WorldWideScience

Sample records for flood hazard characterisation

  1. Flood Hazard Area

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  2. Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  3. FEMA DFIRM Flood Hazard Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  4. 2013 FEMA Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  5. National Flood Hazard Layer (NFHL)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are...

  6. Development of flood index by characterisation of flood hydrographs

    Science.gov (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  7. Estancia Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  8. Elephant Butte Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  9. Sierra County Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  10. Flood hazard and management: a UK perspective.

    Science.gov (United States)

    Wheater, Howard S

    2006-08-15

    This paper discusses whether flood hazard in the UK is increasing and considers issues of flood risk management. Urban development is known to increase fluvial flood frequency, hence design measures are routinely implemented to minimize the impact. Studies suggest that historical effects, while potentially large at small scale, are not significant for large river basins. Storm water flooding within the urban environment is an area where flood hazard is inadequately defined; new methods are needed to assess and manage flood risk. Development on flood plains has led to major capital expenditure on flood protection, but government is attempting to strengthen the planning role of the environmental regulator to prevent this. Rural land use management has intensified significantly over the past 30 years, leading to concerns that flood risk has increased, at least at local scale; the implications for catchment-scale flooding are unclear. New research is addressing this issue, and more broadly, the role of land management in reducing flood risk. Climate change impacts on flooding and current guidelines for UK practice are reviewed. Large uncertainties remain, not least for the occurrence of extreme precipitation, but precautionary guidance is in place. Finally, current levels of flood protection are discussed. Reassessment of flood hazard has led to targets for increased flood protection, but despite important developments to communicate flood risk to the public, much remains to be done to increase public awareness of flood hazard.

  11. Sept 2013 NFHL Flood Hazard Areas

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  12. Sept 2013 NFHL Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  13. 78 FR 52956 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-08-27

    ... 77662. City of Pinehurst Pinehurst City Hall, 2497 Martin Luther King Jr. Drive, Orange, TX 77630. City... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency... Register (78 FR 36220-36222) a proposed flood hazard determination notice that contained an erroneous...

  14. Flooding hazards from sea extremes and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Vognsen, Karsten; Broge, Niels

    2015-01-01

    If we do not understand the effects of climate change and sea level rise (SLR) we cannot live in low-lying coastal areas in the future. Permanent inundation may become a prevalent issue but more often floods related to extreme events have the largest damage potential, and the management of flooding...... hazards needs to integrate the water loading from various sources. Furthermore, local subsidence must be accounted for in order to evaluate current and future flooding hazards and management options. We present the methodology (Figure) and preliminary results from the research project “Coastal Flooding...... Hazards due to Storm Surges and Subsidence” (2014-2017) with the objective to develop and test a practice oriented methodology for combining extreme water level statistics and land movement in coastal flooding hazard mapping and in climate change adaptation schemes in Denmark. From extreme value analysis...

  15. Flood insurance in Canada: implications for flood management and residential vulnerability to flood hazards.

    Science.gov (United States)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  16. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards

    Science.gov (United States)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  17. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    Energy Technology Data Exchange (ETDEWEB)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf [University of Applied Sciences Deggendorf (Germany); Serrhini, Kamal [Universite de Technologie de Compiegne, Genie des Systemes Urbains, France, and Universite Francois Rabelais, Unite Mixte de Recherche, Tours (France); Fuchs, Sven [Institute of Mountain Risk Engineering, University of Natural Resources and Applied Life Sciences, Vienna (Austria)], E-mail: karl.spachinger@fhd.edu

    2008-11-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  18. Truth or Consequences Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  19. Rethinking flood hazard at the global scale

    Science.gov (United States)

    Schumann, Guy J.-P.; Stampoulis, Dimitrios; Smith, Andrew M.; Sampson, Christopher C.; Andreadis, Konstantinos M.; Neal, Jeffrey C.; Bates, Paul D.

    2016-10-01

    Flooding is governed by the amount and timing of water spilling out of channels and moving across adjacent land, often with little warning. At global scales, flood hazard is typically inferred from streamflow, precipitation or from satellite images, yielding a largely incomplete picture. Thus, at present, the floodplain inundation variables, which define hazard, cannot be accurately predicted nor can they be measured at large scales. Here we present, for the first time, a complete continuous long-term simulation of floodplain water depths at continental scale. Simulations of floodplain inundation were performed with a hydrodynamic model based on gauged streamflow for the Australian continent from 1973 to 2012. We found the magnitude and timing of floodplain storage to differ significantly from streamflow in terms of their distribution. Furthermore, floodplain volume gave a much sharper discrimination of high hazard and low hazard periods than discharge. These discrepancies have implications for characterizing flood hazard at the global scale from precipitation and streamflow records alone, suggesting that simulations and observations of inundation are also needed.

  20. 32 CFR 643.31 - Policy-Flood hazards.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant...

  1. 34 CFR 75.611 - Avoidance of flood hazards.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Avoidance of flood hazards. 75.611 Section 75.611... by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction, a...) Evaluate flood hazards in connection with the construction; and (b) As far as practicable, avoid...

  2. Flood hazard and flood risk assessment at the local spatial scale: a case study

    Directory of Open Access Journals (Sweden)

    Matej Vojtek

    2016-11-01

    Full Text Available With regard to minimizing flood damage, there are measures of different character each of which has its justification and plays an important role in flood protection. Implementation of traditional flood protection measures is still very important; however, an increasing role should be played particularly by flood prevention and flood risk management. The paper presents a case study on flood hazard and flood risk assessment at the local spatial scale using geographic information systems, remote sensing, and hydraulic modelling. As for determining flood hazard in the model area, which has 3.23 km2, the estimation of maximum flood discharges and hydraulic modelling were important steps. The results of one-dimensional hydraulic modelling, which are water depth and flow velocity rasters, were the basis for determining flood hazard and flood risk. In order to define flood risk, the following steps were applied: determining flood intensity on the basis of water depth and flow velocity rasters, determining flood hazard using three categories (low, medium, and high based on flood intensity, defining vulnerability for the classes of functional areas using three categories of acceptable risk (low, medium, and high, and lastly determination of flood risk which represents a synthesis of flood hazard and vulnerability of the model area.

  3. FEMA Hazard Mitigation Assistance Flood Mitigation Assistance (FMA) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Flood Mitigation Assistance (FMA)....

  4. FEMA Hazard Mitigation Assistance Repetitive Flood Claims (RFC) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Repetitive Flood Claims (RFC). The...

  5. Hydrologic versus geomorphic drivers of trends in flood hazard

    Science.gov (United States)

    Slater, Louise J.; Bliss Singer, Michael; Kirchner, James W.

    2016-04-01

    Flooding is a major threat to lives and infrastructure, yet trends in flood hazard are poorly understood. The capacity of river channels to convey flood flows is typically assumed to be stationary, so changes in flood frequency are thought to be driven primarily by trends in streamflow. However, changes in channel capacity will also modify flood hazard, even if the flow frequency distribution does not change. We developed new methods for separately quantifying how trends in both streamflow and channel capacity have affected flood frequency at gauging sites across the United States. Using daily discharge records and manual field measurements of channel cross-sectional geometry for USGS gauging stations that have defined flood stages (water levels), we present novel methods for measuring long-term trends in channel capacity of gauged rivers, and for quantifying how they affect overbank flood frequency. We apply these methods to 401 U.S. rivers and detect measurable trends in flood hazard linked to changes in channel capacity and/or the frequency of high flows. Flood frequency is generally nonstationary across these 401 U.S. rivers, with increasing flood hazard at a statistically significant majority of sites. Changes in flood hazard driven by channel capacity are smaller, but more numerous, than those driven by streamflow, with a slight tendency to compensate for streamflow changes. Our results demonstrate that accurately quantifying changes in flood hazard requires accounting separately for trends in both streamflow and channel capacity, or using water levels directly. They also show that channel capacity trends may have unforeseen consequences for flood management and for estimating flood insurance costs. Slater, L. J., M. B. Singer, and J. W. Kirchner (2015), Hydrologic versus geomorphic drivers of trends in flood hazard, Geophys. Res. Lett., 42, 370-376, doi:10.1002/2014GL062482.

  6. Beyond Flood Hazard Maps: Detailed Flood Characterization with Remote Sensing, GIS and 2d Modelling

    Science.gov (United States)

    Santillan, J. R.; Marqueso, J. T.; Makinano-Santillan, M.; Serviano, J. L.

    2016-09-01

    Flooding is considered to be one of the most destructive among many natural disasters such that understanding floods and assessing the risks associated to it are becoming more important nowadays. In the Philippines, Remote Sensing (RS) and Geographic Information System (GIS) are two main technologies used in the nationwide modelling and mapping of flood hazards. Although the currently available high resolution flood hazard maps have become very valuable, their use for flood preparedness and mitigation can be maximized by enhancing the layers of information these maps portrays. In this paper, we present an approach based on RS, GIS and two-dimensional (2D) flood modelling to generate new flood layers (in addition to the usual flood depths and hazard layers) that are also very useful in flood disaster management such as flood arrival times, flood velocities, flood duration, flood recession times, and the percentage within a given flood event period a particular location is inundated. The availability of these new layers of flood information are crucial for better decision making before, during, and after occurrence of a flood disaster. The generation of these new flood characteristic layers is illustrated using the Cabadbaran River Basin in Mindanao, Philippines as case study area. It is envisioned that these detailed maps can be considered as additional inputs in flood disaster risk reduction and management in the Philippines.

  7. BEYOND FLOOD HAZARD MAPS: DETAILED FLOOD CHARACTERIZATION WITH REMOTE SENSING, GIS AND 2D MODELLING

    Directory of Open Access Journals (Sweden)

    J. R. Santillan

    2016-09-01

    Full Text Available Flooding is considered to be one of the most destructive among many natural disasters such that understanding floods and assessing the risks associated to it are becoming more important nowadays. In the Philippines, Remote Sensing (RS and Geographic Information System (GIS are two main technologies used in the nationwide modelling and mapping of flood hazards. Although the currently available high resolution flood hazard maps have become very valuable, their use for flood preparedness and mitigation can be maximized by enhancing the layers of information these maps portrays. In this paper, we present an approach based on RS, GIS and two-dimensional (2D flood modelling to generate new flood layers (in addition to the usual flood depths and hazard layers that are also very useful in flood disaster management such as flood arrival times, flood velocities, flood duration, flood recession times, and the percentage within a given flood event period a particular location is inundated. The availability of these new layers of flood information are crucial for better decision making before, during, and after occurrence of a flood disaster. The generation of these new flood characteristic layers is illustrated using the Cabadbaran River Basin in Mindanao, Philippines as case study area. It is envisioned that these detailed maps can be considered as additional inputs in flood disaster risk reduction and management in the Philippines.

  8. 76 FR 37893 - Loans in Areas Having Special Flood Hazards

    Science.gov (United States)

    2011-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Office of Thrift Supervision Loans in Areas Having Special Flood Hazards AGENCY: Office of Thrift... collection. Title of Proposal: Loans in Areas Having Special Flood Hazards. OMB Number: 1550-0088....

  9. Coastal Flood Hazard Composite Layer for the Coastal Flood Exposure Mapper

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a map service for the Coastal Flood Hazard Composite dataset. This dataset was created by combining hazard zones from the following datasets: FEMA V zones,...

  10. A method for mapping flood hazard along roads.

    Science.gov (United States)

    Kalantari, Zahra; Nickman, Alireza; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-01-15

    A method was developed for estimating and mapping flood hazard probability along roads using road and catchment characteristics as physical catchment descriptors (PCDs). The method uses a Geographic Information System (GIS) to derive candidate PCDs and then identifies those PCDs that significantly predict road flooding using a statistical modelling approach. The method thus allows flood hazards to be estimated and also provides insights into the relative roles of landscape characteristics in determining road-related flood hazards. The method was applied to an area in western Sweden where severe road flooding had occurred during an intense rain event as a case study to demonstrate its utility. The results suggest that for this case study area three categories of PCDs are useful for prediction of critical spots prone to flooding along roads: i) topography, ii) soil type, and iii) land use. The main drivers among the PCDs considered were a topographical wetness index, road density in the catchment, soil properties in the catchment (mainly the amount of gravel substrate) and local channel slope at the site of a road-stream intersection. These can be proposed as strong indicators for predicting the flood probability in ungauged river basins in this region, but some care is needed in generalising the case study results other potential factors are also likely to influence the flood hazard probability. Overall, the method proposed represents a straightforward and consistent way to estimate flooding hazards to inform both the planning of future roadways and the maintenance of existing roadways.

  11. Accumulation risk assessment for the flooding hazard

    Science.gov (United States)

    Roth, Giorgio; Ghizzoni, Tatiana; Rudari, Roberto

    2010-05-01

    One of the main consequences of the demographic and economic development and of markets and trades globalization is represented by risks cumulus. In most cases, the cumulus of risks intuitively arises from the geographic concentration of a number of vulnerable elements in a single place. For natural events, risks cumulus can be associated, in addition to intensity, also to event's extension. In this case, the magnitude can be such that large areas, that may include many regions or even large portions of different countries, are stroked by single, catastrophic, events. Among natural risks, the impact of the flooding hazard cannot be understated. To cope with, a variety of mitigation actions can be put in place: from the improvement of monitoring and alert systems to the development of hydraulic structures, throughout land use restrictions, civil protection, financial and insurance plans. All of those viable options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - flood risk scenarios. It is therefore necessary to identify proper statistical methodologies, able to describe the multivariate aspects of the involved physical processes and their spatial dependence. In hydrology and meteorology, but also in finance and insurance practice, it has early been recognized that classical statistical theory distributions (e.g., the normal and gamma families) are of restricted use for modeling multivariate spatial data. Recent research efforts have been therefore directed towards developing statistical models capable of describing the forms of asymmetry manifest in data sets. This, in particular, for the quite frequent case of phenomena whose empirical outcome behaves in a non-normal fashion, but still maintains some broad similarity with the multivariate normal distribution. Fruitful approaches were recognized in the use of flexible models, which include the normal

  12. 76 FR 72961 - Flood Hazard Determinations (Including Flood Elevation Determinations)-Change in Notification and...

    Science.gov (United States)

    2011-11-28

    ..., etc.) and provide both a physical address and an internet address where the specific flood elevations... both a physical address and an internet address where the specific flood hazards (as shown in a Flood... published in the Federal Register on or after December 1, 2011. ADDRESSES: The docket for this notice...

  13. Groundwater flood hazards in lowland karst terrains

    Science.gov (United States)

    Naughton, Owen; McCormack, Ted

    2016-04-01

    The spatial and temporal complexity of flooding in karst terrains pose unique flood risk management challenges. Lowland karst landscapes can be particularly susceptible to groundwater flooding due to a combination of limited drainage capacity, shallow depth to groundwater and a high level of groundwater-surface water interactions. Historically the worst groundwater flooding to have occurred in the Rep. of Ireland has been centred on the Gort Lowlands, a karst catchment on the western coast of Ireland. Numerous notable flood events have been recorded throughout the 20th century, but flooding during the winters of 2009 and 2015 were the most severe on record, inundating an area in excess of 20km2 and causing widespread and prolonged disruption and damage to property and infrastructure. Effective flood risk management requires an understanding of the recharge, storage and transport mechanisms during flood conditions, but is often hampered by a lack of adequate data. Using information gathered from the 2009 and 2015 events, the main hydrological and geomorphological factors which influence flooding in this complex lowland karst groundwater system under are elucidated. Observed flood mechanisms included backwater flooding of sinks, overland flow caused by the overtopping of sink depressions, high water levels in turlough basins, and surface ponding in local epikarst watersheds. While targeted small-scale flood measures can locally reduce the flood risk associated with some mechanisms, they also have the potential to exacerbate flooding down-catchment and must be assessed in the context of overall catchment hydrology. This study addresses the need to improve our understanding of groundwater flooding in karst terrains, in order to ensure efficient flood prevention and mitigation in future and thus help achieve the aims of the EU Floods Directive.

  14. Deriving global flood hazard maps of fluvial floods through a physical model cascade

    OpenAIRE

    Pappenberger, F.; E. Dutra; Wetterhall, F.; Cloke, H

    2012-01-01

    Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteoro...

  15. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    Science.gov (United States)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two

  16. 78 FR 14571 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2013-03-06

    ... Insurance Study (FIS) reports, currently in effect for the listed communities. The flood hazard... effect in order to remain qualified for participation in the National Flood Insurance Program (NFIP... Docket No.: B- Town of Camp Verde The Honorable Bob Town Clerk's Office, December 31, 2012 040131...

  17. 24 CFR 3285.302 - Flood hazard areas.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Flood hazard areas. 3285.302 Section 3285.302 Housing and Urban Development Regulations Relating to Housing and Urban Development... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.302 Flood...

  18. 7 CFR 1980.318 - Flood or mudslide hazard area precautions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Flood or mudslide hazard area precautions. 1980.318... Flood or mudslide hazard area precautions. RHS policy is to discourage lending in designated flood and mudslide hazard areas. Loan guarantees shall not be issued in designated flood/mudslide hazard areas...

  19. 78 FR 9406 - Final Flood Hazard Determinations

    Science.gov (United States)

    2013-02-08

    ... Georgetown......... Georgetown Township Office, 1515 Baldwin Street, Jenison, MI 49428. Charter Township of... Domestic Assistance No. 97.022, ``Flood Insurance.'') James A. Walke, Acting Deputy Associate...

  20. 78 FR 78995 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-12-27

    ... determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth... Beverly Shores Town Hall, 500 South Broadway, Beverly Shores, IN 46301. Town of Burns Harbor Building Department, 1240 North Boo Road, Burns Harbor, IN 46304. Town of Chesterton Building Department, 726 Broadway...

  1. Advances in pan-European flood hazard mapping

    Science.gov (United States)

    Bates, P. D.; Alfieri, L.; Salamon, P.; Bianchi, A.; Neal, J. C.; Feyen, L.

    2013-12-01

    Flood hazard maps at trans-national scale have potential for a large number of applications ranging from climate change studies, reinsurance products, aid to emergency operations for major flood crisis, among others. However, at continental scales, only few products are available, due to the difficulty of retrieving large consistent data sets. Moreover, these are produced at relatively coarse grid resolution, which limits their applications to qualitative assessments. At finer resolution, maps are often limited to country boundaries, due to limited data sharing at trans-national level. The creation of a European flood hazard map would currently imply a collection of scattered regional maps, often lacking mutual consistency due to the variety of adopted approaches and quality of the underlying input data. In this work, we derive a pan-European flood hazard map at 100m resolution. The proposed approach is based on expanding a literature cascade model through a physically based approach. A combination of distributed hydrological and hydraulic models was set up for the European domain. Then, an observed meteorological data set is used to derive a long-term streamflow simulation and subsequently coherent design flood hydrographs for a return period of 100years along the pan-European river network. Flood hydrographs are used to simulate areas at risk of flooding and output maps are merged into a pan-European flood hazard map. The quality of this map is evaluated for selected areas in Germany and United Kingdom against national/regional hazard maps. Despite inherent limitations and model resolution issues, simulated maps are in good agreement with reference maps (hit rate between 59% and 78%, critical success index between 43% and 65%), suggesting strong potential for a number of applications at the European scale

  2. Deriving global flood hazard maps of fluvial floods through a physical model cascade

    Science.gov (United States)

    Pappenberger, Florian; Dutra, Emanuel; Wetterhall, Fredrik; Cloke, Hannah L.

    2013-04-01

    Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979-2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25 × 25 km grid, which is then reprojected onto a 1 × 1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25 × 25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.

  3. Deriving global flood hazard maps of fluvial floods through a physical model cascade

    Directory of Open Access Journals (Sweden)

    F. Pappenberger

    2012-11-01

    Full Text Available Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (reinsurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010 simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25 × 25 km grid, which is then reprojected onto a 1 × 1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25 × 25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.

  4. A high-resolution global flood hazard model

    Science.gov (United States)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  5. Flood Hazards: Communicating Hydrology and Complexity to the Public

    Science.gov (United States)

    Holmes, R. R.; Blanchard, S. F.; Mason, R. R.

    2010-12-01

    Floods have a major impact on society and the environment. Since 1952, approximately 1,233 of 1,931 (64%) Federal disaster declarations were due directly to flooding, with an additional 297 due to hurricanes which had associated flooding. Although the overall average annual number of deaths due to flooding has decreased in the United States, the average annual flood damage is rising. According to the Munich Reinsurance Company in their publication “Schadenspiegel 3/2005”, during 1990s the world experienced as much as $500 billion in economic losses due to floods, highlighting the serious need for continued emphasis on flood-loss prevention measures. Flood-loss prevention has two major elements: mitigation (including structural flood-control measures and land-use planning and regulation) and risk awareness. Of the two, increasing risk awareness likely offers the most potential for protecting lives over the near-term and long-term sustainability in the coming years. Flood-risk awareness and risk-aware behavior is dependent on communication, involving both prescriptive and educational measures. Prescriptive measures (for example, flood warnings and stormwater ordinances) are and have been effective, but there is room for improvement. New communications technologies, particularly social media utilizing mobile, smart phones and text devices, for example, could play a significant role in increasing public awareness of long-term risk and near-term flood conditions. The U.S. Geological Survey (USGS), for example, the Federal agency that monitors the Nation’s rivers, recently released a new service that can better connect the to the public to information about flood hazards. The new service, WaterAlert (URL: http://water.usgs.gov/wateralert/), allows users to set flood notification thresholds of their own choosing for any USGS real-time streamgage. The system then sends emails or text messages to subscribers whenever the threshold conditions are met, as often as the

  6. 24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Flood and hazard insurance, and... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... part if the property securing repayment of the loan is located in a special flood hazard...

  7. Flood Hazard and Risk Analysis in Urban Area

    Science.gov (United States)

    Huang, Chen-Jia; Hsu, Ming-hsi; Teng, Wei-Hsien; Lin, Tsung-Hsien

    2017-04-01

    Typhoons always induce heavy rainfall during summer and autumn seasons in Taiwan. Extreme weather in recent years often causes severe flooding which result in serious losses of life and property. With the rapid industrial and commercial development, people care about not only the quality of life, but also the safety of life and property. So the impact of life and property due to disaster is the most serious problem concerned by the residents. For the mitigation of the disaster impact, the flood hazard and risk analysis play an important role for the disaster prevention and mitigation. In this study, the vulnerability of Kaohsiung city was evaluated by statistics of social development factor. The hazard factors of Kaohsiung city was calculated by simulated flood depth of six different return periods and four typhoon events which result in serious flooding in Kaohsiung city. The flood risk can be obtained by means of the flood hazard and social vulnerability. The analysis results provide authority to strengthen disaster preparedness and to set up more resources in high risk areas.

  8. Coastal Flooding Hazards due to storm surges and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Knudsen, Per; Andersen, Ole B.

    Flooding hazard and risk mapping are major topics in low-lying coastal areas before even considering the adverse effects of sea level rise (SLR) due to climate change. While permanent inundation may be a prevalent issue, more often floods related to extreme events (storm surges) have the largest...... damage potential.Challenges are amplified in some areas due to subsidence from natural and/or anthropogenic causes. Subsidence of even a few mm/y may over time greatly impair the safety against flooding of coastal communities and must be accounted for in order to accomplish the economically most viable...

  9. 32 CFR 644.352 - Evaluation and reporting of flood hazards.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Evaluation and reporting of flood hazards. 644... Property to General Services Administration (gsa) § 644.352 Evaluation and reporting of flood hazards... presence of flood hazards. If such hazards are found, a report will be forwarded to HQDA...

  10. Toward economic flood loss characterization via hazard simulation

    Science.gov (United States)

    Czajkowski, Jeffrey; Cunha, Luciana K.; Michel-Kerjan, Erwann; Smith, James A.

    2016-08-01

    Among all natural disasters, floods have historically been the primary cause of human and economic losses around the world. Improving flood risk management requires a multi-scale characterization of the hazard and associated losses—the flood loss footprint. But this is typically not available in a precise and timely manner, yet. To overcome this challenge, we propose a novel and multidisciplinary approach which relies on a computationally efficient hydrological model that simulates streamflow for scales ranging from small creeks to large rivers. We adopt a normalized index, the flood peak ratio (FPR), to characterize flood magnitude across multiple spatial scales. The simulated FPR is then shown to be a key statistical driver for associated economic flood losses represented by the number of insurance claims. Importantly, because it is based on a simulation procedure that utilizes generally readily available physically-based data, our flood simulation approach has the potential to be broadly utilized, even for ungauged and poorly gauged basins, thus providing the necessary information for public and private sector actors to effectively reduce flood losses and save lives.

  11. Scoping of flood hazard mapping needs for Somerset County, Maine

    Science.gov (United States)

    Dudley, Robert W.; Schalk, Charles W.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Somerset County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Somerset County. Scoping activities included assembling existing data and map needs information for communities in Somerset County (efforts were made to not duplicate those of pre-scoping completed in March 2005), documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Somerset County, Maine is 18.1 years. Most of these studies were in the late 1970's to the mid 1980

  12. 24 CFR 3285.406 - Flood hazard areas.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Flood hazard areas. 3285.406 Section 3285.406 Housing and Urban Development Regulations Relating to Housing and Urban Development... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406...

  13. 77 FR 77085 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2012-12-31

    ... Insurance Study (FIS) reports, currently in effect for the listed communities. The flood hazard... The Honorable Sean 5291 East 60th April 11, 2012 080006 (11-08-0367P). Ford, Sr., Mayor, Avenue...-0747P). Ford, Sr., Mayor, Avenue, Commerce City of Commerce City, CO 80022. City, 7887 East 60th...

  14. Climate change impact on flood hazard

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2014-09-01

    Full Text Available Climate changes have a high impact on river discharges and therefore on floods. There are a few different methods we can use to predict discharge changes in the future. In this paper we used the complex HBV model for the Vipava River and simple correlation between discharge and precipitation data for the Soča River. The discharge prediction is based on the E-OBS precipitation data for three future time periods (2011–2040, 2041–2070 and 2071–2100. Estimated discharges for those three future periods are presented for both rivers. But a special situation occurs at the confluence where the two rivers with rather different catchments unite, and this requires an additional probability analysis.

  15. Panchromatic Satellite Image Classification for Flood Hazard Assessment

    Directory of Open Access Journals (Sweden)

    Ahmed Shaker

    2012-11-01

    Full Text Available The study aims to investigate the use of panchromatic (PAN satellite image data for flood hazard assessment with anaid of various digital image processing techniques. Two SPOT PAN satellite images covering part of the Nile River inEgypt were used to delineate the flood extent during the years 1997 and 1998 (before and after a high flood. Threeclassification techniques, including the contextual classifier, maximum likelihood classifier and minimum distanceclassifier, were applied to the following: 1 the original PAN image data, 2 the original PAN image data and grey-levelco-occurrence matrix texture created from the PAN data, and 3 the enhanced PAN image data using an edgesharpeningfilter. The classification results were assessed with reference to the results derived from manualdigitization and random checkpoints. Generally, the results showed improvement of the calculation of flood area whenan edge-sharpening filter was used. In addition, the maximum likelihood classifier yielded the best classificationaccuracy (up to 97% compared to the other two classifiers. The research demonstrates the benefits of using PANsatellite imagery as a potential data source for flood hazard assessment.

  16. Developments in large-scale coastal flood hazard mapping

    Science.gov (United States)

    Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Dottori, Francesco; Giardino, Alessio; Bouziotas, Dimitrios; Bianchi, Alessandra; Salamon, Peter; Feyen, Luc

    2016-08-01

    Coastal flooding related to marine extreme events has severe socioeconomic impacts, and even though the latter are projected to increase under the changing climate, there is a clear deficit of information and predictive capacity related to coastal flood mapping. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining (i) the contribution of waves to the total water level; (ii) improved inundation modeling; and (iii) an open, physics-based framework which can be constantly upgraded, whenever new and more accurate data become available. Four inundation approaches of gradually increasing complexity and computational costs were evaluated in terms of their applicability to large-scale coastal flooding mapping: static inundation (SM); a semi-dynamic method, considering the water volume discharge over the dykes (VD); the flood intensity index approach (Iw); and the model LISFLOOD-FP (LFP). A validation test performed against observed flood extents during the Xynthia storm event showed that SM and VD can lead to an overestimation of flood extents by 232 and 209 %, while Iw and LFP showed satisfactory predictive skill. Application at pan-European scale for the present-day 100-year event confirmed that static approaches can overestimate flood extents by 56 % compared to LFP; however, Iw can deliver results of reasonable accuracy in cases when reduced computational costs are a priority. Moreover, omitting the wave contribution in the extreme total water level (TWL) can result in a ˜ 60 % underestimation of the flooded area. The present findings have implications for impact assessment studies, since combination of the estimated inundation maps with population exposure maps revealed differences in the estimated number of people affected within the 20-70 % range.

  17. Flood Hazard Mapping over Large Regions using Geomorphic Approaches

    Science.gov (United States)

    Samela, Caterina; Troy, Tara J.; Manfreda, Salvatore

    2016-04-01

    Historically, man has always preferred to settle and live near the water. This tendency has not changed throughout time, and today nineteen of the twenty most populated agglomerations of the world (Demographia World Urban Areas, 2015) are located along watercourses or at the mouth of a river. On one hand, these locations are advantageous from many points of view. On the other hand, they expose significant populations and economic assets to a certain degree of flood hazard. Knowing the location and the extent of the areas exposed to flood hazards is essential to any strategy for minimizing the risk. Unfortunately, in data-scarce regions the use of traditional floodplain mapping techniques is prevented by the lack of the extensive data required, and this scarcity is generally most pronounced in developing countries. The present work aims to overcome this limitation by defining an alternative simplified procedure for a preliminary, but efficient, floodplain delineation. To validate the method in a data-rich environment, eleven flood-related morphological descriptors derived from DEMs have been used as linear binary classifiers over the Ohio River basin and its sub-catchments, measuring their performances in identifying the floodplains at the change of the topography and the size of the calibration area. The best performing classifiers among those analysed have been applied and validated across the continental U.S. The results suggest that the classifier based on the index ln(hr/H), named the Geomorphic Flood Index (GFI), is the most suitable to detect the flood-prone areas in data-scarce environments and for large-scale applications, providing good accuracy with low requirements in terms of data and computational costs. Keywords: flood hazard, data-scarce regions, large-scale studies, binary classifiers, DEM, USA.

  18. Safety of Italian dams in the face of flood hazard

    Science.gov (United States)

    Bocchiola, Daniele; Rosso, Renzo

    2014-09-01

    Most rivers in Italy are segmented by dams that need rehabilitation because of (1) safety requirements by increasingly risk-averse societies, (2) changes in the downstream river and riparian system after dams building, (3) poor initial design at the time of completion and (4) modified priorities of watershed management. Safe design of flood spillways is a major concern, and requires to cope with low frequency flood hazard. One must estimate flood figures with high return periods (R ⩾ 1000-10,000 years) but statistical methods involve large uncertainties because of the short length of the available records. This paper investigates the return period of the design flood of existing spillways RS of large dams in Italy. We used re-normalized flood frequency approach and regionalization using the Generalized Extreme Value distribution. The estimation of the site specific index flood is carried out by simple scaling with basin area at the regional level. The result show that 55% (245) of the 448 examined dams are equipped by spillway with RS > 10,000; and 71% (315) of the dams have RS > 1000. Conversely, 29% (130) of the dams display RS routing may dampen the outflow hydrograph, but one should carefully account for the need of achieving accurate dam safety assessment of these dams based on site specific investigations, also accounting for global change forcing.

  19. Flash flood characterisation of the Haor area of Bangladesh

    Science.gov (United States)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  20. ON EFFECT OF HAZARD MAP ON CONS CIOUSNESS OF FLOOD DISASTER PREVENSION OF RESIDENTS WHO EXPERIENCED FLOOD RECENTLY

    Science.gov (United States)

    Asai, Koji; Koga, Syota; Sakakibara, Hiroyuki

    In this paper, the effect of the flood hazard map distributed to the residents who experienced flood disasters recently and an effective method for improving consciousness of flood di saster prevention are discussed. The questionnaire surveys were conducted on the residents living in the middle basin of the Nishiki River, Iwakuni city, Yamaguchi Prefecture, before and after the distribution of the hazard map. It is found from this investigation that "knowledge", "att achment", and "crisis", are the main factors in the psychological process related to the flood prevention behavior. The effect of the distribution of the hazard map is judged from the probability of the flood prevention behavior. In addition, it is also found that "knowledge", "flood experiment of T0514", "crisis", "eff ectiveness", "load", and "easy reading of the hazard map", are keys to improve the cons ciousness of flood di saster prevention.

  1. Advancements in the global modelling of coastal flood hazard

    Science.gov (United States)

    Muis, Sanne; Verlaan, Martin; Nicholls, Robert J.; Brown, Sally; Hinkel, Jochen; Lincke, Daniel; Vafeidis, Athanasios T.; Scussolini, Paolo; Winsemius, Hessel C.; Ward, Philip J.

    2017-04-01

    Storm surges and high tides can cause catastrophic floods. Due to climate change and socio-economic development the potential impacts of coastal floods are increasing globally. Global modelling of coastal flood hazard provides an important perspective to quantify and effectively manage this challenge. In this contribution we show two recent advancements in global modelling of coastal flood hazard: 1) a new improved global dataset of extreme sea levels, and 2) an improved vertical datum for extreme sea levels. Both developments have important implications for estimates of exposure and inundation modelling. For over a decade, the only global dataset of extreme sea levels was the DINAS-COAST Extreme Sea Levels (DCESL), which uses a static approximation to estimate total water levels for different return periods. Recent advances have enabled the development of a new dynamically derived dataset: the Global Tide and Surge Reanalysis (GTSR) dataset. Here we present a comparison of the DCESL and GTSR extreme sea levels and the resulting global flood exposure for present-day conditions. While DCESL generally overestimates extremes, GTSR underestimates extremes, particularly in the tropics. This results in differences in estimates of flood exposure. When using the 1 in 100-year GTSR extremes, the exposed global population is 28% lower than when using the 1 in 100-year DCESL extremes. Previous studies at continental to global-scales have not accounted for the fact that GTSR and DCESL are referenced to mean sea level, whereas global elevation datasets, such as SRTM, are referenced to the EGM96 geoid. We propose a methodology to correct for the difference in vertical datum and demonstrate that this also has a large effect on exposure. For GTSR, the vertical datum correction results in a 60% increase in global exposure.

  2. Integrated Modeling for Flood Hazard Mapping Using Watershed Modeling System

    Directory of Open Access Journals (Sweden)

    Seyedeh S. Sadrolashrafi

    2008-01-01

    Full Text Available In this stduy, a new framework which integrates the Geographic Information System (GIS with the Watershed Modeling System (WMS for flood modeling is developed. It also interconnects the terrain models and the GIS software, with commercial standard hydrological and hydraulic models, including HEC-1, HEC-RAS, etc. The Dez River Basin (about 16213 km2 in Khuzestan province, IRAN, is domain of study because of occuring frequent severe flash flooding. As a case of study, a major flood in autumn of 2001 is chosen to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-1 that converts excess precipitation to overland flow and channel runoff and a hydraulic model (HEC-RAS that simulates steady state flow through the river channel network based on the HEC-1, peak hydrographs. In addition, it delineates the maps of potential flood zonation for the Dez River Basin. These are achieved based on the state of the art GIS with using WMS software. Watershed parameters are calibrated manually to perform a good simulation of discharge at three sub-basins. With the calibrated discharge, WMS is capable of producing flood hazard map. The modeling framework presented in this study demonstrates the accuracy and usefulness of the WMS software for flash flooding control. The results of this research will benefit future modeling efforts by providing validate hydrological software to forecast flooding on a regional scale. This model designed for the Dez River Basin, while this regional scale model may be used as a prototype for model applications in other areas.

  3. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE - MO 2010 Greene County Special Flood Hazard Area Lines (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This polyline layer represents the approximate effective Special Flood Hazard Area (SFHA) boundary for Greene County Missouri. This boundary became effective in...

  4. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE - MO 2014 Greene County Special Flood Hazard Area Lines (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This polyline layer represents the approximate effective Special Flood Hazard Area (SFHA) boundary for Greene County Missouri. This boundary became effective in...

  5. 7 CFR 1980.433 - Flood or mudslide hazard area precautions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Flood or mudslide hazard area precautions. 1980.433... Program § 1980.433 Flood or mudslide hazard area precautions. (See subpart A, § 1980.42.) Administrative The State Director is responsible for determining if a project is located in a special flood...

  6. 24 CFR 3285.102 - Installation of manufactured homes in flood hazard areas.

    Science.gov (United States)

    2010-04-01

    ... in flood hazard areas. 3285.102 Section 3285.102 Housing and Urban Development Regulations Relating... STANDARDS Pre-Installation Considerations § 3285.102 Installation of manufactured homes in flood hazard... subpart are as defined in 44 CFR 59.1 of the National Flood Insurance Program (NFIP) regulations....

  7. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Loans in areas having special flood hazards...) Investments and Loans § 208.25 Loans in areas having special flood hazards. (a) Purpose and scope—(1) Purpose. The purpose of this section is to implement the requirements of the National Flood Insurance Act of...

  8. Rossitsa River Basin: Flood Hazard and Risk Identification

    Science.gov (United States)

    Mavrova-Guirguinova, Maria; Pencheva, Denislava

    2017-04-01

    The process of Flood Risk Management Planning and adaptation of measures for flood risk reduction as the Early Warning provoke the necessity of surveys involving Identification aspects. This project presents risk identification combining two lines of analysis: (1) Creation a mathematical model of rainfall-runoff processes in a watershed based on limited number of observed input and output variables; (2) Procedures for determination of critical thresholds - discharges/water levels corresponding to certain consequences. The pilot region is Rossitsa river basin, Sevlievo, Bulgaria. The first line of analysis follows next steps: (a) Creation and calibration of Unit Hydrograph Models based on limited number of observed data for discharge and precipitation; The survey at the selected region has 22 observations for excess rainfall and discharge. (b) The relations of UHM coefficients from the input parameters have been determined statistically, excluding the ANN model of the run-off coefficient as a function of 3 parameters (amount of precipitation two days before, soil condition, intensity of the rainfall) where a feedforward neural network is used. (c) Additional simulations with UHM aiming at generation of synthetic data for rainfall-runoff events, which extend the range of observed data; (d) Training, validation and testing a generalized regional ANN Model for discharge forecasting with 4 input parameters, where the training data set consists of synthetic data, validation and testing data sets consists of observations. A function between consequences and discharges has been reached in the second line of analysis concerning critical hazard levels determination. Unsteady simulations with the hydraulic model using three typical hydrographs for determination of the existing time for reaction from one to upper critical threshold are made. Correction of the critical thresholds aiming at providing necessary time for reaction between the thresholds and probability analysis of

  9. Simulating floods : On the application of a 2D-hydraulic model for flood hazard and risk assessment

    OpenAIRE

    Alkema, D.

    2007-01-01

    Over the last decades, river floods in Europe seem to occur more frequently and are causing more and more economic and emotional damage. Understanding the processes causing flooding and the development of simulation models to evaluate countermeasures to control that damage are important issues. This study deals with the application of a 2D hydraulic flood propagation model for flood hazard and risk assessment. It focuses on two components: 1) how well does it predict the spatial-dynamic chara...

  10. Multisite flooding hazard assessment in the Upper Mississippi River

    Science.gov (United States)

    Ghizzoni, Tatiana; Roth, Giorgio; Rudari, Roberto

    2012-01-01

    SummaryThis contribution presents an assessment of the joint probability distribution able to describe multi-site multi-basin flood scenarios in a high dimensionality framework. This goal will be pursued through two different approaches: the multivariate skew- t distribution and the Student copula with arbitrary margins. While copulas have been widely used in the modeling of hydrological processes, the use of the skew- t distribution in hydrology has been only recently proposed with reference to a trivariate application (Ghizzoni et al., 2010, Adv. Water Resour., 33, 1243-1255). Both methods are here applied and discussed in a context of considerably higher dimensionality: the Upper Mississippi River floods. In fact, to enhance the characteristics of the correlation structure, eighteen nested and non-nested gauging stations were selected, with significantly different contributing areas. Such conditions represent a challenge for both the skew- t and the copula approach. In perspective, the ability of such approaches in explaining the multivariate aspects of the relevant processes is needed to specify flood hazard scenarios in terms of their intensity, extension and frequency. When this is associated to the knowledge of location, value and vulnerability of exposed elements, comprehensive flood risk scenarios can be produced, and risk cumuli quantified, for given portfolios, composed of wherever located risks.

  11. Developing consistent scenarios to assess flood hazards in mountain streams.

    Science.gov (United States)

    Mazzorana, B; Comiti, F; Scherer, C; Fuchs, S

    2012-02-01

    The characterizing feature of extreme events in steep mountain streams is the multiplicity of possible tipping process patterns such as those involving sudden morphological changes due to intense local erosion, aggradation as well as clogging of critical flow sections due to wood accumulations. Resolving a substantial part of the uncertainties underlying these hydrological cause-effect chains is a major challenge for flood risk management. Our contribution is from a methodological perspective based on an expert-based methodology to unfold natural hazard process scenarios in mountain streams to retrace their probabilistic structure. As a first step we set up a convenient system representation for natural hazard process routing. In this setting, as a second step, we proceed deriving the possible and thus consistent natural hazard process patterns by means of Formative Scenario Analysis. In a last step, hazard assessment is refined by providing, through expert elicitation, the spatial probabilistic structure of individual scenario trajectories. As complement to the theory the applicability of the method is shown through embedded examples. To conclude we discuss the major advantages of the presented methodological approach for hazard assessment compared to traditional approaches, and with respect to the risk governance process.

  12. Flood and Debris Flow Hazard Predictions in Steep, Burned Landscapes

    Science.gov (United States)

    Rengers, Francis; McGuire, Luke; Kean, Jason; Staley, Dennis

    2016-04-01

    Post-wildfire natural hazards such as flooding and debris flows threaten infrastructure and can even lead to loss of life. The risk from these natural hazards could be reduced if floods and debris flows could be predicted from modeling. Our ability to test predictive models is primarily constrained by a lack of observational data that can be used for comparison with model predictions. Following the 2009 Station Fire in the San Gabriel Mountains, CA, USA, we conducted a study with high-resolution topography and hydrologic measurements to test the effectiveness of two different hydrologic routing models to predict flood and debris flow timing. Our research focuses on comparing the performance of two hydrologic models with differing levels of complexity and efficiency using high-resolution, lidar-derived digital elevation models. The simpler model uses the kinematic wave approximation to route flows, while the more complex model uses the full shallow water equations. In both models precipitation is spatially uniform and infiltration is simulated using the Green-Ampt infiltration equation. Input data for the numerical models was constrained by time series data of soil moisture, and rainfall collected at field sites as well as high-resolution lidar-derived digital elevation models. We ran the numerical models and varied parameter values for the roughness coefficient and hydraulic conductivity. These parameter values were calibrated by minimizing the difference between the simulated and observed flow timing. Moreover, the two parameters were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. The calibrated parameters were subsequently used to model a third watershed, and the results show a good match with observed timing of flow peaks for both models. Calibrated roughness coefficients are generally higher when using the kinematic wave approximation relative to the full shallow water equations, and decrease with increasing spatial

  13. Moral Hazard: How The National Flood Insurance Program Is Limiting Risk Reduction

    Science.gov (United States)

    2016-12-01

    THE NATIONAL FLOOD INSURANCE PROGRAM IS LIMITING RISK REDUCTION by Kevin T. Starbuck December 2016 Thesis Advisor: Glen Woodbury...2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MORAL HAZARD: HOW THE NATIONAL FLOOD INSURANCE PROGRAM IS LIMITING...providing disaster assistance, the federal involvement limits risk reduction and contributes to the rise of a moral hazard. Flooding and flood

  14. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis

    Directory of Open Access Journals (Sweden)

    Omid Rahmati

    2016-05-01

    Full Text Available Flood is considered to be the most common natural disaster worldwide during the last decades. Flood hazard potential mapping is required for management and mitigation of flood. The present research was aimed to assess the efficiency of analytical hierarchical process (AHP to identify potential flood hazard zones by comparing with the results of a hydraulic model. Initially, four parameters via distance to river, land use, elevation and land slope were used in some part of the Yasooj River, Iran. In order to determine the weight of each effective factor, questionnaires of comparison ratings on the Saaty's scale were prepared and distributed to eight experts. The normalized weights of criteria/parameters were determined based on Saaty's nine-point scale and its importance in specifying flood hazard potential zones using the AHP and eigenvector methods. The set of criteria were integrated by weighted linear combination method using ArcGIS 10.2 software to generate flood hazard prediction map. The inundation simulation (extent and depth of flood was conducted using hydrodynamic program HEC-RAS for 50- and 100-year interval floods. The validation of the flood hazard prediction map was conducted based on flood extent and depth maps. The results showed that the AHP technique is promising of making accurate and reliable prediction for flood extent. Therefore, the AHP and geographic information system (GIS techniques are suggested for assessment of the flood hazard potential, specifically in no-data regions.

  15. Modelling Inland Flood Events for Hazard Maps in Taiwan

    Science.gov (United States)

    Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.

    2015-12-01

    Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage

  16. The use of a flood index to characterise flooding in the north-eastern region of Bangladesh

    Directory of Open Access Journals (Sweden)

    Bhattacharya B.

    2016-01-01

    Full Text Available Flooding in the Haor region in the north-east of Bangladesh is presented in this paper. A haor is a saucershaped depression, which is used during the dry period (Dec to mid-May for agriculture and as a fishery during the wet period (Jun-Nov. Pre-monsoon flooding till mid-May causes agricultural loss. The area is bordering India, and is fed by some flashy Indian catchments. The area is drained mainly by the Surma-Kushiyara river system. The terrain generally is flat and the flashy characteristics die out within a short distance from the border. Limited studies on the region, particularly with the help of numerical models, have been carried out in the past. Therefore, an objective of the current research was to set up numerical models capable of reasonably emulating the physical system. Such models could, for example, associate different gauges to the spatio-temporal variation of hydrodynamic variables and help in carrying out a systemic study on the flood propagation. A 1D2D model, with one-dimensional model for the rivers (based on MIKE 11 from DHI and a two-dimensional model for the haors (based on MIKE 21 from DHI were developed. In order to characterize flooding in the large area a flood index is proposed, which is computed based on the hydrograph characteristics such as the rising curve gradient, flood magnitude ratio and time to peak. The index was used in characterising flooding in the Haor region. In general, two groups of rivers were identified. The study enabled identifying the hot-spots in the study area with risks from flooding.

  17. Flash flood hazard mapping: a pilot case study in Xiapu River Basin, China

    Directory of Open Access Journals (Sweden)

    Da-wei Zhang

    2015-07-01

    Full Text Available Flash flood hazard mapping is a supporting component of non-structural measures for flash flood prevention. Pilot case studies are necessary to develop more practicable methods for the technical support systems of flash flood hazard mapping. In this study, the headwater catchment of the Xiapu River Basin in central China was selected as a pilot study area for flash flood hazard mapping. A conceptual distributed hydrological model was developed for flood calculation based on the framework of the Xinanjiang model, which is widely used in humid and semi-humid regions in China. The developed model employs the geomorphological unit hydrograph method, which is extremely valuable when simulating the overland flow process in ungauged catchments, as compared with the original Xinanjiang model. The model was tested in the pilot study area, and the results agree with the measured data on the whole. After calibration and validation, the model is shown to be a useful tool for flash flood calculation. A practicable method for flash flood hazard mapping using the calculated peak discharge and digital elevation model data was presented, and three levels of flood hazards were classified. The resulting flash flood hazard maps indicate that the method successfully predicts the spatial distribution of flash flood hazards, and it can meet the current requirements in China.

  18. Flood hazard and flood risk assessment using a time series of satellite images: a case study in Namibia.

    Science.gov (United States)

    Skakun, Sergii; Kussul, Nataliia; Shelestov, Andrii; Kussul, Olga

    2014-08-01

    In this article, the use of time series of satellite imagery to flood hazard mapping and flood risk assessment is presented. Flooded areas are extracted from satellite images for the flood-prone territory, and a maximum flood extent image for each flood event is produced. These maps are further fused to determine relative frequency of inundation (RFI). The study shows that RFI values and relative water depth exhibit the same probabilistic distribution, which is confirmed by Kolmogorov-Smirnov test. The produced RFI map can be used as a flood hazard map, especially in cases when flood modeling is complicated by lack of available data and high uncertainties. The derived RFI map is further used for flood risk assessment. Efficiency of the presented approach is demonstrated for the Katima Mulilo region (Namibia). A time series of Landsat-5/7 satellite images acquired from 1989 to 2012 is processed to derive RFI map using the presented approach. The following direct damage categories are considered in the study for flood risk assessment: dwelling units, roads, health facilities, and schools. The produced flood risk map shows that the risk is distributed uniformly all over the region. The cities and villages with the highest risk are identified. The proposed approach has minimum data requirements, and RFI maps can be generated rapidly to assist rescuers and decisionmakers in case of emergencies. On the other hand, limitations include: strong dependence on the available data sets, and limitations in simulations with extrapolated water depth values.

  19. Flooding, erosion and coastal structures hazards on the Spanish coast

    Science.gov (United States)

    Perez, Jorge; Losada, Inigo; Mendez, Fernando; Menendez, Melisa; Izaguirre, Cristina; Requejo, Soledad; Abascal, Ana; Tomas, Antonio; Camus, Paula

    2013-04-01

    Coastal flooding, beach erosion and coastal structures can be affected by long-term changes in sea level and in the storminess. Each beach or construction requires a specific study for a proper estimation of coastal hazards. However, high resolution regional studies are useful to decision-makers to focus in the most endangered areas. The aim of this work is to provide an overview of coastal risks along the Spanish coast. Four different databases providing hourly data have been used to study 423 local sites along the Spanish coastline (around 10 Km spatial resolution). 1- The mean sea level was estimated from satellite and tide-gauges based on Church et al. (2004). 2- The astronomical tide was assessed from the Spanish tide-gauge network interpolating 68 tidal constituents to obtain a tide series for each local site. 3- The coastal surge data come from a numerical reanalysis (GOS) with 1/8 degree spatial resolution performed by using the 2-D barotropic Regional Ocean Modeling System (ROMS) model. 4- Nearshore wave time series (at 15-25 m water depth) are provided from a reanalysis obtained from a hybrid downscaling along the Spanish coast (Camus et al., 2013). Flooding can be considered as the combined result of mean sea level, tidal level, surge level and run-up. Run-up has been assessed by the Stockdon et al. (2006) formulation from the wave time series. We reconstructed hourly flood level time series from their components in the selected locations during 60 years (from 1950 to 2009). A time-dependent extreme value model based on Pareto and Poisson probability distributions has been developed for magnitude and frequency respectively. Long-term trends and their statistical significance, and future changes on flooding return levels (e.g. 20 year return level) have been estimated. Two main causes of beach erosion have been analyzed. The shoreline retreat induced by sea level rise has been quantified by using Bruun's rule, and the erosion due to changes in the

  20. 7 CFR Exhibit A to Subpart C of... - Notice of Flood, Mudslide Hazard or Wetland Area

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Notice of Flood, Mudslide Hazard or Wetland Area A... Flood, Mudslide Hazard or Wetland Area TO:____ DATE:____ This is to notify you that the real property located at ______ is in a floodplain, wetland or area identified by the Federal Insurance...

  1. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  2. A toolbox to visualise benefits resulting from flood hazard mitigation

    Science.gov (United States)

    Fuchs, Sven; Thaler, Thomas; Heiser, Micha

    2017-04-01

    In order to visualize the benefits resulting from technical mitigation, a toolbox was developed within an open-source environment that allows for an assessment of gains and losses for buildings exposed to flood hazards. Starting with different scenarios showing the changes in flood magnitude with respect to the considered management options, the computation was based on the amount and value of buildings exposed as well as their vulnerability, following the general concept of risk assessment. As a result, beneficiaries of risk reduction may be identified and - more general - also different mitigation options may be strategically evaluated with respect to the height of risk reduction for different elements exposed. As such, multiple management options can be ranked according to their costs and benefits, and in order of priority. A relational database composed from different modules was created in order to mirror the requirements of an open source application and to allow for future dynamics in the data availability as well as the spatiotemporal dynamics of this data (Fuchs et al. 2013). An economic module was used to compute the monetary value of buildings exposed using (a) the building footprint, (b) the information of the building cadaster such as building type, number of storeys and utilisation, and (c) regionally averaged construction costs. An exposition module was applied to connect the spatial GIS information (X and Y coordinates) of elements at risk to the hazard information in order to achieve information on exposure. An impact module linked this information to vulnerability functions (Totschnig and Fuchs 2013; Papathoma-Köhle et al. 2015) in order to achieve the monetary level of risk for every building exposed. These values were finally computed before and after the implementation of mitigation measure in order to show gains and losses, and visualised. The results can be exported in terms of spread sheets for further computation. References Fuchs S

  3. Hazard function analysis for flood planning under nonstationarity

    Science.gov (United States)

    Read, Laura K.; Vogel, Richard M.

    2016-05-01

    The field of hazard function analysis (HFA) involves a probabilistic assessment of the "time to failure" or "return period," T, of an event of interest. HFA is used in epidemiology, manufacturing, medicine, actuarial statistics, reliability engineering, economics, and elsewhere. For a stationary process, the probability distribution function (pdf) of the return period always follows an exponential distribution, the same is not true for nonstationary processes. When the process of interest, X, exhibits nonstationary behavior, HFA can provide a complementary approach to risk analysis with analytical tools particularly useful for hydrological applications. After a general introduction to HFA, we describe a new mathematical linkage between the magnitude of the flood event, X, and its return period, T, for nonstationary processes. We derive the probabilistic properties of T for a nonstationary one-parameter exponential model of X, and then use both Monte-Carlo simulation and HFA to generalize the behavior of T when X arises from a nonstationary two-parameter lognormal distribution. For this case, our findings suggest that a two-parameter Weibull distribution provides a reasonable approximation for the pdf of T. We document how HFA can provide an alternative approach to characterize the probabilistic properties of both nonstationary flood series and the resulting pdf of T.

  4. The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study from River Evros

    Science.gov (United States)

    Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias

    2016-11-01

    Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.

  5. The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study from River Evros

    Science.gov (United States)

    Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias

    2017-02-01

    Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.

  6. Coproduction of flood hazard assessment with public participation geographic information system

    Science.gov (United States)

    Cheung, W. H.; Houston, D.; Schubert, J.; Basolo, V.; Feldman, D.; Matthew, R.; Sanders, B. F.; Karlin, B.; Goodrich, K.; Contreras, S.; Reyes, A.; Serrano, K.; Luke, A.

    2015-12-01

    While advances in computing have enabled the development of more precise and accurate flood models, there is growing interest in the role of crowdsourced local knowledge in flood modeling and flood hazard assessment. In an effort to incorporate the "wisdom of the crowd" in the identification and mitigation of flood hazard, this public participation geographic information system (PPGIS) study leveraged tablet computers and cloud computing to collect mental maps of flooding from 166 households in Newport Beach, California. The mental maps were analyzed using GIS techniques and compared with professional hydrodynamic model of coastal flooding. The results revealed varying levels of agreement between residents' mental maps and professional model of flood risk in regions with different personal and contextual characteristics. The quantification of agreement using composite indices can help validate professional models, and can also alert planners and decisionmakers of the need to increase flood awareness among specific populations.

  7. Development and evaluation of a framework for global flood hazard mapping

    Science.gov (United States)

    Dottori, Francesco; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Hirpa, Feyera Aga; Feyen, Luc

    2016-08-01

    Nowadays, the development of high-resolution flood hazard models have become feasible at continental and global scale, and their application in developing countries and data-scarce regions can be extremely helpful to increase preparedness of population and reduce catastrophic impacts. The present work describes the development of a novel procedure for global flood hazard mapping, based on the most recent advances in large scale flood modelling. We derive a long-term dataset of daily river discharges from the hydrological simulations of the Global Flood Awareness System (GloFAS). Streamflow data is downscaled on a high resolution river network and processed to provide the input for local flood inundation simulations, performed with a two-dimensional hydrodynamic model. All flood-prone areas identified along the river network are then merged to create continental flood hazard maps for different return periods at 30‧‧ resolution. We evaluate the performance of our methodology in several river basins across the globe by comparing simulated flood maps with both official hazard maps and a mosaic of flooded areas detected from satellite images. The evaluation procedure also includes comparisons with the results of other large scale flood models. We further investigate the sensitivity of the flood modelling framework to several parameters and modelling approaches and identify strengths, limitations and possible improvements of the methodology.

  8. Geographic Information System and Remote Sensing Applications in Flood Hazards Management: A Review

    Directory of Open Access Journals (Sweden)

    Dano Umar Lawal

    2011-09-01

    Full Text Available The purpose of this study is to examine and review the various applications of GIS and remote sensing tools in flood disaster management as opposed to the conventional means of recording the hydrological parameters, which in many cases failed to capture an extreme event. In the recent years, GIS along with remote sensing has become the key tools in flood disaster monitoring and management. Advancement particularly in the area of remote sensing application has developed gradually from optical remote sensing to microwave or radar remote sensing, which has proved a profound capability of penetrating a clouded sky and provided all weather capabilities compared to the later (optical remote sensing in flood monitoring, mapping, and management. The main concern here is delineation of flood prone areas and development of flood hazard maps indicating the risk areas likely to be inundated by significant flooding along with the damageable objects maps for the flood susceptible areas. Actually, flood depth is always considered to be the basic aspect in flood hazard mapping, and therefore in determining or estimating the flood depth, a Digital Elevation Model data (DEM is considered to be the most appropriate means of determining the flood depth from a remotely sensed data or hydrological data. Accuracy of flood depth estimation depends mainly on the resolution of the DEM data in a flat terrain and in the regions that experiences monsoon seasons such as the developing countries of Asia where there is a high dependence on agriculture, which made any effort for flood estimation or flood hazard mapping difficult due to poor availability of high resolution DEM. More so the idea of Web-based GIS is gradually becoming a reality, which plays an important role in the flood hazard management. Therefore, this paper provides a review of applications of GIS and remote sensing technology in flood disaster monitoring and management.

  9. Making Coastal Flood Hazard Maps to Support Decision-Making - What End Users Want

    Science.gov (United States)

    Schubert, J.; Cheung, W. H.; Luke, A.; Gallien, T.; Aghakouchak, A.; Feldman, D.; Matthew, R.; Sanders, B. F.

    2015-12-01

    Growing awareness about accelerating Sea Level Rise (SLR) is contributing to coastal resilience initiatives around the world, with an emphasis on coastal planning, infrastructure adaptation, and emergency preparedness. Maps are the primary tool for communicating flood hazard, and their design raises two fundamental challenges: (1) representing the flood hazard in a scientifically defensible manner considering complexity associated with multiple drivers of flooding (e.g., rainfall, streamflow, storm surge, high tides, waves), urban infrastructure, and human interventions (e.g. pumping, sand bags) and (2) effectively communicating hazard information considering the specific needs of decision-makers. In this research we rely on a hydrodynamic model of coastal flooding that can be forced by multiple drivers of flooding (rainfall, high water levels, and waves) to simulate extreme flooding scenarios at street-level resolution. Model scenarios include 20%, 10%, 5%, 2% and 1% annual exceedance probability (AEP) scenarios for each possible driver of flooding and for both present and future sea levels. The resulting flood zones and related flood depths are aggregated using GIS techniques and transformed into a set of maps depicting annual exceedance probability, multi-year flood probability, 1% AEP flooding depth, uncertainty associated with model forcing data, and road network accessibility. The usability of each map is assessed through focus group discussions with local stakeholders who have distinct decision-making needs, such as homeowners, planners, and emergency response managers. Findings from this research reveal the mapped flood risk information and visualizations preferred by different decision-makers.

  10. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Science.gov (United States)

    Hagemeier-Klose, M.; Wagner, K.

    2009-04-01

    Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  11. Flood hazards in the Seattle-Tacoma urban complex and adjacent areas, Washington

    Science.gov (United States)

    Foxworthy, B.L.; Nassar, E.G.

    1975-01-01

    Floods are natural hazards that have complicated man's land-use planning for as long as we have had a history. Although flood hzards are a continuing danger, the year-to-year threat cannot be accurately predicted. Also, on any one stream, the time since the last destructive flood might be so long that most people now living near the stream have not experienced such a flood. Because of the unpredictability and common infrequency of disastrous flooding, or out of ignorance about the danger, or perhaps because of an urge to gamble, man tends to focus his attention on only the advantages of the flood-prone areas, rather than the risk due to the occasional major flood. The purposes of this report are to: (1) briefly describe flood hazards in this region, including some that may be unique to the Puget Sound basin, (2) indicate the parts of the area for which flood-hazard data are available, and (3) list the main sources of hydrologic information that is useful for flood-hazard analysis in conjuction with long-range planning. This map-type report is one of a series being prepared by the U.S. Geological Survey to present basic environmental information and interpretations to assist land-use planning in the Puget Sound region.

  12. Using rainfall patterns and IDF in flood hazard assessment

    Science.gov (United States)

    Beckers, Joost

    2017-04-01

    Spatio-temporal patterns of rainfall are commonly used as model input in e.g. urban drainage design or flood hazard studies. The hydraulic model that is used is oftentimes too computationally demanding to alllow for a simulation of a long historical time series. Instead, a limited set of high-intensity events is selected that is considered representative for the extreme rainfall over a given period at the location of interest. The set of events can be compiled from historical records, from stochastic rainfall generators or NWP model simulations. In general, there are numerous sources of realistic and plausible rainfall patterns and it is possible to compile a set of representative rainfall events for an application of interest. However, in order to apply the set of events to a flood study, a probability must be assigned to each event. This poses a challenge. Ideally, the event probabilities are derived from Intensity-Duration-Frequency (IDF) curves. For a given event and for a given duration, the exceedance frequency of the rainfall depth directly follows from the IDF curves. However, for a different duration, the exceedance frequency of the rainfall depth for the same event will typically be different. The exceedance frequency thus depends on the duration. Unfortunately, for many applications, the critical duration is not known beforehand. In the proposed approach this problem is overcome by selecting a set of events that covers extreme rainfall over a range of durations. A probability is assigned to each event such that the collective set of events reproduces the IDF curves. This way, the set of events not only represents the spatio-temporal rainfall patterns that may occur in the area, but also the IDF curves. The proposed method thus offers a way to use realistic rainfall patterns in combination with IDF curves in probabilistic flood studies. We will explain how the event probabilities are derived and demonstrate that a relatively small set of 50 to 100 events

  13. Flood hazard mapping by integrating airborne laser scanning data, high resolution images and large scale maps: a case study

    OpenAIRE

    Fernandez, P.; G. Gonçalves; Gomes Pereira, L.; Moreira, M.

    2012-01-01

    The assessment and management of flood risks framework impose the mapping of flood hazard in potential flood risks areas. Floods in urban environments may happen due to rainfall extreme events and be exacerbated by saturated or impervious surfaces. Flood risk is greater in urban areas. (...)

  14. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    Science.gov (United States)

    Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil

    2015-04-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more

  15. New version of 1 km global river flood hazard maps for the next generation of Aqueduct Global Flood Analyzer

    Science.gov (United States)

    Sutanudjaja, Edwin; van Beek, Rens; Winsemius, Hessel; Ward, Philip; Bierkens, Marc

    2017-04-01

    The Aqueduct Global Flood Analyzer, launched in 2015, is an open-access and free-of-charge web-based interactive platform which assesses and visualises current and future projections of river flood impacts across the globe. One of the key components in the Analyzer is a set of river flood inundation hazard maps derived from the global hydrological model simulation of PCR-GLOBWB. For the current version of the Analyzer, accessible on http://floods.wri.org/#/, the early generation of PCR-GLOBWB 1.0 was used and simulated at 30 arc-minute ( 50 km at the equator) resolution. In this presentation, we will show the new version of these hazard maps. This new version is based on the latest version of PCR-GLOBWB 2.0 (https://github.com/UU-Hydro/PCR-GLOBWB_model, Sutanudjaja et al., 2016, doi:10.5281/zenodo.60764) simulated at 5 arc-minute ( 10 km at the equator) resolution. The model simulates daily hydrological and water resource fluxes and storages, including the simulation of overbank volume that ends up on the floodplain (if flooding occurs). The simulation was performed for the present day situation (from 1960) and future climate projections (until 2099) using the climate forcing created in the ISI-MIP project. From the simulated flood inundation volume time series, we then extract annual maxima for each cell, and fit these maxima to a Gumbel extreme value distribution. This allows us to derive flood volume maps of any hazard magnitude (ranging from 2-year to 1000-year flood events) and for any time period (e.g. 1960-1999, 2010-2049, 2030-2069, and 2060-2099). The derived flood volumes (at 5 arc-minute resolution) are then spread over the high resolution terrain model using an updated GLOFRIS downscaling module (Winsemius et al., 2013, doi:10.5194/hess-17-1871-2013). The updated version performs a volume spreading sequentially from more upstream basins to downstream basins, hence enabling a better inclusion of smaller streams, and takes into account spreading of water

  16. Analysis and GIS Mapping of Flooding Hazards on 10 May 2016, Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Hai-Min Lyu

    2016-10-01

    Full Text Available On 10 May 2016, Guangdong Province, China, suffered a heavy rainstorm. This rainstorm flooded the whole city of Guangzhou. More than 100,000 people were affected by the flooding, in which eight people lost their lives. Subway stations, cars, and buses were submerged. In order to analyse the influential factors of this flooding, topographical characteristics were mapped using Digital Elevation Model (DEM by the Geographical Information System (GIS and meteorological conditions were statistically summarised at both the whole city level and the district level. To analyse the relationship between flood risk and urbanization, GIS was also adopted to map the effect of the subway system using the Multiple Buffer operator over the flooding distribution area. Based on the analyses, one of the significant influential factors of flooding was identified as the urbanization degree, e.g., construction of a subway system, which forms along flood-prone areas. The total economic loss due to flooding in city centers with high urbanization has become very serious. Based on the analyses, the traditional standard of severity of flooding hazards (rainfall intensity grade was modified. Rainfall intensity for severity flooding was decreased from 50 mm to 30 mm in urbanized city centers. In order to protect cities from flooding, a “Sponge City” planning approach is recommended to increase the temporary water storage capacity during heavy rainstorms. In addition, for future city management, the combined use of GIS and Building Information Modelling (BIM is recommended to evaluate flooding hazards.

  17. Characterising fire hazard from temporal sequences of thermal infrared modis measurements

    NARCIS (Netherlands)

    Maffei, C.; Alfieri, S.M.; Menenti, M.

    2012-01-01

    The objective of the present research was the characterisation of fire hazard using temporal sequences of land surface temperature (LST) derived from Terra-MODIS measurements. The investigation was based on a complete sequence of MODIS LST data from 2000 to 2006 on Campania (Italy) and on a dataset

  18. Characterising fire hazard from temporal sequences of thermal infrared modis measurements

    NARCIS (Netherlands)

    Maffei, C.; Alfieri, S.M.; Menenti, M.

    2013-01-01

    The objective of the present research was the characterisation of fire hazard using temporal sequences of land surface temperature (LST) derived from Terra-MODIS measurements. The investigation was based on a complete sequence of MODIS LST data from 2000 to 2006 on Campania (Italy) and on a data set

  19. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey

    Directory of Open Access Journals (Sweden)

    Vahdettin Demir

    2016-01-01

    Full Text Available In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS. In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1 digitization of topographical data and preparation of digital elevation model using ArcGIS, (2 simulation of flood lows of different return periods using a hydraulic model (HEC-RAS, and (3 preparation of flood risk maps by integrating the results of (1 and (2.

  20. 78 FR 65107 - Loans in Areas Having Special Flood Hazards

    Science.gov (United States)

    2013-10-30

    ... estate or mobile home with the same frequency as payments on the loan are made for the duration of the... requirements with respect to the escrow of flood insurance payments, the acceptance of private flood insurance... flood insurance payments, and section 100239 of the Act, relating to the acceptance of private...

  1. Values of Flood Hazard Mapping for Disaster Risk Assessment and Communication

    Science.gov (United States)

    Sayama, T.; Takara, K. T.

    2015-12-01

    Flood plains provide tremendous benefits for human settlements. Since olden days people have lived with floods and attempted to control them if necessary. Modern engineering works such as building embankment have enabled people to live even in flood prone areas, and over time population and economic assets have concentrated in these areas. In developing countries also, rapid land use change alters exposure and vulnerability to floods and consequently increases disaster risk. Flood hazard mapping is an essential step for any counter measures. It has various objectives including raising awareness of residents, finding effective evacuation routes and estimating potential damages through flood risk mapping. Depending on the objectives and data availability, there are also many possible approaches for hazard mapping including simulation basis, community basis and remote sensing basis. In addition to traditional paper-based hazard maps, Information and Communication Technology (ICT) promotes more interactive hazard mapping such as movable hazard map to demonstrate scenario simulations for risk communications and real-time hazard mapping for effective disaster responses and safe evacuations. This presentation first summarizes recent advancement of flood hazard mapping by focusing on Japanese experiences and other examples from Asian countries. Then it introduces a flood simulation tool suitable for hazard mapping at the river basin scale even in data limited regions. In the past few years, the tool has been practiced by local officers responsible for disaster management in Asian countries. Through the training activities of hazard mapping and risk assessment, we conduct comparative analysis to identify similarity and uniqueness of estimated economic damages depending on topographic and land use conditions.

  2. Comparative hazard analysis of processes leading to remarkable flash floods (France, 1930-1999)

    Science.gov (United States)

    Boudou, M.; Lang, M.; Vinet, F.; Cœur, D.

    2016-10-01

    Flash flood events are responsible for large economic losses and lead to fatalities every year in France. This is especially the case in the Mediterranean and oversea territories/departments of France, characterized by extreme hydro-climatological features and with a large part of the population exposed to flood risks. The recurrence of remarkable flash flood events, associated with high hazard intensity, significant damage and socio-political consequences, therefore raises several issues for authorities and risk management policies. This study aims to improve our understanding of the hazard analysis process in the case of four remarkable flood events: March 1930, October 1940, January 1980 and November 1999. Firstly, we present the methodology used to define the remarkability score of a flood event. Then, to identify the factors leading to a remarkable flood event, we explore the main parameters of the hazard analysis process, such as the meteorological triggering conditions, the return period of the rainfall and peak discharge, as well as some additional factors (initial catchment state, flood chronology, cascade effects, etc.). The results contribute to understanding the complexity of the processes leading to flood hazard and highlight the importance for risk managers of taking additional factors into account.

  3. Societal and economic impacts of flood hazards in Turkey – an overview

    Directory of Open Access Journals (Sweden)

    Koç Gamze

    2016-01-01

    Full Text Available Turkey has been severely affected by many natural hazards, in particular earthquakes and floods. Although there is a large body of literature on earthquake hazards and risks in Turkey, comparatively little is known about flood hazards and risks. Therefore, with this study it is aimed to investigate flood patterns, societal and economic impacts of flood hazards in Turkey, as well as providing a comparative overview of the temporal and spatial distribution of flood losses by analysing EM-DAT (Emergency Events Database and TABB (Turkey Disaster Data Base databases on disaster losses throughout Turkey for the years 1960-2014. The comparison of these two databases reveals big mismatches of the flood data, e.g. the reported number of events, number of affected people and economic loss, differ dramatically. With this paper, it has been explored reasons for mismatches. Biases and fallacies for loss data in the two databases has been discussed as well. Since loss data collection is gaining more and more attention, e.g. in the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR, the study could offer a base-work for developing guidelines and procedures on how to standardize loss databases and implement across the other hazard events, as well as substantial insights for flood risk mitigation and adaptation studies in Turkey and will offer valuable insights for other (European countries.

  4. Integrated flood risk assessment for the Mekong Delta through the combined assessment of flood hazard change and social vulnerability

    Science.gov (United States)

    Apel, Heiko; Garschagen, Matthias; Delgado, José Miguel; Viet Dung, Nguyen; Van Tuan, Vo; Thanh Binh, Nguyen; Birkmann, Joern; Merz, Bruno

    2013-04-01

    Low lying estuaries as the Mekong Delta in Vietnam are among the most vulnerable areas with respect to climate change impacts. While regular floods are not a threat but an opportunity for livelihoods and income generation, extreme flood events can pose considerable risks to the people living in Deltas. Climate change is expected to increase the frequency of extreme floods globally, which in combination with sea level rise and a likely intensification of cyclone activity creates increased and/or entirely new hazard exposure in the Deltas. Yet, in line with the risk literature and especially the recent IPCC SREX report, flooding risk needs to be understood as deriving from the interaction of physical hazards and the vulnerabilities of exposed elements. Therefore, the paper aims for an integrated risk assessment through combining the most up to date estimates of flood hazard projections under climate change conditions in the Mekong Delta with the assessment of vulnerability patterns. Projections of flood hazard are estimated based the modulation of the flood frequency distribution by atmospheric circulation patterns. Future projections of these patterns are calculated from an ensemble of climate models. A quasi two-dimensional hydrodynamical model of the Delta is then applied to estimate water levels and flood extend. This model is fed with a set of hydrographs which are based on both the derived climate model uncertainty and the bivariate nature of floods in the Mekong Delta. Flood peak is coupled with flood volume in the probabilistic framework to derive synthetic extreme future floods with associated probabilities of occurrence. This flood hazard analysis is combined with static sea level rise scenarios, which alter the lower boundary of the hydrodynamic model and give estimates of the impact on sea level rise on inundation extend and depths. The vulnerability assessment is based on a three step approach. Firstly, vulnerability profiles are developed for different

  5. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Directory of Open Access Journals (Sweden)

    M. Hagemeier-Klose

    2009-04-01

    Full Text Available Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey.

    The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  6. The value of integrating information from multiple hazards for flood risk analysis and management

    Science.gov (United States)

    Castillo-Rodríguez, J. T.; Escuder-Bueno, I.; Altarejos-García, L.; Serrano-Lombillo, A.

    2014-02-01

    This article presents a methodology for estimating flood risk in urban areas integrating pluvial flooding, river flooding and failure of both small and large dams. The first part includes a review of basic concepts on flood risk analysis, evaluation and management. Flood risk analyses may be developed at local, regional and national level, however a general methodology to perform a quantitative flood risk analysis including different flood hazards is still required. The second part describes the proposed methodology, which presents an integrated approach - combining pluvial, river flooding and flooding from dam failure, as applied to a case study: an urban area located downstream of a dam under construction. The methodology enhances the approach developed within the SUFRI project ("Sustainable Strategies of Urban Flood Risk Management to cope with the residual risk", 2009-2011). This article also shows how outcomes from flood risk analysis provide better and more complete information to inform authorities, local entities and the stakeholders involved in decision-making with regard to flood risk management.

  7. 38 CFR 36.4708 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Science.gov (United States)

    2010-07-01

    ... of Payment, and Flood Insurance § 36.4708 Notice of special flood hazards and availability of Federal... a loan secured by a building or a mobile home located or to be located in a special flood hazard... approved by the Director of FEMA, that the building or the mobile home is or will be located in a...

  8. 77 FR 76499 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2012-12-28

    ... Flood Insurance Rate Maps (FIRMs), and in some cases the Flood Insurance Study (FIS) reports, currently... officer Community map Community State and county Location and case No. of community repository Effective... Honorable Gay Laramie County September 27, 2012 560029 1268). of Laramie County Woodhouse,...

  9. Impacts of dyke development in flood prone areas in the Vietnamese Mekong Delta to downstream flood hazard

    Science.gov (United States)

    Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan

  10. GIS-based Risk Zone of Flood Hazard in Anhui Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the flood disaster risks in Anhui Province based on GIS. [Method] Taking country as basic unit, the 1∶ 250 000 basic geographic data in Anhui Province as basis, from the angle of flood disaster hazard and economic vulnerability, and by dint of the calculation of the weight of each impact factor with entropy-based fuzzy AHP method, flood risk assessment model was established to study the flood disaster risks zoning in Anhui Province. Using nearly 10 years of disaster informat...

  11. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards

    Science.gov (United States)

    Schubert, Jochen E.; Burns, Matthew J.; Fletcher, Tim D.; Sanders, Brett F.

    2017-10-01

    This research outlines a framework for the case-specific assessment of Green Infrastructure (GI) performance in mitigating flood hazard in small urban catchments. The urban hydrologic modeling tool (MUSIC) is coupled with a fine resolution 2D hydrodynamic model (BreZo) to test to what extent retrofitting an urban watershed with GI, rainwater tanks and infiltration trenches in particular, can propagate flood management benefits downstream and support intuitive flood hazard maps useful for communicating and planning with communities. The hydrologic and hydraulic models are calibrated based on current catchment conditions, then modified to represent alternative GI scenarios including a complete lack of GI versus a full implementation of GI. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 1-63% and durations from 10 min to 24 h. Flood hazard benefits mapped by the framework include maximum flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Application of the system to the Little Stringybark Creek (LSC) catchment shows that across the range of AEPs tested and for storm durations equal or less than 3 h, presently implemented GI reduces downstream flooded area on average by 29%, while a full implementation of GI would reduce downstream flooded area on average by 91%. A full implementation of GI could also lower maximum flow intensities by 83% on average, reducing the drowning hazard posed by urban streams and improving the potential for access by emergency responders. For storm durations longer than 3 h, a full implementation of GI lacks the capacity to retain the resulting rainfall depths and only reduces flooded area by 8% and flow intensity by 5.5%.

  12. Flood Hazard Mapping using Hydraulic Model and GIS: A Case Study in Mandalay City, Myanmar

    Directory of Open Access Journals (Sweden)

    Kyu Kyu Sein

    2016-01-01

    Full Text Available This paper presents the use of flood frequency analysis integrating with 1D Hydraulic model (HECRAS and Geographic Information System (GIS to prepare flood hazard maps of different return periods in Ayeyarwady River at Mandalay City in Myanmar. Gumbel’s distribution was used to calculate the flood peak of different return periods, namely, 10 years, 20 years, 50 years, and 100 years. The flood peak from frequency analysis were input into HEC-RAS model to find the corresponding flood level and extents in the study area. The model results were used in integrating with ArcGIS to generate flood plain maps. Flood depths and extents have been identified through flood plain maps. Analysis of 100 years return period flood plain map indicated that 157.88 km2 with the percentage of 17.54% is likely to be inundated. The predicted flood depth ranges varies from greater than 0 to 24 m in the flood plains and on the river. The range between 3 to 5 m were identified in the urban area of Chanayetharzan, Patheingyi, and Amarapua Townships. The highest inundated area was 85 km2 in the Amarapura Township.

  13. Climate change-induced impacts on urban flood risk influenced by concurrent hazards

    DEFF Research Database (Denmark)

    Pedersen, A. N.; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten

    2012-01-01

    In coastal regions, several hazards may lead to floods, and if they occur concurrently, the damage will be higher than for the hazards individually. The paper outlines an approach for carrying out a risk analysis with several hazards and applies it on a case study in Greater Copenhagen where two...... and that climate change most likely will not increase the correlation. The overall change in flood return periods over a forecast horizon of 110 years are estimated to decrease by one to three orders of magnitude....

  14. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    Directory of Open Access Journals (Sweden)

    Juliano Calil

    Full Text Available Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S.Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  15. Flood Hazards in Metro Manila: Recognizing Commonalities, Differences, and Courses of Action

    Directory of Open Access Journals (Sweden)

    Doracie B. Zoleta-Nantes

    2000-06-01

    Full Text Available This paper looks at the vulnerability to flood hazards of different urban groups in Metro Manila, the Philippines. It contextualizes and finds similarities and differences in the physical, social, economic and institutional manifestations of severe flood hazards to three groups of people in the mega-city. They are the street children and residents of wealthy neighborhoods and urban poor settlements. It explicates a set of issues that needs to be confronted and a list of appropriate actions that can be taken to initiate a pro-active stance in dealing with the causes and consequences of flood hazards at the local scale. This is necessary for future development planning and hazard mitigation purposes.

  16. Exposure, hazard and risk mapping during a flood event using open source geospatial technology

    Directory of Open Access Journals (Sweden)

    Arpit Aggarwal

    2016-07-01

    Full Text Available After a flood event there is a need to delineate the hazard footprint as quickly as possible in order to assess the magnitude of losses and to plan for the relief operations. Delineation of such hazard footprint is generally hindered by the lack of geospatial data, technology and related software packages. This paper demonstrates the use of open source data and software packages which can be used to implement most recent technology available for flood hazard footprint delineation. This study utilizes open source software packages and web applications like Geographic Resource Analysis Support System, Quantum geographic information system and Google Earth to implement a complete process of hazard mapping using remotely sensed data which include pre-processing, mapping (both hazard and exposure and accuracy assessment. In this study, Brisbane flood event of 2011 has been taken as a case study. For built-up extraction, the Landsat 7-band image has been transformed to a stack of 3-band image using vegetation, water and built-up indices. It has been observed by scattergram analysis that these transformations make vegetation, water and built-up classes more separable. Built-up area has been delineated using supervised maximum likelihood classification on the new 3-band image. For flood hazard mapping, thresholding of near-infrared band has been utilized along with the assistance of mid-infrared band to discriminate water from built-up classes. After delineating both exposure and hazard map, final risk map due to flood event has been generated to assess the urban exposure under the flood hazard impact.

  17. Integrated Modeling for Flood Hazard Mapping Using Watershed Modeling System

    National Research Council Canada - National Science Library

    Seyedeh S. Sadrolashrafi; Thamer A. Mohamed; Ahmad R.B. Mahmud; Majid K. Kholghi; Amir Samadi

    2008-01-01

    ...) with the Watershed Modeling System (WMS) for flood modeling is developed. It also interconnects the terrain models and the GIS software, with commercial standard hydrological and hydraulic models, including HEC-1, HEC-RAS, etc...

  18. 77 FR 74856 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2012-12-18

    ... Community map repository modification No. Alabama: Baldwin (FEMA Docket No.: City of Gulf Shores The.... ] (Catalog of Federal Domestic Assistance No. 97.022, ``Flood Insurance.'') Dated: November 28, 2012. James...

  19. 77 FR 76494 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2012-12-28

    ... No. Alabama: Baldwin (FEMA Docket No.: B- City of Gulf Shores The Honorable Robert Community.... (Catalog of Federal Domestic Assistance No. 97.022, ``Flood Insurance.'') James A. Walke, Acting...

  20. The value of integrating information from multiple hazards for flood risk management

    Directory of Open Access Journals (Sweden)

    J. T. Castillo-Rodríguez

    2013-07-01

    Full Text Available This article presents a methodology for estimating flood risk in urban areas integrating pluvial flooding, river flooding and failure of both small and large dams. The first part includes a review of basic concepts and existing methods on flood risk analysis, evaluation and management. Traditionally, flood risk analyses have focused on specific site studies and qualitative or semi-quantitative approaches. However, in this context, a general methodology to perform a quantitative flood risk analysis including different flood hazards was still required. The second part describes the proposed methodology, which presents an integrated approach – combining pluvial, river flooding and dam failure, as applied to a case study: a urban area located downstream a dam under construction. Such methodology represents an upgrade of the methodological piece developed within the SUFRI project. This article shows how outcomes from flood risk analysis provide better and more complete information to inform authorities, local entities and the stakeholders involved on decision-making with regard to flood risk management.

  1. Hazard identification and characterisation, and dose response assessment of spore forming pathogens in cooked chilled food containing vegetables

    NARCIS (Netherlands)

    Leusden FM van; MGB

    2001-01-01

    A hazard identification and characterisation, including a preliminary dose response assessment, of sporeforming pathogens in cooked chilled food containing vegetables was performed according to the structure and principles for a quantitative microbiological risk assessment as described by the Codex

  2. Efficient pan-European river flood hazard modelling through a combination of statistical and physical models

    Science.gov (United States)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo; Jonkman, Sebastiaan N.

    2017-07-01

    Flood hazard is currently being researched on continental and global scales, using models of increasing complexity. In this paper we investigate a different, simplified approach, which combines statistical and physical models in place of conventional rainfall-run-off models to carry out flood mapping for Europe. A Bayesian-network-based model built in a previous study is employed to generate return-period flow rates in European rivers with a catchment area larger than 100 km2. The simulations are performed using a one-dimensional steady-state hydraulic model and the results are post-processed using Geographical Information System (GIS) software in order to derive flood zones. This approach is validated by comparison with Joint Research Centre's (JRC) pan-European map and five local flood studies from different countries. Overall, the two approaches show a similar performance in recreating flood zones of local maps. The simplified approach achieved a similar level of accuracy, while substantially reducing the computational time. The paper also presents the aggregated results on the flood hazard in Europe, including future projections. We find relatively small changes in flood hazard, i.e. an increase of flood zones area by 2-4 % by the end of the century compared to the historical scenario. However, when current flood protection standards are taken into account, the flood-prone area increases substantially in the future (28-38 % for a 100-year return period). This is because in many parts of Europe river discharge with the same return period is projected to increase in the future, thus making the protection standards insufficient.

  3. Development of Predictive Relationships for Flood Hazard Assessments in Ungaged Basins

    Science.gov (United States)

    2016-02-01

    into account . Figures 8 and 9 show the relationships obtained that represent the best-fit flood inundated extents over settlements and agricultural...INTRODUCTION: Historically, the first great civilizations evolved from smaller settlements in river valleys (Diamond 1999); natural hazards, like flooding...and Harlan 1969) that can be used in conjunction with recommended hydrodynamic and infiltration parametric values that are found within the

  4. Development of a Probabilistic Flood Hazard Assessment (PFHA) for the nuclear safety

    Science.gov (United States)

    Ben Daoued, Amine; Guimier, Laurent; Hamdi, Yasser; Duluc, Claire-Marie; Rebour, Vincent

    2016-04-01

    The purpose of this study is to lay the basis for a probabilistic evaluation of flood hazard (PFHA). Probabilistic assessment of external floods has become a current topic of interest to the nuclear scientific community. Probabilistic approaches complement deterministic approaches by exploring a set of scenarios and associating a probability to each of them. These approaches aim to identify all possible failure scenarios, combining their probability, in order to cover all possible sources of risk. They are based on the distributions of initiators and/or the variables caracterizing these initiators. The PFHA can characterize the water level for example at defined point of interest in the nuclear site. This probabilistic flood hazard characterization takes into account all the phenomena that can contribute to the flooding of the site. The main steps of the PFHA are: i) identification of flooding phenomena (rains, sea water level, etc.) and screening of relevant phenomena to the nuclear site, ii) identification and probabilization of parameters associated to selected flooding phenomena, iii) spreading of the probabilized parameters from the source to the point of interest in the site, v) obtaining hazard curves and aggregation of flooding phenomena contributions at the point of interest taking into account the uncertainties. Within this framework, the methodology of the PFHA has been developed for several flooding phenomena (rain and/or sea water level, etc.) and then implemented and tested with a simplified case study. In the same logic, our study is still in progress to take into account other flooding phenomena and to carry out more case studies.

  5. Comparison between changes in flood hazard and risk in Spain using historical information

    Science.gov (United States)

    Llasat, Maria-Carmen; Mediero, Luis; Garrote, Luis; Gilabert, Joan

    2015-04-01

    Recently, the COST Action ES0901 "European procedures for flood frequency estimation (FloodFreq)" had as objective "the comparison and evaluation of methods for flood frequency estimation under the various climatologic and geographic conditions found in Europe". It was highlighted the improvement of regional analyses on at-site estimates, in terms of the uncertainty of quantile estimates. In the case of Spain, a regional analysis was carried out at a national scale, which allows identifying the flow threshold corresponding to a given return period from the observed flow series recorded at a gauging station. In addition, Mediero et al. (2014) studied the possible influence of non-stationarity on flood series for the period 1942-2009. In parallel, Barnolas and Llasat (2007), among others, collected documentary information of catastrophic flood events in Spain for the last centuries. Traditionally, the first approach ("top-down") usually identifies a flood as catastrophic, when its exceeds the 500-year return period flood. However, the second one ("bottom-up approach") accounts for flood damages (Llasat et al, 2005). This study presents a comparison between both approaches, discussing the potential factors that can lead to discrepancies between them, as well as accounting for information about major changes experienced in the catchment that could lead to changes in flood hazard and risk.

  6. Combined fluvial and pluvial urban flood hazard analysis: method development and application to Can Tho City, Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    H. Apel

    2015-08-01

    Full Text Available Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU for time-efficient flood propagation modelling. All hazards – fluvial, pluvial and combined – were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median

  7. Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2016-09-01

    Full Text Available This study focused on producing flash flood hazard susceptibility maps (FFHSM using frequency ratio (FR and statistical index (SI models in the Xiqu Gully (XQG of Beijing, China. First, a total of 85 flash flood hazard locations (n = 85 were surveyed in the field and plotted using geographic information system (GIS software. Based on the flash flood hazard locations, a flood hazard inventory map was built. Seventy percent (n = 60 of the flooding hazard locations were randomly selected for building the models. The remaining 30% (n = 25 of the flooded hazard locations were used for validation. Considering that the XQG used to be a coal mining area, coalmine caves and subsidence caused by coal mining exist in this catchment, as well as many ground fissures. Thus, this study took the subsidence risk level into consideration for FFHSM. The ten conditioning parameters were elevation, slope, curvature, land use, geology, soil texture, subsidence risk area, stream power index (SPI, topographic wetness index (TWI, and short-term heavy rain. This study also tested different classification schemes for the values for each conditional parameter and checked their impacts on the results. The accuracy of the FFHSM was validated using area under the curve (AUC analysis. Classification accuracies were 86.61%, 83.35%, and 78.52% using frequency ratio (FR-natural breaks, statistical index (SI-natural breaks and FR-manual classification schemes, respectively. Associated prediction accuracies were 83.69%, 81.22%, and 74.23%, respectively. It was found that FR modeling using a natural breaks classification method was more appropriate for generating FFHSM for the Xiqu Gully.

  8. 78 FR 10187 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2013-02-13

    ... modification No. Alabama: Baldwin City of Gulf The Honorable Community Development http:// March 11, 2013... Street, index.php/alabama/ City of Gulf Gulf Shores, AL baldwin/. Shores, P.O. 36547. Box 299, Gulf... Domestic Assistance No. 97.022, ``Flood Insurance.'') James A. Walke, Acting Deputy Associate...

  9. 78 FR 747 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2013-01-04

    ... areas of F. Tavaglione, Flood Control www.r9map.org/ Riverside County Chairman, and Water Docs/12-09-0462P- (12-09-0462P). Riverside County Conservation 060245- Board of District, 1995 102IAC.pdf..., Solano Department, 675 Docs/12-09-1553P- 1553P). County Board of Texas Street, 060631- Supervisors,...

  10. 78 FR 72911 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2013-12-04

    .... North Litchfield Road, Goodyear, AZ 85338. Maricopa Unincorporated The Honorable Max Flood Control http...- Executive, 515 230, Waukesha, lomc. 1048P). West Moreland WI 53188. Boulevard, Room 320, Waukesha, WI 53188..., Avenue, www.msc.fema.gov/ 5752P). Village Bellevue, WI lomc. President, 54311. Village of Bellevue,...

  11. Assessment of vulnerability to storm induced flood hazard along diverse coastline settings

    Directory of Open Access Journals (Sweden)

    Valchev Nikolay

    2016-01-01

    Full Text Available European coasts suffer notably from hazards caused by low-probability and high-impact hydrometeorological events. The aim of the study is to assess in probabilistic terms the magnitude of storm‐induced flooding hazard along Varna regional coast (Bulgaria, western Black Sea and to identify susceptible coastal sectors (hotspots. The study is performed employing the Coastal Risk Assessment Framework (CRAF developed within EU FP7 RISC-KIT project. It constitutes a screening process that allows estimation of relevant hazard intensities, extents and potential receptors’ exposure vulnerability within predefined sectors. Total water level was the chief property considered for calculation of coastal flooding hazard. It was estimated using Holman model (for sandy beaches and EurOtop formulation (for artificial or rocky slopes. Resulting values were subjected to Extreme Value Analysis to establish that the best fitting distribution corresponds to Generalized Extreme Value distribution. Furthermore, hazard extents were modelled by means of bathtubbing or overwash estimation in order to form the flooding hazard indicator. Land use, social vulnerability, transport systems, utilities and business settings were considered as exposure indicators. Finally, potential risk was assessed by coastal indices following an index-based methodology, which combines hazard and exposure indicators into a single index, thereby providing base for comparison of coastal sectors’ vulnerability. The study found that the concentration of hotspots is highest in Varna Bay.

  12. Changing Global Patterns of Urban Exposure to Flood and Drought Hazards

    Science.gov (United States)

    Guneralp, B.; Guneralp, I.; Liu, Y.

    2014-12-01

    The studies that quantify the human and economic costs of increasing exposure of cities to various natural hazards consider climate change and increasing population and economic activity, but assume constant urban extent. Accurate estimates of the potential losses due to changing exposure of cities, however, require that we know where they will grow in the future. Here, we present the first-ever estimates of the changing exposure of urban infrastructure to floods and droughts due to urban land expansion from 2000 to 2030. Although the percent of land that is urban within the Low Elevation Coastal Zone (LECZ) increases globally only slightly to 13% by 2030, the amount of urban land is predicted to increase 230% to 234,000 km2. In 2000, about 30% of global urban land (i.e., nearly 200,000 km2) was located in the high-frequency flood zones; by 2030, this will reach 40%, (i.e., over 700,000 km2). The emerging coastal metropolitan regions in Africa and Asia will be larger than those in the developed countries and thus will have larger areas exposed to flooding. The urban extent in drylands will increase nearly 300,000 km2, reaching almost 500,000 km2. Urban land exposed to both floods and droughts is expected to increase over 250%. There are significant geographical variations in the rates and magnitudes of urban expansion exposed to floods or droughts or both. Our findings show that even without factoring in the potential impacts from climate change, the extent of urban areas exposed to flood and drought hazards will increase, respectively, 2.7 and almost 2 times by 2030. Our global view on changing geographical patterns of urban exposure to flood and drought hazards can facilitate effective mitigation and adaptation against these hazards at multiple scales.

  13. Comparison of risk assessment methods: multiple perspectives of flood and avalanche hazards in North East France

    Science.gov (United States)

    Giacona, Florie; Eleuterio, Julian

    2010-05-01

    Mountainous areas are exposed to several natural hazards such as snow avalanches, debris flows or floods. Such processes may be more frequent and intense in high mountains but they occur in medium-high mountains as well causing loss of life and materials. Thus, the Vosges range, a medium-high mountain located in the north-east of France, is concerned by two kind of natural hazards namely avalanches and floods. While the avalanches constitute the most murderous natural risk in Alsace, its management is paradoxically not a priority. Because it causes more material damages and affects larger places with multiple and complex consequences, the flood risk is more worrying for the administrators. They didn't have the same approach toward these two kinds of risk. So, two different approaches used to assess risk and two study cases are presented: flood risk in the river Bruche (located in the north of the Vosges range, Alsace) and avalanche risk in the Vosges range. The first one is mainly focused on economic aspects of risk. Flood risk analyses are discussed from a hydro-economical perspective. The second one focuses the analysis on human, material and environmental vulnerabilities. Avalanche risk analysis is discussed from a geo-historical point of view. About 300 avalanche events have been reported since the end of the 18th century. The two approaches that we describe illustrate the complementarity of human and physical science to improve the understanding and assessment of hazardous processes in medium-high mountain range. On the one hand, the geo-historical method developed for the avalanche risk could be extended to the flood hazard. Indeed, contrary to high mountains, no service is in charge of the systematic inventory of floods and avalanches in the Vosges mountains. The geo-historical approach could address this lack of data. On the other hand, the methods of damages assessment and vulnerability characterization could be a good tool for the human science.

  14. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    Science.gov (United States)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  15. Flood-hazard study: 100-year flood stage for Lucerne Lake, San Bernadino County, California

    Science.gov (United States)

    Busby, Mark William

    1977-01-01

    A study of the flood hydrology of Lucerne Valley, Calif., was made to develop the 100-year stage for Lucerne Lake. Synthetic-hydrologic techniques were used; and the 100-year flood stage was estimated to be at an elevation of 2,849.3 feet above mean sea level. Channel dimensions were measured at 59 sites in Lucerne Valley. Dranage area-discharge relations developed from channel-geometry data for sites nearby were used to estimate the discharge at 12 additional sites where channel geometry could not be measured. In order to compute the total volume discharge into the playa, the peak discharges were converted to volumes. From the Apple Valley report (Busby, 1975) the equation formulated from the relation between peak discharge and flood volume for the deserts of California was used to compute the flood volumes for routing into Lucerne Lake. (Woodard-USGS)

  16. Real-time forecasts of flood hazard and impact: some UK experiences

    Directory of Open Access Journals (Sweden)

    Cole Steven J.

    2016-01-01

    Full Text Available Major UK floods over the last decade have motivated significant technological and scientific advances in operational flood forecasting and warning. New joint forecasting centres between the national hydrological and meteorological operating agencies have been formed that issue a daily, national Flood Guidance Statement (FGS to the emergency response community. The FGS is based on a Flood Risk Matrix approach that is a function of potential impact severity and likelihood. It has driven an increased demand for robust, accurate and timely forecast and alert information on fluvial and surface water flooding along with impact assessments. The Grid-to-Grid (G2G distributed hydrological model has been employed across Britain at a 1km resolution to support the FGS. Novel methods for linking dynamic gridded estimates of river flow and surface runoff with more detailed offline flood risk maps have been developed to obtain real-time probabilistic forecasts of potential impacts, leading to operational trials. Examples of the national-scale G2G application are provided along with case studies of forecast flood impact from (i an operational Surface Water Flooding (SWF trial during the Glasgow 2014 Commonwealth Games, (ii SWF developments under the Natural Hazards Partnership over England & Wales, and (iii fluvial applications in Scotland.

  17. Use of Geologic and Paleoflood Information for INL Probabilistic Flood Hazard Decisions

    Science.gov (United States)

    Ostenaa, D.; O'Connell, D.; Creed, B.

    2009-05-01

    The Big Lost River is a western U.S., closed basin stream which flows through and terminates on the Idaho National Laboratory. Historic flows are highly regulated, and peak flows decline downstream through natural and anthropomorphic influences. Glaciated headwater regions were the source of Pleistocene outburst floods which traversed the site. A wide range of DOE facilities (including a nuclear research reactor) require flood stage estimates for flow exceedance probabilities over a range from 1/100/yr to 1/100,000/yr per DOE risk based standards. These risk management objectives required the integration of geologic and geomorphic paleoflood data into Bayesian non parametric flood frequency analyses that incorporated measurement uncertainties in gaged, historical, and paleoflood discharges and non exceedance bounds to produce fully probabilistic flood frequency estimates for annual exceedance probabilities of specific discharges of interest. Two-dimensional hydraulic flow modeling with scenarios for varied hydraulic parameters, infiltration, and culvert blockages on the site was conducted for a range of discharges from 13-700 m3/s. High-resolution topographic grids and two-dimensional flow modeling allowed detailed evaluation of the potential impacts of numerous secondary channels and flow paths resulting from flooding in extreme events. These results were used to construct stage probability curves for 15 key locations on the site consistent with DOE standards. These probability curves resulted from the systematic inclusion of contributions of uncertainty from flood sources, hydraulic modeling, and flood-frequency analyses. These products also provided a basis to develop weights for logic tree branches associated with infiltration and culvert performance scenarios to produce probabilistic inundation maps. The flood evaluation process was structured using Senior Seismic Hazard Analysis Committee processes (NRC-NUREG/CR-6372) concepts, evaluating and integrating the

  18. Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream?

    Science.gov (United States)

    Van Khanh Triet, Nguyen; Viet Dung, Nguyen; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2017-08-01

    In the Vietnamese part of the Mekong Delta (VMD) the areas with three rice crops per year have been expanded rapidly during the last 15 years. Paddy-rice cultivation during the flood season has been made possible by implementing high-dyke flood defenses and flood control structures. However, there are widespread claims that the high-dyke system has increased water levels in downstream areas. Our study aims at resolving this issue by attributing observed changes in flood characteristics to high-dyke construction and other possible causes. Maximum water levels and duration above the flood alarm level are analysed for gradual trends and step changes at different discharge gauges. Strong and robust increasing trends of peak water levels and duration downstream of the high-dyke areas are found with a step change in 2000/2001, i.e. immediately after the disastrous flood which initiated the high-dyke development. These changes are in contrast to the negative trends detected at stations upstream of the high-dyke areas. This spatially different behaviour of changes in flood characteristics seems to support the public claims. To separate the impact of the high-dyke development from the impact of the other drivers - i.e. changes in the flood hydrograph entering the Mekong Delta, and changes in the tidal dynamics - hydraulic model simulations of the two recent large flood events in 2000 and 2011 are performed. The hydraulic model is run for a set of scenarios whereas the different drivers are interchanged. The simulations reveal that for the central VMD an increase of 9-13 cm in flood peak and 15 days in duration can be attributed to high-dyke development. However, for this area the tidal dynamics have an even larger effect in the range of 19-32 cm. However, the relative contributions of the three drivers of change vary in space across the delta. In summary, our study confirms the claims that the high-dyke development has raised the flood hazard downstream. However, it is not

  19. Assessing Future Flood Hazards for Adaptation Planning in a Northern European Coastal Community

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, Niels H.; Molgaard, Mads R.

    2016-01-01

    From a transdisciplinary approach in the town of Thyboron, Denmark, we investigate couplings between sea state (i.e., mean and extreme) and flooding hazards today and ahead. This includes analyses of change and variability in the groundwater table, precipitation, land motion, geotechnical ground...

  20. Hydrodynamic Modeling of Flash Floods in an Andean Stream: Challenges for Assessing Flood Hazards in Mountain Rivers

    Science.gov (United States)

    Contreras, M. T.; Escauriaza, C. R.

    2015-12-01

    Rain-induced flash floods are common events in regions close to the southern Andes, in north and central Chile. Rapid urban development combined to the changing climate and ENSO effects have resulted in an alarming proximity of flood-prone streams to densely populated areas in the Andean foothills, increasing the risk for cities and infrastructure. Simulations of rapid floods in these complex watersheds are particularly challenging, especially if there is insufficient geomorphological and hydrometeorological data. In the Quebrada de Ramón, an Andean stream that passes through a highly populated area in the east part of Santiago, Chile, previous events have demonstrated that sediment concentration, flow resistance, and the characteristic temporal and spatial scales of the hydrograph, are important variables to predict the arrival time of the peak discharge, flow velocities and the extension of inundated areas. The objective of this investigation is to improve our understanding of the dynamics of flash floods in the Quebrada de Ramón, quantifying the effects of these factors on the flood propagation. We implement a two-dimensional model based on the shallow water equations (Guerra et al. 2014) modified to account for hyperconcentrated flows over natural topography. We evaluate events of specific return periods and sediment concentrations, using different methodologies to quantify the flow resistance in the channel and floodplains. Through this work we provide a framework for future studies aimed at improving hazard assessment, urban planning, and early warning systems in urban areas near mountain streams with limited data, and affected by rapid flood events. Work supported by Fondecyt grant 1130940 and CONICYT/FONDAP grant 15110017.

  1. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with...

  2. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with...

  3. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with...

  4. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with...

  5. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with...

  6. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with...

  7. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with...

  8. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with...

  9. Living with Familiar Hazards: Flood Experiences and Human Vulnerability in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Dacosta Aboagye

    2012-10-01

    Full Text Available The paper explores demographic characteristics, migration history, and impact of flooding on households and communities. The main objective is to explore the different ways in which floods impact households and communities in Accra. Specifically, the paper analyzes how floods alter the set of resources available to households and communities. The results indicate that urbanization and governmental policies have rendered more people, especially the poor and recent migrants, homeless. These homeless people have become more vulnerable to flooding than the average Accra resident. The results also show that the homeless community contrast with the fixed community in terms of socio-economic characteristics, degree of social cohesion, and physical location. The paper concludes that the unchanging pattern of vulnerability shows the inability of a society to cope and adjust to familiar hazards.

  10. The Atlas of Natural Hazards and Risks of Austria: first results for fluvial and pluvial floods

    Science.gov (United States)

    Mergili, Martin; Tader, Andreas; Glade, Thomas; Neuhold, Clemens; Stiefelmeyer, Heinz

    2015-04-01

    Incoherent societal adaptation to natural processes results in significant losses every year. A better knowledge of the spatial and temporal distribution of hazards and risks, and of particular hot spots in a given region or period, is essential for reducing adverse impacts. Commonly, different hazard and risk estimations are performed within individual approaches based on tailor-made concepts. This works well as long as specific cases are considered. The advantage of such a procedure is that each individual hazard and risk is addressed in the best possible manner. The drawback, however, consists in the fact that the results differ significantly in terms of quality and accuracy and therefore cannot be compared. Hence, there is a need to develop a strategy and concept which uses similar data sources of equivalent quality in order to adequately analyze the different natural hazards and risks at broader scales. The present study is aiming to develop such a platform. The project Risk:ATlas focuses on the design of an atlas visualizing the most relevant natural hazards and, in particular, possible consequences for the entire territory of Austria. Available as a web-based tool and as a printed atlas, it is seen as a key tool to improve the basis for risk reduction, risk adaptation and risk transfer. The atlas is founded on those data sets available for the entire territory of Austria at a consistent resolution and quality. A 1 m resolution DEM and the official cadastre and building register represent the core, further data sets are employed according to the requirements for each natural hazard and risk. In this contribution, the methodology and the preliminary results for fluvial and pluvial floods and their consequences to buildings for three selected test areas in different types of landscapes (rural, urban and mountainous) are presented. Flooding depths expected for annualities of 30, 100 and 300 are derived from existing data sets for fluvial floods and are computed

  11. Social vulnerability of rural households to flood hazards in western mountainous regions of Henan province, China

    Science.gov (United States)

    Liu, Delin; Li, Yue

    2016-05-01

    Evaluating social vulnerability is a crucial issue in risk and disaster management. In this study, a household social vulnerability index (HSVI) to flood hazards was developed and used to assess the social vulnerability of rural households in western mountainous regions of Henan province, China. Eight key indicators were identified using existing literature and discussions with experts from multiple disciplines and local farmers, and their weights were determined using principle component analysis (PCA) and an expert scoring method. The results showed that (1) the ratio of perennial work in other places, hazard-related training and illiteracy ratio (15+) were the most dominant factors of social vulnerability. (2) The numbers of high, moderate and low vulnerability households were 14, 64 and 16, respectively, which accounted for 14.9, 68.1 and 17.0 % of the total interviewed rural households, respectively. (3) The correlation coefficient between household social vulnerability scores and casualties in a storm flood in July 2010 was significant at 0.05 significance level (r = 0.748), which indicated that the selected indicators and their weights were valid. (4) Some mitigation strategies to reduce household social vulnerability to flood hazards were proposed, which included (1) improving the local residents' income and their disaster-related knowledge and evacuation skills, (2) developing emergency plans and carrying out emergency drills and training, (3) enhancing the accuracy of disaster monitoring and warning systems and (4) establishing a specific emergency management department and comprehensive rescue systems. These results can provide useful information for rural households and local governments to prepare, mitigate and respond to flood hazards, and the corresponding strategies can help local households to reduce their social vulnerability and improve their ability to resist flood hazard.

  12. Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam

    Science.gov (United States)

    Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen

    2016-04-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial-pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of

  13. Flood hazard management from a coevolutionary perspective: exposure and policy response in the European Alps

    Science.gov (United States)

    Fuchs, Sven; Röthlisberger, Veronika; Thaler, Thomas; Zischg, Andreas; Keiler, Margreth

    2017-04-01

    A coevolutionary perspective is adopted to understand the dynamics of exposure to hydrological hazards in the European Alps. A spatially explicit, object-based temporal assessment of elements at risk to flood hazards (river floods, torrential floods and debris flows) in Austria and Switzerland is presented for the 1919-2012 period. The assessment is based on two different datasets, (a) hazard information adhering to legally binding land use planning restrictions and (b) information on building types combined from different national level spatial data. We discuss these transdisciplinary dynamics and focus on economic, social and institutional interdependencies and interactions between human and physical systems. Exposure changes in the response to multiple drivers, including population growth and land use conflicts. The results show that while some regional assets are associated with a strong increase in exposure to hazards, others are characterized by a below-average level of exposure. The spatiotemporal results indicate relatively stable hot spots in the European Alps. These results coincide with the topography of the countries and with the respective range of economic activities and political settings. Furthermore, the differences between management approaches as a result of multiple institutional settings are discussed. A coevolutionary framework widens the explanatory power of multiple drivers to changes in exposure and risk, and supports a shift from structural, security-based policies towards an integrated, risk-based natural hazard management system.

  14. A high-resolution physically-based global flood hazard map

    Science.gov (United States)

    Kaheil, Y.; Begnudelli, L.; McCollum, J.

    2016-12-01

    We present the results from a physically-based global flood hazard model. The model uses a physically-based hydrologic model to simulate river discharges, and 2D hydrodynamic model to simulate inundation. The model is set up such that it allows the application of large-scale flood hazard through efficient use of parallel computing. For hydrology, we use the Hillslope River Routing (HRR) model. HRR accounts for surface hydrology using Green-Ampt parameterization. The model is calibrated against observed discharge data from the Global Runoff Data Centre (GRDC) network, among other publicly-available datasets. The parallel-computing framework takes advantage of the river network structure to minimize cross-processor messages, and thus significantly increases computational efficiency. For inundation, we implemented a computationally-efficient 2D finite-volume model with wetting/drying. The approach consists of simulating flood along the river network by forcing the hydraulic model with the streamflow hydrographs simulated by HRR, and scaled up to certain return levels, e.g. 100 years. The model is distributed such that each available processor takes the next simulation. Given an approximate criterion, the simulations are ordered from most-demanding to least-demanding to ensure that all processors finalize almost simultaneously. Upon completing all simulations, the maximum envelope of flood depth is taken to generate the final map. The model is applied globally, with selected results shown from different continents and regions. The maps shown depict flood depth and extent at different return periods. These maps, which are currently available at 3 arc-sec resolution ( 90m) can be made available at higher resolutions where high resolution DEMs are available. The maps can be utilized by flood risk managers at the national, regional, and even local levels to further understand their flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual

  15. Geological hazards associated with intense rain and flooding in Natal

    Science.gov (United States)

    Thomas, M. A.; van Schalkwyk, A.

    1993-02-01

    The combination of rugged topography and climate predisposes the province of Natal to severe floods. Information available since 1856 shows that bridge and slope failures have been recorded in twenty out of twenty-five flood episodes. Bridge failures are caused mostly by geological factors. The mechanism of failure can be classified broadly into foundation failures and changes of river course. Scour and debris build-up have led to failures of foundations located in rock and alluvial sediments. In preparing and replacing bridges the aims have been to increase the area of waterway, increase foundation depths to reach more competent strata and lay protection along banks and abutments to counteract scour. Historically, slope failures have not been well documented but following the 1987/88 storms 223 slope failures were recorded. The classification of the failures allowed the mechanisms of failure to be ascertained, and general design considerations to be reviewed. In areas adjacent to the Drakensberg Mountains slope failures are part of a natural erosion cycle which may be accelerated in periods of heavy rain. Throughout Natal, hummocky ground adjacent to dolerite intrusions reveals the on-going history of failure caused by water ingress and the generation of high pore water pressures on the slip planes. Classic flows occurred throughout the Greater Durban area where residual sandy soils of the Natal Group sandstone became supersaturated. Slumping was common on steep terrain underlain by granite-gneiss in the Kwa-Zulu area. Shales of the Pietermaritzburg Formation are notoriously unstable, yet few failures occurred during the summer storms of 1987/88. Inadequate drainage was responsible for many failures, this was particularly so along the railways.

  16. Forecasting surface water flooding hazard and impact in real-time

    Science.gov (United States)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  17. The Ischia island flash flood of November 2009 (Italy): Phenomenon analysis and flood hazard

    Science.gov (United States)

    Santo, A.; Di Crescenzo, G.; Del Prete, S.; Di Iorio, L.

    The island of Ischia is particularly susceptible to landslides and flash floods due to its particular geological and geomorphological context. Urbanization in recent decades coupled with the development of tourism has increased the risk. After the November 10, 2009 event occurring in the northern sector of the island (the town of Casamicciola), a detailed geo-morphological survey was conducted to ascertain the evolution of the phenomenon. In the watersheds upstream of Casamicciola, many landslides were mapped and the volume of material involved during detachment and sliding was estimated. In the lower course area, near the town and towards the sea, flow pathways were reconstructed with the aid of extensive video footage taken during the event. Rainfall data were also analyzed and a relationship was established between the hourly rainfall rate and the flash flood. The phenomenon was found to be quite complex, with many upstream landslides stopping before reaching the urban area. In the lower course the alluvial event occurred as a flood with a very small sediment discharge, which left a very thin layer of sediment. Reconstruction of the flash flood phenomenon suggested possible action for future risk mitigation, early warning and civil protection plans.

  18. Ecological applications for flood hazard minimization in the Siwaliks region of Nepal

    Science.gov (United States)

    Dhital, Y. P.; Tang, Q.

    2015-12-01

    Water-induced disaster problems including soil erosion, debris flow, landslides and flooding are common due to the unstable landscape of Siwaliks region of Nepal. Ecological applications especially focused on soil bioengineering techniques have been used in Nepal for nearly four decades to deal with erosion problems on slopes, in high way construction and riverbank stabilization. In this study, both vegetative check dams and wire net check dams along with vegetation were used for flood hazard minimization. After three growing seasons, the banks of the ephemeral stream were almost fully stabilized. Vegetation based solutions are found to be more effective than the mechanical methods of stream bank stabilization. Bamboo combinations for check dam construction and planting of bamboo behind check dam are both very useful for stream bank stabilization. Vegetation application on flood damaged bare ground was also found to be very successful. Furthermore, some plants species showed almost equal growth performances on both flood-affected and unaffected bare ground. However, more scientific implementation of ecological applications for flood hazard minimization in those affected areas is essential in future.

  19. The large-scale impact of climate change to Mississippi flood hazard in New Orleans

    Directory of Open Access Journals (Sweden)

    T. L. A. Driessen

    2012-07-01

    Full Text Available The objective of this paper is to describe the impact of climate change on the Mississippi River flood hazard in the New Orleans area. This city has a unique flood risk management challenge, heavily influenced by climate change, since it faces flood hazards from multiple geographical locations (e.g. Lake Pontchartrain and Mississippi River and multiple sources (hurricane, river, rainfall. Also the low elevation and significant subsidence rate of the Greater New Orleans area poses a high risk and challenges the water management of this urban area. Its vulnerability to flooding became dramatically apparent during Hurricane Katrina in 2005 with huge economic losses and a large number of casualties.
    A SOBEK Rural 1DFLOW model was set up to simulate the general hydrodynamics. This improved model includes two important spillways that are operated during high flow conditions. Subsequently, a weighted multi-criteria calibration procedure was performed to calibrate the model for high flows. Validation for floods in 2011 indicates a very reasonable performance for high flows and clearly demonstrates the necessity of the spillways.
    32 different scenarios are defined which includes the relatively large sea level rise and the changing discharge regime that is expected due to climate change. The impact of these scenarios is analysed by the hydrodynamic model. Results show that during high flows New Orleans will not be affected by varying discharge regimes, since the presence of the spillways ensures a constant discharge through the city. In contrary, sea level rise is expected to push water levels upwards. The effect of sea level rise will be noticeable even more than 470 km upstream. Climate change impacts necessitate a more frequent use of the spillways and opening strategies that are based on stages. Potential alternatives on how to cope with the flood hazard of this river in the long term, such as river widening and large-scale redistribution of

  20. Flood-hazard mapping in Honduras in response to Hurricane Mitch

    Science.gov (United States)

    Mastin, M.C.

    2002-01-01

    The devastation in Honduras due to flooding from Hurricane Mitch in 1998 prompted the U.S. Agency for International Development, through the U.S. Geological Survey, to develop a country-wide systematic approach of flood-hazard mapping and a demonstration of the method at selected sites as part of a reconstruction effort. The design discharge chosen for flood-hazard mapping was the flood with an average return interval of 50 years, and this selection was based on discussions with the U.S. Agency for International Development and the Honduran Public Works and Transportation Ministry. A regression equation for estimating the 50-year flood discharge using drainage area and annual precipitation as the explanatory variables was developed, based on data from 34 long-term gaging sites. This equation, which has a standard error of prediction of 71.3 percent, was used in a geographic information system to estimate the 50-year flood discharge at any location for any river in the country. The flood-hazard mapping method was demonstrated at 15 selected municipalities. High-resolution digital-elevation models of the floodplain were obtained using an airborne laser-terrain mapping system. Field verification of the digital elevation models showed that the digital-elevation models had mean absolute errors ranging from -0.57 to 0.14 meter in the vertical dimension. From these models, water-surface elevation cross sections were obtained and used in a numerical, one-dimensional, steady-flow stepbackwater model to estimate water-surface profiles corresponding to the 50-year flood discharge. From these water-surface profiles, maps of area and depth of inundation were created at the 13 of the 15 selected municipalities. At La Lima only, the area and depth of inundation of the channel capacity in the city was mapped. At Santa Rose de Aguan, no numerical model was created. The 50-year flood and the maps of area and depth of inundation are based on the estimated 50-year storm tide.

  1. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    Energy Technology Data Exchange (ETDEWEB)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  2. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    Energy Technology Data Exchange (ETDEWEB)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  3. Coastal flooding hazard assessment on potentially vulnerable coastal sectors at Varna regional coast

    Science.gov (United States)

    Eftimova, Petya; Valchev, Nikolay; Andreeva, Nataliya

    2017-04-01

    Storm induced flooding is one of the most significant threats that the coastal communities face. In the light of the climate change it is expected to gain even more importance. Therefore, the adequate assessment of this hazard could increase the capability of mitigation of environmental, social, and economic impacts. The study was accomplished in the frames of the Coastal Risk Assessment Framework (CRAF) developed within the FP7 RISC-KIT Project (Resilience-Increasing Strategies for Coasts - toolkit). The hazard assessment was applied on three potentially vulnerable coastal sectors located at the regional coast of Varna, Bulgarian Black Sea coast. The potential "hotspot" candidates were selected during the initial phase of CRAF which evaluated the coastal risks at regional level. The area of interest comprises different coastal types - from natural beaches and rocky cliffs to man modified environments presented by coastal and port defense structures such as the Varna Port breakwater, groynes, jetties and beaches formed by the presence of coastal structures. The assessment of coastal flooding was done using combination of models -XBeach model and LISFLOOD inundation model applied consecutively. The XBeach model was employed to calculate the hazard intensities at the coast up to the berm crest, while LISFLOOD model was used to calculate the intensity and extent of flooding in the hinterland. At the first stage, 75 extreme storm events were simulated using XBeach model run in "non-hydrostatic" mode to obtain series of flood depth, depth-velocity and overtopping discharges at the predefined coastal cross-shore transects. Extreme value analysis was applied to the calculated hazard parameters series in order to determine their probability distribution functions. This is so called response approach, which is focused on the onshore impact rather than on the deep water boundary conditions. It allows calculation of the hazard extremes probability distribution induced by a

  4. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    Science.gov (United States)

    Chen, H. L.; Ito, Y.; Sawamukai, M.; Su, T.; Tokunaga, T.

    2015-11-01

    Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  5. Hazard assessment of glacial lake outburst floods from Kyagar glacier, Karakoram mountains, China

    OpenAIRE

    Haemmig, Christoph; Huss, Matthias; Keusen, Hansrudolf; Hess, Josef; Wegmüller, Urs; Ao, Zhigang; Kulubayi, Wubuli

    2014-01-01

    Kyagar glacier is located in the Chinese Karakoram mountains. The glacier tongue entirely blocks the riverbed in the upper Shaksgam valley and impounds a glacial lake, which was the source of several violent and disastrous glacial lake outburst floods (GLOFs). A GLOF early warning system was implemented between 2011 and 2013. We present an integrative analysis of the hazard potential of Kyagar lake, taking into account the ice flow dynamics of Kyagar glacier as well as the recent surface mass...

  6. Scale orientated analysis of river width changes due to extreme flood hazards

    Directory of Open Access Journals (Sweden)

    G. Krapesch

    2011-08-01

    Full Text Available This paper analyses the morphological effects of extreme floods (recurrence interval >100 years and examines which parameters best describe the width changes due to erosion based on 5 affected alpine gravel bed rivers in Austria. The research was based on vertical aerial photos of the rivers before and after extreme floods, hydrodynamic numerical models and cross sectional measurements supported by LiDAR data of the rivers. Average width ratios (width after/before the flood were calculated and correlated with different hydraulic parameters (specific stream power, shear stress, flow area, specific discharge. Depending on the geomorphological boundary conditions of the different rivers, a mean width ratio between 1.12 (Lech River and 3.45 (Trisanna River was determined on the reach scale. The specific stream power (SSP best predicted the mean width ratios of the rivers especially on the reach scale and sub reach scale. On the local scale more parameters have to be considered to define the "minimum morphological spatial demand of rivers", which is a crucial parameter for addressing and managing flood hazards and should be used in hazard zone plans and spatial planning.

  7. Flood Hazard Mapping Assessment for El-Awali River Catchment-Lebanon

    Science.gov (United States)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Hijazi, Samar

    2016-04-01

    River flooding prediction and flood forecasting has become an essential stage in the major flood mitigation plans worldwide. Delineation of floodplains resulting from a river flooding event requires coupling between a Hydrological rainfall-runoff model to calculate the resulting outflows of the catchment and a hydraulic model to calculate the corresponding water surface profiles along the river main course. In this study several methods were applied to predict the flood discharge of El-Awali River using the available historical data and gauging records and by conducting several site visits. The HEC-HMS Rainfall-Runoff model was built and applied to calculate the flood hydrographs along several outlets on El-Awali River and calibrated using the storm that took place on January 2013 and caused flooding of the major Lebanese rivers and by conducting additional site visits to calculate proper river sections and record witnesses of the locals. The Hydraulic HEC-RAS model was then applied to calculate the corresponding water surface profiles along El-Awali River main reach. Floodplain delineation and Hazard mapping for 10,50 and 100 years return periods was performed using the Watershed Modeling System WMS. The results first show an underestimation of the flood discharge recorded by the operating gauge stations on El-Awali River, whereas, the discharge of the 100 years flood may reach up to 506 m3/s compared by lower values calculated using the traditional discharge estimation methods. Second any flooding of El-Awali River may be catastrophic especially to the coastal part of the catchment and can cause tragic losses in agricultural lands and properties. Last a major floodplain was noticed in Marj Bisri village this floodplain can reach more than 200 meters in width. Overall, performance was good and the Rainfall-Runoff model can provide valuable information about flows especially on ungauged points and can perform a great aid for the floodplain delineation and flood

  8. A Multi-Faceted Debris-Flood Hazard Assessment for Cougar Creek, Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Matthias Jakob

    2017-01-01

    Full Text Available A destructive debris flood occurred between 19 and 21 June 2013 on Cougar Creek, located in Canmore, Alberta. Cougar Creek fan is likely the most densely developed alluvial fan in Canada. While no lives were lost, the event resulted in approximately $40 M of damage and closed both the Trans-Canada Highway (Highway 1 and the Canadian Pacific Railway line for a period of several days. The debris flood triggered a comprehensive hazard assessment which is the focus of this paper. Debris-flood frequencies and magnitudes are determined by combining several quantitative methods including photogrammetry, dendrochronology, radiometric dating, test pit logging, empirical relationships between rainfall volumes and sediment volumes, and landslide dam outburst flood modeling. The data analysis suggests that three distinct process types act in the watershed. The most frequent process is normal or “clearwater” floods. Less frequent but more damaging are debris floods during which excessive amounts of bedload are transported on the fan, typically associated with rapid and extensive bank erosion and channel infilling and widening. The third and most destructive process is interpreted to be landslide dam outbreak floods. This event type is estimated to occur at return periods exceeding 300 years. Using a cumulative magnitude frequency technique, the data for conventional debris floods were plotted up to the 100–300s year return period. A peak-over-threshold approach was used for landslide dam outbreak floods occurring at return periods exceeding 300 years, as not all such events were identified during test trenching. Hydrographs for 6 return period classes were approximated by using the estimated peak discharges and fitting the hydrograph shape to integrate to the debris flood volumes as determined from the frequency-magnitude relationship. The fan volume was calculated and compared with the integrated frequency-magnitude curve to check of the validity of

  9. Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Schmeltzer, J. S.; Millier, J. J.; Gustafson, D. L.

    1993-01-01

    A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

  10. Open Source Web-Based Solutions for Disseminating and Analyzing Flood Hazard Information at the Community Level

    Science.gov (United States)

    -Santillan, M. M.-M.; Santillan, J. R.; Morales, E. M. O.

    2017-09-01

    We discuss in this paper the development, including the features and functionalities, of an open source web-based flood hazard information dissemination and analytical system called "Flood EViDEns". Flood EViDEns is short for "Flood Event Visualization and Damage Estimations", an application that was developed by the Caraga State University to address the needs of local disaster managers in the Caraga Region in Mindanao, Philippines in accessing timely and relevant flood hazard information before, during and after the occurrence of flood disasters at the community (i.e., barangay and household) level. The web application made use of various free/open source web mapping and visualization technologies (GeoServer, GeoDjango, OpenLayers, Bootstrap), various geospatial datasets including LiDAR-derived elevation and information products, hydro-meteorological data, and flood simulation models to visualize various scenarios of flooding and its associated damages to infrastructures. The Flood EViDEns application facilitates the release and utilization of this flood-related information through a user-friendly front end interface consisting of web map and tables. A public version of the application can be accessed at http://121.97.192.11:8082/"target="_blank">http://121.97.192.11:8082/. The application is currently expanded to cover additional sites in Mindanao, Philippines through the "Geo-informatics for the Systematic Assessment of Flood Effects and Risks for a Resilient Mindanao" or the "Geo-SAFER Mindanao" Program.

  11. Assessing inundation hazards to nuclear powerplant sites using geologically extended histories of riverine floods, tsunamis, and storm surges

    Science.gov (United States)

    O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.

    2014-01-01

    Most nuclear powerplants in the United States are near rivers, large lakes, or oceans. As evident from the Fukushima Daiichi, Japan, disaster of 2011, these water bodies pose inundation threats. Geologic records can extend knowledge of rare hazards from flooding, storm surges, and tsunamis. This knowledge can aid in assessing the safety of critical structures such as dams and energy plants, for which even remotely possible hazards are pertinent. Quantitative analysis of inundation from geologic records perhaps is most developed for and applied to riverine flood hazards, but because of recent natural disasters, geologic investigations also are now used widely for understanding tsunami hazards and coastal storm surges.

  12. Flood hazard mitigation by actions in the hillslopes: does the context change the assessment of efficiency?

    Directory of Open Access Journals (Sweden)

    Benmamar Saâdia

    2016-01-01

    Full Text Available For sustainable and integrated flood management, small actions in the hillslopes and non-structural measures appear interesting, either to diminish the need for large flood mitigation infrastructures (whether sewerage networks or hydraulic structures in the river – which may have severe impact on the river ecosystems, or as complementary to these structures. However, the effect on flood mitigation of land-use modification and small storage or runoff control facilities is still debated in scientific literature. The effect of various structures spread over the catchment is difficult to assess, and hazardous to generalize from one studied catchment to another, which explains why the debate is still open. This study contributes to identify context features that could also explain constrasting results. Focusing on a West-Mediterranean Northern and Southern countries literature, we compare first traditionnal and modern hillslope actions against runoff in both countries. Then, we search in the physical contexts differences that might explain why actions in the hillslopes are more studied in Europe than in Maghreb. But the priorities of national or regional policies also explain differences in the perception of efficiency: the interest of hillslope actions is different if the aim is to limit erosion and pollutant transfer and/or to mitigate large floods. Pollution and how ecological status is taken into account in flood mitigation project assessment are also crucial points.

  13. Challenges in understanding, modelling, and mitigating Lake Outburst Flood Hazard: experiences from Central Asia

    Science.gov (United States)

    Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.

    2010-05-01

    Lake Outburst Floods can evolve from complex process chains like avalanches of rock or ice that produce flood waves in a lake which may overtop and eventually breach glacial, morainic, landslide, or artificial dams. Rising lake levels can lead to progressive incision and destabilization of a dam, to enhanced ground water flow (piping), or even to hydrostatic failure of ice dams which can cause sudden outflow of accumulated water. These events often have a highly destructive potential because a large amount of water is released in a short time, with a high capacity to erode loose debris, leading to a powerful debris flow with a long travel distance. The best-known example of a lake outburst flood is the Vajont event (Northern Italy, 1963), where a landslide rushed into an artificial lake which spilled over and caused a flood leading to almost 2000 fatalities. Hazards from the failure of landslide dams are often (not always) fairly manageable: most breaches occur in the first few days or weeks after the landslide event and the rapid construction of a spillway - though problematic - has solved some hazardous situations (e.g. in the case of Hattian landslide in 2005 in Pakistan). Older dams, like Usoi dam (Lake Sarez) in Tajikistan, are usually fairly stable, though landsildes into the lakes may create floodwaves overtopping and eventually weakening the dams. The analysis and the mitigation of glacial lake outburst flood (GLOF) hazard remains a challenge. A number of GLOFs resulting in fatalities and severe damage have occurred during the previous decades, particularly in the Himalayas and in the mountains of Central Asia (Pamir, Tien Shan). The source area is usually far away from the area of impact and events occur at very long intervals or as singularities, so that the population at risk is usually not prepared. Even though potentially hazardous lakes can be identified relatively easily with remote sensing and field work, modeling and predicting of GLOFs (and also

  14. Detailed Flood Modeling and Hazard Assessment from Storm Tides, Rainfall and Sea Level Rise

    Science.gov (United States)

    Orton, P. M.; Hall, T. M.; Georgas, N.; Conticello, F.; Cioffi, F.; Lall, U.; Vinogradov, S. V.; Blumberg, A. F.

    2014-12-01

    A flood hazard assessment has been conducted for the Hudson River from New York City to Troy at the head of tide, using a three-dimensional hydrodynamic model and merging hydrologic inputs and storm tides from tropical and extra-tropical cyclones, as well as spring freshet floods. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. The hazard assessment framework utilizes a representative climatology of over 1000 synthetic tropical cyclones (TCs) derived from a statistical-stochastic TC model, and historical extra-tropical cyclones and freshets from 1950-present. Hydrodynamic modeling is applied with seasonal variations in mean sea level and ocean and estuary stratification. The model is the Stevens ECOM model and is separately used for operational ocean forecasts on the NYHOPS domain (http://stevens.edu/NYHOPS). For the synthetic TCs, an Artificial Neural Network/ Bayesian multivariate approach is used for rainfall-driven freshwater inputs to the Hudson, translating the TC attributes (e.g. track, SST, wind speed) directly into tributary stream flows (see separate presentation by Cioffi for details). Rainfall intensity has been rising in recent decades in this region, and here we will also examine the sensitivity of Hudson flooding to future climate warming-driven increases in storm precipitation. The hazard assessment is being repeated for several values of sea level, as projected for future decades by the New York City Panel on Climate Change. Recent studies have given widely varying estimates of the present-day 100-year flood at New York City, from 2.0 m to 3.5 m, and special emphasis will be placed on quantifying our study's uncertainty.

  15. Characterisation of seasonal flood types according to timescales in mixed probability distributions

    Science.gov (United States)

    Fischer, Svenja; Schumann, Andreas; Schulte, Markus

    2016-08-01

    When flood statistics are based on annual maximum series (AMS), the sample often contains flood peaks, which differ in their genesis. If the ratios among event types change over the range of observations, the extrapolation of a probability distribution function (pdf) can be dominated by a majority of events that belong to a certain flood type. If this type is not typical for extraordinarily large extremes, such an extrapolation of the pdf is misleading. To avoid this breach of the assumption of homogeneity, seasonal models were developed that differ between winter and summer floods. We show that a distinction between summer and winter floods is not always sufficient if seasonal series include events with different geneses. Here, we differentiate floods by their timescales into groups of long and short events. A statistical method for such a distinction of events is presented. To demonstrate their applicability, timescales for winter and summer floods in a German river basin were estimated. It is shown that summer floods can be separated into two main groups, but in our study region, the sample of winter floods consists of at least three different flood types. The pdfs of the two groups of summer floods are combined via a new mixing model. This model considers that information about parallel events that uses their maximum values only is incomplete because some of the realisations are overlaid. A statistical method resulting in an amendment of statistical parameters is proposed. The application in a German case study demonstrates the advantages of the new model, with specific emphasis on flood types.

  16. Potential flood hazard assessment by integration of ALOS PALSAR and ASTER GDEM: a case study for the Hoa Chau commune, Hoa Vang district, in central Vietnam

    Science.gov (United States)

    Huong, Do Thi Viet; Nagasawa, Ryota

    2014-01-01

    The potential flood hazard was assessed for the Hoa Chau commune in central Vietnam in order to identify the high flood hazard zones for the decision makers who will execute future rural planning. A new approach for deriving the potential flood hazard based on integration of inundation and flow direction maps is described. Areas inundated in the historical flood event of 2007 were extracted from Advanced Land Observing Satellite (ALOS) phased array L-band synthetic aperture data radar (PALSAR) images, while flow direction characteristics were derived from the ASTER GDEM to extract the depressed surfaces. Past flood experience and the flow direction were then integrated to analyze and rank the potential flood hazard zones. The land use/cover map extracted from LANDSAT TM and flood depth point records from field surveys were utilized to check the possibility of susceptible inundated areas, extracting data from ALOS PALSAR and ranking the potential flood hazard. The estimation of potential flood hazard areas revealed that 17.43% and 17.36% of Hoa Chau had high and medium potential flood hazards, respectively. The flow direction and ALOS PALSAR data were effectively integrated for determining the potential flood hazard when hydrological and meteorological data were inadequate and remote sensing images taken during flood times were not available or were insufficient.

  17. Characterising the Geomorphic Response of a Tropical Mega-River to an Extreme, Cyclone Induced, Flood Event.

    Science.gov (United States)

    Hackney, C. R.; Leyland, J.; Darby, S. E.; Parsons, D. R.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2014-12-01

    Extreme events have the ability to induce extensive geomorphic change in fluvial systems as a result of elevated discharge levels, increased sediment transport capacity and associated changes in sheer stresses along channel boundaries. Understanding how rapid rises in water levels change flow structures and channel boundary roughness is key to understanding the relative significance of large events in terms of driving local and system wide geomorphic change. However, capturing the fluvial process dynamics in operation during such events is technically and logistically difficult, especially in the world's largest rivers. During September 2013, on the peak of the monsoon, a series of tropical cyclones induced a large flood event within the Mekong basin. At the peak of the flood wave, discharge measured ~60000 m3/s; the 11th largest flood on record. Pre and post event high resolution topographic surveys of parts of the bed and bank were captured using a combination of contiguous multibeam echo sounding (MBES) and terrestrial laser scanning (TLS) during the event. Simultaneously detailed measurements of cross sectional and near bank flow structure were acquired using an acoustic Doppler current profiler (aDcp). Together, these unique datasets can be used to characterise and assess the geomorphic impact of a cyclone induced extreme flood event on the Mekong. We show how flow structures in the near bank region evolve with stage during the extreme event and how the associated geomorphic response is modulated by the distinctive process dynamics of a mega-river.

  18. Damage assessment of bridge infrastructure subjected to flood-related hazards

    Science.gov (United States)

    Michalis, Panagiotis; Cahill, Paul; Bekić, Damir; Kerin, Igor; Pakrashi, Vikram; Lapthorne, John; Morais, João Gonçalo Martins Paulo; McKeogh, Eamon

    2017-04-01

    Transportation assets represent a critical component of society's infrastructure systems. Flood-related hazards are considered one of the main climate change impacts on highway and railway infrastructure, threatening the security and functionality of transportation systems. Of such hazards, flood-induced scour is a primarily cause of bridge collapses worldwide and one of the most complex and challenging water flow and erosion phenomena, leading to structural instability and ultimately catastrophic failures. Evaluation of scour risk under severe flood events is a particularly challenging issue considering that depth of foundations is very difficult to evaluate in water environment. The continual inspection, assessment and maintenance of bridges and other hydraulic structures under extreme flood events requires a multidisciplinary approach, including knowledge and expertise of hydraulics, hydrology, structural engineering, geotechnics and infrastructure management. The large number of bridges under a single management unit also highlights the need for efficient management, information sharing and self-informing systems to provide reliable, cost-effective flood and scour risk management. The "Intelligent Bridge Assessment Maintenance and Management System" (BRIDGE SMS) is an EU/FP7 funded project which aims to couple state-of-the art scientific expertise in multidisciplinary engineering sectors with industrial knowledge in infrastructure management. This involves the application of integrated low-cost structural health monitoring systems to provide real-time information towards the development of an intelligent decision support tool and a web-based platform to assess and efficiently manage bridge assets. This study documents the technological experience and presents results obtained from the application of sensing systems focusing on the damage assessment of water-hazards at bridges over watercourses in Ireland. The applied instrumentation is interfaced with an open

  19. A spatiotemporal optimization model for the evacuation of the population exposed to flood hazard

    Science.gov (United States)

    Alaeddine, H.; Serrhini, K.; Maizia, M.

    2015-03-01

    Managing the crisis caused by natural disasters, and especially by floods, requires the development of effective evacuation systems. An effective evacuation system must take into account certain constraints, including those related to traffic network, accessibility, human resources and material equipment (vehicles, collecting points, etc.). The main objective of this work is to provide assistance to technical services and rescue forces in terms of accessibility by offering itineraries relating to rescue and evacuation of people and property. We consider in this paper the evacuation of an urban area of medium size exposed to the hazard of flood. In case of inundation, most people will be evacuated using their own vehicles. Two evacuation types are addressed in this paper: (1) a preventive evacuation based on a flood forecasting system and (2) an evacuation during the disaster based on flooding scenarios. The two study sites on which the developed evacuation model is applied are the Tours valley (Fr, 37), which is protected by a set of dikes (preventive evacuation), and the Gien valley (Fr, 45), which benefits from a low rate of flooding (evacuation before and during the disaster). Our goal is to construct, for each of these two sites, a chronological evacuation plan, i.e., computing for each individual the departure date and the path to reach the assembly point (also called shelter) according to a priority list established for this purpose. The evacuation plan must avoid the congestion on the road network. Here we present a spatiotemporal optimization model (STOM) dedicated to the evacuation of the population exposed to natural disasters and more specifically to flood risk.

  20. Perspectives on open access high resolution digital elevation models to produce global flood hazard layers

    Science.gov (United States)

    Sampson, Christopher; Smith, Andrew; Bates, Paul; Neal, Jeffrey; Trigg, Mark

    2015-12-01

    Global flood hazard models have recently become a reality thanks to the release of open access global digital elevation models, the development of simplified and highly efficient flow algorithms, and the steady increase in computational power. In this commentary we argue that although the availability of open access global terrain data has been critical in enabling the development of such models, the relatively poor resolution and precision of these data now limit significantly our ability to estimate flood inundation and risk for the majority of the planet's surface. The difficulty of deriving an accurate 'bare-earth' terrain model due to the interaction of vegetation and urban structures with the satellite-based remote sensors means that global terrain data are often poorest in the areas where people, property (and thus vulnerability) are most concentrated. Furthermore, the current generation of open access global terrain models are over a decade old and many large floodplains, particularly those in developing countries, have undergone significant change in this time. There is therefore a pressing need for a new generation of high resolution and high vertical precision open access global digital elevation models to allow significantly improved global flood hazard models to be developed.

  1. Flood Hazard Assessment along the Western Regions of Saudi Arabia using GIS-based Morphometry and Remote Sensing Techniques

    KAUST Repository

    Shi, Qianwen

    2014-12-01

    Flash flooding, as a result of excessive rainfall in a short period, is considered as one of the worst environmental hazards in arid regions. Areas located in the western provinces of Saudi Arabia have experienced catastrophic floods. Geomorphologic evaluation of hydrographic basins provides necessary information to define basins with flood hazard potential in arid regions, especially where long-term field observations are scarce and limited. Six large basins (from North to South: Yanbu, Rabigh, Khulais, El-Qunfza, Baish and Jizan) were selected for this study because they have large surface areas and they encompass high capacity dams at their downstream areas. Geographic Information System (GIS) and remote sensing techniques were applied to conduct detailed morphometric analysis of these basins. The six basins were further divided into 203 sub-basins based on their drainage density. The morphometric parameters of the six basins and their associated 203 sub-basins were calculated to estimate the degree of flood hazard by combining normalized values of these parameters. Thus, potential flood hazard maps were produced from the estimated hazard degree. Furthermore, peak runoff discharge of the six basins and sub-basins were estimated using the Snyder Unit Hydrograph and three empirical models (Nouh’s model, Farquharson’s model and Al-Subai’s model) developed for Saudi Arabia. Additionally, recommendations for flood mitigation plans and water management schemes along these basins were further discussed.

  2. Efficient pan-European flood hazard modelling through a combination of statistical and physical models

    Science.gov (United States)

    Paprotny, Dominik; Morales Nápoles, Oswaldo

    2016-04-01

    Low-resolution hydrological models are often applied to calculate extreme river discharges and delimitate flood zones on continental and global scale. Still, the computational expense is very large and often limits the extent and depth of such studies. Here, we present a quick yet similarly accurate procedure for flood hazard assessment in Europe. Firstly, a statistical model based on Bayesian Networks is used. It describes the joint distribution of annual maxima of daily discharges of European rivers with variables describing the geographical characteristics of their catchments. It was quantified with 75,000 station-years of river discharge, as well as climate, terrain and land use data. The model's predictions of average annual maxima or discharges with certain return periods are of similar performance to physical rainfall-runoff models applied at continental scale. A database of discharge scenarios - return periods under present and future climate - was prepared for the majority of European rivers. Secondly, those scenarios were used as boundary conditions for one-dimensional (1D) hydrodynamic model SOBEK. Utilizing 1D instead of 2D modelling conserved computational time, yet gave satisfactory results. The resulting pan-European flood map was contrasted with some local high-resolution studies. Indeed, the comparison shows that, in overall, the methods presented here gave similar or better alignment with local studies than previously released pan-European flood map.

  3. Comparison of 2D numerical models for river flood hazard assessment: simulation of the Secchia River flood in January, 2014

    Science.gov (United States)

    Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio

    2017-04-01

    that would be efficient for simulating flooding scenarios for large and very large floodplains. This research aims at contributing to the reduction of uncertainties and limitations in hazard and risk assessment.

  4. Assessing Glacial Lake Outburst Flood Hazard in the Nepal Himalayas using Satellite Imagery and Hydraulic Models

    Science.gov (United States)

    Rounce, D.; McKinney, D. C.

    2015-12-01

    The last half century has witnessed considerable glacier melt that has led to the formation of large glacial lakes. These glacial lakes typically form behind terminal moraines comprising loose boulders, debris, and soil, which are susceptible to fail and cause a glacial lake outburst flood (GLOF). These lakes also act as a heat sink that accelerates glacier melt and in many cases is accompanied by rapid areal expansion. As these glacial lakes continue to grow, their hazard also increases due to the increase in potential flood volume and the lakes' proximity to triggering events such as avalanches and landslides. Despite the large threat these lakes may pose to downstream communities, there are few detailed studies that combine satellite imagery with hydraulic models to present a holistic understanding of the GLOF hazard. The aim of this work is to assess the GLOF hazard of glacial lakes in Nepal using a holistic approach based on a combination of satellite imagery and hydraulic models. Imja Lake will be the primary focus of the modeling efforts, but the methods will be developed in a manner that is transferable to other potentially dangerous glacial lakes in Nepal.

  5. Exploring local risk managers' use of flood hazard maps for risk communication purposes in Baden-Württemberg

    Science.gov (United States)

    Kjellgren, S.

    2013-07-01

    In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address - in research as well as in practice - since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.

  6. Exploring local risk managers' use of flood hazard maps for risk communication purposes in Baden-Württemberg

    Directory of Open Access Journals (Sweden)

    S. Kjellgren

    2013-07-01

    Full Text Available In response to the EU Floods Directive (2007/60/EC, flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address – in research as well as in practice – since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.

  7. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise...

  8. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise...

  9. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise...

  10. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise...

  11. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise...

  12. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise...

  13. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise...

  14. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise...

  15. Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models.

    Science.gov (United States)

    Álvarez-Gómez, J. A.; Aniel-Quiroga, Í.; Gutiérrez-Gutiérrez, O. Q.; Larreynaga, J.; González, M.; Castro, M.; Gavidia, F.; Aguirre-Ayerbe, I.; González-Riancho, P.; Carreño, E.

    2013-11-01

    El Salvador is the smallest and most densely populated country in Central America; its coast has an approximate length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there were 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and resulting in hundreds of victims. Hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached through both probabilistic and deterministic methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold: on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high-resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps, and from the elevation in the near shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific Basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences-finite volumes numerical model in this work, based on the linear and non-linear shallow water equations, to simulate a total of 24 earthquake-generated tsunami scenarios. Our results show that at the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results

  16. Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models

    Directory of Open Access Journals (Sweden)

    J. A. Álvarez-Gómez

    2013-05-01

    Full Text Available El Salvador is the smallest and most densely populated country in Central America; its coast has approximately a length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there have been 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and hundreds of victims. The hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached from both Probabilistic and Deterministic Methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold, on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps and from the elevation in the near-shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences – finite volumes numerical model in this work, based on the Linear and Non-linear Shallow Water Equations, to simulate a total of 24 earthquake generated tsunami scenarios. In the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results obtained

  17. A methodology for the assessment of flood hazards at the regional scale

    Science.gov (United States)

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Marcomini, Antonio

    2013-04-01

    In recent years, the frequency of water-related disasters has increased and recent flood events in Europe (e.g. 2002 in Central Europe, 2007 in UK, 2010 in Italy) caused physical-environmental and socio-economic damages. Specifically, floods are the most threatening water-related disaster that affects humans, their lives and properties. Within the KULTURisk project (FP7) a Regional Risk Assessment (RRA) methodology is proposed to evaluate the benefits of risk prevention in terms of reduced environmental risks due to floods. The method is based on the KULTURisk framework and allows the identification and prioritization of targets (i.e. people, buildings, infrastructures, agriculture, natural and semi-natural systems, cultural heritages) and areas at risk from floods in the considered region by comparing the baseline scenario (i.e. current state) with alternative scenarios (i.e. where different structural and/or non-structural measures are planned). The RRA methodology is flexible and can be adapted to different case studies (i.e. large rivers, alpine/mountain catchments, urban areas and coastal areas) and spatial scales (i.e. from the large river to the urban scale). The final aim of RRA is to help decision-makers in examining the possible environmental risks associated with uncertain future flood hazards and in identifying which prevention scenario could be the most suitable one. The RRA methodology employs Multi-Criteria Decision Analysis (MCDA functions) in order to integrate stakeholder preferences and experts judgments into the analysis. Moreover, Geographic Information Systems (GISs) are used to manage, process, analyze, and map data to facilitate the analysis and the information sharing with different experts and stakeholders. In order to characterize flood risks, the proposed methodology integrates the output of hydrodynamic models with the analysis of site-specific bio-geophysical and socio-economic indicators (e.g. slope of the territory, land cover

  18. Cities and Sea Level Rise: A Roadmap for Flood Hazard Adaptation

    Science.gov (United States)

    Horn, Diane; Cousins, Ann

    2016-04-01

    defend all areas nor retreat entirely and will need to make a decision to retreat from certain locations or to relocate particular assets in areas at lower risk. We identify a series of specific questions which should be answered by city managers when selecting the most appropriate response for a particular location. The selection of options appropriate for building resilience does not depend entirely on the nature of the physical hazard and the accommodation space available, but also on the socio-political and environmental context in which adaptation decisions are made. The most important element in adapting to sea level rise is to have policies in place that incentivise risk reduction. The more comprehensively adaptation measures can be integrated into related policy areas and linked up with existing economic, social and environment measures, the more successful adaptation policies are likely to be. Changes to planning regulations, although resource-intensive, are the most cost-effective way of managing risk exposure over time. Flood insurance can also serve as a highly persuasive financial incentive for flood-resilient construction and locating businesses and homes in safer locations.

  19. Toward a coupled Hazard-Vulnerability Tool for Flash Flood Impacts Prediction

    Science.gov (United States)

    Terti, Galateia; Ruin, Isabelle; Anquetin, Sandrine; Gourley, Jonathan J.

    2015-04-01

    Flash floods (FF) are high-impact, catastrophic events that result from the intersection of hydrometeorological extremes and society at small space-time scales, generally on the order of minutes to hours. Because FF events are generally localized in space and time, they are very difficult to forecast with precision and can subsequently leave people uninformed and subject to surprise in the midst of their daily activities (e.g., commuting to work). In Europe, FFs are the main source of natural hazard fatalities, although they affect smaller areas than riverine flooding. In the US, also, flash flooding is the leading cause of weather-related deaths most years, with some 200 annual fatalities. There were 954 fatalities and approximately 31 billion U.S. dollars of property damage due to floods and flash floods from 1995 to 2012 in the US. For forecasters and emergency managers the prediction of and subsequent response to impacts due to such a sudden onset and localized event remains a challenge. This research is motivated by the hypothesis that the intersection of the spatio-temporal context of the hazard with the distribution of people and their characteristics across space and time reveals different paths of vulnerability. We argue that vulnerability and the dominant impact type varies dynamically throughout the day and week according to the location under concern. Thus, indices are appropriate to develop and provide, for example, vehicle-related impacts on active population being focused on the road network during morning or evening rush hours. This study describes the methodological developments of our approach and applies our hypothesis to the case of the June 14th, 2010 flash flood event in the Oklahoma City area (Oklahoma, US). Social (i.e. population socio-economic profile), exposure (i.e. population distribution, land use), and physical (i.e. built and natural environment) data are used to compose different vulnerability products based on the forecast location

  20. The FASTER Approach: A New Tool for Calculating Real-Time Tsunami Flood Hazards

    Science.gov (United States)

    Wilson, R. I.; Cross, A.; Johnson, L.; Miller, K.; Nicolini, T.; Whitmore, P.

    2014-12-01

    In the aftermath of the 2010 Chile and 2011 Japan tsunamis that struck the California coastline, emergency managers requested that the state tsunami program provide more detailed information about the flood potential of distant-source tsunamis well ahead of their arrival time. The main issue is that existing tsunami evacuation plans call for evacuation of the predetermined "worst-case" tsunami evacuation zone (typically at a 30- to 50-foot elevation) during any "Warning" level event; the alternative is to not call an evacuation at all. A solution to provide more detailed information for secondary evacuation zones has been the development of tsunami evacuation "playbooks" to plan for tsunami scenarios of various sizes and source locations. To determine a recommended level of evacuation during a distant-source tsunami, an analytical tool has been developed called the "FASTER" approach, an acronym for factors that influence the tsunami flood hazard for a community: Forecast Amplitude, Storm, Tides, Error in forecast, and the Run-up potential. Within the first couple hours after a tsunami is generated, the National Tsunami Warning Center provides tsunami forecast amplitudes and arrival times for approximately 60 coastal locations in California. At the same time, the regional NOAA Weather Forecast Offices in the state calculate the forecasted coastal storm and tidal conditions that will influence tsunami flooding. Providing added conservatism in calculating tsunami flood potential, we include an error factor of 30% for the forecast amplitude, which is based on observed forecast errors during recent events, and a site specific run-up factor which is calculated from the existing state tsunami modeling database. The factors are added together into a cumulative FASTER flood potential value for the first five hours of tsunami activity and used to select the appropriate tsunami phase evacuation "playbook" which is provided to each coastal community shortly after the forecast

  1. Hazard and Risk of Glacial Lake Outburst Floods in the Nepal Himalayas

    Science.gov (United States)

    Rounce, David; McKinney, Daene

    2016-04-01

    As the climate changes and glaciers continue to melt, the number of glacial lakes and the size of these lakes is rapidly increasing. These glacial lakes are contained by terminal moraines composed of debris, soil, and sometimes ice, which are susceptible to fail catastrophically and cause a glacial lake outburst flood (GLOF). Understanding the hazard and risk associated with these lakes is important for downstream communities and other stakeholders, e.g., hydroelectric companies. Unfortunately, existing methods that are used to assess GLOF hazards yield conflicting classifications, which leads to confusion amongst the stakeholders who these studies are meant to assist. This study assesses existing methods on potentially dangerous glacial lakes in Nepal and uses these methods to develop an objective and holistic risk & action framework that may be used to assist and prioritize risk-mitigation actions.

  2. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble

    Science.gov (United States)

    Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-03-01

    Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.

  3. Strategies for flood hazard adaptation in drought affected regions of Afghanistan

    Science.gov (United States)

    Schleupner, Christine

    2010-05-01

    continue to impact upon society by creating stresses for specific vulnerable groups. This study discusses and compares existing policies, legislations and strategies considering flood adaptation planning in Afghanistan. It reviews available Flood Hazard Maps and reflects on regional adaptation options. Present and future vulnerability to flooding is assessed through a GIS-based model by using scenario techniques. A strategy is developed how to implement measures into regional and integrated water resource management planning. In general, not a single but the selection of multiple measures will be successful in pro-active planning for climate change adaptation. In this regard a continuous consultation with stakeholders needs to take place to address their demands. Thus the results of this study cannot give solutions but might build the basis for recommended active planning processes.

  4. New river flow maxima in Northern England, December 2015: Implications for flood hazard and risk assessment?

    Science.gov (United States)

    Thornton, James

    2016-04-01

    December 2015 was recently confirmed as the UK's wettest month on record by the Met Office. The most extreme precipitation was associated with three extratropical storm systems, named Desmond, Eva and Frank by the pilot Met Éireann/Met Office "Name our storms" project. In response, river levels reached new maxima at many locations across Northern England. Property damage was widespread, with at least 16,000 homes in England flooded. As with recent predecessors, these events reinvigorated public debate about the extent to which natural weather variability, anthropogenic climate change, increased urbanisation and/or other changes in catchment and river management might be responsible for apparent increases in flood frequency and severity. Change detection and attribution science is required to inform the debate, but is complicated by the short (typically ~ 35 years) river flow records available. Running a large number of coupled climate and hydrological model simulations is a powerful way of addressing the 'attribution question' with respect to the hypothesised climate forcing, for example, albeit one that remains largely in the research domain at present. In the meantime, flood-frequency analysis of available records still forms the bedrock of practice in the water industry; the results are used routinely in the design of new defence structures and in the development of flood hazard maps, amongst other things. In such analyses, it is usual for the records to be assumed stationary. In this context, the specific aims of this research are twofold: • To investigate whether, under the assumption of stationarity, the outputs of standard flood-frequency modelling methods (both 'single-site' and 'spatially pooled' methods) differ significantly depending on whether the new peaks are included or excluded, and; • To assess the sustainability of previous conclusions regarding trends in English river flows by reapplying simple statistical tests, such as the Mann-Kendal test

  5. Maximum flood hazard assessment for OPG's deep geologic repository for low and intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Nimmrichter, P.; McClintock, J.; Peng, J. [AMEC plc., Toronto, ON (Canada); Leung, H. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2011-07-01

    Ontario Power Generation (OPG) has entered a process to seek Environmental Assessment and licensing approvals to construct a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW) near the existing Western Waste Management Facility (WWMF) at the Bruce nuclear site in the Municipality of Kincardine, Ontario. In support of the design of the proposed DGR project, maximum flood stages were estimated for potential flood hazard risks associated with coastal, riverine and direct precipitation flooding. The estimation of lake/coastal flooding for the Bruce nuclear site considered potential extreme water levels in Lake Huron, storm surge and seiche, wind waves, and tsunamis. The riverine flood hazard assessment considered the Probable Maximum Flood (PMF) within the local watersheds, and within local drainage areas that will be directly impacted by the site development. A series of hydraulic models were developed, based on DGR project site grading and ditching, to assess the impact of a Probable Maximum Precipitation (PMP) occurring directly at the DGR site. Overall, this flood assessment concluded there is no potential for lake or riverine based flooding and the DGR area is not affected by tsunamis. However, it was also concluded from the results of this analysis that the PMF in proximity to the critical DGR operational areas and infrastructure would be higher than the proposed elevation of the entrance to the underground works. This paper provides an overview of the assessment of potential flood hazard risks associated with coastal, riverine and direct precipitation flooding that was completed for the DGR development. (author)

  6. Mapping Urban Risk: Flood Hazards, Race, & Environmental Justice In New York"

    Science.gov (United States)

    Maantay, Juliana; Maroko, Andrew

    2009-01-01

    This paper demonstrates the importance of disaggregating population data aggregated by census tracts or other units, for more realistic population distribution/location. A newly-developed mapping method, the Cadastral-based Expert Dasymetric System (CEDS), calculates population in hyper-heterogeneous urban areas better than traditional mapping techniques. A case study estimating population potentially impacted by flood hazard in New York City compares the impacted population determined by CEDS with that derived by centroid-containment method and filtered areal weighting interpolation. Compared to CEDS, 37 percent and 72 percent fewer people are estimated to be at risk from floods city-wide, using conventional areal weighting of census data, and centroid-containment selection, respectively. Undercounting of impacted population could have serious implications for emergency management and disaster planning. Ethnic/racial populations are also spatially disaggregated to determine any environmental justice impacts with flood risk. Minorities are disproportionately undercounted using traditional methods. Underestimating more vulnerable sub-populations impairs preparedness and relief efforts.

  7. Use of agent-based modelling in emergency management under a range of flood hazards

    Directory of Open Access Journals (Sweden)

    Tagg Andrew

    2016-01-01

    Full Text Available The Life Safety Model (LSM was developed some 15 years ago, originally for dam break assessments and for informing reservoir evacuation and emergency plans. Alongside other technological developments, the model has evolved into a very useful agent-based tool, with many applications for a range of hazards and receptor behaviour. HR Wallingford became involved in its use in 2006, and is now responsible for its technical development and commercialisation. Over the past 10 years the model has been applied to a range of flood hazards, including coastal surge, river flood, dam failure and tsunami, and has been verified against historical events. Commercial software licences are being used in Canada, Italy, Malaysia and Australia. A core group of LSM users and analysts has been specifying and delivering a programme of model enhancements. These include improvements to traffic behaviour at intersections, new algorithms for sheltering in high-rise buildings, and the addition of monitoring points to allow detailed analysis of vehicle and pedestrian movement. Following user feedback, the ability of LSM to handle large model ‘worlds’ and hydrodynamic meshes has been improved. Recent developments include new documentation, performance enhancements, better logging of run-time events and bug fixes. This paper describes some of the recent developments and summarises some of the case study applications, including dam failure analysis in Japan and mass evacuation simulation in England.

  8. Flood Zones, FEMA flood hazard, Published in 2009, 1:24000 (1in=2000ft) scale, Washington County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Flood Zones dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as 'FEMA flood...

  9. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru

    OpenAIRE

    Schneider, Demian; Huggel, Christian; Cochachin, Alejo; Guillén, Sebastiàn; García, Javier

    2014-01-01

    Recent warming has had enormous impacts on glaciers and high-mountain environments. Hazards have changed or new ones have emerged, including those from glacier lakes that form as glaciers retreat. The Andes of Peru have repeatedly been severely impacted by glacier lake outburst floods in the past. An important recent event occurred in the Cordillera Blanca in 2010 when an ice avalanche impacted a glacier lake and triggered an outburst flood that affected the downstream communities and city of...

  10. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru

    OpenAIRE

    Schneider, D; C. Huggel; Cochachin, A.; Guillén, S.; García, J.

    2014-01-01

    Recent warming has had enormous impacts on glaciers and high-mountain environments. Hazards have changed or new ones have emerged, including those from glacier lakes that form as glaciers retreat. The Andes of Peru have repeatedly been severely impacted by glacier lake outburst floods in the past. An important recent event occurred in the Cordillera Blanca in 2010 when an ice avalanche impacted a glacier lake and triggered an outburst flood that affected the downstream commu...

  11. RIO SOLIETTE (HAITI: AN INTERNATIONAL INITIATIVE FOR FLOOD-HAZARD ASSESSMENT AND MITIGATION

    Directory of Open Access Journals (Sweden)

    S. Gandolfi

    2014-01-01

    Full Text Available Natural catastrophic events are one of most critical aspects for health and economy all around the world. However, the impact in a poor region can impact more dramatically than in others countries. Isla Hispaniola (Haiti and the Dominican Republic, one of the poorest regions of the planet, has repeatedly been hit by catastrophic natural disasters that caused incalculable human and economic losses. After the catastrophic flood event occurred in the basin of River Soliette on May 24th, 2004, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded an international cooperation initiative (ICI coordinated by the University of Bologna, that involved Haitian and Dominican institutions.Main purpose of the ICI was hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures. In this contest, a topographic survey was necessary to realize the hydrological model and to improve the knowledge in some areas candidates to be site for mitigation measures.To overcome the difficulties arising from the narrowness of funds, surveyors and limited time available for the survey, only GPS technique have been used, both for framing aspects (using PPP approach, and for geometrical survey of the river by means of river cross-sections and detailed surveys in two areas (RTK technique. This allowed us to reconstruct both the river geometry and the DTM’s of two expansion areas (useful for design hydraulic solutions for mitigate flood-hazard risk.

  12. Current and future pluvial flood hazard analysis for the city of Antwerp

    Science.gov (United States)

    Willems, Patrick; Tabari, Hossein; De Niel, Jan; Van Uytven, Els; Lambrechts, Griet; Wellens, Geert

    2016-04-01

    to two types of methods). These were finally transferred into future pluvial flash flood hazard maps for the city together with the uncertainties, and are considered as basis for spatial planning and adaptation.

  13. Socio-Economic Appraisal of Flood Hazard among the Riparian Communities: Case Study of Brahmaputra Valley in Assam; India

    Science.gov (United States)

    Roy, Nikhil; Wasini Pandey, Bindhy

    2017-04-01

    Brahmaputra valley of Assam is one of the most hazard prone areas of the Indian subcontinent. Recurring floods have severely affected the riparian communities of the region since time immemorial. But, the frequency of the problem has been intensified after the great earthquakes of 1897 and 1950. These two extreme earthquakes have disturbed the geological setting of the basin and the channel morphology has been altered henceforth. The impact of floods on riparian communities in Brahmaputra valley has been abysmal. During the monsoon season almost 30 per cent of the valley has been inundated with floods and the riparian communities are mostly affected. Large chunk of people have been uprooted from their native lands due to recurring floods in the low lying areas of the region. Although it is impossible to quantify the human tragedy during the natural disasters, but one can easily understand the situation by the facts that about 1.8 million people and 200,000 hectares of farmland were affected in the 2016 floods of Assam. In the present study, an attempt has been made to assess the spatio-temporal changes of the morphology of Brahmaputra River and its impact on the livelihood of the riparian communities. For that, LANDSAT and SENTINEL imageries have been used to examine the shifting of bank lines of three decades. CARTOSAT DEM has been used to prepare the FLOOD HAZARD ZONATION map of the Brahmaputra valley to examine the flood vulnerable areas of the region. The present study also tries to explain the livelihood condition of the Internally Displaced Persons and their social cohesion. Keywords: Brahmaputra River, Flood, LANDSAT, CARTOSAT DEM, FLOOD HAZARD ZONATION, Riparian Communities

  14. FLOOD HAZARDS PERCEPTION. THE RESULT OF AN OPINION SURVEY MADE IN THE LITTLE TOWNS FROM LOWER ARIEŞ CORRIDOR

    Directory of Open Access Journals (Sweden)

    IOANA URCAN

    2012-12-01

    Full Text Available Flood hazards perception. The result of an opinion survey made in the little towns from lower Arieş corridor. This paper has been prepared based on information obtained from a survey conducted on a sample of 560 residents from the towns of Turda and Câmpia Turzii, residing in areas with different degrees of exposure to the risk of flooding. The residents were questioned about the floods they had suffered and gave varied responses to the degree of flood damage on the population, to the amount of information and the degree of insurance against floods. The questionnaire was structured on different aspects that emphasized: identification, level of experience, knowledge and information; the perception of the causes that generated and amplified floods; the perception involving authorities in prevention and mitigation of flood damage; availability for implementation of voluntary actions, the degree of insurance and aid to flood. In this study it was taken into account the location of households, the previous flood experience, the age and the education level of the respondents.

  15. Climate-related hazards: a method for global assessment of urban and rural population exposure to cyclones, droughts, and floods.

    Science.gov (United States)

    Christenson, Elizabeth; Elliott, Mark; Banerjee, Ovik; Hamrick, Laura; Bartram, Jamie

    2014-02-21

    Global climate change (GCC) has led to increased focus on the occurrence of, and preparation for, climate-related extremes and hazards. Population exposure, the relative likelihood that a person in a given location was exposed to a given hazard event(s) in a given period of time, was the outcome for this analysis. Our objectives were to develop a method for estimating the population exposure at the country level to the climate-related hazards cyclone, drought, and flood; develop a method that readily allows the addition of better datasets to an automated model; differentiate population exposure of urban and rural populations; and calculate and present the results of exposure scores and ranking of countries based on the country-wide, urban, and rural population exposures to cyclone, drought, and flood. Gridded global datasets on cyclone, drought and flood occurrence as well as population density were combined and analysis was carried out using ArcGIS. Results presented include global maps of ranked country-level population exposure to cyclone, drought, flood and multiple hazards. Analyses by geography and human development index (HDI) are also included. The results and analyses of this exposure assessment have implications for country-level adaptation. It can also be used to help prioritize aid decisions and allocation of adaptation resources between countries and within a country. This model is designed to allow flexibility in applying cyclone, drought and flood exposure to a range of outcomes and adaptation measures.

  16. Combining sea state and land subsidence rates in an assessment of flooding hazards at the Danish North Sea coast

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, Niels; Knudsen, Per

    Sand nourishments (2-3 M3/y) counteract erosion on the central North Sea coast of Denmark and dikes and artificial dunes protect the low-lying hinterland from flooding. The fisheries towns of Thyboron, Thorsminde and Hvide Sande are all liable to flooding during storm surges. Tide gauge series fr...... the coast are presented and the town of Thyboron is used as a case where, in addition to SLR and extremes, analyses of land movement and ocean-groundwater interactions are included in an integrated method for assessing future coastal flooding hazards.......Sand nourishments (2-3 M3/y) counteract erosion on the central North Sea coast of Denmark and dikes and artificial dunes protect the low-lying hinterland from flooding. The fisheries towns of Thyboron, Thorsminde and Hvide Sande are all liable to flooding during storm surges. Tide gauge series from...

  17. Mapping the Historical Probability of Increased Flood Hazard During ENSO Events Using a New 20th Century River Flow Reanalysis

    Science.gov (United States)

    Emerton, R.; Cloke, H. L.; Stephens, L.; Woolnough, S. J.; Zsoter, E.; Pappenberger, F.

    2016-12-01

    El Niño Southern Oscillation (ENSO), a mode of variability which sees fluctuations between anomalously high or low sea surface temperatures in the Pacific, is known to influence river flow and flooding at the global scale. The anticipation and forecasting of floods is crucial for flood preparedness, and this link, alongside the predictive skill of ENSO up to seasons ahead, may provide an early indication of upcoming severe flood events. Information is readily available indicating the likely impacts of El Niño and La Niña on precipitation across the globe, which is often used as a proxy for flood hazard. However, the nonlinearity between precipitation and flood magnitude and frequency means that it is important to assess the impact of ENSO events not only on precipitation, but also on river flow and flooding. Historical probabilities provide key information regarding the likely impacts of ENSO events. We estimate, for the first time, the historical probability of increased flood hazard during El Niño and La Niña through a global hydrological analysis, using a new 20thCentury ensemble river flow reanalysis for the global river network. This dataset was produced by running the ECMWF ERA-20CM atmospheric reanalysis through a research set-up of the Global Flood Awareness System (GloFAS) using the CaMa-Flood hydrodynamic model, to produce a 110-year global reanalysis of river flow. We further evaluate the added benefit of the hydrological analysis over the use of precipitation as a proxy for flood hazard. For example, providing information regarding regions that are likely to experience a lagged influence on river flow compared to the influence on precipitation. Our results map, at the global scale, the probability of abnormally high river flow during any given month during an El Niño or La Niña; information such as this is key for organisations that work at the global scale, such as humanitarian aid organisations, providing a seasons-ahead indicator of potential

  18. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  19. Multivariate skew- t approach to the design of accumulation risk scenarios for the flooding hazard

    Science.gov (United States)

    Ghizzoni, Tatiana; Roth, Giorgio; Rudari, Roberto

    2010-10-01

    The multivariate version of the skew- t distribution provides a powerful analytical description of the joint behavior of multivariate processes. It enjoys valuable properties: from the aptitude to model skewed as well as leptokurtic datasets to the availability of moments and likelihood analytical expressions. Moreover, it offers a wide range of extremal dependence strength, allowing for upper and lower tail dependence. The idea underneath this work is to employ the multivariate skew- t distribution to provide an estimation of the joint probability of flood events in a multi-site multi-basin approach. This constitutes the basis for the design and evaluation of flood hazard scenarios for large areas in terms of their intensity, extension and frequency, i.e. those information required by civil protection agencies to put in action mitigation strategies and by insurance companies to price the flooding risk and to evaluate portfolios. Performances of the skew- t distribution and the corresponding t copula function, introduced to represent the state of the art for multivariate simulations, are discussed with reference to the Tanaro Basin, North-western Italy. To enhance the characteristics of the correlation structure, three nested and non-nested gauging stations are selected with contributing areas from 1500 to 8000 km 2. A dataset of 76 trivariate flood events is extracted from a mean daily discharges database available for the time period from January 1995 to December 2003. Applications include the generation of multivariate skew- t and t copula samples and models' comparison through the principle of minimum cross-entropy, here revised for the application to multivariate samples. Copula and skew- t based scenario return period estimations are provided for the November 1994 flood event, i.e. the worst on record in the 1801-2001 period. Results are encouraging: the skew- t distribution seems able to describe the joint behavior, being close to the observations. Marginal

  20. Flood hazards analysis based on changes of hydrodynamic processes in fluvial systems of Sao Paulo, Brazil.

    Science.gov (United States)

    Simas, Iury; Rodrigues, Cleide

    2016-04-01

    The metropolis of Sao Paulo, with its 7940 Km² and over 20 million inhabitants, is increasingly being consolidated with disregard for the dynamics of its fluvial systems and natural limitations imposed by fluvial terraces, floodplains and slopes. Events such as floods and flash floods became particularly persistent mainly in socially and environmentally vulnerable areas. The Aricanduva River basin was selected as the ideal area for the development of the flood hazard analysis since it presents the main geological and geomorphological features found in the urban site. According to studies carried out by Anthropic Geomorphology approach in São Paulo, to study this phenomenon is necessary to take into account the original hydromorphological systems and its functional conditions, as well as in which dimensions the Anthropic factor changes the balance between the main variables of surface processes. Considering those principles, an alternative model of geographical data was proposed and enabled to identify the role of different driving forces in terms of spatial conditioning of certain flood events. Spatial relationships between different variables, such as anthropogenic and original morphology, were analyzed for that purpose in addition to climate data. The surface hydrodynamic tendency spatial model conceived for this study takes as key variables: 1- The land use present at the observed date combined with the predominant lithological group, represented by a value ranging 0-100, based on indexes of the National Soil Conservation Service (NSCS-USA) and the Hydraulic Technology Center Foundation (FCTH-Brazil) to determine the resulting balance of runoff/infiltration. 2- The original slope, applying thresholds from which it's possible to determine greater tendency for runoff (in percents). 3- The minimal features of relief, combining the curvature of surface in plant and profile. Those three key variables were combined in a Geographic Information System in a series of

  1. Exposure to Flood Hazards in Miami and Houston: Are Hispanic Immigrants at Greater Risk than Other Social Groups?

    OpenAIRE

    Maldonado, Alejandra; Collins, Timothy W.; Sara E. Grineski; Chakraborty, Jayajit

    2016-01-01

    Although numerous studies have been conducted on the vulnerability of marginalized groups in the environmental justice (EJ) and hazards fields, analysts have tended to lump people together in broad racial/ethnic categories without regard for substantial within-group heterogeneity. This paper addresses that limitation by examining whether Hispanic immigrants are disproportionately exposed to risks from flood hazards relative to other racial/ethnic groups (including US-born Hispanics), adjustin...

  2. STUDY REGARDING DELINEATION OF FLOOD HAZARD ZONES IN THE HYDROGRAPHIC BASIN OF THE SOMEŞ RIVER, BORDER AREA

    Directory of Open Access Journals (Sweden)

    STOICA F.

    2014-03-01

    Full Text Available The hydrological studies will provide the characteristic parameters for the floods occurred for the calculus discharges with overflow probabilities of 0,1%; 1%, 5%, 10%. The hydrologic and hydraulic models will be made by using the hydro-meteorological data base and the topographical measurements on site; them calibration will be done according to the records of the historical floods. The studies on the hydrologic and hydraulic models will be necessary for the establishment of the carrying capacity of the riverbeds, for the delimitation of the flood plains and for the detection of the transit discharges at the hydro-technical installations, but also for the establishment of the parameters needed for the structural measures’ projects. These will be based on the 1D and 2D unstable hydro-dynamic models. Therefore, the users would be able to assess the proposed measures and the impact over the river’s system; of course with the potential combination of the 1D and 2D. The main objectives followed by the project are: • identification of the river basins or river sub-basins with flood risks; • regionalization of the flood hazard; • presentation of the main flash floods occurred during the last 30 years, which induced floods; • assessment of the consequences of eventual flood over the population, properties and environment; • the establishment of the protection degree, accepted for the human settlements, for the economic and social objectives, for the farm areas, etc.;

  3. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  4. Practices and Lessons Learned in Coping with Climatic Hazards at the River-Basin Scale: Floods and Droughts

    Directory of Open Access Journals (Sweden)

    Koen Roest

    2008-12-01

    Full Text Available Climatic hazards such as floods and droughts have always been a primary matter of concern for human populations. Severe floods damage settlements, transport networks, and arable land. Although devastating droughts are harmful primarily for agriculture and terrestrial ecosystems, they can also lead to local water supply shortages. Despite significant achievements in science and technology and success stories in environmental management in the 20th century, people still continue to suffer the consequences of climate hazards worldwide. This paper provides an overview of existing practices for coping with floods and droughts, compares strategies in different river basins, and outlines the areas that need improvement. First, the existing protection measures and response strategies against floods and droughts are briefly described. An overview is given of expected climate change and existing coping strategies for floods and droughts in seven case study basins. Four of the basins, namely the Elbe, Guadiana, Rhine, and Tisza, are located in Europe; the Nile and the Orange are in Africa; and the Amudarya is in Central Asia. Analysis of the coping strategies shows that structural measures exist in all seven river basins, but that nonstructural measures are generally not very extensive and/or advanced. Finally, the success stories in dealing with climatic hazards and lessons learned, taken partly from the seven case study basins and partly from literature, are summarized.

  5. Floods

    Science.gov (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  6. Simulating floods : On the application of a 2D-hydraulic model for flood hazard and risk assessment

    NARCIS (Netherlands)

    Alkema, D.

    2007-01-01

    Over the last decades, river floods in Europe seem to occur more frequently and are causing more and more economic and emotional damage. Understanding the processes causing flooding and the development of simulation models to evaluate countermeasures to control that damage are important issues. This

  7. Conveying Flood Hazard Risk Through Spatial Modeling: A Case Study for Hurricane Sandy-Affected Communities in Northern New Jersey

    Science.gov (United States)

    Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko

    2016-10-01

    The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.

  8. Conveying Flood Hazard Risk Through Spatial Modeling: A Case Study for Hurricane Sandy-Affected Communities in Northern New Jersey.

    Science.gov (United States)

    Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko

    2016-10-01

    The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.

  9. Comparison of environmental and socio-economic domains of vulnerability to flood hazards

    Science.gov (United States)

    Leidel, M.; Kienberger, S.; Lang, S.; Zeil, P.

    2009-04-01

    (specific policy realm, specific hazard domain, etc.). In this study, vulnerability units have been derived as a specific instance of a geon set within an area exposed to flood risk. Using geons, we are capable of transforming singular domains of information on specific systemic components to policy-relevant, conditioned information (Kienberger et al., 2008; Tiede & Lang, 2007). According to the work programme socio-economic vulnerabilities have been modelled for the Salzach catchment. A specific set of indicators has been developed with a strong stakeholder orientation. Next to that, and to allow an easier integration within the aimed development of Water Resource Response Units (WRRUs) the environmental domain of vulnerability has additionally been modelled. We present the results of the socio-economic and environmental based approach to model vulnerability. The research methodology utilises census as well as land use/land cover data to derive and assess vulnerability. As a result, spatial units have been identified which represent common characteristics of socio-economic environmental vulnerability. The results show the spatially explicit vulnerability and its underlying components sensitivity and adaptive capacity for socio-economic and environmental domains and discuss differences. Within the test area, the Salzach River catchment in Austria, primarily urban areas adjacent to water courses are highly vulnerable. It can be stated that the delineation of vulnerability units that integrates all dimensions of sustainability are a prerequisite for a holistic and thus adaptive integrated water management approach. Indeed, such units constitute the basis for future dynamic vulnerability assessments, and thus for the assessment of uncertainties due to climate change. Kienberger, S., S. Lang & D. Tiede (2008): Socio-economic vulnerability units - modelling meaningful spatial units. In: Proceedings of the GIS Research UK 16th Annual conference GISRUK 2008, Manchester. Lang, S

  10. Hazard Map in Huaraz-Peru due to a Glacial Lake Outburst Flood from Palcacocha Lake

    Science.gov (United States)

    Somos-Valenzuela, M. A.; Chisolm, R. E.; McKinney, D. C.; Rivas, D.

    2013-12-01

    Palcacocha lake is located in the Ancash Region in the Cordillera Blanca at an elevation of 4,567 m in the Quilcay sub-basin, province of Huaraz, Peru. The lake drains into the Quebrada Cojup, which subsequently drains into the Quilcay River. The Quilcay River passes through the City of Huaraz emptying its water into the Santa River, which is the primary river of the basin. This location has a special interest since the city of Huaraz, which is located at the bottom of the Quilcay sub-basin, was devastated by a glacial lake outburst flood (GLOF) released from Lake Palcacocha on December 13, 1941. In that event, many lost their lives. In recent years Palcacocha has grown to the point where the lake is once again dangerous. Ice/rock avalanches from the steep surrounding slopes can now directly reach the lake. A process chain of debris flow and hyper-concentrated flow from Lake Palcacocha could easily reach the city of Huaraz with the current lake volume. Local authorities and people living in Huaraz are concerned about the threat posed by Lake Palcacocha, and consequently they have requested technical support in order to investigate the impacts that a GLOF could have in the city of Huaraz. To assess the hazard for the city of Huaraz a holistic approach is used that considers a chain of processes that could interact in a GLOF event from Lake Palcacocha. We assume that an avalanche from Palcaraju glacier, located directly above the lake, could be a GLOF trigger, followed by the formation of waves in the lake that can overtop the damming moraine starting an erosive process. The wave and avalanche simulations are described in another work, and here we use those results to simulate the propagation of the inundation downstream using FLO-2D, a model that allows us to include debris flow. GLOF hydrographs are generated using a dam break module in Mike 11. Empirical equations are used to calculate the hydrograph peaks and calibrate the inundation model. In order to quantify

  11. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  12. Hunza Landslide and Monsoon Flooding in Pakistan Call for International Attention to Transboundary Natural Hazards

    Science.gov (United States)

    Kargel, J. S.; Fink, W.; Furfaro, R.; Leonard, G. J.; Patterson, M.; Glims, Gaphaz

    2010-12-01

    Two major disasters in Pakistan and innumerable lesser disasters throughout the Himalaya-Karakoram region in 2010 highlight geologic events and extreme weather (perhaps climate change) in affecting the well being of whole nations and commerce and relations between nations. Two chief events in Pakistan include the Jan. 4 rockslide into the Hunza River and the subsequent formation of a natural dam lake (Lake Gojal); and the monsoon precipitation-fed flooding across the Indus Basin. The first event severed Pakistan’s major land link with China. The second event devastated Pakistan’s national land-based transportation infrastructure and agriculture and displaced millions of people. In a country plagued by monsoon-driven floods, the lack of catastrophic breakout of Lake Gojal is welcome. Satellite-based monitoring shows the spillway to be eroding more rapidly (but not alarmingly) under August’s monsoon peak flow. Similar events have occurred before in the region and will occur again. These mega-events in Pakistan should be an alert for all of South Asia, as climate change increases or shifts the hazard environment, encroaching development and urbanization increases the vulnerabilities, and as improved capacity for trans-national commerce breaks down the Himalayan barrier and both promotes new opportunities and possible conflicts. 2010's natural mega-calamities in Pakistan and widespread landsliding and flooding elsewhere in South Asia underscores the subcontinent’s need for a thorough field-, remote sensing-, and modeling-based assessment of the disaster potential related to landslides, glacier surges, extreme monsoon precipitation events, natural glacier and landslide dam lake outbursts, and unseasonal snow melting. The Himalayan-Karakoram region is remarkable for its heterogeneous responses to climate change. For instance, some areas are undergoing rapid glacier recession and stagnation; others are undergoing glacier growth. We take the instance of the

  13. An influence diagram for urban flood risk assessment through pluvial flood hazards under non-stationary conditions

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra; Friis Hansen, P.; Garrè, Luca

    2014-01-01

    non-stationary conditions using an influence diagram (ID) which is a Bayesian network (BN) extended with decision and utility nodes. Non-stationarity is considered to be the influence of climate change where extreme precipitation patterns change over time. The overall risk is quantified in monetary...... terms expressed as expected annual damage. The network is dynamic in as much as it assesses risk at different points in time. The framework provides means for decision-makers to assess how different decisions on flood adaptation affect the risk now and in the future. The result from the ID was extended...... for flooding increases over time, and the benefits of implementing flood adaptation measures....

  14. Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches

    Directory of Open Access Journals (Sweden)

    Daniel Asare-Kyei

    2015-07-01

    Full Text Available Robust risk assessment requires accurate flood intensity area mapping to allow for the identification of populations and elements at risk. However, available flood maps in West Africa lack spatial variability while global datasets have resolutions too coarse to be relevant for local scale risk assessment. Consequently, local disaster managers are forced to use traditional methods such as watermarks on buildings and media reports to identify flood hazard areas. In this study, remote sensing and Geographic Information System (GIS techniques were combined with hydrological and statistical models to delineate the spatial limits of flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The approach involves estimating peak runoff concentrations at different elevations and then applying statistical methods to develop a Flood Hazard Index (FHI. Results show that about half of the study areas fall into high intensity flood zones. Empirical validation using statistical confusion matrix and the principles of Participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77% to 81%. This was supported with local expert knowledge which accurately classified 79% of communities deemed to be highly susceptible to flood hazard. The results will assist disaster managers to reduce the risk to flood disasters at the community level where risk outcomes are first materialized.

  15. Influence of Climate Change on Flood Hazard using Climate Informed Bayesian Hierarchical Model in Johnson Creek River

    Science.gov (United States)

    Zarekarizi, M.; Moradkhani, H.

    2015-12-01

    Extreme events are proven to be affected by climate change, influencing hydrologic simulations for which stationarity is usually a main assumption. Studies have discussed that this assumption would lead to large bias in model estimations and higher flood hazard consequently. Getting inspired by the importance of non-stationarity, we determined how the exceedance probabilities have changed over time in Johnson Creek River, Oregon. This could help estimate the probability of failure of a structure that was primarily designed to resist less likely floods according to common practice. Therefore, we built a climate informed Bayesian hierarchical model and non-stationarity was considered in modeling framework. Principle component analysis shows that North Atlantic Oscillation (NAO), Western Pacific Index (WPI) and Eastern Asia (EA) are mostly affecting stream flow in this river. We modeled flood extremes using peaks over threshold (POT) method rather than conventional annual maximum flood (AMF) mainly because it is possible to base the model on more information. We used available threshold selection methods to select a suitable threshold for the study area. Accounting for non-stationarity, model parameters vary through time with climate indices. We developed a couple of model scenarios and chose one which could best explain the variation in data based on performance measures. We also estimated return periods under non-stationarity condition. Results show that ignoring stationarity could increase the flood hazard up to four times which could increase the probability of an in-stream structure being overtopped.

  16. Flood hazard of the Somma-Vesuvius region based on historical (19-20th century and geomorphological data

    Directory of Open Access Journals (Sweden)

    Giuliana Alessio

    2013-11-01

    Full Text Available This paper presents a preliminary susceptibility map of the flood hazard for the Somma-Vesuvius volcanic district, worked out by means of multi-disciplinary historical, geological, geomorphological and rainfall data processing. It is well known that the Somma-Vesuvius volcano, due to its explosive volcanism and the dense urbanization of the surrounding area, with a population exceeding 650,000 is one of the most dangerous active volcanoes of the world. Although this area has been extensively studied from the volcanological point of view with regards to its volcanic hazard, there are currently not many detailed studies about its flood hazard factors, despite the fact that, in the last century, many intense rainfall events in this area have produced several floods that invaded the surrounding plains affecting towns and roads, and causing much damages and loss of lives. Accordingly, in this paper high-resolution DEM (5×5 m pixel and detailed geomorphological maps of the whole area have been analyzed and processed in GIS environment, carrying out a comparative study of the present-day morphology and the morphology of the 1900’s volcanic edifice, including changes of infrastructures and buildings throughout the last century. These results, together with historical chronicles data and the rainfall accurate data for all flood events, have been processed in this paper for highlighting the drainage basins areas of Somma-Vesuvius where the flood phenomena could be more probable in the future, working out a preliminary zoning map, also suggesting in which sectors interventions useful for mitigation of flood risk should be implemented.

  17. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA

    Directory of Open Access Journals (Sweden)

    Ismail Elkhrachy

    2015-12-01

    Full Text Available Flash flood in the cities led to high levels of water in the streets and roads, causing many problems such as bridge collapse, building damage and traffic problems. It is impossible to avoid risks of floods or prevent their occurrence, however it is plausible to work on the reduction of their effects and to reduce the losses which they may cause. Flash flood mapping to identify sites in high risk flood zones is one of the powerful tools for this purpose. Mapping flash flood will be beneficial to urban and infrastructure planners, risk managers and disaster response or emergency services during extreme and intense rainfall events. The objective of this paper is to generate flash flood map for Najran city, Saudi Arabia, using satellite images and GIS tools. To do so, we use SPOT and SRTM DEMs data for which accuracy assessment is achieved by using check points, obtained by GPS observations. Analytical Hierarchical Process (AHP is used to determine relative impact weight of flood causative factors to get a composite flood hazard index (FHI. The causative factors in this study are runoff, soil type, surface slope, surface roughness, drainage density, distance to main channel and land use. All used data are finally integrated in an ArcMap to prepare a final flood hazard map for study area. The areas in high risk flood zones are obtained by overlaying the flood hazard index map with the zone boundaries layer. The affected population number and land area are determined and compared.

  18. Flood-hazard analysis of four headwater streams draining the Argonne National Laboratory property, DuPage County, Illinois

    Science.gov (United States)

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.

    2016-11-22

    Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.

  19. Building a flood hazard map due to magma effusion into the caldera lake of the Baekdusan Volcano

    Science.gov (United States)

    Lee, K.; Kim, S.; Yun, S.; Yu, S.; Kim, I.

    2013-12-01

    Many volcanic craters and calderas are filled with large amounts of water that can pose significant flood hazards to downstream communities due to their high elevation and the potential for catastrophic releases of water. Recent reports pointed out the Baekdusan volcano that is located between the border of China and North Korea as a potential active volcano. Since Millennium Eruption around 1000 AD, smaller eruptions have occurred at roughly 100-year intervals, with the last one in 1903. The volcano is showing signs of waking from a century-long slumber recently and the volcanic ash may spread up to the northeastern of Japan. The development of various forecasting techniques to prevent and minimize economic and social damage is in urgent need. Floods from lake-filled calderas may be particularly large and high. Volcanic flood may cause significant hydrologic hazards for this reason. This study focuses on constructing a flood hazard map triggered by the uplift of lake bottom due to magma effusion in the Baekdusan volcano. A physically-based uplift model was developed to compute the amount of water and time to peak flow. The ordinary differential equation was numerically solved using the finite difference method and Newton-Raphson iteration method was used to solve nonlinear equation. The magma effusion rate into the caldera lake is followed by the past record from other volcanic activities. As a result, the hydrograph serves as an upper boundary condition when hydrodynamic model (Flo-2D) runs to simulate channel routing downstream. The final goal of the study stresses the potential flood hazard represented by the huge volume of water in the caldera lake, the unique geography, and the limited control capability. he study will contribute to build a geohazard map for the decision-makers and practitioners. Keywords: Effusion rate, Volcanic flood, Caldera lake, Uplift, Flood hazard map Acknowledgement This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from

  20. Long-term entrenchment and consequences in present flood hazard in the Garona River (Val d'Aran, Central Pyrenees

    Directory of Open Access Journals (Sweden)

    A. Victoriano

    2015-10-01

    Full Text Available On 18 June 2013, a damaging flood of the Garona River (Val d'Aran, Central Pyrenees, Spain caused losses exceeding EUR 100 million. Flood events are rarely related to the geologic, tectonic and geomorphologic context. This study bridges the gap between the short- and long-term processes scope. The upper reach of the Garona River was studied considering different space and time scales in order to establish a relationship between present short-term fluvial processes and the long-term evolution of the area. There is a clear entrenchment tendency of the drainage network since the Miocene. Post-orogenic exhumation and uplift of the Axial Pyrenees proves the recent and active tectonics of the area which leads to valley entrenchment. The last Upper Pleistocene glaciation affected the Aran valley and gave rise to a destabilisation period during the glacial–interglacial transition, characterised by a postglacial incision tendency. Mean entrenchment rates between 0.68 and 1.56 mm yr-1 since deglaciation have been estimated. During the Holocene, the valley evolution is mostly marked by vertical incision and recent fluvial dynamics is characterised by the predominance of erosive processes. The 2013 flood produced lateral and/or vertical erosion along almost all the river length in Val d'Aran. These results suggest that the long-term tendency of the fluvial system is reflected in short-term processes. Thus, understanding the fluvial network development and evolution of the upper reach of the Garona River will serve to predict river response during flood events. This study helps to improve flood risk management, which needs to take into account the long-term river dynamics.

  1. Assessing future flood hazards for adaptation planning in a northern European coastal community

    Directory of Open Access Journals (Sweden)

    Carlo eSorensen

    2016-05-01

    Full Text Available From a transdisciplinary approach in the town of Thyboron, Denmark, we investigate couplings between sea state (i.e. mean and extreme and flooding hazards today and ahead. This includes analyses of change and variability in the groundwater table, precipitation, land motion, geotechnical ground properties, sewerage systems and other infrastructure to outline a more complete platform for the integration of knowledge into climate adaptation schemes at this highly vulnerable coastal location. It involves the engagement of the main stakeholders who, although having different responsibilities, interests, needs of knowledge and data, and different timeframes for investment and planning, must join in a common appraisal of the challenges faced ahead to provide for better adaptation measures. Apart from obvious adverse effects from future storm surge events, knowledge about the coupled effects of the abovementioned parameters needs to be taken into account to reach optimal mitigation and adaptation measures. Through stakeholder interviews it becomes clear that an enhanced focus on transdisciplinary research is a viable way forward to develop such measures: it will bring in more knowledge, a broader scope, and it will provide for more holistic solutions that both serve to protect the town and allow for business development and better municipal planning ahead.

  2. Characterising fire hazard from temporal sequences of thermal infrared MODIS measurements (poster)

    NARCIS (Netherlands)

    Maffei, C.; Alfieri, S.M.; Menenti, M.

    2013-01-01

    Vegetation moisture and temperature are the most variable factors determining fire hazard. Prolonged heat and absence of rainfall drive vegetation into water stress conditions; this leads to an increase (anomaly) of vegetation temperature that can be recorded by remote sensing instruments. Since str

  3. A quality assessment framework for natural hazard event documentation: application to trans-basin flood reports in Germany

    Science.gov (United States)

    Uhlemann, S.; Thieken, A. H.; Merz, B.

    2014-02-01

    Written sources that aim at documenting and analysing a particular natural hazard event in the recent past are published at vast majority as grey literature (e.g. as technical reports) and therefore outside of the scholarly publication routes. In consequence, the application of event-specific documentation in natural hazard research has been constrained by barriers in accessibility, concerns of credibility towards these sources and by limited awareness of their content and its usefulness for research questions. In this study we address the concerns of credibility for the first time and present a quality assessment framework for written sources from a user's perspective, i.e. we assess the documents' fitness for use to enhance the understanding of trans-basin floods in Germany in the period 1952-2002. The framework is designed to be generally applicable for any natural hazard event documentation and assesses the quality of a document, addressing accessibility as well as representational, contextual, and intrinsic dimensions of quality. We introduce an ordinal scaling scheme to grade the quality in the individual quality dimensions and the Pedigree score which serves as a measure for the overall document quality. We present results of an application of the framework to a set of 133 cases of event-specific documentation relevant for understanding trans-basin floods in Germany. Our results show that the majority of flood event-specific reports are of good quality, i.e. they are well enough drafted, largely accurate and objective, and contain a substantial amount of information on the sources, pathways and receptors/consequences of the floods. The validation of our results against assessments of two independent peers confirms the objectivity and transparency of the quality assessment framework. Using an example flood event that occurred in October/November 1998 we demonstrate how the information from multiple reports can be synthesised.

  4. Combining criteria for delineating lahar- and flash-flood-prone hazard and risk zones for the city of Arequipa, Peru

    Directory of Open Access Journals (Sweden)

    J.-C. Thouret

    2013-02-01

    Full Text Available Arequipa, the second largest city in Peru, is exposed to many natural hazards, most notably earthquakes, volcanic eruptions, landslides, lahars (volcanic debris flows, and flash floods. Of these, lahars and flash floods, triggered by occasional torrential rainfall, pose the most frequently occurring hazards that can affect the city and its environs, in particular the areas containing low-income neighbourhoods. This paper presents and discusses criteria for delineating areas prone to flash flood and lahar hazards, which are localized along the usually dry (except for the rainy season ravines and channels of the Río Chili and its tributaries that dissect the city. Our risk-evaluation study is based mostly on field surveys and mapping, but we also took into account quality and structural integrity of buildings, available socio-economic data, and information gained from interviews with risk-managers officials.

    In our evaluation of the vulnerability of various parts of the city, in addition to geological and physical parameters, we also took into account selected socio-economic parameters, such as the educational and poverty level of the population, unemployment figures, and population density. In addition, we utilized a criterion of the "isolation factor", based on distances to access emergency resources (hospitals, shelters or safety areas, and water in each city block. By combining the hazard, vulnerability and exposure criteria, we produced detailed risk-zone maps at the city-block scale, covering the whole city of Arequipa and adjacent suburbs. Not surprisingly, these maps show that the areas at high risk coincide with blocks or districts with populations at low socio-economic levels. Inhabitants at greatest risk are the poor recent immigrants from rural areas who live in unauthorized settlements in the outskirts of the city in the upper parts of the valleys. Such settlements are highly exposed to natural hazards and have little access

  5. Combining criteria for delineating lahar- and flash-flood-prone hazard and risk zones for the city of Arequipa, Peru

    Science.gov (United States)

    Thouret, J.-C.; Enjolras, G.; Martelli, K.; Santoni, O.; Luque, J. A.; Nagata, M.; Arguedas, A.; Macedo, L.

    2013-02-01

    Arequipa, the second largest city in Peru, is exposed to many natural hazards, most notably earthquakes, volcanic eruptions, landslides, lahars (volcanic debris flows), and flash floods. Of these, lahars and flash floods, triggered by occasional torrential rainfall, pose the most frequently occurring hazards that can affect the city and its environs, in particular the areas containing low-income neighbourhoods. This paper presents and discusses criteria for delineating areas prone to flash flood and lahar hazards, which are localized along the usually dry (except for the rainy season) ravines and channels of the Río Chili and its tributaries that dissect the city. Our risk-evaluation study is based mostly on field surveys and mapping, but we also took into account quality and structural integrity of buildings, available socio-economic data, and information gained from interviews with risk-managers officials. In our evaluation of the vulnerability of various parts of the city, in addition to geological and physical parameters, we also took into account selected socio-economic parameters, such as the educational and poverty level of the population, unemployment figures, and population density. In addition, we utilized a criterion of the "isolation factor", based on distances to access emergency resources (hospitals, shelters or safety areas, and water) in each city block. By combining the hazard, vulnerability and exposure criteria, we produced detailed risk-zone maps at the city-block scale, covering the whole city of Arequipa and adjacent suburbs. Not surprisingly, these maps show that the areas at high risk coincide with blocks or districts with populations at low socio-economic levels. Inhabitants at greatest risk are the poor recent immigrants from rural areas who live in unauthorized settlements in the outskirts of the city in the upper parts of the valleys. Such settlements are highly exposed to natural hazards and have little access to vital resources. Our

  6. CoSMoS v3.0 Phase 2 flood-hazard projections: San Diego County

    Science.gov (United States)

    Barnard, Patrick; Erikson, Li; O'Neill, Andrea; Foxgrover, Amy; Herdman, Liv

    2016-01-01

    CoSMoS (Coastal Storm Modeling System) v3.0 for Southern California. Phase 2 data for Southern California include flood-hazard information for a variety of storm conditions and sea-level rise scenarios. Several changes from Phase 1 projections are reflected in many areas. Data will be disseminated by county, with San Diego County being the first of Phase 2 data releases.

  7. Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela

    Science.gov (United States)

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.

    2001-01-01

    Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela

  8. The relevance of flood hazards and impacts in Turkey: What can be learned from different disaster loss databases?

    Science.gov (United States)

    Koc, Gamze; Thieken, Annegret H.

    2016-04-01

    Despite technological development, better data and considerable efforts to reduce the impacts of natural hazards over the last two decades, natural disasters inflicted losses have caused enormous human and economic damages in Turkey. In particular earthquakes and flooding have caused enormous human and economic losses that occasionally amounted to 3 to 4% of the gross national product of Turkey (Genç, 2007). While there is a large body of literature on earthquake hazards and risks in Turkey, comparatively little is known about flood hazards and risks. Therefore, this study is aimed at investigating flood patterns, intensities and impacts, also providing an overview of the temporal and spatial distribution of flood losses by analysing different databases on disaster losses throughout Turkey. As input for more detailed event analyses, an additional aim is to retrieve the most severe flood events in the period between 1960 and 2014 from the databases. In general, data on disaster impacts are scarce in comparison to other scientific fields in natural hazard research, although the lack of reliable, consistent and comparable data is seen as a major obstacle for effective and long-term loss prevention. Currently, only a few data sets, especially the emergency events database EM-DAT (www.emdat.be) hosted and maintained by the Centre for Research on the Epidemiology of Disasters (CRED) since 1988, are publicly accessible and have become widely used to describe trends in disaster losses. However, loss data are subjected to various biases (Gall et al. 2009). Since Turkey is in the favourable position of having a distinct national disaster database since 2009, i.e. the Turkey Disaster Data Base (TABB), there is the unique opportunity to investigate flood impacts in Turkey in more detail as well as to identify biases and underlying reasons for mismatches with EM-DAT. To compare these two databases, the events of the two databases were reclassified by using the IRDR peril

  9. Cartography of flood hazard by overflowing rivers using hydraulic modeling and geographic information system: Oued El Harrach case (North of Algeria

    Directory of Open Access Journals (Sweden)

    S. W. Astite

    2015-12-01

    Full Text Available The aim of the present study is the management of flood risk through the use of cartography of flood hazards by overflowing rivers. This cartography is developed using modern simulation tools namely the hydraulic model (HECRAS as well as the Geographic Information System (ArcGis. The study concerns Oued El Harrach (North of Algeria surrounding area which has been subject to several floods causing significant human and material damage. This loss is a consequence of the use flood zones as habitats for people. This can be avoided in the future by use the mapping of the spatial extent of the flood hazard on the land of the Oued El Harrach. Hence the importance of the cartography developed in this study as an essential tool for decision makers in prevention, protection and management of flood risks.

  10. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) flood-hazard projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding and potential low-lying vulnerable areas associated with the sea-level rise and storm conditions...

  11. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm): flood-hazard depth projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  12. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm): flood-hazard depth projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  13. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) flood-hazard projections

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Geographic extent of projected coastal flooding and potential low-lying vulnerable areas associated with the sea-level rise and storm conditions...

  14. 12 CFR Appendix A to Subpart S of... - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Science.gov (United States)

    2010-01-01

    ... and Availability of Federal Disaster Relief Assistance A Appendix A to Subpart S of Part 614 Banks and... Requirements Pt. 614, Subpt. S, App. A Appendix A to Subpart S of Part 614—Sample Form of Notice of Special... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map...

  15. Threshold determination and hazard evaluation of the disaster about drought/flood sudden alternation in Huaihe River basin, China

    Science.gov (United States)

    Ji, Zhonghui; Li, Ning; Wu, Xianhua

    2017-08-01

    Based on the related impact factors of precipitation anomaly referred in previous research, eight atmospheric circulation indicators in pre-winter and spring picked out by correlation analysis as the independent variables and the hazard levels of drought/flood sudden alternation index (DFSAI) as the dependent variables were used to construct the nonlinear and nonparametric classification and regression tree (CART) for the threshold determination and hazard evaluation on bimonthly and monthly scales in Huaihe River basin. Results show that the spring indicators about Arctic oscillation index (AOI_S), Asia polar vortex area index (APVAI_S), and Asian meridional circulation index (AMCI_S) were extracted as the three main impact factors, which were proved to be suitable for the hazard levels assessment of the drought/flood sudden alternation (DFSA) disaster based on bimonthly scale. On monthly scale, AOI_S, northern hemisphere polar vortex intensity index in pre-winter (NHPVII_PW), and AMCI_S are the three primary variables in hazard level prediction of DFSA in May and June; NHPVII_PW, AMCI_PW, and AMCI_S are for that in June and July; NHPVII_PW and EASMI are for that in July and August. The type of the disaster (flood to drought/drought to flood/no DFSA) and hazard level under different conditions also can be obtained from each model. The hazard level and type were expressed by the integer from - 3 to 3, which change from the high level of disaster that flood to drought (level - 3) to the high level of the reverse type (level 3). The middle number 0 represents no DFSA. The high levels of the two sides decrease progressively to the neutralization (level 0). When AOI_S less than - 0.355, the disaster of the quick turn from drought to flood is more apt to happen (level 1) on bimonthly scale; when AOI_S less than - 1.32, the same type disaster may occur (level 2) in May and June on monthly scale. When NHPVII_PW less than 341.5, the disaster of the quick turn from flood to

  16. Treading water: Flood hazard management and adapting to climate change in BC’s Lower Mainland

    OpenAIRE

    Arros, Pomme Mira

    2013-01-01

    Increases in coastal flooding from climate change related sea level rise and increased rainfall will stress local government’s resources. While local governments are planning for expected climate change effects through the use of adaptation and flood management tools, a number of barriers limit long-term adaptation planning. This study examines which flood management tools are currently used in four municipalities in the Lower Mainland: the City of Vancouver, Delta, Richmond and Surrey. The s...

  17. Stochastic Urban Pluvial Flood Hazard Maps Based upon a Spatial-Temporal Rainfall Generator

    OpenAIRE

    Nuno Eduardo Simões; Susana Ochoa-Rodríguez; Li-Pen Wang; Rui Daniel Pina; Alfeu Sá Marques; Christian Onof; Leitão, João P.

    2015-01-01

    It is a common practice to assign the return period of a given storm event to the urban pluvial flood event that such storm generates. However, this approach may be inappropriate as rainfall events with the same return period can produce different urban pluvial flooding events, i.e., with different associated flood extent, water levels and return periods. This depends on the characteristics of the rainfall events, such as spatial variability, and on other characteristics of the sewer system a...

  18. Repeated glacial-lake outburst floods in Patagonia: An increasing hazard?

    OpenAIRE

    Dussaillant, Alejandro; Benito, Gerardo; Buytaert, Wouter; Carling, Paul; Meier, Claudio; Espinoza, Fabián

    2009-01-01

    Five similar glacial-lake outburst floods (GLOFs) occurred in April, October, December 2008, March and September 2009 in the Northern Patagonia Icefield. On each occasion, Cachet 2 Lake, dammed by the Colonia Glacier, released circa 200-million m3 water into the Colonia River. Refilling has occurred rapidly, such that further outbreak floods can be expected. Pipeflow calculations of the subglacial tunnel drainage and 1D hydraulic models of the river flood give consistent results, with an esti...

  19. THE STUDY OF INSURANCE PREMIUM RATE GIS MAPPING CONSIDERING THE STORM AND FLOOD HAZARD RISKS

    OpenAIRE

    2016-01-01

    Recently, the number of natural disaster occurrence is increasing because of abnormal changes of weather in Korea. In Korea the storm and flood insurance system is in effect to prevent these natural disasters. The national storm and flood insurance Premium rate is very low and the risk of adverse selection resides because of choosing by who lives in high risk area. To solve these problems, the storm and flood insurance rate map are required. In this study, the prototype of storm and flood ins...

  20. Environmental hazard and risk characterisation of petroleum substances: a guided "walking tour" of petroleum hydrocarbons.

    Science.gov (United States)

    Bierkens, Johan; Geerts, Lieve

    2014-05-01

    Petroleum substances are used in large quantities, primarily as fuels. They are complex mixtures whose major constituents are hydrocarbons derived from crude oil by distillation and fractionation. Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the huge number of molecular components. This complex nature of petroleum products, with their varied number of constituents, all of them exhibiting different fate and effect characteristics, merits a dedicated hazard and risk assessment approach. From a regulatory perspective they pose a great challenge in a number of REACH processes, in particular in the context of dossier and substance evaluation but also for priority setting activities. In order to facilitate the performance of hazard and risk assessment for petroleum substances the European oil company association, CONCAWE, has developed the PETROTOX and PETRORISK spreadsheet models. Since the exact composition of many petroleum products is not known, an underlying assumption of the PETROTOX and PETRORISK tools is that the behaviour and fate of a total petroleum substance can be simulated based on the physical-chemical properties of representative structures mapped to hydrocarbon blocks (HBs) and on the relative share of each HB in the total mass of the product. To assess how differing chemical compositions affect the simulated chemical fate and toxicity of hydrocarbon mixtures, a series of model simulations were run using an artificial petroleum substance, containing 386 (PETROTOX) or 160 (PETRORISK) HBs belonging to different chemical classes and molecular weight ranges, but with equal mass assigned to each of them. To this artificial petroleum substance a guided series of subsequent modifications in mass allocation to a delineated number of HBs belonging to different chemical classes and carbon ranges was performed, in what we perceived as a guided "walking tour

  1. Morphometric analyze for flood hazard map using DTM built with LIDAR and Echo-sounder data in Danube Delta

    Science.gov (United States)

    Constantinescu, A.; Nichersu, I.; Trifanov, C.; Nichersu, I.; Mierla, M.

    2012-04-01

    will be merged with high quality LIDAR data available for the whole area and the accurate DTM result will help in better understanding of the morphology of the area, with acurate models and flooding scenarios. It is well known that is difficult to determine and delineate on the topographic maps, the floods limit, which is essential in the preparation of hazard maps. To perform a morphometric analysis for real floods is needed to be defined precisely on the 3D model. In this paper, we wish to present an analysis of flooding phenomenon in the Danube Delta, based on the study of digital models.

  2. Performance of Models for Flash Flood Warning and Hazard Assessment: The 2015 Kali Gandaki Landslide Dam Breach in Nepal

    Directory of Open Access Journals (Sweden)

    Jeremy D. Bricker

    2017-02-01

    Full Text Available The 2015 magnitude 7.8 Gorkha earthquake and its aftershocks weakened mountain slopes in Nepal. Co- and postseismic landsliding and the formation of landslide-dammed lakes along steeply dissected valleys were widespread, among them a landslide that dammed the Kali Gandaki River. Overtopping of the landslide dam resulted in a flash flood downstream, though casualties were prevented because of timely evacuation of low-lying areas. We hindcast the flood using the BREACH physically based dam-break model for upstream hydrograph generation, and compared the resulting maximum flow rate with those resulting from various empirical formulas and a simplified hydrograph based on published observations. Subsequent modeling of downstream flood propagation was compromised by a coarse-resolution digital elevation model with several artifacts. Thus, we used a digital-elevation-model preprocessing technique that combined carving and smoothing to derive topographic data. We then applied the 1-dimensional HEC-RAS model for downstream flood routing, and compared it to the 2-dimensional Delft-FLOW model. Simulations were validated using rectified frames of a video recorded by a resident during the flood in the village of Beni, allowing estimation of maximum flow depth and speed. Results show that hydrological smoothing is necessary when using coarse topographic data (such as SRTM or ASTER, as using raw topography underestimates flow depth and speed and overestimates flood wave arrival lag time. Results also show that the 2-dimensional model produces more accurate results than the 1-dimensional model but the 1-dimensional model generates a more conservative result and can be run in a much shorter time. Therefore, a 2-dimensional model is recommended for hazard assessment and planning, whereas a 1-dimensional model would facilitate real-time warning declaration.

  3. Citizens' Perceptions of Flood Hazard Adjustments: An Application of the Protective Action Decision Model

    Science.gov (United States)

    Terpstra, Teun; Lindell, Michael K.

    2013-01-01

    Although research indicates that adoption of flood preparations among Europeans is low, only a few studies have attempted to explain citizens' preparedness behavior. This article applies the Protective Action Decision Model (PADM) to explain flood preparedness intentions in the Netherlands. Survey data ("N" = 1,115) showed that…

  4. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management

    NARCIS (Netherlands)

    Koks, E. E.; Jongman, B.; Husby, T. G.; Botzen, W. J W

    2015-01-01

    Flood risk assessments provide inputs for the evaluation of flood risk management (FRM) strategies. Traditionally, such risk assessments provide estimates of loss of life and economic damage. However, the effect of policy measures aimed at reducing risk also depends on the capacity of households to

  5. Citizens' Perceptions of Flood Hazard Adjustments: An Application of the Protective Action Decision Model

    Science.gov (United States)

    Terpstra, Teun; Lindell, Michael K.

    2013-01-01

    Although research indicates that adoption of flood preparations among Europeans is low, only a few studies have attempted to explain citizens' preparedness behavior. This article applies the Protective Action Decision Model (PADM) to explain flood preparedness intentions in the Netherlands. Survey data ("N" = 1,115) showed that…

  6. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing.

    Science.gov (United States)

    Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J

    2017-07-11

    Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.

  7. The Study of Insurance Premium Rate GIS Mapping Considering the Storm and Flood Hazard Risks

    Science.gov (United States)

    Lee, J. S.; Lee, I. S.

    2016-06-01

    Recently, the number of natural disaster occurrence is increasing because of abnormal changes of weather in Korea. In Korea the storm and flood insurance system is in effect to prevent these natural disasters. The national storm and flood insurance Premium rate is very low and the risk of adverse selection resides because of choosing by who lives in high risk area. To solve these problems, the storm and flood insurance rate map are required. In this study, the prototype of storm and flood insurance premium rate map of the Ulsan, Korea was made and the method of GIS analysis for the insurance premium rate calculating and the procedure of the Ulsan storm and flood insurance rate map were researched.

  8. THE STUDY OF INSURANCE PREMIUM RATE GIS MAPPING CONSIDERING THE STORM AND FLOOD HAZARD RISKS

    Directory of Open Access Journals (Sweden)

    J. S. Lee

    2016-06-01

    Full Text Available Recently, the number of natural disaster occurrence is increasing because of abnormal changes of weather in Korea. In Korea the storm and flood insurance system is in effect to prevent these natural disasters. The national storm and flood insurance Premium rate is very low and the risk of adverse selection resides because of choosing by who lives in high risk area. To solve these problems, the storm and flood insurance rate map are required. In this study, the prototype of storm and flood insurance premium rate map of the Ulsan, Korea was made and the method of GIS analysis for the insurance premium rate calculating and the procedure of the Ulsan storm and flood insurance rate map were researched.

  9. 防洪减灾GIS常用功能需求浅议%Analysis on GIS Functions for Flood Hazard Mitigation

    Institute of Scientific and Technical Information of China (English)

    李昌志; 姜晓明

    2013-01-01

    According to the map construction , flood simulation , flood risk assessment and flood control management , this paper analy-zes the GIS functions for flood hazard mitigation and the attainment of common GIS software for these functions .Finally, it looks pros-pect of GIS functions and flood hazard mitigation .%从图件绘制、洪水模拟、洪水风险评价、防洪管理等方面分析了防洪减灾对地理信息系统( GIS )的功能需求;进而分析了现有常见GIS软件对这些功能的实现程度;最后,展望了GIS功能研发与防洪减灾的前景。

  10. Coupling scenarios of urban growth and flood hazard along the Emilia-Romagna coast (Italy

    Directory of Open Access Journals (Sweden)

    I. Sekovski

    2015-04-01

    Full Text Available The extent of coastline urbanization reduces their resilience to flooding, especially in low lying areas. The study site is the Emilia-Romagna Region coastline (Italy, historically affected by marine storms and floods. The main aim of this study is to investigate the vulnerability of this coastal area to marine flooding by considering the dynamics of the forcing component (Total Water Level and the dynamics of the receptor (urban areas. This was done by comparing the output of the three flooding scenarios (10, 100 and >100 year return periods to the output of different scenarios of future urban growth up to 2050. Scenario-based marine flooding extents were derived by applying the Cost-Distance tool of ArcGIS® to a high resolution Digital Terrain Model. Three scenarios of urban growth (similar-as-historic, compact and sprawled up to 2050 were estimated by applying the cellular automata based SLEUTH model. The results show that, if the urban growth is compact-like, flood-prone areas will largely increase with respect to similar-as-historic and sprawled growth scenarios. Combining the two methodologies can be useful for identify flood-prone areas that have a high potential for future urbanization, and is therefore crucial for coastal managers and planners.

  11. Flood Hazard Zonation by Combining Mod-Clark and HEC-RAS Models in Bustan Dam Basin, Golestan Province

    Directory of Open Access Journals (Sweden)

    Z. Parisay

    2014-12-01

    Full Text Available Flood is one of the devastating phenomena which every year incurs casualties and property damages. Flood zonation is an efficient technique for flood management. The main goal of this research is flood hazard and risk zonation along a 21 km reach of the Gorganrud river in Bustan dam watershed considering two conditions: present landuse condition and scenario planning. To this end a combination of a hydrologic model (the distributed HEC-HMS with the Mod-Clark transform option and a hydraulic model (HEC-RAS were used. The required inputs to run the Mod-Clarck module of HEC-HMS are gridded files of river basin, curve number and rainfall with the SHG coordinate system and DSS format. In this research the input files were prepared using the Watershed Modeling System (WMS at cell size of 200 m. Since the Mod-Clark method requires rainfall data as radar format (NEXRAD, the distributed rainfall mapseries with time intervals of 15 minutes prepared within the PCRaster GIS system were converted to the DSS format using the asc2dss package. also the curve number map was converted to the DSS format using HEC-GeoHMS. Then, these DSS files were substituted with rainfall and curve number maps within the WMS. After calibration and validation, model was run for return periods of 2, 5, 10, 25, 50, 100 and 200 years, in two conditions of current landuse and scenario planning. The simulated peak discharge data, geometric parameters of river and cross section (at 316 locations data prepared by the HEC-GeoRAS software and roughness coefficients data, were used by the HEC-RAS software to simulate the hydraulic behavior of the river and flood inundation area maps were produced using GIS. The results of the evaluation showed that in addition to the percent error in peak flow, less than 3.2%, the model has a good performance in peak flow simulation, but is not successful in volume estimation. The results of flood zones revealed that from the total area in floodplain with

  12. Disseminating near-real-time hazards information and flood maps in the Philippines through Web-GIS.

    Science.gov (United States)

    A Lagmay, Alfredo Mahar Francisco; Racoma, Bernard Alan; Aracan, Ken Adrian; Alconis-Ayco, Jenalyn; Saddi, Ivan Lester

    2017-09-01

    The Philippines being a locus of tropical cyclones, tsunamis, earthquakes and volcanic eruptions, is a hotbed of disasters. These natural hazards inflict loss of lives and costly damage to property. Situated in a region where climate and geophysical tempest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. In 2012, the Philippines launched a responsive program for disaster prevention and mitigation called the Nationwide Operational Assessment of Hazards (Project NOAH), specifically for government warning agencies to be able to provide a 6hr lead-time warning to vulnerable communities against impending floods and to use advanced technology to enhance current geo-hazard vulnerability maps. To disseminate such critical information to as wide an audience as possible, a Web-GIS using mashups of freely available source codes and application program interface (APIs) was developed and can be found in the URLs http://noah.dost.gov.ph and http://noah.up.edu.ph/. This Web-GIS tool is now heavily used by local government units in the Philippines in their disaster prevention and mitigation efforts and can be replicated in countries that have a proactive approach to address the impacts of natural hazards but lack sufficient funds. Copyright © 2017. Published by Elsevier B.V.

  13. 38 CFR 36.4705 - Required use of standard flood hazard determination form.

    Science.gov (United States)

    2010-07-01

    ... DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Sale of Loans, Guarantee of Payment, and Flood... in appendix A of 44 CFR part 65) when determining whether the building or mobile home offered...

  14. Societal transformation and adaptation necessary to manage dynamics in flood hazard and risk mitigation (TRANS-ADAPT)

    Science.gov (United States)

    Fuchs, Sven; Thaler, Thomas; Bonnefond, Mathieu; Clarke, Darren; Driessen, Peter; Hegger, Dries; Gatien-Tournat, Amandine; Gralepois, Mathilde; Fournier, Marie; Mees, Heleen; Murphy, Conor; Servain-Courant, Sylvie

    2015-04-01

    Facing the challenges of climate change, this project aims to analyse and to evaluate the multiple use of flood alleviation schemes with respect to social transformation in communities exposed to flood hazards in Europe. The overall goals are: (1) the identification of indicators and parameters necessary for strategies to increase societal resilience, (2) an analysis of the institutional settings needed for societal transformation, and (3) perspectives of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. This proposal assesses societal transformations from the perspective of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. Yet each risk mitigation measure is built on a narrative of exchanges and relations between people and therefore may condition the outputs. As such, governance is done by people interacting and defining risk mitigation measures as well as climate change adaptation are therefore simultaneously both outcomes of, and productive to, public and private responsibilities. Building off current knowledge this project will focus on different dimensions of adaptation and mitigation strategies based on social, economic and institutional incentives and settings, centring on the linkages between these different dimensions and complementing existing flood risk governance arrangements. The policy dimension of adaptation, predominantly decisions on the societal admissible level of vulnerability and risk, will be evaluated by a human-environment interaction approach using multiple methods and the assessment of social capacities of stakeholders across scales. As such, the challenges of adaptation to flood risk will be tackled by converting scientific frameworks into practical assessment and policy advice. In addressing the relationship between these dimensions of adaptation on different temporal and spatial scales, this

  15. Special Flood Hazard Evaluation Report, Maumee River, Defiance and Paulding Counties, Ohio

    Science.gov (United States)

    1988-01-01

    into the Flood Flow Frequency Analysis (FFFA) computer program (Reference 3) to determine the discharge-frequency relationship for the Maumee River...although the flood may occur in any year. It is based on statistical analysis of streamflow records available for the watershed and analysis of rainfall...C) K) K4 10 ERFODBUDR .S ryEgne itit ufI N - FODA ONAYSEIA LO AADEAUTO 6 ? -F -C )I= ~ - %E )tvXJ. AE LO LVTO MAMERVE CROS SECIONLOCAION DEFINCEAND

  16. Nonstructural Approaches to the Management of the Snohomish River Basin Flood Hazard

    Science.gov (United States)

    1980-10-01

    minimize flood damage. In riverine situations, provided that until a floodway has been desig- nated no use (including landfill ) shall be permitted...of riparian wetland via dike breaching). Cathcart Gap is the largest contiguous riparian association within the reach and has important habitat and NVS...constructed between Snohomish and Cathcart to reduce flood elevations here, as previously M discussed. The Corps of Engineers should be responsible for the

  17. Cities and Sea Level Rise: A Roadmap for Flood Hazard Adaptation

    Science.gov (United States)

    Horn, D. P.; Cousins, A.

    2015-12-01

    Coastal cities will face a range of increasingly severe challenges as sea level rises, and adaptation to future flood risk will require more than structural defences. Many cities will not be able to rely solely on engineering structures for protection and will need to develop a suite of policy responses to increase their resilience to impacts of rising sea level. Local governments generally maintain day-to-day responsibility and control over the use of the vast majority of property at risk of flooding, and the tools to promote flood risk adaptation are already within the capacity of most cities. Policy tools available to address other land-use problems can be refashioned and used to adapt to sea level rise. This study reviews approaches for urban adaptation through case studies of cities which have developed flood adaptation strategies that combine structural defences with innovative approaches to living with flood risk. The aim of the overall project is to produce a 'roadmap' to guide practitioners through the process of analysing coastal flood risk in urban areas. Technical knowledge of flood risk reduction measures is complemented with a consideration of the essential impact that local policy has on the treatment of coastal flooding and the constraints and opportunities that result from the specific country or locality characteristics in relation to economic, political, social and environmental priorities, which are likely to dictate the approach to coastal flooding and the actions proposed. Detailed analyses of the adaptation strategies used by Rotterdam (Netherlands), Bristol (UK), and Norfolk (Virginia) are used to draw out a range of good practice elements that promote effective adaptation to sea level rise. These can be grouped into risk reduction, governance issues, and insurance, and can be used to provide examples of how other cities could adopt and implement flood adaptation strategies from a relatively limited starting position. Most cities will

  18. Warm Storms Associated with Avalanches Hazard and Floods in the Andes Mountains

    Science.gov (United States)

    Vergara, J.

    2003-04-01

    Rain-on-snow events produce avalanches of different magnitude depending on the snowpack properties, air temperatures and rain intensities. Winter storms in this mountain range typically have rain/snow levels between 1000 and 2200 m. above sea level, but warm storms with higher rain/snow of to 3000 m. above sea level. occur in extreme winters and have the potential to generate rain on snow floods and wet-snow avalanches. For example, the flood of June 29 of 2000 occurred after one of extremely wet June of the last 40 years were snowfall was 991cm in the Aconcagua Valley. Infrequently storms activity generated a huge snowfall and rainfall over the Andes mountains on June of 2000 (1525mm in El Maule Valley) and the end of the unusually period, the flood was triggered by rising temperatures on the mountains and heavy rain (199mm in 24 hours) fall over the fresh snow on the morning of June 29 and floods wave developed and moved down along of the all river located on Central part of Chile, the foods peak was 2970.5m3/s on the El Maule basin in the morning of June 29. This paper studies the characteristics of warm storms the had the potential to generate wet-snow avalanches and floods.

  19. Water availability and flood hazards in the John Day Fossil Beds National Monument, Oregon

    Science.gov (United States)

    Frank, Frank J.; Oster, E.A.

    1979-01-01

    The rock formations of the John Day Fossil Beds National Monument area are aquifers that can be expected to yield less than 10 gallons of water per minute to wells. The most permeable of the geologic units is the alluvium that occurs at low elevations along the John Day River and most of the smaller streams. Wells in the alluvial deposits can be expected to yield adequate water supplies for recreational areas; also, wells completed in the underlying bedrock at depths ranging from 50 to 200 feet could yield as much as 10 gallons per minute. Pumping tests on two unused wells indicated yields of 8 gallons per minute and 2 gallons per minute. Nine of the ten springs measured in and near the monument area in late August of 1978 were flowing 0.2 to 30 gallons per minute. Only the Cant Ranch spring and the Johnny Kirk Spring near the Sheep Rock unit had flows exceeding 6 gallons per minute. Chemical analyses of selected constituents of the ground water indicated generally low concentrations of dissolved minerals. Although cloudbursts in the Painted Hills unit could generate a flood wave on the valley floors, flood danger can be reduced by locating recreational sites on high ground. The campground in Indian Canyon of the Clarno unit is vulnerable to cloudburst flooding. About 80 percent of the proposed campground on the John Day River in the Sheep Rock unit is above the estimated level of 1-percent chance flood (100-year flood) of the river. The 1-percent chance flood would extend about 120 feet from the riverbank into the upstream end of the campground. (USGS).

  20. Exploration of land-use scenarios for flood hazard modeling – the case of Santiago de Chile

    Directory of Open Access Journals (Sweden)

    A. Müller

    2011-04-01

    Full Text Available Urban expansion leads to modifications in land use and land cover and to the loss of vegetated areas. These developments are in some regions of the world accelerated by a changing regional climate. As a consequence, major changes in the amount of green spaces can be observed in many urban regions. Amongst other dependences the amount of green spaces determines the availability of retention areas in a watershed. The goal of this research is to develop possible land-use and land-cover scenarios for a watershed and to explore the influence of land-use and land-cover changes on its runoff behavior using the distributed hydrological model HEC-HMS. The study area for this research is a small peri-urban watershed in the eastern area of Santiago de Chile.

    Three spatially explicit exploratory land-use/land-cover scenario alternatives were developed based on the analysis of previous land-use developments using high resolution satellite data, on the analysis of urban planning laws, on the analysis of climate change predictions, and on expert interviews. Modeling the resulting changes in runoff allows making predictions about the changes in flood hazard which the adjacent urban areas are facing after heavy winter precipitation events. The paper shows how HEC-HMS was used applying a distributed event modeling approach. The derived runoff values are combined with existing flood hazard maps and can be regarded as important source of information for the adaptation to changing conditions in the study area. The most significant finding is that the land-use changes that have to be expected after long drought periods pose the highest risk with respect to floods.

  1. Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale

    Science.gov (United States)

    Mebarki, A.; Valencia, N.; Salagnac, J. L.; Barroca, B.

    2012-05-01

    This paper deals with the failure risk of masonry constructions under the effect of floods. It is developed within a probabilistic framework, with loads and resistances considered as random variables. Two complementary approaches have been investigated for this purpose: - a global approach based on combined effects of several governing parameters with individual weighted contribution (material quality and geometry, presence and distance between columns, beams, openings, resistance of the soil and its slope. . .), - and a reliability method using the failure mechanism of masonry walls standing out-plane pressure. The evolution of the probability of failure of masonry constructions according to the flood water level is analysed. The analysis of different failure probability scenarios for masonry walls is conducted to calibrate the influence of each "vulnerability governing parameter" in the global approach that is widely used in risk assessment at the urban or regional scale. The global methodology is implemented in a GIS that provides the spatial distribution of damage risk for different flood scenarios. A real case is considered for the simulations, i.e. Cheffes sur Sarthe (France), for which the observed river discharge, the hydraulic load according to the Digital Terrain Model, and the structural resistance are considered as random variables. The damage probability values provided by both approaches are compared. Discussions are also developed about reduction and mitigation of the flood disaster at various scales (set of structures, city, region) as well as resilience.

  2. Comparing Benefit Estimation Techniques: Residential Flood Hazard Reduction Benefits in Roanoke, Virginia

    Science.gov (United States)

    1998-03-01

    Experimental Study of Insurance Decisions." Journal of Risk and Insurance . 46 (1979): 603-618. Senjem, N. and D. Freshwater, "The Capitalization of Flood...Implications: Journal of Risk and Insurance . 44 (1977): 237-258. Slovic, P., D. Griffin, and A. Tversky. "Compatibility Effects in Judgement and Choice." in

  3. Reply [to “Comment on ‘Assessing flood hazard on dynamic rivers’”

    Science.gov (United States)

    Pinter, Nicholas; Thomas, Russell; Wlosinski, Joseph H.

    We welcome the comments by D. M. Goldman, J. R. Olsen, and S. K. Nanda of the U.S. Army Corps of Engineers on our analyses of flood trends on the Middle Mississippi River (MMR) and on our assertion that historical stage data can be utilized in flood-frequency analysis. In some cases, the comments by the Corps authors point out legitimate limitations in the technique presented in our original article—limitations that we also have pointed out (for example, to funding agencies) as directions for future refinement. In other cases, Goldman et al. repeat arguments that have been used for decades to stymie attempts to link river engineering activities to worsening flood behavior. We welcome the opportunity to review these arguments under the spotlight of rigorous analysis. Finally, a major purpose of the Pinter et al. [2001] paper was to show that historical stage data represent an underutilized resource that has promise as a supplement to, and an independent test of discharge-based, model-driven analyses of flood frequency.

  4. Emotional engagement with participatory simulations as a tool for learning and decision-support for coupled human-natural systems: Flood hazards and urban development

    Science.gov (United States)

    Gilligan, J. M.; Corey, B.; Camp, J. V.; John, N. J.; Sengupta, P.

    2015-12-01

    The complex interactions between land use and natural hazards pose serious challenges in education, research, and public policy. Where complex nonlinear interactions produce unintuitive results, interactive computer simulations can be useful tools for education and decision support. Emotions play important roles in cognition and learning, especially where risks are concerned. Interactive simulations have the potential to harness emotional engagement to enhance learning and understanding of risks in coupled human-natural systems. We developed a participatory agent-based simulation of cities at risk of river flooding. Participants play the role of managers of neighboring cities along a flood-prone river and make choices about building flood walls to protect their inhabitants. Simulated agents participate in dynamic real estate markets in which demand for property, and thus values and decisions to build, respond to experience with flooding over time. By reducing high-frequency low-magnitude flooding, flood walls may stimulate development, thus increasing tax revenues but also increasing vulnerability to uncommon floods that overtop the walls. Flood waves are launched stochastically and propagate downstream. Flood walls that restrict overbank flow at one city can increase the amplitude of a flood wave at neighboring cities, both up and downstream. We conducted a pilot experiment with a group of three pre-service teachers. The subjects successfully learned key concepts of risk tradeoffs and unintended consequences that can accompany flood-control measures. We also observed strong emotional responses, including hope, fear, and sense of loss. This emotional engagement with a model of coupled human-natural systems was very different from previous experiments on participatory simulations of purely natural systems for physics pedagogy. We conducted a second session in which the participants were expert engineers. We will present the results of these experiments and the

  5. Integration of rainfall/runoff and geomorphological analyses flood hazard in small catchments: case studies from the southern Apennines (Italy)

    Science.gov (United States)

    Palumbo, Manuela; Ascione, Alessandra; Santangelo, Nicoletta; Santo, Antonio

    2017-04-01

    We present the first results of an analysis of flood hazard in ungauged mountain catchments that are associated with intensely urbanized alluvial fans. Assessment of hydrological hazard has been based on the integration of rainfall/runoff modelling of drainage basins with geomorphological analysis and mapping. Some small and steep, ungauged mountain catchments located in various areas of the southern Apennines, in southern Italy, have been chosen as test sites. In the last centuries, the selected basins have been subject to heavy and intense precipitation events, which have caused flash floods with serious damages in the correlated alluvial fan areas. Available spatial information (regional technical maps, DEMs, land use maps, geological/lithological maps, orthophotos) and an automated GIS-based procedure (ArcGis tools and ArcHydro tools) have been used to extract morphological, hydrological and hydraulic parameters. Such parameters have been used to run the HEC (Hydrologic Engineering Center of the US Army Corps of Engineers) software (GeoHMS, GeoRAS, HMS and RAS) based on rainfall-runoff models, which have allowed the hydrological and hydraulic simulations. As the floods occurred in the studied catchments have been debris flows dominated, the solid load simulation has been also performed. In order to validate the simulations, we have compared results of the modelling with the effects produced by past floods. Such effects have been quantified through estimations of both the sediment volumes within each catchment that have the potential to be mobilised (pre-event) during a sediment transfer event, and the volume of sediments delivered by the debris flows at basins' outlets (post-event). The post-event sediment volume has been quantified through post-event surveys and Lidar data. Evaluation of the pre-event sediment volumes in single catchments has been based on mapping of sediment storages that may constitute source zones of bed load transport and debris flows. For

  6. The 2012 Seti River flood disaster and alpine cryospheric hazards facing Pokhara, Nepal

    Science.gov (United States)

    Kargel, Jeffrey; Leonard, Gregory; Paudel, Lalu; Regmi, Dhananjay; Bajracharya, Samjwal; Fort, Monique; Joshi, Sharad; Poudel, Khagendra; Thapa, Bhabana; Watanabe, Teiji

    2014-05-01

    We have identified the likeliest cause of the Seti River disaster of May 5, 2012, in which a flash flood killed or left missing 72 people. A cascade of deadly physical Earth processes combined with imprudent habitation on the lowest flood terraces and floodplain. The process cascade started with rockfalls into the Seti River gorge (observed via repeat ASTER imaging). The last rockfall-one to several weeks prior to the disaster-affected a knickpoint in the Seti River gorge and impounded glacial meltwater and spring snowmelt. The trigger was a large rock/ice avalanche originating from cornice ice on Annapurna IV, where part of the mass was channeled into the impoundment reservoir. That violent ground-surge event, plus possibly an air blast caused by a violent gravity flow of airborne debris-then burst the rockfall dam. This was not a glacier lake outburst flood. Glaciers were involved in the disaster by supplying meltwater, which was impounded by the rockfall dam, by triggering the disaster with collapse of cornice ice, and by contributing ice to the landslide and outburst flood. Debuttressing of moraine debris and ancient glacial lake sediment by retreat and thinning of glaciers also may have played a role-this is the only possible indirect link of the disaster to climate change. The rockfall and avalanche mass movements occurred independently of climate change. The narrow and easily blocked Seti River gorge was a key factor in the 2012 disaster, and it remains a unique component of this physiographic setting. A similar flood in this area may happen by a different cascade of Earth surface processes. An enormous mass of ancient unconsolidated glaciolacustrine and moraine sediment-many cubic kilometers-was discovered and is vulnerable to production of debris flows and hyperconcentrated slurry flows. Some aggravating processes occurring in the Sabche Cirque are related to climate change. Glaciers in that area are melting, and small lakes are forming. Although the lakes

  7. SOURCES OF POLLUTION AS A HAZARD FOR RIVER ENVIRONMENT IN CASE OF FLOOD

    Directory of Open Access Journals (Sweden)

    M. ZELENAKOVA

    2016-03-01

    Full Text Available In the case of flood the main damages on the environment may occur as a consequence of accidents at sources of pollution. The issue of pollution sources is a key area of environmental protection. While pollution from point sources can be disposed by suitable technology, for diffuse pollution are essential proposals of preventive measures, that creating conditions to prevent contamination. The paper presents results of evaluation the sources of pollution in Hornad river basin in the eastern Slovakia in flooded area. Environmental risk assessment methods can be particularly useful in evaluating whether uses are threatened when a stressor of concern is not expressed as a numeric criterion in water quality standards. The risk assessment framework can add value to watershed-based management.

  8. A new approach to the assessment of flooding and dampness hazards in cultural heritage, applied to the historic centre of Seville (Spain).

    Science.gov (United States)

    Ortiz, Rocío; Ortiz, Pilar; Martín, José María; Vázquez, María Auxiliadora

    2016-05-01

    Flooding and dampness have caused considerable damage to historic towns and cities and have become more frequent in recent years. The aim of this paper is to analyse the hazards of flooding and dampness in historic cities to establish a methodology that prioritises preventive conservation actions and restorations. The case study concerns the historic centre of Seville (Spain) and parish churches built between the 13th and 18th centuries. Geographic information system (GIS) software has been used to assess hazards caused by flooding and dampness along with a Delphi consultation process surveying a multidisciplinary group of seven experts-archaeologists, geologists, chemists, architects, engineers and environmentalists-to gain a general overview of the hazards affecting each area of the city. Currently, the historic centre of Seville is at a very low risk of flooding due to the engineering works being undertaken to divert the river course. For flooding to occur, water levels would need to rise over 6 to 12m along the different sections of the defensive walls; as a result, the historic centre has not been flooded since 1961, when these defences broke. However, there is a continual presence of dampness due to the proximity of the river, the presence of underground water and the permeability of the subsoil, resulting in continual damage to the lower sections of the monuments studied. Hence, hazard maps of flooding and dampness need to be dovetailed. This new approach provides tools for decision-makers in the current crisis, allowing them to prioritise strategies that will minimise damage in a town, as the urban unit where territorial policies could be applied.

  9. Community exposure in California to coastal flooding hazards enhanced by climate change, reference year 2010

    Science.gov (United States)

    Jones, Jeanne M.; Wood, Nathan J.; Ng, Peter; Henry, Kevin; Jones, J.L.; Peters, Jeff; Jamieson, Matthew

    2016-01-01

    The data set contains information on potential population, economic, land cover, and infrastructure flooding exposure for San Francisco Bay and coastal communities of the state of California, USA. The type of information includes U.S. Census data on the number and types of residents, InfoGroup data on numbers and types of employees, county parcel values, HAZUS building replacement values, NLCD land cover estimates, and infrastructure data on roads, rail, and critical facilities from a variety of sources.

  10. Modelling and assessment of urban flood hazards based on rainfall intensity-duration-frequency curves reformation

    OpenAIRE

    Ghazavi, Reza; Moafi Rabori, Ali; Ahadnejad Reveshty, Mohsen

    2016-01-01

    Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormw...

  11. Viral outbreaks and communicable health hazards due to devastating floods in Pakistan

    Science.gov (United States)

    Saeed, Umar; Piracha, Zahra Zahid

    2016-01-01

    Pakistan is a developing country that has a population of 190 million people and faces a huge burden of viral diseases. Every year during monsoon season heavy rain fall and lack of disaster management skills potentially increase the transmission of waterborne diseases, vector borne diseases and viral outbreaks. Due to severe flooding, thousands of people lose their lives and millions are displaced each year. In most of the cases the children who lose their family members are forced into illegal professions of begging, child labor and prostitution which make them prone to sexually transmitted infections. Up to date, no scientific study has been conducted nationwide to illustrate epidemiological patterns of waterborne diseases, vector borne diseases and viral epidemics during flash flood. Mosquito sprays would not be a sufficient approach for dengue eradication; mass awareness, larvicide and biological control by Guppy fishes are also effective strategies to overcome dengue problem. International health bodies and non-governmental organizations must take note of this alerting situation and take adequate steps such as financial/medical aid in order to defeat the after-effects of flood. PMID:27175353

  12. Locating, quantifying and characterising radiation hazards in contaminated nuclear facilities using a novel passive non-electrical polymer based radiation imaging device.

    Science.gov (United States)

    Stanley, S J; Lennox, K; Farfán, E B; Coleman, J R; Adamovics, J; Thomas, A; Oldham, M

    2012-06-01

    This paper provides a summary of recent trials which took place at the US Department of Energy Oak Ridge National Laboratory (ORNL) during December 2010. The overall objective for the trials was to demonstrate that a newly developed technology could be used to locate, quantify and characterise the radiological hazards within two separate ORNL hot cells (B and C). The technology used, known as RadBall(®), is a novel, passive, non-electrical polymer based radiation detection device which provides a 3D visualisation of radiation from areas where effective measurements have not been previously possible due to lack of access. This is particularly useful in the nuclear industry prior to the decommissioning of facilities where the quantity, location and type of contamination are often unknown. For hot cell B, the primary objective of demonstrating that the technology could be used to locate, quantify and characterise three radiological sources was met with 100% success. Despite more challenging conditions in hot cell C, two sources were detected and accurately located. To summarise, the technology performed extremely well with regards to detecting and locating radiation sources and, despite the challenging conditions, moderately well when assessing the relative energy and intensity of those sources. Due to the technology's unique deployability, non-electrical nature and its directional awareness the technology shows significant promise for the future characterisation of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.

  13. Hazard Assessment of Glacial Lake Outburst Flood and Potential of ICTs for Coping: A Case of Eastern Himalaya of Nepal

    Science.gov (United States)

    Bhattarai, D. R.

    2015-12-01

    Retreat of glaciers and formation of glacial lakes in Nepal Himalaya have been reported to be related with the temperature rise in the region. Glacier Lake Outburst Floods (GLOF) are the growing climate induced hazards in the Himalaya. GLOF has increased the vulnerability of community and fragile ecosystem in the mountain valleys. This study has analyzed the potential impacts from GLOF in the highland of eastern Nepal and the potential role of Information Communication Technologies (ICT) to cope with such impacts. I analyzed the trend of climatic pattern (temperature and precipitation) of the Eastern Himalaya Region of Nepal available from the Department of Hydrology and Meteorology, Government of Nepal, and prepared the latest location map of the glacial lakes using google earth and ArcGIS applications in the highland of the Kanchanjungha Conservation Area of the region. Tiptala glacial lake, located at an elevation of 4950 m, within the conservation area, was selected for the GLOF hazard assessment. I used semi-structured questionnaire survey and key informants' interviews in the community in order to assess the potential hazard of GLOF. With the varying sizes, 46 glacial lakes were located in the region, which covers over 2.57 sq. km in total. Though the larger portion of the downstream area of the Tiptala glacial lake fall in the remote location away from major residential area, few villages, major pasture lands for Yaks, foot trails, and several bridges across the Tamor River below the lake are in risk of GLOF. Poor access due to extreme geographical remoteness and capacity to afford the modern technologies in the community are the major limiting factor to the knowledge and information about the climate change and related impacts. Modern ICTs has high potential to reduce the risk of climate related hazards in the remote area by information dissemination and awareness.

  14. Towards global scale coastal flood hazard in Delta Cities with 30-meter SRTM and 3D_i

    Science.gov (United States)

    Winsemius, Hessel; Verhoeven, Govert; Van Leeuwen, Elgard; Van der Klis, Hanneke; Van Wesenbeeck, Bregje; Cumiskey, Lydia; Verlaan, Martin; Muis, Sanne; Ward, Philip; Kwadijk, Jaap

    2015-04-01

    Most attempts to globally simulate inundation at the land-coast interface rely on maximum flood level GIS-based flood spreading models. These are generally not mass conservative, do not account for the genesis of tidal and surges in time, and do not include channel geometry and surface roughness. Furthermore, these methods cannot be used to study the impact of hazard reducing intervention measures that increase roughness at the land-coast interface. These measures include breakwaters and coastal ecosystems, such as mangrove forests and shell fish and coral reefs. Recently, new datasets and models are becoming available that allow us to greatly improve simulation of inundation in global deltas in a rapid and computationally feasible way. In this poster we demonstrate the feasibility of modelling all global deltas with strongly urbanised areas explicitly using these datasets and models. This will allow initiatives such as the 100 resilient cities (Rockefeller foundation) and the 'making cities resilient' campaign (UNISDR) to tackle the issue of coastal flood risk efficiently. We propose to use the following materials: A subgrid enabling 1D-2D model code Outputs from a global tidal and storm surge model Open topographical data We demonstrate the feasibility of this approach by modelling the Mississippi delta with: a) a lidar derived topography dataset (www.gis.ms.gov/); and b) the recently released 30 meter elevation dataset from the Shuttle Radar Topography Mission. We use the new 3Di subgrid code to rapidly schematise the vast delta area with a quadtree mesh. We force the model at the boundaries with water level estimates during the Katrina cyclone. We invite scientists working on global scale inundation modelling to visit our poster in order to discuss possibilities and limitations of the proposed methods related to model codes, data quality and calibration.

  15. Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North-West Argentina)

    Science.gov (United States)

    Marcato, G.; Bossi, G.; Rivelli, F.; Borgatti, L.

    2012-06-01

    For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis. In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works. The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.

  16. Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North-West Argentina

    Directory of Open Access Journals (Sweden)

    G. Marcato

    2012-06-01

    Full Text Available For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis.

    In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works.

    The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.

  17. Assessment of the Impact of New Investments on Flood Hazard-Study Case: The Bridge on the Warta River near Wronki

    Directory of Open Access Journals (Sweden)

    Tomasz Dysarz

    2015-10-01

    Full Text Available The main concern of the study was the evaluation of the impact of new investment in road infrastructure on the flood hazard. The flood hazard is considered here on the basis of maps according to requirements of EU Flood Directive. The analyses presented were made for the Warta river, near the town of Wronki. The procedure included data collection and processing, model configuration, hydraulic simulation, generation of water surface profiles, and flood hazard maps. The ArcGIS tools, as well as HEC-RAS package, were used in this research. The model recalibration described in the paper provided excellent results according to independent criteria. Hence, the results obtained may be considered as valid. Finally the results reconstructing the conditions with and without the bridge are compared. The assessed impact of the bridge seems to be moderate, but the procedure proposed in the presented paper may be of wider application. In view of the EU Flood Directive and plans for investments in road infrastructure, the methodology presented seems very attractive.

  18. Assessing coastal flooding hazard in urban areas: the case of estuarian villages in the city of Hyères-les-Palmiers

    Directory of Open Access Journals (Sweden)

    Le Roy Sylvestre

    2016-01-01

    Full Text Available This study, conducted on the city of Hyéres-les-Palmiers (French Riviera to guide the future land use planning, aimed to evaluate how sea level rise could modify coastal flooding hazards in urban areas located near small estuaries in a microtidal context. A joint probability approach allowed establishing typical storm parameters for specific return periods (30, 50 and 100 years, integrating offshore conditions (sea level and significant wave height and the river level. Storm scenarios have been established from these parameters and the chronology of the most impacting recent storm. Sea level rise has been integrated (20 cm for year 2030 and 60 cm for year 2100, and the coastal flooding has been simulated with a non-hydrostatic non-linear shallow-water model (SWASH. The calculations have been realized on high resolution DEM (1 to 5 m mesh size, integrating buildings and coastal protections. The approach has been validated by reproducing a recent flooding event. Obtained results show the importance of wave overtopping in current coastal flooding hazard in this area. Nevertheless, if Hyéres-les-Palmiers is currently little exposed to coastal flooding, these simulations highlight an increasing role of overflowing due to sea level rise, leading to significant flooding in 2100, even for quite frequent events.

  19. Coastal Erosion and Flooding Hazards on the North Sea Coast at Thyboron, Denmark

    DEFF Research Database (Denmark)

    Sørensen, Per; Sørensen, Carlo Sass; Nielsen, Peter

    Since a breach of the coastal barrier in 1862, the Thyboron Channel connecting the North Sea and the Lim Fiord has been artificially maintained by construction of breakwaters and groins on the North Sea coast and inside the channel, respectively. Sand nourishment schemes have since the 1980s...... counteracted the natural erosion in the upper profile on the North Sea coast where the alongshore sediment transport converges towards the channel and deposits up to 1 million m3/y on the flood tidal delta inside the fiord, Figure 1....

  20. INVESTIGATION ON THE DISASTER PREVENTION CONSCIOUSNESS OF INHABITANT FOR FLOOD HAZARD AND MEASUREMES FOR THE IMPROVEMENT

    Science.gov (United States)

    Saiga, Miki; Fujii, Toshihisa; Ganzu, Yoshihide; Matsumi, Yoshiharu

    This study conducted a questionnaire survey for consciousness of residents on the disaster prevention. Additionally, an evacuation simulation model is developed to investigate the disaster situation of inhabitants under refuging by including the calculations of flood inundation. By investigating from the statistical approaches regarding the causal relation on the disaster prevention consciousness, effective policies for the disaster prevention consciousness of residents were considered. The simulation results quantitatively clarify the time required to the evacuation sites and the number of disaster victim under refuging. This simulation model will be effective to educate the citizen for a disaster prevention with the visualization.

  1. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Evaluation of sand dunes in... Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.11 Evaluation of sand dunes in...-established with long-standing vegetative cover, such as the placement of sand materials in a...

  2. The Monitoring of River Flows and the Management of Flood Hazards using UAVs

    Science.gov (United States)

    Verosub, K. L.

    2015-12-01

    The increasing occurrence of extreme precipitation events as well as severe droughts, coupled with greater and greater human occupation of flood plains, makes increased monitoring of flows in rivers an important component of assessing the potential for water-related natural disasters as well as responding to them when they do occur. Unfortunately, this increasing need comes at a time when funding for monitoring activities is generally decreasing. In the United States, for example, gauging stations with daily flow records going back several decades or even a hundred years have been abandoned, and new stations in critical areas have not even been established. A methodology based on periodic UAV-based imaging of an entire river offers the prospect of obtaining inexpensive, real-time, high-resolution data for the determination of the river flows. The method makes use of fact that as the flow in a river rises or falls, the areal extent covered by the river changes accordingly. Furthermore, barring anthropogenic changes, the area inundated by a flow of a particular magnitude is invariant in time. For a given stretch of a river, a sequence of images spanning the full range of flow conditions provides the basic template for determining river flows. The actual flow in the river can be calibrated using previously measured flow data corresponding the dates of old aerial or satellite imagery, or calculated from new imagery by using standard flow equations and the topography of the banks of the river, determined by field surveying or Lidar. Once the basic template has been established, determination of "the state-of-the-river" at any point in time can be obtained by comparing newly-acquired UAV images with those in the database. And because a given image encompasses many topographic features that are inundated to differing extents, the resolution of the flow determination is limited only by the completeness of the imagery in the basic template. Repeat flights at weekly

  3. Reconstruction of glacial lake outburst floods in northern Tien Shan: Implications for hazard assessment

    Science.gov (United States)

    Zaginaev, V.; Ballesteros-Cánovas, J. A.; Erokhin, S.; Matov, E.; Petrakov, D.; Stoffel, M.

    2016-09-01

    Glacier lake outburst floods (GLOFs) and related debris flows are among the most significant natural threats in the Tien Shan Mountains of Kyrgyzstan and have even caused the loss of life and damage to infrastructure in its capital Bishkek. An improved understanding of the occurrence of this process is essential so as to be able to design reliable disaster risk reduction strategies, even more so in view of ongoing climate change and scenarios of future evolutions. Here, we apply a dendrogeomorphic approach to reconstruct past debris-flow activity on the Aksay cone (Ala-Archa valley, Kyrgyz range), where outbursting glacier lakes and intense rainfalls have triggered huge debris flows over the past decades. A total of 96 Picea abies (L.) Karst. trees growing on the cone and along the main channel have been selected based on the evidence of past debris-flow damage in their trunks; these trees were then sampled using increment borers. The dating of past events was based on the assessment of growth disturbances (GD) in the tree-ring records and included the detection of injuries, tangential rows of traumatic resin ducts, reaction wood, and abrupt growth changes. In total, 320 GD were identified in the tree-ring samples. In combination with aerial imagery and geomorphic recognition in the field, reactions in trees and their position on the cone have allowed reconstruction of the main spatial patterns of past events on the Aksay cone. Our findings suggest that at least 27 debris flows have occurred on the site between 1877 and 2015 and point to the occurrence of at least 17 events that were not documented prior to this study. We also observe high process activity during the 1950s and 1960s, with major events on the cone in 1950, 1966, and 1968, coinciding with phases of slight glacier advance. The spatial analyses of events also point to two different spatial patterns, suggesting that quite dissimilar magnitudes probably occurred during glacier lake outburst floods and

  4. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steve [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ma, Zhegang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spears, Bob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-26

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA models for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.

  5. Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington

    Science.gov (United States)

    Scott, Kevin M.; Vallance, J.W.

    1995-01-01

    Mount Rainier volcano has produced many large debris flows and debris avalanches during the last 10,000 years. These flows have periodically traveled more than 100 kilometers from the volcano to inundate parts of the now-populated Puget Sound Lowland. Meteorological floods also have caused damage, but future effects will be partly mitigated by reservoirs. Mount Rainier presents the most severe flow risks of any volcano in the United States. Volcanic debris flows (lahars) are of two types: (1) cohesive, relatively high clay flows originating as debris avalanches, and (2) noncohesive flows with less clay that begin most commonly as meltwater surges. Three case histories represent important subpopulations of flows with known magnitudes and frequencies. The risks of each subpopulation may be considered for general planning and design. A regional map illustrates the extent of inundation by the case-history flows, the largest of which originated as debris avalanches and moved from Mount Rainier to Puget Sound. The paleohydrologic record of these past flows indicates the potential for inundation by future flows from the volcano. A map of the volcano and its immediate vicinity shows examples of smaller debris avalanches and debris flows in the 20th century.

  6. Aspidosperma subincanum I. characterisation, extraction of an uleine-enriched fraction and potential health hazard due to the contaminant ellipticine

    Directory of Open Access Journals (Sweden)

    Jean-Daniel Federlin

    2014-06-01

    Full Text Available The bark of the Brazilian tree Aspidosperma subincanum Mart. ex A. DC., Apocynaceae, has been characterised, and its constituents concentrated to obtain an uleine-enriched extract with the aim to produce food supplements. The concentration of the contaminant alkaloid ellipticine was assessed, and its potential to elicit toxic effects on consumers evaluated. It was found that this alkaloid posited no danger.

  7. Coastal hazards in a changing world: projecting and communicating future coastal flood risk at the local-scale using the Coastal Storm Modeling System (CoSMoS)

    Science.gov (United States)

    O'Neill, Andrea; Barnard, Patrick; Erikson, Li; Foxgrover, Amy; Limber, Patrick; Vitousek, Sean; Fitzgibbon, Michael; Wood, Nathan

    2017-04-01

    The risk of coastal flooding will increase for many low-lying coastal regions as predominant contributions to flooding, including sea level, storm surge, wave setup, and storm-related fluvial discharge, are altered with climate change. Community leaders and local governments therefore look to science to provide insight into how climate change may affect their areas. Many studies of future coastal flooding vulnerability consider sea level and tides, but ignore other important factors that elevate flood levels during storm events, such as waves, surge, and discharge. Here we present a modelling approach that considers a broad range of relevant processes contributing to elevated storm water levels for open coast and embayment settings along the U.S. West Coast. Additionally, we present online tools for communicating community-relevant projected vulnerabilities. The Coastal Storm Modeling System (CoSMoS) is a numerical modeling system developed to predict coastal flooding due to both sea-level rise (SLR) and plausible 21st century storms for active-margin settings like the U.S. West Coast. CoSMoS applies a predominantly deterministic framework of multi-scale models encompassing large geographic scales (100s to 1000s of kilometers) to small-scale features (10s to 1000s of meters), resulting in flood extents that can be projected at a local resolution (2 meters). In the latest iteration of CoSMoS applied to Southern California, U.S., efforts were made to incorporate water level fluctuations in response to regional storm impacts, locally wind-generated waves, coastal river discharge, and decadal-scale shoreline and cliff changes. Coastal hazard projections are available in a user-friendly web-based tool (www.prbo.org/ocof), where users can view variations in flood extent, maximum flood depth, current speeds, and wave heights in response to a range of potential SLR and storm combinations, providing direct support to adaptation and management decisions. In order to capture

  8. Flash Flood Hazard Assessment in Coalmine Goaf Catchment%煤矿采空塌陷区山洪危险性评价

    Institute of Scientific and Technical Information of China (English)

    曹琛; 陈剑平; 宋盛渊; 郑莲婧

    2016-01-01

    The analytic hierarchy process ( AHP) and the FFHIS ( flash flood hazard index-based system) were applied for producing flash flood hazard zoning map in Xiqu gully by the ArcGIS software. The proposed index-based system processes information of seven parameters, namely, elevation, coalmine goaf risk zoning, waviness, vegetation types, rainfall intensity, soil types and slope angle. The assignment of different levels in the same parameter was based on the different severity. Based on the weight values, the data was superimposed to obtain the flash flood hazard zoning map. The historical flood events were used for validation. The validation showed that the flash flood hazard zoning map was consistent with the actual situations. The proposed index-based system and method were practical and effective for flash flood hazard assessment in Xiqu Gully.%利用层次分析法和山洪危险性指标体系,将ArcGIS空间分析模块运用到西区沟小流域危险性分区制图中.山洪危险性指标体系包括高程、采空危险分区、起伏度、植被类型、降雨强度、岩土类型和坡度7个指标,根据各指标不同等级影响洪水危险性的严重程度进行赋值.结合指标权重值,将指标系统进行数据叠加,获取山洪危险性分区图.最后将分区结果与历史洪水事件记录做验证对比,其结果与实际情况具有较好的一致性,该方法对西区沟的山洪危险性评价实用有效.

  9. CoSMoS Southern California v3.0 Phase 1 (100-year storm) flood hazard projections: Los Angeles, San Diego and Orange counties

    Science.gov (United States)

    Barnard, Patrick; Erikson, Li; Foxgrover, Amy; O'Neill, Andrea; Herdman, Liv

    2015-01-01

    The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase I data for Southern California include flood-hazard information for the coast from the Mexican Border to Pt. Conception for a 100-year storm scenario. Data are complete for the information presented but are considered preliminary; changes may be reflected in the full data release (Phase II) in summer 2016.

  10. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards

    Science.gov (United States)

    Benn, D. I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L. I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S.

    2012-08-01

    orders of magnitude greater than sub-debris melt rates, so extensive lake formation accelerates overall rates of ice loss. Most supraglacial lakes are 'perched' above hydrological base level, and are susceptible to drainage if they become connected to the englacial drainage system. Speleological surveys of conduits show that large englacial voids can be created by drainage of warm lake waters along pre-existing weaknesses in the ice. Roof collapses can open these voids up to the surface, and commonly provide the nuclei of new lakes. Thus, by influencing both lake drainage and formation, englacial conduits exert a strong control on surface ablation rates. An important threshold is crossed when downwasting glacier surfaces intersect the hydrological base level of the glacier. Base-level lakes formed behind intact moraine dams can grow monotonically, and in some cases can pose serious GLOF hazards. Glacier termini can evolve in different ways in response to the same climatic forcing, so that potentially hazardous lakes will form in some situations but not others. Additionally, the probability of a flood is not simply a function of lake volume, but depends on the geometry and structure of the dam, and possible trigger mechanisms such as ice- or rockfalls into the lake. Satellite-based measurements of glacier surface gradient and ice velocities allow probable future locations of base-level lakes to be identified. A base-level lake has begun to grow rapidly on Ngozumpa Glacier west of Mount Everest, and could attain a volume of ~ 108 m3 within the next 2 or 3 decades. Unless mitigation efforts are undertaken, this lake could pose considerable GLOF hazard potential.

  11. A GIS based approach for the prediction of the dam break flood hazard – A case study of Zardezas reservoir “Skikda, Algeria”

    Directory of Open Access Journals (Sweden)

    Derdous Oussama

    2015-12-01

    Full Text Available The construction of dams in rivers can offer many advantages, however the consequences resulting from their failure could result in major damage, including loss of life and property destruction. To mitigate the threats of dam break it is essential to appreciate the characteristics of the potential flood in realistic manner. In this study an approach based on the integration of hydraulic modelling and GIS has been used to assess the risks resulting from a potential failure of Zardezas dam, a concrete dam located in Skikda, in the North East of Algeria. HEC-GeoRAS within GIS was used to extract geometric information from a digital elevation model and then imported into HEC-RAS. Flow simulation of the dam break was performed using HEC-RAS and results were mapped using the GIS. Finally, a flood hazard map based on water depth and flow velocity maps was created in GIS environment. According to this map the potential failure of Zardezas dam will place a large number in people in danger. The present study has shown that Application of Geographical Information System (GIS techniques in integration with hydraulic modelling can significantly reduce the time and the resources required to forecast potential dam break flood hazard which can play a crucial role in improving both flood disaster management and land use planning downstream of dams.

  12. SEERISK concept: Dealing with climate change related hazards in southeast Europe: A common methodology for risk assessment and mapping focusing on floods, drought, winds, heat wave and wildfire.

    Science.gov (United States)

    Papathoma-Koehle, Maria; Promper, Catrin; Glade, Thomas

    2014-05-01

    Southeast Europe is a region that suffers often from natural hazards and has experienced significant losses in the recent past due to extreme weather conditions and their side-effects (cold and heat waves, extreme precipitation leading to floods / flash floods, thunderstorms, extreme winds, drought and wildfires). SEERISK ("Joint Disaster Management Risk Assessment and Preparedness in the Danube macro-region") is a European funded SEE (Southeast Europe) project that aims at the harmonisation and consistency among risk assessment practices undertaken by the partner countries at various levels regarding climate change related disasters. A common methodology for risk assessment has been developed that offers alternatives in order to tackle the problem of limited data. The methodology proposes alternative steps for hazard and vulnerability assessment that, according to the data availability, range from detailed modelling to expert judgement. In the present study the common methodology has been adapted for five hazard types (floods, drought, winds, heat wave and wildfire) that are expected to be affected by climate change in the future and are relevant for the specific study areas. The last step will be the application of the methodology in six different case studies in Hungary, Romania, Bosnia, Bulgaria, Slovakia and Serbia followed by field exercises.

  13. Risk Evaluation for Flood Hazard in Weifang Based on GIS%基于GIS的潍坊市暴雨洪涝灾害风险区划

    Institute of Scientific and Technical Information of China (English)

    李树军; 袁静; 何永健; 崔建云

    2012-01-01

    为了提高对暴雨洪涝灾害的抗御能力,为潍坊市的暴雨洪涝防灾减灾提供技术支持和决策依据,基于潍坊市1:50000的DEM数据和2009年统计年鉴资料以及历史灾情数据,计算得出影响潍坊市洪涝灾害风险的评价指标,即致灾因子危险性、孕灾环境敏感性、承灾体易损性、防灾减灾能力的综合作用.将洪涝灾害风险性评价技术和GIS技术相结合,对洪涝灾害程度进行评价和等级划分,绘制潍坊地区的洪涝灾害风险区划图.结果表明,诸城全市、高密市的绝大部分地区属于洪涝高风险区,只有极少数地区为较高风险区;安丘偏东南大部分地区、高密北部少数地区、昌乐东南部属于较高风险区;较低风险区和低风险区主要分布在昌邑北部大部分地区、寿光大部分地区、潍坊北部和中部以及青州西部;其余地区基本为中等风险区.%In order to improve the resilience of the rainstorm and flood disasters, and provide the technical support and decision-making basis for preventing and mitigating rainstorm and flood disasters in Weifang City, based on the digital topographic map of 1:50000 scale, statistic yearbook of 2009 and historical disaster data in Weifang, integrative estimate indexes which affected the flood risk in Weifang, including risk of flood hazard-form factors, sensitivity of flood hazard-breeding circumstance, vulnerability of flood hazard-bear circumstance, and capacity of flood hazard resistant were calculated. Combined the technology of flood risk assessment and GIS, the extent of flood was assessed and graded. And then the flood risk areas zoning map in Weifang was drew. The results showed that, all the areas in Zhucheng and most areas in Gaomi were the highest flood risk regions; most areas in southeast of Anqiu, small areas in northern of Gaomi and southeast of Changle were higher risk regions; the lower and low risk regions were most areas in northern of

  14. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  15. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  16. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  17. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  18. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  19. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  20. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  1. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  2. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  3. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  4. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  5. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  6. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  7. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  8. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in San Diego County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  9. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Los Angeles County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and...

  10. Geomorphological method in the elaboration of hazard maps for flash-floods in the municipality of Jucuarán (El Salvador

    Directory of Open Access Journals (Sweden)

    C. Fernández-Lavado

    2007-07-01

    Full Text Available This work deals with the elaboration of flood hazard maps. These maps reflect the areas prone to floods based on the effects of Hurricane Mitch in the Municipality of Jucuarán of El Salvador. Stream channels located in the coastal range in the SE of El Salvador flow into the Pacific Ocean and generate alluvial fans. Communities often inhabit these fans can be affected by floods. The geomorphology of these stream basins is associated with small areas, steep slopes, well developed regolite and extensive deforestation. These features play a key role in the generation of flash-floods. This zone lacks comprehensive rainfall data and gauging stations. The most detailed topographic maps are on a scale of 1:25 000. Given that the scale was not sufficiently detailed, we used aerial photographs enlarged to the scale of 1:8000. The effects of Hurricane Mitch mapped on these photographs were regarded as the reference event. Flood maps have a dual purpose (1 community emergency plans, (2 regional land use planning carried out by local authorities. The geomorphological method is based on mapping the geomorphological evidence (alluvial fans, preferential stream channels, erosion and sedimentation, man-made terraces. Following the interpretation of the photographs this information was validated on the field and complemented by eyewitness reports such as the height of water and flow typology. In addition, community workshops were organized to obtain information about the evolution and the impact of the phenomena. The superimposition of this information enables us to obtain a comprehensive geomorphological map. Another aim of the study was the calculation of the peak discharge using the Manning and the paleohydraulic methods and estimates based on geomorphologic criterion. The results were compared with those obtained using the rational method. Significant differences in the order of magnitude of the calculated discharges were noted. The rational method

  11. Composite Flood Risk for New Jersery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the...

  12. Composite Flood Risk for Virgin Island

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the...

  13. Using Minimax Regret Optimization to Search for Multi-Stakeholder Solutions to Deeply Uncertain Flood Hazards under Climate Change

    Science.gov (United States)

    Kirshen, P. H.; Hecht, J. S.; Vogel, R. M.

    2015-12-01

    Prescribing long-term urban floodplain management plans under the deep uncertainty of climate change is a challenging endeavor. To address this, we have implemented and tested with stakeholders a parsimonious multi-stage mixed integer programming (MIP) model that identifies the optimal time period(s) for implementing publicly and privately financed adaptation measures. Publicly funded measures include reach-scale flood barriers, flood insurance, and buyout programs to encourage property owners in flood-prone areas to retreat from the floodplain. Measures privately funded by property owners consist of property-scale floodproofing options, such as raising building foundations, as well as investments in flood insurance or retreat from flood-prone areas. The objective function to minimize the sum of flood control and damage costs in all planning stages for different property types during floods of different severities. There are constraints over time for flow mass balances, construction of flood management alternatives and their cumulative implementation, budget allocations, and binary decisions. Damages are adjusted for flood control investments. In recognition of the deep uncertainty of GCM-derived climate change scenarios, we employ the minimax regret criterion to identify adaptation portfolios robust to different climate change trajectories. As an example, we identify publicly and privately funded adaptation measures for a stylized community based on the estuarine community of Exeter, New Hampshire, USA. We explore the sensitivity of recommended portfolios to different ranges of climate changes, and costs associated with economies of scale and flexible infrastructure design as well as different municipal budget constraints.

  14. Base Flood Elevation

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  15. Flood Control Structures

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  16. Seismogenic zonation and seismic hazard estimates in a Southern Italy area (Northern Apulia) characterised by moderate seismicity rates

    Science.gov (United States)

    Del Gaudio, V.; Pierri, P.; Calcagnile, G.

    2009-02-01

    The northernmost part of Apulia, in Southern Italy, is an emerged portion of the Adriatic plate, which in past centuries was hit by at least three disastrous earthquakes and at present is occasionally affected by seismic events of moderate energy. In the latest seismic hazard assessment carried out in Italy at national scale, the adopted seismogenic zonation (named ZS9) has defined for this area a single zone including parts of different structural units (chain, foredeep, foreland). However significant seismic behaviour differences were revealed among them by our recent studies and, therefore, we re-evaluated local seismic hazard by adopting a zonation, named ZNA, modifying the ZS9 to separate areas of Northern Apulia belonging to different structural domains. To overcome the problem of the limited datasets of historical events available for small zones having a relatively low rate of earthquake recurrence, an approach was adopted that integrates historical and instrumental event data. The latter were declustered with a procedure specifically devised to process datasets of low to moderate magnitude shocks. Seismicity rates were then calculated following alternative procedural choices, according to a "logic tree" approach, to explore the influence of epistemic uncertainties on the final results and to evaluate, among these, the importance of the uncertainty in seismogenic zonation. The comparison between the results obtained using zonations ZNA and ZS9 confirms the well known "spreading effect" that the use of larger seismogenic zones has on hazard estimates. This effect can locally determine underestimates or overestimates by amounts that make necessary a careful reconsideration of seismic classification and building code application.

  17. Seismogenic zonation and seismic hazard estimates in a Southern Italy area (Northern Apulia characterised by moderate seismicity rates

    Directory of Open Access Journals (Sweden)

    V. Del Gaudio

    2009-02-01

    Full Text Available The northernmost part of Apulia, in Southern Italy, is an emerged portion of the Adriatic plate, which in past centuries was hit by at least three disastrous earthquakes and at present is occasionally affected by seismic events of moderate energy. In the latest seismic hazard assessment carried out in Italy at national scale, the adopted seismogenic zonation (named ZS9 has defined for this area a single zone including parts of different structural units (chain, foredeep, foreland. However significant seismic behaviour differences were revealed among them by our recent studies and, therefore, we re-evaluated local seismic hazard by adopting a zonation, named ZNA, modifying the ZS9 to separate areas of Northern Apulia belonging to different structural domains. To overcome the problem of the limited datasets of historical events available for small zones having a relatively low rate of earthquake recurrence, an approach was adopted that integrates historical and instrumental event data. The latter were declustered with a procedure specifically devised to process datasets of low to moderate magnitude shocks. Seismicity rates were then calculated following alternative procedural choices, according to a "logic tree" approach, to explore the influence of epistemic uncertainties on the final results and to evaluate, among these, the importance of the uncertainty in seismogenic zonation. The comparison between the results obtained using zonations ZNA and ZS9 confirms the well known "spreading effect" that the use of larger seismogenic zones has on hazard estimates. This effect can locally determine underestimates or overestimates by amounts that make necessary a careful reconsideration of seismic classification and building code application.

  18. A Multidisciplinary Approach for Monitoring Flood and Landslide Hazards: Application to The Quebrada de Ramón Watershed in Central Chile.

    Science.gov (United States)

    Contreras Vargas, M. T.; Oberli, C.; Castro, L. M.; Ledezma, C., Sr.; Gironas, J. A.; Escauriaza, C. R.

    2016-12-01

    Floods and landslides produced by heavy rainfall in the Andes have acquired new relevance due to recent large-scale events, which have had devastating consequences. The complexity of the geomorphology and the climate that characterizes this region promote the occurrence of flash floods with high sediment concentrations. In addition, cities are expanding in the Andean foothills, occupying the floodplains, and increasing the exposure of the population and infrastructure to floods and landslides. Performing a hazard assessment of extreme events in these regions is a very complex task, due to the great uncertainty associated to the factors controlling the dynamics of floods and landslides, and the lack of historical records of hydrometeorological variables. The analysis is further complicated by anthropic activities that can amplify the effects of these events, and by the influence of climate change and the ENSO phenomenon. To provide a better understanding of these events in Andean regions, we integrate knowledge from different disciplines to study various aspects associated to floods and landslides in the Quebrada de Ramón, an Andean watershed located in central Chile. We combine two methodologies to collect the information in the field: 1) We use traditional methods, including sediment samples, weather stations, and topographic data from aerial photography and LIDAR; and 2) We also implement innovative methods based on a wireless network of sensors for monitoring hydrometeorological variables in real-time. We employ this information to develop and couple weather forecast, hydrological and hydrodynamic models, which are used to predict the propagation of floods in the river channel and the urban area, as well as the occurrence of landslides on specific sections of the watershed. This work is expected to provide more reliable information to citizens, city planners, emergency managers and other decision makers to enhance the preparedness, response, and resilience of

  19. The Right to Aid: Perceptions and Practices of Justice in a Flood-Hazard Context in Jakarta, Indonesia

    NARCIS (Netherlands)

    R. van Voorst

    2014-01-01

    Regular floods impact negatively on the health and wellbeing of slum dwellers in Jakarta and it is understandable that the victims seek access to justice. Fieldwork in one of Jakarta's most flood-prone neighbourhoods, Bantaran Kali, reveals that riverbank settlers there access what they perceive to

  20. Natural hazards and motivation for mitigation behavior: people cannot predict the affect evoked by a severe flood.

    Science.gov (United States)

    Siegrist, Michael; Gutscher, Heinz

    2008-06-01

    Past research indicates that personal flood experience is an important factor in motivating mitigation behavior. It is not fully clear, however, why such experience is so important. This study tested the hypothesis that people without flooding experience underestimate the negative affect evoked by such an event. People who were affected by a severe recent flood disaster were compared with people who were not affected, but who also lived in flood-prone areas. Face-to-face interviews with open and closed questions were conducted (n= 201). Results suggest that people without flood experience envisaged the consequences of a flood differently from people who had actually experienced severe losses due to a flood. People who were not affected strongly underestimated the negative affect associated with a flood. Based on the results, it can be concluded that risk communication must not focus solely on technical aspects; in order to trigger motivation for mitigation behavior, successful communication must also help people to envisage the negative emotional consequences of natural disasters.

  1. River bed Elevation Changes and Increasing Flood Hazards in the Nisqually River at Mount Rainier National Park, Washington

    Science.gov (United States)

    Halmon, S.; Kennard, P.; Beason, S.; Beaulieu, E.; Mitchell, L.

    2006-12-01

    Mount Rainier, located in Southwestern Washington, is the most heavily glaciated volcano of the Cascade Mountain Range. Due to the large quantities of glaciers, Mount Rainier also has a large number of braided rivers, which are formed by a heavy sediment load being released from the glaciers. As sediment builds in the river, its bed increases, or aggrades,its floodplain changes. Some contributions to a river's increased sediment load are debris flows, erosion, and runoff, which tend to carry trees, boulders, and sediment downstream. Over a period of time, the increased sediment load will result in the river's rise in elevation. The purpose of this study is to monitor aggradation rates, which is an increase in height of the river bed, in one of Mount Rainier's major rivers, the Nisqually. The studied location is near employee offices and visitor attractions in Longmire. The results of this study will also provide support to decision makers regarding geological hazard reduction in the area. The Nisqually glacier is located on the southern side of the volcano, which receives a lot of sunlight, thus releasing large amounts of snowmelt and sediment in the summer. Historical data indicate that several current features which may contribute to future flooding, such as the unnatural uphill slope to the river, which is due to a major depositional event in the late 1700s where 15 ft of material was deposited in this area. Other current features are the glaciers surrounding the Nisqually glacier, such as the Van Trump and Kaultz glaciers that produced large outbursts, affecting the Nisqually River and the Longmire area in 2001, 2003, and 2005. In an effort to further explore these areas, the research team used a surveying device, total station, in the Nisqually River to measure elevation change and angles of various positions within ten cross sections along the Longmire area. This data was then put into GIS for analyzation of its current sediment level and for comparison to

  2. Flood- and Drought-Related Natural Hazards Activities of the U.S. Geological Survey in New England

    Science.gov (United States)

    Lombard, Pamela J.

    2016-03-23

    The U.S. Geological Survey (USGS) has many ongoing and recent water-related natural hazard activities in New England that can be used to help mitigate the effects of natural hazards in cooperation with other agencies. The themes related to potential hazards and the tools and science to better understand and address them include the following:

  3. International Severe Weather and Flash Flood Hazard Early Warning Systems—Leveraging Coordination, Cooperation, and Partnerships through a Hydrometeorological Project in Southern Africa

    Directory of Open Access Journals (Sweden)

    Robert Jubach

    2016-06-01

    Full Text Available Climate, weather and water hazards do not recognize national boundaries. Transboundary/regional programs and cooperation are essential to reduce the loss of lives and damage to livelihoods when facing these hazards. The development and implementation of systems to provide early warnings for severe weather events such as cyclones and flash floods requires data and information sharing in real time, and coordination among the government agencies at all levels. Within a country, this includes local, municipal, provincial-to-national levels as well as regional and international entities involved in hydrometeorological services and Disaster Risk Reduction (DRR. Of key importance are the National Meteorological and Hydrologic Services (NMHSs. The NMHS is generally the authority solely responsible for issuing warnings for these hazards. However, in many regions of the world, the linkages and interfaces between the NMHS and other agencies are weak or non-existent. Therefore, there is a critical need to assess, strengthen, and formalize collaborations when addressing the concept of reducing risk and impacts from severe weather and floods. The U.S. Agency for International Development/Office of U.S. Foreign Disaster Assistance; the United Nations World Meteorological Organization (WMO; the WMO Southern Africa Regional Specialized Meteorological Center, hosted by the South African Weather Service; the U.S. National Oceanic and Atmospheric Administration/National Weather Service and the Hydrologic Research Center (a non-profit corporation are currently implementing a project working with Southern Africa NMHSs on addressing this gap. The project aims to strengthen coordination and collaboration mechanisms from national to local levels. The project partners are working with the NMHSs to apply and implement appropriate tools and infrastructure to enhance currently operational severe weather and flash flood early warning systems in each country in support of

  4. PROBZONES - Generalized 100- and 500-year flood zones for Seaside, Oregon, determined by probabilistic tsunami hazard analysis

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — PROBZONES is a generalized polygon layer outlining areas in the Seaside-Gearhart, Oregon, area subject to the 100-year and 500-year flood as determined by...

  5. Characterisation of fugitive and accidental PCB emissions from a hazardous waste incinerator : spruce needle, snow and sediment sampling

    Energy Technology Data Exchange (ETDEWEB)

    Froese, K.L. [Alberta Univ., Dept. of Public Health Sciences, Edmonton, AB (Canada); Blais, J.M. [Alberta Univ., Dept. of Biological Sciences, Edmonton, AB (Canada); Muir, D.C.G. [Environment Canada, National Water research Inst., Burlington, ON (Canada)

    1998-09-01

    A pipe rupture at a hazardous waste incineration facility resulted in the release of large quantities of PCBs and polychlorinated dibenzo-dioxins and polychlorinated dibenzofurans into the environment. The accident occurred in October 1996, but was not reported until three weeks later which made it difficult to estimate the extent of the regional exposure and the impact of these releases on the ecosystem and human health. Spruce needles were used to provide data related to vegetative accumulation of lipophilic contaminants. Snow samples were used to get information regarding PCB deposition and sorption in the snow in the months following the accident. Radiometrically dated lake sediments were used to obtain information on changes in PCB deposition through time for a single location. Initial results show that needle samples within 2 km of the incinerator contain PCBs at five times the concentration of samples from 50 to 20 km from the plant. Snow samples within 2 km of the plant showed a 10-fold increase over distant samples. Sediment samples also showed a 10-fold increase in PCB concentrations above background values.

  6. Floods and droughts: friends or foes?

    Science.gov (United States)

    Prudhomme, Christel

    2017-04-01

    Water hazards are some of the biggest threats to lives and livelihoods globally, causing serious damages to society and infrastructure. But floods and droughts are an essential part of the hydrological regime that ensures fundamental ecosystem functions, providing natural ways to bring in nutrients, flush out pollutants and enabling soils, rivers and lakes natural biodiversity to thrive. Traditionally, floods and droughts are too often considered separately, with scientific advance in process understanding, modelling, statistical characterisation and impact assessment are often done independently, possibly delaying the development of innovative methods that could be applied to both. This talk will review some of the key characteristics of floods and droughts, highlighting differences and commonalties, losses and benefits, with the aim of identifying future key research challenges faced by both current and next generation of hydrologists.

  7. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE - MO 2014 Springfield FEMA Base Flood Elevations (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This polyline layer indicates the approximate effective FEMA Base Flood Elevation (BFE) associated with the corresponding Special Flood Hazard Area (SFHA). Each line...

  8. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE - MO 2010 Springfield FEMA Base Flood Elevations (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This polyline layer indicates the approximate effective FEMA Base Flood Elevations (BFE) associated with the corresponding Special Flood Hazard Area (SFHA). Each...

  9. Analysis of the Hazard, Vulnerability, and Exposure to the Risk of Flooding (Alba de Yeltes, Salamanca, Spain

    Directory of Open Access Journals (Sweden)

    Sergio Veleda

    2017-02-01

    Full Text Available The present work has developed a method using GIS technology to evaluate the danger, vulnerability, and exposure to the risk of flooding in the Alba de Yeltes area (Salamanca, Spain. It is a non-structural measure for the prevention and mitigation of the risk of extraordinary flooding. After completing a full analysis of the physical environment (climate, geology, geomorphology, hydrology, hydrogeology, and land use, hydrological-hydraulic modeling was carried out using the GeoHecRas river analysis software. The results obtained from the analysis and the models have generated a danger map that facilitates the efficient evaluation of the spatial distribution of the different severity parameters (depth of the watersheet, current flow rate, and flood-prone areas. Also, map algebra and the databases associated with GIS tools, together with the vulnerability and exposure cartography, have allowed the risk to be analyzed in an integrate manner and the production of an environmental diagnostic map. The results of this study propose that there are inhabited areas close to the Yeltes-Morasverdes riverbed that have a high risk of flooding, indicating the need for proper land planning and the implementation of a series of measures that will help to reduce the risk of flooding and its impact.

  10. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  11. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  12. NATURAL HAZARD ASSESSMENT OF SW MYANMAR - A CONTRIBUTION OF REMOTE SENSING AND GIS METHODS TO THE DETECTION OF AREAS VULNERABLE TO EARTHQUAKES AND TSUNAMI / CYCLONE FLOODING

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2009-01-01

    Full Text Available Myanmar, formerly Burma, is vulnerable to several natural hazards, such as earthquakes, cyclones, floods, tsunamis and landslides. The present study focuses on geomorphologic and geologic investigations of the south-western region of the country, based on satellite data (Shuttle Radar Topography Mission-SRTM, MODIS and LANDSAT. The main objective is to detect areas vulnerable to inundation by tsunami waves and cyclone surges. Since the region is also vulnerable to earthquake hazards, it is also important to identify seismotectonic patterns, the location of major active faults, and local site conditions that may enhance ground motions and earthquake intensities. As illustrated by this study, linear, topographic features related to subsurface tectonic features become clearly visible on SRTM-derived morphometric maps and on LANDSAT imagery. The GIS integrated evaluation of LANDSAT and SRTM data helps identify areas most susceptible to flooding and inundation by tsunamis and storm surges. Additionally, land elevation maps help identify sites greater than 10 m in elevation height, that would be suitable for the building of protective tsunami/cyclone shelters.

  13. Numerical Simulation of Downstream Flooding due to a Flexible-Dam Collapse. The case of "La Esperanza" dam, Hidalgo-México: Implication on Hazard Assessment.

    Science.gov (United States)

    Areu Rangel, O. S., Sr.; Mendoza-Sanchez, I.; Bonasia, R.

    2015-12-01

    The risk of flooding of settlements located downstream of a dam is high due to the large number of people living on natural waterways. Risk assessment of flooding could help in projecting containment and protection in case of a dam-break. For projecting containment and protection works, the assessment should take into account velocities, densities and impact pressure of the water on the villages in risk. Therefore, it is appealing to conduct a series of numerical simulations of downstream flooding including velocity and pressure fields, and their temporal and spatial fluctuations. The present work focuses on the real case of "La Esperanza" dam, located in the state of Hidalgo (Mexico). The dam was built 70 years ago and currently two thirds of its capacity is covered with silt, which implies a very high horizontal thrust. The simulation of the flood due to failure of the dam was carried on using the DualSPHysics code, a new implementation of the mesh-free Lagrangian Smoothed Particle Hydrodynamic (SPH) method. For the boundary conditions, a Digital Elevation Model of the potentially affected area was built using satellite images, the actual bathymetry of the dam and cross sections of the channel. In order to evaluate the hazard posed to the villages located downstream of the dam, different collapse scenarios were simulated, with particular focus on the consequences of the temporal variation of rainfall. Preliminary results show acceleration and dynamic pressure values of water in especially selected areas that are subjected to high risk for the elevated number of inhabitant.

  14. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  15. Flood hazards along the Toutle and Cowlitz rivers, Washington, from a hypothetical failure of Castle Lake blockage

    Science.gov (United States)

    Laenen, Antonius; Orzol, L.L.

    1987-01-01

    A recent evaluation of groundwater and material in the blockage impounding Castle Lake shows that the blockage is potentially unstable against failure from piping due to heave and internal erosion when groundwater levels are seasonally high. There is also a remote possibility that a 6.8 or greater magnitude earthquake could occur in the Castle Lake area when groundwater levels are critically high. If this situation occurs, the debris blockage that confines Castle Lake could breach from successive slope failure with liquefaction of a portion of the blockage. A dam-break computer model was used to simulate discharge through a hypothetical breach in the Castle Lake blockage that could be caused by failure by heave, internal erosion, or liquefaction. Approximately 18,500 acre-ft of stored water would be released from an assumed breach that fully developed to a 1,000-ft width over a 15-minute time period. The resulting flood, incorporating 3.4 x 10 to the 6th power cu yd of the debris blockage, would reach a peak magnitude of 1,500,000 cu ft/s (cubic feet per second). The flood is also assumed to incorporate an additional 137x10 to the 6th power cu yd of saturated debris material from downstream deposits. Flow is considered to be hyperconcentrated with sediment throughout the course of the flood. The hypothetical hyperconcentrated flow is routed downstream, superimposed on normal winter flood flows by use of a one-dimensional unsteady-state numerical streamflow simulation model. From a starting magnitude of 1,500,000 cu ft/s, the peak increases to 2,100,000 cu ft/s at N-1 Dam (12 mi downstream) and attenuates to 1,200,000 cu ft/s at Kid Valley (25 mi downstream) , to 100,000 cu ft/s at Longview and the confluence of the Columbia River (65 mi downstream). From time of breach, the flood peak would take 2.2 hr to reach Toutle, 3.8 hr to reach Castle Rock, and 8.5 hr to reach Longview. Communities of Toutle , Castle Rock, Kelso, and Longview would experience extreme to

  16. Tsunami flooding

    Science.gov (United States)

    Geist, Eric; Jones, Henry; McBride, Mark; Fedors, Randy

    2013-01-01

    Panel 5 focused on tsunami flooding with an emphasis on Probabilistic Tsunami Hazard Analysis (PTHA) as derived from its counterpart, Probabilistic Seismic Hazard Analysis (PSHA) that determines seismic ground-motion hazards. The Panel reviewed current practices in PTHA and determined the viability of extending the analysis to extreme design probabilities (i.e., 10-4 to 10-6). In addition to earthquake sources for tsunamis, PTHA for extreme events necessitates the inclusion of tsunamis generated by submarine landslides, and treatment of the large attendant uncertainty in source characterization and recurrence rates. Tsunamis can be caused by local and distant earthquakes, landslides, volcanism, and asteroid/meteorite impacts. Coastal flooding caused by storm surges and seiches is covered in Panel 7. Tsunamis directly tied to earthquakes, the similarities with (and path forward offered by) the PSHA approach for PTHA, and especially submarine landslide tsunamis were a particular focus of Panel 5.

  17. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards

    OpenAIRE

    D. I. Benn; Bolch, Tobias; Hands, K; Gulley, J; Luckman, A.; L. I. Nicholson; Quincey, D; Thompson, S.; R. Toumi; Wiseman, S

    2012-01-01

    In areas of high relief, many glaciers have extensive covers of supraglacial debris in their ablation zones, which alters both rates and spatial patterns of melting, with important consequences for glacier response to climate change. Wastage of debris-covered glaciers can be associated with the formation of large moraine-dammed lakes, posing risk of glacier lake outburst floods (GLOFs). In this paper, we use observations of glaciers in the Mount Everest region to present an integrated view of...

  18. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  19. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  20. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  1. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  2. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  3. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  4. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  5. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  6. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  7. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  8. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  9. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  10. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  11. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  12. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  13. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level...

  14. 2013 FEMA Base Flood Elevation

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  15. 2013 FEMA Flood Control Structures

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  16. Flood Risk Management in the People’s Republic of China: Learning to Live with Flood Risk

    OpenAIRE

    Asian Development Bank

    2012-01-01

    This publication presents a shift in the People’s Republic of China from flood control depending on structural measures to integrated flood management using both structural and non-structural measures. The core of the new concept of integrated flood management is flood risk management. Flood risk management is based on an analysis of flood hazard, exposure to flood hazard, and vulnerability of people and property to danger. It is recommended that people learn to live with flood risks, gaining...

  17. The Bisagno stream catchment (Genoa, Italy) and its major floods: geomorphic and land use variations in the last three centuries

    Science.gov (United States)

    Faccini, Francesco; Paliaga, Guido; Piana, Pietro; Sacchini, Alessandro; Watkins, Charles

    2016-11-01

    The city of Genoa (Liguria, Italy) and the Bisagno Valley are affected by frequent floods, often with loss of human lives. Historically characterised by high flood hazards, the Bisagno Valley was recently affected by a flood event on 9 October 2014, less than three years after the tragic flood event of 4 November 2011 when six people died, including two children. In the last 50 years, four destructive floods occurred in the Bisagno Valley, in addition to some other events that caused significant damage and economic losses. This paper examines the three largest flood events in terms of intensity and ground effects which affected the Bisagno Valley in the last three centuries: the flood of 25 October 1822, well documented by contemporary sources, the flood of 8 October 1970, undoubtedly the most tragic on record, and the very recent event of 9 October 2014. For this purpose scientific and historical-geographical methodologies were adopted, the latter particularly useful for the reconstruction of the flood event of 1822 and the landscape history of the Bisagno Valley in the nineteenth century. This comparison shows that the Bisagno Valley is characterised by climatic and landform features that have been making the flood events historically common in the area. However, recent climate change and land-use variations, including some major modifications of the catchment basin, have progressively determined a decrease of the concentration time and an increase of runoff, solid transport, and flood hazard. Consequently, in recent decades a growth in the number of flood events occurred, to the extent that the Bisagno today is a famous case study on an international scale.

  18. Flooding scenarios, hazard mapping and damages estimation: what if the 2011 Cinque Terre event had happened in Genoa?

    Science.gov (United States)

    Silvestro, Francesco; Rebora, Nicola; Rossi, Lauro; Dolia, Daniele; Gabellani, Simone; Pignone, Flavio; Masciulli, Cristiano

    2016-04-01

    During the autumn of 2011 two catastrophic very intense rainfall events affected two different parts of the Liguria Region of Italy causing various flash floods, the first occurred in October and the second at the beginning of November. Various studies demonstrated that the two events had a similar genesis and similar triggering elements. In this work we did the exercise of putting the rainfall field of the first event (Cinque Terre area) on the main catchment, stroke by the second event, that has its mouth in correspondence of the biggest city of the Liguria Region: Genoa. A flood forecast framework and a hydraulic model were used as tools to quantitatively carry out a "what if" experiment, a proper methodology for damages estimation is then used to estimate the potential losses and the people affected. The results are interesting, surprising and in such a way worrying: a peak flow with return period larger than 200 years would have occurred with an estimated damage between 120 and 220 million of euros for the city of Genoa, Italy.

  19. Flood hazard risk assessment of Hanzhong city at the upper reaches of Hanjiang River%汉江上游汉中市洪水灾害风险评价研究

    Institute of Scientific and Technical Information of China (English)

    张国芳; 查小春; 石晓静; 刘嘉慧; 姬霖; 王光朋

    2016-01-01

    以县级行政单元为基本评价单元,对汉江上游的陕西省汉中市洪水灾害进行了综合风险评价。在洪水灾害危险性评价中,综合考虑了降水量、降水变率、地形高程、坡度、河网分布等自然因素;在洪水灾害易损性方面,综合考虑了人口密度、单位面积年粮食产量和GDP密度等社会经济因素,运用层次分析方法并结合GIS技术,分别得到洪灾危险性和易损性评价等级图。在此基础上利用GIS方法进行叠加分析,得到汉中市洪灾综合风险评价结果。研究结果表明:汉中市洪水灾害风险主要集中在汉中盆地,且以河流干流为中心向两边递减,汉中市南部、城固县中部、南郑县的东北部等的洪水灾害风险等级最高;勉县、洋县、西乡县洪灾风险等级次之;留坝县的洪水灾害风险等级最低。洪灾风险评价结果与2012年汉中市发生的洪灾情况能较好的吻合。此研究结果可为汉中市制定合理的防洪减灾规划提供科学依据。%Based on GIS technology,the integrated assessment on flood risk in Hanzhong city in Shaanxi Province was carried out by using administrative county as basic assessment unit.Natural factors inclu-ding precipitation,precipitation variability,terrain elevation,slope and water system distribution were comprehensively considered in the flood hazard assessment.Socio-economic indicators including popula-tion density,annual grain output per unit area and GDP density were analyzed for the flood vulnerability assessment.A map of flood hazard assessment and a map of flood vulnerability assessment are constructed by combining with AHP and GIS technology.Then,superposition analysis method for flood hazard and vulnerability assessment was performed based on GIS technology,and the flood integrated risk assessment of Hanzhong city was obtained.The flood hazard risk of Hanzhong city was concentrated mainly in the Hanzhong basin and

  20. Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

    Science.gov (United States)

    O'Neill, Andrea; Erikson, Li; Barnard, Patrick

    2017-01-01

    While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.

  1. Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

    Science.gov (United States)

    O'Neill, A. C.; Erikson, L. H.; Barnard, P. L.

    2017-05-01

    While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975-2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves

  2. Multidisciplinary distinction of mass-movement and flood-induced deposits in lacustrine environments: implications for Holocene palaeohydrology and natural hazards (Lake Ledro, Southern Alps, Italy

    Directory of Open Access Journals (Sweden)

    A. Simonneau

    2012-08-01

    Full Text Available High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and river-bed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments are finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events: light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography of the organic matter occurring in soils, river beds and lacustrine samples together with lake-sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are dense and synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass movements triggered by historical and pre-historical regional earthquakes dated to 2005 AD, 1891 AD, 1045 AD and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11495 cal. yr BP. Dark-coloured sedimentary event are dense and develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and ligno-cellulosic debris and are interpreted as resulting from intense hyperpycnal flood events. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence and applying the De Ploey erosion model allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 4 mm during the largest Holocene flood events. Such significant soil erosion is

  3. Framework for probabilistic flood risk assessment in an Alpine region

    Science.gov (United States)

    Schneeberger, Klaus; Huttenlau, Matthias; Steinberger, Thomas; Achleitner, Stefan; Stötter, Johann

    2014-05-01

    Flooding is among the natural hazards that regularly cause significant losses to property and human lives. The assessment of flood risk delivers crucial information for all participants involved in flood risk management and especially for local authorities and insurance companies in order to estimate the possible flood losses. Therefore a framework for assessing flood risk has been developed and is introduced with the presented contribution. Flood risk is thereby defined as combination of the probability of flood events and of potential flood damages. The probability of occurrence is described through the spatial and temporal characterisation of flood. The potential flood damages are determined in the course of vulnerability assessment, whereas, the exposure and the vulnerability of the elements at risks are considered. Direct costs caused by flooding with the focus on residential building are analysed. The innovative part of this contribution lies on the development of a framework which takes the probability of flood events and their spatio-temporal characteristic into account. Usually the probability of flooding will be determined by means of recurrence intervals for an entire catchment without any spatial variation. This may lead to a misinterpretation of the flood risk. Within the presented framework the probabilistic flood risk assessment is based on analysis of a large number of spatial correlated flood events. Since the number of historic flood events is relatively small additional events have to be generated synthetically. This temporal extrapolation is realised by means of the method proposed by Heffernan and Tawn (2004). It is used to generate a large number of possible spatial correlated flood events within a larger catchment. The approach is based on the modelling of multivariate extremes considering the spatial dependence structure of flood events. The input for this approach are time series derived from river gauging stations. In a next step the

  4. The main accomplishemnt of flood hazard monitoring and evaluating for China by remote sensing in 1998——the application of flood hazard's quick-reporting system remote sensing based on network%1998年全国洪涝灾害遥感监测评估的主要成果--基于网络的洪涝灾情遥感速报系统的应用

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper introduces the main applied accomplishment in flood disaster is quick-reporing system by remole sensing based on network for Chinese flood monitoring and assessment in 1998.It includes the following aspects:monitor flood dynamically,assess the losses of crops,analyze the efficiency of the flood-preventing projects,analyze the surveying results for dangerous regions,monitor flood in cities,evaluate the vulnerability of the life-line projects and industry areas,analyze the necessity of flood eater-storage and flood-diversion for the floods in Changjiang River;finally,it gives some proposals for decision making in prevebtubg flood and mitigating harzard and function-zoning planning for rebuilding of homestead after hazard etc.%介绍了基于网络的洪涝灾害遥感速报系统在1998年全国特大洪涝灾害监测评估中的主要应用成果,包括动态监测、农作物损失评估、防洪工程有效性分析、险工险段调查分析、城市洪灾监测、工业区生命线工程易损性评估、长江洪水蓄洪分洪必要性分析、防洪减灾决策建议和灾后重建家园功能分区规划等.

  5. Flash floods: forecasting and warning

    National Research Council Canada - National Science Library

    Sene, Kevin

    2013-01-01

    .... Floods of this type are often characterised by fast flowing deep water and a high debris content which - combined with the short lead time available for warnings - add to the risk to people and property...

  6. Earthquake damage potential and critical scour depth of bridges exposed to flood and seismic hazards under lateral seismic loads

    Science.gov (United States)

    Song, Shin-Tai; Wang, Chun-Yao; Huang, Wen-Hsiu

    2015-12-01

    Many bridges located in seismic hazard regions suffer from serious foundation exposure caused by riverbed scour. Loss of surrounding soil significantly reduces the lateral strength of pile foundations. When the scour depth exceeds a critical level, the strength of the foundation is insufficient to withstand the imposed seismic demand, which induces the potential for unacceptable damage to the piles during an earthquake. This paper presents an analytical approach to assess the earthquake damage potential of bridges with foundation exposure and identify the critical scour depth that causes the seismic performance of a bridge to differ from the original design. The approach employs the well-accepted response spectrum analysis method to determine the maximum seismic response of a bridge. The damage potential of a bridge is assessed by comparing the imposed seismic demand with the strengths of the column and the foundation. The versatility of the analytical approach is illustrated with a numerical example and verified by the nonlinear finite element analysis. The analytical approach is also demonstrated to successfully determine the critical scour depth. Results highlight that relatively shallow scour depths can cause foundation damage during an earthquake, even for bridges designed to provide satisfactory seismic performance.

  7. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA)

    OpenAIRE

    Ismail Elkhrachy

    2015-01-01

    Flash flood in the cities led to high levels of water in the streets and roads, causing many problems such as bridge collapse, building damage and traffic problems. It is impossible to avoid risks of floods or prevent their occurrence, however it is plausible to work on the reduction of their effects and to reduce the losses which they may cause. Flash flood mapping to identify sites in high risk flood zones is one of the powerful tools for this purpose. Mapping flash flood will be beneficial...

  8. Estimating regional long-term economic consequences of natural hazards - a case study of the 2005 flood event in Tyrol (Austria)

    Science.gov (United States)

    Pfurtscheller, C.; Lochner, B.; Brucker, A.

    2012-04-01

    The interaction of relief-driven alpine natural processes with the anthropogenic sphere often leads to natural disasters which significantly impact on remote alpine economies. When evaluating the effects of such events for future risk prevention strategies, it is essential to assess indirect losses. While the economic measurement of direct effects - the physical impact on structures and infrastructure - seems fairly manageable, less is known about the dimensions of indirect effects, especially on a local and regional scale within the Alps. The lack of standardized terminology, empirical data and methods to estimate indirect economic effects currently hampers profound decision support. In our study of the 2005 flood event in Tyrol, we surveyed companies from all sectors of the economy to identify the main drivers of indirect effects and interrupted economic flows. In collaboration with the Federal State administration, we extrapolate the total regional economic effects of this catastrophic event. Using quantitative and qualitative methods, we established and analysed a data pool of questionnaire and interview results as well as direct loss data. We mainly focus on the decrease in value creation and the negative impacts on tourism. We observed that disrupted traffic networks can have a highly negative impact, especially for the tourism sector in lateral alpine valleys. Within a month, turnover fell by approximately EUR 3.3 million in the investigated area. In the short run (until August 2006), the shortfall in touristic revenues in the Paznaun valley aggregated to approx. EUR 5.3 million. We observed that overnight stays rebound very quickly so that long-term effects are marginal. In addition, we tried to identify possible economical losers as well as winners of severe hazard impacts. In response to such flood events, high investments are made to improve disaster and risk management. Nearly 70% of the respondents specified the (re)construction sector and similar

  9. RASOR flood modelling

    Science.gov (United States)

    Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje

    2015-04-01

    Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the

  10. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  11. Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE - MO 2014 Springfield FEMA Base Flood Elevations (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This polyline layer indicates the approximate effective FEMA Base Flood Elevation (BFE) associated with the corresponding Special Flood Hazard Area (SFHA). Each line...

  12. An urban flood in the kashio river basin

    OpenAIRE

    Matsuda, Iware

    1987-01-01

    An urban flood is one of knotty problems derived from land development. Taking the Kashio River basin of Kanagawa Prefecture as an example, the relationships between urbanization and flood hazards were historically discussed. It was explained that a flood prevention work in one area affects other areas. The historical change in conditions for flood hazards can be divided into six stages.

  13. Sept 2013 NFHL Flood Control Structures

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  14. Sept 2013 NFHL Flood Risk Project Areas

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  15. A metric-based assessment of flood risk and vulnerability of rural communities in the Lower Shire Valley, Malawi

    Science.gov (United States)

    Adeloye, A. J.; Mwale, F. D.; Dulanya, Z.

    2015-06-01

    In response to the increasing frequency and economic damages of natural disasters globally, disaster risk management has evolved to incorporate risk assessments that are multi-dimensional, integrated and metric-based. This is to support knowledge-based decision making and hence sustainable risk reduction. In Malawi and most of Sub-Saharan Africa (SSA), however, flood risk studies remain focussed on understanding causation, impacts, perceptions and coping and adaptation measures. Using the IPCC Framework, this study has quantified and profiled risk to flooding of rural, subsistent communities in the Lower Shire Valley, Malawi. Flood risk was obtained by integrating hazard and vulnerability. Flood hazard was characterised in terms of flood depth and inundation area obtained through hydraulic modelling in the valley with Lisflood-FP, while the vulnerability was indexed through analysis of exposure, susceptibility and capacity that were linked to social, economic, environmental and physical perspectives. Data on these were collected through structured interviews of the communities. The implementation of the entire analysis within GIS enabled the visualisation of spatial variability in flood risk in the valley. The results show predominantly medium levels in hazardousness, vulnerability and risk. The vulnerability is dominated by a high to very high susceptibility. Economic and physical capacities tend to be predominantly low but social capacity is significantly high, resulting in overall medium levels of capacity-induced vulnerability. Exposure manifests as medium. The vulnerability and risk showed marginal spatial variability. The paper concludes with recommendations on how these outcomes could inform policy interventions in the Valley.

  16. Toward a space-time scale framework for the study of everyday life activity's adaptation to hazardous hydro-meteorological conditions: Learning from the June 15th, 2010 flash flood event in Draguignan (France)

    Science.gov (United States)

    Ruin, Isabelle; Boudevillain, Brice; Creutin, Jean-Dominique; Lutoff, Céline

    2013-04-01

    Western Mediterranean regions are favorable locations for heavy precipitating events. In recent years, many of them resulted in destructive flash floods with extended damage and loss of life: Nîmes 1988, Vaison-la-Romaine 1992, Aude 1999 and Gard 2002 and 2005. Because of the suddenness in the rise of water levels and the limited forecasting predictability, flash floods often surprise people in the midst of their daily activity and force them to react in a very limited amount of time. In such fast evolving events impacts depend not just on such compositional variables as the magnitude of the flood event and the vulnerability of those affected, but also on such contextual factors as its location and timing (night, rush hours, working hours...). Those contextual factors can alter the scale and social distribution of impacts and vulnerability to them. In the case of flooding fatalities, for instance, the elderly are often said to be the most vulnerable, but when fatalities are mapped against basin size and response time, it has been shown that in fact it is young adults who are most likely to be killed in flash flooding of small catchments, whereas the elderly are the most frequent victim of large scale fluvial flooding. Further investigations in the Gard region have shown that such tendency could be explained by a difference of attitude across ages with respect to mobility related to daily life routine and constraints. According to a survey of intentional behavior professionals appear to be less prone to adapting their daily activities and mobility to rapidly changing environmental conditions than non-professionals. Nevertheless, even if this appears as a tendency in both the analysis of limited data on death circumstances and intended behavior surveys, behavioral verification is very much needed. Understanding how many and why people decide to travel in hazardous weather conditions and how they adapt (or not) their activities and schedule in response to

  17. 12 CFR 339.7 - Forced placement of flood insurance.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Forced placement of flood insurance. 339.7... GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.7 Forced placement of flood insurance. If... not covered by flood insurance or is covered by flood insurance in an amount less than the...

  18. 25 CFR 256.24 - Will I need flood insurance?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Will I need flood insurance? 256.24 Section 256.24... Will I need flood insurance? You will need flood insurance if your dwelling is located in an area identified as having special flood hazards under the Flood Disaster Protection Act of 1973 (Pub. L....

  19. 12 CFR 572.7 - Forced placement of flood insurance.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Forced placement of flood insurance. 572.7... HAVING SPECIAL FLOOD HAZARDS § 572.7 Forced placement of flood insurance. If a savings association, or a... not covered by flood insurance or is covered by flood insurance in an amount less than the...

  20. 12 CFR 760.7 - Forced placement of flood insurance.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Forced placement of flood insurance. 760.7... LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.7 Forced placement of flood insurance. If a credit... not covered by flood insurance, or is covered by flood insurance in an amount less than the...

  1. 44 CFR 78.5 - Flood Mitigation Plan development.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate...

  2. Law Analysis and Control Measures of Highway Flood Hazard Caused by Typhoon Rainstorm%台风暴雨引发公路水毁规律分析及防灾对策

    Institute of Scientific and Technical Information of China (English)

    沈水进; 孙红月; 朱汉华

    2011-01-01

    The causations of typhoon-rainstorm-induced highway flood hazard were summed up by collecting and settling correlative datas in recent years and analyzing meteorological, engineering geological background condition. Within intergrated superposition and reciprocity between external and internal causes, such as the meteorological characteristic of typhoon rainstorm process, the landform-physiognomy conditions and the construction-features of mountain roads, highway flood hazard can easily happen. Then, the development stages of flood hazard were classified, and the effect degree of disaster mechanism process at all stages were studied. In end of the paper, practical and effective control measures are presented, to afford scientific basis while relevant functional departments in decision-making.%通过对近几年台风暴雨引发公路水毁相关资料收集和整理,分析气象、工程地质背景条件,总结了我国东南地区台风暴雨引发公路水毁灾害的成因条件.台风暴雨过程的气象特点、地形地貌条件及山区公路建设特点等外因与内因的综合叠加,相互作用,水毁灾害也就自然发生;并划分水毁发育阶段,研究各个阶段成灾机理过程的作用程度.提出切实有效的防灾对策,为公路职能部门的相关决策提供科学依据.

  3. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR)...

  4. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR)...

  5. Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard.

    Science.gov (United States)

    Mendoza, A; Aceña, J; Pérez, S; López de Alda, M; Barceló, D; Gil, A; Valcárcel, Y

    2015-07-01

    This work analyses the presence of twenty-five pharmaceutical compounds belonging to seven different therapeutic groups and one iodinated contrast media (ICM) in a Spanish medium-size hospital located in the Valencia Region. Analysis of the target compounds in the hospital wastewater was performed by means of solid phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry analysis (HPLC-MS/MS). A screening level risk assessment combining the measured environmental concentrations (MECs) with dose-response data based on Predicted No Effect Concentration (PNEC) was also applied to estimate Hazard Quotients (HQs) for the compounds investigated. Additionally, the environmental hazard associated to the various compounds measured was assessed through the calculation of the Persistence, Bioaccumulation and Toxicity (PBT) Index, which categorizes compounds according to their environmentally damaging characteristics. The results of the study showed the presence of twenty-four out of the twenty-six compounds analysed at individual concentrations ranging from 5 ng L(-1) to 2 mg L(-1). The highest concentrations corresponded to the ICM iomeprol, found at levels between 424 and 2093 μg L(-1), the analgesic acetaminophen (15-44 μg L(-1)), the diuretic (DIU) furosemide (6-15 μg L(-1)), and the antibiotics (ABIs) ofloxacin and trimethoprim (2-5 μg L(-1)). The lowest levels corresponded to the anti-inflammatory propyphenazone, found at concentrations between 5 and 44 ng L(-1). Differences in terms of concentrations of the analysed compounds have been observed in all the therapeutic groups when comparing the results obtained in this and other recent studies carried out in hospitals with different characteristics from different geographical areas and in different seasons. The screening level risk assessment performed in raw water from the hospital effluent showed that the analgesics and anti-inflammatories (AAFs) acetaminophen, diclofenac, ibuprofen and

  6. Flood risk assessment: concepts, modelling, applications

    Directory of Open Access Journals (Sweden)

    G. Tsakiris

    2014-01-01

    Full Text Available Natural hazards have caused severe consequences to the natural, modified and human systems, in the past. These consequences seem to increase with time due to both higher intensity of the natural phenomena and higher value of elements at risk. Among the water related hazards flood hazards have the most destructive impacts. The paper presents a new systemic paradigm for the assessment of flood hazard and flood risk in the riverine flood prone areas. Special emphasis is given to the urban areas with mild terrain and complicated topography, in which 2-D fully dynamic flood modelling is proposed. Further the EU flood directive is critically reviewed and examples of its implementation are presented. Some critical points in the flood directive implementation are also highlighted.

  7. A spatiotemporal multi-hazard exposure assessment based on property data

    Science.gov (United States)

    Fuchs, Sven; Keiler, Margreth; Zischg, Andreas

    2016-04-01

    The paper presents a nation-wide spatially explicit object-based assessment of buildings and citizens exposed to natural hazards in Austria, including river flooding, torrential flooding, and snow avalanches. The assessment was based on two different datasets, (a) hazard information providing input to the exposure of elements at risk, and (b) information on the building stock combined from different spatial data available on the national level. Hazard information was compiled from two different sources. For torrential flooding and snow avalanches available local-scale hazard maps were used, and for river flooding the results of the countrywide flood modelling eHORA were available. Information on the building stock contained information on the location and size of each building, as well as on the building category and the construction period. Additional information related to the individual floors, such as their height and net area, main purpose and configuration, was included for each property. Moreover, this dataset has an interface to the population register and allowed therefore retrieving the number of primary residents for each building. With the exception of sacral buildings, an economic module was used to compute the monetary value of buildings using (a) the information of the building register such as building type, number of storeys and utilisation, and (b) regionally averaged construction costs. It is shown that the repeatedly-stated assumption of increasing exposure due to continued population growth and related increase in assets has to be carefully evaluated by the local development of building stock. While some regions have shown a clearly above-average increase in assets, other regions were characterised by a below-average development. This mirrors the topography of the country, but also the different economic activities. While hotels and hostels are extraordinary prone to torrential flooding, commercial buildings as well as buildings used for

  8. Interdisciplinary approach to hydrological hazard mitigation and disaster response and effects of climate change on the occurrence of flood severity in central Alaska

    Science.gov (United States)

    Kontar, Y. Y.; Bhatt, U. S.; Lindsey, S. D.; Plumb, E. W.; Thoman, R. L.

    2015-06-01

    In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of river ice breakup, and

  9. Behavior of the Rambla Nogalte (Murcia) during floods. Implications for the mapping of flood hazard risk; Funcionamiento de la rambla de Nogalte (Murcia) durante avenidas. Implicaciones para la cartografia de peligrosidad por riesgo de avenidas

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Becerril, J. A.; Garzon Heydt, M. g.; Garcia Lopez-Davalillo, J. C.; Rodriguez Franco, A.

    2009-07-01

    Discharge data obtained for the Rambla de Nogalte ephemeral stream by means of hydrologic modelling are low in relation to the discharge that was estimated for the 1973 catastrophic flood event. Watershed characteristics such as an elongated morphology, long stream and moderate slope defining a high concentration time do not favour either large discharge. The reason for it might be the high load attained on the 1973 flood not taken in account for the ordinary hydrologic modelling and the lack of flow evacuation capacity of the aggrading alluvial fan system at the stream mouth. (Author) 8 refs.

  10. Environment Zoning of Geological Hazards Development of Road Flood Based on Fuzzy Probability Method in Aba Area%基于模糊概率的阿坝州公路洪灾孕灾环境分区

    Institute of Scientific and Technical Information of China (English)

    唐红梅; 廖学海; 陈洪凯

    2014-01-01

    公路洪灾孕灾环境的合理分区可从理论上为公路洪灾的防治工作提供指导。以四川阿坝州为研究对象,根据公路洪灾致灾原理,遴选出公路沿线历史地质灾害发育、地貌条件、岩土体性质、年均降雨量、人口密度、植被覆盖度和地质构造7个因子,依据专家系统分为4级后赋值构成评价指标体系。综合层次分析法和专家效度法得到各指标的相对权重,并结合模糊理论给出模糊权重。采用模糊概率综合评价模型将公路洪灾孕灾环境分成低易发区、中易发区、高易发区和危险区4个危险等级。分区结果显示:阿坝州公路洪灾孕灾环境发展较为充分,以县为单位分成了高易发区、中易发区和低易发区,分别占全州面积的38.1%、39.4%和22.5%,研究成果对于该区公路洪灾的防治具有积极意义。%A fit environment zoning of geological hazards developing of road flood can provide theoretical ref-erences for the road flood prevention engineering.The road flood in Aba area,Sichuan province is studied.Ac-cording to the road flood causing principles,seven indexes are selected,such as historical geological hazards along the road,landforms,natures of rock and soil,average annual rainfall,population density,vegetation coverage and geological conditions,which are divided into four grades based on expert system,and then the comprehensive eval-uation model of environment zoning of geological hazards development is established after assessment.Each index is calculated by Analytical Hierarchy Process (AHP)and Expert Scoring Method,and then got the fuzzy weights combined fuzzy theory.According to the fuzzy comprehensive evaluation model of probability,the environment zoning of geological hazards development is divided into low easy-happening area,medium easy-happening area,high easy-happening area and dangerous area.The result shows that Aba area have sufficient environmental

  11. Flood Hazard Prediction from Soil Properties by Remote Sensing and Geographic Information System: A Case Study of Mae Rim Watershed,Chiang Mai Province,Thailand

    Institute of Scientific and Technical Information of China (English)

    PANJIANJIUN; E.BERGSMA; 等

    1998-01-01

    Physiography and soil in Mae Rim watershed,Chiang Mai Province,Thailand were investigated by using aerial photographs and satellite image in conjunction with field work,and soil infiltration rate and soil shear resistance were measured in field. Many factors affecting runoff were analyzed usig the Integrated Land and Water Informaiton System(ILWIS).As a result,a model determining flood hazar was set up.Three mps including runoff curve number map,runoff coefficent map,and flood inumdation map were created,In addition,the time of concentration was predicted.

  12. Flood Risk and Asset Management

    Science.gov (United States)

    2012-09-01

    Within the UK for example, the flooding of the village of Boscastle (August, 2004), that took place over a day, Roca -Collel and Davison (2010), can...Hazard Research Centre. Roca -Collel, M. and Davison, M. (2010). "Two dimensional model analysis of flash- flood processes: application to the Boscastle

  13. Spatially fuzzy comprehensive assessment model for flood hazard risk based on entropy weight%基于熵权的洪灾风险空间模糊综合评价模型

    Institute of Scientific and Technical Information of China (English)

    王兆礼; 赖成光; 陈晓宏

    2012-01-01

    基于灾害系统理论构建了东江流域洪灾风险评价指标体系,针对各指标的模糊性和不确定性,将信息论中的熵值理论应用于洪灾风险评价中,借助GIS技术建立了基于熵权的洪灾风险空间模糊综合评价模型。实际应用结果表明:东江流域洪灾风险度最高的地方为河源市区、惠州市区、惠阳以及龙岗等经济较发达地区;而安全区域则位于流域中上游经济发展较为落后的山区;评价结果与流域风险实际情况吻合较好,验证了本文所提出的模型科学可靠,结果相对客观可信。%Entropy theory was used to combine with traditional fuzzy comprehensive assessment method to develop a spatially fuzzy model for flood hazard risk in this work. To improve weight allocation, weight coefficients of evaluation factors were derived from the available data reflecting information entropy. Application with GIS to the Dongjiang river basin indicates that the highest risk of this basin appears in the regions of Heyuan city, Huizhou city, Huiyang district, Dongguan city and Bao'an and Longgang, while the relatively safe region covers mountainous areas less economically developed in the lower-middle Dongjiang. Comparison with a few historical floods of the basin shows that the assessment map agrees well with the observed flood risk and it provides a reference for flood control and disaster assessment.

  14. 水灾恢复力评估研究:以湖南省长沙市为例%A FRAMEWORK TO UNDERSTAND AND QUANTITATIVELY ASSESS SOCIAL RESILIENCE TO FLOOD HAZARDS

    Institute of Scientific and Technical Information of China (English)

    葛怡; 史培军; 周忻; 辜智慧; 陈磊; 钱新; 刘婧; 徐伟

    2011-01-01

    依据恢复力和脆弱性的内在联系,提出适合水灾恢复力的评估模型,并选择湖南省长沙市为研究区进行恢复力指数构建的尝试.结果表明,"每一农业人口占有耕地""城乡消费水平差距"和"城乡收入水平差异"3个指标是影响研究区恢复力的关键因子.研究区水灾恢复力在1980-2006年问总体情况较为平稳,1990年的恢复力水平最低,2004年的恢复力水平最高.估算得出的2007年研究区水灾恢复力空间分布结果为芙蓉区最高,长沙县最低.%The objective is to develop a conceptual and methodological framework for analysis and measurement of flood resilience. According to relationship between resilience and vulnerability, a proper assessment model is developed and a pilot application is made in Changsha. With this method, three variables,which actually affect flood resilience in Changsha, have been found. The dynamic process of flood resilience in Changsha is calculated. Flood resilience index in nine districts or counties in Changsha is compared. This method is also appropriate for analysis of social resilience to other types of hazards, providing new ideas for community risk management.

  15. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas.

    Science.gov (United States)

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-08-05

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation.

  16. Hazard Maps in the Classroom.

    Science.gov (United States)

    Cross, John A.

    1988-01-01

    Emphasizes the use of geophysical hazard maps and illustrates how they can be used in the classroom from kindergarten to college level. Depicts ways that hazard maps of floods, landslides, earthquakes, volcanoes, and multi-hazards can be integrated into classroom instruction. Tells how maps may be obtained. (SLM)

  17. The use of historical data for the characterisation of multiple damaging hydrogeological events

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2003-01-01

    Full Text Available Landslides, floods and secondary floods (hereinafter called phenomena triggered by rainfall and causing extensive damage are reviewed in this paper. Damaging Hydrogeological Events (DHEs are defined as the occurrence of one or more simultaneous aforementioned phenomena. A method for the characterisation of DHEs based upon historic data is proposed. The method is aimed at assessing DHE-related hazard in terms of recurrence, severity, damage, and extent of the affected area. Using GIS, the DHEs historical and climatic data collection, the geomorphological and hydrogeological characterisation of the hit areas, the characterisation of induced damage, the evaluation of triggering rainfall return period and critical duration of each DHE were carried out. The approach was applied to a test site in Southern Italy (Calabria for validation purposes. A database was set up including data from 24 events which have occurred during an 80-year period. The spatial distribution of phenomena was analysed together with the return period of cumulative rainfall. The trend of the occurred phenomena was also compared with the climatic trend. Four main types of Damaging Hydrogeological Events were identified in the study area.

  18. Long-term entrenchment and consequences for present flood hazard in the Garona River (Val d'Aran, Central Pyrenees, Spain)

    Science.gov (United States)

    Victoriano, Ane; García-Silvestre, Marta; Furdada, Glòria; Bordonau, Jaume

    2016-09-01

    On 18 June 2013, a damaging flood of the Garona River (Val d'Aran, Central Pyrenees, Spain) caused losses exceeding EUR 100 million. Few studies have related flood events to the geologic, tectonic and geomorphologic context. This study deals with both short- and long-term processes by studying the upper reach of the Garona River on different timescales and space scales. There has been a clear entrenchment tendency of the drainage network since the Miocene. Post-orogenic exhumation and uplift of the Axial Pyrenees determines the recent and active tectonics of the area and leads to fluvial incision. The last Upper Pleistocene glaciation affected Val d'Aran and gave rise to a destabilization period during the glacial-interglacial transition, marked by a postglacial incision tendency. Mean entrenchment rates between 0.68 and 1.56 mm yr-1 since deglaciation have been estimated. The assessment of the 2013 flood, characterized by the predominance of vertical incision and bank erosion, suggests that the long-term tendency of the fluvial system is reflected in short-term processes. The study of the geologic and geomorphologic evolution, combined with the analysis of this 30-50-year return period flood event, helps to improve flood risk management by providing contextual information that can constrain predictions and help guide choices and decisions. In fact, the millennial entrenchment tendency is shown at the human scale, which is considered useful for river management, but could be imperceptible in detailed hydrodynamic and channel morphology studies that describe river dynamics mostly at the 10-15-year timescale.

  19. Capturing spatial and temporal patterns of widespread, extreme flooding across Europe

    Science.gov (United States)

    Busby, Kathryn; Raven, Emma; Liu, Ye

    2013-04-01

    Statistical characterisation of physical hazards is an integral part of probabilistic catastrophe models used by the reinsurance industry to estimate losses from large scale events. Extreme flood events are not restricted by country boundaries which poses an issue for reinsurance companies as their exposures often extend beyond them. We discuss challenges and solutions that allow us to appropriately capture the spatial and temporal dependence of extreme hydrological events on a continental-scale, which in turn enables us to generate an industry-standard stochastic event set for estimating financial losses for widespread flooding. By presenting our event set methodology, we focus on explaining how extreme value theory (EVT) and dependence modelling are used to account for short, inconsistent hydrological data from different countries, and how to make appropriate statistical decisions that best characterise the nature of flooding across Europe. The consistency of input data is of vital importance when identifying historical flood patterns. Collating data from numerous sources inherently causes inconsistencies and we demonstrate our robust approach to assessing the data and refining it to compile a single consistent dataset. This dataset is then extrapolated using a parameterised EVT distribution to estimate extremes. Our method then captures the dependence of flood events across countries using an advanced multivariate extreme value model. Throughout, important statistical decisions are explored including: (1) distribution choice; (2) the threshold to apply for extracting extreme data points; (3) a regional analysis; (4) the definition of a flood event, which is often linked with reinsurance industry's hour's clause; and (5) handling of missing values. Finally, having modelled the historical patterns of flooding across Europe, we sample from this model to generate our stochastic event set comprising of thousands of events over thousands of years. We then briefly

  20. Coastal flooding in Denmark – future outlook

    DEFF Research Database (Denmark)

    Sørensen, C.; Knudsen, P.; Andersen, O. B.

    2014-01-01

    Water loading from all directions due to river discharge, precipitation, groundwater and the sea state (i.e. mean and extreme water levels) need to be carefully considered when dealing with flooding hazards at the coast. Flooding hazard and risk mapping are major topics in low-lying coastal are......- as before even considering the adverse effects of climate change and sea level rise (SLR). From an assessment of Danish sea extremes from historical evidence, tide gauge series, and space measurements, we discuss the current and future hazards, exposure, and vulnerability to flooding along the diverse...... Danish coastline in the transition between the Baltic Sea and the North Sea. The evaluation of the extreme statistics and their applicability in flooding hazard and risk management, and a presentation of the hazard and risk mapping performed through the implementation of the EU Floods Directive using...

  1. The hostel or the warehouse? Spatiotemporal exposure assessment for natural hazards

    Science.gov (United States)

    Fuchs, S.; Keiler, M.; Zischg, A.

    2015-04-01

    A spatially explicit object-based temporal assessment of buildings and citizens exposed to natural hazards in Austria is presented, including elements at risk to river flooding, torrential flooding, and snow avalanches. It is shown that the repeatedly-stated assumption of increasing losses due to continued population growth and related increase in assets has to be opposed to the local development of building stock. While some regions have shown a clearly above-average increase in assets, other regions were characterised by a below-average development. This mirrors the topography of the country, but also the different economic activities. While hotels and hostels are extraordinary prone to mountain hazards, commercial buildings as well as buildings used for recreation purpose are considerably exposed to river flooding. Residential buildings have shown an average exposure, compared to the amount of buildings of this type in the overall building stock. In sum, around 5% of all buildings are exposed to mountain hazards, and around 9% to river flooding, with around 1% of the buildings stock being multi-exposed. It is shown that the dynamics of elements at risk exposed have a time lag once land use regulations are enforced, and it is concluded that an object-based assessment has clear advantages compared to the assessment using aggregated land use data.

  2. The hostel or the warehouse? Spatiotemporal exposure assessment for natural hazards

    Directory of Open Access Journals (Sweden)

    S. Fuchs

    2015-04-01

    Full Text Available A spatially explicit object-based temporal assessment of buildings and citizens exposed to natural hazards in Austria is presented, including elements at risk to river flooding, torrential flooding, and snow avalanches. It is shown that the repeatedly-stated assumption of increasing losses due to continued population growth and related increase in assets has to be opposed to the local development of building stock. While some regions have shown a clearly above-average increase in assets, other regions were characterised by a below-average development. This mirrors the topography of the country, but also the different economic activities. While hotels and hostels are extraordinary prone to mountain hazards, commercial buildings as well as buildings used for recreation purpose are considerably exposed to river flooding. Residential buildings have shown an average exposure, compared to the amount of buildings of this type in the overall building stock. In sum, around 5% of all buildings are exposed to mountain hazards, and around 9% to river flooding, with around 1% of the buildings stock being multi-exposed. It is shown that the dynamics of elements at risk exposed have a time lag once land use regulations are enforced, and it is concluded that an object-based assessment has clear advantages compared to the assessment using aggregated land use data.

  3. Mitigating flood exposure

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  4. Flood damage assessment – Literature review and recommended procedure

    DEFF Research Database (Denmark)

    Olesen, Lea; Löwe, Roland; Arnbjerg-Nielsen, Karsten

    The assessment of flood risk is an essential tool in evaluating the potential consequences of a flood. The analysis of the risk can be applied as part of the flood plain management, but can also be used in a cost-benefit analysis, when comparing different adaption strategies. This analysis...... is therefore important when assessing flood disaster mitigation options and economical optimizations of possible measures. A common definition is that the flood risk is found with the use of a flood hazard assessment and a flood vulnerability assessment (Apel, Merz and Thieken, 2008). The flood hazard...... is the quantification of amount, extent, and location of flooding expected to occur with a given return period. This means that the spatial distribution of the calculated inundation depth as a function of the return period can be used to describe the flood hazard. The vulnerability is the susceptibility of the area...

  5. Assessment of Coastal and Urban Flooding Hazards Applying Extreme Value Analysis and Multivariate Statistical Techniques: A Case Study in Elwood, Australia

    Science.gov (United States)

    Guimarães Nobre, Gabriela; Arnbjerg-Nielsen, Karsten; Rosbjerg, Dan; Madsen, Henrik

    2016-04-01

    Traditionally, flood risk assessment studies have been carried out from a univariate frequency analysis perspective. However, statistical dependence between hydrological variables, such as extreme rainfall and extreme sea surge, is plausible to exist, since both variables to some extent are driven by common meteorological conditions. Aiming to overcome this limitation, multivariate statistical techniques has the potential to combine different sources of flooding in the investigation. The aim of this study was to apply a range of statistical methodologies for analyzing combined extreme hydrological variables that can lead to coastal and urban flooding. The study area is the Elwood Catchment, which is a highly urbanized catchment located in the city of Port Phillip, Melbourne, Australia. The first part of the investigation dealt with the marginal extreme value distributions. Two approaches to extract extreme value series were applied (Annual Maximum and Partial Duration Series), and different probability distribution functions were fit to the observed sample. Results obtained by using the Generalized Pareto distribution demonstrate the ability of the Pareto family to model the extreme events. Advancing into multivariate extreme value analysis, first an investigation regarding the asymptotic properties of extremal dependence was carried out. As a weak positive asymptotic dependence between the bivariate extreme pairs was found, the Conditional method proposed by Heffernan and Tawn (2004) was chosen. This approach is suitable to model bivariate extreme values, which are relatively unlikely to occur together. The results show that the probability of an extreme sea surge occurring during a one-hour intensity extreme precipitation event (or vice versa) can be twice as great as what would occur when assuming independent events. Therefore, presuming independence between these two variables would result in severe underestimation of the flooding risk in the study area.

  6. A GIS based approach for the prediction of the dam break flood hazard – A case study of Zardezas reservoir “Skikda, Algeria”

    OpenAIRE

    2015-01-01

    The construction of dams in rivers can offer many advantages, however the consequences resulting from their failure could result in major damage, including loss of life and property destruction. To mitigate the threats of dam break it is essential to appreciate the characteristics of the potential flood in realistic manner. In this study an approach based on the integration of hydraulic modelling and GIS has been used to assess the risks resulting from a potential failure of Zardezas dam, a c...

  7. 西南地区公路洪灾孕灾环境分区%ZONATION OF HIGHWAY-FLOODING IN SOUTHWEST CHINA BASED ON HAZARD-INDUCING ENVIRONMENTAL FACTORS

    Institute of Scientific and Technical Information of China (English)

    林孝松; 陈洪凯; 王先进; 唐红梅; 褚春超; 覃庆梅; 梁学战; 陈远川

    2012-01-01

    以西南地区公路洪灾为研究对象,在孕灾因子分析基础上构建由6个因子组成的孕灾环境分区指标体系,利用层次分析和专家效度相耦合方法确定各指标权重,采用综合指数法建立孕灾环境综合指数评价模型。在Arc-GIS软件平台支持下获取各评价指标数据,并计算得到各网格孕灾环境综合指数值,以县级行政区为单位进行公路洪灾孕灾等级区的划分。研究表明:西南地区孕育公路洪灾发生的环境条件较充分,孕灾环境综合指数值在33.13~77.46,孕灾分区主要集中在中易发区和高易发区,其中高易发区占整个研究区面积的57.18%,中易发区占40.39%,低易发区占2.43%,公路管理部门在汛期防治洪灾的任务较繁重。%The paper studies highway flooding in Southwest China,and 6 factors including developing conditions for geological disasters,geomorphological conditions,geological lithology,average annual rainfall,vegetation coverage and geological-tectonic conditions along the highway have been selected to construct the Index System of hazards inducing environment zoning.The index weight were obtained through the combination of AHP and expert reliability,and the comprehensive index evaluation model for hazards developing environment was built.Supported by ArcGIS,comprehensive index for hazards developing environment in each grid was calculated by the analysis data of each index precisely obtained through 1 km×1 km grids,then hazards developing environment of highway flooding in Southwest China were devided into different zones according to county administrative districts.The results show that Southwest areas have sufficient environment conditions for highway flooding,the comprehensive index of hazards developing environment ranges from 33.13 to77.46,and the hazards inducing environment zones are mainly distributed in high easy-happening area and medium easy-happening area,among which high easy-happening area

  8. Estimation of extreme flash flood evolution in Barcelona County from 1351 to 2005

    Directory of Open Access Journals (Sweden)

    A. Barrera

    2006-01-01

    Full Text Available Every year, flash floods cause economic losses and major problems for undertaking daily activity in the Catalonia region (NE Spain. Sometimes catastrophic damage and casualties occur. When a long term analysis of floods is undertaken, a question arises regarding the changing role of the vulnerability and the hazard in risk evolution. This paper sets out to give some information to deal with this question, on the basis of analysis of all the floods that have occurred in Barcelona county (Catalonia since the 14th century, as well as the flooded area, urban evolution, impacts and the weather conditions for any of most severe events. With this objective, the identification and classification of historical floods, and characterisation of flash-floods among these, have been undertaken. Besides this, the main meteorological factors associated with recent flash floods in this city and neighbouring regions are well-known. On the other hand, the identification of rainfall trends that could explain the historical evolution of flood hazard occurrence in this city has been analysed. Finally, identification of the influence of urban development on the vulnerability to floods has been carried out. Barcelona city has been selected thanks to its long continuous data series (daily rainfall data series, since 1854; one of the longest rainfall rate series of Europe, since 1921 and for the accurate historical archive information that is available (since the Roman Empire for the urban evolution. The evolution of flood occurrence shows the existence of oscillations in the earlier and later modern-age periods that can be attributed to climatic variability, evolution of the perception threshold and changes in vulnerability. A great increase of vulnerability can be assumed for the period 1850–1900. The analysis of the time evolution for the Barcelona rainfall series (1854–2000 shows that no trend exists, although, due to changes in urban planning, flash-floods impact

  9. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all...

  10. 44 CFR 71.3 - Denial of flood insurance.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Denial of flood insurance. 71... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF COASTAL BARRIER LEGISLATION § 71.3 Denial of flood insurance. (a) No new flood insurance...

  11. 18 CFR 801.8 - Flood plain management and protection.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  12. Carbon monoxide poisoning and flooding: changes in risk before, during and after flooding require appropriate public health interventions.

    Science.gov (United States)

    Waite, Thomas; Murray, Virginia; Baker, David

    2014-07-03

    Introduction While many of the acute risks posed by flooding and other disasters are well characterised, the burden of carbon monoxide (CO) poisoning and the wide range of ways in which this avoidable poisoning can occur around flooding episodes is poorly understood, particularly in Europe. The risk to health from CO may continue over extended periods of time after flooding and different stages of disaster impact and recovery are associated with different hazards. Methods A review of the literature was undertaken to describe the changing risk of CO poisoning throughout flooding/disaster situations. The key objectives were to identify published reports of flood-related carbon monoxide incidents that have resulted in a public health impact and to categorise these according to Noji's Framework of Disaster Phases (Noji 1997); to summarise and review carbon monoxide incidents in Europe associated with flooding in order to understand the burden of CO poisoning associated with flooding and power outages; and to summarise those strategies in Europe which aim to prevent CO poisoning that have been published and/or evaluated. The review identified 23 papers which met its criteria. The team also reviewed and discussed relevant government and non-government guidance documents. This paper presents a summary of the outcomes and recommendations from this review of the literature. Results Papers describing poisonings can be considered in terms of the appliance/source of CO or the circumstances leading to poisoning.The specific circumstances identified which lead to CO poisoning during flooding and other disasters vary according to disaster phase. Three key situations were identified in which flooding can lead to CO poisoning; pre-disaster, emergency/recovery phase and post-recovery/delayed phase. These circumstances are described in detail with case studies. This classification of situations is important as different public health messages are more appropriate at different phases

  13. Carbon Monoxide Poisoning and Flooding: Changes in Risk Before, During and After Flooding Require Appropriate Public Health Interventions

    Science.gov (United States)

    Waite, Thomas; Murray, Virginia; Baker, David

    2014-01-01

    Introduction While many of the acute risks posed by flooding and other disasters are well characterised, the burden of carbon monoxide (CO) poisoning and the wide range of ways in which this avoidable poisoning can occur around flooding episodes is poorly understood, particularly in Europe. The risk to health from CO may continue over extended periods of time after flooding and different stages of disaster impact and recovery are associated with different hazards. Methods A review of the literature was undertaken to describe the changing risk of CO poisoning throughout flooding/disaster situations. The key objectives were to identify published reports of flood-related carbon monoxide incidents that have resulted in a public health impact and to categorise these according to Noji’s Framework of Disaster Phases (Noji 1997); to summarise and review carbon monoxide incidents in Europe associated with flooding in order to understand the burden of CO poisoning associated with flooding and power outages; and to summarise those strategies in Europe which aim to prevent CO poisoning that have been published and/or evaluated. The review identified 23 papers which met its criteria. The team also reviewed and discussed relevant government and non-government guidance documents. This paper presents a summary of the outcomes and recommendations from this review of the literature. Results Papers describing poisonings can be considered in terms of the appliance/source of CO or the circumstances leading to poisoning.The specific circumstances identified which lead to CO poisoning during flooding and other disasters vary according to disaster phase. Three key situations were identified in which flooding can lead to CO poisoning; pre-disaster, emergency/recovery phase and post-recovery/delayed phase. These circumstances are described in detail with case studies. This classification of situations is important as different public health messages are more appropriate at different

  14. Natural Hazards characterisation in industrial practice

    Science.gov (United States)

    Bernardara, Pietro

    2017-04-01

    The definition of rare hydroclimatic extremes (up to 10-4 annual probability of occurrence) is of the utmost importance for the design of high value industrial infrastructures, such as grids, power plants, offshore platforms. The underestimation as well as the overestimation of the risk may lead to huge costs (ex. mid-life expensive works or overdesign) which may even prevent the project to happen. Nevertheless, the uncertainty associated to the extrapolation towards the rare frequencies are huge and manifold. They are mainly due to the scarcity of observations, the lack of quality on the extreme value records and on the arbitrary choice of the models used for extrapolations. This often put the design engineers in uncomfortable situations when they must choose the design values to use. Providentially, the recent progresses in the earth observation techniques, information technology, historical data collection and weather and ocean modelling are making huge datasets available. A careful use of big datasets of observations and modelled data are leading towards a better understanding of the physics of the underlying phenomena, the complex interactions between them and thus of the extreme events frequency extrapolations. This will move the engineering practice from the single site, small sample, application of statistical analysis to a more spatially coherent, physically driven extrapolation of extreme values. Few examples, from the EDF industrial practice are given to illustrate these progresses and their potential impact on the design approaches.

  15. Health impacts of floods.

    Science.gov (United States)

    Du, Weiwei; FitzGerald, Gerard Joseph; Clark, Michele; Hou, Xiang-Yu

    2010-01-01

    Floods are the most common hazard to cause disasters and have led to extensive morbidity and mortality throughout the world. The impact of floods on the human community is related directly to the location and topography of the area, as well as human demographics and characteristics of the built environment. The aim of this study is to identify the health impacts of disasters and the underlying causes of health impacts associated with floods. A conceptual framework is developed that may assist with the development of a rational and comprehensive approach to prevention, mitigation, and management. This study involved an extensive literature review that located >500 references, which were analyzed to identify common themes, findings, and expert views. The findings then were distilled into common themes. The health impacts of floods are wide ranging, and depend on a number of factors. However, the health impacts of a particular flood are specific to the particular context. The immediate health impacts of floods include drowning, injuries, hypothermia, and animal bites. Health risks also are associated with the evacuation of patients, loss of health workers, and loss of health infrastructure including essential drugs and supplies. In the medium-term, infected wounds, complications of injury, poisoning, poor mental health, communicable diseases, and starvation are indirect effects of flooding. In the long-term, chronic disease, disability, poor mental health, and poverty-related diseases including malnutrition are the potential legacy. This article proposes a structured approach to the classification of the health impacts of floods and a conceptual framework that demonstrates the relationships between floods and the direct and indirect health consequences.

  16. Understanding the effects of past flood events and perceived and estimated flood risks on individuals' voluntary flood insurance purchase behavior.

    Science.gov (United States)

    Shao, Wanyun; Xian, Siyuan; Lin, Ning; Kunreuther, Howard; Jackson, Nida; Goidel, Kirby

    2017-01-01

    Over the past several decades, the economic damage from flooding in the coastal areas has greatly increased due to rapid coastal development coupled with possible climate change impacts. One effective way to mitigate excessive economic losses from flooding is to purchase flood insurance. Only a minority of coastal residents however have taken this preventive measure. Using original survey data for all coastal counties of the United States Gulf Coast merged with contextual data, this study examines the effects of external influences and perceptions of flood-related risks on individuals' voluntary behaviors to purchase flood insurance. It is found that the estimated flood hazard conveyed through the U.S. Federal Emergency Management Agency's (FEMA's) flood maps, the intensities and consequences of past storms and flooding events, and perceived flood-related risks significantly affect individual's voluntary purchase of flood insurance. This behavior is also influenced by home ownership, trust in local government, education, and income. These findings have several important policy implications. First, FEMA's flood maps have been effective in conveying local flood risks to coastal residents, and correspondingly influencing their decisions to voluntarily seek flood insurance in the U.S. Gulf Coast. Flood maps therefore should be updated frequently to reflect timely and accurate information about flood hazards. Second, policy makers should design strategies to increase homeowners' trust in the local government, to better communicate flood risks with residents, to address the affordability issue for the low-income, and better inform less educated homeowners through various educational programs. Future studies should examine the voluntary flood insurance behavior across countries that are vulnerable to flooding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Determining the Optimum Post Spacing of LIDAR-Derived Elevation Data in Varying Terrain for Flood Hazard Mapping Purposes in North Carolina and Texas

    Science.gov (United States)

    Berglund, Judith; Davis, Bruce; Estep, Lee

    2004-01-01

    The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality

  18. SHYREG, a national database of flood frequency estimation

    Directory of Open Access Journals (Sweden)

    Arnaud Patrick

    2016-01-01

    Full Text Available SHYREG method is a regionalized method for rainfall and flood frequency analysis (FFA. It is based on processes simulation. It couples an hourly rainfall generator with a rainfall-runoff model, simplified enough to be regionalized. The method has been calibrated using all hydro meteorological data available at the national level. In France, that represents about 2800 raingauges of the French Weather Service network and about 1800 stations of the hydrometric National Bank network. Then, the method has been regionalized to provide a rainfall and flow quantiles database. An evaluation of the method was carried out during different thesis works and more recently during the ANR project Extraflo, with the aim of comparing different FFA approaches. The accuracy of the method in estimating rainfall and flow quantiles has been proved, as well as its stability due to a parameterization based on average values. The link with rainfall seems preferable to extrapolation based solely on the flow. Thus, another interest of the method is to take into account extreme flood behaviour with help of rainfall frequency estimation. In addition, the approach is implicitly multi-durational, and only one regionalization meets all the needs in terms hydrological hazards characterisation. For engineering needs and to avoid repeating the method implementation, this method has been applied throughout a 50 meters resolution mesh to provide a complete flood quantiles database over the French territory providing regional information on hydrological hazards. However, it is subject to restrictions related to the nature of the method: the SHYREG flows are “natural”, and do not take into account specific cases like the basins highly influenced by presence of hydraulic works, flood expansion areas, high snowmelt or karsts. Information about these restrictions and uncertainty estimation is provided with this database, which can be consulted via web access.

  19. 遥感和GIS在冰湖溃决洪水中的应用研究%An Application Research of Remote Sensing and GISi n Glacial Lake Outburst Flood Hazards

    Institute of Scientific and Technical Information of China (English)

    张福存

    2015-01-01

    近年来随着全球气候变暖和冰川退缩,以及人类在高海拔地区活动的增多,冰湖溃决洪水灾害呈增加趋势。由于遥感和GIS技术的众多优势,使其在冰湖溃决洪水研究方面得到广泛应用。首先对冰湖溃决洪水及其研究做简单介绍,然后从冰川、冰湖空间数据获取,冰湖溃决评价指标获取,冰湖溃决洪水模拟和DEM的建立及应用4个方面对遥感和GIS在冰湖溃决洪水研究中的应用进行综述,最后指出,目前遥感和GIS在冰湖溃决洪水应用中的不足,为进一步研究和应用指明了方向。%Abstrca t:With the atmospheric warming and glacier retreating in recent years, GLOF ( Glacial Lake Outburst Flood) hazards are in-creasingly threatening people ( s life and property.Researches on GLOFs have made great progress.Because of many advantages of Re-mote Sensing and GIS, they are used widely in GLOFs which situate in inaccessible high-mountain regions.At first, this paper sim-ply introduces GLOF hazards and researches on it .Then it provides an overview about the application of Remote sensing and GIS in GLOF hazards from mapping of glacier and glacial lake, Acquisition of candidate indexes for glacial lake risk assessment, Glacial lake outburst modeling as well as generation and use of remote sensing-derived DEMs.Finally, the paper outlines insufficiency of applica-tion of Remote Sensing and GIS in GLOF hazards, which help us focus on researches about Remote Sensing and GIS for better using them in GLOF hazards.

  20. Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia

    Science.gov (United States)

    Llasat, Maria Carmen; Marcos, Raul; Turco, Marco; Gilabert, Joan; Llasat-Botija, Montserrat

    2016-10-01

    The aim of this paper is to analyse the potential relationship between flash flood events and convective precipitation in Catalonia, as well as any related trends. The paper starts with an overview of flash floods and their trends in the Mediterranean region, along with their associated factors, followed by the definition of, identification of, and trends in convective precipitation. After this introduction the paper focuses on the north-eastern Iberian Peninsula, for which there is a long-term precipitation series (since 1928) of 1-min precipitation from the Fabra Observatory, as well as a shorter (1996-2011) but more extensive precipitation series (43 rain gauges) of 5-min precipitation. Both series have been used to characterise the degree of convective contribution to rainfall, introducing the β parameter as the ratio between convective precipitation versus total precipitation in any period. Information about flood events was obtained from the INUNGAMA database (a flood database created by the GAMA team), with the aim of finding any potential links to convective precipitation. These flood data were gathered using information on damage where flood is treated as a multifactorial risk, and where any trend or anomaly might have been caused by one or more factors affecting hazard, vulnerability or exposure. Trend analysis has shown an increase in flash flood events. The fact that no trends were detected in terms of extreme values of precipitation on a daily scale, nor on the associated ETCCDI (Expert Team on Climate Change Detection and Indices) extreme index, could point to an increase in vulnerability, an increase in exposure, or changes in land use. However, the summer increase in convective precipitation was concentrated in less torrential events, which could partially explain this positive trend in flash flood events. The β parameter has been also used to characterise the type of flood event according to the features of the precipitation. The highest values

  1. Using field data and HSR imagery to downscale vulnerability assessment of buildings and local infrastructure facing hazards from floods and hyperconcentrated flows

    Science.gov (United States)

    Ettinger, Susanne; Manrique Llerena, Nélida Victoria; Thouret, Jean-Claude

    2014-05-01

    The focus of this study is the analysis of post-flood conditions along the Venezuela channel in the large city of Arequipa, south Peru, in order to identify the parameters determining vulnerability of buildings and infrastructure. Two tributaries draining a c. 11.9 km2 large catchment feed the Venezuela channel. Before joining the main Rio Chili valley to the West, it crosses the city from NE to SW. Over a total length of 5.2 km, channel depth ranges from 1.3 to 6.3 m and c. 40% of the channel sections do not exceed 5 m in width. On 8 February 2013, 123 mm of rainfall within 3 hours (monthly mean: 29.3 mm) triggered a flashflood inundating at least 0.4 km2 of urban settlements along the channel. The flood damaged 14 buildings, 23 among 53 bridges, and led to the partial collapse of main road sections paralyzing central parts of the city for at least one week. This research relies on (1) analyzing post-flood conditions and assessing damage types caused by the 8 February 2013 flood; (2) mapping of the channel characteristics (slope, wetted section, sinuosity, type of river banks, bed roughness, etc.) and buildings, bridges, and contention walls potentially exposed to inundation. Data collection and analysis have been based on high spatial resolution (HSR) images (SPOT5 2007, Google Earth Pro and BINGMAP 2012, PLEIADES 2012-2013). Field measurements (GPS, laser and geomorphologic mapping) were used to ground truth channel width, depth, as well as building outlines, contention walls and bridge characteristics (construction material, opening size, etc.). An inventory of 25 city blocks (1500 to 20000 m2; 6 to 157 houses per block) has been created in a GIS database in order to estimate their physical vulnerability. As many as 717 buildings have been surveyed along the affected drainage and classified according to four building types based on their structural characteristics. Output vulnerability maps show that the varying channel characteristics, i.e. bank type, bed

  2. Adapting flood preparedness tools to changing flood risk conditions: the situation in Poland⁎ The preparation of this paper was funded from the EU FP7 STAR-FLOOD Project (STrengthening And Redesigning European FLOOD risk practices: Towards appropriate and resilient flood risk governance arrangements. This project also provided funding for the author’s participation at the BALTEX Conference.

    Directory of Open Access Journals (Sweden)

    Zbigniew W. Kundzewicz

    2014-01-01

    Full Text Available Flooding is the most destructive natural hazard in the Baltic Sea Basin in general and in Poland in particular. The notion includes floods from rivers and mountain torrents, as well as floods from sea surges in coastal areas, and floods from sewage systems. There have been several large floods in Poland in the last century and in recent decades, with damage exceeding 1% of the Polish GDP. The spatial and temporal characteristics of the flood risk in Poland are reviewed and observations and projections of changes in the flood hazard in the country are discussed. Furthermore, flood defences and flood preparedness systems in Poland are examined, with particular reference to the European Union (EU Floods Directive, which is being implemented in Poland, an EU country. Finally, the public debate on flood risk and flood preparedness is reviewed.

  3. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas

    OpenAIRE

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-01-01

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general proc...

  4. Assessing flash flood vulnerability using a multi-vulnerability approach

    Directory of Open Access Journals (Sweden)

    Karagiorgos Konstantinos

    2016-01-01

    Full Text Available In the framework of flood risk assessment, while the understanding of hazard and exposure has significantly improved over the last years, knowledge on vulnerability remains one of the challenges. Current approaches in vulnerability research are characterised by a division between social scientists and natural scientists. In order to close this gap, we present an approach that combines information on physical and social vulnerability in order to merge information on the susceptibility of elements at risk and society. With respect to physical vulnerability, the study is based on local-scale vulnerability models using nonlinear regression approaches. Modified Weibull distributions were fit to the data in order to represent the relationship between process magnitude and degree of loss. With respect to social vulnerability we conducted a door-to-door survey which resulted in particular insights on flood risk awareness and resilience strategies of exposed communities. In general, both physical and social vulnerability were low in comparison with other European studies, which may result from (a specific building regulations in the four Mediterranean test sites as well as general design principles leading to low structural susceptibility of elements at risk, and (b relatively low social vulnerability of citizens exposed. As a result it is shown that a combination of different perspectives of vulnerability will lead to a better understanding of exposure and capacities in flood risk management.

  5. An analysis of European riverine flood risk and adaptation measures under projected climate change

    Science.gov (United States)

    Bouwer, Laurens; Burzel, Andreas; Holz, Friederike; Winsemius, Hessel; de Bruijn, Karind

    2015-04-01

    There is increasing need to assess costs and benefits of adaptation at scales beyond the river basin. In Europe, such estimates are required at the European scale in order to set priorities for action and financing, for instance in the context of the EU Adaptation Strategy. The goal of this work as part of the FP7 BASE project is to develop a flood impact model that can be applied at Pan-European scale and that is able to project changes in flood risk due to climate change and socio-economic developments, and costs of adaptation. For this research, we build upon the global flood hazard estimation method developed by Winsemius et al. (Hydrology and Earth System Sciences, 2013), that produces flood inundation maps at different return period, for present day (EU WATCH) and future climate (IPCC scenarios RCP4.5 and 8.5, for five climate models). These maps are used for the assessment of flood impacts. We developed and tested a model for assessing direct economic flood damages by using large scale land use maps. We characterise vulnerable land use functions, in particular residential, commercial, industrial, infrastructure and agriculture, using depth-damage relationships. Furthermore, we apply up to NUTS3 level information on Gross Domestic Product, which is used as a proxy for relative differences in maximum damage values between different areas. Next, we test two adaptation measures, by adjusting flood protection levels and adjusting damage functions. The results show the projected changes in flood risk in the future. For example, on NUTS2 level, flood risk increases in some regions up to 179% (between the baseline scenario 1960-1999 and time slice 2010-2049). On country level there are increases up to 60% for selected climate models. The conference presentation will show the most relevant improvements in damage modelling on the continental scale, and results of the analysis of adaptation measures. The results will be critically discussed under the aspect of major

  6. Drivers of flood damage on event level

    DEFF Research Database (Denmark)

    Kreibich, H.; Aerts, J. C. J. H.; Apel, H.

    2016-01-01

    Flood risk is dynamic and influenced by many processes related to hazard, exposure and vulnerability. Flood damage increased significantly over the past decades, however, resulting overall economic loss per event is an aggregated indicator and it is difficult to attribute causes to this increasing...... trend. Much has been learned about damaging processes during floods at the micro-scale, e.g. building level. However, little is known about the main factors determining the amount of flood damage on event level. Thus, we analyse and compare paired flood events, i.e. consecutive, similar damaging floods...... that occurred in the same area. In analogy to ’Paired catchment studies’ - a well-established method in hydrology to understand how changes in land use affect streamflow – we will investigate how and why resulting flood damage in a region differed between the first and second consecutive flood events. One...

  7. F4100320001.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Seaside 1

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment....

  8. F4100300001D.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Gearhart

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment....

  9. F4100320001.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Seaside 1

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment....

  10. F4100320002C.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Seaside 2

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment....

  11. F4100300001D.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Gearhart

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk...

  12. F4100300001D.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Gearhart

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment....

  13. F4100320002C.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Seaside 2

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment....

  14. Flooding Fragility Experiments and Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tahhan, Antonio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Muchmore, Cody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nichols, Larinda [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bhandari, Bishwo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the work that has been performed on flooding fragility, both the experimental tests being carried out and the probabilistic fragility predictive models being produced in order to use the text results. Flooding experiments involving full-scale doors have commenced in the Portal Evaluation Tank. The goal of these experiments is to develop a full-scale component flooding experiment protocol and to acquire data that can be used to create Bayesian regression models representing the fragility of these components. This work is in support of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluation research and development.

  15. Review of health hazards and prevention measures for response and recovery workers and volunteers after natural disasters, flooding, and water damage: mold and dampness.

    Science.gov (United States)

    Johanning, Eckardt; Auger, Pierre; Morey, Philip R; Yang, Chin S; Olmsted, Ed

    2014-03-01

    Health problems and illnesses encountered by unprotected workers, first-responders, home-owners, and volunteers in recovery and restoration of moldy indoor environments after hurricanes, typhoons, tropical storms, and flooding damage are a growing concern for healthcare providers and disaster medicine throughout the world. Damp building materials, particularly cellulose-containing substrates, are prone to fungal (mold) and bacterial infestation. During remediation and demolition work, the airborne concentrations of such microbes and their by-products can rise significantly and result in an exposure risk. Symptoms reported by unprotected workers and volunteers may relate to reactions of the airways, skin, mucous membranes, or internal organs. Dampness-related fungi are primarily associated with allergies, respiratory symptoms or diseases such as dermatitis, rhinosinusitis, bronchitis, and asthma, as well as changes of the immunological system. Also, cognitive, endocrine, or rheumatological changes have been reported. Based on the consensus among experts at a recent scientific conference and a literature review, it is generally recommended to avoid and minimize unnecessary fungal exposure and use appropriate personal protective equipment (PPE) in disaster response and recovery work. Mycologists recommend addressing any moisture or water intrusion rapidly, since significant mold growth can occur within 48 h. Systematic source removal, cleaning with "soap and water," and "bulk removal" followed by high-efficiency particulate air vacuuming is recommended in most cases; use of "biocides" should be avoided in occupied areas. Public health agencies recommend use of adequate respiratory, skin, and eye protection. Workers can be protected against these diseases by use of dust control measures and appropriate personal protective equipment. At a minimum, a facial dust mask such as the National Institute for Occupational Safety and Health (NIOSH)-approved N95 respirator should

  16. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    Science.gov (United States)

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly.

  17. Composite Flood Risk for Virgin Island

    Science.gov (United States)

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  18. 2011 floods of the central United States

    Science.gov (United States)

    ,

    2013-01-01

    The Central United States experienced record-setting flooding during 2011, with floods that extended from headwater streams in the Rocky Mountains, to transboundary rivers in the upper Midwest and Northern Plains, to the deep and wide sand-bedded lower Mississippi River. The U.S. Geological Survey (USGS), as part of its mission, collected extensive information during and in the aftermath of the 2011 floods to support scientific analysis of the origins and consequences of extreme floods. The information collected for the 2011 floods, combined with decades of past data, enables scientists and engineers from the USGS to provide syntheses and scientific analyses to inform emergency managers, planners, and policy makers about life-safety, economic, and environmental-health issues surrounding flood hazards for the 2011 floods and future floods like it. USGS data, information, and scientific analyses provide context and understanding of the effect of floods on complex societal issues such as ecosystem and human health, flood-plain management, climate-change adaptation, economic security, and the associated policies enacted for mitigation. Among the largest societal questions is "How do we balance agricultural, economic, life-safety, and environmental needs in and along our rivers?" To address this issue, many scientific questions have to be answered including the following: * How do the 2011 weather and flood conditions compare to the past weather and flood conditions and what can we reasonably expect in the future for flood magnitudes?

  19. The connection between long-term and short-term risk management strategies for flood and landslide hazards: examples from land-use planning and emergency management in four European case studies

    Science.gov (United States)

    Prenger-Berninghoff, K.; Cortes, V. J.; Sprague, T.; Aye, Z. C.; Greiving, S.; Głowacki, W.; Sterlacchini, S.

    2014-12-01

    Adaptation to complex and unforeseen events requires enhancing the links between planning and preparedness phases to reduce future risks in the most efficient way. In this context, the legal-administrative and cultural context has to be taken into account. This is why four case study areas of the CHANGES1 project (Nehoiu Valley in Romania, Ubaye Valley in France, Val Canale in Italy, and Wieprzówka catchment in Poland) serve as examples to highlight currently implemented risk management strategies for land-use planning and emergency preparedness. The focus is particularly on flood and landslide hazards. The strategies described in this paper were identified by means of exploratory and informal interviews in each study site. Results reveal that a dearth or, in very few cases, a weak link exists between spatial planners and emergency managers. Management strategies could benefit from formally intensifying coordination and cooperation between emergency services and spatial planning authorities. Moreover, limited financial funds urge for a more efficient use of resources and better coordination towards long-term activities. The research indicates potential benefits to establishing or, in some cases, strengthening this link through contextual changes, e.g., in organizational or administrative structures, that facilitate proper interaction between risk management and spatial planning. It also provides suggestions for further development in the form of information and decision support systems as a key connection point. 1 Marie Curie ITN CHANGES - Changing Hydro-meteorological Risks as Analyzed by a New Generation of European Scientists

  20. Flooding Capability for River-based Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, Emerald [Idaho State Univ., Pocatello, ID (United States); Calhoun, Donna [Boise State Univ., ID (United States); Sampath, Ramprasad [Centroid Labs., Los Angeles, CA (United States); Anderson, S. Danielle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casteneda, Cody [Boise State Univ., ID (United States)

    2015-10-01

    This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.

  1. Influence of 2015 flood on the distribution and occurrence of microplastic pellets along the Chennai coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Mugilarasan, M.; Venkatachalapathy, R.; Vethamony, P.

    The sources, distribution, surface features, polymer composition and age of microplastic pellets (MPPs) in surface sediments along the Chennai coast during March 2015 (pre-Chennai flood) and November 2015 (post-Chennai flood) were characterised...

  2. Analysing and evaluating flood risk governance in the Netherlands: Drowning in safety

    NARCIS (Netherlands)

    Kaufmann, M.; Doorn-Hoekveld, W. van; Gilissen, H.K.; Rijswick, H.F.M.W. van

    2016-01-01

    The Netherlands has a long tradition of flood risk management, due to its special physical location in the delta of four major river systems. This low-lying country is historically characterised by a ‘fight against water’. The Flood Risk Governance Arrangement of the Netherlands is characterised by

  3. Improvements on flood alleviation in Germany: lessons learned from the Elbe flood in August 2002.

    Science.gov (United States)

    Petrow, Theresia; Thieken, Annegret H; Kreibich, Heidi; Bahlburg, Cord Heinrich; Merz, Bruno

    2006-11-01

    The increase in damage due to natural disasters is directly related to the number of people who live and work in hazardous areas and continuously accumulate assets. Therefore, land use planning authorities have to manage effectively the establishment and development of settlements in flood-prone areas in order to avoid the further increase of vulnerable assets. Germany faced major destruction during the flood in August 2002 in the Elbe and Danube catchments, and many changes have been suggested in the existing German water and planning regulations. This article presents some findings of a "Lessons Learned" study that was carried out in the aftermath of the flood and discusses the following topics: 1) the establishment of comprehensive hazard maps and flood protection concepts, 2) the harmonization of regulations of flood protection at the federal level, 3) the communication of the flood hazard and awareness strategies, and 4) how damage potential can be minimized through measures of area precaution such as resettlement and risk-adapted land use. Although attempts towards a coordinated and harmonized creation of flood hazard maps and concepts have been made, there is still no uniform strategy at all planning levels and for all states (Laender) of the Federal Republic of Germany. The development and communication of possible mitigation strategies for "unthinkable extreme events" beyond the common safety level of a 100-year flood are needed. In order to establish a sustainable and integrated flood risk management, interdisciplinary and catchment-based approaches are needed.

  4. 12 CFR 22.7 - Forced placement of flood insurance.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Forced placement of flood insurance. 22.7... HAVING SPECIAL FLOOD HAZARDS § 22.7 Forced placement of flood insurance. If a bank, or a servicer acting... or mobile home and any personal property securing the designated loan is not covered by...

  5. 44 CFR 64.3 - Flood Insurance Maps.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Insurance Maps. 64.3... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program COMMUNITIES ELIGIBLE FOR THE SALE OF INSURANCE § 64.3 Flood Insurance Maps. (a) The following maps may be prepared by...

  6. Volcanoes magnify Metro Manila’s southwest monsoon rains and lethal floods

    Directory of Open Access Journals (Sweden)

    Alfredo Mahar Amante Lagmay

    2015-01-01

    Full Text Available Many volcanoes worldwide are located near populated cities that experience monsoon seasons, characterised by shifting winds each year. Because of the severity of flood impact to large populations, it is worthy of investigation in the Philippines and elsewhere to better understand the phenomenon for possible hazard mitigating solutions, if any. During the monsoon season, the change in flow direction of winds brings moist warm air to cross the mountains and volcanoes in western Philippines and cause lift into the atmosphere, which normally leads to heavy rains and floods. Heavy southwest monsoon rains from 18-21 August 2013 flooded Metro Manila (population of 12 million and its suburbs paralyzing the nation’s capital for an entire week. Called the 2013 Habagat event, it was a repeat of the 2012 Habagat or extreme southwest monsoon weather from 6-9 August, which delivered record rains in the mega city. In both the 2012 and 2013 Habagat events, cyclones, the usual suspects for the delivery of heavy rains, were passing northeast of the Philippine archipelago, respectively, and enhanced the southwest monsoon. Analysis of Doppler data, rainfall measurements, and Weather Research and Forecasting (WRF model simulations show that two large stratovolcanoes, Natib and Mariveles, across from Manila Bay and approximately 70 km west of Metro Manila, played a substantial role in delivering extreme rains and consequent floods to Metro Manila. The study highlights how volcanoes, with their shape and height create an orographic effect and dispersive tail of rain clouds which constitutes a significant flood hazard to large communities like Metro Manila.

  7. Influence of flood risk characteristics on flood insurance demand: a comparison between Germany and the Netherlands

    Science.gov (United States)

    Seifert, I.; Botzen, W. J. W.; Kreibich, H.; Aerts, J. C. J. H.

    2013-07-01

    The existence of sufficient demand for insurance coverage against infrequent losses is important for the adequate function of insurance markets for natural disaster risks. This study investigates how characteristics of flood risk influence household flood insurance demand based on household surveys undertaken in Germany and the Netherlands. Our analyses confirm the hypothesis that willingness to pay (WTP) for insurance against medium-probability medium-impact flood risk in Germany is higher than WTP for insurance against low-probability high-impact flood risk in the Netherlands. These differences in WTP can be related to differences in flood experience, individual risk perceptions, and the charity hazard. In both countries there is a need to stimulate flood insurance demand if a relevant role of private insurance in flood loss compensation is regarded as desirable, for example, by making flood insurance compulsory or by designing information campaigns.

  8. An operational procedure for rapid flood risk assessment in Europe

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  9. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF...

  10. Social media for disaster response during floods

    Science.gov (United States)

    Eilander, D.; van de Vries, C.; Baart, F.; van Swol, R.; Wagemaker, J.; van Loenen, A.

    2015-12-01

    During floods it is difficult to obtain real-time accurate information about the extent and severity of the hazard. This information is very important for disaster risk reduction management and crisis relief organizations. Currently, real-time information is derived from few sources such as field reports, traffic camera's, satellite images and areal images. However, getting a real-time and accurate picture of the situation on the ground remains difficult. At the same time, people affected by natural hazards increasingly share their observations and their needs through digital media. Unlike conventional monitoring systems, Twitter data contains a relatively large number of real-time ground truth observations representing both physical hazard characteristics and hazard impacts. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at almost 900 tweets per minute during floods in early 2015. Flood events around the world in 2014/2015 yielded large numbers of flood related tweets: from Philippines (85.000) to Pakistan (82.000) to South-Korea (50.000) to Detroit (20.000). The challenge here is to filter out useful content from this cloud of data, validate these observations and convert them to readily usable information. In Jakarta, flood related tweets often contain information about the flood depth. In a pilot we showed that this type of information can be used for real-time mapping of the flood extent by plotting these observations on a Digital Elevation Model. Uncertainties in the observations were taken into account by assigning a probability to each observation indicating its likelihood to be correct based on statistical analysis of the total population of tweets. The resulting flood maps proved to be correct for about 75% of the neighborhoods in Jakarta. Further cross-validation of flood related tweets against (hydro-) meteorological data is to likely improve the skill of the method.

  11. Identification of spatial and temporal contributions of rainfalls to flash floods using neural network modelling: case study on the Lez Basin (Southern France

    Directory of Open Access Journals (Sweden)

    T. Darras

    2015-04-01

    Full Text Available Flash floods pose significant hazards in urbanised zones and have important human and financial implications in both the present and future due to the likelihood that global climate change will exacerbate their consequences. It is thus of crucial importance to better model these phenomena especially when they occur in heterogeneous and karst basins where they are difficult to describe physically. Toward this goal, this paper applies a recent methodology (KnoX methodology dedicated to extracting knowledge from a neural network model to better determine the contributions and time responses of several well-identified geographic zones of an aquifer. To assess the interest of this methodology, a case study was conducted in Southern France: the Lez hydrosystem whose river crosses the conurbation of Montpellier (400 000 inhabitants. Rainfall contributions and time transfers were estimated and analysed in four geologically-delimited zones to estimate the sensitivity of flash floods to water coming from the surface or karst. The Causse de Viol-le-Fort is shown to be the main contributor to flash floods and the delay between surface and underground flooding is estimated to be three hours. This study will thus help operational flood warning services to better characterise critical rainfall and develop measurements to design efficient flood forecasting models. This generic method can be applied to any basin with sufficient rainfall–runoff measurements.

  12. Spatial Modeling of Flood Sea Tides (Case Study: East Coast Semarang

    Directory of Open Access Journals (Sweden)

    Muhammad Aris Marfai

    2004-01-01

    Full Text Available The aims of this research are 1 to construct a spatial model of tidal flood hazard, 2 to do hazard analysis of tidal flood. Spatial modelling has been generated using Geographic Information System (GIS software and ILWIS software was seleccted to do the model operation. Neighborhood function and digital elevation model (DEM have been applied on the modelling calculation process. DEM data was correted and menipulated using map calculation on the digital form. Tidal flood hazard analysis has been done by means of map calulation on the tidal flood hazard map and detail landuse map. Histogram and tabulation from the result of the map calculation have been analyzed to identify the impact of the tidal flood hazard on the landuse. The highest impact of the tidal flood hazard occurs on the 1 meter of tidal flood level, where in the inundation occurs mainly on the fishpond and yard/ open space area.

  13. Flood Modelling of Banjir Kanal Barat (Integration of Hydrology Model and GIS

    Directory of Open Access Journals (Sweden)

    Muhammad Aris Marfai

    2004-01-01

    Full Text Available Hydrological modelling has an advantage on river flood study. Hydrological factors can be easily determined and calculated using hydrological model. HEC-RAS (Hydrological Engineering Centre-River Analysis System software is well known as hydrological modelling software for flood simulation and encroachment analysis of the floodplain area. For spatial performance and analysis of flood, the integration of the Geographic Information Systems (GIS and hydrological model is needed. The aims of this research are 1 to perform a flood encroachment using HEC-RAS software, and 2 to generate a flood hazard map. The methodology for this research omprise of 1 generating geometric data as a requirement of the data input on HEC-RAS hydrological model, 2 Hydrological data inputting, 3 generating of the flood encroachment analysis, and 4 transformation of flood encroachment into flood hazard map. The spatial pattern of the flood hazard is illustrated in a map. The result shows that hydrological model as integration with GIS can be used for flood hazard map generation. This method has advantages on the calculation of the hydrological factors of flood and spatial performance of the flood hazard map. For further analysis, the landuse map can be used on the overlay operation with the flood hazard map in order to obtain the impact of the flood on the landuse.

  14. Drivers of flood damage on event level

    Science.gov (United States)

    Kreibich, Heidi

    2016-04-01

    Flood risk is dynamic and influenced by many processes related to hazard, exposure and vulnerability. Flood damage increased significantly over the past decades, however, resulting overall economic loss per event is an aggregated indicator and it is difficult to attribute causes to this increasing trend. Much has been learned about damaging processes during floods at the micro-scale, e.g. building level. However, little is known about the main factors determining the amount of flood damage on event level. Thus, we analyse and compare paired flood events, i.e. consecutive, similar damaging floods that occurred in the same area. In analogy to 'Paired catchment studies' - a well-established method in hydrology to understand how changes in land use affect streamflow - we will investigate how and why resulting flood damage in a region differed between the first and second consecutive flood events. One example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number of resulting dyke breaches. Additionally, exposure hotspots like the city of Dresden at the Elbe river as well as some smaller municipalities at the river Mulde (e.g. Grimma, Eilenburg, Bitterfeld, Dessau) were severely impacted. However, affected parties and authorities learned from the extreme flood in 2002, and many governmental flood risk programs and initiatives were launched. Considerable improvements since 2002 occurred on many levels that deal with flood risk reduction and disaster response, in particular in 1) increased flood prevention by improved spatial planning, 2) an increased number of property-level mitigation measures, 3) more effective early warning and improved coordination of disaster response and 4) a more targeted maintenance of flood defence systems and their

  15. Developing a Malaysia flood model

    Science.gov (United States)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina

    2014-05-01

    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  16. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  17. How much physical complexity is needed to model flood inundation?

    OpenAIRE

    Neal, J.; Bates, P; Villanueva, I; Wright, N.; Willis, T; Fewtrell, T

    2011-01-01

    Two-dimensional flood inundation models are widely used tools for flood hazard mapping and an essential component of statutory flood risk management guidelines in many countries. Yet, we still do not know how much physical complexity a flood inundation model needs for a given problem. Here, three two-dimensional explicit hydraulic models, which can be broadly defined as simulating diffusive, inertial or shallow water waves, have been benchmarked using test cases from a recent Environment Agen...

  18. Environmental Hazards and Mud Volcanoes in Romania

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Romania, an eastern European country, is severely affected by a variety of natural hazards. These include frequent earthquakes, floods, landslides, soil erosion, and...

  19. 44 CFR 206.252 - Insurance requirements for facilities damaged by flood.

    Science.gov (United States)

    2010-10-01

    ... facilities damaged by flood. 206.252 Section 206.252 Emergency Management and Assistance FEDERAL EMERGENCY... Assistance Insurance Requirements § 206.252 Insurance requirements for facilities damaged by flood. (a) Where an insurable building damaged by flooding is located in a special flood hazard area identified...

  20. Interactions between land use and flood management in the Chi River Basin

    NARCIS (Netherlands)

    Kuntiyawichai, K.

    2012-01-01

    The damages and hardships caused by floods and flooding remain an issue and are continuously increasing in the Chi River Basin, Thailand. It is difficult to make an accurate assessment of the costs and consequences associated with floods. However, flood hazards can also be seen as an opportunity, a

  1. Implementing the EU Floods Directive (2007/60/EC) in Austria: Flood Risk Management Plans

    Science.gov (United States)

    Neuhold, Clemens

    2013-04-01

    he Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (EFD) aims at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the Community. This task is to be achieved based on three process steps (1) preliminary flood risk assessment (finalised by the end of 2011), (2) flood hazard maps and flood risk maps (due 2013) and (3) flood risk management plans (due 2015). Currently, an interdisciplinary national working group is defining the methodological framework for flood risk management plans in Austria supported by a constant exchange with international bodies and experts. Referring to the EFD the components of the flood risk management plan are (excerpt): 1. conclusions of the preliminary flood risk assessment 2. flood hazard maps and flood risk maps and the conclusions that can be drawn from those maps 3. a description of the appropriate objectives of flood risk management 4. a summary of measures and their prioritisation aiming to achieve the appropriate objectives of flood risk management The poster refers to some of the major challenges in this process, such as the legal provisions, coordination of administrative units, definition of public relations, etc. The implementation of the EFD requires the harmonisation of legal instruments of various disciplines (e.g. water management, spatial planning, civil protection) enabling a coordinated - and ideally binding - practice of flood risk management. This process is highly influenced by the administrative organisation in Austria - federal, provincial and municipality level. The Austrian approach meets this organisational framework by structuring the development of the flood risk management plan into 3 time-steps: (a) federal blueprint, (b) provincial editing and (c) federal finishing as well as reporting to the European Commission. Each time

  2. Flooding On

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ Drenched riverside towns in central and south parts of China were preparing for even worse flooding as water levels in the country's huge rivers surged and rainstorms continued. As of July 27,accumulated precipitation since June 16 in 70 percent of the drainage areas of the Yangtze River had exceeded 50 mm,after three rounds of rainstorms,said Cai Qihua,Deputy Director of the Yangtze River Flood Control and Drought Relief Headquarters.

  3. The Relative Severity of Single Hazards within a Multi-Hazard Framework

    Science.gov (United States)

    Gill, Joel C.; Malamud, Bruce D.

    2013-04-01

    Here we present a description of the relative severity of single hazards within a multi-hazard framework, compiled through examining, quantifying and ranking the extent to which individual hazards trigger or increase the probability of other hazards. Hazards are broken up into six major groupings (geophysical, hydrological, shallow earth processes, atmospheric, biophysical and space), with the interactions for 21 different hazard types examined. These interactions include both one primary hazard triggering a secondary hazard, and one primary hazard increasing the probability of a secondary hazard occurring. We identify, through a wide-ranging review of grey- and peer-review literature, >90 interactions. The number of hazard-type linkages are then summed for each hazard in terms of their influence (the number of times one hazard type triggers another type of hazard, or itself) and their sensitivity (the number of times one hazard type is triggered by other hazard types, or itself). The 21 different hazards are then ranked based on (i) influence and (ii) sensitivity. We found, by quantification and ranking of these hazards, that: (i) The strongest influencers (those triggering the most secondary hazards) are volcanic eruptions, earthquakes and storms, which when taken together trigger almost a third of the possible hazard interactions identified; (ii) The most sensitive hazards (those being triggered by the most primary hazards) are identified to be landslides, volcanic eruptions and floods; (iii) When sensitivity rankings are adjusted to take into account the differential likelihoods of different secondary hazards being triggered, the most sensitive hazards are found to be landslides, floods, earthquakes and ground heave. We believe that by determining the strongest influencing and the most sensitive hazards for specific spatial areas, the allocation of resources for mitigation measures might be done more effectively.

  4. A Lower Rhine flood chronology based on the sedimentary record of an abandoned channel fill

    Science.gov (United States)

    Toonen, W. H. J.; Winkels, T. G.; Prins, M. A.; de Groot, L. V.; Bunnik, F. P. M.; Cohen, K. M.

    2012-04-01

    variation measurements did allow to verify the initial age-depth model. Furthermore, initially modelled ages attributed to the five biggest floods were compared to hazardous events described in historical records. As these reproduce their dates within a decade, the dated flooding events are used as additional age tie-points for further improvement of the age-depth model. The refined model was in turn used to date floods of a medium magnitude, which are more common and thus more difficult to individually relate to a specific historical peak discharge. This case study demonstrates the suitability of channel fill sediment records for (palaeo)flood characterisation. Based on a network of sites (work in progress), it should be possible to provide an accurate (internally cross-validated) flood chronology for the Lower Rhine and delta. Moreover, given the preservation of filled oxbows from all periods along the Lower Rhine, it is possible to extend relative flood chronologies back to the Early Holocene using channel fill sedimentary data.

  5. Hazardous Waste

    Science.gov (United States)

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  6. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin

    Science.gov (United States)

    Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S.

    2015-07-01

    The Thailand floods in 2011 caused unprecedented economic damage in the Chao Phraya River basin. To diagnose the flood hazard characteristics, this study analyses the hydrologic sensitivity of flood runoff and inundation to rainfall. The motivation is to address why the seemingly insignificant monsoon rainfall, or 1.2 times more rainfall than for past large floods, including the ones in 1995 and 2006, resulted in such devastating flooding. To quantify the hydrologic sensitivity, this study simulated long-term rainfall-runoff and inundation for the entire river basin (160 000 km2). The simulation suggested that the flood inundation volume was 1.6 times more in 2011 than for the past flood events. Furthermore, the elasticity index suggested that a 1 % increase in rainfall causes a 2.3 % increase in runoff and a 4.2 % increase in flood inundation. This study highlights the importance of sensitivity quantification for a better understanding of flood hazard characteristics; the presented basin-wide rainfall-runoff-inundation simulation was an effective approach to analyse the sensitivity of flood runoff and inundation at the river basin scale.

  7. 77 FR 29678 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2012-05-18

    ....bakeraecom.com/index.php/florida/sumter-2/ City of Bushnell Code Compliance Division, 117 East Joe P... at: http://www.bakeraecom.com/index.php/south-dakota/mccook/ City of Salem City Hall, 400 North...

  8. 78 FR 72920 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-12-04

    ... regarding the SRP process can be found online at http://floodsrp.org/pdfs/srp_fact_sheet.pdf . The... Department, 121 Southwest Flagler Avenue, Stuart, FL 34994. Town of Jupiter Island Town Hall, 2...

  9. 78 FR 14577 - Final Flood Hazard Determinations

    Science.gov (United States)

    2013-03-06

    ... Rodriguez, Chief, Engineering Management Branch, Federal Insurance ] and Mitigation Administration, FEMA... Road, Minot, ME 04258. Town of Poland Town Office, 1231 Maine Street, Poland, ME 04274. Town...

  10. 78 FR 14578 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-03-06

    ... Earth Band of Minnesota Chippewa White Earth Tribal Indian. Administration, 35500 Eagle View Road, Ogema... Secretary's Office, 1705 Maple Street, Homestead, PA 15120. Borough of White Oak Borough Municipal Building, 2280 Lincoln Way, White Oak, PA 15131. Borough of Whitehall Whitehall Borough Complex, 100 Borough...

  11. 78 FR 48703 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-08-09

    ..., Pittsburgh, PA 15205. Borough of Dravosburg Borough Building, 226 Maple Avenue, Dravosburg, PA 15034. Borough.... Borough of Etna Etna Borough Office, 437 Butler Street, Pittsburgh, PA 15223. Borough of Forest Hills Forest Hills Borough Building, 2071 Ardmore Boulevard, Pittsburgh, PA 15221. Borough of Fox Chapel Fox...

  12. 78 FR 5826 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-01-28

    ..., 26 Corte Madera Avenue, Mill Valley, CA 94941. City of San Rafael Public Works Department, 111..., CA 94920. Town of Corte Madera Engineering Department, 233 Tamalpais Drive, Corte Madera, CA 94976...

  13. 78 FR 58334 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-09-23

    ... preliminaryfloodhazarddata City of Au Gres City Hall, 124 West Huron Road, Au Gres, MI 48703. City of Omer City Hall, 201... 48658. Township of Arenac Township Office, 2596 State Road, Standish, MI 48658. Township of Au Gres Township Office, 1865 Swenson Road, Au Gres, MI 48703. Township of Clayton Township Office, 1057 Dobler...

  14. 78 FR 48882 - Final Flood Hazard Determinations

    Science.gov (United States)

    2013-08-12

    ... 47012. Miami County, Kansas, and Incorporated Areas Docket No.: FEMA-B-1270 City of Fontana City Hall, 204 East North Street, Fontana, KS 66026. City of Louisburg City Hall, 5 South Peoria Street,...

  15. 78 FR 28888 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-05-16

    ... Harmony Town Hall, 520 Church Street, New Harmony, IN 47631. Unincorporated Areas of Posey County... Posey... Inspection Online at: www.starr-team.com/starr/RegionalWorkspaces/RegionVII/HowardCounty/SitePages/Home.aspx... Inspection Online at:...

  16. 78 FR 36220 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-06-17

    ..., Groves, TX 77619. City of Nederland Inspections Department, 1903 Atlanta Avenue, Nederland, TX 77627... Department, 324 North Memorial Freeway, Nederland, TX 77627. Unincorporated Areas of Jefferson...

  17. 78 FR 43906 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-07-22

    ..., identified by Docket No. FEMA-B-1330, to Luis Rodriguez, Chief, Engineering Management Branch, Federal..., Engineering Management Branch, Federal Insurance and Mitigation Administration, FEMA, 500 C Street SW... resolution process. SRPs are independent panels of experts in hydrology, hydraulics, and other...

  18. 78 FR 36217 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-06-17

    ..., identified by Docket No. FEMA-B-1325, to Luis Rodriguez, Chief, Engineering Management Branch, Federal..., Engineering Management Branch, Federal Insurance and Mitigation Administration, FEMA, 500 C Street SW... resolution process. SRPs are independent panels of experts in hydrology, hydraulics, and other...

  19. 77 FR 56669 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2012-09-13

    ..., Engineering Management Branch, Federal Insurance and Mitigation Administration, FEMA, 500 C Street SW... CONTACT: Luis Rodriguez, Chief, Engineering Management Branch, Federal Insurance and Mitigation... panels of experts in hydrology, hydraulics, and other pertinent sciences established to...

  20. 78 FR 36222 - Proposed Flood Hazard Determinations

    Science.gov (United States)

    2013-06-17

    ..., identified by Docket No. FEMA-B-1326, to Luis Rodriguez, Chief, Engineering Management Branch, Federal..., Engineering Management Branch, Federal Insurance and Mitigation Administration, FEMA, 500 C Street SW... resolution process. SRPs are independent panels of experts in hydrology, hydraulics, and other...