    R B SINGH; Dilip KUMAR

    2012-01-01

    In India,land resources have reached a critical stage due to the rapidly growing population.This challenge requires an integrated approach toward hamessing land resources,while taking into account the vulnerable environmental conditions.Remote sensing and Geographical Information System (GIS) based technologies may be applied to an area in order to generate a sustainable development plan that is optimally suited to the terrain and to the productive potential of the local resources.The present study area is a part of the middle Ganga plain,known as Son-Karamnasa interfluve,in India.Alternative land use systems and the integration of livestock enterprises with the agricultural system have been suggested for land resources management.The objective of this paper is to prepare a land resource development plan in order to increase the productivity of land for sustainable development.The present study will contribute necessary input for policy makers to improve the socio-economic and environmental conditions of the region.

  7. Improving soil microbiology under rice-wheat crop rotation in Indo-Gangetic Plains by optimized resource management.

    Science.gov (United States)

    Sharma, P; Singh, G; Sarkar, Sushil K; Singh, Rana P

    2015-03-01

    The resource-intensive agriculture involving use of chemical fertilizers, irrigation, and tillage practices is a major cause of soil, water, and air pollution. This study was conducted to determine whether integrated use of nutrient, water, and tillage (reduced) can be manipulated to improve the population of plant growth promoting rhizobacteria (Azotobacter, Bacillus, and Pseudomonas) to enhance soil fertility and yield. The study was conducted in the Indo-Gangetic plain (IGP) region of India, where resource-intensive agriculture is practiced. Various combinations of chemical (urea) and organic fertilizers (farmyard manure (FYM), biofertilizer, and green manure) were used on replicated field plots for all the experiments. The effect of integrated resource management (IRM) on activities of Azotobacter, Bacillus, and Pseudomonas and its relation to the yields of rice and wheat crops in subtropical soils of IGP region were also observed. The increased population of all the three microbes, namely, Azotobacter (5.01-7.74 %), Bacillus (3.37-6.79 %), and Pseudomonas (5.21-7.09 %), was observed due to improved structure and increased organic matter in the soil. Similarly, kernel number and 1000 kernel weight were found increased with sole organic N source, three irrigations, and conservation tillage. Thus, it was found that the IRM practices affect the environment positively by increasing the population of beneficial soil microbes and crop yield as compared to high-input agriculture (conventional practices).

  8. Development of flood index by characterisation of flood hydrographs

    Science.gov (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  9. Decision-making and evacuation planning for flood risk management in the Netherlands.

    Science.gov (United States)

    Kolen, Bas; Helsloot, Ira

    2014-07-01

    A traditional view of decision-making for evacuation planning is that, given an uncertain threat, there is a deterministic way of defining the best decision. In other words, there is a linear relation between threat, decision, and execution consequences. Alternatives and the impact of uncertainties are not taken into account. This study considers the 'top strategic decision-making' for mass evacuation owing to flooding in the Netherlands. It reveals that the top strategic decision-making process itself is probabilistic because of the decision-makers involved and their crisis managers (as advisers). The paper concludes that deterministic planning is not sufficient, and it recommends probabilistic planning that considers uncertainties in the decision-making process itself as well as other uncertainties, such as forecasts, citizens responses, and the capacity of infrastructure. This results in less optimistic, but more realistic, strategies and a need to pay attention to alternative strategies. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  10. Structuring Climate Adaptation through Multiple Perspectives: Framework and Case Study on Flood Risk Management

    Directory of Open Access Journals (Sweden)

    Mohanasundar Radhakrishnan

    2017-02-01

    Full Text Available Adaptation to climate change is being addressed in many domains. This means that there are multiple perspectives on adaptation; often with differing visions resulting in disconnected responses and outcomes. Combining singular perspectives into coherent, combined perspectives that include multiple needs and visions can help to deepen the understanding of various aspects of adaptation and provide more effective responses. Such combinations of perspectives can help to increase the range and variety of adaptation measures available for implementation or avoid maladaptation compared with adaptations derived from a singular perspective. The objective of this paper is to present and demonstrate a framework for structuring the local adaptation responses using the inputs from multiple perspectives. The adaptation response framing has been done by: (i contextualizing climate change adaptation needs; (ii analyzing drivers of change; (iii characterizing measures of adaptation; and (iv establishing links between the measures with a particular emphasis on taking account of multiple perspectives. This framework was demonstrated with reference to the management of flood risks in a case study Can Tho, Vietnam. The results from the case study show that framing of adaptation responses from multiple perspectives can enhance the understanding of adaptation measures, thereby helping to bring about more flexible implementation practices.

  11. Intensive pig production and manure management in Beijing, North China Plain

    OpenAIRE

    Mendoza Huaitalla, Roxana

    2014-01-01

    China, at the forefront of the livestock revolution, has experienced a more industrialized change, with an increment of the large livestock farms and of the decoupling between the livestock and arable land. Meat production in China is dominated by pork, which comprises approximately 50% of worldwide pig production. The description of the pig husbandry and manure management systems in the large animal operations of the NCP is not widely available. In order to describe the status quo o...

  12. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  13. Multi-criteria decision-making for flood risk management: a survey of the current state of the art

    Science.gov (United States)

    Madruga de Brito, Mariana; Evers, Mariele

    2016-04-01

    This paper provides a review of multi-criteria decision-making (MCDM) applications to flood risk management, seeking to highlight trends and identify research gaps. A total of 128 peer-reviewed papers published from 1995 to June 2015 were systematically analysed. Results showed that the number of flood MCDM publications has exponentially grown during this period, with over 82 % of all papers published since 2009. A wide range of applications were identified, with most papers focusing on ranking alternatives for flood mitigation, followed by risk, hazard, and vulnerability assessment. The analytical hierarchy process (AHP) was the most popular method, followed by Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and Simple Additive Weighting (SAW). Although there is greater interest in MCDM, uncertainty analysis remains an issue and was seldom applied in flood-related studies. In addition, participation of multiple stakeholders has been generally fragmented, focusing on particular stages of the decision-making process, especially on the definition of criteria weights. Therefore, addressing the uncertainties around stakeholders' judgments and endorsing an active participation in all steps of the decision-making process should be explored in future applications. This could help to increase the quality of decisions and the implementation of chosen measures.

  14. Capturing the multiple benefits associated with nature-based solutions: lessons from natural flood management project in the Cotswolds, UK

    Science.gov (United States)

    Short, Chrisopher; Clarke, Lucy; Uttley, Chris; Smith, Brian

    2017-04-01

    Following severe flooding in 2007, and subsequent smaller flood events, a decision was taken in 2012 to explore nature-based solutions in 250km2 river catchment in the southern Cotswolds in the UK. A major tributary within the catchment has been designated as rapid response; with a primarily limestone geology limestone and a mixture of spring and surface drained sources along a number of tributaries feeding in the river, with one main population centre where the water bodies converge. The project involves landscape and land management interventions aimed at attenuating high flows to reduce flood risk through changes in land management practices in both agriculture and forestry and slowing peak flows in surface flows through increased infiltration and attenuation areas. After three years of the project it is clear that the threshold for effectiveness requires the majority of the upstream catchment area to be implementing these measures. However, the cost effectiveness of the approach seems to be substantial compared to traditional hard-engineering approaches. The level of community involvement, including local flood forums, is high and the social, and natural, capital has been enhanced through the project. Early results suggest that there have been localized improvements in water quality and biodiversity as well as a reduction in peak flow but such changes are difficult to directly associate to the project. What is clear is the role of communities, landowners and partners to implement natural flood management on a catchment wide scale. In this sense the project has adopted a co-management or adaptive management approach which brings together the knowledges of hydrologists, ecologists, farmers, woodland owners and the local community to implement locally be-spoke solutions within a broader project framework. This paper will outline the initial findings and the governance structure that has assisted in the early success of the project within a theoretical framework of

  15. Vertical profile of PCDD/Fs, dioxin-like PCBs, other PCBs, PAHs, chlorobenzenes, DDX, HCHs, organotin compounds and chlorinated ethers in dated sediment/soil cores from flood-plains of the river Elbe, Germany.

    Science.gov (United States)

    Götz, Rainer; Bauer, Otto-Heinrich; Friesel, Peter; Herrmann, Thomas; Jantzen, Eckard; Kutzke, Manfred; Lauer, Raimund; Paepke, Olaf; Roch, Klaus; Rohweder, Udo; Schwartz, René; Sievers, Susanne; Stachel, Burkhard

    2007-03-01

    Concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and other organic micropollutants were determined in dated sediment/soil cores collected from the flood-plain of the river Elbe near Pevestorf (PT), approximately 125 km upstream of Hamburg, and Heuckenlock (HL) in southeast of Hamburg. Concentrations of PCDD/Fs peaked sharply at PT in the 1950s and at HL at the end of the 1940s. Cluster analyses provide evidence that the region of Bitterfeld-Wolfen (about 350-400 km upstream of Hamburg) could be the source of the PCDD/F contamination existing in the cores PT and HL since the 1940s. Obviously it is caused by sediments of the river Elbe of a similar composition. Whereas the PCDD/Fs, HCHs (hexacyclohexane isomers), DDX (DDT, DDD, DDE), and tetrachlorinated ethers in PT and HL presumably originated predominantly from the Bitterfeld-Wolfen region, organotin compounds in HL and dichlorinated haloethers in HL during the 1940s and 1950s can probably largely be attributed to emissions from the Hamburg region. Although they are separated by a large distance, in both sediment cores PT and HL concentrations and composition patterns of most organic micropollutants analyzed widely match. Inductively it can be concluded that similar contaminations will be found in many of the river bank soils between the Bitterfeld-Wolfen region and Hamburg. Excavation of top soils may uncover highly contaminated materials. Since the dated sediment cores show the variation in contaminants in the Elbe sediments over a defined time period, it is possible to make an approximate assessment of the actual degree of contamination to be expected in areas where in previous decades contaminated dredged sediments from the Elbe and from the Port of Hamburg have been deposited on land and used for building plots or for agricultural purposes.

  16. MINERVE flood warning and management project. What is computed, what is required and what is visualized?

    Science.gov (United States)

    Garcia Hernandez, J.; Boillat, J.-L.; Schleiss, A.

    2010-09-01

    During last decades several flood events caused important inundations in the Upper Rhone River basin in Switzerland. As a response to such disasters, the MINERVE project aims to improve the security by reducing damages in this basin. The main goal of this project is to predict floods in advance in order to obtain a better flow control during flood peaks taking advantage from the multireservoir system of the existing hydropower schemes. The MINERVE system evaluates the hydro-meteorological situation on the watershed and provides hydrological forecasts with a horizon from three to five days. It exploits flow measurements, data from reservoirs and hydropower plants as well as deterministic (COSMO-7 and COSMO-2) and ensemble (COSMO-LEPS) meteorological forecast from MeteoSwiss. The hydrological model is based on a semi-distributed concept, dividing the watershed in 239 sub-catchments, themselves decomposed in elevation bands in order to describe the temperature-driven processes related to snow and glacier melt. The model is completed by rivers and hydraulic works such as water intakes, reservoirs, turbines and pumps. Once the hydrological forecasts are calculated, a report provides the warning level at selected control points according to time, being a support to decision-making for preventive actions. A Notice, Alert or Alarm is then activated depending on the discharge thresholds defined by the Valais Canton. Preventive operation scenarios are then generated based on observed discharge at control points, meteorological forecasts from MeteoSwiss, hydrological forecasts from MINERVE and retention possibilities in the reservoirs. An update of the situation is done every time new data or new forecasts are provided, keeping last observations and last forecasts in the warning report. The forecasts can also be used for the evaluation of priority decisions concerning the management of hydropower plants for security purposes. Considering future inflows and reservoir levels

  17. Leveraging social media for flood emergency management: an experience in Campania region (southern Italy)

    Science.gov (United States)

    Biafore, Mauro

    2017-04-01

    Campania is the Italian region with the highest population density (419 inhabitants/km2). Almost 20% of its territory (13669 km2) is exposed to severe hydrogeological risk scenarios, triggered by extreme rainfall events with duration ranging from a few tens of minutes to several hours. Many of these risk scenarios can only be mitigated by non-structural measures, which are mainly designed to increase the resilience of the exposed communities. Several studies have evidenced that the effectiveness of civil protection actions can be enhanced by using social media for disseminating and collecting information relevant for crisis preparedness, response and recovery. However, the application of social media in the management of hydrogeological risks is still in its infancy. The civil protection of Campania Region, as part of a FP7 project called SUPER (Social sensors for secUrity Assessments and Proactive EmeRgencies management), has been validating an integrated framework enabling optimal blending of social media in the emergency management processes. The SUPER project is a joint effort of social media experts (including social network providers) and security experts (including security and civil protection agencies), towards introducing an integrated and privacy-friendly approach to the use of social media in emergencies and security incidents. As part of the project outcomes, the "SUPER platform" has been developed. It consists of a set of social media processing components integrated in a Common Operational Picture, designed for supporting security and emergency management. A demonstration was primarily setup to evaluate how the SUPER platform can effectively facilitate the exploitation of social media data for improving civil protection actions during a simulated emergency scenario. To this purpose, a civil protection exercise took place in the city of Sorrento (Naples, Italy), involving tens of volunteers and emergency operators. The simulated emergency scenario was

  18. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE, Federal Emergency Management Agency (FEMA) - Flood Insurance Rate Maps (FIRM), Published in 2011, 1:1200 (1in=100ft) scale, Polk County, Wisconsin.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Other...

  19. Societal transformation and adaptation necessary to manage dynamics in flood hazard and risk mitigation (TRANS-ADAPT)

    Science.gov (United States)

    Fuchs, Sven; Thaler, Thomas; Bonnefond, Mathieu; Clarke, Darren; Driessen, Peter; Hegger, Dries; Gatien-Tournat, Amandine; Gralepois, Mathilde; Fournier, Marie; Mees, Heleen; Murphy, Conor; Servain-Courant, Sylvie

    2015-04-01

    project is both scientifically innovative and policy relevant, thereby supporting climate policy needs in Europe towards a concept of risk governance. Key words: climate change adaptation; transformation; flood risk management; resilience; vulnerability; innovative bottom-up developments; multifunctional use

  20. Selenium mobilization during a flood experiment in a contaminated wetland: Stewart Lake Waterfowl Management Area, Utah

    Science.gov (United States)

    Naftz, D.L.; Yahnke, J.; Miller, J.; Noyes, S.

    2005-01-01

    Constructed and natural wetlands can accumulate elevated levels of Se; however, few data are available on cost-effective methods for remobilization and removal of Se from these areas. A field experiment was conducted to assess the effectiveness of flooding on the removal of Se from dry surface sediments. The 83-m2 flood-experiment plot contained 10 monitoring wells, a water-quality minimonitor (continuous measurement of pH, specific conductance, water temperature, and dissolved O2), a down-hole Br electrode, and 2 pressure transducers. Flooding was initiated on August 27, 2002, and a Br tracer was added to water delivered through a pipeline to the flood plot during the first 1.2 h. Standing water depth in the flood plot was maintained at 0.3 m through September 1, 2002. The Br tracer data indicate a dual porosity system that includes fracture (mud cracks) and matrix flow components. Mean vertical water velocities for the matrix flow component were estimated to range from 0.002 to 0.012 m/h. Dissolved (less than 0.45 ??m) Se increased from pre-flood concentrations of less than 10 ??g/L to greater than 800 ??g/L during flooding in samples from deep (2.0 m below land surface) ground water. Selenium concentrations exceeded 5500 ??g/L in samples from shallow (0.8 m below land surface) ground water. Ratios of Se to Br in water samples indicate that Se moved conservatively during the experiment and was derived from leaching of near-surface sediments. Cumulative Se flux to the deep ground water during the experiment ranged from 9.0 to 170 mg/m2. Pre- and post-flood surface soil sampling indicated a mean Se flux of 720 mg/m2 through the top 15 cm of soil. Ground-water samples collected 8 months after termination of the flood experiment contained Se concentrations of less than 20 ??g/L. The minimonitor data indicate a rapid return to chemically reducing conditions in the deep ground water, limiting the mobility of the Se dissolved in the water pulse introduced during the

  1. Nonstructural Approaches to the Management of the Snohomish River Basin Flood Hazard

    Science.gov (United States)

    1980-10-01

    minimize flood damage. In riverine situations, provided that until a floodway has been desig- nated no use (including landfill ) shall be permitted...of riparian wetland via dike breaching). Cathcart Gap is the largest contiguous riparian association within the reach and has important habitat and NVS...constructed between Snohomish and Cathcart to reduce flood elevations here, as previously M discussed. The Corps of Engineers should be responsible for the

  2. The flood risk and flood alleviation benefit of land use management in Taihu Basin%太湖流域未来洪水风险及土地风险管理减灾效益评估

    Institute of Scientific and Technical Information of China (English)

    王艳艳; 韩松; 喻朝庆; 胡昌伟

    2013-01-01

      我国目前处于快速城市化发展时期,加强土地风险管理对抑制洪水风险具有十分重要的作用。本文建立了太湖流域洪水管理效益分析模型,提出了土地风险管理措施在模型中的表征方式,分析了太湖流域在未来不同社会经济与气候情景下的洪水风险,计算了土地风险管理的减灾效益以及工程措施和土地风险管理相结合的综合效益。分析表明,至2050年,太湖流域未来洪水风险增长4~15倍;土地风险管理可将对应情景的未来洪水风险降低39%~50%;综合措施可将未来风险降低70%~74%。研究方法及成果能够为太湖流域洪水管理决策提供技术支撑和参考。%Affected by rapid urbanization and the global warming,the features of flood have been and will be changed significantly in China. Land use risk management is an important measure to restrain the grow⁃ing flood risk. Taking the Taihu Basin as an example, a flood management benefit assessment model has been established. The future flood risk, the benefit of land use risk management and the integrated flood management measures are evaluated. The results reveal that by 2050 the flood risk in the Taihu Basin will increase by 4~15 times under different climate change and socio-economic scenario. The land use manage⁃ment will decrease the future flood risk by 39%~50%,while the integrated measures may decrease the fu⁃ture flood risk by 70%~74%. Based on the results, some suggestions are made for adjusting the strategic planning of flood management in the Taihu Basin.

  3. Tropical stormwater floods: a sustainable solution

    Science.gov (United States)

    Molinie, Jack; Bade, Francois; Nagau, Jimmy; Nuiro, Paul

    2017-04-01

    Stormwater management is one of the most difficult problem of urban and suburban area. The urban runoff volume related to rain intensity and surfaces properties can lead to flood. Thereby, urban flooding creates considerable infrastructure problem, economics and human damages. In tropical countries, burgeoning human population coupled with unplanned urbanization altered the natural drainage. Consequently, classical intense rain around 100 cm/h produces frequent street flooding. In our case, we study the management of intense tropical rain, by using a network of individual rain storage tanks. The study area is economical and industrial zone installed in a coastal plain , with seventy per cent of impermeable surface (roads, parking lots, building roof, …) and thirty per cent of wetland (mangrove, …). Our solution is to delay the routes and parking lots runoff to the roof one. We propose sustainable individual water storage and a real time dynamical management, which permit to control the roof water arrival in the stormwater culvert. During the remaining time, the stored rainwater can be used for domestic activities instead of the use of drinking water.

  4. Integrating Decentralized Rainwater Management in Urban Planning and Design: Flood Resilient and Sustainable Water Management Using the Example of Coastal Cities in The Netherlands and Taiwan

    Directory of Open Access Journals (Sweden)

    Thorsten Schuetze

    2013-05-01

    Full Text Available Urbanized delta areas worldwide share a growing tendency of exposure to water stress induced by the effects of climate change and anthropogenic factors, threatening the operation of infrastructure systems and future urban development. The important synergistic impacts coexisting with freshwater scarcity are increasing urbanization rates, subsiding soils, saltwater intrusion in aquifers and rivers, coastal erosion, and increased flooding. Innovative design strategies and concepts for the integration of decentralized rainwater management measures can contribute to the integrated and climate resilient planning of urban spaces that are threatened by climate change scenarios that worsen the security of urban infrastructures and the future availability of fresh water. Decentralized rainwater management, including retention, storage, and reuse strategies that are integrated into spatial planning and urban design, can reduce flood risks while simultaneously enhancing freshwater availability. This paper discusses a paradigm shift in urban water management, from centralized to decentralized management (that is, from threats to opportunities, using the example of two case studies. Concepts and strategies for building climate resilient cities, which address flood control, the protection of freshwater resources, and the harmonization of a natural and more sustainable water balance, are presented for Almere (Rhine Schelde Delta, The Netherlands and Hsingchu (Dotzpu Delta, Taiwan.

  5. Continuum: a distributed hydrological model for water management and flood forecasting

    Directory of Open Access Journals (Sweden)

    F. Silvestro

    2012-06-01

    Full Text Available Full process description and distributed hydrological models are very useful tools in hydrology as they can be applied in different contexts and for a wide range of aims such as flood and drought forecasting, water management, prediction of impact on the hydrologic cycle due to natural and human changes to catchment features in present and changing climates. Since they must mimic a variety of physical processes they can be very complex and with a high degree of parameterization. This complexity can be increased by the need to relate the state variables to observations in order to allow data assimilation.

    In this work a model, aiming at balancing the need to reproduce the physical processes with the practical goal of avoiding over-parameterization, is presented. The model is designed to be implemented in different contexts with a special focus on data scarce environments.

    All the main hydrological phenomena are modeled in a distributed way. Mass balance and energy balance are solved explicitly. Land surface temperature, which is particularly suited to being extensively observed and assimilated, is an explicit state variable.

    An objective performance evaluation, based on both traditional and satellite derived data, is presented with a specific reference to the application in an Italian catchment. The model has been calibrated and validated using different data sets on two nested outlet sections and the capability of the model in reproducing both the stream-flow measurements and the land surface temperature retrieved by satellite measurements, has been investigated.

  6. Spatial Multicriteria Decision Analysis of Flood Risks in Aging-Dam Management in China: A Framework and Case Study

    Directory of Open Access Journals (Sweden)

    Jinbao Sheng

    2011-05-01

    Full Text Available Approximately 30,000 dams in China are aging and are considered to be high-level risks. Developing a framework for analyzing spatial multicriteria flood risk is crucial to ranking management scenarios for these dams, especially in densely populated areas. Based on the theories of spatial multicriteria decision analysis, this report generalizes a framework consisting of scenario definition, problem structuring, criteria construction, spatial quantification of criteria, criteria weighting, decision rules, sensitivity analyses, and scenario appraisal. The framework is presented in detail by using a case study to rank dam rehabilitation, decommissioning and existing-condition scenarios. The results show that there was a serious inundation, and that a dam rehabilitation scenario could reduce the multicriteria flood risk by 0.25 in the most affected areas; this indicates a mean risk decrease of less than 23%. Although increased risk (

  7. Seawater-flooding events and impact on freshwater lenses of low-lying islands: Controlling factors, basic management and mitigation

    Science.gov (United States)

    Gingerich, Stephen B.; Voss, Clifford I.; Johnson, Adam G.

    2017-01-01

    An unprecedented set of hydrologic observations was collected after the Dec 2008 seawater-flooding event on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands. By two days after the seawater flooding that occurred at the beginning of dry season, the observed salinity of water withdrawn by the island’s main skimming well increased to 100% seawater concentration, but by ten days later already decreased to only 10–20% of seawater fraction. However, the damaging impact on the potability of the groundwater supply (when pumped water had concentrations above 1% seawater fraction) lasted 22 months longer. The data collected make possible analyses of the hydrologic factors that control recovery and management of the groundwater-supply quality on Roi-Namur and on similar low-lying islands.With the observed data as a guide, three-dimensional numerical-model simulation analyses reveal how recovery is controlled by the island’s hydrology. These also allow evaluation of the efficacy of basic water-quality management/mitigation alternatives and elucidate how groundwater withdrawal and timing of the seawater-flooding event affect the length of recovery. Simulations show that, as might be expected, by adding surplus captured rainwater as artificial recharge, the freshwater-lens recovery period (after which potable groundwater may again be produced) can be shortened, with groundwater salinity remaining lower even during the dry season, a period during which no artificial recharge is applied. Simulations also show that the recovery period is not lengthened appreciably by groundwater withdrawals during recovery. Simulations further show that had the flooding event occurred at the start of the wet season, the recovery period would have been about 25% (5.5 months) shorter than actually occurred during the monitored flood that occurred at the dry-season start. Finally, analyses show that artificial recharge improves freshwater-lens water quality, making possible longer

  8. Collecting data for quantitative research on pluvial flooding

    NARCIS (Netherlands)

    Spekkers, M.H.; Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.

    2011-01-01

    Urban pluvial flood management requires detailed spatial and temporal information on flood characteristics and damaging consequences. There is lack of quantitative field data on pluvial flooding resulting in large uncertainties in urban flood model calculations and ensuing decisions for investments

  9. Collecting data for quantitative research on pluvial flooding

    NARCIS (Netherlands)

    Spekkers, M.H.; Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.

    2011-01-01

    Urban pluvial flood management requires detailed spatial and temporal information on flood characteristics and damaging consequences. There is lack of quantitative field data on pluvial flooding resulting in large uncertainties in urban flood model calculations and ensuing decisions for investments

  10. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  11. Development of a New Generation of Flood Inundation Maps—A Case Study of the Coastal City of Tainan, Taiwan

    Directory of Open Access Journals (Sweden)

    Dong-Jiing Doong

    2016-11-01

    Full Text Available Flood risk management has become a growing priority for city managers and disaster risk prevention agencies worldwide. Correspondingly, large investments are made towards data collection, archiving and analysis and technologies such as geographic information systems (GIS and remote sensing play important role in this regard. GIS technologies offer valuable means for delineation of flood plains, zoning of areas that need protection from floods and identification of plans for development and scoping of various kinds of flood protection measures. Flood inundation maps (FIMs are particularly useful in planning flood disaster risk responses. The purpose of the present paper is to describe efforts in developing new generation of FIMs at the city scale and to demonstrate effectiveness of such maps in the case of the coastal city of Tainan, Taiwan. In the present work, besides pluvial floods, the storm surge influence is also considered. The 1D/2D coupled model SOBEK was used for flood simulations. Different indicators such as Probability of Detection (POD and Scale of Accuracy (SA were applied in the calibration and validation stages of the work and their corresponding values were found to be up to 88.1% and 68.0%, respectively. From the overall analysis, it came up that land elevation, tidal phase, and storm surge are the three dominant factors that influence flooding in Tainan. A large number of model simulations were carried out in order to produce FIMs which were then effectively applied in the stakeholder engagement process.

  12. Investigating the potential to reduce flood risk through catchment-based land management techniques and interventions in the River Roe catchment, Cumbria,UK

    Science.gov (United States)

    Pearson, Callum; Reaney, Sim; Bracken, Louise; Butler, Lucy

    2015-04-01

    Throughout the United Kingdom flood risk is a growing problem and a significant proportion of the population are at risk from flooding throughout the country. Across England and Wales over 5 million people are believed to be at risk from fluvial, pluvial or coastal flooding (DEFRA, 2013). Increasingly communities that have not dealt with flooding before have recently experienced significant flood events. The communities of Stockdalewath and Highbridge in the Roe catchment, a tributary of the River Eden in Cumbria, UK, are an excellent example. The River Roe has a normal flow of less than 5m3 sec-1 occurring 97 percent of the time however there have been two flash floods of 98.8m3 sec-1 in January 2005 and 86.9m3 sec-1 in May 2013. These two flash flood events resulted in the inundation of numerous properties within the catchment with the 2013 event prompting the creation of the Roe Catchment Community Water Management Group which aims are to deliver a sustainable approach to managing the flood risk. Due to the distributed rural population the community fails the cost-benefit analysis for a centrally funded flood risk mitigation scheme. Therefore the at-risk community within the Roe catchment have to look for cost-effective, sustainable techniques and interventions to reduce the potential negative impacts of future events; this has resulted in a focus on natural flood risk management. This research investigates the potential to reduce flood risk through natural catchment-based land management techniques and interventions within the Roe catchment; providing a scientific base from with further action can be enacted. These interventions include changes to land management and land use, such as soil aeration and targeted afforestation, the creation of runoff attenuation features and the construction of in channel features, such as debris dams. Natural flood management (NFM) application has been proven to be effective when reducing flood risk in smaller catchments and the

  13. Next generation paradigm for urban pluvial flood modelling, prediction, management and vulnerability reduction - Interaction between RainGain and Blue Green Dream projects

    Science.gov (United States)

    Maksimovic, C.

    2012-04-01

    The effects of climate change and increasing urbanisation call for a new paradigm for efficient planning, management and retrofitting of urban developments to increase resilience to climate change and to maximize ecosystem services. Improved management of urban floods from all sources in required. Time scale for well documented fluvial and coastal floods allows for timely response but surface (pluvial) flooding caused by intense local storms had not been given appropriate attention, Pitt Review (UK). Urban surface floods predictions require fine scale data and model resolutions. They have to be tackled locally by combining central inputs (meteorological services) with the efforts of the local entities. Although significant breakthrough in modelling of pluvial flooding was made there is a need to further enhance short term prediction of both rainfall and surface flooding. These issues are dealt with in the EU Iterreg project Rain Gain (RG). Breakthrough in urban flood mitigation can only be achieved by combined effects of advanced planning design, construction and management of urban water (blue) assets in interaction with urban vegetated areas' (green) assets. Changes in design and operation of blue and green assets, currently operating as two separate systems, is urgently required. Gaps in knowledge and technology will be introduced by EIT's Climate-KIC Blue Green Dream (BGD) project. The RG and BGD projects provide synergy of the "decoupled" blue and green systems to enhance multiple benefits to: urban amenity, flood management, heat island, biodiversity, resilience to drought thus energy requirements, thus increased quality of urban life at lower costs. Urban pluvial flood management will address two priority areas: Short Term rainfall Forecast and Short term flood surface forecast. Spatial resolution of short term rainfall forecast below 0.5 km2 and lead time of a few hours are needed. Improvements are achievable by combining data sources of raingauge networks

  14. Use Of Radar-Rainfall Data for the Southwest Coastal Louisiana Feasibility Study: Regional Scale Hydrologic and Salinity Modeling and Management Scenario Analysis for Chenier Plain

    Science.gov (United States)

    Meselhe, E. A.; Michot, B.; Chen, C.; Habib, E. H.

    2011-12-01

    The Chenier Plain, in Southwest Louisiana, extends from Vermilion Bay to Sabine Lake in southeast Texas. It has great economic, industrial, recreational, and ecological value. Over the years, human activities such as dredging ship channels and access canals, building roads, levees, and hydraulic structures have altered the hydrology of the Chenier Plain. These alterations have affected the fragile equilibrium of the marsh ecology. If no action is taken to restore the Chenier Plain, land loss through conversion of marsh to open water would continue. The Southwest Coastal Louisiana Feasibility Study aims at evaluating proposed protection and restoration measures and ultimately submitting a comprehensive plan to protect and preserve the Chenier Plain at the regional scale. The proposed alternatives include marsh creation, terracing, shoreline protection, and freshwater introduction and salinity control structures. A regional scale hydrodynamic and salinity transport model was developed to screen and assess the proposed restoration measures. A critical component of this modeling effort is local rainfall. The strong spatial variability and limited availability of ground-level precipitation measurements limited our ability to capture local rainfall. Thus, a radar-based rainfall product was used as a viable alternative to the rain gauges. These estimates are based on the National Weather Service from the Multi-Sensor Precipitation Estimator (MPE) algorithm. Since the model was used to perform long-term (yearly) simulations, the 4x4 km2 MPE estimates were represented as daily accumulations. The use of the radar-rainfall product data improved the model performance especially on our ability to capture the spatial and temporal variations of salinity. Overall, the model is improving our understanding of the circulation patterns and salinity regimes of the region. The circulation model used here is the MIKE FLOOD software (Danish Hydraulic Institute, DHI 2008) which dynamically

  15. FEMA DFIRM Flood Hazard Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  16. National Flood Hazard Layer (NFHL)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are...

  17. FEMA Q3 Flood Data

    Data.gov (United States)

    Kansas Data Access and Support Center — The Q3 Flood Data are derived from the Flood Insurance Rate Maps (FIRMS) published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to...

  18. The impact of a small weir on flood risk modelling and management

    Science.gov (United States)

    Bulcock, Amelia; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Whitfield, R. Greg; Byrne, Patrick

    2016-04-01

    Some ~26,000 obstructions govern British river systems with the majority of these being weirs. Most of the weirs in the UK were built in the 18th century for reasons such as flood control, fishing purposes and navigation. Despite hydroelectric power being at the forefront of new weir construction, many of the existing weirs are being considered for removal to adhere to the Water Framework Directive. However, there are concerns about weir removal regarding increased flood risk, erosion, deposition, pollution redistribution and gradient changes. Before weirs can be removed it is important to understand how a weir is altering a river in order to identify how it may respond to removal; a concept that is poorly understood. Weirs can significantly modify flow regime and sediment transport, ultimately greatly affecting habitats and ecosystems and make constrained rivers behave considerably different to unconstrained channels. The aim of this study is to identify the effect of a weir on morphology, hydraulics, flood risk and sediment transport to determine its current effect and help inform if removal is logical. Hydraulic and sediment transport modeling will be used to determine the effect of the weir on flood risk, flow and sediment transport and historical and present maps to determine morphological changes. Modelling