Sample records for flood basalt magmatism

  1. Duration of Parana magmatism and implications for the evolution and source regions of continental flood basalts

    International Nuclear Information System (INIS)

    Mantovani, M.S.M.; Stewart, K.; Turner, S.; Hawkesworth, C.J.


    Duration of Continental Floods Basalts magmatism has generally been considered to be extremely short. Ar-Ar data for different magma type, over a broad region within Parana, demonstrate a duration of 10 Ma, an order of magnitude greater than the usually accepted duration of magmatism. The dating method included rigorous geochemical selection tests, to discard altered samples, combined with the analysis of laser spot technique using the isochron approach. This methodology allows discrimination between rocks which yield precise ages and those which are too altered or heterogeneous. The agreement between the determined age and the relative stratigraphic position of samples supports the above statement. 4 figs

  2. Duration of Parana magmatism and implications for the evolution and source regions of continental flood basalts

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, M.S.M. [Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico; Stewart, K.; Turner, S.; Hawkesworth, C.J. [Open Univ., Milton Keynes (United Kingdom). Dept. of Earth Sciences


    Duration of Continental Floods Basalts magmatism has generally been considered to be extremely short. Ar-Ar data for different magma type, over a broad region within Parana, demonstrate a duration of 10 Ma, an order of magnitude greater than the usually accepted duration of magmatism. The dating method included rigorous geochemical selection tests, to discard altered samples, combined with the analysis of laser spot technique using the isochron approach. This methodology allows discrimination between rocks which yield precise ages and those which are too altered or heterogeneous. The agreement between the determined age and the relative stratigraphic position of samples supports the above statement. 4 figs.

  3. Isotopic signature of Madeira basaltic magmatism

    International Nuclear Information System (INIS)

    Kogarko, L.N.; Karpenko, S.F.; Bibikova, E.V.; Mato, Zh.


    Chemical composition of the basalts of Madeira Island is studied. To assess the isotopic sources of magmatism the Pb-Sr, Sm-Nd, U-Th-Pb systems were investigated in a number of basalts. It is shown that the island's rocks are characterized by the mostly deplet sources in relation to Pb-Sr and Sm-Nd systems ( 87 Sr/ 86 Sr - 0.70282-0.70292, 143 Nd/ 144 Nd - 0.52303-0.51314). Isotopic composition of lead testifies that the magmatism reservoir is some enriched. It is concluded that the magmatism of Madeira Island is a new example of world ocean island's volcanism [ru

  4. From initiation to termination: a petrostratigraphic tour of the Ethiopian Low-Ti Flood Basalt Province (United States)

    Krans, S. R.; Rooney, T. O.; Kappelman, J.; Yirgu, G.; Ayalew, D.


    Continental flood basalts (CFBs), thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insights into melt generation processes in large igneous provinces (LIPs). Despite the utility of CFBs in probing mantle plume composition, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of residence within the lithosphere provide additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well-preserved stratigraphic sequence from flood basalt initiation to termination, and is thus an important target for study of CFBs. This study examines modal observations within a stratigraphic framework and places these observations within the context of the magmatic evolution of the Ethiopian CFB province. Data demonstrate multiple pulses of magma recharge punctuated by brief shut-down events, with initial flows fed by magmas that experienced deeper fractionation (lower crust). Broad changes in modal mineralogy and flow cyclicity are consistent with fluctuating changes in magmatic flux through a complex plumbing system, indicating pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. The composition of plagioclase megacrysts suggests a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of volcanism, reaching an apex prior to flood basalt termination. The petrostratigraphic data sets presented in this paper provide new insight into the evolution of a magma plumbing system in a CFB province.

  5. Selective environmental stress from sulphur emitted by continental flood basalt eruptions (United States)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken


    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  6. Pb isotope evidence for contributions from different Iceland mantle components to Palaeogene East Greenland flood basalts

    DEFF Research Database (Denmark)

    Peate, David; Stecher, Ole


    We present new Pb isotope data on 21 samples of break-up-related flood basalts (56–54 Ma) from the Blosseville Kyst region of East Greenland. These samples show a considerable range in isotopic composition (206Pb/204Pb 17.6 to 19.3) that broadly correlates with compositional type. The ‘low-Ti’ type...... in the selected samples. Uncontaminated Palaeogene East Greenland flood basalts appear to have sampled the same broad range in mantle compositions seen in Recent Iceland basalts. In contrast to the peripheral lava suites from the British Isles and Southeast Greenland, where the inferred uncontaminated magmas have...... to the most radiogenic values found in recent Icelandic basalts. Furthermore, the main volume of lavas in East Greenland is displaced away from the NAEM towards this radiogenic Pb component. Thus, this ‘Iceland radiogenic Pb end-member’ component was a significant contributor to the break-up-related magmatism...

  7. Growing magma chambers control the distribution of small-scale flood basalts. (United States)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang


    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  8. Life and Death of a Flood Basalt: Evolution of a Magma Plumbing System in the Ethiopian Low-Ti Flood Basalt Province (United States)

    Krans, S. R.; Rooney, T. O.; Kappelman, J. W.; Yirgu, G.; Ayalew, D.


    Continental flood basalt provinces (CFBPs), which are thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insight into melt generation processes in Large Igneous Provinces (LIPs). Despite the utility of CFBPs in probing the composition of mantle plumes, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of this residence within the continental lithosphere provides additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well preserved stratigraphic section from flood basalt initiation to termination, and is thus an important target for study of CFBPs. We examine petrographic and whole rock geochemical variation within a stratigraphic framework and place these observations within the context of the magmatic evolution of the Ethiopian CFBP. We observe multiple pulses of magma recharge punctuated by brief shut-down events and an overall shallowing of the magmatic plumbing system over time. Initial flows are fed by magmas that have experienced deeper fractionation (clinopyroxene dominated and lower CaO/Al2O3 for a given MgO value), likely near the crust-mantle boundary. Subsequent flows are fed by magmas that have experienced shallower fractionation (plagioclase dominated and higher CaO/Al2O3 for a given MgO value) in addition to deeper fractionated magmas. Broad changes in flow thickness and modal mineralogy are consistent with fluctuating changes in magmatic flux through a complex plumbing system and indicate pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. Pulses of less differentiated magmas (MgO > 8 wt%) and high-An composition of plagioclase megacrysts (labradorite to bytownite) suggest a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of flood volcanism, though the magnitude of

  9. Sulfur degassing due to contact metamorphism during flood basalt eruptions (United States)

    Yallup, Christine; Edmonds, Marie; Turchyn, Alexandra V.


    We present a study aimed at quantifying the potential for generating sulfur-rich gas emissions from the devolatilization of sediments accompanying sill emplacement during flood basalt eruptions. The potential contribution of sulfur-rich gases from sediments might augment substantially the magma-derived sulfur gases and hence impact regional and global climate. We demonstrate, from a detailed outcrop-scale study, that sulfur and total organic carbon have been devolatilized from shales immediately surrounding a 3-m thick dolerite sill on the Isle of Skye, Scotland. Localized partial melting occurred within a few centimetres of the contact in the shale, generating melt-filled cracks. Pyrite decomposed on heating within 80 cm of the contact, generating sulfur-rich gases (a mixture of H2S and SO2) and pyrrhotite. The pyrrhotite shows 32S enrichment, due to loss of 34S-enriched SO2. Further decomposition and oxidation of pyrrhotite resulted in hematite and/or magnetite within a few cm of the contact. Iron sulfates were produced during retrogressive cooling and oxidation within 20 cm of the contact. Decarbonation of the sediments due to heating is also observed, particularly along the upper contact of the sill, where increasing δ13C is consistent with loss of methane gas. The geochemical and mineralogical features observed in the shales are consistent with a short-lived intrusion, emplaced in desulfurization, as well as decarbonation, of shales adjacent to an igneous intrusion. The liberated fluids, rich in sulfur and carbon, are likely to be focused along regions of low pore fluid pressure along the margins of the sill. The sulfur gases liberated from the sediments would have augmented the sulfur dioxide (and hydrogen sulfide) yield of the eruption substantially, had they reached the surface. This enhancement of the magmatic sulfur budget has important implications for the climate impact of large flood basalt eruptions that erupt through thick, volatile-rich sedimentary

  10. The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume (United States)

    Natali, C.; Beccaluva, L.; Bianchini, G.; Siena, F.


    The Axum-Adwa igneous complex consists of a basalt-trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K-Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19-15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na-Cl-rich deuteric fluids (600-400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the

  11. On causal links between flood basalts and continental breakup (United States)

    Courtillot, V.; Jaupart, C.; Manighetti, I.; Tapponnier, P.; Besse, J.


    Temporal coincidence between continental flood basalts and breakup has been noted for almost three decades. Eight major continental flood basalts have been produced over the last 300 Ma. The most recent, the Ethiopian traps, erupted in about 1 Myr at 30 Ma. Rifting in the Red Sea and Gulf of Aden, and possibly East African rift started at about the same time. A second trap-like episode occurred around 2 Ma and formation of true oceanic crust is due in the next few Myr. We find similar relationships for the 60 Ma Greenland traps and opening of the North Atlantic, 65 Ma Deccan traps and opening of the NW Indian Ocean, 132 Ma Parana traps and South Atlantic, 184 Ma Karoo traps and SW Indian Ocean, and 200 Ma Central Atlantic Margin flood basalts and opening of the Central Atlantic Ocean. The 250 Ma Siberian and 258 Ma Emeishan traps seem to correlate with major, if aborted, phases of rifting. Rifting asymmetry, apparent triple junctions and rift propagation (towards the flood basalt area) are common features that may, together with the relative timings of flood basalt, seaward dipping reflector and oceanic crust production, depend on a number of plume- and lithosphere- related factors. We propose a mixed scenario of `active/passive' rifting to account for these observations. In all cases, an active component (a plume and resulting flood basalt) is a pre-requisite for the breakup of a major oceanic basin. But rifting must be allowed by plate-boundary forces and is influenced by pre-existing heterogeneities in lithospheric structure. The best example is the Atlantic Ocean, whose large-scale geometry with three large basins was imposed by the impact points of three mantle plumes.

  12. Age of the youngest Palaeogene flood basalts in East Greenland

    DEFF Research Database (Denmark)

    Heilmann-Clausen, C.; Piasecki, Stefan; Abrahamsen, Niels


    results, this constrains the termination of the East Greenland Paleogene Igneous Province to the Early-Middle Eocene transition (nannoplankton chronozones NP13-NP14/earliest NP15). This is 6-8 Ma younger than according to previous biostratigraphic age assignments. The new data show that flood basalt...

  13. Physical Volcanological and Petrogenetic Implications of Intra-lava Flow Geochemical Heterogeneity in the Columbia River Flood Basalt Province, USA. (United States)

    Vye, C. L.; Barry, T. L.; Self, S.; Gannoun, A.; Burton, K. W.


    Continental flood basalt lava flows are widely assumed to represent compositionally uniform and rapidly erupted products of large well-mixed magma reservoirs. However, this study presents new data to illustrate systematic element and isotope variations within the flow field formed by an individual flood basalt eruption, both vertically within each sheet lobe and laterally between the constituent lobes. Such variation is significant in chemostratigraphic correlation of flood basalt lava units, in identifying source variability during one eruption, and in petrogenetic modeling. We investigate the extent and cause of compositional variation through tracing lava sheet lobes in a 2,660 cubic kilometer pahoehoe flow field formed during a single eruption in the Columbia River Basalt Province, USA. This is based on features related to emplacement by the inflation mechanism. This method of emplacement is supported by small but statistically significant and systematic major and trace element variation e.g. MgO 3.09- 4.55 wt%, Ni 17.5-25.6 ppm, indicative of fractional crystallisation. Re-Os isotopes indicate progressive crustal contamination of the magma over the timescale of a single flood basalt eruption. By establishing this physical volcanological framework, we determine a temporal link with the supply of lava from the vent(s) and apply it to investigate sequential magmatic evolution during the timescale of one eruption.

  14. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry


    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  15. Emplacement of Columbia River flood basalt (United States)

    Reidel, Stephen P.


    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  16. High water content in primitive continental flood basalts. (United States)

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin


    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>10(5) km(3)) within short time span (primitive CFB in the early Permian Tarim large igneous province (NW China), using the H2O content of ten early-formed clinopyroxene (cpx) crystals that recorded the composition of the primitive Tarim basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB.

  17. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.


    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  18. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.


    calc-alkaline lava flows overlying the CRBG across the northern and central parts of the LOEA. The Day 2 field route migrates to southern parts of the LOEA, where rocks of the CRBG are associated in space and time with lesser known and more complex silicic volcanic stratigraphy associated with middle Miocene, large-volume, bimodal basalt-rhyolite vent complexes. Key stops will provide a broad overview of the structure and stratigraphy of the middle Miocene Mahogany Mountain caldera and middle to late Miocene calc-alkaline lavas of the Owyhee basalt. Stops on Day 3 will progress westward from the eastern margin of the LOEA, examining a transition linking the Columbia River Basalt-Yellowstone province with a northwestward-younging magmatic trend of silicic volcanism that underlies the High Lava Plains of eastern Oregon. Initial field stops on Day 3 will examine key outcrops demonstrating the intercalated nature of middle Miocene tholeiitic CRBG flood basalts, prominent ash-flow tuffs, and “Snake River-type” large-volume rhyolite lava flows exposed along the Malheur River. Subsequent stops on Day 3 will focus upon the volcanic stratigraphy northeast of the town of Burns, which includes regional middle to late Miocene ash-flow tuffs, and lava flows assigned to the Strawberry Volcanics. The return route to Portland on Day 4 traverses across the western axis of the Blue Mountains, highlighting exposures of the widespread, middle Miocene Dinner Creek Tuff and aspects of Picture Gorge Basalt flows and northwest-trending feeder dikes situated in the central part of the CRBG province.

  19. The new petrographic data about the Maymecha-Kotuy area of the Siberian flood-basalt province (United States)

    Latyshev, Anton; Veselovskiy, Roman


    The Maymecha-Kotuy area of the Siberian flood-basalt province is of great interest because of its exceptional composition of igneous rocks. Alkaline-ultramafic rocks prevail there over basalts. It seems to be the only such trap province in the world. Investigation of the magma evolution and revealing of sources of magma is the task of an immense importance. Now there is a discussion about possible connections between the mass extinction on the boundary between Paleozoic and Mesozoic and magmatic activity expressed in formation of the largest Siberian flood-basalt province. Absence of the precise correlation of Maymecha-Kotuy area with other areas of the Siberian province does not allow estimating duration and volumes of the eruption of traps. Another question is if eruption of traps was uninterrupted or it had several pulses of magmatic activity. The solution of this problem will let estimate the degree of possible influence of the flood-basalt eruption to the environment. The represented results of investigations comprise all five igneous suites of Maymecha-Kotuy area. Petrographic investigation included research of thin sections and microprobe analyzes. The most entire sequences of Arydzhangsky and Kogotoksky suites and partly sequences of Pravoboyarsky, Delkansky and Maymechinsky suites were studied. This research allowed to reveal that the section of "Truba" on the Kotuy River belongs to Onkuchaksky suite (former lower Kogotoksky subsuite) and to reconsider the petrography of Arydzhangsky suite. Also, the research of geochemistry based on data of Fedorenko et al. (1997, 2000) lets suggest the sources of magma and its evolution. According to the new paleomagnetic data (Pavlov, Veselovskiy, Fetisova, EGU-2010), the new scheme of correlation of Maymecha-Kotuy trap section with Norilsk trap section was worked out and it became possible to estimate character of the magmatic activity in this region. In addition, it makes the contribution into the working out the

  20. Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province (United States)

    Vye-Brown, C.; Gannoun, A.; Barry, T. L.; Self, S.; Burton, K. W.


    Geochemical interpretations of continental flood basalts usually assume that individual lava flows represent compositionally homogenous and rapidly erupted products of large well-mixed magma reservoirs. However, inflated pāhoehoe lavas may develop over considerable periods of time and preserve chemical variations that can be temporally linked through flow formation to eruption sequence thus providing an understanding of magma evolution over the timescale of a single eruption. This study presents comprehensive major, trace element and Re-Os isotope data for a single eruption that formed the 2660 km3 Sand Hollow flow field in the Columbia River Basalt Province, USA. Major and trace element variations accompanying flow emplacement (e.g. MgO 3.09-4.55 wt%, Ni 17.5-25.6 ppm) are consistent with fractional crystallisation, but other petrogenetic processes or variable sources cannot be distinguished. However, there is a systematic shift in the initial 187Os/188Os isotope composition of the magma (age corrected to 15.27 Ma), from 0.174 (lava core) to 1.444 (lava crust) within a single 35 m thick sheet lobe. Lava crust values are more radiogenic than any known mantle source, consistent with previous data indicating that neither an enriched reservoir nor the sub-continental lithospheric mantle are likely to have sourced these basalts. Rather, these data indicate that lavas emplaced during the earliest stages of eruption have higher degrees of crustal contamination. These results highlight the limitations of applying chemostratigraphic correlation across continental flood basalt provinces, the use of single data points to define melt sources and magmatic processes, and the dangers of using conventional isochron techniques in such basalt sequences for absolute chronology.

  1. Neogene Uplift and Magmatism of Anatolia: New Insights from Drainage Analysis and Basalt Geochemistry (United States)

    McNab, F.; Ball, P.; Hoggard, M.; White, N.


    The origin of Anatolia's high elevation and low relief plateaux has been the subject of much recent debate. Marine sedimentary rocks distributed across Central and Eastern Anatolia require significant regional uplift in Neogene times. This uplift cannot be explained by the present-day pattern of crustal deformation which, particularly across Central and Western Anatolia, is dominanted by strike-slip and extensional faulting. Positive long wavelength free-air gravity anomalies combined with slow upper mantle seismic wave speeds suggest that the sub-lithospheric mantle provides substantial topographic support. A range of geodynamic processes have been invoked, including complex slab fragmentation and lithospheric delamination. The temporal and spatial evolution of the Anatolian landscape should be recorded by drainage networks. Indeed, major catchments contain prominent knickzones with heights of hundreds of meters and length scales of several hundred kilometers. The stream power formulation for fluvial erosion permits these knickzones to be interpreted in terms of uplift history along a river's length. Here, we jointly invert an inventory of 1,844 river profiles to determine a spatial and temporal uplift rate history. When calibrated against independent observations of uplift rate, the resultant history provides significant new constraints for the evolution of Anatolian topography. In our model, the bulk of this topography appears to grow in Neogene times. Uplift initiates in Eastern Anatolia and propagates westward at uplift rates of up to 0.5 mm/yr. Coeval with this phase of uplift, abundant basaltic magmatism has occurred throughout Anatolia. We have compiled an extensive database of published geochemical analyses. Using this database, we analyse spatial and temporal patterns of basaltic compositions to discriminate between different modes of melt generation. Two independent techniques for estimating asthenospheric potential temperatures from the compositions of

  2. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA (United States)

    Vye-Brown, C.; Self, S.; Barry, T. L.


    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  3. Mineralogy and geochemistry of picro-dolerite dykes from the central Deccan Traps flood basaltic province, India, and their geodynamic significance (United States)

    Dongre, Ashish; Viljoen, K. S.; Rathod, A.


    Constituent mineral compositions and whole rock major element geochemistry of picro-dolerite dykes from the central part of the Deccan flood basalt province are presented and discussed. The dykes are characterized by an MgO content of about 13 wt%, coupled with 13-16 modal percents of olivine. A high whole rock molar Mg# value of 71 and the presence of magnesian olivine phenocrysts ( Fo78) are consistent with a primitive (i.e. unevolved) geochemistry. The nature and composition of clinopyroxene (augite and pigeonite), plagioclase feldspar (labradorite) and Fe-Ti oxides (mostly ilmenite and magnetite) are also discussed, with implications drawn with respect to the geodynamics. High MgO magmas and rocks such as picrites are generally considered to be indicative of plume magmatism, formed by high degrees of partial melting in, e.g. the high-temperature region of a plume head. Recent age data is consistent with a model in which the Deccan LIP picritic magmatism is associated with the main phase of Deccan Trap activity at 66 Ma, as a result of a syn- to post rifting phase associated with the impact of the Rèunion mantle plume. It is speculated that the differentiation of primary olivine basaltic magma of picritic composition, may have been the mechanism for the generation of alkalic basalts which occurs in the Deccan Trap basaltic sequence.

  4. Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions (United States)

    Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.


    Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns

  5. From mantle roots to surface eruptions: Cenozoic and Mesozoic continental basaltic magmatism

    Czech Academy of Sciences Publication Activity Database

    Kämpf, H.; Németh, K.; Puziewicz, J.; Mrlina, Jan; Geissler, W.H.


    Roč. 104, č. 8 (2015), s. 1909-1912 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : continental basaltic volcanism * BASALT 2013 conference * Cenozoic * Mesozoic Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  6. Basaltic magmatism at the Juan de Fuca Ridge, NE Pacific ocean (ODP Leg 168): geological control on chemical zonation (United States)

    Cortesogno, L.; Gaggero, L.; Marescotti, P.


    symmetric increase of incompatible elements in more evolved compositions is consistent with crystal fractionation processes. On the whole, a relative compositional homogeneity arises in most of the Sites but for a wide range at Site 1026 (Mg# = 66 - 57; Zr = 101 - 128 ppm). At Site 1025, the massive Fe-basalt flow (Mg# = 46-52; Zr = 151-163 ppm) begins with more evolved terms. At Site 1027 the lower pillow lavas (Mg#: 58-59, Zr: 28-35) are overlain by more primitive flows (Mg# 64-65, Zr = 65-66 ppm). The top of the sequence is represented by a diabase sill, interpreted as an off-axis diabase (Davis, Fisher, Firth et al., 1997) showing very high Mg# (69-79) and relatively higher Ti, Zr, P contents. References Davis, E.E., Fisher, A.T., Firth, J.V., et al., 1997. Proc. ODP, Init. Repts, 168: College Station, TX (Ocean Drilling Program). Pearce J.A. &Parkinson I.J. 1993 Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prochard, Alabaster, Harris, Neary eds. 1993 magmatic processes and plate tectonics, GSSP 76, 373-403

  7. Basement control of alkalic flood rhyolite magmatism of the Davis Mountains volcanic field, Trans-Pecos Texas, U.S.A. (United States)

    Parker, Don F.; White, John C.; Ren, Minghua; Barnes, Melanie


    . Basalt was able to penetrate Coahuila crust in the Big Bend region. Thicker Grenville crust under the Davis Mountains retarded ascent of mafic magmas, allowing mafic plutons to differentiate into silicic magma that was eventually erupted as flood lava. North of the Grenville Front, magmatism was further delayed and thicker, older crust there may have helped concentrate magmatism under the Davis Mountain region. Only after the onset of Basin and Range faulting was true basalt erupted over much of the Trans Pecos.

  8. The Jurassic-Cretaceous basaltic magmatism of the Oued El-Abid syncline (High Atlas, Morocco): Physical volcanology, geochemistry and geodynamic implications (United States)

    Bensalah, Mohamed Khalil; Youbi, Nasrrddine; Mata, João; Madeira, José; Martins, Línia; El Hachimi, Hind; Bertrand, Hervé; Marzoli, Andrea; Bellieni, Giuliano; Doblas, Miguel; Font, Eric; Medina, Fida; Mahmoudi, Abdelkader; Beraâouz, El Hassane; Miranda, Rui; Verati, Chrystèle; De Min, Angelo; Ben Abbou, Mohamed; Zayane, Rachid


    Basaltic lava flows, dykes and sills, interbedded within red clastic continental sedimentary sequences (the so called "Couches Rouges") are widespread in the Oued El-Abid syncline. They represent the best candidates to study the Jurassic-Cretaceous magmatism in the Moroccan High Atlas. The volcanic successions were formed during two pulses of volcanic activity, represented by the Middle to Upper Jurassic basaltic sequence B1 (1-4 eruptions) and the Lower Cretaceous basaltic sequence B2 (three eruptions). Whether belonging to the B1 or B2, the lava flows present morphology and internal structures typical of inflated pahoehoe. Our geochemical data show that, at least for Jurassic magmatism, the dykes, and sills cannot be considered as strictly representing the feeders of the sampled lava flows. The Middle to Upper Jurassic pulse is moderately alkaline in character, while the Lower Cretaceous one is transitional. Crustal contamination plays a minor role in the petrogenesis of these magmas, which were generated by variable partial melting degrees of a garnet-bearing mantle source. Magmatism location was controlled by pre-existing Hercynian fault systems reactivated during a Middle to Upper Jurassic-Cretaceous rifting event. The associated lithospheric stretching induced melting, by adiabatic decompression, of enriched low-solidus infra-lithospheric domains.

  9. Evidence for intense hydrothermal alteration associated with flood basalt volcanism during the birth of the Azores Plateau (United States)

    Bach, W.; Busch, A.; Genske, F. S.; Beier, C.; Krumm, S.


    initial stages of flood basalt activity. The extreme hydrothermal alteration may hence be directly linked to the prolonged magmatic period during which excess melting produced a 13-km thick igneous crust. Our results indicate that marine plateau-forming events may cause transient highs in hydrothermal flux rates.

  10. Petrography and geochemistry of the Javaherdasht basalts (east of Guilan Province): The investigation of the role of crystal fractionation and crustal contamination in the magmatic evolution

    International Nuclear Information System (INIS)

    Haghnazar, Sh.; Malakotian, S.


    The Javaherdasht Basalts show compositional range from olivine basalts to quartz basaltic andesites. Petrographic studies indicate that the differentiation of clinopyroxene and olivine minerals has main role for lithologic variety of the basalts. The corrosion golf, crenated margins and lack of the same colour in the clinopyroxene phenochrysts margins with matrix Pyroxene grains express a nonequilibrium and are petrographic features for crustal contamination of the basalts.The positive correlation Ca O,Ca O/Al 2 O 3 and Cr with Mg and Ca O/Al 2 O 3 with Sc and the negative correlation Al 2 O 3 with Mg are geochemical characters for the differentiation of clinopyroxene and olivine in the magmatic evolution of the area.The high ratios of Ba/Zr and Pb/Nd and law ratio of Ce/Pb and positive correlation of SiO 2 and Rb with 87 Sr/ 86 Sr and negative correlation of Nd-Sr isotopes display the contamination of these basalts with continental crust.

  11. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust (United States)

    Guffanti, M.; Clynne, M.A.; Muffler, L.J.P.


    We have analyzed the heat and mass demands of a petrologic model of basaltdriven magmatic evolution in which variously fractionated mafic magmas mix with silicic partial melts of the lower crust. We have formulated steady state heat budgets for two volcanically distinct areas in the Lassen region: the large, late Quaternary, intermediate to silicic Lassen volcanic center and the nearby, coeval, less evolved Caribou volcanic field. At Caribou volcanic field, heat provided by cooling and fractional crystallization of 52 km3 of basalt is more than sufficient to produce 10 km3 of rhyolitic melt by partial melting of lower crust. Net heat added by basalt intrusion at Caribou volcanic field is equivalent to an increase in lower crustal heat flow of ???7 mW m-2, indicating that the field is not a major crustal thermal anomaly. Addition of cumulates from fractionation is offset by removal of erupted partial melts. A minimum basalt influx of 0.3 km3 (km2 Ma)-1 is needed to supply Caribou volcanic field. Our methodology does not fully account for an influx of basalt that remains in the crust as derivative intrusives. On the basis of comparison to deep heat flow, the input of basalt could be ???3 to 7 times the amount we calculate. At Lassen volcanic center, at least 203 km3 of mantle-derived basalt is needed to produce 141 km3 of partial melt and drive the volcanic system. Partial melting mobilizes lower crustal material, augmenting the magmatic volume available for eruption at Lassen volcanic center; thus the erupted volume of 215 km3 exceeds the calculated basalt input of 203 km3. The minimum basalt input of 1.6 km3 (km2 Ma)-1 is >5 times the minimum influx to the Caribou volcanic field. Basalt influx high enough to sustain considerable partial melting, coupled with locally high extension rate, is a crucial factor in development of Lassen volcanic center; in contrast. Caribou volcanic field has failed to develop into a large silicic center primarily because basalt supply

  12. The origin of plagioclase phenocrysts in basalts from continental monogenetic volcanoes of the Kaikohe-Bay of Islands field, New Zealand: implications for magmatic assembly and ascent (United States)

    Coote, Alisha; Shane, Phil; Stirling, Claudine; Reid, Malcolm


    Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase ( An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic ( An20-45) or more calcic (> An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (The erupted basalts represent mafic recharge of this system, as indicated by the final crystal rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.

  13. Release of Volatiles During North Atlantic Flood Basalt Volcanism and Correlation to the Paleocene-Eocene Thermal Maximum (United States)

    Pedersen, J. M.; Tegner, C.; Kent, A. J.; Ulrich, T.


    The opening of the North Atlantic Ocean between Greenland and Norway during the lower Tertiary led to intense flood basalt volcanism and the emplacement of the North Atlantic Igneous Province (NAIP). The volcanism is temporally overlapping with the Paleocene-Eocene Thermal Maximum (PETM), but ash stratigraphy and geochronology suggests that the main flood basalt sequence in East Greenland postdates the PETM. Significant environmental changes during the PETM have been attributed to the release of CO2 or methane gas due to either extensive melting of hydrates at the ocean floor or as a consequence of the interaction of mantle derived magmas with carbon rich sediments.Estimates suggest that a minimum of 1.8x106 km3 of basaltic lava erupted during North Atlantic flood basalt volcanism. Based on measurements of melt inclusions from the flood basalts our preliminary calculations suggest that approximately 2300 Gt of SO2 and 600 Gt of HCl were released into the atmosphere. Calculated yearly fluxes approach 23 Mt/y SO2 and 6 Mt/y HCl. These estimates are regarded as conservative.The S released into to the atmosphere during flood basalt volcanism can form acid aerosols that absorb and reflect solar radiation, causing an effective cooling effect. The climatic effects of the release of Cl into the atmosphere are not well constrained, but may be an important factor for extinction scenarios due to destruction of the ozone layer.The climatic changes due to the release of S and Cl in these amounts, and for periods extending for hundred thousand of years, although not yet fully constrained are likely to be significant. One consequence of the North Atlantic flood basalt volcanism may have been the initiation of global cooling to end the PETM.

  14. Magmatic evolution of the fresh basalts from the Ridge axis near Egaria Fracture Zone, Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.V.

    was run through a computer programme of the least square and mass balance calculations for understanding the evolutionary path by differentiating minerals present in these basalts. The results indicate that the basalts under study represent a set...

  15. Changes in Pacific Absolute Plate Motion and Formation of Oceanic Flood Basalt Plateaus (United States)

    Kroenke, L. W.; Wessel, P.


    The origin of the large oceanic flood basalt plateaus that are prominent features of the central western Pacific Basin remains unclear. Major changes in Pacific Absolute Plate Motion (APM) have been identified as occurring at 145, 125, 96, and 47 Ma. Formation of the Shatsky Rise (~145 Ma), the Ontong Java Plateau (122+ Ma), the Southern Hess Rise (95±5 Ma), and the Louisiade Plateau (~48 Ma) appear to coincide with these changes. A smaller, but still prominent change in Pacific APM also occurred at 110 Ma when the Northern Hess Rise formed. Although these concurrent events may simply be chance occurrences, initiation of plate tectonic reorganizations upon arrival of mantle plume heads also was proposed by Ratcliff et al. (1998), who suggested that the mantle plume head delivery of hot material to produce flood basalts also had the potential to trigger reorganizations of plate motions. It should be noted, however, that Pacific Rim subduction zone development also coincides with these APM changes, and that the actual cause and effect of each change in APM has yet to be clearly established. Here we present a modified Pacific APM model that uses several older seamount chains (Musicians, Ratak-Gilbert-Ellice, the Wake trails, and the Liliuokalani trails) to constrain the oldest Pacific plate motion using the hybrid technique of Wessel et al (2006).

  16. Field and geochemical constraints on the relationship between the Apoteri basalts (northern Brazil, southwestern Guyana) and the Central Atlantic Magmatic Province (United States)

    Pinto, Viter M.; Santos, João Orestes S.; Ronchi, Luiz H.; Hartmann, Léo A.; Bicudo, Carlos Alberto; de Souza, Vladimir


    In northern Brazil, Roraima state and southwestern Guyana, basalt flows characterized by inflated pahoehoe structure occur along the margins of the Tacutu Rift Valley, dykes intrude the Paleoproterozoic basement close to the boundary of the rift system with concordant, NE-trend. The dykes and flows belong to Apoteri magmatism. New field, geochemical data (major, trace and rare-earth elements) and chemical stratigraphy of the Apoteri magmatism indicate petrographic and chemical homogeneity characteristic of continental tholeiitic basalts. The basalt flows of Morro Redondo and Nova Olinda sites show two distinct chemical groups: a) the lower flows with intermediate TiO2 content (ITi group) ranging from 1.09 to 1.41 wt%, MgO (5.64-6.46 wt%) and Ni (43-53 ppm) contents; and b) the upper flows with lower TiO2 content (LTi group) = 0.75 to 0.78 wt%, higher MgO = 7.95-8.85 wt% and Ni = 105-115 ppm. The two magma types share many characteristics in high field strength elements (HFSE) and rare earth elements (REE), but in detail significant differences exist in REE ratios, e.g. (La/Yb)N of ∼4.0 for ITi and 3.2 for LTi and this may be explained by fractional crystallization. The chemical compositions of the Apoteri dykes are similar the ITi group analyses, suggesting that they have the same origin. The La/Ba versus La/Nb diagram is indicative of large ion lithophile elements (LILE) enrichment and LILE/HFSE fractionation in the mantle source, and the data favor a dominant subcontinental lithospheric mantle (SCLM) component in the origin of the Apoteri flows and dykes. These data show consistent similar chemical characteristics and correspond to other tholeiitic flows from the large Central Atlantic Magmatic Province (CAMP), especially eastern USA.

  17. The source and longevity of sulfur in an Icelandic flood basalt eruption plume (United States)

    Ilyinskaya, Evgenia; Edmonds, Marie; Mather, Tamsin; Schmidt, Anja; Hartley, Margaret; Oppenheimer, Clive; Pope, Francis; Donovan, Amy; Sigmarsson, Olgeir; Maclennan, John; Shorttle, Oliver; Francis, Peter; Bergsson, Baldur; Barsotti, Sara; Thordarson, Thorvaldur; Bali, Eniko; Keller, Nicole; Stefansson, Andri


    The Holuhraun fissure eruption (Bárðarbunga volcanic system, central Iceland) has been ongoing since 31 August 2014 and is now the largest in Europe since the 1783-84 Laki event. For the first time in the modern age we have the opportunity to study at first hand the environmental impact of a flood basalt fissure eruption (>1 km3 lava). Flood basalt eruptions are one of the most hazardous volcanic scenarios in Iceland and have had enormous societal and economic consequences across the northern hemisphere in the past. The Laki eruption caused the deaths of >20% of the Icelandic population by environmental pollution and famine and potentially also increased European levels of mortality through air pollution by sulphur-bearing gas and aerosol. A flood basalt eruption was included in the UK National Risk Register in 2012 as one of the highest priority risks. The gas emissions from Holuhraun have been sustained since its beginning, repeatedly causing severe air pollution in populated areas in Iceland. During 18-22 September, SO2 fluxes reached 45 kt/day, a rate of outgassing rarely observed during sustained eruptions, suggesting that the sulfur loading per kg of erupted magma exceeds both that of other recent eruptions in Iceland and perhaps also other historic basaltic eruptions globally. This raises key questions regarding the origin of these prodigious quantities of sulphur. A lack of understanding of the source of this sulfur, the conversion rates of SO2 gas into aerosol, the residence times of aerosol in the plume and the dependence of these on meteorological factors is limiting our confidence in the ability of atmospheric models to forecast gas and aerosol concentrations in the near- and far-field from Icelandic flood basalt eruptions. In 2015 our group is undertaking a project funded by UK NERC urgency scheme to investigate several aspects of the sulfur budget at Holuhraun using a novel and powerful approach involving simultaneous tracking of sulfur and

  18. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction (United States)

    Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.


    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  19. Geology, geochemistry and petrology of basalts from Paraná Continental Magmatic Province in the Araguari, Uberlândia, Uberaba and Sacramento regions, Minas Gerais state, Brazil

    Directory of Open Access Journals (Sweden)

    Lucia Castanheira de Moraes


    Full Text Available Abstract: This study covers the region between the cities of Sacramento and Araguari/Uberlândia (Minas Gerais State, Brazil, where basalt flows from the Paraná Continental Magmatic Province outcrop. The investigated rocks present tholeiitic signature, with high titanium content, and are classified as Pitanga magma-type. The preserved basalt thickness is between 10 and 200 meters and individual flows do not exceed 15 meters thick. Flows were identified as sheet lobes, smaller and thinner flows units - stacked laterally and vertically forming compound lavas -, or frontal, centimetric lobes. The basalt flows show decimetric to metric intercalations of clastic sedimentary rock, with depositional characteristics that can vary from aeolian to lacustrine, and are important markers on prevailing environmental conditions. The plagioclases are dominantly labradorite and pyroxene is augite, whereas olivine can be hyalosiderite or hortonolite/ferrohortonolite. The behavior of the major, minor and trace elements is compatible with the presence of at least two parental magmas, which were subjected to fractional crystallization mainly of plagioclase, clinopyroxene, ilmenite and magnetite. There is a chemistry distinction between basalts from Sacramento to those from Araguari/Uberlândia region, the former one showing more evolved than the last one. The high (La/LuN values are indicative of partial melting of a garnet peridotite, while the Rare Earth Elements (REE values are indicative of fractional crystallization.

  20. Earth's evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry (United States)

    Greenough, John D.; McDivitt, Jordan A.


    Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69-0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite-trondhjemite-granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)-Nb/Y (% melting proxy) relationships supporting low pressure, high % melting

  1. New 40Ar-39Ar dating of Lower Cretaceous basalts at the southern front of the Central High Atlas, Morocco: insights on late Mesozoic tectonics, sedimentation and magmatism (United States)

    Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.


    This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.

  2. Hf-Nd Isotopic Correlation in the Deccan Flood Basalt Province (United States)

    Saha, A.; Basu, A. R.; Barling, J.; Anbar, A. D.; Hooper, P. R.


    Hafnium isotopes along with other isotopic and geochemical characteristics, including incompatible trace elements, of several of the lower formations of the Deccan Flood Basalt Province were analyzed to characterize petrogenesis of different tholeiitic lava suites, especially with respect to potential mantle and crustal sources. The rare earth elements of the different formations (from top to bottom- Mahabaleshwar, Ambenali, Bushe, Khandala and Neral) all show an LREE-enriched signature, concentrations varying between 30 to 60 times chondrite for La. (La/Lu)n values range from 4.1 to above 8 with the exception of Ambenali, which has a less LREE-enriched signature with (La/Lu)n values ranging between 3.6 to 5.3. Hafnium isotopic data of the lower formations of the Deccan show initial \\epsilonHf(T) values covering a range from -3 to -28. 176Lu/177Hf varies between 0.20 to 0.70. f(Lu/Hf) varies within a narrow range, between -0.90 to -0.97 while f(Sm/Nd) ranges from -0.84 to -0.86. Bushe gives the lowest range of \\epsilonHf(T) from -21 to -28 with the corresponding \\epsilonNd(T) varying between -4.0 and -16.9, while Khandala for almost the same range of neodymium isotopic values has \\epsilonHf(T) between -11 and -15. The \\epsilonHf(T) values of Neral is in between those of Khandala and Bushe, around -19. Ambenali, has the narrowest range with \\epsilonHf(T) of -3 and \\epsilonNd(T) between 3 and 5. The Ambenali suite reflects the least contaminated of the Deccan suite of lavas as analyzed here and previously confirmed by other isotopic studies. In Hf-Nd isotope correlation plot, the lower Deccan formations of Neral, Khandala and Bushe define individual subparallel arrays that are shallower than the oceanic basalt array and the overall terrestrial array, including the crustal array, although the bulk of the lower formation data fall within the crustal array of Vervoort et al (1999). From these subparallel Hf-Nd arrays, it is evident that the other end

  3. Changing compositions in the Iceland plume; Isotopic and elemental constraints from the Paleogene Faroe flood basalts

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin


    Elemental and Sr, Nd, Hf and high precision Pb isotopic data are presented from 59 low-Ti and high-Ti lavas from the syn-break up part of the Faroe Flood Basalt Province. The depleted MORB-like low-Ti lavas erupted in the rift zone between the Faroe Islands and central East Greenland around......-type component similar in geochemistry to the Icelandic Öræfajökull lavas. This component is believed to be recycled pelagic sediments in the plume but it can alternatively be a local crustal or lithospheric mantle component. The enriched Faroe high-Ti lavas erupted inland from the rift have isotopic...... compositions very similar to the enriched Icelandic neo-volcanics and these lava suites apparently share the two enriched plume end-members IE1 and IE2 (Geochim. Cosmochim. Acta 68, 2, 2004). The lack of mixing between high and low-Ti melts at the time of break up, is explained by a zoned plume where only low...



    Abdelkbir Hminna; Hafid Saber; Abdelouahed Lagnaoui.


    The late Triassic-early Jurassic volcanism of Sidi Sa?d Maachou basin belongs to the costalMeseta and the Central Atlantic Magmatic Province (CAMP). The volcanic pile conformably overlies the red siltstones of Machraa Boujamaa Formation. This set includes a stack of several lava flows 40 to 80 m thick. The petrographic study shows that the textures vary from porphyritic to microlitic porphyritic. These igneous rocks have the geochemical characteristics of an intra-continental tholeiitic serie...

  5. Submarine Flood Basalt Eruptions and Flows of Ontong Java Plateau, Nauru Basin and East Mariana Basin (United States)

    Michael, P. J.; Trowbridge, S. R.; Zhang, J.; Johnson, A. L.


    water over gentle slopes (0.1-0.5°). The presence of many glass layers within the cores contrasts with continental flood basalts and suggests the flows were covered by a thick, moving, shifting carapace of solidified lava. They may represent an extreme form of inflated pahoehoe flows. 1 Michael, P.J., 1999 G-Cubed 1 (12), GC000025 2 Roberge J., et al., 2005, Geology 33, 501-504

  6. Axial focusing of impact energy in the earth`s interior: A possible link to flood basalts and hotspots

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.; Campbell, D.L.


    We present the results of shock physics and seismological computational simulations that show how energy from a large impact can be coupled to the interior of the Earth. The radially-diverging shock wave generated by the impact decays to linearly elastic seismic waves. These waves reconverge (minus attenuation) along the axis of symmetry between the impact and its antipode. The locations that experience the most strain cycles with the largest amplitudes will dissipate the most energy and have the largest increases in temperature (for a given attenuation efficiency). We have shown that the locus of maximum energy deposition in the mantle lies along the impact axis. Moreover, the most intense focusing is within the asthenosphere at the antipode, within the range of depths where mechanical energy is most readily converted to heat. We propose that if large impacts on the Earth leave geological evidence anywhere other than the impact site itself, it will be at the antipode. We suggest that the most likely result of the focusing for a sufficiently large impact, consistent with features observed in the geological record, would be a flood basalt eruption at the antipode followed by hotspot volcanism. A direct prediction of this model would be the existence of undiscovered impact structures whose reconstructed locations would be antipodal to flood basalt provinces. One such structure would be in the Indian Ocean, associated with the Columbia River Basalts and Yellowstone; another would be a second K/T impact structure in the Pacific Ocean, associated with the Deccan Traps and Reunion.

  7. Geology of the saucer-shaped sill near Mahad, western Deccan Traps, India, and its significance to the Flood Basalt Model (United States)

    Duraiswami, Raymond A.; Shaikh, Tahira N.


    An ˜22-m-thick saucer-shaped sill occurs near Mahad and is exposed as a curvilinear, miniature ridge within the Deccan Traps. The sill has variable dips (42-55°). It has a 7.1-km long axis and 5.3 km short axis (aspect ratio of 1.4) and is larger than the MV sill of the Golden Valley sill complex, South Africa and the Panton sill, Australia. The sill has distinct glassy upper and lower chilled margins with a coarse-grained highly jointed core. The samples from the margin are invariably fractured and iron stained because of deuteric alteration. The rock from the sill is plagioclase-phyric basalt. At least three thick sill-like apophyses emanate from the base of the main sill. The apophyses change direction because of bending and thinning from a horizontal concordant sheet at the top to a discordant inclined form that bends again to pass into a lower horizontal concordant sheet. We interpret such features as `nascent saucer-shaped sills' that did not inflate to form nested sills. Geochemically, the sill consists of poorly differentiated tholeiitic basalt that has a restricted geochemical range. Critical trace element ratios and primitive mantle normalised trace and REE patterns indicate that the sills have geochemical affinities to the Poladpur chemical type and that the pahoehoe flow they intrude belongs to the Bushe Formation. Calculated magmatic overpressures during sill emplacement range from 8.4 to 11.3 MPa (for Young's modulus E = 5 GPa) and 16.7 to 22.5 MPa (for E=10 GPa) and depth to magma chamber ranges from 8.5 to 11.5 km ( E = 5 GPa) and 17.1 to 22.9 km ( E = 10 GPa), consistent with petrological and gravity modelling. The volume of the Mahad sill is approximately 276 km3 and is constant irrespective of the variations in the values of host-rock Young's modulus. In 1980, Cox (J Petrol 21:629-650, 1980) proposed a conceptual model of the crust-mantle section beneath the Karoo CFB which is considered as the fundamental model for flood basalt volcanism. Our

  8. Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation (United States)

    Blake, S.; Self, S.; Sharma, K.; Sephton, S.


    A very likely cause of widespread environmental impacts of flood basalt eruptions is the emission of sulfur, chlorine, and possibly fluorine from the erupting magma. We present new data on the S contents of rare glass inclusions and matrix glasses preserved in quenched lava selvages from lava fields of the Columbia River Basalt Group (CRBG; Ginkgo, Sand Hollow and Sentinel Gap flows, Wanapum Basalt Formation). We compare these results with published data from Neral and Jawar Formation lavas (Deccan Traps, India) and the Roza flow (CRBG). CRBG glass inclusions have up to 2000 ppm S and 15-16 wt.% FeO total. By contrast, the Deccan examples have about 1400 ppm S and 10 wt.% FeO total. Several of the glass inclusions are partly degassed, indicating entrapment during magma rise, and matrix glasses are typically more evolved than glass inclusions due to small amounts of in situ crystallization. Using only the highest S inclusions and taking account of the effect of in situ crystallization and degassing on the S content of the residual matrix glasses indicates S yields of about 0.07 to 0.1 wt.% from Deccan eruptions and about 0.15 wt.% from Wanapum (CRBG) eruptions. The pre-eruptive S contents of these magmas correlate with weight% FeO total in the same way as undegassed sulfide-saturated mid-ocean ridge basalts. Using oceanic basalts to define a sulfide saturation line, and data on S contents of degassed basalts, we propose an equation to estimate the weight% S yield (ΔS) from initially sulfide-saturated basalt liquid without the need to find well-preserved, rare, undegassed glass inclusions and matrix glasses: ΔS=(0.01418×FeO-0.06381)±0.02635. This compares well with independent estimates derived from the petrologic method by taking the difference in S concentration of glass inclusions and matrix glass. Applying our method to the aphyric Grande Ronde Basalts of the CRBG implies a total yield of about 1000 Gt SO 2 delivered into the Miocene atmosphere in

  9. Memories of Earth Formation in the Modern Mantle: W Isotopic Composition of Flood Basalt Lavas (United States)

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R.; Horan, M. F.; Mukhopadhyay, S.; Francis, D.; Jackson, M. G.


    Four and a half billion years of geologic activity has overprinted much of the direct evidence for processes involved in Earth's formation and its initial chemical differentiation. Xenon isotopic ratios [1] and 3He/22Ne ratios [2] suggest that heterogeneities formed during Earth's accretion have been preserved to the present time. New opportunities to learn about early Earth history have opened up with the development of analytical techniques that allow high precision analysis of short-lived isotopic systems. The Hf-W system (t½ = 8.9 Ma) is particularly valuable for studying events that occurred during the first ~50 Ma of Solar System history. Here we report new data for ~ 60 Ma Baffin Bay and ~ 120 Ma Ontong Java Plateau lava samples. Both are large igneous provinces that may have sampled a primitive, less degassed deep mantle reservoir that has remained isolated since shortly after Earth formation [3,4]. Three samples analyzed have 182W/184W ratios that are 10 to 48 ppm higher than our terrestrial standard. These excesses in 182W are the highest ever measured in terrestrial rocks, and may reflect 182W ingrowth in an early-formed high Hf/W mantle domain that was produced by magma ocean differentiation [5]. Long and short-lived Sm-Nd systematics in these samples, however, are inconsistent with this hypothesis. The 182W excessses could rather reflect the derivation of these lavas from a mantle reservoir that was isolated from late accretionary additions [6]. The chondritic initial Os isotopic compositions and highly siderophile element abundances of these samples, however, are inconsistent with this interpretation. Tungsten concentrations for the Baffin Bay and Ontong Java Plateau samples range from 23 ppb to 62 ppb, and are negatively correlated with their 182W/184W ratios. We propose that the source reservoirs for these flood basalts likely formed through Hf/W fractionation caused by core-forming events occuring over a protacted time interval during Earth

  10. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil) (United States)

    Rocha-Júnior, Eduardo R. V.; Marques, Leila S.; Babinski, Marly; Nardy, Antônio J. R.; Figueiredo, Ana M. G.; Machado, Fábio B.


    There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133 Ma) 87Sr/86Sr ratios of 0.70538-0.70642, 143Nd/144Nd of 0.51233-0.51218, 206Pb/204Pb of 17.74-18.25, 207Pb/204Pb of 15.51-15.57, and 208Pb/204Pb of 38.18-38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr-Nd-Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from +1.0 to +2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the

  11. Data Processing Methods for 3D Seismic Imaging of Subsurface Volcanoes: Applications to the Tarim Flood Basalt. (United States)

    Wang, Lei; Tian, Wei; Shi, Yongmin


    The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.

  12. Petrogenesis and tectonic setting of an basalt-Trachyte-Rhyolite suite in the Spilli area (south of Siahkal, north of Iran: evidences of continental rift-related bimodal magmatism in Alborz

    Directory of Open Access Journals (Sweden)

    Shahrooz Haghnazar


    Full Text Available The spilli volcanic rocks suite consisting of Basalt- Trachyte- Rhyolite with upper Cretaceous, outcrop in the northern part of Alborz and south of Siahkal area (east of the Guilan province. Based on geochemical data, the studied suite attributed to transitional to alkali series. Negative correlation of Al2O3, CaO, P2O5 and positive correlation of Rb and Th versus SiO2 reveal the occurrence of fractional crystallization process. Also, the negative correlation of Sr versus Y, Sr/Zr versus Sr and CaO/Al2O3 versus SiO2 show that fractionation of plagioclase has played an important role in petrogenesis of the spilli Suite. The hypotheses is supported by the negative anomalies of Eu, Ba and Sr. The overall geochemical evidences indicate that the basic rocks belong to intra-continental rift zone whereas the felsic rocks are classified as A1 type derived from parent basaltic magmas via fractional crystallization in an anorogenic setting. The studied magmatism share many similarities with bimodal magmatism in continental rift zones.

  13. Effect of fO2 on phase relationship in basaltic andesites during magmatic differentiation: Control of fO2 and sulphur speciation in piston cylinder experiments. (United States)

    Matjuschkin, Vladimir; Tattitch, Brian; Blundy, Jonathan D.; Skora, Susanne


    Within the mantle wedge above subduction zones, oxidation reaction take place by interaction of reduced mantle rocks with more oxidized, hydrous fluids, which can cause a local drop of the solidus, resulting in partial melting (2,6,7). The resultant melts are more oxidized that their ocean floor counterparts, which has implications for their subsequent differentiation paths, the speciation of multivalent elements and the solubility and transport of chemical compounds in magmatic systems (1,4,5). We present a series of sulphur-doped high-pressure experiments conducted to investigate the effect of oxygen fugacity on phase relationships and the behaviour of sulphur in silicate melts. Natural aphyric andesite (FM37) erupted from Laguna del Maule volcano, Chile (3) was selected as a starting composition. Experiments were carried out at 5kbar, 950-1150° C and variable oxygen fugacity conditions. New experiments buffered at Co-CoO and Ni-NiO buffer conditions have been performed using a new "MTB capsule design" developed in order to accurately control fO2 by means of a double capsule containing metal-oxide buffers and a pyrex sleeve to minimise H2 diffusion. This new design constrains oxygen fugacity to within ±0.1-0.2logfO2 units of the target value. Before conducting these experiments, the assemblage was tested multiple times at 10kbar, 1000° C over 24-48 hours and demonstrated consistent, accurate fO2 control. Analyses of the preliminary experimental run products, from a related Chilean basaltic andesite starting composition, demonstrate a clear effect of fO2 on phase relationships and the proportion of melt generated during experiments. Under oxidized conditions, as temperature decreased from 1150° C to 1050° C, the amount of melt decreased from 100% to ~80%, due to the formation of orthopyroxene, anhydrite and plagioclase. In contrast, in reduced runs the system remains nearly liquid (~5% crystals) down to 950° C due to the change in sulphur speciation and

  14. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt (United States)

    Benson, Thomas R.; Mahood, Gail A.


    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  15. Strawberry Rhyolites, Oregon: Northwestern extent of mid-Miocene flood basalt related rhyolites of the Pacific Northwest (United States)

    Steiner, A. R.; Streck, M. J.


    Rhyolitic volcanism associated with the Columbia River-Steens flood basalts of the Pacific Northwest has traditionally been viewed to be centered at McDermitt caldera near the Oregon-Nevada border starting at ~16.5 Ma. In recent years, more rhyolitic centers along this latitude with ages between 16.5-15.5 Ma have been identified and associated with the inception of the Yellowstone hotspot. However the footprint of plume-head related rhyolites becomes much larger when silicic centers of mid-Miocene age in eastern Oregon are included extending the distribution of such rhyolites to areas near the towns of Baker City and John Day ~250 km north of McDermitt. This study addresses one of these rhyolitic centers that was virtually unknown and that constitutes the northwestern extent of mid-Miocene rhyolites. Rhyolites are centered ~40 km SSW of John Day and are considered part of the Strawberry Volcanic Field (SVF), which consists of a diverse group of volcanic rocks ranging from basalt to rhyolite with abundant intermediate compositions. One existing age date of 17.3 Ma ± 0.36 (Robyn, 1977) - if confirmed by our ongoing study - places these rhyolites at the very onset of plume-head related rhyolites. Strawberry rhyolitic lavas are most voluminous in the southwestern portion of the SVF covering approximately 500 km2 between Bear and Logan Valley. The rhyolitic lavas tend to be phenocryst-poor (LaN/YbN values ranging from 2.5 to 8.3 and higher values correlate positively with other differentiation indices (e.g. Ba, Sr, Eu/Eu*). Furthermore, major elements (e.g. SiO2 and FeO*) and trace elements (e.g. Ba, Sr, La, Zr/Hf) display common liquid lines of decent with Eu/Eu*. This suggests that the Strawberry Rhyolites are likely products of variable degrees of differentiation. Future petrogenetic evaluations will further investigate the origin of the Strawberry Rhyolites.

  16. Paraná flood basalt volcanism primarily limited to 1 Myr beginning at 135 Ma: New 40Ar/39Ar ages for rocks from Rio Grande do Sul, and critical evaluation of published radiometric data (United States)

    Baksi, Ajoy K.


    40Ar/39Ar step heating analyses were carried out on seven rocks (five basalts, an andesite and a rhyolite) from the southern Paraná Province ( 28°S-30°S); they yield plateau/isochron ages of 135-134 Ma, in good agreement with published step heating data on rocks from the same area. Critical review of laser spot isochron ages for rocks from the Province, ranging from 140 to 130 Ma, are shown to be unreliable estimates of crystallization ages, as the rocks were substantially altered; step heating results on three of these rocks thought to yield good plateau ages, are shown to be incorrect, as a result of a technicality in dating procedures followed. U-Pb ages on zircon and baddeleyite separated from a variety of rock types ( 30°S-23°S) fall in the range 135 to 134 Ma. All reliable 40Ar/39Ar and U-Pb ages indicate volcanism was sharply focused, initiated at 135 Ma, and 1 Myr in duration; no variation of age with either latitude or longitude is noted, Scrutiny of published 40Ar/39Ar ages on the Florianopolis dykes shows they cannot be used as reliable crystallization ages. U-Pb work shows that this dyke swarm was formed coevally with the main part of the Parana province. Most of the published 40Ar/39Ar ages on the Ponta Grossa dyke swarm are unreliable; a few ages appear reliable and suggest the magmatic event in this area, may have postdated the main Paraná pulse by 1-2 Myr. A single 40Ar/39Ar age from a high-Nb basalt in the southernmost part ( 34°S) of the Paraná at 135 Ma, highlights the need for further radiometric work on other areas of this flood basalt province. The Paraná Province postdates the time of the Jurassic-Cretaceous bound­ary by 10 Myr.

  17. Complex layering of the Orange Mountain Basalt: New Jersey, USA (United States)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris


    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  18. ´Áā lava flows in the Deccan Volcanic Province, India, and their significance for the nature of continental flood basalt eruptions (United States)

    Brown, Richard J.; Blake, S.; Bondre, N. R.; Phadnis, V. M.; Self, S.


    Newly identified ´áā lava flows outcrop intermittently over an area of ~110 km2 in the western Deccan Volcanic Province (DVP), India. They occur in the upper Thakurvadi Formation in the region south of Sangamner. The flows, one of which is compound, are 15-25 m thick, and exhibit well-developed basal and flow-top breccias. The lavas have microcrystalline groundmasses and are porphyritic or glomerocrystic and contain phenocrysts of olivine, clinopyroxene or plagioclase feldspar. They are chemically similar to compound pāhoehoe flows at a similar stratigraphic horizon along the Western Ghats. Petrographic and geochemical differences between ´áā flows at widely spaced outcrops at the same stratigraphic horizon suggest that they are the product of several eruptions, potentially from different sources. Their presence in the DVP could suggest relative proximity to vents. This discovery is significant because ´áā lavas are generally scarce in large continental flood basalt provinces, which typically consist of numerous inflated compound pāhoehoe lobes and sheet lobes. Their scarcity is intriguing, and may relate to either their occurrence only in poorly preserved or exposed proximal areas or to the flat plateau-like topography of flood basalt provinces that may inhibit channelization and ´áā formation, or both. In this context, the ´áā flow fields described here are inferred to be the products of eruptions that produced unusually high-effusion-rate lavas compared to typical flood basalt eruptions. Whether these phases were transitional to lower intensity, sustained eruptions that fed extensive low effusion rate pāhoehoe flow fields remains unclear.

  19. Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA (United States)

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob


    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.

  20. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies (United States)

    Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.


    Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be

  1. Paleomagnetic Secular Variation Constraints on the Rapid Eruption of the Emeishan Continental Flood Basalts in Southwestern China and Northern Vietnam (United States)

    Xu, Yingchao; Yang, Zhenyu; Tong, Ya-Bo; Jing, Xianqing


    Estimating the duration of magma eruptions using isotopic dating methods is difficult because of the intrinsic errors of the technique regarding the dated materials (such as zircon). However, the long-term variation of the geomagnetic field recorded by lava flows can be used to estimate the net duration of an eruption sequence. The Emeishan basalts at Dongchuan, with a thickness of 630 m, yielded a reliable characteristic remanent magnetization of normal polarity and which passed the fold test (Tauxe & Watson, 1994, Stratigraphic and magnetostratigraphic correlations of the Emeishan basalts in the Dongchuan section with other sections indicate that the eruption of the Emeishan basalts at Dongchuan spans the entire normal polarity zone in the early stage of the Emeishan large igneous province. A flow-by-flow analysis of geomagnetic directions of the Emeishan basalts at Dongchuan indicates that four directional groups and fifteen individual lava directions were recorded, with a net duration (excluding quiescent intervals) of no more than 3100 years. The averaged site directions from the Emeishan basalts with normal polarity conforming to a geocentric axial dipole direction indicate that this interval is longer than 104-105 years. In addition, a magnetostratigraphic study indicates that the normal polarity interval recorded by the Emeishan basalts was shorter than 2-20 × 104 years. Thus, the total duration of the normal polarity stage of the Emeishan large igneous province was roughly 105 years. There is a possible relationship between the rapid eruption and the Late Capitanian mass extinction (259.8 ± 0.4 Ma, Henderson et al., 2012).

  2. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Directory of Open Access Journals (Sweden)

    Van Pham Thi


    Full Text Available Abstract Continental flood basalts (CFB are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass and the local equilibrium assumption for secondary phases (weathering products. The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C, magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present

  3. Hydration of an active shear zone: Interactions between deformation, metasomatism and magmatism - the spinel-lherzolites from the Montferrier (southern France) Oligocene basalts

    International Nuclear Information System (INIS)

    Cabanes, N.; Briqueu, L.


    Geochemical and textural investigations have been simultaneously performed on spinel-lherzolite xenoliths from the Oligo-Miocene alkali basalts of Montferrier (southern France). All the investigated samples have undergone a deformation very particular by intense shearing under high stresses (up to 1.75 kbar), low temperatures (≤900 0 C) and strain rates of about 10 -18 to 10 -15 s -1 . Mineral chemistry reveals that the Montferrier lherzolites are fragments of an undepleted relatively shallow upper mantle level located at a depth of 50 km (15 kbar). Moreover, Na and Ti enrichment in diopside would reflect a metasomatic event, also emphasized by the common occurrence of pargasite in 50-70% of the investigated samples. Crystallization of this amphibole is attributed to a hydrous infiltration which is related in time and space to the deformation. Indeed, amphibole is preferentially concentrated in strongly deformed zones and in kink-band boundaries of orthopyroxene porphyroclasts. Moreover, the grain boundaries were used by the pervasive agent to percolate into the lherzolite: significant chemical variations (increase in MgO: 15% and decrease in Al 2 O 3 : 55%) are observed within the range of 7-5 μm adjacent to the grain boundary. Finally, Sr isotopic data ( 87 Sr/ 86 Sr) demonstrate that the amphibole, i.e. the metasomatic agent, is genetically related to the host lava of the xenoliths. Thus, the hydrous silicate liquid from which the amphibole has crystallized may be an early percolation of the ascending alkali magma. (orig.)

  4. InSAR observations of aseismic slip associated with an earthquake swarm in the Columbia River flood basalts (United States)

    Wicks, Charles; Thelen, W.; Weaver, C.; Gomberg, J.; Rohay, A.; Bodin, P.


    In 2009 a swarm of small shallow earthquakes occurred within the basalt flows of the Columbia River Basalt Group (CRBG). The swarm occurred within a dense seismic network in the U.S. Department of Energys Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (InSAR) data from the European Space Agencys (ESA) ENVISAT satellite provide insight into the nature of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust fault and a near horizontal fault. We suggest that the near horizontal lying fault is a bedding-plane fault located between basalt flows. The geodetic moment of the modeled fault system is about eight times the cumulative seismic moment of the swarm. Precise location estimates of the swarm earthquakes indicate that the area of highest slip on the thrust fault, ???70mm of slip less than ???0.5km depth, was not located within the swarm cluster. Most of the slip on the faults appears to have progressed aseismically and we suggest that interbed sediments play a central role in the slip process. Copyright 2011 by the American Geophysical Union.

  5. Cretaceous magmatism in North-Eastern India and Gondwanaland ...

    Indian Academy of Sciences (India)


    Cretaceous magmatism of NEI: Major Objectives. • Age and duration of Sylhet Traps and its connection to Kerguelene hotspot and Gondwanaland breakup? • Age of carbonatite magmatism associated with the traps? • Relationship of basaltic-carbonatite magmatism with. Aptian (~116 Ma) Mass Extinction event? • Nature of ...

  6. Meso- and microscale vein structures in fore-arc basalts and boninites related to post-magmatic tectonic deformation in the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352 (United States)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter


    The International Ocean Discovery Program (IODP) Expedition 352 aimed to drill through the entire volcanic sequence of the Izu-Bonin-Mariana fore arc. Two drill sites are situated on the outer fore arc composed of fore arc basalts (FAB) whereas two more sites are located on the upper trench slope penetrating the younger boninites. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured. Structures within the drill cores combined with borehole and site survey seismic data indicate that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement deformation was accommodated by shear along cataclastic fault zones and the formation of tension fractures, shear fractures and hybrid (tension and shear) fractures. Veins form by mineral filling of tension or hybrid fractures and show no or limited observable macroscale displacement along the fracture plane. (Low Mg-) Calcite and/or various types of zeolite are the major vein constituents, where the latter are considered to be alteration products of basaltic glass. Micrite contents vary significantly and are related to neptunian dikes. In boninites calcite develops mainly blocky shapes but veins with fibrous and stretched crystals also occur in places indicating antitaxial as well as ataxial growth, respectively. In FAB calcite forms consistently blocky crystals without any microscopic identifiable growth direction suggesting precipitation from a highly supersaturated fluid under dropping fluid pressure conditions. However, fluid pressure

  7. Floods (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  8. Influence of volatile degassing on the eruptibility of large igneous province magmatic systems (United States)

    Mittal, T.; Richards, M. A.


    Magmatic volatiles, in particular their buoyancy, may play a critical role in determining whether a magma reservoir can build up enough overpressure leading to drive flood basalt eruptions (Black & Manga 2017). Thus, it is important to understand the extent to which volatiles can remain trapped in a magmatic system and how they influence the eruptibility. Although the high-temperature metamorphic aureloe around a magma chamber is typically considered to have low permeability due to ductile creep, recent theoretical, experimental, and field work (e.g. Noriaki et al. 2017) have highlighted the role of dynamic permeability in magmatic systems. Consequently, the effective permeability of the crust when magma is present in the system can be orders of magnitude larger than that of exhumed rock samples. We model dynamic permeability changes as a competition between hydro-fracturing (increased porosity) and fracture closure by ductile creep and hydrothermal mineral precipitation (reduced porosity) and find yearly-to-decadal time-scales for periodic fracturing and fluid loss events and an increase in average permeability. We then use a fully coupled poro-thermo-elastic framework to model to explore the macroscopic influence of volatile loss on the stress state of the crust in this higher time-averaged permeability setting. We derive new semi-analytical solutions and combine them with a magma chamber box model (modified from Degruyter & Huber 2014) to analyze system-scale dynamics for both basaltic and silicic magmatic systems. We find that passive degassing likely has a substantial temporal influence on the stress distribution in the crust and the highly crystalline mush zone immediately surrounding a magma reservoir, and find an additional scale : pore-pressure diffusion timescale that exerts a first-order control on the magnitude and frequency of volcanic eruptions. We also explore how disconnected magma batches interact indirectly with each other and its implications for

  9. The architecture of tholeiitic lava flows in the Neogene flood basalt piles of eastern Iceland: constraints on the mode of emplacemement (United States)

    Oskarsson, B. V.; Riishuus, M. S.


    Tholeiites comprise 50-70% of the Neogene lava piles of eastern Iceland and have been described largely as flood basalts erupted from fissures (Walker, 1958). This study incorporates lava piles found in the Greater Reydarfjördur area and emprises the large-scale architecture of selected flows and flow groups, their internal structure and textures with the intention of assessing their mode of emplacement. A range of lava morphologies have been described and include: simple (tabular) flows with a'a and rubbly flow tops, simple flows with pahoehoe crust and compound pahoehoe flows, with simple flows being most common. Special attention is given here to the still poorly understood simple flows, which are characterized by extensive sheet lobes with individual sheet lengths frequently exceeding 2 km and reaching thicknesses of ~40 m (common aspect ratios The sheets in individual flow fields are emplaced side by side with an overlapping contact and are free of tubes. Their internal structure generally constitutes an upper vesicular crust with no or minor occurrences of horizontal vesicle zones, a poorly vesicular core and a thin basal vesicular zone. The normalized core/crust thickness ratios resemble modern compound pahoehoe flows in many instances (0.4-0.7), but with the thicker flows reaching ratios of 0.9. Flow crusts are either pahoehoe, rubbly or scoriaceous with torn and partially welded scoria and clinker. Frequently, any given flow morphology is repeated in sequences of three to four flows with direct contacts. Preliminary assessments suggest that simple flows are the product of high and sustained effusion rates from seemingly short-lived fissures. Simple flows with a'a flow tops may comprise the annealed emplacement mode of sheet flows and channeled a'a, in which the flow propagated as a single unit, whereas the brecciated flow top formed by continuous tearing and brecciation as occurs in channeled lava flowing at high velocity. The absence of a clinkery basal

  10. Magmatic tritium

    International Nuclear Information System (INIS)

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.


    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ( 3 H) of deep origin ( 2 O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable 3 H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics

  11. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China (United States)

    Xu, Zheng; Zheng, Yong-Fei


    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  12. Moessbauer Studies of Volhynian Basalts

    International Nuclear Information System (INIS)

    Bakun-Czubarow, N.; Milczarski, J.; Galazka-Friedman, J.; Szlachta, K.; Forder, S.


    The Volhynian basalts studied belong to the effusive-tuffogenic Volhynian Series (Slawatycze Series in Poland), being the large Ediacaran continental igneous province, that covers an area of 200 000 km 2 in the western margin of East European Craton. The series is underlain by the Cryogenian terrigenous Polesie Series with doleritic sills and dikes. The Volhynian Series consists of the rock beds belonging to the three volcanic cycles with different ratios of flood basalts to pyroclastics. The aim of the study was recognition of primary and secondary Fe-bearing minerals, particularly Fe- and Fe-Ti oxides as well as determination of iron oxidation state, that is an important tool in the search for native copper deposits in these rocks. For Moessbauer studies the following rock samples were chosen: the Polesie Series dolerites, the Volhynian Series basalts from the Ukrainian quarries and drill-holes, e.g. from the Volodymir Volhynskaya drilling hole; the Slawatycze Series basalts from Kaplonosy drill-hole in Poland. In the Kaplonosy basalts the content of magnetite decreases with depth, which may be caused by magma differentiation due to fractional crystallization, when Mg content decreases as Ti and Fe - increases in basic magma. In the Kaplonosy basalts the Fe 2+ /Fe 3+ ratio increases with depth, which points to the increase of iron oxidation with the progress of basaltic magma differentiation. (authors)

  13. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Wire-line log-based stratigraphy of flood basalts from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Boldreel, Lars O.


    Full Text Available The present study shows that it is possible to use conventional borehole logs to perform a detailed lithological/stratigraphical division of a column of subaerially extruded basalt. A stratigraphical division of the subaerial flood basalts penetrated by the Lopra-1/1A well has been carried out using new wire-line logging data measured in 1996 in the interval 200–2489 m depth. Resistivity data acquired in the interval 200–2178 m depth during 1981 after the initial drilling of the Lopra-1 well have also been incorporated. Eighty-six individual flow units, 18 compound flows and two dolerite dykes have been identified by combining the NPHI porosity, RHOB density, P-, S- and Stonely-sonic transit time, calliper and resistivity logs. Fifty-two sedimentary/tuffaceous layers have also been identified using the CGR and SGR gamma ray and potassium logs in combination with the aforementioned logs. Within the flow units, sonic velocity, density and resistivity are highest in the core where porosity is lowest. This relation is reversed in the uppermost and basal zones of the flow units. The sonic velocity in the core seems to be independent of the thickness of the flow unit. Porous zones seem abundant in some cores and the total section of cores containing porous zones constitutes more than 70% of the thickness of its flow unit, but where porous zones are absent the core makes up only roughly 50% of the thickness of the flow. It is suggested that the flow units with porous cores represent aa flows (88% of the flow units and the others pahoehoe flows (12% of the flow units.The log pattern of the flow units (crust, core and basal zone is similar to log patterns reported from other basalt plateaux. However the patterns in Lopra-1/1A show a larger variation than elsewhere,suggesting that the flow units are more complex vertically than previously thought. Statistical analysis of P-, S- and Stonely-waves, RHOB, NPHI, resistivity, gamma and calliper logs has

  14. Magmatism on the Moon (United States)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie


    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  15. Basaltic cannibalism at Thrihnukagigur volcano, Iceland (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.


    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  16. Beating the Heat: Magmatism in the Low-Temperature Thermochronologic Record (United States)

    Murray, K. E.; Reiners, P. W.; Braun, J.; Karlstrom, L.; Morriss, M. C.


    The low-temperature thermochronology community was quick to recognize upper-crustal complexities in the geotherm that reflect landscape evolution, but the complex effects of crustal magmatism on thermochronometers can be difficult to independently document and remain underexplored. Because magmatism is common in many regions central to our understanding of tectonics, this is a significant gap in our ability to robustly interpret rock cooling. Here, we use several different numerical approaches to examine how local and regional crustal magmatism affects cooling age patterns and present examples from the western US that demonstrate the importance—and utility—of considering these effects. We modified the finite-element code Pecube to calculate how thermochronometers document the emplacement of simple hot bodies at different crustal levels. Results demonstrate the potential for mid-crustal plutons, emplaced at 10-15 km depth, to reset cooling ages in the overlying rocks at partial-retention depths at the time of magmatism. Permo-Triassic sandstones from the Colorado Plateau's Canyonlands region have apatite cooling ages that exemplify the resulting ambiguity: Oligocene rock cooling can be attributed to either 1 km of erosion or relaxation of a geothermal gradient transiently doubled by mid-crustal magmatism. Despite these complexities, there are compelling reasons to target rocks with magmatic histories. Shallowly emplaced plutons can usefully reset cooling ages in country rocks with protracted near-surface histories, as we have demonstrated in the Colorado Plateau's Henry Mountains. Cooling age patterns are also useful for quantifying magmatic processes themselves. In an ongoing project, we use the pattern of thermochronometer resetting around individual dikes that fed the Columbia River flood basalts, which are exposed in the Wallowa Mountains, to identify long-lived feeder dikes and model their thermal aureoles to further constrain eruptive dynamics. The pattern

  17. Recurrent Early Cretaceous, Indo-Madagascar (89-86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu-Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance (United States)

    Sheth, Hetu; Pande, Kanchan; Vijayan, Anjali; Sharma, Kamal Kant; Cucciniello, Ciro


    The Sarnu-Dandali alkaline complex in Rajasthan, northwestern India, is considered to represent early, pre-flood basalt magmatism in the Deccan Traps province, based on a single 40Ar/39Ar age of 68.57 Ma. Rhyolites found in the complex are considered to be 750 Ma Malani basement. Our new 40Ar/39Ar ages of 88.9-86.8 Ma (for syenites, nephelinite, phonolite and rhyolite) and 66.3 ± 0.4 Ma (2σ, melanephelinite) provide clear evidence that whereas the complex has Deccan-age (66 Ma) components, it is dominantly an older (by 20 million years) alkaline complex, with rhyolites included. Basalt is also known to underlie the Early Cretaceous Sarnu Sandstone. Sarnu-Dandali is thus a periodically rejuvenated alkaline igneous centre, active twice in the Late Cretaceous and also earlier. Many such centres with recurrent continental alkaline magmatism (sometimes over hundreds of millions of years) are known worldwide. The 88.9-86.8 Ma 40Ar/39Ar ages for Sarnu-Dandali rocks fully overlap with those for the Indo-Madagascar flood basalt province formed during continental breakup between India (plus Seychelles) and Madagascar. Recent 40Ar/39Ar work on the Mundwara alkaline complex in Rajasthan, 120 km southeast of Sarnu-Dandali, has also shown polychronous emplacement (over ≥ 45 million years), and 84-80 Ma ages obtained from Mundwara also arguably represent post-breakup stages of the Indo-Madagascar flood basalt volcanism. Remnants of the Indo-Madagascar province are known from several localities in southern India but hitherto unknown from northwestern India 2000 km away. Additional equivalents buried under the vast Deccan Traps are highly likely.

  18. The Mozambique Ridge: a document of massive multistage magmatism (United States)

    Fischer, Maximilian D.; Uenzelmann-Neben, Gabriele; Jacques, Guillaume; Werner, Reinhard


    The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ˜131 and ˜125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.

  19. Carbonatite magmatism in northeast India (United States)

    Kumar, D.; Mamallan, R.; Dwivedy, K. K.

    The Shillong Plateau of northeast India is identified as an alkaline province in view of the development of several carbonatite complexes e.g. the Sung Valley (Jaintia Hills), Jasra (Karbi-Anglong), Samchampi and Barpung (Mikir Hills) and lamprophyre dyke swarms (Swangkre, Garo-Khasi Hills). On the basis of limited KAr data, magmatic activity appears to have taken place over a protracted period, ranging from the Late Jurassic to the Early Cretaceous. The carbonatite complexes of the Shillong Plateau share several common traits: they are emplaced along rift zones, either within Archaean gneisses or Proterozoic metasediments and granites, and exhibit enrichment in the light rare-earth elements, U, Th, Nb, Zr, Ti, K and Na. The enrichment in incompatible trace elements can best be accounted for if the parental magmas were of alkali basaltic type (e.g. mela-nephelinite or carbonate-rich alkali picrite).

  20. Formation of continental crust by intrusive magmatism (United States)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.


    How were the continents formed in the Earth? No global numerical simulation of our planet ever managed to generate continental material self-consistently. In the present study, we show that the latest developments of the convection code StagYY enable to estimate how to produce the early continents, more than 3 billion years ago. In our models, melting of pyrolitic rocks generates a basaltic melt and leaves behind a depleted solid residue (a harzburgite). The melt generated in the mantle is transported to the surface. Only basaltic rocks melting again can generate continental crust. Should the basaltic melt always reach the open air and cool down? Should the melt be intruded warm in the pre-existing crust? The present study shows that both processes have to be considered to produce continents. Indeed, granitoids can only be created in a tight window of pressure-temperature. If all basalt is quickly cooled by surface volcanism, the lithosphere will be too cold. If all basalt is intruded warm below the crust then the lithosphere will be too warm. The key is to have both volcanism and plutonism (intrusive magmatism) to reach the optimal temperature and form massive volumes of continental material.

  1. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province (United States)

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto


    unique peraluminous composition. It has the lowest εNd and εHf values of the suite. Its isotopic compositions indicate that it is significantly older than the other granulites. Broken zircon cores encased by younger overgrowths suggest that this granulite includes a large component of pre-existing sedimentary rocks. Two distinct populations of zircons from S69-5 were dated by sensitive high-resolution ion microprobe. Abundant rounded zircons yield ages of 1104 ± 42 (2σ) Ma, which coincide with the Mid-Continent Rift flood basalt eruptions. Their morphology is similar to those found in lower-crustal rocks that have undergone granulite-facies metamorphism and thus they are considered to represent the age of Group 2 granulites. Also present are less abundant elongate zircon grains that yield a mean age of 1387 ± 32 (2σ) Ma. Their elongate shapes indicate growth from a melt or fluid, possibly associated with 1·3–1·5 Ga anorogenic granite magmatism exposed in the shallow crust to the south in Wisconsin, or related to an initial encroachment of the Keweenawan plume upon the lower crust. Older ages recognized in zircon cores are less well constrained but may be related to tectono-magmatic events in the southern Superior craton. Within the studied suite only S69-5 was recognized as a remnant of the Late Archean lower crust into which the Group 1 and 2 mafic granulite precursor basalts were intruded. Collectively, the data show that the lower crust beneath northern Michigan formed in Archean times and underwent a variety of tectono-magmatic processes throughout the Proterozoic, including orogenesis, partial melting and mafic magmatic underplating in response to upwelling mantle plumes.

  2. A major 2.1 Ga event of mafic magmatism in west Africa: An Early stage of crustal accretion (United States)

    Abouchami, Wafa; Boher, Muriel; Michard, Annie; Albarede, Francis


    environments. Back-arc or low-Ti continental flood basalts provide a marginally good agreement but still face some difficulties. Oceanic flood basalts similar to those which form oceanic plateaus (e.g. in the Nauru basin) and later accreted to continents as allochtonous terranes represent the most acceptable modern analogue of many Proterozoic basalts. It is suggested that deep plumes piercing young lithosphere can generate huge amounts of tholeiites in a short time. Birimian basalts, like many Early Proterozoic basalts, may also be viewed as recent equivalents of the Archean greenstone belts. The modern komatiite of Gorgona Island is suggested to fit this model of intraplate volcanism. Although the 2.1 Ga magmatic event in West Africa has gone virtually unnoticed in the literature, it extends over several thousand kilometers and compares with the distribution of mantle-derived magmatic activity in other major orogenic provinces (e.g. Superior). It shows that the growth rate of continents cannot be extrapolated from the data obtained solely from the best studied continents (North America, Europe, Australia). If such large crustal segments were overlooked, a spurious pattern of episodic activity of the mantle could arise.

  3. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead-zinc mineralization (Gangdese, Tibet) (United States)

    Zhou, Jinsheng; Yang, Zhusen; Hou, Zengqian; Liu, Yingchao; Zhao, Xiaoyan; Zhang, Xiong; Zhao, Miao; Ma, Wang


    In addition to well-known subduction processes, the collision of two continents also generates abundant ore deposits, as in the case of the Tibetan Plateau, which is the youngest and most spectacular collisional belt on Earth. During the building history of the Gangdese magmatic belt, several magmatic flare-up events developed, however, significant magmatic-hydrothermal lead-zinc mineralization dominantly accompanied the magmatism during the syncollisional period ( 65-41 Ma). Based on integrated geochemical and isotopic data, we provide insights into the genesis and evolution of syncollisional magmas, and their implications for significant magmatic-hydrothermal lead-zinc mineralization. The Sr-Nd isotopic compositions of most syncollisional igneous rocks (87Sr/86Sr = 0.7034-0.7123; εNd(t) = - 9.0 to + 1.8) indicate a mixing origin between mantle-derived basaltic magmas and ancient crustal melts, and fractional crystallization is a fundamental mechanism by which syncollisional magmas evolve towards intermediate to silicic compositions. Most lead-zinc mineralization-related plutons are high silica (76.14% wt.% SiO2 on average), high oxygen fugacity (average ΔFMQ + 2.5) granites with highly evolved chemical signatures [average Eun/Eun* = 0.33, high Rb/Sr (average = 3.9)], and they represent the final products from primary magmas. Due to the contribution of ancient crustal melts to the genesis of mineralization-related parent magmas, the spatial distribution of Pb-Zn deposits within the northern Gangdese magmatic belt is controlled by the lithospheric architecture. In compressional environments, magmas have low evacuation efficiency and long magma chamber lifespan, which is favorable for basaltic parents evolved to high silica granites through sufficient fractional crystallization. This scenario contributes to our understanding of the significant magmatic-hydrothermal lead-zinc mineralization that occurred in the syncollisional period.

  4. Basalt Reactivity Variability with Reservoir Depth in Supercritical CO2 and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.


    Long term storage of CO{sub 2} in geologic formations is currently considered the most attractive option to reduce greenhouse gas emissions while continuing to utilize fossil fuels for energy production. Injected CO{sub 2} is expected to reside as a buoyant water-saturated supercritical fluid in contact with reservoir rock, the caprock system, and related formation waters. As was reported for the first time at the GHGT-9 conference, experiments with basalts demonstrated surprisingly rapid carbonate mineral formation occurring with samples suspended in the scCO{sub 2} phase. Those experiments were limited to a few temperatures and CO{sub 2} pressures representing relatively shallow (1 km) reservoir depths. Because continental flood basalts can extend to depths of 5 km or more, in this paper we extend the earlier results across a pressure-temperature range representative of these greater depths. Different basalt samples, including well cuttings from the borehole used in a pilot-scale basalt sequestration project (Eastern Washington, U.S.) and core samples from the Central Atlantic Magmatic Province (CAMP), were exposed to aqueous solutions in equilibrium with scCO{sub 2} and water-rich scCO{sub 2} at six different pressures and temperatures for select periods of time (30 to 180 days). Conditions corresponding to a shallow injection of CO{sub 2} (7.4 MPa, 34 C) indicate limited reactivity with basalt; surface carbonate precipitates were not easily identified on post-reacted basalt grains. Basalts exposed under identical times appeared increasingly more reacted with simulated depths. Tests, conducted at higher pressures (12.0 MPa) and temperatures (55 C), reveal a wide variety of surface precipitates forming in both fluid phases. Under shallow conditions tiny clusters of aragonite needles began forming in the wet scCO{sub 2} fluid, whereas in the CO{sub 2} saturated water, cation substituted calcite developed thin radiating coatings. Although these types of coatings

  5. Floods and Flash Flooding (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  6. The McMurdo Dry Valleys Magmatic Laboratory Workshop of 2005 in Antarctica (United States)

    Marsh, B. D.; Simon, A.; Charrier, A. D.; Hersum, T. G.; Eschholz, E.


    In January of 2005, twenty-five petrologists, volcanologists, geochemists, structural geologists, and magma dynamicists spent two weeks studying and discussing the Magmatic Mush Column represented by the 180 Ma Ferrar Dolerites of the McMurdo Dry Valleys, Antarctica. This exceptionally well-exposed system shows a series of massive interconnected sills culminating in a capping of regional flood basalts. The lowermost sill, the Basement Sill, contains a massive ultramafic tongue of large phenocrysts of orthopyroxene (Opx) with subordinate Cpx and much smaller plagioclase. The 3-D distribution of this Opx Tongue serves as a tracer for the filling dynamics and local motion of the magma. Ponding of the Basement Sill has resulted in a small (500 m), but exceedingly diversified and extensively layered ultramafic intrusion, the Dais Intrusion. Because of the relatively rapid cooling time of this body, the Dais textures have been preserved before extensive annealing, which presents the possibility of using these textures to understand those of much larger, slowly cooled bodies. The combination of seeing in detail a wide variety of exceptional field relations depicting layering, sill emplacement mechanics, internal ordering and crystal sorting in the Opx Tongue, dike and fissure distributions, wall rock thermal effects, and many other first order features of central interest to understanding magmatic processes and performing research in real time was a new challenge to all involved. Facilities were set up at McMurdo Station for rock cutting, thin-section making, map making, GIS analysis, petrographic analysis, and computer modeling using existing chemical and physical data on a spectrum of the representative rock types. At any one time half the group was housed in the field in Bull Pass near Wright Valley and the remaining group was shuttled in by helicopter each day. The principal groups were switched about every three days. Areas for daily field-work were decided upon by

  7. Feasibility of storing radioactive wastes in Columbia River basalts

    International Nuclear Information System (INIS)

    Deju, R.A.


    In 1968 Atlantic Richfield Hanford Company initiated a study to assess the feasibility of final geologic storage of Hanford defense, radioactive waste in deep caverns constructed in the Columbia River flood basalts. The project, which included geologic studies, hydrologic tests, heat flow analysis, compatibility analysis, and tectonic studies, was suspended in 1972 before completion of interpretive work. In 1976 the interpretation and documentation were completed. These data may be valuable in qualifying the Columbia River flood basalts as a viable medium for final geologic storage of commercial radioactive waste. The findings to date are summarized, and the proposed future work is presented

  8. Basaltic Shergottite NWA 856: Differentiation of a Martian Magma (United States)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.


    NWA 856 or Djel Ibone, is a basaltic shergottite discovered as a single stone of 320 g in South Morocco in April, 2001. This meteorite is fresh, i.e. shows minimal terrestrial weathering for a desert find. No shergottite discovered in North Africa can be paired with NWA 856. The purpose of this study is to constrain its crystallization history using textural observations, crystallization sequence modeling and in-situ trace element analysis in order to understand differentiation in shergottite magmatic systems.

  9. Flooding and Flood Management (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim


    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  10. Magmatic sulphides in Quaternary Ecuadorian arc magmas (United States)

    Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus


    New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a

  11. The Volcanic Myths of the Red Sea - Temporal Relationship Between Magmatism and Rifting (United States)

    Stockli, D. F.; Bosworth, W.


    The Cenozoic Red Sea is one of the premier examples of continental rifting and active break-up. It has been cited as an example for both prototypical volcanic, pure shear rift systems with limited crustal stretching as well as magma-poor simple-shear rifting and highly asymmetric rift margins characterized by low-angle normal faults. In light of voluminous Oligocene continental flood basalts in the Afar/Ethiopian region, the Red Sea has often been viewed as a typical volcanic rift, despite evidence for asymmetric extension and hyperextended crust (Zabargad Island). An in-depth analysis of the timing, spatial distribution, and nature of Red Sea volcanism and its relationship to late Cenozoic extensional faulting should shed light on some of the misconceptions. The Eocene appearance of the East African super-plume was not accompanied by any recognized significant extensional faulting or rift-basin formation. The first phase of volcanism more closely associated with the Red Sea occurred in northern Ethiopia and western Yemen at 31-30 Ma and was synchronous with the onset of continental extension in the Gulf of Aden. Early Oligocene volcanism has also been documented in southern and central Saudi Arabia and southern Sudan. However, this voluminous Oligocene volcanism entirely predates Red Sea extensional faulting and rift formation. Marking the onset of Red Sea rifting, widespread, spatially synchronous intrusion of basaltic dikes occurred at 24-21 Ma along the entire Red Sea-Gulf of Suez rift and continuing into northern Egypt. While the initiation of lithospheric extension in the central and northern and central Red Sea and Gulf of Suez was accompanied by only sparse basaltic volcanism and possible underplating, the main phase of rifting in the Miocene Red Sea/Gulf of Suez completely lacks any significant rift-related volcanism, suggesting plate-boundary forces probably drove overall separation of Arabia from Africa. During progressive rifting, there is also no

  12. A historical overview of Moroccan magmatic events along northwest edge of the West African Craton (United States)

    Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane


    Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in

  13. Aspects of possible magmatic disruption of a high-level radioactive waste repository in southern Nevada

    International Nuclear Information System (INIS)

    Crowe, B.; Amos, R.; Perry, F.; Self, S.; Vaniman, D.


    The Nevada Test Site (NTS) region is located within the central section of a north-northeast-trending basaltic volcanic belt of late Cenozoic age, a part of the Quaternary volcanic province of the Great Basin. Future volcanism within the belt represents a potential hazard to storage of high-level radioactive waste within a buried repository located in the southwestern NTS. The hazards of future volcanism in the region are being characterized through a combination of volcanic hazards studies, probability determinations, and consequence analyses. Basaltic activity within the NTS regions is divided into two age groups consisting of relatively large-volume silicic cycle basalts (8 to 10 Myr) and rift basalts (< 8 to 0.3 Myr). This paper describes the processes of basaltic magmatism ranging from derivation of basalt melts at depth, through ascent through the upper mantle and crust, to surface eruption. Each stage in the evolution and dispersal of basaltic magma is described, and the disruption and potential dispersal of stored radioactive waste is evaluated. These data document areas of knowns and unknowns in the processes of basaltic volcanisms and provide background data necessary to assist calculations of radiation release levels due to disruption of a repository. 9 figures, 11 tables

  14. Magmatic densities control erupted volumes in Icelandic volcanic systems (United States)

    Hartley, Margaret; Maclennan, John


    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  15. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley


    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  16. The Age of Rift-Related Basalts in East Antarctica (United States)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.


    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  17. Basalt stratigraphy - Pasco Basin

    International Nuclear Information System (INIS)

    Waters, A.C.; Myers, C.W.; Brown, D.J.; Ledgerwood, R.K.


    The geologic history of the Pasco Basin is sketched. Study of the stratigraphy of the area involved a number of techniques including major-element chemistry, paleomagnetic investigations, borehole logging, and other geophysical survey methods. Grande Ronde basalt accumulation in the Pasco Basin is described. An illustrative log response is shown. 1 figure

  18. Tibetan Magmatism Database (United States)

    Chapman, James B.; Kapp, Paul


    A database containing previously published geochronologic, geochemical, and isotopic data on Mesozoic to Quaternary igneous rocks in the Himalayan-Tibetan orogenic system are presented. The database is intended to serve as a repository for new and existing igneous rock data and is publicly accessible through a web-based platform that includes an interactive map and data table interface with search, filtering, and download options. To illustrate the utility of the database, the age, location, and ɛHft composition of magmatism from the central Gangdese batholith in the southern Lhasa terrane are compared. The data identify three high-flux events, which peak at 93, 50, and 15 Ma. They are characterized by inboard arc migration and a temporal and spatial shift to more evolved isotopic compositions.

  19. Carbon Sequestration in Olivine and Basalt Powder Packed Beds. (United States)

    Xiong, Wei; Wells, Rachel K; Giammar, Daniel E


    Fractures and pores in basalt could provide substantial pore volume and surface area of reactive minerals for carbonate mineral formation in geologic carbon sequestration. In many fractures solute transport will be limited to diffusion, and opposing chemical gradients that form as a result of concentration differences can lead to spatial distribution of silicate mineral dissolution and carbonate mineral precipitation. Glass tubes packed with grains of olivine or basalt with different grain sizes and compositions were used to explore the identity and spatial distribution of carbonate minerals that form in dead-end one-dimensional diffusion-limited zones that are connected to a larger reservoir of water in equilibrium with 100 bar CO 2 at 100 °C. Magnesite formed in experiments with olivine, and Mg- and Ca-bearing siderite formed in experiments with flood basalt. The spatial distribution of carbonates varied between powder packed beds with different powder sizes. Packed beds of basalt powder with large specific surface areas sequestered more carbon per unit basalt mass than powder with low surface area. The spatial location and extent of carbonate mineral formation can influence the overall ability of fractured basalt to sequester carbon.

  20. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc

    DEFF Research Database (Denmark)

    Bailey, John C; Jensen, E.S.; Hansen, A.


    magma formation beneath North Santorini throughout its 500 ka history is attributed to variable transfer of sedimentary components - either terrigenous or pelagic, as bulk sediments or high-temperature partial melts rather than fluids or low-temperature partial melts - from a rupture zone...... in the subducted slab to the overlying mantle. The three main magmatic series followed independent paths of assimilation of upper crustal materials during fractional crystallization. Assimilation was more pronounced at the basaltic stage. The long-lived histories of the three main magmatic series imply repetitive...... melting of isolated mantle regions, ascent of magmas through independent feeder systems, and their residence in separate crustal magma chambers....

  1. 187Re - 232Th - 238U nuclear geochronometry: constraining magmatism in East-Antarctica and the break-up of Gondwana (United States)

    Roller, Goetz


    187Re - 232Th - 238U nuclear geochronometry is a new dating method for astronomy, earth and planetary sciences [1-4]. Nucleogeochronometric Rhenium-Osmium two-point-isochron (TPI) ages are calculated using a nuclear geochronometer as one data point in a two-point-isochron diagram [5-7]. The IVREA chronometer, for example, is one of five terrestrial nuclear geochronometers identified so far [8]. Here, it is used to constrain the magmatism of the Ferrar flood basalt province, which has been related to continental rifting and the break-up of Gondwana in the Jurassic.TPI ages for seven (basaltic) andesite whole rock samples from the Prince Albert Mountains (Victoria Land, Antarctica) are calculated. An isochron age of 172 ± 5 Ma (187Os/188Osi = 0.194 ± 0.023) has previously been published for these rocks [9]. Initial TPI 187Os/188Osi ratios show only minor scatter between 187Os/188Osi = 0.2149 ± 0.0064 and 187Os/188Osi = 0.22231 ± 0.00080, in agreement with the enigmatic, suprachondritic 187Os/188Osi = 0.194 ± 0.023 from the isochron [9]. TPI ages for the Mount Joyce samples range from 125.4 ± 9.9 Ma to 139 ± 17 Ma and thus constrain the youngest magmatic event(s) in the Transantarctic Mountains. For the Thumb Point basalt, a TPI age of 219 ± 81 Ma is calculated. Despite of its large uncertainty, the age itself is in agreement with the Triassic 224 Ma and 240 Ma events reported from North Patagonia [10]. The TPI age of 186.1 ± 8.1 Ma from the Ricker Hill basalt can be clearly distinguished from the Mount Murray TPI age of 158 ± 14 Ma, while at Brimstone Peak two TPI age groups of 155 ± 14 Ma and 175.3 ± 3.1 Ma are observed. From this it may be concluded that the seven TPI ages indicate episodic magmatic activity in East-Antarctica between 125 Ma and 219 Ma, leading to the break-up of Gondwana. This picture is consistent with the geochronology of the Antarctic Peninsula, Patagonia, the Karoo and the Ferrar mafic rocks [10]. Thus, besides constraining

  2. Hot subduction: Magmatism along the Hunter Ridge, SW Pacific

    International Nuclear Information System (INIS)

    Crawford, A.J.; Verbeeten, A.; Danyushevsky, L.V.; Sigurdsson, I.A.; Maillet, P.; Monzier, M.


    The Hunter 'fracture zone' is generally regarded as a transform plate boundary linking the oppositely dipping Tongan and Vanuatu subduction systems. Dredging along the Hunter Ridge and sampling of its northernmost extent, exposed as the island of Kadavu in Fiji, has yielded a diversity of magmatic suites, including arc tholeiites and high-Ca boninites, high-Mg lavas with some affinities to boninites and some affinities to adakites, and true adakitic lavas associated with remarkable low-Fe, high-Na basalts with 8-16 ppm Nb (herein high-Nb basalts). Lavas which show clear evidence of slab melt involvement in their petrogenesis occur at either end of the Hunter Ridge, whereas the arc tholeiites and high-Ca boninites appear to be restricted to the south central part of the ridge. Mineralogical and whole rock geochemical data for each of these suites are summarized, and a tectono-magmatic model for their genesis and distribution is suggested. Trace element features and radiogenic isotope data for the Hunter Ridge lavas indicate compositions analogue to Pacific MORB-like mantle

  3. Basalt-trachybasalt samples in Gale Crater, Mars

    International Nuclear Information System (INIS)

    Edwards, Peter H.; Anderson, Ryan B.; Dyar, Darby


    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.

  4. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico (United States)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.


    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  5. Magmatic systems of large continental igneous provinces

    Directory of Open Access Journals (Sweden)

    E. Sharkov


    Full Text Available Large igneous provinces (LIPs formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts (during Archean and early Paleoproterozoic to Phanerozoic-type geochemically enriched Fe-Ti basalts and picrites at 2.3 Ga. We propose that this upheaval could be related to the change in the source and nature of the mantle superplumes of different generations. The first generation plumes were derived from the depleted mantle, whereas the second generation (thermochemical originated from the core-mantle boundary (CMB. This study mainly focuses on the second (Phanerozoic type of LIPs, as exemplified by the mid-Paleoproterozoic Jatulian–Ludicovian LIP in the Fennoscandian Shield, the Permian–Triassic Siberian LIP, and the late Cenozoic flood basalts of Syria. The latter LIP contains mantle xenoliths represented by green and black series. These xenoliths are fragments of cooled upper margins of the mantle plume heads, above zones of adiabatic melting, and provide information about composition of the plume material and processes in the plume head. Based on the previous studies on the composition of the mantle xenoliths in within-plate basalts around the world, it is inferred that the heads of the mantle (thermochemical plumes are made up of moderately depleted spinel peridotites (mainly lherzolites and geochemically-enriched intergranular fluid/melt. Further, it is presumed that the plume heads intrude the mafic lower crust and reach up to the bottom of the upper crust at depths ∼20 km. The generation of two major types of mantle-derived magmas (alkali and tholeiitic basalts was previously attributed to the processes related to different PT-parameters in the adiabatic melting zone whereas this study relates to the fluid regime in the plume heads. It is also suggested that a newly-formed melt can occur on different sides of a critical plane of silica undersaturation and can

  6. Geochemistry of cenozoic basaltic rocks from Shandong province and its implication for mantle process in North China

    International Nuclear Information System (INIS)

    Lee Yungtan; Chen Juchin; Huang Shaowei; Shih Jyhyi; Lin Menglung; Juang Wenshing; Yang Huaijen


    Cenozoic (Miocene to Pleistocene) basaltic rocks found in Shandong province of northern China include tholeiite, olivine tholeiite and alkali basalt. We present major, trace and rare earth elements data of these basalts and together with Sr-Nd isotopic data in the literatures to discuss the petrogenesis of these basalts. The basalts from Penglai area have higher K, Na and P and incompatible elements, but lower Ca, Mg and compatible elements contents than those from Changle area of Shandong province. Spidergrams indicate that Cenozoic basalts from Shandong province have geochemical characteristics similar to those of ocean island basalts (OIB) with slight positive Nb anomaly. The negative Ba, Rb and K anomalies found in the alkali basalts suggest the presence of residual phlogopite in the mantle source, indicating a metasomatic event occurred before the partial melting. The 143 Nd/ 144 Nd vs. 87 Sr/ 86 Sr plot suggested that basalts from Shandong province can be produced by MORB and EM-I components mixing. We propose that the EM-I type lithospheric mantle may have been produced by the recent H 2 O-CO 2 -fluids metasomatism and the fluids may be derived from dehydration of the subducted slab. Based on Shaw's equation, the basalts from eastern and central Shandong province have undergone different degrees of particle melting from the mantle source. Degrees of partial melting and chemical composition of basalts from Shandong province suggest that the lithosphere has thickened progressively since the Miocene. On the basis of Ar-Ar ages of this study and the fractional crystallization model proposed by Brooks and Nielsen (1982), we suggest that basalts from Changle and Penglai areas belong to different magmatic systems which have undergone fractional crystallization and evolved progressively to produce other types of basalts. (author)

  7. Continental breakup of the Central Atlantic and the initiation of the southern Central Atlantic Magmatic Province: revisiting the role of a mantle plume (United States)

    Rohrman, M.


    Central Atlantic breakup is strongly associated with magmatism of the Central Atlantic Magmatic Province (CAMP), although the exact mechanism, as well as the temporal and spatial relations, have so far been poorly constrained. Here, I propose a mantle plume origin for the 200 Ma southern Central Atlantic Province (CAMP), based on an original plume conduit location off southeastern Florida, linking Early Jurassic rift systems: One rift arm is defined by the Takutu rift in present-day Guyana and Brazil, extending all the way past the Demerara Rise. This rift is linking up with a second arm from the Bahamas basin to the Blake Plateau basin. Finally, there is the third, failed rift between the Demerara Rise and the Guinea Plateau. This rift system post-dates earlier Triassic rift systems along the US eastcoast and in the subsurface of Arkansas, Texas, the Gulf of Mexico and northern South America. Chronostratigraphic analysis of outcrop, wells and seismic data near the proposed conduit, suggest initial Rhaetian uplift, followed by dike/sill intrusions feeding flood basalts and the initiation of igneous centers at the triple point. The latter resulted in various subsequent uplift and subsidence events, as a result of volcanic construction and erosion. The load of the volcanic edifice generated a point of weakness, allowing favorable plate stresses to generate rift systems, propagating away from the rift junction and eventually break up Pangea. The breakup is marked by the magmatic breakup (un)conformity on seismic data, separating hotspot/plume sourced Seaward Dipping reflectors (SDRs) within the continental rift system, from early ocean spreading sourced SDRs. As ocean spreading continued, the volcanic construction evolved into a hotspot track, now recognized as the Bahamas island trail. Time progression of this hotspot track resembles the present-day Iceland hotspot track, as suggested by plate reconstructions (Figure 1). Based on melting depth estimates from Sm

  8. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    International Nuclear Information System (INIS)

    Valentine, G.A.


    This chapter summarizes data collection and model calculations through FY 95 under Study Plan Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth's surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository

  9. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, G.A.


    This chapter summarizes data collection and model calculations through FY 95 under Study Plan Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth`s surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository.

  10. Devonian magmatism in the Timan Range, Arctic Russia - subduction, post-orogenic extension, or rifting? (United States)

    Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.


    Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.

  11. Magmatic intrusions in the lunar crust (United States)

    Michaut, C.; Thorey, C.


    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  12. Ca. 890 Ma magmatism in the northwest Yangtze block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications (United States)

    Zhou, Jiu-Long; Li, Xian-Hua; Tang, Guo-Qiang; Gao, Bing-Yu; Bao, Zhi-An; Ling, Xiao-Xiao; Wu, Li-Guang; Lu, Kai; Zhu, Yu-Sheng; Liao, Xin


    Early Neoproterozoic tectonics of the Yangtze block remains poorly understood because very limited igneous records are available from the time interval of ∼1000-870 Ma. In this paper, our new SIMS U-Pb dating results demonstrate that the Liushudian mafic intrusion and Pinghe alkaline complex in the northwest Yangtze block were emplaced at 888 ± 6 Ma and 891 ± 7 Ma, respectively, representing the products of a ∼890 Ma igneous event. Gabbros from the Liushudian intrusion have rather depleted zircon ɛHf(t) (mean = 10.4) and normal mantle-like zircon δ18O (mean = 5.97‰). Their parental magma was thus probably derived from asthenospheric mantle. Geochemically, these mafic rocks have an affinity to continental flood tholeiitic basalts rather than ocean island basalts, as previously thought. In contrast, an ijolite sample from the Pinghe complex has less depleted zircon ɛHf(t) (mean = 5.7) and anomalously high zircon and apatite δ18O (mean = 13.76‰ and 13.80‰, respectively). Such a characteristic δ18O signal, among the highest yet known for igneous zircons, could be either inherited from a magma source in metasomatized lithospheric mantle or acquired by assimilation of high-δ18O supracrustal materials (e.g., limestone, chert) during magma evolution. An intra-plate extensional environment is suggested for the ∼890 Ma igneous event in the northwest Yangtze block, although it is as yet unclear whether this igneous event is related to a mantle plume or not. It could be concluded that magmatism on the western periphery of the Yangtze block was not shut down between ∼1000 and ∼870 Ma, and the ∼890 Ma intra-plate igneous event may mark either the onset of Neoproterozoic continental rifting or the ending of Late Mesoproterozoic to Early Neoproterozoic lithospheric extension.

  13. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell


    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  14. Physical processes and effects of magmatism in the Yucca Mountain region

    International Nuclear Information System (INIS)

    Valentine, G.A.; Crowe, B.M.; Perry, F.V.


    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth's surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii

  15. The parent magma of the Nakhla (SNC) meteorite: Reconciliation of composition estimates from magmatic inclusions and element partitioning (United States)

    Treiman, A. H.


    The composition of the parent magma of the Nakhla meteorite was difficult to determine, because it is accumulate rock, enriched in olivine and augite relative to a basalt magma. A parent magma composition is estimated from electron microprobe area analyses of magmatic inclusions in olivine. This composition is consistent with an independent estimate based on the same inclusions, and with chemical equilibria with the cores of Nakhla's augites. This composition reconciles most of the previous estimates of Nakhla's magma composition, and obviates the need for complex magmatic processes. Inconsistency between this composition and those calculated previously suggests that magma flowed through and crystallized into Nakhla as it cooled.

  16. The parent magma of xenoliths in shergottite EETA79001: Bulk and trace element composition inferred from magmatic inclusions (United States)

    Treiman, Allan H.; Lindstrom, David J.; Martinez, Rene R.


    The SNC meteorites are samples of the Martian crust, so inferences about their origins and parent magmas are of wide planetologic significance. The EETA79001 shergottite, a basalt, contains xenoliths of pyroxene-olivine cumulate rocks which are possibly related to the ALHA77005 and LEW88516 SNC lherzolites. Olivines in the xenoliths contain magmatic inclusions, relics of magma trapped within the growing crystals. The magmatic inclusions allow a parent magma composition to be retrieved; it is similar to the composition reconstructed from xenolith pyroxenes by element distribution coefficients. The xenolith parent magma is similar but not identical to parent magmas for the shergottite lherzolites.

  17. Titanium stable isotope investigation of magmatic processes on the Earth and Moon (United States)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.


    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  18. Geothermal constraints on Emeishan mantle plume magmatism: paleotemperature reconstruction of the Sichuan Basin, SW China (United States)

    Zhu, Chuanqing; Hu, Shengbiao; Qiu, Nansheng; Jiang, Qiang; Rao, Song; Liu, Shuai


    The Middle-Late Permian Emeishan Large Igneous Province (ELIP) in southwestern China represents a classic example of a mantle plume origin. To constrain the thermal regime of the ELIP and contemporaneous magmatic activity in the northeastern Sichuan Basin, maximum paleotemperature profiles of deep boreholes were reconstructed using vitrinite reflectance (Ro) and apatite fission track data. Two heating patterns were identified: (1) heating of the overlying lithosphere by magma storage regions and/or magmatic activity related to the mantle plume, which resulted in a relatively strong geothermal field and (2) direct heating of country rock by stock or basalt. Borehole Ro data and reconstructed maximum paleotemperature profiles near the ELIP exhibit abrupt tectonothermal unconformities between the Middle and Late Permian. The profiles in the lower subsections (i.e., pre-Middle Permian) exhibited significantly higher gradients than those in the upper subsections. Distal to the basalt province, high paleo-geotemperatures (hereafter, paleotemperatures) were inferred, despite deformation of the paleogeothermal curve due to deep faults and igneous rocks within the boreholes. In contrast, Ro profiles from boreholes without igneous rocks (i.e., Late Permian) contained no break at the unconformity. Paleotemperature gradients of the upper and the lower subsections and erosion at the Middle/Late Permian unconformity revealed variations in the thermal regime. The inferred spatial distribution of the paleothermal regime and the erosion magnitudes record the magmatic and tectonic-thermal response to the Emeishan mantle plume.

  19. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon (United States)

    Bonnand, Pierre; Parkinson, Ian J.; Anand, Mahesh


    We present the first stable chromium isotopic data from mare basalts in order to investigate the similarity between the Moon and the Earth's mantle. A double spike technique coupled with MC-ICP-MS measurements was used to analyse 19 mare basalts, comprising high-Ti, low-Ti and KREEP-rich varieties. Chromium isotope ratios (δ53Cr) for mare basalts are positively correlated with indices of magmatic differentiation such as Mg# and Cr concentration which suggests that Cr isotopes were fractionated during magmatic differentiation. Modelling of the results provides evidence that spinel and pyroxene are the main phases controlling the Cr isotopic composition during fractional crystallisation. The most evolved samples have the lightest isotopic compositions, complemented by cumulates that are isotopically heavy. Two hypotheses are proposed to explain this fractionation: (i) equilibrium fractionation where heavy isotopes are preferentially incorporated into the spinel lattice and (ii) a difference in isotopic composition between Cr2+ and Cr3+ in the melt. However, both processes require magmatic temperatures below 1200 °C for appreciable Cr3+ to be present at the low oxygen fugacities found in the Moon (IW -1 to -2 log units). There is no isotopic difference between the most primitive high-Ti, low-Ti and KREEP basalts, which suggest that the sources of these basalts were homogeneous in terms of stable Cr isotopes. The least differentiated sample in our sample set is the low-Ti basalt 12016, characterised by a Cr isotopic composition of -0.222 ± 0.025‰, which is within error of the current BSE value (-0.124 ± 0.101‰). The similarity between the mantles of the Moon and Earth is consistent with a terrestrial origin for a major fraction of the lunar Cr. This similarity also suggests that Cr isotopes were not fractionated by core formation on the Moon.

  20. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province (United States)

    Zhu, Bei; Peate, David W.; Guo, Zhaojie; Liu, Runchao; Du, Wei


    We have identified a new crustally derived granite pluton that is related to the Emeishan Large Igneous Province (ELIP). This pluton (the Wase pluton, near Dali) shows two distinct SHRIMP zircon U-Pb age groups ( 768 and 253 Ma). As it has an intrusive relationship with Devonian limestone, the younger age is interpreted as its formation, which is related to the ELIP event, whereas the 768 Ma Neoproterozoic-aged zircons were inherited from Precambrian crustal component of the Yangtze Block, implying the pluton has a crustally derived origin. This is consistent with its peraluminous nature, negative Nb-Ta anomaly, enrichment in light rare earth elements, high 87Sr/86Sr(i) ratio (0.7159-0.7183) and extremely negative ɛ(Nd)(i) values (-12.15 to -13.70), indicative of melts derived from upper crust materials. The Wase pluton-intruded Devonian strata lie stratigraphically below the Shangcang ELIP sequence, which is the thickest volcanic sequence ( 5400 m) in the whole ELIP. The uppermost level of the Shangcang sequence contains laterally restricted rhyolite. Although the rhyolite has the same age as the Wase pluton, its geochemical features demonstrate a different magma origin. The rhyolite displays moderate 87Sr/86Sr(i) (0.7053), slightly negative ɛ(Nd)(i) (-0.18) and depletions in Ba, Cs, Eu and Sr, implying derivation from differentiation of a mantle-derived mafic magma source. The coexistence of crustally and mantle-derived felsic systems, along with the robust development of dike swarms, vent proximal volcanics and thickest flood basalts piles in Dali, shows that the Dali area was probably where the most active Emeishan magmatism had once existed.

  1. Elastic Anisotropy of Basalt (United States)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.


    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  2. Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts. (United States)

    Xu, Zheng; Zheng, Yong-Fei; Zhao, Zi-Fu


    Crustal components may be incorporated into continental basalts by either shallow contamination or deep mixing. While the former proceeds at crustal depths with common preservation of refractory minerals, the latter occurs at mantle depths with rare survival of relict minerals. Discrimination between the two mechanisms has great bearing to subcontinental mantle geochemistry. Here we report the occurrence of relict zircons in Cenozoic continental basalts from eastern China. A combined study of zircon U-Pb ages and geochemistry indicates that detrital zircons were carried by terrigenous sediments into a subcontinental subduction zone, where the zircon were transferred by fluids into the magma sources of continental basalts. The basalts were sampled from three petrotectonic units with distinct differences in their magmatic and metamorphic ages, making the crustal contamination discernible. The terrigenous sediments were carried by the subducting oceanic crust into the asthenospheric mantle, producing both soluble and insoluble materials at the slab-mantle interface. These materials were served as metasomatic agents to react with the overlying mantle wedge peridotite, generating a kind of ultramafic metasomatites that contain the relict zircons. Therefore, the occurrence of relict zircons in continental basalts indicates that this refractory mineral can survive extreme temperature-pressure conditions in the asthenospheric mantle.

  3. The Fe/Mn constraint on precursors of basaltic achondrites (United States)

    Delaney, Jeremy S.; Boesenberg, Joseph S.


    Most achondritic meteorites have Fe/Mn ratios that are lower than those of carbonaceous chondrites and of course are lower than the solar system abundance ratio of these elements. Models of the origin of achondritic assemblages must, therefore, account for these ratios. Fe/Mn ratios are suggested to be distinctive for samples from each achondrite parent body and for the Earth and Moon, but the correspondence between the Fe/Mn systematics of achondrites and chondritic precursors is unclear. Most models of achondrite genesis involve magmatic differentiation of chondritic precursors. The Fe/Mn difference between achondrites and chondrites is particularly significant since Fe and Mn are geochemically similar elements with similar partitioning behavior in familiar magmatic systems and are generally coupled during crystal-liquid fractionation. In contrast, however, Mn is more volatile than Fe in a nebular setting. Variation of Fe/Mn ratios based on the relative volatility of these elements in the early nebula provides a constraint for models by which the basaltic achondrites (with Fe/Mn ratios approximately = 25-50) are derived from mixtures of nebular components that were enriched in volatile components such as Mn. However, such volatile enriched components have not been identified in chondrites. When the abundance in achondrites of elements of similar volatility is examined, anomalies appear. For example, Na is massively depleted in basaltic achondrites when compared to Mn. These anomalies might be explained using current models but the alternative hypothesis, that Fe/Mn ratio is controlled not by nebular volatility constraints, but by planetary differentiation should be explored.

  4. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer


    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  5. Geology of the Baskil (Elazığ Area and the Petrology of Baskil Magmatics

    Directory of Open Access Journals (Sweden)

    H. Jerf ASUTAY


    Full Text Available The study area which covers the region around Baskil on Eastern Taurus Range comprises of Keban metamorphics and Baskil magmatics overlain by a Tertiary sedimentary cover. The Keban metamorphics are represented by regional and contact metamorphic rocks in the study area. Calc schist and marble associations are widespread on the regional scale. Between Baskil granite and Keban metamorphics exomorphism and endomorphism zones have been developed. Metasomatic effects are observed in the contact metamorphic rocks which reflect the pyroxene-hornfels facies. The sedimentary sequence begins with Middle Paleocene (Thanetian aged rocks in the study area. The same sequence, however, has been deposited starting in Santonian-Campanian in the surrounding area. The sedimentary rock sequence which is composed of Kuşçular conglomerate, Seske formation, Kırkgeçit formation (Paleocene-Plio-Quaternary are represented by conglomerate, carbonates and flysch kind of sedimentary rocks. Baskil magmatics are an association of plutonic, hypabyssal and volcanic rocks. Of this association, Baskil granite contains dioritic, monzonitic and tonalitic kind of magmatic rocks which are mostly observed as transitional. Baskil granite, in the study area, is frequently cut across by basic and acidic dykes which locally intrudes between the granite and the basaltic, andesitic rocks overlying the granite and are transitional with the volcanics. Chemically, Baskil granite is of calc-alkaline type. It is rich in silica and alkaline. Trace element distribution is quite regular. Baskil granite which is determined as of type 'I' is generally rich in hornblende but poor in muscovite and biotite. It shows the features of continental margin magmatism and is an example of systematic differentiation. Considering their features and under the light of plate tectonics concept, Baskil magmatics may be said to be a product of continental margin magmatism. They are, presumably, the products of an


    Directory of Open Access Journals (Sweden)

    Jakob Pamić


    Full Text Available In the paper are presented basic geological, petrologieca1, geochemi-cal and mineral deposit data for five main magmatic-metallogenic formations of the northwestern and central Dinarides: (lThe Permo Triassic rifting related andesite-diorite formations; (2 The Jurassic-Lower Cretaceous accretionary (ophiolite formations; (3 The Upper Cretaceous-Paleogene subduction related basalt-rhyohite formations; (4 The Paleogene collisional granite formations, and (5 The Oligo-cene-Neogene postsubduction andesite formations. All these magmatic-metallogenic formations originated in different geotectonic settings during the Alpine evolution of the Dinaridic parts of thc Tethys and the postorogenic evolution of the Paratethys and the Pannonian Basin, respectively.

  7. The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt

    International Nuclear Information System (INIS)

    Fitton, J.G.


    The Cameroon line is a unique within-plate volcanic province which straddles a continental margin. It consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. It provides, therefore, an ideal area in which to compare the sub-oceanic and sub-continental mantle sources for alkali basalt. Basaltic rocks in the oceanic and continental sectors are geochemically and isotopically indistinguishable which suggests that they have identical mantle sources. This conclusion rules out substantial lithosphere involvement in the generation of alkali basalts and therefore weakens the case for mantle metasomatism as a necessary precursor to alkaline magmatism. The convecting upper mantle is a much more likely source as it will be well-stirred and unlikely to show any ocean-continent differences. The long history of Cameroon line magmatism (65 Ma) and lack of evidence for migration of volcanism with time makes a deeper mantle source unlikely. Mid-ocean ridge basalts (MORB) also originate within the convecting upper mantle and so must share a common source with the Cameroon line alkali basalts (and, by implication, ocean island and continental rift basalts). A grossly homogeneous mantle with a bulk composition depleted in large-ion lithophile elements (LILE), but containing streaks of old, LILE-enriched material, provides a plausible common source. Large degree, near-surface melting of such a source would produce MORB. Smaller degree melts produced at deeper levels would percolate upwards along grain boundaries and become enriched in LILE by leaching LILE-rich grain boundary films. The mixing of these liquids with melts from the LILE-rich streaks will produce magmas with the geochemical and isotopic features of ocean island basalts. (orig.)

  8. Magmatic and non-magmatic history of the Tyrrhenain backarc Basin: new constraints from geophysical and geological data (United States)

    Prada, Manel; Sallares, Valenti; Ranero, Cesar R.; Zitellini, Nevio; Grevemeyer, Ingo


    The Western Mediterranean region is represented by a system of backarc basins associated to slab rollback and retreat of subduction fronts. The onset of formation of these basins took place in the Oligocene with the opening of the Valencia Through, the Liguro-Provençal and the Algero-Balearic basins, and subsequently, by the formation of the Alboran and Tyrrhenian basins during the early Tortonian. The opening of these basins involved rifting that in some regions evolved until continental break up, that is the case of the Liguro-Provençal, Algero-Balearic, and Tyrrhenian basins. Previous geophysical works in the first two basins revealed a rifted continental crust that transitions to oceanic crust along a region where the basement nature is not clearly defined. In contrast, in the Tyrrhenian Basin, recent analysis of new geophysical and geological data shows a rifted continental crust that transitions along a magmatic-type crust to a region where the mantle is exhumed and locally intruded by basalts. This basement configuration is at odds with current knowledge of rift systems and implies rapid variations of strain and magma production. To understand these processes and their implications on lithospheric backarc extension we first need to constrain in space and time these observations by further analysis of geophysical and geological data. Here we present two analyses; the first one is focused on the spatial variability of magmatism along the Cornaglia Terrace axis, where magmatic-type crust has been previously interpreted. The comparison of three different seismic refraction transects, acquired across the basin axis from North to South, allows to infer that the highest magmatic activity occurred beneath the central and most extended region of the terrace; while it was less important in the North and almost non-existent in the South. The second analysis focuses on the presence of exhumed mantle in the deepest region of the Tyrrhenian, previously interpreted by

  9. Back-arc basin development: Constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China) (United States)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Pan, Fa-Bin; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Tao, Lu; Zhang, Li-Qi; Wu, Jing


    The Lajishan belt of the Central Qilian block was a back-arc basin during Early Paleozoic. The basaltic magmatism and temporal evolution in this basin provide an opportunity to study the development of back-arc basin in an active continental margin. In this study, we carry out an integrated study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic arc-like and OIB-like basalts. The Lajishan arc-like basalts are enriched in large ion lithophile element (LILE) and show negative Nb and Ta anomalies whereas the OIB-like basalts have high LILE abundances and show positive Nb and Ta anomalies. The arc-like basalts have initial 87Sr/86Sr values of 0.7050-0.7054 and εNd(t) values of +0.51-+2.63, and the OIB-like basalts have initial 87Sr/86Sr values of 0.7049-0.7050 and εNd(t) values of +0.66-+1.57. The geochemical and Sr-Nd isotopic compositions suggest that the arc-like basalts are derived from partial melting of a depleted mantle source metasomatized by slab-derived components at shallow depth levels, and the OIB-like basalts also originated from a metasomatized mantle wedge source. U-Pb zircon dating yielded the ages of 494 ± 4 Ma for the arc-like basalts and 468 ± 6 Ma for the OIB-like basalts. We argue that the arc-like basalts are products of back-arc extension before the back-arc rifting initiated in earlier stage, resulting from the northward subduction of the Qaidam-West Qinling oceanic slab, while the OIB-like basalts represent products of further back-arc spreading in response to rollback of the Qaidam-West Qinling oceanic lithospheric slab. The association of arc-like and OIB-like basalts in the Lajishan belt records the development of back-arc basin from initial rifting to subsequent spreading, offering insight into how basaltic magmatism generates in the formation of back-arc basin in subduction zone setting.

  10. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume I

    International Nuclear Information System (INIS)


    Geologic, hydrologic, heat transfer and rock-waste compatibility studies conducted by the Atlantic Richfield Hanford Company to evaluate the feasibility of storing nuclear wastes in caverns mined out into the Columbia River basalts are discussed. The succession of Columbia River Plateau flood basalts was sampled at various outcrops and in core holes and the samples were analyzed to develop a stratigraphic correlation of the various basalt units and sedimentary interbeds. Hydrologic tests were made in one bore hole to assess the degree of isolation in the various deep aquifers separated by thick basalt accumulations. Earthquake and tectonic studies were conducted to assess the tectonic stability of the Columbia River Plateau. Studies were made to evaluate the extent of heat dissipation from stored radioactive wastes. Geochemical studies were aimed at evaluating the compatibility between the radioactive wastes and the basalt host rocks. Data obtained to-date have allowed development of a hydrostratigraphic framework for the Columbia River Plateau and a preliminary understanding of the deep aquifer systems. Finally, the compilation of this information has served as a basis for planning the studies necessary to define the effectiveness of the Columbia River basalts for permanently isolating nuclear wastes from the biosphere

  11. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Yener Eyuboglu


    Full Text Available The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine–Himalayan belt. The late Mesozoic–Cenozoic geodynamic evolution of this belt remains controversial. Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved. The adakitic lithologies comprise porphyries and hyaloclastites. The porphyries are represented by biotite-rich andesites, hornblende-rich andesite and dacite. The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud. The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area. We report zircon U-Pb ages of 48.71 ± 0.74 Ma for the adakitic rocks, and 44.68 ± 0.84 Ma for the non-adakitic type, suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism. We evaluate the origin, magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt. Our results have important bearing on the late Mesozoic–Cenozoic geodynamic evolution of the eastern Mediterranean region.

  12. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington (United States)

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen


    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  13. Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I E.M. [Department of Geology, Auckland University, Auckland (New Zealand); Okada, T [Okayama University of Science, Hiruzen Research Institute, Okayama (Japan); Itaya, T [Okayama University of Science, Hiruzen Research Institute, Okayama (Japan); Black, P M [Department of Geology, Auckland University, Auckland (New Zealand)


    An episode of late Miocene-Recent essentially basaltic volcanism is the latest in a sequence of magmatic events recognised in the tectonically complex geological development of the Northland Peninsula. New K-Ar dates together with an extensive collection of new major and trace element chemical analyses prompt a reassessment of the significance of these late Cenozoic basalts. The main time/space groupings recognised are Tertiary volcanics in the Kaikohe-Bay of Islands, Puhipuhi, Ti Point, and Stony Batter areas and Quaternary basalts in the Kaikohe-Bay of Islands and Whangarei areas and at Tara. Basalts in the Kaikohe-Bay of Islands area are transitional to alkalic in character, while those in the south are transitional to tholeiitic, with the Ti Point and Stony Batter rocks being geochemically distinct. A consistent model for these observations is that the magmas originate from different levels of a layered mantle source in which the upper part carries a geochemical signature inherited from an earlier subduction event. (author). 27 refs., 7 figs., 1 tab.

  14. Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand

    International Nuclear Information System (INIS)

    Smith, I.E.M.; Okada, T.; Itaya, T.; Black, P.M.


    An episode of late Miocene-Recent essentially basaltic volcanism is the latest in a sequence of magmatic events recognised in the tectonically complex geological development of the Northland Peninsula. New K-Ar dates together with an extensive collection of new major and trace element chemical analyses prompt a reassessment of the significance of these late Cenozoic basalts. The main time/space groupings recognised are Tertiary volcanics in the Kaikohe-Bay of Islands, Puhipuhi, Ti Point, and Stony Batter areas and Quaternary basalts in the Kaikohe-Bay of Islands and Whangarei areas and at Tara. Basalts in the Kaikohe-Bay of Islands area are transitional to alkalic in character, while those in the south are transitional to tholeiitic, with the Ti Point and Stony Batter rocks being geochemically distinct. A consistent model for these observations is that the magmas originate from different levels of a layered mantle source in which the upper part carries a geochemical signature inherited from an earlier subduction event. (author). 27 refs., 7 figs., 1 tab

  15. 40Ar-39Ar age determinations on the Owyhee basalt of the Columbia plateau

    International Nuclear Information System (INIS)

    Bottomley, R.J.; York, D.


    40 Ar/ 39 Ar step-heating analyses have been performed on 11 samples of basalt from sites near Owyhee Reservoir of southeastern Oregon, U.S.A. These rocks were extruded during the great flood basalt episode of the Pacific Northwest. The whole-rock points are highly correlated on a plot of 40 Ar/ 36 Ar versus 39 Ar/ 36 Ar, corresponding to a common age of the samples of 14.3+-0.3 m.y. Inspite of this, individual 'plateau' plots of the age versus fraction of 39 Ar released do not give good plateaux. These age spectra exhibit to varying degrees a common structure in which lower age values are found at higher temperatures. This pattern may result from a closed-system redistribution of the argon isotopes. The usefulness of grinding the basalts in removing a loosely held atmospheric argon component is confirmed. (Auth.)

  16. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, Michel


    The strongly incompatible behaviour of uranium in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behavior, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth, which crystallized uraninite, dated at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: per-alkaline, high-K met-aluminous calc-alkaline, L-type peraluminous and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass of their volcanic equivalents represent the best U source. Per-alkaline granites or syenites are associated with the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction under the present economic conditions and make them unfavorable U sources for other deposit types. By contrast, felsic per-alkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals (U-thorite, allanite, Nb oxides) become metamict. The volcanic rocks of the same geochemistry may be

  17. Felsic magmatism and uranium deposits

    International Nuclear Information System (INIS)

    Cuney, M.


    Uranium strongly incompatible behaviour in silicate magmas results in its concentration in the most felsic melts and a prevalence of granites and rhyolites as primary U sources for the formation of U deposits. Despite its incompatible behaviour, U deposits resulting directly from magmatic processes are quite rare. In most deposits, U is mobilized by hydrothermal fluids or ground water well after the emplacement of the igneous rocks. Of the broad range of granite types, only a few have have U contents and physico-chemical properties that permit the crystallization of accessory minerals from which uranium can be leached for the formation of U deposits. The first granites on Earth which crystallized uraninite appeared at 3.1 Ga, are the potassic granites from the Kaapval craton (South Africa) which were also the source of the detrital uraninite for the Dominion Reef and Witwatersrand quartz pebble conglomerate deposits. Four types of granites or rhyolites can be sufficiently enriched in U to represent a significant source for the genesis of U deposits: peralkaline, high-K metaluminous calc-alkaline, L-type peraluminous ones and anatectic pegmatoids. L-type peraluminous plutonic rocks in which U is dominantly hosted in uraninite or in the glass in their volcanic equivalents represent the best U source. Peralkaline granites or syenites represent the only magmatic U-deposits formed by extreme fractional crystallization. The refractory character of the U-bearing minerals does not permit their extraction at the present economic conditions and make them unfavourable U sources for other deposit types. By contrast, felsic peralkaline volcanic rocks, in which U is dominantly hosted in the glassy matrix, represent an excellent source for many deposit types. High-K calc-alkaline plutonic rocks only represent a significant U source when the U-bearing accessory minerals [U-thorite, allanite, Nb oxides] become metamict. The volcanic rocks of the same geochemistry may be also a

  18. Phase equilibria constraints on models of subduction zone magmatism (United States)

    Myers, James D.; Johnston, Dana A.

    Petrologic models of subduction zone magmatism can be grouped into three broad classes: (1) predominantly slab-derived, (2) mainly mantle-derived, and (3) multi-source. Slab-derived models assume high-alumina basalt (HAB) approximates primary magma and is derived by partial fusion of the subducting slab. Such melts must, therefore, be saturated with some combination of eclogite phases, e.g. cpx, garnet, qtz, at the pressures, temperatures and water contents of magma generation. In contrast, mantle-dominated models suggest partial melting of the mantle wedge produces primary high-magnesia basalts (HMB) which fractionate to yield derivative HAB magmas. In this context, HMB melts should be saturated with a combination of peridotite phases, i.e. ol, cpx and opx, and have liquid-lines-of-descent that produce high-alumina basalts. HAB generated in this manner must be saturated with a mafic phase assemblage at the intensive conditions of fractionation. Multi-source models combine slab and mantle components in varying proportions to generate the four main lava types (HMB, HAB, high-magnesia andesites (HMA) and evolved lavas) characteristic of subduction zones. The mechanism of mass transfer from slab to wedge as well as the nature and fate of primary magmas vary considerably among these models. Because of their complexity, these models imply a wide range of phase equilibria. Although the experiments conducted on calc-alkaline lavas are limited, they place the following limitations on arc petrologic models: (1) HAB cannot be derived from HMB by crystal fractionation at the intensive conditions thus far investigated, (2) HAB could be produced by anhydrous partial fusion of eclogite at high pressure, (3) HMB liquids can be produced by peridotite partial fusion 50-60 km above the slab-mantle interface, (4) HMA cannot be primary magmas derived by partial melting of the subducted slab, but could have formed by slab melt-peridotite interaction, and (5) many evolved calc

  19. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts (United States)

    Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.


    In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth

  20. Cenozoic intra-plate magmatism in the Darfur volcanic province: mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa (United States)

    Lucassen, Friedrich; Pudlo, Dieter; Franz, Gerhard; Romer, Rolf L.; Dulski, Peter


    Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite-basalt-phonolite-trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.

  1. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton (United States)

    Yang, Fan; Santosh, M.; Tang, Li


    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  2. Subseafloor basalts as fungal habitats (United States)

    Ivarsson, M.; Bengtson, S.


    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  3. Quaternary Magmatism in the Cascades - Geologic Perspectives (United States)

    Hildreth, Wes


    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  4. Magmatic plumbing system of Kilauea Volcano: Insights from Petrologic and Geochemical Monitoring (United States)

    Garcia, M. O.; Pietruszka, A. J.; Marske, J.; Greene, A.; Lynn, K. J.


    Monitoring the petrology and geochemistry of lavas from active volcanoes in near realtime affords the opportunity to formulate and evaluate models for magma transport, mixing, and storage to help predict eruption scenarios with greater confidence and better understand magmatic plumbing systems (e.g., Poland et al. 2012, Nat. Geosci. 5, 295-300). Continous petrologic and geochemical monitoring of two ongoing eruptions at the summit and east rift zone of Kilauea Volcano on the Island of Hawaii have revealed much about the dynamics of magmatic processes. When the composition of lava shifted to a more MgO-rich composition in April 1983, we predicted that the Puu Oo eruption would not be short-lived. We had no idea it would continue for over 33 years. Subsequent changes in lava composition have highlighted the interplay between mixing pockets of rift-zone stored magma with new mantle-derived magma and the cooling-induced crystal fractionation during brief (usually days) eruption hiatuses. Surprisingly, the mantle derived magma has continued to change in composition including several 10-year cycles in Pb isotope ratios superimposed on a progressive depletion in highly incompatible elements (Greene et al. 2013, G3, doi: 10.1002/ggge.20285). These compositional trends are contrary to those observed for sustained basaltic eruptions on continents and argue for melt extraction from a multi-component source with 1-3 km wide heterogeneities. Compositional zoning within olivine phenocrysts, created by diffusive re-equilibration, also provide insights into magma mixing, storage, and transport at Kilauea. Timescales modeling of Fe-Mg and Ni concentration gradients within Puu Oo olivine indicate that crystals can be stored at magmatic temperatures for months to a few years before eruption (Shea et al. 2015, Geology 43, 935-938). Kilauea's ongoing eruptions continue to provide a dynamic laboratory for positing and testing models for the generation and evolution of basaltic magma.

  5. Dating the magmatism of Maio, Cape Verde Islands

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J G [Newcastle upon Tyne Univ. (UK). School of Physics; Le Bas, M J [Leicester Univ. (UK). Dept. of Geology; Furnes, H [Bergen Univ. (Norway). Geologisk Inst.


    Conventional K-Ar and /sup 40/Ar//sup 39/Ar studies of Mesozoic ocean floor basalts and Tertiary plutonic and volcanic rocks from Maio, Cape Verde Islands, have been determined to elucidate the magmatic evolution of this ocean island. Pillow lavas of the Basement Complex yield a minimum age of 113 +- 8 Ma though thermal overprinting of their formation age by the younger Central Intrusive Complex (CIC) and subsequent sheet intrusions is in some cases almost total. Activity in the CIC began before 20 Ma and plutons continued to develop until about 8 Ma, the youngest ages possibly indicating a cooling history of more than 2 Ma for these bodies relative to their volcanic counterparts. Sheet intrusion occurred throughout the period 20 to 9 Ma though the peak of this activity probably occurred 11 Ma ago. Field relations allow the time of thrusting(s) on the Monte Branco Thrust to be bracketed between 9 and 7 Ma. Volcanic activity began in the Tertiary, probably before 12 Ma, and culminated in the development of a stratovolcano at 7 Ma.

  6. Effects of magmatic processes on the potential Yucca Mountain repository: Field and computational studies

    International Nuclear Information System (INIS)

    Valentine, G.A.; Groves, K.R.; Gable, C.W.; Perry, F.V.; Crowe, B.M.


    Assessing the risk of future magmatic activity at a potential Yucca Mountain radioactive waste repository requires, in addition to event probabilities, some knowledge of the consequences of such activity. Magmatic consequences are divided into an eruptive component, which pertains to the possibility of radioactive waste being erupted onto the surface of Yucca Mountain, and a subsurface component, which occurs whether there is an accompanying eruption or not. The subsurface component pertains to a suite of processes such as hydrothermal activity, changes in country rock properties, and long term alteration of the hydrologic flow field which change the waste isolation system. This paper is the second in a series describing progress on studies of the effects of magmatic activity. We describe initial results of field analog studies at small volume basaltic centers where detailed measurements are being conducted of the amount of wall rock debris that can be erupted as a function of depth in the volcanic plumbing system. Constraints from field evidence of wall rock entrainment mechanisms are also discussed. Evidence is described for a mechanism of producing subhorizontal sills versus subvertical dikes, an issue that is important for assessing subsurface effects. Finally, new modeling techniques, which are being developed in order to capture the three dimensional complexities of real geologic situations in subsurface effects, are described

  7. Sr-Nd-Pb isotopes of the post-paleozoic magmatism from eastern Paraguay

    International Nuclear Information System (INIS)

    Comin-Chiaramonti, P; Gasparon, M; Gomes, C.B; Antonini, P


    The Parana Angola-Namibia igneous province (PAN) is characterized by Early Cretaceous flood tholeiites and tholeiitic dyke swarms associated with alkaline rocks of Early and Late Cretaceous ages, respectively, and with scarce post-Mesozoic magmatic rocks (Comin-Chiaramonti et al., 1997; 1999; Marques et al., 1999). The Eastern Paraguay, at the westernmost side of the Parana Basin, is of special interest because: (1) it is located between two main cratonic blocks, i.e. the southernmost tip of the Amazon Craton, and the northermost exposure of the Rio de La Plata Craton; (2) it was the site of repeated Na-K-alkaline magmatism since Late-Permian-Triassic times (i.e.: 250-240 Ma, Na-alkaline; c. 145 Ma, K-alkaline; 128-126 Ma, K-alkaline; 120-90 Ma, Na-alkaline; 61-33 Ma, Na-alkaline; cf. Comin-Chiaramonti and Gomes, 1996; Comin-Chiaramonti et al., 1999), and of Early Cretaceous tholeiitic magmatism, both low- and high-Ti variants, L-Ti and H-Ti, respectively (133-131 Ma; cf. Marzoli et al., 1999); (3) the younger sodic magmatic rocks are closely associated in space to the potassic analogues (Comin- Chiaramonti et al., 1999). The paper aims discussing the most important Sr- Nd-Pb isotope features of the alkaline and tholeiitic magmas from Eastern Paraguay in comparison with the PAN analogues (au)

  8. Geochemistry contribution of Pb isotopes on basalts origin study from Parana basin, Brazil

    International Nuclear Information System (INIS)

    Marques, L.S.; Dupre, B.; Allegre, C.J.


    This paper presents thirty new Pb-isotope and concentration data for low- and high-tiO sub(2) continental flood basalts of the Parana Basin. The results obtained from representative samples show significant differences with respect to type and location of these basic rocks. The low- and high-TiO sub(2) basalts from the northern region of the Parana Basin exhibit very similar Pb-isotope compositions. On the other hand, the low-TiO sub(2) basalts of central and southern areas, which exhibit low Sr initial isotope ratios (less than 0,7060), show very small variation in Pb isotope compositions which are highly enriched in radiogenic Pb in comparison with the analogues of northern region. The high-TiO sub(2) basic rocks analysed from northern and central regions have the same values for Pb isotope ratios, which are slightly more radiogenic compared with high-TiO sub(2) basalts from southern region. The data obtained, combined with other geochemical (major and trace elements, including rare earths) and isotope (Sr and Nd) results support the view that the basalts from northern and southern areas of the Parana Basin originated in lithospheric mantle reservoirs with different geochemical characteristics. (author)

  9. Geochemical and petrological considerations about the basalts of upper aluminium in the Fildes Peninsula. (Rei George), Antartica

    International Nuclear Information System (INIS)

    Machado, A.; Fernandes de Lima, E.; Chemale, F.


    Petrographic, geochemical and petrological studies of lower Tertiary basaltic rocks from Fildes Peninsula in Antarctica were made to characterize their source and magmatic evolution. These basaltic rocks have porphyritic, glomeroporphyritic, intergranular and intersertal textures. The phenocrysts are of plagioclase (An), augite, pigeonite and Ti-magnetite. These basaltic rocks have AL O from 16 to 22%, Ni from 6 to 88 ppm, Co from 24 to 33 ppm and Cr from 54 to 123 ppm. Enrichment of Rb. Ba, Sr and LREE with respect to HREE is observed as relative depleted in HFSE is detected. The mass balance realized to understand the evolution of liquid that gave source the different basaltic rocks. Showed that the extracted mineral fractions were 76% of plagioclase, 2% of clinopiroxene and 21% of olivine. The intermediate volcanic rocks of Fildes Peninsula can be explained by cristalization fractionation of a basic liquid. The isotopic dates showed initial rations of Sr/Sr <0,704 and positive values of Nd epsilon. These results are strong support a mantelic source for basaltic rocks of Fildes Peninsula. On basis of geochemical, petrological and isotopic characteristics is possible concluded that these rocks were formed in an island are environment with parcial melting of mantle wedge. (author)

  10. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada (United States)

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.


    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  11. Early Jurassic Carbon and Sodium Sequestration in a CAMP basalt flow (United States)

    Block, K. A.; Puffer, J. H.


    The initial HTQ-type CAMP Orange Mountain Basalt flow, as well as related pillowed flows and the overlying Preakness flows, locally underwent substantial and well documented albitization, chloritization, and sulphate, carbonate, and zeolite mineralization. Layers representing at least 25 vol % of the Orange Mountain Basalt have undergone a major net increase in sodium and carbon content and a major redistribution of magnesium and calcium. Most alteration occurred during the development of a widespread early Jurassic geothermal system similar to the active system of Iceland. In both cases alteration was controlled by active circulation of basin brines through vesicular layers during rapid burial at temperatures that were kept elevated by recurring magmatism. Whole rock Na2O levels typically increased from 2.2 wt. % in unaltered layers to 3.2 wt. % in vesicular layers, and commonly reached levels exceeding 5 wt. %. The environmental implications of the removal of such massive amounts of sodium from the geothermal system on the chlorine budget and the salt content of Early Jurassic lakes are currently being evaluated. Massive amounts of carbon sequestration from the geothermal system may have mitigated an increased burden on the early Jurassic atmosphere where geothermal CO2 may have otherwise been vented at hot springs or solfataras. Calcite amygdules typically account for 5 to 10 vol. % of the vesiculated layers amounting to 66 to 132 kg of CO2 per m3 of basalt. If 25 vol. % of the 160 thick Orange Mountain Basalt is vesiculated that would equate to about 2640 to 5280 kg of CO2 per m2 of basalt. The full extent of calcite enrichment across the entire CAMP province, however, has not yet been determined.

  12. 50 Myr of pulsed mafic magmatism in the High Arctic Large Igneous Province (United States)

    Pearson, D. G.; Dockman, D. M.; Heaman, L. M.; Gibson, S. A.; Sarkar, C.


    Extensive and voluminous Cretaceous mafic magmatism in the Sverdrup Basin of Arctic Canada forms the circum-Arctic High Arctic Large Igneous Province (HALIP). The small number of published high-precision ages for this LIP indicate its eruption over a considerable timespan raising concerns over whether the HALIP can be strictly defined as a single LIP and questioning the role of a single or multiple plumes in its genesis. Here we present an integrated geochemical and geochronological study to better constrain the timing and cause of mafic magma genesis in the Canadian HALIP. Six new U-Pb and four 40Ar/39Ar ages of mafic lavas and intrusive sheets range from 121 Ma to 78 Ma. The U-Pb ages are the first analyzed from the mafic intrusions of Axel Heiberg and Ellesmere Islands. The new geochronology, combined with other published high-precision ages, reveal a > 50 Myr duration of mafic magmatism in the HALIP defined by three main pulses. Tholeiites dominate the initial 25 Myr of magmatism, transitioning to coeval emplacement of alkali and tholeiitic basalts. Whole-rock Sr-Nd isotope ratios indicate that both magma types are derived from a similar source dominated by convecting mantle. Rare-earth-element inversion models reveal that the alkalic and tholeiitic magmas were generated beneath a bimodal lithospheric `lid' thickness of 65 ± 5 and 45 ± 4 km, respectively. We suggest that the early 128 - 122 Ma tholeiitic event is primarily plume-generated and correlates across the circum-Arctic with the other HALIP tholeiites. Younger HALIP magmatism, with coeval alkalic and tholeiitic magmas erupting over 25 Myr, may be explained by alternating modes of edge-driven mantle convection as the primary control on magma genesis. A distal plume may have intensified magma production by edge-driven convection.

  13. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson


    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  14. Short-circuiting magma differentiation from basalt straight to rhyolite? (United States)

    Ruprecht, P.; Winslow, H.


    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  15. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths (United States)

    Stracke, A.; Tipper, E. T.; Klemme, S.; Bizimis, M.


    , the clearly resolvable inter-mineral Mg isotope differences imply that crystallization or preferential melting of isotopically distinct minerals such garnet, spinel, and clinopyroxene should cause Mg isotope fractionation between bulk melt and residue. Calculated Mg isotope variations during partial mantle melting indeed predict differences between melt and residue, but these are analytically resolvable only for melting of mafic lithologies, that is, garnet pyroxenites. Contributions from garnet pyroxenite melts may thus account for some of the isotopically light δ26Mg observed in ocean island basalts and trace lithological mantle heterogeneity. Consequently, applications for high-temperature Mg isotope fractionations are promising and diverse, and recent advances in analytical precision may allow the full petrogenetic potential inherent in the sub per mill variations in δ26Mg in magmatic rocks to be exploited.

  16. Geology, geochronology and geodynamic implications of the Cenozoic magmatic province in W and SE Ethiopia

    International Nuclear Information System (INIS)

    Berhe, S.M.; Desta, B.; Teferra, M.; Nicoletti, M.


    New K-Ar dates are presented for areas in W and SE Ethiopia. In the west, the dates distinguish the Geba Basalts of 40 to 32 Ma from the Welega Shield Volcanics which are shown to range from 11.2 + -2.2 to 7.8 + - 1.6 Ma. In SE Ethiopia, the Lower Stratoid flood basalts range from 30 + - 4.5 to 23.5 + - 4.5 Ma and are unconformably overlain by the Reira-Sanete shield volcanics which range from c. 15 to c. 2 Ma. The unconformity is marked by a palaeosol as are several of the intervals between the major volcanic stages of Ethiopia

  17. Geology, geochronology and geodynamic implications of the Cenozoic magmatic province in W and SE Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Berhe, S.M.; Desta, B.; Teferra, M.; Nicoletti, M.


    New K-Ar dates are presented for areas in W and SE Ethiopia. In the west, the dates distinguish the Geba Basalts of 40 to 32 Ma from the Welega Shield Volcanics which are shown to range from 11.2 + -2.2 to 7.8 + - 1.6 Ma. In SE Ethiopia, the Lower Stratoid flood basalts range from 30 + - 4.5 to 23.5 + - 4.5 Ma and are unconformably overlain by the Reira-Sanete shield volcanics which range from c. 15 to c. 2 Ma. The unconformity is marked by a palaeosol as are several of the intervals between the major volcanic stages of Ethiopia.

  18. Genetic interpretation of lead-isotopic data from the Columbia River basalt group, Oregon, Washington, and Idaho. (United States)

    Church, S.E.


    Lead-isotopic data for the high-alumina olivine plateau basalts and most of the Colombia River basalt group plot within the Cascade Range mixing array. The data for several of the formations form small, tight clusters and the Nd and Sr isotopic data show discrete variation between these basalt groups. The observed isotopic and trace-element data from most of the Columbia River basalt group can be accounted for by a model which calls for partial melting of the convecting oceanic-type mantle and contamination by fluids derived from continental sediments which were subducted along the trench. These sediments were transported in the low-velocity zone at least 400 km behind the active arc into a back-arc environment represented by the Columbia Plateau province. With time, the zone of melting moved up, resulting in the formation of the Saddle Mt basalt by partial melting of a 2600 m.y.-old sub-continental lithosphere characterized by high Th/U, Th/Pb, Rb/Sr and Nd/Sm ratios and LREE enrichment. Partial melting of old sub-continental lithosphere beneath the continental crust may be an important process in the formation of continental tholeiite flood basalt sequences world-wide. -L.di H.

  19. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma (United States)

    Huppert, Herbert E.; Sparks, R. Stephen J.


    This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate

  20. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu (United States)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.


    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  1. Origin of major element chemical trends in DSDP Leg 37 basalts, Mid-Atlantic Ridge (United States)

    Byerly, G.R.; Wright, T.L.


    In this paper we summarize the major element chemical variation for basalts from the Deep Sea Drilling Project Leg 37 and relate it to stratigraphic position in each of five drilling sites. Least-squares techniques are successfully used to quantify the nature and extent of alteration in these basalts, and to correct the major element analysis back to a magmatic, or alteration-free, composition on the assumption that alteration takes place in two ways: (1) secondary minerals are introduced into veins and vesicles, and (2) CO2 and H2O react with components in the rock to form a simple alteration assemblage. A chemical stratigraphy is defined for these basalts by grouping lavas whose chemistries are related by low-pressure phenocryst-liquid differentiation as identified by least-squares calculation. Major chemical-stratigraphic units are as much as 200 m thick; correlations of these units can be made between the holes at site 332 (about 100 m apart), but not between the other sites. Compositions of parental magmas are calculated by extrapolating low-pressure variations to a constant value of 9% MgO. The differences in these extrapolated compositions reflect high-pressure processes, and suggest that clinopyroxene may be an important phase in either intermediate-level fractionation of basaltic liquids, or as a residual phase during the partial melting which produces these basaltic liquids. Several of the basaltic liquids calculated as parental to the Leg 37 basalts have CaO contents greater than 14% and indicate that the oceanic mantle is richer in CaO and Al2O3 than values used in pyrolite models for the upper mantle. A model for magma generation and eruption beneath the Mid-Atlantic Ridge embodies the following characteristics: 1. (1) Separate magma batches are generated in the mantle. 2. (2) Each of these may be erupted directly or stored at shallow depth where significant fractionation takes place. Common fractionation processes are inferred to be gravitative

  2. Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes (United States)

    Sinton, J. M.


    The concept of volcanic stages arose from geologic mapping of Hawaiian volcanoes. Subaerial Hawaiian lava successions can be divided generally into three constructional phases: an early (shield) stage dominated by thin-bedded basaltic lava flows commonly associated with a caldera; a later (postshield) stage with much thicker bedded, generally lighter colored lava flows commonly containing clinopyroxene; calderas are absent in this later stage. Following periods of quiescence of a half million years or more, some Hawaiian volcanoes have experienced renewed (rejuvenated) volcanism. Geological and petrographic relations irrespective of chemical composition led to the identification of mappable units on Niihau, Kauai, Oahu, Molokai, Maui and Hawaii, which form the basis for this 3-fold division of volcanic activity. Chemical data have complicated the picture. There is a growing tendency to assign volcanic stage based on lava chemistry, principally alkalicity, into tholeiitic shield, alkalic postshield, and silica undersaturated rejuvenation, despite the evidence for interbedded tholeiitic and alkalic basalts in many shield formations, and the presence of mildly tholeiitic lavas in some postshield and rejuvenation formations. A consistent characteristic of lava compositions from most postshield formations is evidence for post-melting evolution at moderately high pressures (3-7 kb). Thus, the mapped shield to postshield transitions primarily reflect the disappearance of shallow magma chambers (and associated calderas) in Hawaiian volcanoes, not the earlier (~100 ka earlier in Waianae Volcano) decline in partial melting that leads to the formation of alkalic parental magmas. Petrological signatures of high-pressure evolution are high-temperature crystallization of clinopyroxene and delayed crystallization of plagioclase, commonly to <3 % MgO. Petrologic modeling using pMELTS and MELTS algorithms allows for quantification of the melting and fractionation conditions giving

  3. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang


    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  4. Initial magmatism and evolution of the Izu-Bonin-Mariana Arc (United States)

    Arculus, R. J.


    Expedition 351 of the IODP targeted site U1438 in the Amami Sankaku Basin, northwestern Philippine Sea , 70 km west of the northern Kyushu-Palau Ridge (KPR). The latter formed a chain of stratovolcanoes of the Izu-Bonin-Mariana (IBM) arc, and a remnant arc following migration of the volcanic front eastwards during Shikoku backarc basin formation in the Miocene. Unravelling causes of subduction initiation drove the primary aims of the Expedition involving recovery of igneous basement below the KPR, and a history of the magmatic evolution of the KPR preserved in a clastic record. All these aims were achieved, but with some surprises. Out of 1600m drilled in 4700m water depth, 150m of igneous oceanic crust comprising low-K, tholeiitic basalt lava flows were recovered at U1438. The lavas are variably glassy to microphyric, Cr-spinel-olivine-plagioclase-clinopyroxene-bearing, have high V/Ti, very low absolute rare earth element abundances and low La/Yb, and radiogenic Hf at a given 143/144Nd compared to basalts of mid-ocean ridges. The basement is geochemically and petrologically similar to so-called "forearc basalts" recovered trenchward of the active IBM volcanic front, and of similar or older age (≥52Ma). Highly melt-depleted mantle source(s) were involved and high-temperature, low-pressure dehydration of the subducting Pacific Plate. Compositions of glass (formerly melt) inclusions in clinopyroxene-bearing clasts and sandstones in sediments overlying the basement show a change from medium-Fe (aka "calcalkaline") to low-Fe (tholeiitic) magmas during the Eocene-Oligocene evolution of the KPR. Widespread magmatism along- and across-strike of the nascent IBM system coupled with geologic constraints from the western Philippine Sea, indicate subduction initiation at the IBM arc likely propagated adjacent to Mesozoic-aged arcs/basins to the west of the KPR, following plate reorganization subsequent to the demise of the Izanagi-Pacific Ridge along eastern Asia at 60Ma

  5. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  6. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change (United States)

    Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos


    Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21–25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5–0.1 kbar crystallization depths of hot (1100–1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision

  7. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona (United States)

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.


    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  8. Geologic structure of the eastern mare basins. [lunar basalts (United States)

    Dehon, R. A.; Waskom, J. D.


    The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.

  9. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts (United States)

    Dixon, E. T.; Honda, M.; McDougall, I.


    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  10. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes


    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  11. Naming Lunar Mare Basalts: Quo Vadimus Redux (United States)

    Ryder, G.


    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  12. Magmatism in the brazilian sedimentary basins and the petroleum geology; Magmatismo nas bacias sedimentares brasileiras e sua influencia na geologia do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz Filho, Antonio; Antonioli, Luzia [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Geologia]. E-mails:;; Mizusaki, Ana Maria Pimentel [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Geociencias]. E-mail:


    In the recent years, the researches on the magmatic events that occurred in the Brazilian sedimentary basins had shown the importance of these episodes for the hydrocarbons exploration. The generation (heating), migration (structural and petrographic alterations), accumulation (basalt fractures) and migrations barriers (sills and dykes) of the hydrocarbons, produced for these rocks, are cited in the marginal and intra continental Brazilian basins. The magmatism produce the temperature increase in the sedimentary basin, around its intrusion, and this propitiate the maturation of the organic matter contained in the hydrocarbons generating rocks of the basin. At the same time, has been verified that the contacts dykes/sedimentary rocks can represent important ways for the hydrocarbons migrations. Recent studies have shown that the magmatism, in its extrusive manifestations, can be analyzed in view of the possibility of having acted as effective hydrocarbon seals and, in consequence, making possible the accumulation of hydrocarbons generated in the underlying sediments. The magmatism of predominantly basic to intermediary character is generated in the asthenosphere, that is, below the lithosphere. The dykes that had introduced in the basement of our sedimentary basins are good heat conductors and we can expect the geothermal gradients increase in the overlapped sedimentary deposits. The more detailed study of the magmatic processes in the Brazilian sedimentary basins must lead to new forms of hydrocarbons exploration in our sedimentary basins, also in those basins where the traditional exploration activities have not occasioned the waited expected successes. (author)

  13. An experimental and petrologic investigation of the source regions of lunar magmatism in the context of the primordial differentiation of the moon (United States)

    Elardo, Stephen M.

    The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low

  14. Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism (United States)

    He, Bin; Xu, Yi-Gang; Guan, Jun-Peng; Zhong, Yu-Ting


    The ~ 260 Ma Emeishan Large Igneous Province (ELIP) in southwest China has previously been demonstrated to provide compelling evidence for pre-volcanic crustal doming in support of the mantle plume hypothesis. However this has been questioned by Ukstins-Peate and Bryan (2008) by showing hydrothermal magmatic activity at the Daqiao section. To solve this argument, a detailed characterization of the contact between the Emeishan basalts and the Maokou Formation was carried out. The contact is shown to be an unconformity, which is characterized by paleokarst on top of the Maokou Formation, including paleokarst relief, sinkholes, caves, tower karst and its corresponding rocks (such as kaolinite, bauxite and ferruginous duricrust and collapsed breccias, etc.). This paleokarst unconformity was in turn covered or infilled by the Emeishan basalts and tuffs, suggesting that uplift and erosion occurred prior to the eruption of the ELIP. The extent of erosion of the Maokou Formation indicates the ELIP can be divided into three roughly concentric zones: the inner, intermediate, and outer zones. The paleokarst features on the top of Maokou Formation vary across the ELIP. In the inner zone, a likely sinkhole and an incision valley with 450 m relief in height are found. In the intermediate zone, various paleokarst landforms such as karst relief, sinkholes and tower karsts are well developed. Some sinkholes that developed in the Qixia Formation below the Maokou Formation imply that the paleorelief is more than 350 m in height. In the outer zone, the paleokarstic surface is a paleo-weathering layer with minor karstification and development of caves at 10-50 m. This spatial variation of the paleokarst reflects variation of uplift height across the ELIP. The extent of minimal uplift is estimated to be at least 450 m in the inner zone, 350 m in the intermediate zone, whereas uplift is minor (tens-50 m) in the outer zone. The magnitude and shape of the uplift is roughly consistent with

  15. A possible connection between post-subduction arc magmatism and adakite-NEB rock association in Baja California, Mexico (United States)

    Castillo, P. R.


    Late Miocene to Recent arc-related magmatism occurs in Baja California, Mexico despite the cessation of plate subduction along its western margin at ~12.5 Ma. It includes calcalkaline and K-rich andesites, tholeiitic basalts and basaltic andesites, alkalic basalts similar to many ocean island basalts (OIB), magnesian and basaltic andesites with adakitic affinity (bajaiites), adakites, and Nb-enriched basalts (NEB). A popular model for the close spatial and temporal association of adakite (plus bajaiite) and NEB in Baja California is these are due to melting of the subducted Farallon/Cocos plate, which in turn is caused by the influx of hot asthenospheric mantle through a window created in the subducted slab directly beneath the Baja California peninsula [e.g., Benoit, M. et. al. (2002) J. Geol. 110, 627-648; Calmus, T. et al. (2003) Lithos 66, 77-105]. Here I propose an alternative model for the cause of post-subduction magmatism in Baja California in particular and origin of adakite-NEB rock association in general. The complicated tectonic configuration of the subducting Farallon/Cocos plate and westward motion of the North American continent caused western Mexico to override the hot, upwelling Pacific mantle that was decoupled from the spreading centers abandoned west of Baja California. The upwelling asthenosphere is best manifested east of the peninsula, beneath the Gulf of California, and is most probably due to a tear or window in the subducted slab there. The upwelling asthenosphere is compositionally heterogeneous and sends materials westward into the mantle wedge beneath the peninsula. These materials provide sources for post-subduction tholeiitic and alkalic magmas. Portions of tholeiitic magmas directly erupted at the surface produce tholeiitic lavas, but some get ponded beneath the crust. Re-melting and/or high-pressure fractional crystallization of the ponded tholeiitic magmas generate adakitic rocks. Alkalic magmas directly erupted at the surface

  16. Hydrothermal evolution of repository groundwaters in basalt

    International Nuclear Information System (INIS)

    Apps, J.A.


    Groundwaters in the near field of a radioactive waste repository in basalt will change their chemical composition in response to reactions with the basalt. These reactions will be promoted by the heat generated by the decaying waste. It is important to predict both the rate and the extent of these reactions, and the secondary minerals produced, because the alteration process controls the chemical environment affecting the corrosion of the canister, the solubility and complexation of migrating radionuclides, the reactivity of the alteration products to radionuclides sorption, and the porosity and permeability of the host rock. A comprehensive review of the literature leads to the preliminary finding that hydrothermally altering basalts in geothermal regions such as Iceland lead to a secondary mineralogy and groundwater composition similar to that expected to surround a repository. Furthermore, laboratory experiments replicating the alteration conditions approximate those observed in the field and expected in a repository. Preliminary estimates were made of the rate of hydration and devitrification of basaltic glass and the zero-order dissolution rate of basaltic materials. The rates were compared with those for rhyolitic glasses and silicate minerals. Preliminary calculations made of mixed process alteration kinetics, involving pore diffusion and surface reaction suggest that at temperatures greater than 150 0 C, alteration proceeds so rapidly as to become pervasive in normally fractured basalt exposed to higher temperatures in the field. 70 references

  17. Chromium Oxidation State in Planetary Basalts: Oxygen Fugacity Indicator and Critical Variable for Cr-Spinel Stability (United States)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jone, J.; Shearer, C. K.


    Cr is a ubiquitous and relatively abundant minor element in basaltic, planetary magmas. At the reduced oxidation states (basalts Cr is present in melts as both divalent and trivalent forms. The ratio of trivalent to divalent Cr present in the melt has many consequences for the stability and Cr concentration of magmatic phases such as spinel, clinopyroxene, and olivine. However, understanding the Cr valence in quenched melts has historically been plagued with analytical issues, and only recently has reliable methodology for quantifying Cr valence in quenched melts been developed. Despite this substantial difficulty, the pioneering works of Hanson and Jones and Berry and O'Neill provided important insights into the oxidation state of Cr in in silicate melts. Here we present a series of 1-bar gas mixing experiments performed with a Fe-rich basaltic melt in which have determined the Cr redox ratio of the melt at over a range of fO2 values by measuring this quantity in olivine with X-ray Absorption Near Edge Spectroscopy (XANES). The measured Cr redox ratio of the olivine phenocrysts can be readily converted to the ratio present in the conjugate melt via the ratio of crystal-liquid partition coefficients for Cr3+ and Cr2+. We have applied these results to modeling Cr spinel stability and Cr redox ratios in a primitive, iron-rich martian basalt.

  18. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin


    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  19. Martian volcanism: festoon-like ridges on terrestrial basalt flows and implications for Mars

    International Nuclear Information System (INIS)

    Theilig, E.; Greeley, R.


    The Fink and Fletcher, and Fink model was used to assess and compare flow rheology for two terrestrial basalt flows and one Martian flow with previous studies. Based on the morphologic similarities between the Martian flows and the Icelandic flows and knowledge of the emplacement of the terrestrial flows, the flows west of Arsia Mons are considered to have been emplaced as large sheet flows from basaltic flood style eruptions. Festoon ridges represent folding of the surface crust in the last stages of emplacement when viscosities would be high due to cooling. Alternatively, the lava may have had a high crystallinity or was erupted at low temperatures. In addition, increased compressive stress behind halted flow fronts or in ponded areas may have contributed to ridge formation

  20. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism (United States)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine


    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field

  1. Magmatism and deformation during continental breakup (United States)

    Keir, Derek


    The rifting of continents and the transition to seafloor spreading is characterised by extensional faulting and thinning of the lithosphere, and is sometimes accompanied by voluminous intrusive and extrusive magmatism. In order to understand how these processes develop over time to break continents apart, we have traditionally relied on interpreting the geological record at the numerous fully developed, ancient rifted margins around the world. In these settings, however, it is difficult to discriminate between different mechanisms of extension and magmatism because the continent-ocean transition is typically buried beneath thick layers of volcanic and sedimentary rocks, and the tectonic and volcanic activity that characterised breakup has long-since ceased. Ongoing continental breakup in the African and Arabian rift systems offers a unique opportunity to address these problems because it exposes several sectors of tectonically active rift sector development spanning the transition from embryonic continental rifting in the south to incipient seafloor spreading in the north. Here I synthesise exciting, multidisciplinary observational and modelling studies using geophysical, geodetic, petrological and numerical techniques that uniquely constrain the distribution, time-scales, and interactions between extension and magmatism during the progressive breakup of the African Plate. This new research has identified the previously unrecognised role of rapid and episodic dike emplacement in accommodating a large proportion of extension during continental rifting. We are now beginning to realise that changes in the dominant mechanism for strain over time (faulting, stretching and magma intrusion) impact dramatically on magmatism and rift morphology. The challenge now is to take what we're learned from East Africa and apply it to the rifted margins whose geological record documents breakup during entire Wilson Cycles.

  2. Surface deformation induced by magmatic processes at Pacaya Volcano, Guatemala revealed by InSAR (United States)

    Wnuk, K.; Wauthier, C.


    Pacaya Volcano, Guatemala is a continuously active, basaltic volcano with an unstable western flank. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, show magmatic deformation before and during major eruptions in January and March 2014. Inversion of InSAR surface displacements using simple analytical forward models suggest that three magma bodies are responsible for the observed deformation: (1) a 4 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit. Periods of heightened volcanic activity are instigated by magma pulses at depth, resulting in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss and do not always result in an eruption. Periods of increased activity culminate with larger dike-fed eruptions. Large eruptions are followed by inter-eruptive periods marked by a decrease in crater explosions and a lack of detected deformation. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE oriented dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induce flank motion.

  3. Paleomagnetic evidence for counterclockwise rotation of the Dofan magmatic segment, Main Ethiopian Rift (United States)

    Nugsse, Kahsay; Muluneh, Ameha A.; Kidane, Tesfaye


    Twenty-six paleomagnetic sites in basalt and trachyte flows and ignimbrite deposits sampled in the Dofan magmatic segment, Main Ethiopian Rift (MER). From each site, 6 to 8 core samples were collected. The samples were then cut into 200 standard specimens and their Natural Remanent Magnetization (NRM) directions were measured using a JR6A spinner magnetometer. Most specimens were subjected to stepwise alternating field (AF) and at least one specimen per site to thermal (TH) demagnetization. The directional analysis of these individual specimens revealed either one or two components of NRM. Where two components are present, the first is isolated below a temperature of 300 °C or AF field below 20 mT; the second is isolated above those steps and mostly defined straight lines directed towards the origin and are interpreted as the Characteristic Remanent Magnetization (ChRM) acquired during cooling. Rock magnetic experiments on representative specimens indicate that the dominant magnetic minerals are titanium poor titanomagnetite and in few cases titanohematites. The overall mean directions calculated for the 23 sites of Dofan is Dec = 354.1°, Inc. = +11.6° (N = 23, K = 35.1, α95 = 5.2°). When these values are compared with the 1.5 Ma expected mean geomagnetic dipole reference field directions Dec = 1.0°, Inc. = +16.4° (N = 32, K = 105.6, α95 = 2.3°), obtained from African Apparent Polar Wander Path Curve; a difference in declination ΔD = -6.9° ± 4.7° and inclination ΔI = +4.8° ± 5.5° are determined. The declination difference is interpreted as a very slight counterclockwise rotation about vertical axis of the Dofan magmatic segment and the result is consistent with previous paleomagnetic reports and analogue modeling in Fentale magmatic segment.

  4. Geology, geochemistry and 40K-40Ar geochronometry of Miocene magmatism in Algiers area, Northern Algeria

    International Nuclear Information System (INIS)

    Belanteur, O.; Ouabadi, A.; Semroud, B.; Megartsi, M.H.; Fourcade, S.


    Miocene magmatic rocks outcrop within a narrow coastal strip east of Algiers. They include basaltic and andesitic lava flows and intrusions (Dellys, Cap Djinet), the Thenia granodioritic plug and the dacitic to rhyolitic lavas and pyroclastic flows from Zemmouri El Bahri and El Kerma. Despite the effects of hydrothermal alteration, 40 K- 40 Ar ages coupled with micropalaeontological data lead to recognition of two emplacement events at 16-15 and 14-12 Ma, respectively. All the studied calc-alkaline to potassic calc-alkaline rocks are enriched in highly incompatible elements and display negative Nb anomalies. Acid magmas have a pronounced crustal imprint ( 87 Sr 86 Sr i =3D 0.7082 to 0.7155; δ 18 O =3D +9 to +13 per mill) which together with La/Nb ratios argues for the occurrence of upper crustal contamination processes. However, the Nb-depletion of the associated basalts suggest that the studied magmas derive from a mantle source which underwent subduction-related metasomatic enrichments prior to their Miocene emplacement. (authors). 13 refs., 3 figs., 2 tabs

  5. The Triassic-Liassic volcanic sequence and rift evolution in the Saharan Atlas basins (Algeria). Eastward vanishing of the Central Atlantic magmatic province

    International Nuclear Information System (INIS)

    Meddah, A.; Bertrand, H.; Seddiki, A.; Tabeliouna, M.


    We investigate the Triassic-Liassic sequence in ten diapirs from the Saharan Atlas (Algeria). Based on detailed mapping, two episodes are identified. The first one consists of a volcano-sedimentary sequence in which three volcanic units were identified (lower, intermediate and upper units). They are interlayered and sometimes imbricated with siliciclastic to evaporitic levels which record syn-sedimentary tectonics. This sequence was deposited in a lagoonal-continental environment and is assigned to the Triassic magmatic rifting stage. The second episode, lacking lava flows (post magmatic rifting stage), consists of carbonate levels deposited in a lagoonal to marine environment during the Rhaetian-Hettangian. The volcanic units consist of several thin basaltic flows, each 0.5 to 1m thick, with a total thickness of 10–15m. The basalts are low-Ti continental tholeiites, displaying enrichment in large ion lithophile elements and light rare earth elements [(La/Yb)n= 2.5-6] with a negative Nb anomaly. Upwards decrease of light-rare-earth-elements enrichment (e.g. La/Yb) is modelled through increasing melting rate of a spinel-bearing lherzolite source from the lower (6–10wt.%) to the upper (15–20wt.%) unit. The lava flows from the Saharan Atlas share the same geochemical characteristics and evolution as those from the Moroccan Atlas assigned to the Central Atlantic magmatic province. They represent the easternmost witness of this large igneous province so far known.

  6. The Triassic-Liassic volcanic sequence and rift evolution in the Saharan Atlas basins (Algeria). Eastward vanishing of the Central Atlantic magmatic province

    Energy Technology Data Exchange (ETDEWEB)

    Meddah, A.; Bertrand, H.; Seddiki, A.; Tabeliouna, M.


    We investigate the Triassic-Liassic sequence in ten diapirs from the Saharan Atlas (Algeria). Based on detailed mapping, two episodes are identified. The first one consists of a volcano-sedimentary sequence in which three volcanic units were identified (lower, intermediate and upper units). They are interlayered and sometimes imbricated with siliciclastic to evaporitic levels which record syn-sedimentary tectonics. This sequence was deposited in a lagoonal-continental environment and is assigned to the Triassic magmatic rifting stage. The second episode, lacking lava flows (post magmatic rifting stage), consists of carbonate levels deposited in a lagoonal to marine environment during the Rhaetian-Hettangian. The volcanic units consist of several thin basaltic flows, each 0.5 to 1m thick, with a total thickness of 10–15m. The basalts are low-Ti continental tholeiites, displaying enrichment in large ion lithophile elements and light rare earth elements [(La/Yb)n= 2.5-6] with a negative Nb anomaly. Upwards decrease of light-rare-earth-elements enrichment (e.g. La/Yb) is modelled through increasing melting rate of a spinel-bearing lherzolite source from the lower (6–10wt.%) to the upper (15–20wt.%) unit. The lava flows from the Saharan Atlas share the same geochemical characteristics and evolution as those from the Moroccan Atlas assigned to the Central Atlantic magmatic province. They represent the easternmost witness of this large igneous province so far known.

  7. Repository site definition in basalt: Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.


    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi 2 (5180 km 2 ) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process

  8. Repository site definition in basalt: Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.


    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  9. Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core (United States)

    Hess, P. C.; Parmentier, E. M.


    We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.

  10. A geochemical approach to distinguishing competing tectono-magmatic processes preserved in small eruptive centres (United States)

    McGee, Lucy E.; Brahm, Raimundo; Rowe, Michael C.; Handley, Heather K.; Morgado, Eduardo; Lara, Luis E.; Turner, Michael B.; Vinet, Nicolas; Parada, Miguel-Ángel; Valdivia, Pedro


    Small eruptive centres (SECs) representing short-lived, isolated eruptions are effective samples of mantle heterogeneity over a given area, as they are generally of basaltic composition and show evidence of little magmatic processing. This is particularly powerful in volcanic arcs where the original melting process generating stratovolcanoes is often obscured by additions from the down-going slab (fluids and sediments) and the overlying crust. The Pucón area of southern Chile contains active and dormant stratovolcanoes, Holocene, basaltic SECs and an arc-scale strike-slip fault (the Liquiñe Ofqui Fault System: LOFS). The SECs show unexpected compositional heterogeneity considering their spatial proximity. We present a detailed study of these SECs combining whole rock major and trace element concentrations, U-Th isotopes and olivine-hosted melt inclusion major element and volatile contents to highlight the complex inter-relations in this small but active area. We show that heterogeneity preserved at individual SECs relates to different processes: some start in the melting region with the input of slab-derived fluids, whilst others occur later in a centre's magmatic history with the influence of crustal contamination prior to olivine crystallisation. These signals are deduced through the combination of the different geochemical tools used in this study. We show that there is no correlation between composition and distance from the arc front, whilst the local tectonic regime has an effect on melt composition: SECs aligned along the LOFS have either equilibrium U-Th ratios or small Th-excesses instead of the large—fluid influenced—U-excesses displayed by SECs situated away from this feature. One of the SECs is modelled as being generated from fluid-enriched depleted mantle, a source which it may share with the stratovolcano Villarrica, whilst another SEC with abundant evidence of crustal contamination may share its plumbing system with its neighbouring

  11. Source and tectonic implications of tonalite-trondhjemite magmatism in the Klamath Mountains (United States)

    Barnes, C.G.; Petersen, S.W.; Kistler, R.W.; Murray, R.; Kays, M.A.


    In the Klamath Mountains, voluminous tonalite-trondhjemite magmatism was characteristic of a short period of time from about 144 to 136 Ma (Early Cretaceous). It occurred about 5 to l0 m.y. after the ??? 165 to 159 Ma Josephine ophiolite was thrust beneath older parts of the province during the Nevadan orogeny (thrusting from ??? 155 to 148 Ma). The magmatism also corresponds to a period of slow or no subduction. Most of the plutons crop out in the south-central Klamath Mountains in California, but one occurs in Oregon at the northern end of the province. Compositionally extended members of the suite consist of precursor gabbroic to dioritic rocks followed by later, more voluminous tonalitic and trondhjemitic intrusions. Most plutons consist almost entirely of tonalite and trondhjemite. Poorlydefined concentric zoning is common. Tonalitic rocks are typically of the Iow-Al type but trondhjemites are generally of the high-Al type, even those that occur in the same pluton as low-Al tonalite??. The suite is characterized by low abundances of K2O, Rb, Zr, and heavy rare earth elements. Sr contents are generally moderate ( ???450 ppm) by comparison with Sr-rich arc lavas interpreted to be slab melts (up to 2000 ppm). Initial 87Sr/ 86Sr, ??18O, and ??Nd are typical of mantle-derived magmas or of crustally-derived magmas with a metabasic source. Compositional variation within plutons can be modeled by variable degrees of partial melting of a heterogeneous metabasaltic source (transitional mid-ocean ridge to island arc basalt), but not by fractional crystallyzation of a basaltic parent. Melting models require a residual assemblage of clinopyroxene+garnet??plagioclase??amphibole; residual plagioclase suggests a deep crustal origin rather than melting of a subducted slab. Such models are consistent with the metabasic part of the Josephine ophiolite as the source. Because the Josephine ophiolite was at low T during Nevadan thrusting, an external heat source was probably

  12. Goethite (U–Th)/He geochronology and precipitation mechanisms during weathering of basalts


    Riffel, Silvana B.; Vasconcelos, Paulo M.; Carmo, Isabela O.; Farley, Kenneth A.


    (U–Th)/He geochronology of 33 goethite grains from in situ ferruginous duricrusts overlying the Paraná flood basalt in the Guarapuava region, Paraná, Brazil, reveals ages ranging from 3.6 ± 0.4 to 0.4 ± 0.1 Ma. Thirty-one grains from detrital fragments of ferruginous duricrust yield ages in the 6.2 ± 0.6 to 0.7 ± 0.1 Ma range. The results show that goethites from detrital blocks are generally older than those from the in situ ferruginous layers and that all the goethites from the Guarapuava s...

  13. Implications of one-year basalt weathering/reactivity study for a basalt repository environment

    International Nuclear Information System (INIS)

    Pine, G.L.; Jantzen, C.M.


    The Savannah River Laboratory is testing the performance of the Defense Waste Processing Facility glass under conditions representing potential repository environments. For a basalt repository, one of the important issues is how rapidly reducing conditions are re-established after placement of the waste. The objective of this study was to examine the factors affecting the reactivity of the basalt. Construction of a nuclear waste repository in basalt will temporarily perturb the groundwater conditions, creating more oxidizing (air-saturated) conditions than an undisturbed repository system. Reducing conditions can be beneficial to the performance of waste glass and canisters, and may limit the transport of certain radionuclides. The Basalt Waste Isolation Project intends to use a backfill containing crushed basalt to re-establish the reducing conditions of the groundwater. The reactivity of the basalt has been found to be minimal once the fresh crushed surfaces have been weathered and the reactive intergranular glass component has been leached, e.g., by long-term surface storage. Crushing of the basalt for pneumatic emplacement of the backfill should, therefore, occur shortly before placement in the repository. This backfill must contain a minimum of 5 percent reactive fines (<100 mesh), to rapidly achieve reducing conditions. 23 refs., 21 figs., 18 tabs

  14. Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites (United States)

    Hublet, G.; Debaille, V.; Wimpenny, J.; Yin, Q.-Z.


    The 26Al-26Mg short-lived chronometer has been widely used for dating ancient objects in studying the early Solar System. Here, we use this chronometer to investigate and refine the geological history of the asteroid 4-Vesta. Ten meteorites widely believed to come from Vesta (4 basaltic eucrites, 3 cumulate eucrites and 3 diogenites) and the unique achondrite Asuka 881394 were selected for this study. All samples were analyzed for their δ26Mg∗ and 27Al/24Mg ratios, in order to construct both whole rock and model whole rock isochrons. Mineral separation was performed on 8 of the HED's in order to obtain internal isochrons. While whole rock Al-Mg analyses of HED's plot on a regression that could be interpreted as a vestan planetary isochron, internal mineral isochrons indicate a more complex history. Crystallization ages obtained from internal 26Al-26Mg systematic in basaltic eucrites show that Vesta's upper crust was formed during a short period of magmatic activity at 2.66-0.58+1.39 million years (Ma) after Calcium-Aluminum inclusions (after CAI). We also suggest that impact metamorphism and subsequent age resetting could have taken place at the surface of Vesta while 26Al was still extant. Cumulate eucrites crystallized progressively from 5.48-0.60+1.56 to >7.25 Ma after CAI. Model ages obtained for both basaltic and cumulate eucrites are similar and suggest that the timing of differentiation of a common eucrite source from a chondritic body can be modeled at 2.88-0.12+0.14 Ma after CAI, i.e. contemporaneously from the onset of the basaltic eucritic crust. Based on their cumulate texture, we suggest cumulate eucrites were likely formed deeper in the crust of Vesta. Diogenites have a more complicated history and their 26Al-26Mg systematics show that they likely formed after the complete decay of 26Al and thus are younger than eucrites. This refined chronology for eucrites and diogenites is consistent with a short magma ocean stage on 4-Vesta from which the

  15. Petrogenesis of Neogene basaltic volcanism associated with the Lut block, eastern Iran: Implication for tectonic and metallogenic evolution (United States)

    Saadat, Saeed

    This dissertation presents petrochemical data concerning Neogene olivine basalts erupted both along the margins and within the micro-continental Lut block, eastern Iran, which is a part of the active Alpine-Himalayan orogenic belt. These data demonstrate the following: (1) Basalts that erupted from small monogenetic parasitic cones around the Bazman stratovolcano, Makran arc area, in the southern Lut block, are low-Ti sub-alkaline olivine basalts. Enrichments of LILE relative to LREE, and depletions in Nb and Ta relatively to LILE, are similar to those observed for other convergent plate boundary arc magmas around the world and suggest that these basalts formed by melting of subcontinental mantle modified by dehydration of the subducted Oman Sea oceanic lithosphere. (2) Northeast of Iran, an isolated outcrop of Neogene/Quaternary alkali olivine basalt, containing mantle and crustal xenoliths, formed by mixing of small melt fractions from both garnet and spinel-facies mantle. These melts rose to the surface along localized pathways associated with extension at the junction between the N-S right-lateral strike-slip faults and E-W left-lateral strike slip faults. The spinel-peridotite mantle xenoliths contained in the basalts, which equilibrated in the subcontinental lithosphere at depths of 30 to 60 km and temperatures of 965°C to 1065°C, do not preserve evidence of extensive metasomatic enrichment as has been inferred for the mantle below the Damavand volcano further to the west in north-central Iran. (3) Neogene mafic rocks within the central Lut block represent the last manifestation of a much more extensive mid-Tertiary magmatic event. These basalts formed from both OIB-like asthenosphere and subcontinental lithosphere which preserved chemical characteristics inherited from mid-Tertiary subduction associated with the collision of the Arabian with the Eurasian plate and closing of the Neotethys Ocean. Neogene/Quternary alkali olivine basalts erupted mainly along

  16. Vapor deposition in basaltic stalactites, Kilauea, Hawaii (United States)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  17. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja


    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  18. Antifriction basalt-plastics based on polypropylene (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.


    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  19. Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún


    Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.

  20. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    International Nuclear Information System (INIS)

    Norman, M.D.; Leeman, W.P.


    Magmatism in the western United States spanned a change in tectonic setting from Mesozoic and early Tertiary plate convergence to middle and late Tertiary crustal extension. This paper presents new major element, trace element, and isotopic (Sr, Nd, Pb) data on a diverse suite of Cretaceous to Neogene igneous rocks from the Owyhee area of southwestern Idaho to evaluate possible relationships between the evolving tectonic regime and temporal changes in igneous activity. The oldest studied rocks are Cretaceous granitic intrusives that probably formed by large-scale mixing of Precambrian crust with subduction-related magmas. Silicic Eocene tuffs are also rich in crustal components, but have isotopic compositions unlike the Cretaceous intrusives. These data require at least two crustal sources that may correspond to domains of significantly different age (Archean vs. Proterozoic). The oldest mafic lavas in the study area are Oligocene andesites and basalts compositionally similar to subduction-related magmas derived from asthenospheric mantle and erupted through thick continental crust. Direct crustal involvement during oligocene time was limited to minor interaction with the mafic magmas. Miocene activity produced bimodal basalt-rhyolite suites and minor volumes of hybrid lavas. Compositions of Miocene basalts demonstrate the decline of subduction-related processes, and increased involvement of subcontinental lithospheric mantle as a magma source. Crustally-derived Miocene rhyolites have isotopic compositions similar to those of the Cretaceous granitic rocks but trace element abundances more typical of within-plate magmas. (orig./WB)

  1. Carbon and its isotopes in mid-oceanic basaltic glasses

    International Nuclear Information System (INIS)

    Des Marais, D.J.


    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO 2 is about 3.8per mille enriched in 13 C, relative to dissolved carbon. Despite this fractionation, delta 13 Csub(PDB) values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the delta 13 Csub(PDB) of mantle carbon likely lies between -5 and -7. The carbon abundances and delta 13 Csub(PDB) values of Kilauea East Rift glasses apparently are influences by the differentiation and movement of magma within that Hawaiian volcano. Using 3 He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 x 10 13 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. (orig.)

  2. Crystallization of oxidized, moderately hydrous arc basalt at mid-to-lower crustal pressures (United States)

    Blatter, D. L.; Sisson, T. W.; Hankins, W. B.


    Decades of experimental work show that dry, reduced, subalkaline basalts differentiate to produce tholeiitic (high Fe/Mg) daughter liquids, however the influences of H2O and oxidation on differentiation paths are not well established. Accordingly, we performed crystallization experiments on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic lavas erupted in the Cascades magmatic arc near Mount Rainier, Washington. Starting material was synthesized with 3 wt% H2O and run in 2.54 cm piston-cylinder vessels at 900, 700, and 400 MPa and 1200 to 925 degrees C. Samples were contained in Au75Pd25 capsules pre-saturated with Fe by reaction with magnetite at controlled fO2. Oxygen fugacity was controlled during high-pressure syntheses by the double capsule method using Re-ReO2 plus H2O-CO2 vapor in the outer capsule, mixed to match the expected fH2O of the vapor-undersaturated sample. Crystallization was similar at all pressures with a high temperature interval consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, FeTi-oxides replace spinel, olivine dissolves, and finally amphibole appears. Liquids at 900 MPa track along Miyashiro's (1974) tholeiitic vs. calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline by ~57 wt% SiO2 and greater. Although these evolved liquids are similar in most respects to common calc-alkaline andesites, they differ in having low-CaO due to early and abundant crystallization of augite prior to plagioclase, with the result that they become peraluminous (ASI: Al/(Na+K+Ca)>1) by ~55 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer, 2006 and references therein). A compilation of >7000 analyses of volcanic and intrusive rocks from the Cascades and the Sierra Nevada batholith shows that ASI in arc magmas increases continuously and linearly with SiO2 from

  3. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    Energy Technology Data Exchange (ETDEWEB)

    Aiuppa, A.; Allard, P.; D' Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M.


    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt. Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO{sub 2} and the contribution of aqueous transport to the overall metal discharge of the volcano. The authors show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO{sub 2}-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paterno) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows evaluation of the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu).

  4. Geochemical characteristics of Antarctic magmatism connected with Karoo-Maud and Kerguelen mantle plumes (United States)

    Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya


    Emplacement (130-115 m.y. ago) of dikes and sills of alkaline-ultrabasic composition within Jetty oasis (East Antarctica) is suggested as a later appearance of plume magmatism within the East-Antarctic Shield [Andronikov et al., 1993, 2001; Laiba et al., 1987]. This region is located opposite Kerguelen Islands and possibly could be properly connected with activity of the Kerguelen-plume [Foley et al., 2001, 2006]. Jurassic-Cretaceous dykes, stocks and sills of alkaline-ultrabasic rocks, relatively close to kimberlite-type, are exposed within Jetty oasis and on the southern shore of the Raddock Lake. This alkaline-ultrabasic magmatism has appeared to be connected with the main Mesozoic stage of the evolution of the Lambert and Amery glaciers riftogenic structure [Kurinin et al., 1980, 1988]. The alkaline-ultrabasic dikes and sills within Jetty oasis cut the rocks of the Beaver complex, Permo-Triassic terrigeneous successions of the Amery complex, and late Paleozoic low-alkaline basic dikes as well. Dashed chain of 6 stock bodies spread out on 15 km along the eastern shore of the Beaver Lake, marked their allocation with submeridianal zone of the deep cracks, boarded of the eastern side of the Beaver Lake trough. At the same time, new data upon Quaternary magmatism of the mountain Gaussberg has confirmed the unique features of ultra-potassium alkaline magmatism (up to 14-17% K2O) formed under exclusively continental conditions [Murphy et al., 2002]. Volcanic cone is located at the continuation of Gaussberg rift zone which is possibly a part of Lambert fracture zone. Its formation is connected with the early stages of Gondwana development, perhaps, reactivated in different Precambrian events and according to numerous data is a single rift zone which is traced Indian inland (Indrani graben, [Golynsky, 2011]). The time of lamproitic magmas eruption is estimated at 56000±5000 yeas ago [Tingey et al., 1983]. Earlier it had been shown the Mesozoic (about 170 Ma) basaltic

  5. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    Directory of Open Access Journals (Sweden)

    URKHANOVA Larisa Alekseevna


    Full Text Available Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of basalt fiber.

  6. Investigation of Basalt Woven Fabrics for Military Applications (United States)


    investigates the use of basalt fibers in a composite along with SC-15 epoxy resin for ballistic protection. Basalt fibers are not known as a ballistic...material but rather as a structural one. Even though basalt fibers are not expected to outperform some of the higher ballistic performing materials...such as the aramid and polyethylene fibers ; however, due to the lower manufacturing costs, basalt fibers are an interesting alternative. The objective

  7. Modulation of magmatic processes by carbon dioxide (United States)

    Caricchi, L.; Sheldrake, T. E.; Blundy, J. D.


    Volatile solubility in magmas increases with pressure, although the solubility of CO2 is much lower than that of H2O. Consequently, magmas rising from depth release CO2-rich fluids, which inevitably interact with H2O-poor magmas in the upper crust (CO2-flushing). CO2-flushing triggers the exsolution of H2O-rich fluids, leading to an increase of volume and magma crystallisation. While the analyses of eruptive products demonstrates that this process operates in virtually all magmatic system, its impact on magmatic and volcanic processes has not been quantified. Here we show that depending on the initial magma crystallinity, and the depth of magma storage, CO2-flushing can lead to volcanic eruptions or promote conditions that favour the impulsive release of mineralising fluids. Our calculations show that the interaction between a few hundred ppm of carbonic fluids, and crystal-poor magmas stored at shallow depths, produces rapid pressurisation that can potentially lead to an eruption. Further addition of CO2 increases magma compressibility and crystallinity, reducing the potential for volcanic activity, promoting the formation of ore deposits. Increasing the depth of fluid-magma interaction dampens the impact of CO2-flushing on the pressurisation of a magma reservoir. CO2-flushing may result in surface inflation and increases in surface CO2 fluxes, which are commonly considered signs of an impending eruption, but may not necessarily result in eruption depending on the initial crystallnity and depth of the magmatic reservoir. We propose that CO2-flushing is a powerful agent modulating the pressurisation of magma reservoirs and the release of mineralising fluids from upper crustal magma reservoirs.

  8. Tectonic-magmatic interplay during the early stages of oceanic rifting: temporal constraints from cosmogenic 3He dating in the Dabbahu rift segment, Afar (United States)

    Williams, A.; Pik, R.; Burnard, P.; Medynski, S.; Yirgu, G.


    The Afar Rift in Ethiopia is one of the only subaerial locations in the world where the transition from continental break-up to oceanic-spreading can be observed. Extension and volcanism in the Afar is concentrated in tectono-magmatic segments (TMS), similar in size and morphology to those that characterize mid-ocean ridge systems. However, unlike their submarine equivalents, the Afar TMS contain large silicic central volcanoes, implying that magma differentiation plays an important role in the early evolution of the oceanic rifts. The Dabbahu TMS at the south of the western Afar rift system has recently been the site of significant activity. A massive seismic event in late 2005, triggered by dyke injection, heralded the onset of new rifting period. Volcanism associated with the periods of magma-driven extension has been both silicic (explosive) and basaltic (fissural). The most recent activity in the Afar thus testifies to the close interplay of tectonics and magmatism in rifting environments. In an effort to decipher the long-term structural and volcanic evolution of Dabbahu TMS, we combine cosmogenic 3He dating with geological interpretation of ASTER images and major and trace element analyses of the main volcanic units present. The cosmogenic dating method has advantages over other geochronological tools in that we can target both volcanic and tectonic surfaces of a few Kyr to several Myr age. At Baddi Volcano, an off-axis stratovolcano located west of the Dabbahu rift-axis, basaltic lava flows overlie an acidic base, previously dated at 290 ka using the K-Ar technique (Lahitte et al., 2003). Following preliminary sampling in 2007, we determined cosmogenic 3He ages of 57 ka and 45 ka for two basaltic flows on the flanks of Baddi. We now investigate whether this presumed replenishment of the Baddi magma chamber represents a replenishment of the entire sub-rift plumbing system, and how this in turn relates to the onset and maintenance of surface deformation

  9. Pressure grouting of fractured basalt flows

    International Nuclear Information System (INIS)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.


    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material

  10. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)


    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  11. Giant Plagioclase Basalts, eruption rate versus time

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    I found the GPB lavas to be very interest- ing because in some ... by Venkatesan et al (1993) and thus in a way validates my approach. ... and age calculation of lavas from phenocrysts. Keywords. Deccan Trap; Giant Plagioclase Basalts; eruption duration. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111, No. 4, December ...

  12. Pressure grouting of fractured basalt flows

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.


    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  13. Petrography of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Petrographic characteristics of basalts collected from a segment of the Carlsberg Ridge (lat. 3 degrees 35'N to 3 degrees 41'N; long. 64 degrees 05'E to 64 degrees 09'E) show typical pillow lava zonations with variable concentrations of plagioclase...

  14. Effects of Basalt Fibres on Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    El-Gelani A. M.


    Full Text Available This paper presents the results of an experimental program carried out to investigate the effects of Basalt Fibre Reinforced Polymers (BFRP on some fundamental mechanical properties of concrete. Basalt fibres are formed by heating crushed basalt rocks and funnelling the molten basalt through a spinneret to form basalt filaments. This type of fibres have not been widely used till recently. Two commercially available chopped basalt fibres products with different aspect ratios were investigated, which are dry basalt (GeoTech Fibre and basalt pre-soaked in an epoxy resin (GeoTech Matrix .The experimental work included compression tests on 96 cylinders made of multiple batches of concrete with varying amounts of basalt fibre additives of the two mentioned types, along with control batches containing no fibres. Furthermore, flexural tests on 24 prisms were carries out to measure the modulus of rupture, in addition to 30 prisms for average residual strength test. Results of the research indicated that use of basalt fibres has insignificant effects on compressive strength of plain concrete, where the increase in strength did not exceed about 5%. On the other hand, results suggest that the use of basalt fibres may increase the compressive strength of concrete containing fly as up top 40%. The rupture strength was increased also by 8% to 28% depending on mix and fibre types and contents. Finally, there was no clear correlation between the average residual strength and ratios of basalt fibres mixed with the different concrete batches.

  15. Geochemical characteristics of the Jos-Plateau Basalts, North ...

    African Journals Online (AJOL)

    The Jos Plateau basalts, present Zr/Nb ratios (2.4-3.0) comparable to those of the alkali basalts of the lower Benue valley, and of the Cameroon volcanic line, suggesting that they were possibly derived from the same mantle source. Keywords: Jos Plateau, alkali basalt, mantle, partial melting, incompatible elements.

  16. Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal (United States)

    Jarboe, Nicholas A.; Coe, Robert S.; Renne, Paul R.; Glen, Jonathan M. G.; Mankinen, Edward A.


    The Steens Basalt, now considered part of the Columbia River Basalt Group (CRBG), contains the earliest eruptions of this magmatic episode. Lava flows of the Steens Basalt cover about 50,000 km2 of the Oregon Plateau in sections up to 1000 m thick. The large number of continuously exposed, quickly erupted lava flows (some sections contain over 200 flows) allows for small loops in the magnetic field direction paths to be detected. For volcanic rocks, this detail and fidelity are rarely found outside of the Holocene and yield estimates of eruption durations at our four sections of ∼2.5 ka for 260 m at Pueblo Mountains, 0.5 to 1.5 ka for 190 m at Summit Springs, 1–3 ka for 170 m at North Mickey, and ∼3 ka for 160 m at Guano Rim. That only one reversal of the geomagnetic field occurred during the eruption of the Steens Basalt (the Steens reversal at approximately 16.6 Ma) is supported by comparing 40Ar/39Ar ages and magnetic polarities to the geomagnetic polarity timescale. At Summit Springs two 40Ar/39Ar ages from normal polarity flows (16.72 ± ± 0.29 Ma (16.61) and 16.92 ± ± 0.52 Ma (16.82); ± ± equals 2σ error) place their eruptions after the Steens reversal, while at Pueblo Mountains an 40Ar/39Ar age of 16.72 ± ± 0.21 Ma (16.61) from a reverse polarity flow places its eruption before the Steens reversal. Paleomagnetic field directions yielded 50 nontransitional directional-group poles which, combined with 26 from Steens Mountain, provide a paleomagnetic pole for the Oregon Plateau of 85.7°N, 318.4°E, K = 15.1, A95 = 4.3. Comparison of this new pole with a reference pole derived from CRBG flows from eastern Washington and a synthetic reference pole for North America derived from global data implies relative clockwise rotation of the Oregon Plateau of 7.4 ± 5.0° or 14.5 ± 5.4°, respectively, probably due to northward decreasing extension of the basin and range.

  17. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc (United States)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang


    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  18. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California (United States)

    Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.


    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow

  19. Magmatism at different crustal levels in the ancient North Cascades magmatic arc (United States)

    Shea, E. K.; Bowring, S. A.; Miller, R. B.; Miller, J. S.


    The mechanisms of magma ascent and emplacement inferred from study of intrusive complexes have long been the subject of intense debate. Current models favor incremental construction based on integration of field, geochemical, geochronologic, and modeling studies. Much of this work has been focused on a single crustal level. However, study of magmatism throughout the crust is critical for understanding how magma ascends through and intrudes surrounding crustal material. Here, we present new geochronologic and geochemical work from intrusive complexes emplaced at a range of crustal depths in the Cretaceous North Cascades magmatic arc. These complexes were intruded between 92 and 87 Ma at depths of at ≤5 -10 km, ~20 km, and ~25 km during this time. U-Pb CA-TIMS geochronology in zircon can resolve Jack-Entiat intrusive complex, a highly elongate amalgamation of intrusions recording two episodes of magmatism between~92-88 Ma and ~80-77 Ma. Each of these complexes provides a window into crustal processes that occur at different depths. Our data suggest assembly of the Black Peak intrusive complex occurred via a series of small (0.5-2 km2) magmatic increments from ~92 Ma to ~87 Ma. Field relations and zircon trace element geochemistry indicate each of these increments were emplaced and crystallized as closed systems-we find no evidence for mixing between magmas in the complex. However, zircon inheritance becomes more common in younger intrusions, indicating assimilation of older plutonic material, possibly during magma production or transport. The Seven-Fingered Jack intrusive complex, emplaced around 15-20 km, preserves a much more discontinuous record of intrusion than the Black Peak. Our data indicate major magmatism in the complex occurred between ~92.1-91.1 Ma. Inheritance in the Seven-Fingered Jack is common, particularly along contacts between intrusions. The Tenpeak intrusive complex, assembled between ~92 Ma and 89 Ma, represents one of the deepest exhumed

  20. Uranium content and fission track ages of some basalts from the FAMOUS area

    International Nuclear Information System (INIS)

    Storzer, Dieter; Selo, Madeleine


    The uranium contents of basalts from the rift valley in the Atlantic ocean near 37 deg N range between 75 ppb and 450 ppb. The fission track ages of these basalts range between 3x10 3 years and 6x10 5 years. They increase with distance from the axis of the median valley. Therefore, the locus of accretion of new crust seems to be restricted to a relatively narrow zone along the valley floor. In addition, the ages indicate that during the last 10 5 years the rate of accretion has been slower to the west than to the east. This indicates a migration of the active spreading center to the west by at least 1 km. the sea-floor spreading rates are high, up to 9cm/year, near the center of actual magmatic activity. They decrease with distance from the valley axis to 0.7 cm/year at about 2 km in the west respectively 1.5 cm/year at about 4 km in the east

  1. Basaltic ring structures of the Serra Geral Formation at the southern Triângulo Mineiro, Água Vermelha region, Brazil (United States)

    Pacheco, Fernando Estevão Rodrigues Crincoli; Caxito, Fabricio de Andrade; Moraes, Lucia Castanheira de; Marangoni, Yara Regina; Santos, Roberto Paulo Zanon dos; Pedrosa-Soares, Antonio Carlos


    The Serra Geral Formation constitutes a continental magmatic province on the southern part of South America within the Paraná basin. Basaltic magmatism of the Serra Geral Formation occurred as extrusions at around 134.5 to 131.5 My ago. The formation is part of the Paraná-Etendeka large igneous province, spanning South America and southwestern Africa. The main extrusion mechanism was probably through fissures related to extensional regime during the breakup of Gondwana in the Cretaceous. Basaltic ring structures (BRS) with tens of meters of diameter, cropping out downstream of Grande river at Água Vermelha hydroelectric dam in southern Triângulo Mineiro region, enable the study of the mechanism of extrusion. The origin of the BRS has been subject to differing interpretations in the past, either collapsed lava flows or central conduits. Detailed geological mapping at 1:1000 scale, stratigraphic, petrographic and gravimetric analysis of the most well preserved of the BRS, with a 200 m diameter, has enabled the description of thirteen different basalt lava flows, along with single a central lava lake and a ring dyke structure. The central flow, interpreted as a preserved lava lake, comprises vesicle- and amygdale-rich basalt, spatter, ropy and degassing structures. The most basal of the thirteen lava flows has massive basalt containing geodes filled with quartz. Above, the lava flows show massive basalt with vertical columnar jointing where is possible to identify the top and bottom of each individual flow, with gentle dips towards the perimeter of the structure. A prominent ring dyke dipping towards the lava lake presents horizontal columnar jointing and cuts the basal and central flows. The gravimetric analysis shows a weak negative Bouguer anomaly on the center of the BRS. The proposed model describes the volcanism of the region in three main steps: (1) fissure flow occurs with lava input; (2) this lava cools and crystallizes cementing most of the fissures

  2. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism (United States)

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.


    Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data

  3. Determining the Central Atlantic Magmatic Province (CAMPS)'s Role in the Increased Flux of CO2 in the end-Triassic Mass Extinction (United States)

    Srinivasan, P. S.; Bachan, A.; Stanford School of Earth Sciences Department of Paleobiology


    The Central Atlantic Magmatic Province (CAMP) is one of the largest flood basalt provinces known. Its empacement coincided with a period of major plant and animal extinctions-the end-Triassic mass extinction. It is postulated that the release of large amounts of carbon dioxide into the atmosphere from the volcanics was one of the causes of this mass extinction. However,the magnitude of impact on ocean chemistry, and timescales involved remain unclear. To determine CAMP's role in this increased flux of CO2, we studied the geochemistry of samples of rock from the Triassic-Jurassic boundary, in northern Italy. Specifically, by observing the ratios of carbon isotopes 12 and 13 in the organic carbon found in these limestone sedimentary rocks, we could determine the ratio of carbonate to organic burial fluxes globally. We drilled limestone rocks from two different sections in the Southern Alps-- Pozzo Glaciale and Val Adrara. Once they were drilled to a fine powder-like form, we acidified the CaCO3 with HCl to isolate the organic carbon. Then, the organic matter was cleaned to rid the acid, and eventually was placed into tin foil to be placed into the Elemental Analyzer, which determined the percent Carbon in each sample. We tested about 200 samples, and placed them into the Mass Spectrometer machine to determine the isotopic ratios of C12 and C13. According to the data, there was a positive excursion for both sample sets, which means that there was an increase in the amount of C13 in the organic matter. The duration of this excursion was at least a few hundred thousand years. This suggests a protracted increase in the burial flux of organic carbon globally, which is consistent with the hypothesized volcanically driven increase in CO2. This further bolsters the contention that CAMP was responsible, in part, for this mass extinction. By studying the earth's recovery from increased carbon fluxes in the past, we can predict the recovery path that our anthropogenically

  4. Petrology of basalts from Loihi Seamount, Hawaii (United States)

    Hawkins, James; Melchior, John


    Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated "primary" magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/ 4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred

  5. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts (United States)

    Liu, Yanan; Samaha, Naji-Tom; Baker, Don R.


    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1150 to 1450 °C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic and water concentrations varied from 0 to ˜9 wt%. All experiments were saturated with FeS melt or pyrrhotite crystals. Temperature was confirmed to have a positive effect on the SCSS. Experimental oxygen fugacities were either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. Combining our results with data from the literature we constructed a model to predict the SCSS in melts ranging in composition from komatiitic to rhyolitic, with water concentrations from 0 to 9 wt%, at pressures from 1 bar to 9 GPa and oxygen fugacities between ˜2 log units below the fayalite-magnetite-quartz buffer to ˜2 log units above it. The coefficients were obtained by multiple linear regression of experimental data and the best model found for the prediction of the SCSS is: ln(Sinppm)=11.35251-{4454.6}/{T}-0.03190{P}/{T}+0.71006ln(MFM)-1.98063[(MFM)(XO)]+0.21867ln(XO)+0.36192lnX where P is in bar, T is in K, MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM={Na+K+2(Ca+Mg+Fe)}/{Si×(Al+Fe)}, XO is the mole fraction of water in the melt, and X is the mole fraction of FeO in the melt. This model was independently tested against experiments performed on anhydrous and hydrous melts in the temperature range from 800 to 1800 °C and 1-9 GPa. The model typically predicts the measured values of the natural log of the SCSS (in ppm) for komatiitic to rhyolitic (˜42 to ˜74 wt% SiO 2) melts to within 5% relative, but is less accurate for high-silica (>76 wt% SiO 2) rhyolites, especially those with molar ratios of iron to sulfur below 2. We demonstrate how this model can be used with

  6. Petrologic Modeling of Magmatic Evolution in The Elysium Volcanic Province (United States)

    Susko, D.; Karunatillake, S.; Hood, D.


    The Elysium Volcanic Province (EVP) on Mars is a massive expanse of land made up of many hundreds of lava flows of various ages1. The variable surface ages within this volcanic province have distinct elemental compositions based on the derived values from the Gamma Ray Spectrometer (GRS) suite2. Without seismic data or ophiolite sequences on Mars, the compositions of lavas on the surface provide some of the only information to study the properties of the interior of the planet. The Amazonian surface age and isolated nature of the EVP in the northern lowlands of Mars make it ideal for analyzing the mantle beneath Elysium during the most recent geologic era on Mars. The MELTS algorithm is one of the most commonly used programs for simulating compositions and mineral phases of basaltic melt crystallization3. It has been used extensively for both terrestrial applications4 and for other planetary bodies3,5. The pMELTS calibration of the algorithm allows for higher pressure (10-30 kbars) regimes, and is more appropriate for modeling melt compositions and equilibrium conditions for a source within the martian mantle. We use the pMELTS program to model how partial melting of the martian mantle could evolve magmas into the surface compositions derived from the GRS instrument, and how the mantle beneath Elysium has changed over time. We attribute changes to lithospheric loading by long term, episodic volcanism within the EVP throughout its history. 1. Vaucher, J. et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204, 418-442 (2009). 2. Susko, D. et al. A record of igneous evolution in Elysium, a major martian volcanic province. Scientific Reports 7, 43177 (2017). 3. El Maarry, M. R. et al. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? Journal of Volcanology and Geothermal Research 185, 116-122 (2009). 4. Ding, S. & Dasgupta, R. The

  7. Copahue volcano and its regional magmatic setting (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin


    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  8. Flooding and Schools (United States)

    National Clearinghouse for Educational Facilities, 2011


    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  9. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field (United States)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.


    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  10. Geochemical modeling of magmatic gas scrubbing

    Directory of Open Access Journals (Sweden)

    B. Gambardella


    Full Text Available The EQ3/6 software package, version 7.2 was successfully used to model scrubbing of magmatic gas by pure water at 0.1 MPa, in the liquid and liquid-plus-gas regions. Some post-calculations were necessary to account for gas separation effects. In these post-calculations, redox potential was considered to be fixed by precipitation of crystalline a-sulfur, a ubiquitous and precocious process. As geochemical modeling is constrained by conservation of enthalpy upon water-gas mixing, the enthalpies of the gas species of interest were reviewed, adopting as reference state the liquid phase at the triple point. Our results confirm that significant emissions of highly acidic gas species (SO2(g, HCl(g, and HF(g are prevented by scrubbing, until dry conditions are established, at least locally. Nevertheless important outgassing of HCl(g can take place from acid, HCl-rich brines. Moreover, these findings support the rule of thumb which is generally used to distinguish SO2-, HCl-, and HF-bearing magmatic gases from SO2-, HCl-, and HF-free hydrothermal gases.

  11. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism? (United States)

    Li, Chusi; Zhang, Mingjie; Fu, Piaoer; Qian, Zhuangzhi; Hu, Peiqing; Ripley, Edward M.


    The Permian Kalatongke Ni-Cu deposits in the Central Asian Orogenic Belt are among the most important Ni-Cu deposits in northern Xinjiang, western China. The deposits are hosted by three small mafic intrusions comprising mainly norite and diorite. Its tectonic context, petrogenesis, and ore genesis have been highly contested. In this paper, we present a new model involving slab window magmatism for the Kalatongke intrusions. The origin of the associated sulfide ores is explained in the context of this new model. Minor amounts of olivine in the intrusions have Fo contents varying between 71 and 81.5 mol%, which are similar to the predicted values for olivine crystallizing from coeval basalts in the region. Analytic modeling based on major element concentrations suggests that the parental magma of the Kalatongke intrusions and the coeval basalts represent fractionated liquids produced by ˜15% of olivine crystallization from a primary magma, itself produced by 7-8% partial melting of depleted mantle peridotite. Positive ɛ Nd values (+4 to +10) and significant negative Nb anomalies for both intrusive and extrusive rocks can be explained by the mixing of magma derived from depleted mantle with 6-18% of a partial melt derived from the lower part of a juvenile arc crust with a composition similar to coeval A-type granites in the region, plus up to 10% contamination with the upper continental crust. Our model suggests that a slab window was created due to slab break-off during a transition from oceanic subduction to arc-arc or arc-continent collision in the region in the Early Permian. Decompression melting in the upwelling oceanic asthenosphere produced the primary magma. When this magma ascended to pond in the lower parts of a juvenile arc crust, it underwent olivine crystallization and at the same time triggered partial melting of the arc crust. Mixing between these two magmas followed by contamination with the upper crust after the magma ascended to higher crustal

  12. Additive Construction using Basalt Regolith Fines (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.


    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  13. Basalts of the Khodzhirbulak Suite and Assessment their Feasibility for Basalt Fiber (Surkhantau Mountains, Southwestern Shoots of the Hissar Ridge

    Directory of Open Access Journals (Sweden)

    N. M. Khakberdyev


    Full Text Available The results of preliminary assessment of basalt of the Khodzhirbulakskoy Suite of Surkhantau Mountains for the basalt fiber production are presented. According to petrographic study, the rocks are described as basalts of amygdaloidal structure. On the base of content of the amount of glassy form and nodular calcite, three groups of basalts were identified. The inverse relationship between the bulk content of the volcanic rock and the content of calcite: the greater volume of volcanic rocks, the less content of calcite, and vice versa. The basalt material demonstrates average pH module of 3.52.

  14. Magmatism evolution in the Nori'lsk region (Siberian trap province) (United States)

    Krivolutskaya, Nadezhda


    The NW Siberian trap province is very important for our understanding of evolution of huge magmatic system (T1) and origin unique Pt-Cu-Ni deposits. To solve these genetic problems (including correlation between effusive and intrusive rocks) it is necessary to get accurate information about magmatism migration in space and in time inside different tectonic structures in the Noril'sk region. Thed latter takes outstanding place on the Siberian platform due to its geological features. It consists of two main areas covered by volcanic rocks: I. Kharaelakhsky trough (on West) and II. plateau Putorana (on East) are subdivided by carbonate-terrigenouse rocks (C-P2) of Khantaisko-Rybninsky swell . These two zones differ one from another by thickness of basalts and their composition.The fist zone extents along the Khatanga fault and contains all suits, including three lowest ones - ivakinsky (Iv), syverminsky (Sv), gudchikhinsky (Gd). II zone essentially consists of the middle and upper suits - hakanchansky (Hk), tuklonsky (Tk), nadezhdinsky (Nd), morongovsky (Mr), mokulaevsky (Mk), kharaekakhsky (Kh), kumginsky (Km) and samoedsky (Sm). Usually it is constructed the complete section of the Noril'sk volcanites from rocks of two zones. But every suit has its own areal extent., which to contour it not so easy because volcanic rocks represent very similar tholeiitic basalts ( in term of texture and petrochemistry). Their differentiation is just possible using rare elements and isotopes contents in the rocks [1]. We have studied a lot of basalt sections based on their outcrops and cores of drill holes (4 570 m) and intrusive bodies graduated in mineralization (internal structure, geochemistry, mineralogy, isotopes composition). According new data areoles of the lowers and the upper suits separate in space. The thicknesses Iv and Sv suits (TiO2=2-4 mas. %; Gg/Yb = 2.2.) decreases synchronously from NW Kharaelakh and the towards Putorana at 30%. Gd suit (TiO2=1-2 mas.% and Gd

  15. Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India (United States)

    Beane, J. E.; Turner, C. A.; Hooper, P. R.; Subbarao, K. V.; Walsh, J. N.


    In the Western Ghats between latitudes 18° 20' N and 19° 15' N, 7000 km2 of Deccan Basalt have been mapped with the primary objective of establishing a flow stratigraphy as a guide to the volcanic history of the flood basalts. Using over 70 measured vertical sections, major and trace element analyses of nearly 1200 samples, and rare-earth and87Sr/86Sr determinations for over 60 samples, we divide the basalt into three subgroups and ten formations. In this paper we describe the seven principal formations in the area and the most prominent individual flows. The Kalsubai Subgroup is formed by the lower five formations, the Jawhar, Igatpuri, Neral, Thakurvadi, and Bhimashankar formations, from botton to top. In these formations amygdaloidal compound flows predominate and have a typically high MgO content, including picrite basalt (> 10% MgO) and picrite (> 18% MgO) with phenocrysts of olivine and clinopyroxene. These flows are separated by others which contain giant plagioclase phenocrysts and have more evolved chamical compositions. The Lonavala Subgroup overlies the Kalsubai and is composed of two formations, the Khandala and the Bushe. Both are readily recognized in the field and by their chemical compositions. The Wai Subgroup includes the upper three formations, the Poladpur, the Ambenali, and the Mahabaleshwar. The whole subgroup is composed of simple flows with well-developed flow tops, small phenocrysts of plagioclase, pyroxene and olivine, and relatively evolved bulk compositions. Distribution and variation in thickness of the straitigraphic units within the Western Ghats provide a first comprehensive view of the development of the Deccan volcanic edifice. The persistent southerly dip and gentle southerly plunging anticlinal form of the flows, the lensoid shape of many of the formations, and nearly randomly oriented feeder-dike system are together interpreted as evidence of a central volcanic edifice formed as the Indian plate drifted northward over a mantle

  16. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.


    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  17. Technical program plan, Basalt Waste Isolation Project

    International Nuclear Information System (INIS)


    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included

  18. Gamma radiolysis effects on basalt groundwater

    International Nuclear Information System (INIS)

    Gray, W.J.


    Gamma radiolysis of basalt groundwater containing 700 ppM methane produces a milky liquid that is a suspension of fine particles of a high molecular weight hydrocarbon somewhat like polyethylene. The ability of these polymers to chelate with, or otherwise sorb, metal ions from aqueous solution was measured using Cu +2 as a representative cation. Values in the range 0.3 to 0.8 millimoles of Cu per liter of solution were found. 5 references, 2 figures, 2 tables

  19. Energy-constrained open-system magmatic processes IV: Geochemical, thermal and mass consequences of energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC)

    International Nuclear Information System (INIS)

    Wendy A. Bohrson Department of Geological Sciences, Central Washington University, Ellensburg, Washington, 98926, USA; Frank J. Spera Institute for Crustal Studies and Department of Geological Sciences, University of California, Santa Barbara, California, 93106, USA


    RAFC events may record a more complete view of the physiochemical history of an open-system magma body. The capability of EC-RAFC to track melts and solids creates a genetic link that can be compared to natural analogues such as layered mafic intrusions and flood basalts, or mafic enclaves and their intermediate-composition volcanic or plutonic hosts. The ability to quantify chemical and volume characteristics of solids and melts also underscores the need for integrated field, petrologic and geochemical studies of igneous systems. While it appears that a number of volcanic events or systems may be characterized by continuous influx or eruption of magma (''steady state systems''), reports describing compositional homogeneity for products that represent eruptions of more than one event are relatively rare. In support of this, EC-RAFC results indicate that very specific combinations of recharge conditions, bulk distribution coefficients, and element concentrations are required to achieve geochemical homogeneity during cooling of a magma body undergoing RAFC. In summary, critical points are that EC-RAFC provides a method to quantitatively investigate complex magmatic systems in a thermodynamic context; it predicts complex, nonmonotonic geochemical trends for which there are natural analogues that have been difficult to model; and finally, EC-RAFC establishes the link between the chemical and physical attributes of a magmatic system. Application of EC-RAFC promises to improve our understanding of specific tectonomagmatic systems as well as enhance our grasp of the essential physiochemical principles that govern magma body evolution

  20. Moho and magmatic underplating in continental lithosphere

    DEFF Research Database (Denmark)

    Thybo, Hans; Artemieva, Irina M.


    interacts with the surrounding crustal rocks which leads to smearing of geophysical signals from the underplated material. In terms of processes, there is no direct discriminator between the traditional concept of underplated material and lower crustal magmatic intrusions in the form of batholiths and sill......Underplating was originally proposed as the process of magma ponding at the base of the crust and was inferred from petrologic considerations. This process not only may add high density material to the deep crust, but also may contribute low density material to the upper parts of the crust by magma...... fractionation during cooling and solidification in the lower crust. Separation of the low density material from the high-density residue may be a main process of formation of continental crust with its characteristic low average density, also during the early evolution of the Earth. Despite the assumed...

  1. Iron isotopic systematics of oceanic basalts (United States)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard


    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  2. AEGIS methodology demonstration: case example in basalt

    International Nuclear Information System (INIS)

    Dove, F.H.


    The AEGIS technology has been successfully demonstrated. For the same data, similar unpublished results have been obtained by RHO and INTERA Environmental Consultants, Inc. for contaminant transport. In addition to establishing the utility of computer codes and assessment methodology, the AEGIS technology demonstration in basalt has also produced some practical guidance for future field data gathering programs. The results of this basalt demonstration indicate that the geohydrologic systems separating the nuclear waste from the natural biosphere discharge site mitigate the consequences of the postulated fault intersection event. This analysis suggests that the basalt system satisfies the 1000- and 10,000-yr proposed standards for release to the accessible environment (limited release of 129 I and 14 C). The reader should be cautioned, however, that the results are valid only for one particular set of parameters and one postulated release scenario. A complete sensitivity analysis must be performed to evaluate the range of effects that might be observed under different release conditions and for the different range in parameters

  3. Hydrologic modeling of the Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Bond, F.W.; Zimmerman, D.A.


    The Office of Nuclear Waste Isolation (ONWI) directed the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program to conduct a technology demonstration of current performance assessment techniques for the Department of Energy (DOE) as applied to a nuclear waste repository in the Columbia Plateau Basalts. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The hydrologic simulation was divided into three major parts: (1) aquifer recharge calculations, (2) a regional hydrologic model, and (3) a local hydrologic model of the Pasco Basin. The presentation discusses the regional model. An estimate of the amount of water transmitted through the groundwater system was required to bound the transmissivity values and to estimate the transmissivity distributions for the deeper basalts. The multiple layer two-dimensional Variable Thickness Transient (VTT) code was selected as appropriate for the amount of data available and for the conditions existing in the regional systems. This model uses a finite difference formulation to represent the partial differential flow equation. The regional study area as defined for the VTT model was divided into 55 by 55 square pattern with each grid 5 kilometers on a side. The regional system was modeled as a held potential surface layer and two underlying basalt layers. The regional model established the boundary conditions for the hydrologic model the Pasco Basin

  4. Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): Implications for the geodynamic evolution of the Celebes basin

    International Nuclear Information System (INIS)

    Rangin, C.; Maury, R.C.; Bellon, H.; Cotten, J.; Polve, M.; Priadi, B.; Soeria-Atmadja, R.; Joron, J.L.


    Eocene BABB basalts intruded by tholeiitic and calk-alkalic island arc magmatic rocks are reported from the north arm of Sulawesi (Indonesia). Age and geochemical similarities between these basalts and those drilled in the Celebes Sea indicate this North Sulawesi volcanic arc was built on the same oceanic crust. The 25 deg late Neogene clockwise rotation of the north arm of Sulawesi following its collision with fragments of Australia (Sula, Buton) is not sufficient to explain the asymmetrical magnetic anomalies in the Celebes basin. The North Sulawesi island arc could be interpreted as having progressively retreated northward on its own Celebes sea back arc basin, during an episode of Palaeogene-early Neogene tectonic erosion along the trench. (authors)

  5. Miocene magmatism and tectonics within the Peri-Alboran orogen (western Mediterranean) (United States)

    El Azzouzi, M.; Bellon, H.; Coutelle, A.; Réhault, J.-P.


    The aim of this paper concerns Miocene igneous activity in the Alboran Sea and Peri-Alboran area (northern Morocco, western Algeria and Betic Cordilleras in Spain), considering its age and its location with regard to major tectonics structures. We have compiled previous K-Ar isotopic ages of lavas and plutonic boulders and intrusives with an error of ±1σ and completed this set by a new K-Ar isotopic age for andesitic tuffites from Alboran Island. Geochemistry of most of these samples has been considered after previous analyses completed with new data for Spain magmatism. These two sets of data allow us to place the magmatic activity within the regional stratigraphy and tectonics and their chronological framework of the three major tectonic phases of the Maghrebian orogen, at 17 Ma (Burdigalian), 15 Ma (Langhian) and 9 Ma (Tortonian). Petro-geochemical characteristics are compared through time and geographical locations. A major goal of this coupled approach is to help the elaboration of possible geodynamical processes. As an application, we present the case study of the Dellys, Djinet and Thenia region (east of Algiers) where the successive magmatic events between 19.4 ± 1 and 11.6 ± 0.5 Ma are closely related to the local tectonics and sedimentation. The Peri-Alboran igneous activity is placed in a multidisciplinary framework. Timing of activity is defined according to the ages of the neighbouring sedimentary units and the K-Ar ages of igneous rocks. In Spain, the Cabo de Gata-Carboneras magmatic province displays late Oligocene and early Miocene leucogranitic dikes, dated from 24.8 ± 1.3 to 18.1 ± 1.2 Ma; three following andesitic to rhyolitic events took place around 15.1 ± 0.8 to 14.0 ± 0.7 Ma, 11.8 ± 0.6 to 9.4 ± 0.4 Ma, 8.8 ± 0.4 to 7.9 ± 0.4 Ma; this last event displays also granitic rocks. Lamproitic magmas dated between 8.4 ± 0.4 and 6.76 ± 0.04 Ma were emplaced after the Tortonian phase. In Morocco, after the complex building of the Ras Tarf

  6. Improving Student Understanding of Magmatic Differentiation Using an M&M Magma Chamber (United States)

    Wirth, K. R.


    Many students, especially those in introductory geology courses, have difficulty developing a deep understanding of the processes of magmatic differentiation. In particular, students often struggle to understand Bowen's reaction series and fractional crystallization. The process of fractional crystallization by gravity settling can be illustrated using a model magma chamber consisting of M&M's. In this model, each major cation (e.g., Si, Ti, Al, Fe, Mg, Ca, Na, K) is represented by a different color M&M; other kinds of differently colored or shaped pieces could also be used. Appropriate numbers of each color M&M are combined to approximate the cation proportions of a basaltic magma. Students then fractionate the magma by moving M&M's to the bottom of the magma chamber forming a series of cumulus layers; the M&M's are removed in the stoichiometric proportions of cations in the crystallizing minerals (e.g., olivine, pyroxene, feldspars, quartz, magnetite, ilmenite). Students observe the changing cation composition (proportions of colors of M&M's) in the cumulus layers and in the magma chamber and graph the results using spreadsheet software. More advanced students (e.g., petrology course) can classify the cumulates and resulting liquid after each crystallization step, and they can compare the model system with natural magmatic systems (e.g., absence of important fractionating phases, volatiles). Students who have completed this exercise generally indicate a positive experience and demonstrate increased understanding of Bowen's reaction series and fractionation processes. They also exhibit greater familiarity with mineral stoichiometry, classification, solid-solution in minerals, element behavior (e.g., incompatibility), and chemical variation diagrams. Other models (e.g., paths of equilibrium and fractional crystallization on phase diagrams) can also be used to illustrate differentiation processes in upper level courses (e.g., mineralogy and petrology).

  7. Making rhyolite in a basalt crucible (United States)

    Eichelberger, John


    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  8. Efficient cooling of rocky planets by intrusive magmatism (United States)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.


    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  9. Flood Hazard Area (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  10. Flood Hazard Boundaries (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  11. Base Flood Elevation (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...


    Directory of Open Access Journals (Sweden)

    К. M. Konstantinov


    Full Text Available Introduction. One of the main tasks of paleomagnetic studies is to obtain a framework of reference poles for calculating the kinematic characteristics of lithospheric taxones as a basis for geodynamic reconstructions. Each paleomagnetic reference point must have a precise (±10 Ma geochronological dating and a maximum paleomagnetic reliability index. A correct paleomagnetic pole (PMP can be obtained from the data of geochronological and paleomagnetic studies conducted in one and the same geological object, such as a suite, an intrusive complex etc. In the Yakutian diamondiferous province (YDP, such objects include basalt nappes of the Upper Devonian Appainskaya suite, which stratigraphic position is undoubted (Fran, 385–375 Ma.Geological setting (in brief. In the eastern segments of the Siberian platform, a powerful cycle of tectonic and magmatic activity in the Middle Paleozoic produced transgressive and sheet intrusions, volcanic pipes, lava and tuff formations comprised of basites, as well as all the currently known industrial diamondiferous kimberlite bodies. Magmatic activity of basites was associated with formation of paleorift systems, including the largest one, Viluyi paleorift (Fig. 1. In the Middle Paleozoic, the geodynamic setting for magmatism and rifting was determined by the plume-lithosphere interaction. The rise of the plume’s matter underneath the thinned lithosphere was accompanied by decompression melting and formation of basaltic magmas in large volumes.We have studied basalts of the Appainskaya suite which were sampled from the Ygyatta and Markha river valleys (Fig. 2. In the coastal outcrops at the Ygyatta river, two nappes are observed, a (stratigraphically lower outcrop 17÷23/10 containing plagiophyre palagonite basalts (upper five meters are outcropped, and an upper outcrop 16/10 containing olivinophyric palagonite basalts (upper three meters are outcropped. In the coastal outcrops of the Markha river, from the

  13. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.


    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  14. Magnetostratigraphy of the Grande Ronde Basalt Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Packer, D.R.; Petty, M.H.


    The paleomagnetic measurements of samples from the holes sampled have shown that there are four magnetic correlation lines, between adjacent flows in holes that have distinctly different mean stratigraphic inclinations, and two magnetic polarity boundaries that can be used for magnetic correlation in the Grande Ronde Basalt in the Pasco Basin. The results of paleomagnetic measurements of samples from the Wanapum Basalt and Saddle Mountains Basalt indicate that the potential for magnetostratigraphic correlation in these sequences is also good

  15. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica


    URKHANOVA Larisa Alekseevna; LKHASARANOV Solbon Aleksandrovich; ROZINA Victoria Yevgenievna; BUYANTUEV Sergey Lubsanovich; BARDAKHANOV Sergey Prokopievich


    Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of ba...

  16. Thermomechanical Modeling of the Formation of a Multilevel, Crustal-Scale Magmatic System by the Yellowstone Plume (United States)

    Colón, D. P.; Bindeman, I. N.; Gerya, T. V.


    Geophysical imaging of the Yellowstone supervolcano shows a broad zone of partial melt interrupted by an amagmatic gap at depths of 15-20 km. We reproduce this structure through a series of regional-scale magmatic-thermomechanical forward models which assume that magmatic dikes stall at rheologic discontinuities in the crust. We find that basaltic magmas accumulate at the Moho and at the brittle-ductile transition, which naturally forms at depths of 5-10 km. This leads to the development of a 10- to 15-km thick midcrustal sill complex with a top at a depth of approximately 10 km, consistent with geophysical observations of the pre-Yellowstone hot spot track. We show a linear relationship between melting rates in the mantle and rhyolite eruption rates along the hot spot track. Finally, melt production rates from our models suggest that the Yellowstone plume is 175°C hotter than the surrounding mantle and that the thickness of the overlying lithosphere is 80 km.

  17. Study on basalt fiber parameters affecting fiber-reinforced mortar (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.


    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.


    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich


    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  19. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes (United States)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel


    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  20. Magmatic evolution of the Easter microplate-Crough Seamount region (South East Pacific) (United States)

    Hekinian, R.; Stoffers, P.; Akermand, D.; Binard, N.; Francheteau, Jean; Devey, C.; Garbe-Schonberg, D.


    The Easter microplate-Crough Seamount region located between 25?? S-116?? W and 25?? S-122?? W consists of a chain of seamounts forming isolated volcanoes and elongated (100-200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065??), to the present day general spreading direction (N 100??) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26??30??? S-115?? W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges ( 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1-2.5}, {(La/Sm)N = 0.4-1.2} and {(Zr/Y)N = 0.7-2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation (??? 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25?? S-118?? W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (Easter Island. ?? 1995

  1. Descriptive summary of the Grande Ronde Basalt type section, Columbia River Basalt Group

    International Nuclear Information System (INIS)

    Camp, V.E.; Price, S.M.; Reidel, S.P.


    The Grande Ronde Basalt type section, located in extreme southeastern Washington, was measured, sampled, and characterized. The section is 800 meters thick and is comprised of 35 Grande Ronde Basalt flows. These flows are divisible into 3 magnetostratiographic units termed, in ascending order, the R 1 , the N 1 , and the R 2 . The R 1 unit is represented by 13 reversely polarized flows; the N 1 unit, by 13 normally polarized flows; and the R 2 , by 9 reversely polarized flows. Chemically, the Grande Ronde Basalt flows are divided into 2 major groups, termed A and B. The compositions of the lower 9 flows, members of Group A, are similar to either the high-Mg Grande Ronde chemical type, the high-Ti Grande Ronde chemical type, or the Pomona chemical type. The compositions of the upper 25 flows, members of Group B, are predominantly similar to the low-Mg Grande Ronde chemical type. Petrographically, the Grande Ronde Basalt flows are generally fine grained and aphyric, and have a intergranular or intersertal micro-texture. Major mineral phases include plagioclase (An/sub 40-60/) and augite; minor mineral phases include pigeonite, orthopyroxene, ilmenite, titanomagnetite, and olivine. Group A flows generally contain more olivine and less pigeonite than do Group B flows. 6 figures, 6 tables

  2. Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): Implications for the geodynamic evolution of the Celebes basin; Basaltes de bassin arriere-arc de l`Eocene-Miocene et tholeiites d`arc insulaire associees du nord Sulawesi (Indonesie): implications pour l`evolution geodynamique du bassin des Celebes

    Energy Technology Data Exchange (ETDEWEB)

    Rangin, C. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Maury, R.C.; Bellon, H.; Cotten, J. [Universite de Bretagne Occidentale, 29 - Brest (France); Polve, M. [Universite Paul Sabatier, 31 - Toulouse (France); Priadi, B.; Soeria-Atmadja, R. [Department of Geology, ITB, Bandung (Indonesia); Joron, J.L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules


    Eocene BABB basalts intruded by tholeiitic and calk-alkalic island arc magmatic rocks are reported from the north arm of Sulawesi (Indonesia). Age and geochemical similarities between these basalts and those drilled in the Celebes Sea indicate this North Sulawesi volcanic arc was built on the same oceanic crust. The 25 deg late Neogene clockwise rotation of the north arm of Sulawesi following its collision with fragments of Australia (Sula, Buton) is not sufficient to explain the asymmetrical magnetic anomalies in the Celebes basin. The North Sulawesi island arc could be interpreted as having progressively retreated northward on its own Celebes sea back arc basin, during an episode of Palaeogene-early Neogene tectonic erosion along the trench. (authors) 37 refs.

  3. Drilling to investigate processes in active tectonics and magmatism


    J. Shervais; J. Evans; V. Toy; J. Kirkpatrick; A. Clarke; J. Eichelberger


    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park C...

  4. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13 (United States)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.


    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  5. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars (United States)

    Kestay, Laszlo P.; Jaeger, Windy L.


    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  6. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province (United States)

    Steiner, A. R.; Streck, M. J.


    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  7. Angrites: A Volatile-rich Variety of Asteroidal Basalt (Except for Alkalis and Gallium!) (United States)

    Warren, P. H.; Kallemeyn, G. W.


    Angrites are commonly viewed as extremely volatile-depleted, and a related notion is that they formed by differentiation of a very CAI-rich material [e.g., 1]. Partial melting experiments reportedly reproduce the bulk compositions (although not fassaite-rich mineralogy) of angrites with Allende as starting material [2], but highly CAI-rich parent materials are difficult to reconcile with isotopic and REE data [3,4]. Mittlefehldt and Lindstrom [5] inferred from the low Na/Al ratios of angrites that outgassing, and thus primordial magmatism, was more intense on their parent body than on the eucrite parent asteroid. Of seven elements that (a) have been adequately determined in angrites, and (b) are far more volatile (solar-nebula 50% condensation T [6] = 690-430 K) than the alkalis (1000-910 K), four are enriched, and none is significantly depleted, in average angrite compared to average eucrite or low-Ti mare basalt (Figure). Gallium, which is of intermediate volatility (830 K), is depleted to roughly the same extent as Na and K. Results for A881371 [3] are incomplete (Zn, 6 micrograms/g, is near INAA detection limit), but even based only on AdoR and the two LEW angrites, this pattern seems firmly established. Apparent gas cavities in A881371 [7] also suggest that volatiles are far from uniformly depleted. The only elements known to be depleted, as volatiles, by clearly significant factors in angrites versus eucrites or lunar basalts, are alkalis plus gallium. Besides being moderately volatile, a noteworthy characteristic shared among Ga and alkalis (and not shared with elements such as Br, Se, and Zn) is that these elements probably tend to partition into crustal feldspar during gross differentiation of small (low-pressure) bodies. If gallium + alkalis were depleted by a single process starting from "normal" chondritic material, that process would seem to require selective exposure of a feldspar-enriched region (i.e., crust) to extremely high temperature. Igneous

  8. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes (United States)

    Fischer, T.


    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  9. Resolving the crustal composition paradox by 3.8 billion years of slab failure magmatism and collisional recycling of continental crust (United States)

    Hildebrand, Robert S.; Whalen, Joseph B.; Bowring, Samuel A.


    In the standard paradigm, continental crust is formed mainly by arc magmatism, but because the compositions of magma rising from the mantle are basaltic and continental crust is estimated to contain about 60% SiO2 and much less MgO than basalt, the two do not match. To resolve this paradox, most researchers argue that large amounts of magmatic fractionation produce residual cumulates at the base of the crust, which because arcs are inferred to have magmatically thickened crust, form eclogites that ultimately founder and sink into the mantle. Not only are there problems with the contrasting bulk compositions, but the standard model also fails because prior to collision most modern arcs do not have thick crust, as documented by their eruption close to sea level, and in cases of ancient arc sequences, their intercalation with marine sedimentary rocks. Our study of Cretaceous batholiths in the North American Cordillera resolves the crustal composition paradox because we find that most are not arc-derived as commonly believed; but instead formed during the waning stages of collision and consequent slab failure. Because the batholiths typically have silica contents >60% and are derived directly from the mantle, we argue that they are the missing link in the formation of continental crust. Slab failure magmas worldwide are compositionally similar to tonalite-trondhjemite-granodiorite suites as old as 3.8 Ga, which points to their collective formation by slab failure and long-lived plate tectonics. Our model also provides (1) an alternative solution to interpret compiled detrital zircon arrays, because episodic peaks that coincide with periods of supercontinent amalgamation are easily interpreted to represent collisions with formation of new crust by slab failure; and (2) that models of early whole-earth differentiation are more reasonable than those invoking progressive growth of continental crust.

  10. Urban pluvial flood prediction

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer


    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numerically both...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0–2 h lead time, and numerical weather models with lead times up to 24 h are used as inputs...... to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on a small town Lystrup in Denmark, which has been flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps...

  11. Commercial nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Hardy, M.P.; Patricio, J.G.; Heley, W.H.


    The Basalt Waste Isolation Project (BWIP) is an ongoing research and engineering effort being conducted by Rockwell Hanford Operations (Rockwell), which is under contract to the US Department of Energy. The objectives of this program are to assess the feasibility of and to provide the technology needed to design and construct a licensed commercial nuclear waste repository in the deep basalt formations underlying the Hanford Site. An extensive preconceptual design effort was undertaken during 1979 to develop a feasible concept that could serve as a reference design for both surface and underground facilities. The preconceptual design utilized existing technology to the greatest extent possible to offer a system design that could be utilized in establishing schedule and cost baseline data, recommend alternatives that require additional study, and develop basic design requirements that would allow evolution of the design process prior to the existence of legislated criteria. This paper provides a description of the concept developed for the subsurface aspects of this nuclear waste repository

  12. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)



    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  13. Degassing of reduced carbon from planetary basalts. (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E


    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.


    African Journals Online (AJOL)

    Dr A.B.Ahmed

    damage, causes of flooding, human response to flooding and severity of ... from moving out. Source of ... Man responds to flood hazards through adjustment, flood abatement ... action to minimize or ameliorate flood hazards; flood abatement.

  15. Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments (United States)

    Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu


    The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and

  16. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea (United States)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.


    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  17. Petrology of offshore basalts of Bombay harbour area, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.

    glass are conspicuous. The chemical data indicate that the basalts are tholeiitic. Secondary minerals encountered support the view that the basalts are spilitised. Basalts of this area show affinities to both continental and oceanic types especially...

  18. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California (United States)

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.


    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  19. Intraplate mafic magmatism: New insights from Africa and N. America (United States)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.


    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread

  20. Eruption cycles in a basaltic andesite system: insights from numerical modeling (United States)

    Smekens, J. F.; Clarke, A. B.; De'Michieli Vitturi, M.


    Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. Many of these systems present relatively evolved compositions (andesite to rhyolite), and their cyclic activity has been the subject of extensive work (e.g., Soufriere Hills Volcano, Montserrat). However, the same periodic behavior can also be observed at open systems of more mafic compositions, such as Semeru in Indonesia or Karymsky in Kamchatka for example. In this work, we use DOMEFLOW, a 1D transient numerical model of magma ascent, to identify the conditions that lead to and control periodic eruptions in basaltic andesite systems, where the viscosity of the liquid phase can be drastically lower. Periodic behavior occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and then explosively disrupts it. The characteristic timescale and magnitude of the eruptive cycles are controlled by the overall viscosity of the magmatic mixture, with higher viscosities leading to longer cycles and lower flow rates at the top of the conduit. Cyclic eruptions in basaltic andesite systems are observed for higher crystal contents, smaller conduit radii, and over a wider range of chamber pressures than the andesitic system, all of which are the direct consequence of a decrease in viscosity of the melt phase, and in turn in the intensity of the viscous forces generated by the system. Results suggest that periodicity can exist in more mafic systems with relatively lower chamber pressures than andesite and rhyolite systems, and may explain why more mafic magmas sometimes remain active for decades.

  1. Hydrogeology of the basalts in the Uruguayan NW

    International Nuclear Information System (INIS)

    Hausman, A.; Fernandez, A.


    This work is about the hydrogeological aspects in the NW Uruguayan basaltic area. The results of this research are the main geological, morphological and hydrogeological aspects of the area as well as the characteristics and the color of the basalt and sandstones

  2. Influence of basalt/groundwater interactions on radionuclide migration

    International Nuclear Information System (INIS)

    Vandegrift, G.F.


    The work presented here is a partial summary of the experimental results obtained in the Laboratory Analog Program. Two aspects of this effort are (1) the interaction between simulated basaltic groundwater and basalt fissures that were either freshly cleaved or laboratory altered by hydrothermal treatment with the simulated groundwater and (2) the effect of this interaction on radionuclide migration through these basalt fissures. The following conclusions of this study bear heavily on the predicted safety of a basalt repository: Sorption properties of freshly fissured basalt and naturally aged basalt are quite different for different chemical species. Analog experiments predict that aged basalt would be an effective retarder of cesium, but would be much less so for actinide elements. Distribution ratios measured from batch experiments with finely ground rock samples (presenting unaltered rock surfaces) are not a reliable means of predicting radionuclide migration in geological repositories. As the near-repository area is resaturated by groundwater, its ability to retard actinide migration will be degraded with time. Disturbing the natural flow of groundwater through the repository area by constructing and backfilling the repository will modify the composition of groundwater. This modified groundwater is likely to interact with and to modify naturally aged basalt surfaces downstream from the repository

  3. Constructibility issues associated with a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Turner, D.A.


    This report contains the text and slide reproductions of a speech on nuclear waste disposal in basalt. The presentation addresses the layout of repository access shafts and subsurface facilities resulting from the conceptual design of a nuclear repository in basalt. The constructibility issues that must be resolved prior to construction are described

  4. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  5. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    International Nuclear Information System (INIS)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.


    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO 3 , which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs 2 MoO 4 , Cs 2 U 2 O 7 ) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO 4 , with the production of pollucite exceeding that of CsAlSiO 4 . Dissolution of β-Cs 2 U 2 O 7 implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO 3 .3H 2 O) during some experiments containing basalt phases, indicates a tendency to oxidize U 4+ to U 6+ . When diopside (nominally CaMgSi 2 O 6 ) and β-Cs 2 U 2 O 7 were hydrothermally reacted, at 300 0 C both UO 2 and UO 3 .3H 2 O were produced. Experiments on SrZrO 3 show it to be an unreactive phase

  6. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.


    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO/sub 3/, which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs/sub 2/MoO/sub 4/, Cs/sub 2/U/sub 2/O/sub 7/) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO/sub 4/, with the production of pollucite exceeding that of CsAlSiO/sub 4/. Dissolution of ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO/sub 3/.3H/sub 2/O) during some experiments containing basalt phases, indicates a tendency to oxidize U/sup 4 +/ to U/sup 6 +/. When diopside (nominally CaMgSi/sub 2/O/sub 6/) and ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ were hydrothermally reacted, at 300/sup 0/C both UO/sub 2/ and UO/sub 3/.3H/sub 2/O were produced. Results of experiments on SrZrO/sub 3/ show it to be

  7. [Determination of Total Iron and Fe2+ in Basalt]. (United States)

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen


    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  8. Post-Hercynian subvolcanic magmatism in the Serre Massif (Central-Southern Calabria, Italy) (United States)

    Romano, V.; Cirrincione, R.; Fiannacca, P.; Mazzoleni, P.; Tranchina, A.


    In the Serre Massif (Central-Southern Calabria, Italy) dykes and subvolcanic bodies intrude diffusively both Hercynian metamorphic rocks and late-Hercynian granitoids. They range in composition from basaltic andesites to dacite-rhyodacites and can be ascribed to the extensive magmatic activity that affects the entire Hercynian orogenic belt in late Paleozoic - early Mesozoic time. The geodinamic framework of the magmatic activity is still matter of debate, nevertheless most authors agree in correlating magmatism both to the late-orogenic collapse of the Hercynian belt and to the lithosphere thinning responsible for the subsequent continental rifting. In this work, we propose a petrogenetic model for acidic to basic hypabissal bodies from southern Calabria in order to define the nature of sources, discriminate magmatic processes and supply a contribution in the geodynamic reconstruction of the Late Palaeozoic in the Calabria-Peloritani Orogen. In relation to their geochemical affinity, studied dykes have been divided in two groups: a medium- to high-K calc-alkaline and a tholeiitic one. Dykes belonging to the former group, andesitic and dacitic-rhyodacitic in composition, show typical features of subduction-related magmatism, such as LILE and LREE enrichments, depletions in HFSE, peaks in Rb, Th and Ce, accentuated troughs in Ba, Nb-Ta, P and Ti (White and Dupré, 1986; McCulloch and Gamble, 1991), contrasting with the late Hercynian collisional context. On the other side, features typical of intra-plate magmatic activity, such as a moderate enrichment in Ta, Nb, Ce, P, Zr, Hf and Sm relative to MORB composition are also present in studied rocks (Shimizu & Arculus, 1975; Pearce, 1982). REE-patterns are strongly to weakly fractionated for the andesitic rocks (Lan/Ybn = 10.03-13.98) and the dacitic-rhyodacitic ones (Lan/Ybn = 6.00 to 2.82), respectively. The latter rocks exhibit a very slight negative Eu anomaly, whereas no Eu anomaly is recognizable in the andesite

  9. Permian basalts and trachytes from Esterel (SE France): a transitional tholeiitic suite emplaced during lithosphere thinning; Basaltes et trachytes permiens de l`Esterel (SE France): une serie tholeiitique transitionnelle epanchee pendant l`amincissement lithospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, H.; Basile, Ch. [Grenoble-1 Univ., 38 - Grenoble (France). Laboratoire de Geodynamique des Chaines Alpines, CNRS UPRES-A5025; Dupuis, V. [Institut de Geodynamique, UMR Geosciences Azur, 06 - Valbonne (France)


    Geochemical (major, trace and rare earth elements) and isotopic ({sup 143}Nd/{sup 144}Nd) compositions of lavas emplaced in the Esterel Massif (eastern Provence, France) at the end of the Permian allow to estimate the evolution of the continental lithosphere between the end of the Hercynian orogenesis and the beginning of the Tethyan rifting. Basalts from Agay basin and trachyte from Batterie des Lions belong to a transitional tholeiitic suite, characterized by negative Nb and Ta anomalies (relative to N-MORB) and homogeneous {epsilon}Nd{sub (T=250Ma)} ratios, close to the Bulk Earth. This suggests that the basalts from Agay basin and trachyte from Batterie des Lions derived from the partial melting of a mantle contaminated by lower continental crust. Maure Vieille trachytes differ from the differentiated rocks of the transitional suite by higher heavy rare earth abundances and {epsilon}Nd{sub (T=250Ma)} of +4/+5. These high {xi}Nd ratios suggest that the Maure Vieille trachytes could derive from the partial melting of a more depleted source, likely an asthenospheric mantle. The isotopic compositions of the Permian lavas from Esterel suggest the thinning (and perhaps the disappearance) of the lithospheric mantle which is associated at the surface with a NNW-SSE extension. The progressive change recorded in Agay basin from a stretching regime to a strike-slip regime may be related to the end of the lithospheric thinning and of the Permian magmatism. (authors) 37 refs.

  10. Basalt alteration and basalt-waste interaction in the Pasco Basin of Washington State. Final report

    International Nuclear Information System (INIS)

    Benson, L.V.; Carnahan, C.L.; Apps, J.A.; Mouton, C.A.; Corrigan, D.J.; Frisch, C.J.; Shomura, L.K.


    A study was conducted to determine the nature of the minerals which coat vesicle and fracture surfaces in the Grande Ronde Basalt Formation, simulate the mass transfer which led to their precipitation, and predict the mass transfer associated with the dissolution of spent unreprocessed fuel (SURF). Scanning electron microscopy (SEM), petrographic, x-ray diffraction (XRD), and electron microprobe (EMP) analyses have been made on a series of samples taken from 1100 ft (335.3 m) of core from core hole DC2. Preliminary simulations of the mass transfer associated with basalt dissolution in a thermodynamically closed system have been accomplished. In addition two mass transfer codes have been modified to facilitate data base changes. Thermochemical data for uranium and plutonium have been collected and converted to standard state conditions. These data will be critically evaluated and input to the mass transfer data base in the near future

  11. Mesozoic to Cenozoic magmatic history of the Pamir (United States)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo


    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to shoshonitic monzonite, syenite, and granite that is adakitic (La/YbN = 13 to 57) with low Mg# (35-41). The Vanj complex displays a range of SiO2 (54-75 wt.%) and isotopic compositions (-7 to -3 εNd(i), 0.706 to

  12. Strontium stable isotope behaviour accompanying basalt weathering (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.


    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  13. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology (United States)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide


    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  14. Temperature dependence of sulfide and sulfate solubility in olivine-saturated basaltic magmas (United States)

    Beermann, O.; Botcharnikov, R. E.; Holtz, F.; Diedrich, O.; Nowak, M.


    The sulfur concentration at pyrrhotite- and anhydrite-saturation in primitive hydrous basaltic melt of the 2001-2002 eruption of Mt. Etna was determined at 200 MPa, T = 1050-1250 °C and at log fO 2 from FMQ to FMQ+2.2 (FMQ is Fayalite-Magnetite-Quartz oxygen buffer). At 1050 °C Au sample containers were used. A double-capsule technique, using a single crystal olivine sample container closed with an olivine piston, embedded in a sealed Au 80Pd 20 capsule, was developed to perform experiments in S-bearing hydrous basaltic systems at T > 1050 °C. Pyrrhotite is found to be a stable phase coexisting with melt at FMQ-FMQ+0.3, whereas anhydrite is stable at FMQ+1.4-FMQ+2.2. The S concentration in the melt increases almost linearly from 0.12 ± 0.01 to 0.39 ± 0.02 wt.% S at FeS-saturation and from 0.74 ± 0.01 to 1.08 ± 0.04 wt.% S at anhydrite-saturation with T ranging from 1050-1250 °C. The relationships between S concentration at pyrrhotite and/or anhydrite saturation, MgO content of the olivine-saturated melt, T, and log fO 2 observed in this study and from previous data are used to develop an empirical model for estimating the magmatic T and fO 2 from the S and MgO concentrations of H 2O-bearing olivine-saturated basaltic melts. The model can also be used to determine maximum S concentrations, if fO 2 and MgO content of the melt are known. The application of the model to compositions of melt inclusions in olivines from Mt. Etna indicates that the most primitive magmas trapped in inclusions might have been stored at log fO 2 slightly higher than FMQ+1 and at T = 1100-1150 °C, whereas more evolved melts could have been trapped at T ⩽ 1100 °C. These values are in a good agreement with the estimates obtained by other independent methods reported in the literature.

  15. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone (United States)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.


    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects

  16. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements (United States)

    Greenberger, Rebecca N.; Mustard, John F.; Cloutis, Edward A.; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L.; Robertson, Kevin M.; Salvatore, Mark R.; Edwards, Christopher S.


    We investigate an outcrop of ∼187 Ma lacustrine pillow basalts of the Talcott Formation exposed in Meriden, Connecticut, USA, focusing on coordinated analyses of one pillow lava to characterize the aqueous history of these basalts in the Hartford Basin. This work uses a suite of multidisciplinary measurements, including hyperspectral imaging, other spectroscopic techniques, and chemical and mineralogical analyses, from the microscopic scale up to the scale of an outcrop. The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600 °C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit

  17. Argon isotopes as recorders of magmatic processes (United States)

    Layer, P. W.; Gardner, J. E.; Mora Chaparro, J. C.; Arce, J. L.


    Argon isotopic ratios vary enough between different reservoirs (atmosphere, crust, mantle) and diffuse fast enough through most minerals at magmatic temperatures (700-1200 C) to make them ideal for looking at magma chamber dynamics. Indeed, diffusion is sufficiently fast to allow short time scales to be deciphered, setting argon apart from many other isotopic methods. A mineral's ability to retain "excess" argon (40Ar/36Ar ratios greater than the atmospheric value and apparent ages older than the known eruption age) during post-eruption cooling is key to Ar studies. Previous work shows that both phenocrysts (crystallizing in the magma chamber; e.g. Mt St. Helens; Layer and Gardner, 2001) and xenocrysts (introduced into the magma chamber; e.g Toba; Gardner et al., 2002) preserve excess argon, which enables magma chamber processes to be deciphered through the variable diffusion rates between crystal phases. Single crystal 40Ar/39Ar step-heating of biotite from the 10.5 ka eruption of Nevado de Toluca volcano, Mexico indicates that they are xenocrystic and resided for only a short (< 1 year) time in the magma before it erupted. The biotite has reaction rims of hornblende, orthopyroxene and plagioclase, and failed to grow experimentally at pressure-temperature conditions of the magma, confirming the xenocrystic nature of this phase. Single-step fusion of plagioclase phenocrysts from eruptions of El Chichon volcano, Mexico, shows evidence of excess (mantle) argon, whereas hornblende from the same eruptions contains little or none. In this case, faster diffusion of Ar in plagioclase than in hornblende allow plagioclase to incorporate excess argon during magma recharge; hornblende does not. Combining such results with other isotopic systems may in fact better determine magma chamber processes. At El Chichon, Sr isotopes suggest magma recharges ocurred (Tepley et al., 2000), whereas the argon isotopes suggest such pulses occurred just before each eruption. The fast and

  18. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California (United States)

    Pfeiffer, Loic; Wanner, Christoph; Lewicki, Jennifer L.


    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d−1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107–108

  19. Unusual ruby-sapphire transition in alluvial megacrysts, Cenozoic basaltic gem field, New England, New South Wales, Australia (United States)

    Sutherland, Frederick L.; Graham, Ian T.; Harris, Stephen J.; Coldham, Terry; Powell, William; Belousova, Elena A.; Martin, Laure


    Rare ruby crystals appear among prevailing sapphire crystals mined from placers within basaltic areas in the New England gem-field, New South Wales, Australia. New England ruby (NER) has distinctive trace element features compared to those from ruby elsewhere in Australia and indeed most ruby from across the world. The NER suite includes ruby (up to 3370 ppm Cr), pink sapphire (up to 1520 ppm Cr), white sapphire (up to 910 ppm) and violet, mauve, purple, or bluish sapphire (up to 1410 ppm Cr). Some crystals show outward growth banding in this respective colour sequence. All four colour zones are notably high in Ga (up to 310 ppm) and Si (up to 1820 ppm). High Ga and Ga/Mg values are unusual in ruby and its trace element plots (laser ablation-inductively coupled plasma-mass spectrometry) and suggests that magmatic-metasomatic inputs were involved in the NER suite genesis. In situ oxygen isotope analyses (secondary ion mass spectrometry) across the NER suite colour range showed little variation (n = 22; δ18O = 4.4 ± 0.4, 2σ error), and are values typical for corundum associated with ultramafic/mafic rocks. The isolated NER xenocryst suite, corroded by basalt transport and with few internal inclusions, presents a challenge in deciphering its exact origin. Detailed consideration of its high Ga chemistry in relation to the known geology of the surrounding region was used to narrow down potential sources. These include Late Palaeozoic-Triassic fractionated I-type granitoid magmas or Mesozoic-Cenozoic felsic fractionates from basaltic magmas that interacted with early Palaeozoic Cr-bearing ophiolite bodies in the New England Orogen. Other potential sources may lie deeper within lower crust-mantle metamorphic assemblages, but need to match the anomalous high-Ga geochemistry of the New England ruby suite.

  20. Crust-mantle contribution to Andean magmatism

    International Nuclear Information System (INIS)

    Ruiz, J; Hildreth, W; Chesley, J


    There has long been great interest in quantifying the contributions of the continental crust to continental arc magmas, such as those of the Andes using osmium isotopes (Alves et al., 1999; Borg et al., 2000; Brandon et al., 1996; McInnes et al., 1999). In general, Andean volcanic rocks of all compositions show relatively low Sr-isotope ratios and positive to mildly negative epsilon Nd values. Nonetheless, in the Southern Volcanic Zone of central Chile, basalt-andesite-dacite volcanoes along the Quaternary volcanic front were shown (by Hildreth and Moorbath, 1988) to have latitudinally systematic chemical variations, as well as a monotonic increase in 87Sr/Sr86 from ca. 0.7035 to 0.7055 and a decrease in epsilon Nd values from ca. +3 to -1. The isotopic variations correlate with basement elevation of the volcanic edifices and with Bouguer gravity anomalies, both of which are thought to reflect along-arc variations in thickness and average age of the underlying crust. Volcanoes with the most evolved isotopic signatures were fed through the thickest crust. Correlation of chemical and isotopic variations with crustal thickness was interpreted to be caused by Melting (of deep-crustal host rocks), Assimilation, Storage, and Homogenization (MASH) of mantle-derived magmas in long-lived lower-crustal reservoirs beneath each center prior to eruption. We have now determined Os-isotope ratios for a sample suite from these volcanoes (33-36 S lat.), representing a range of crustal thickness from ca. 60-35 km. The samples range in MgO from ca. 8-4% and in SiO2 from 51-57%. The most evolved eruptive products occur above the thickest crust and have 87Sr/86Sr ratios of 0.7054 and epsilon Nd values of -1.5. The 187Os/188Os ratios correlate with the other isotopic systems and with crustal thickness. Volcanoes on the thinnest crust have 187Os/188Os ratios of 0.18-0.21. Those on the thickest crust have 187Os/188Os ratios as high as 0.64. All the Os values are much too radiogenic to

  1. The Thickness and Volume of Young Basalts Within Mare Imbrium (United States)

    Chen, Yuan; Li, Chunlai; Ren, Xin; Liu, Jianjun; Wu, Yunzhao; Lu, Yu; Cai, Wei; Zhang, Xunyu


    Basaltic volcanism is one of the most important geologic processes of the Moon. Research on the thickness and volume of late-stage basalts of Mare Imbrium helps better understand the source of lunar volcanism and eruption styles. Based on whether apparent flow fronts exist or not, the late-stage basalts within Mare Imbrium were divided into two groups, namely, Upper Eratosthenian basalts (UEm) and Lower Eratosthenian basalts (LEm). Employing the topographic profile analysis method for UEm and the crater excavation technique for LEm, we studied the thickness and distribution of Eratosthenian basalts in Mare Imbrium. For the UEm units, their thicknesses were estimated to be 16-34 (±2) m with several layers of individual lava ( 8-13 m) inside. The estimated thickness of LEm units was 14-45(±1) m, with a trend of reducing thickness from north to south. The measured thickness of late-stage basalts around the Chang'E-3 landing site ( 37 ± 1 m) was quite close to the results acquired by the lunar penetrating radar carried on board the Yutu Rover ( 35 m). The total volume of the late-stage basalts in Mare Imbrium was calculated to be 8,671 (±320) km3, which is 4 times lower than that of Schaber's estimation ( 4 × 104 km3). Our results indicate that the actual volume is much lower than previous estimates of the final stage of the late basaltic eruption of Mare Imbrium. Together, the area flux and transport distance of the lava flows gradually decreased with time. These results suggest that late-stage volcanic evolution of the Moon might be revised.

  2. Study of Mururoa's basaltic massif alteration (French Polynesia): solid and fluid phases analysis and thermodynamical modeling

    International Nuclear Information System (INIS)

    Destrigneville, Christine


    The alteration processes occurring in the volcanics of Mururoa have been studied using petrological data on secondary minerals, chemical analyses of the interstitial fluids and isotopic analyses on both minerals and fluids. Chemical and isotopic exchanges were first modelled, then thermodynamical modeling characterized the chemical evolution during the alteration of the secondary assemblage and of the fluid. The main secondary sequences which have been observed in Mururoa volcanics result from the alteration occurring during the lavas setting. Two different processes have been evidenced. The first one is the deuteric alteration with the CO_2-rich magmatic fluid exsolved from the magma and trapped in the vesicles and the olivine microcracks of the lava intrusions. This alteration in a closed system is dominated by the solid phases when the CO_2 molar fraction in the fluid is higher than 0.25. The second process is the alteration of the lavas by seawater or a meteoric fluid. The basaltic flows present alteration assemblages composed of clay minerals and zeolites whose chemical composition has been forced by the fluid composition. Shallowness emissions of lavas result in completely argillized levels. The present interstitial fluids chemistry result from the percolation of seawater in the volcano. In the argillized levels the fluids have interacted with the clay minerals and their chemical compositions have been modified. The important chemical changes in the present interstitial fluids show that the present alteration in the volcano is higher than the fluids circulation. (author) [fr

  3. The Origin of Nanoscopic Grooving on Vesicle Walls in Submarine Basaltic Glass: Implications for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jason E. French


    Full Text Available Dendritic networks of nanoscopic grooves measuring 50–75 nm wide by <50 nm deep occur on the walls of vesicles in the glassy margins of mid-ocean ridge pillow basalts worldwide. Until now, their exact origin and significance have remained unclear. Here we document examples of such grooved patterns on vesicle walls in rocks from beneath the North Atlantic Ocean, and give a fluid mechanical explanation for how they formed. According to this model, individual nanogrooves represent frozen viscous fingers of magmatic fluid that were injected into a thin spheroidal shell of hot glass surrounding each vesicle. The driving mechanism for this process is provided by previous numerical predictions of tangential tensile stress around some vesicles in glassy rocks upon cooling through the glass transition. The self-assembling nature of the dendritic nanogrooves, their small size, and overall complexity in form, are interesting from the standpoint of exploring new applications in the field of nanotechnology. Replicating such structures in the laboratory would compete with state-of-the-art nanolithography techniques, both in terms of pattern complexity and size, which would be useful in the fabrication of a variety of grooved nanodevices. Dendritic nanogrooving in SiO2 glass might be employed in the manufacturing of integrated circuits.

  4. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process (United States)

    Zhang, Yuxiang; Zeng, Zhigang; Chen, Shuai; Wang, Xiaoyuan; Yin, Xuebo


    In the middle Okinawa Trough (MOT), rhyolites have been typically considered as products of crystallization differentiation of basaltic magma as a feature of bimodal volcanism. However, the evidence is insufficient. This paper compared chemical trends of volcanic rocks from the MOT with fractional crystallization simulation models and experimental results and utilized trace element modeling combined with Rayleigh fractionation calculations to re-examine fractional crystallization processes in generating rhyolites. Both qualitative and quantitative studies indicate that andesites, rather than rhyolites, originate by fractional crystallization from basalts in the MOT. Furthermore, we established two batch-melting models for the MOT rhyolites and proposed that type 1 rhyolites are produced by remelting of andesites with amphiboles in the residue, while type 2 rhyolites are derived from remelting of andesites without residual amphiboles. It is difficult to produce melts with a SiO2 content ranging from 62% to 68% either by magmatic differentiation from basalts or by remelting of andesites, and this difficulty might help account for the compositional gap (Daly gap) for bimodal volcanism in the Okinawa Trough.

  5. Modulation of magmatic processes by CO2 flushing (United States)

    Caricchi, Luca; Sheldrake, Tom E.; Blundy, Jon


    Magmatic systems are the engines driving volcanic eruptions and the source of fluids responsible for the formation of porphyry-type ore deposits. Sudden variations of pressure, temperature and volume in magmatic systems can produce unrest, which may culminate in a volcanic eruption and/or the abrupt release of ore-forming fluids. Such variations of the conditions within magmatic systems are commonly ascribed to the injection of new magma from depth. However, as magmas fractionating at depth or rising to the upper crust release CO2-rich fluids, the interaction between carbonic fluids and H2O-rich magmas stored in the upper crust (CO2 flushing), must also be a common process affecting the evolution of subvolcanic magma reservoirs. Here, we investigate the effect of gas injection on the stability and chemical evolution of magmatic systems. We calculate the chemical and physical evolution of magmas subjected to CO2-flushing using rhyolite-MELTS. We compare the calculations with a set of melt inclusion data for Mt. St. Helens, Merapi, Etna, and Stromboli volcanoes. We provide an approach that can be used to distinguish between melt inclusions trapped during CO2 flushing, magma ascent and decompression, or those affected by post-entrapment H2O-loss. Our results show that CO2 flushing is a widespread process in both felsic and mafic magmatic systems. Depending upon initial magma crystallinity and duration of CO2 input, flushing can either lead to volcanic eruption or fluid release. We suggest that CO2 flushing is a fundamental process modulating the behaviour and chemical evolution of crustal magmatic systems.

  6. Simulating the structure of gypsum composites using pulverized basalt waste

    Directory of Open Access Journals (Sweden)

    Buryanov Аleksandr


    Full Text Available This paper examines the possibility of simulating the structure of gypsum composite modified with basalt dust waste to make materials and products based on it. Structural simulating of the topological space in gypsum modified composite by optimizing its grain-size composition highly improves its physical and mechanical properties. Strength and density tests have confirmed the results of the simulation. The properties of modified gypsum materials are improved by obtaining of denser particle packing in the presence of hemihydrate of finely dispersed basalt and plasticizer particles in the system, and by engaging basalt waste in the structuring process of modified gypsum stone.

  7. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.


    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  8. Geochemistry of 1.9 Ga MORB- and OIB-like basalts from the Amisk collage, Flin Flon Belt, Canada: Evidence for an intra-oceanic origin (United States)

    Stern, Richard A.; Syme, Eric C.; Lucas, Stephen B.


    Subaqueously-erupted basalts that occur in kilometre-scale allochthons within the 1.9 Ga Flin Flon Belt, Canada, appear to have been generated at oceanic ridges and possibly oceanic plateaus, remote from Archean cratons. The ocean-floor basalts fall into two categories: (1) N-type, resembling N-MORBs and Mariana-type back-arc basin basalts (depleted to flat REE patterns, high Zr/Nb, variable Th/Nb, and initial ɛNd = + 3.3 to + 5.4); (2) E-type, resembling transitional and plume MORBs (slightly enriched REE patterns, lower Zr/Nb, initial ɛNd = +3.1 to +4.5). In the largest and best-studied allochthon, the Elbow-Athapapuskow 'assemblage,' mixing between depleted (N-MORB) and enriched (OIB) sources or melts, coupled with variable addition of a subduction LILE component, can explain the chemical variations in the basalts. Zircon U-Pb dates of 1904 ± Ma for a syn-volcanic diabase sill and 1901 +6/-5 Ma for a gabbro-peridotite cumulate complex demonstrate that crystallization of the 'ocean-floor' basalts overlapped with, in part, eruption of the tectonically juxtaposed 1.90-1.88 Ga arc volcanic rocks. The Elbow-Athapapuskow allochthon is interpreted as back-arc basin crust that developed simultaneously with Flin Flon arc magmatism. Subaerially erupted basalts that chemically resemble tholeiitic OIBs (8-14% MgO, relative HREE depletion, initial ɛ Nd = +2.2 to +3.4) occur in tectonic contact with the Elbow-Athapapuskow assemblage. The OIBs may have been generated by deeper (garnet residue) melting of enriched mantle tapped during extension in the Elbow-Athapapuskow back-arc basin, and were possibly erupted onto a remnant arc. Deeper mantle melting is also indicated by the presence of the LREE-enriched oceanic plateau-like basalts of the Sandy Bay assemblage. The back-arc, 01B, and plateau volcanic assemblages were jux-taposed against ca. 1.9 Ga arc assemblages in a Philippines-like intraoceanic accretionary complex by 1.87 Ga.

  9. Petrological constraints on the high-Mg basalts from Capo Marargiu (Sardinia, Italy): Evidence of cryptic amphibole fractionation in polybaric environments (United States)

    Tecchiato, Vanni; Gaeta, Mario; Mollo, Silvio; Scarlato, Piergiorgio; Bachmann, Olivier; Perinelli, Cristina


    This study deals with the textural and compositional characteristics of the calc-alkaline stratigraphic sequence from Capo Marargiu Volcanic District (CMVD; Sardinia island, Italy). The area is dominated by basaltic to intermediate hypabyssal (dikes and sills) and volcanic rocks (lava flows and pyroclastic deposits) emplaced during the Oligo-Miocene orogenic magmatism of Sardinia. Interestingly, a basaltic andesitic dome hosts dark-grey, crystal-rich enclaves containing up 50% of millimetre- to centimetre-sized clinopyroxene and amphibole crystals. This mineral assemblage is in equilibrium with a high-Mg basalt recognised as the parental magma of the entire stratigraphic succession at CMVD. Analogously, centimetre-sized clots of medium- and coarse-grained amphibole + plagioclase crystals are entrapped in andesitic dikes that ultimately intrude the stratigraphic sequence. Amphibole-plagioclase cosaturation occurs at equilibrium with a differentiated basaltic andesite. Major and trace element modelling indicates that the evolutionary path of magma is controlled by a two-step process driven by early olivine + clinopyroxene and late amphibole + plagioclase fractionation. In this context, enclaves represent parts of a cumulate horizon segregated at the early stage of differentiation of the precursory high-Mg basalt. This is denoted by i) resorption effects and sharp transitions between Mg-rich and Mg-poor clinopyroxenes, indicative of pervasive dissolution phenomena followed by crystal re-equilibration and overgrowth, and ii) reaction minerals found in amphibole coronas formed at the interface with more differentiated melts infiltrating within the cumulate horizon, and carrying the crystal-rich material with them upon eruption. Coherently, the mineral chemistry and phase relations of enclaves indicate crystallisation in a high-temperature, high-pressure environment under water-rich conditions. On the other hand, the upward migration and subsequent fractionation of the

  10. Discover Floods Educators Guide (United States)

    Project WET Foundation, 2009


    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  11. Enhanced methane emission during carbonaceous sediment-basalt interactions as a mechanism for mass extinction (United States)

    Kubo, A. I.; Day, J. M.; Ryabov, V. V.; Taylor, L. A.


    volatiles necessary to cause a runaway greenhouse effect and the estimated emission of flood basalts.

  12. Flood action plans

    International Nuclear Information System (INIS)

    Slopek, R.J.


    Safe operating procedures developed by TransAlta Utilities for dealing with flooding, resulting from upstream dam failures or extreme rainfalls, were presented. Several operating curves developed by Monenco AGRA were described, among them the No Overtopping Curve (NOC), the Safe Filling Curve (SFC), the No Spill Curve (NSC) and the Guaranteed Fill Curve (GFC). The concept of an operational comfort zone was developed and defined. A flood action plan for all operating staff was created as a guide in case of a flooding incident. Staging of a flood action plan workshop was described. Dam break scenarios pertinent to the Bow River were developed for subsequent incorporation into a Flood Action Plan Manual. Evaluation of the technical presentations made during workshops were found them to have been effective in providing operating staff with a better understanding of the procedures that they would perform in an emergency. 8 figs

  13. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts (United States)

    Shervais, John W.; Vetter, Scott K.


    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  14. Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints (United States)

    Essaifi, Abderrahim; Zayane, Rachid


    During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean

  15. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally

  16. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky


    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  17. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.


    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  18. Geochemical characterization of oceanic basalts using artificial neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.; Iyer, S.D.

    method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) is applied to identify the inherent...

  19. Alteration of basaltic glasses from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    Textural, mineralogical and compositional characteristics of basaltic glasses from the Central Indian Ocean show them to be altered to varying extents through their interaction with the seawater, resulting in the formation of palagonite. The major...

  20. A note on incipient spilitisation of central Indian basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Iyer, S.D.

    Rocks dredged in the vicinity of the 79 degrees E fracture zone, in the Central Indian Basin, are sub-alkaline basalts, which are regarded as precursors to spilites. The minerals identified are mainly albitic plagioclase, augite, olivine, and less...

  1. [Comparative carcinogenic properties of basalt fiber and chrysotile-asbestos]. (United States)

    Nikitina, O V; Kogan, F M; Vanchugova, N N; Frash, V N


    In order to eliminate asbestos adverse effect on workers' health it was necessary to use mineral rayon, primarily basalt fibre, instead of asbestos. During a chronic experiment on animals the oncogenicity of 2 kinds of basalt fibre was studied compared to chrysotile asbestos. The dust dose of 25 mg was twice administered by intraperitonial route. All types of dust induced the onset of intraperitonial mesotheliomas but neoplasm rates were significantly lower in the groups exposed to basalt fibre. There was no credible data on the differences between the groups exposed to various types of basalt fibre. Since the latter produced some oncogenic effect, it was necessary to develop a complex of antidust measures, fully corresponding to the measures adopted for carcinogenic dusts.

  2. Trace Element Abundances in Eucrite Basalts: Enrichment or Depletion? (United States)

    Castle, N. R.


    It is not clear how incompatible trace element (ITE) variation in eucrite basalts originated. Here, mechanisms for relative ITE enrichment or depletion are experimentally evaluated in an attempt to reconcile the Stannern and main group eucrites.

  3. Iowa Flood Information System (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.


    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  4. Chemical magnetization when determining Thellier paleointensity experiments in oceanic basalts (United States)

    Tselebrovskiy, Alexey; Maksimochkin, Valery


    The natural remanent magnetization (NRM) of oceanic basalts selected in the rift zones of the Mid-Atlantic Ridge (MAR) and the Red Sea has been explored. Laboratory simulation shows that the thermoremanent magnetization and chemical remanent magnetization (CRM) in oceanic basalts may be separated by using Tellier-Coe experiment. It was found that the rate of CRM destruction is about four times lower than the rate of the partial thermoremanent magnetization formation in Thellier cycles. The blocking temperatures spectrum of chemical component shifted toward higher temperatures in comparison with the spectrum of primary thermoremanent magnetization. It was revealed that the contribution of the chemical components in the NRM increases with the age of oceanic basalts determined with the analysis of the anomalous geomagnetic field (AGF) and spreading theory. CRM is less than 10% at the basalts aged 0.2 million years, less than 50% at basalts aged 0.35 million years, from 60 to 80% at basalts aged 1 million years [1]. Geomagnetic field paleointensity (Hpl) has been determined through the remanent magnetization of basalt samples of different ages related to Brunhes, Matuyama and Gauss periods of the geomagnetic field polarity. The value of the Hpl determined by basalts of the southern segment of MAR is ranged from 17.5 to 42.5 A/m, by the Reykjanes Ridge basalts — from 20.3 to 44 A/m, by the Bouvet Ridge basalts — from 21.7 to 34.1 A/m. VADM values calculated from these data are in good agreement with the international paleointensity database [2] and PISO-1500 model [3]. Literature 1. Maksimochkin V., Tselebrovskiy A., (2015) The influence of the chemical magnetization of oceanic basalts on determining the geomagnetic field paleointensity by the thellier method, moscow university physics bulletin, 70(6):566-576, 2. Perrin, M., E. Schnepp, and V. Shcherbakov (1998), Update of the paleointensity database, Eos Trans. AGU, 79, 198. 3. Channell JET, Xuan C, Hodell DA (2009

  5. Geological, geochemical and isotope diversity of 134 Ma dykes from the Florianópolis Dyke Swarm, Paraná Magmatic Province: Geodynamic controls on petrogenesis (United States)

    Florisbal, L. M.; Janasi, V. A.; Bitencourt, M. F.; Nardi, L. V. S.; Marteleto, N. S.


    The Florianópolis Dyke Swarm (FDS), one of the major dyke swarms belonging to the Early cretaceous (135-131 Ma) Paraná Magmatic Province, is largely dominated by high Sr-Ti-P basalts that are confirmed here as feeders of the unique Urubici (= Khumib) lavas of the Paraná and Edendeka lava piles on the basis of their age and geochemistry. Our study integrates field, petrographic, whole-rock geochemistry, and Sr-Nd-Pb isotope geochemistry of representative samples from three main areas of exposition (Santa Catarina Island, Garopaba and Pinheira beaches), thus encompassing the whole extension of the FDS. Compared to the Urubici lavas, the dykes have usually higher contents of LILE and LREE, more radiogenic Sr and Pb, and more unradiogenic Nd, features attributed to a more pronounced interaction with melts derived from the country rocks registered in the basic magmas that remained in the conduits. Some of these dykes show strongly interactive contacts that must be part of a wider zone of crustal melting, probably more developed at greater depths. Small volumes of intermediate to acidic rocks form the cores of some composite dykes, and correspond to products of fractional crystallization from Urubici basalts contaminated with high Rb/Sr, and U/Th crustal melts (probably derived from Neoproterozoic granites), as indicated by geochemical and Sr-Nd-Pb isotope data. The chemical and isotope signatures of the less contaminated FDS basalts and related Urubici lavas do not show clear evidence of inputs from primitive mantle, and seem heavily influenced by enriched mantle. This suggests that the mantle wedge that was affected by subduction during the Neoproterozoic may have been frozen and coupled to the base of the lithospheric plate where the Early cretaceous magmatism occurred. A control of previous tectonic limits on the sources of the Urubici basalts seems evident, since they seem to be related to the younger lithosphere from the South Domain, related to the Florian

  6. Diversity of life in ocean floor basalt (United States)

    Thorseth, I. H.; Torsvik, T.; Torsvik, V.; Daae, F. L.; Pedersen, R. B.


    Electron microscopy and biomolecular methods have been used to describe and identify microbial communities inhabiting the glassy margins of ocean floor basalts. The investigated samples were collected from a neovolcanic ridge and from older, sediment-covered lava flows in the rift valley of the Knipovich Ridge at a water depth around 3500 m and an ambient seawater temperature of -0.7°C. Successive stages from incipient microbial colonisation, to well-developed biofilms occur on fracture surfaces in the glassy margins. Observed microbial morphologies are various filamentous, coccoidal, oval, rod-shaped and stalked forms. Etch marks in the fresh glass, with form and size resembling the attached microbes, are common. Precipitation of alteration products around microbes has developed hollow subspherical and filamentous structures. These precipitates are often enriched in Fe and Mn. The presence of branching and twisted stalks that resemble those of the iron-oxidising Gallionella, indicate that reduced iron may be utilised in an energy metabolic process. Analysis of 16S-rRNA gene sequences from microbes present in the rock samples, show that the bacterial population inhabiting these samples cluster within the γ- and ɛ-Proteobacteria and the Cytophaga/Flexibacter/Bacteroides subdivision of the Bacteria, while the Archaea all belong to the Crenarchaeota kingdom. This microbial population appears to be characteristic for the rock and their closest relatives have previously been reported from cold marine waters in the Arctic and Antarctic, deep-sea sediments and hydrothermal environments.

  7. Magnesium-rich Basalts on Mercury (United States)

    Martel, L. M. V.


    X-ray and gamma-ray spectrometers on NASA's MESSENGER spacecraft are making key measurements regarding the composition and properties of the surface of Mercury, allowing researchers to more clearly decipher the planet's formation and geologic history. The origin of the igneous rocks in the crust of Mercury is the focus of recent research by Karen Stockstill-Cahill and Tim McCoy (National Museum of Natural History, Smithsonian Institution), along with Larry Nittler and Shoshana Weider (Carnegie Institution of Washington) and Steven Hauck II (Case Western Reserve University). Using the well-known MELTS computer code Stockstill-Cahill and coauthors worked with MESSENGER-derived and rock-analog compositions to constrain petrologic models of the lavas that erupted on the surface of Mercury. Rock analogs included a partial melt of the Indarch meteorite and a range of Mg-rich terrestrial rocks. Their work shows the lavas on Mercury are most similar to terrestrial magnesian basalt (with lowered FeO content). The implications of the modeling are that Mg-rich lavas came from high-temperature sources in Mercury's mantle and erupted at high temperature with exceptionally low viscosity into thinly bedded and laterally extensive flows, concepts open to further evaluation by laboratory experiments and by geologic mapping of Mercury's surface using MESSENGER's imaging system and laser altimeter to document flow features and dimensions.

  8. Basalt FRP Spike Repairing of Wood Beams

    Directory of Open Access Journals (Sweden)

    Luca Righetti


    Full Text Available This article describes aspects within an experimental program aimed at improving the structural performance of cracked solid fir-wood beams repaired with Basalt Fiber Reinforced Polymer (BFRP spikes. Fir wood is characterized by its low density, low compression strength, and high level of defects, and it is likely to distort when dried and tends to fail under tension due to the presence of cracks, knots, or grain deviation. The proposed repair technique consists of the insertion of BFRP spikes into timber beams to restore the continuity of cracked sections. The experimental efforts deal with the evaluation of the bending strength and deformation properties of 24 timber beams. An artificially simulated cracking was produced by cutting the wood beams in half or notching. The obtained results for the repaired beams were compared with those of solid undamaged and damaged beams, and increases of beam capacity, bending strength and of modulus of elasticity, and analysis of failure modes was discussed. For notched beams, the application of the BFRP spikes was able to restore the original bending capacity of undamaged beams, while only a small part of the original capacity was recovered for beams that were cut in half.

  9. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis


    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  10. Geochemistry of the Potassic Basalts from the Bufumbira Volcanic ...

    African Journals Online (AJOL)

    The various basalts are low in SiO2 wt %, Al2O3 wt % and Na2O wt % but high in MgO wt %, TiO2 wt %, CaO wt %, K2O wt % with K2O/Na2O = 1.08 to 2.07. These are potassic belonging to the kamafugite series. Plots discriminate two geochemical trends corresponding to the picritic and clinopyroxene rich basalts.

  11. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube


    Lapena, Mauro Henrique; Marinucci, Gerson


    The application of basalt fibers are possible in many areas thanks to its multiple and good properties. It exhibits excellent resistance to alkalis, similar to glass fiber, at a much lower cost than carbon and aramid fibers. In the present paper, a comparative study on mechanical properties of basalt and E-glass fiber composites was performed. Results of apparent hoop tensile strength test of ring specimens cut from tubes and the interlaminar shear stress (ILSS) test are presented. Tensile te...

  12. The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt-peralkaline rhyolite suite, the greater Olkaria volcanic complex, Kenya Rift valley (United States)

    Macdonald, R.; Belkin, H.E.; Fitton, J.G.; Rogers, N.W.; Nejbert, K.; Tindle, A.G.; Marshall, A.S.


    The Greater Olkaria Volcanic Complex is a young (???20 ka) multi-centred lava and dome field dominated by the eruption of peralkaline rhyolites. Basaltic and trachytic magmas have been erupted peripherally to the complex and also form, with mugearites and benmoreites, an extensive suite of magmatic inclusions in the rhyolites. The eruptive rocks commonly represent mixed magmas and the magmatic inclusions are themselves two-, three- or four-component mixes. All rock types may carry xenocrysts of alkali feldspar, and less commonly plagioclase, derived from magma mixing and by remobilization of crystal mushes and/or plutonic rocks. Xenoliths in the range gabbro-syenite are common in the lavas and magmatic inclusions, the more salic varieties sometimes containing silicic glass representing partial melts and ranging in composition from anorthite ?? corundum- to acmite-normative. The peralkaline varieties are broadly similar, in major element terms, to the eruptive peralkaline rhyolites. The basalt-trachyte suite formed by a combination of fractional crystallization, magma mixing and resorption of earlier-formed crystals. Matrix glass in metaluminous trachytes has a peralkaline rhyolitic composition, indicating that the eruptive rhyolites may have formed by fractional crystallization of trachyte. Anomalous trace element enrichments (e.g. ??? 2000 ppm Y in a benmoreite) and negative Ce anomalies may have resulted from various Na- and K-enriched fluids evolving from melts of intermediate composition and either being lost from the system or enriched in other parts of the reservoirs. A small group of nepheline-normative, usually peralkaline, magmatic inclusions was formed by fluid transfer between peralkaline rhyolitic and benmoreitic magmas. The plumbing system of the complex consists of several independent reservoirs and conduits, repeatedly recharged by batches of mafic magma, with ubiquitous magma mixing. ?? The Author 2008. Published by Oxford University Press. All

  13. Bimodal magmatism produced by progressively inhibited crustal assimilation 2 (PICA)

    NARCIS (Netherlands)

    Meade, F.C.; Troll, V.R.; Ellam, R.M.; Freda, C.; Font Morales, L.; Donaldson, C.H.; Klonowska, I.


    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous

  14. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.


    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  15. Health impacts of floods. (United States)

    Du, Weiwei; FitzGerald, Gerard Joseph; Clark, Michele; Hou, Xiang-Yu


    Floods are the most common hazard to cause disasters and have led to extensive morbidity and mortality throughout the world. The impact of floods on the human community is related directly to the location and topography of the area, as well as human demographics and characteristics of the built environment. The aim of this study is to identify the health impacts of disasters and the underlying causes of health impacts associated with floods. A conceptual framework is developed that may assist with the development of a rational and comprehensive approach to prevention, mitigation, and management. This study involved an extensive literature review that located >500 references, which were analyzed to identify common themes, findings, and expert views. The findings then were distilled into common themes. The health impacts of floods are wide ranging, and depend on a number of factors. However, the health impacts of a particular flood are specific to the particular context. The immediate health impacts of floods include drowning, injuries, hypothermia, and animal bites. Health risks also are associated with the evacuation of patients, loss of health workers, and loss of health infrastructure including essential drugs and supplies. In the medium-term, infected wounds, complications of injury, poisoning, poor mental health, communicable diseases, and starvation are indirect effects of flooding. In the long-term, chronic disease, disability, poor mental health, and poverty-related diseases including malnutrition are the potential legacy. This article proposes a structured approach to the classification of the health impacts of floods and a conceptual framework that demonstrates the relationships between floods and the direct and indirect health consequences.

  16. The subcontinental mantle beneath southern New Zealand, characterised by helium isotopes in intraplate basalts and gas-rich springs (United States)

    Hoke, L.; Poreda, R.; Reay, A.; Weaver, S. D.


    relationship with either age or proximity to the Cenozoic intraplate volcanic centres or with major faults. In general, areas characterised by mantle 3He emission are interpreted to define those regions beneath which mantle melting and basalt magma addition to the crust are recent. The strongest mantle 3He anomaly (equivalent to >80% mantle helium component) is centred over southern Dunedin, measured in magmatic CO 2-rich mineral water springs issuing from crystalline basement rocks which outcrop at the southern extent of Miocene intraplate basaltic volcanism which ceased 9 Ma ago. This mantle helium anomaly overlaps with an area characterised by elevated surface high heat flow, compatible with a long-lived mantle melt/heat input into the crust. In comparison Banks Peninsula, another Miocene intraplate basaltic centre, is characterised by relatively low surface heat flow and a small mantle helium contribution measured in a nitrogen-rich spring. Here the thermal transient induced by the magmatic event has either dissipated or has not reached the surface. In the former case one might be dealing with storage and mixing of magmatic and crustal gases at shallow crustal levels and in the latter with active to recent mantle-melt degassing at depth. Along the most actively deforming part of the plate boundary zone, the transpressional Alpine Fault and Marlborough fault systems, mantle helium is present in gas-rich springs in all those areas underlain by actively subducting oceanic crust (the Australian plate in the south and Pacific plate in the north), whereas the central part of the Alpine transpressional fault is characterised by pure crustal radiogenic helium. Areas where the mantle helium component is negligible are restricted to the centre part of the South Island, extending along its length from Southland to northern Canterbury and Murchison. These areas are interpreted to delineate the extent of thicker and colder lithosphere compared to all other areas where mantle helium

  17. Nogales flood detention study (United States)

    Norman, Laura M.; Levick, Lainie; Guertin, D. Phillip; Callegary, James; Guadarrama, Jesus Quintanar; Anaya, Claudia Zulema Gil; Prichard, Andrea; Gray, Floyd; Castellanos, Edgar; Tepezano, Edgar; Huth, Hans; Vandervoet, Prescott; Rodriguez, Saul; Nunez, Jose; Atwood, Donald; Granillo, Gilberto Patricio Olivero; Ceballos, Francisco Octavio Gastellum


    Flooding in Ambos Nogales often exceeds the capacity of the channel and adjacent land areas, endangering many people. The Nogales Wash is being studied to prevent future flood disasters and detention features are being installed in tributaries of the wash. This paper describes the application of the KINEROS2 model and efforts to understand the capacity of these detention features under various flood and urbanization scenarios. Results depict a reduction in peak flow for the 10-year, 1-hour event based on current land use in tributaries with detention features. However, model results also demonstrate that larger storm events and increasing urbanization will put a strain on the features and limit their effectiveness.

  18. Development of flood index by characterisation of flood hydrographs (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman


    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  19. Re-evaluating Gondwana breakup: Magmatism, movement and microplates (United States)

    Ferraccioli, F.; Jordan, T. A.


    Gondwana breakup is thought to have initiated in the Early- to Mid-Jurassic between South Africa and East Antarctica. The critical stages of continental extension and magmatism which preceded breakup remain controversial. It is agreed that extensive magmatism struck this region 180 Ma, and that significant extension occurred in the Weddell Sea Rift System (WSRS) and around the Falkland Plateau. However, the timing and volume of magmatism, extent and mechanism of continental extension, and the links with the wider plate circuit are poorly constrained. Jordan et al (Gondwana Research 2017) recently proposed a two-stage model for the formation of the WSRS: initial extension and movement of the Ellsworth Whitmore Mountains microplate along the margin of the East Antarctic continent on a sinistral strike slip fault zone, followed by transtensional extension closer to the continental margin. Here we identify some key questions raised by the two-stage model, and identify regions where these can be tested. Firstly, is the magmatism inferred to have facilitated extension in the WSRS directly linked to the onshore Dufek Intrusion? This question relates to both the uncertainty in the volume of magmatism and potentially the timing of extension, and requires improved resolution of aeromagnetic data in the eastern WSRS. Secondly, did extension in the WSRS terminate against a single strike slip fault zone or into a distributed fault system? By integrating new and existing aeromagnetic data along the margin of East Antarctica we evaluate the possibility of a distributed shear zone penetrating the East Antarctic continent, and identify critical remaining data gaps. Finally we question how extension within the WSRS could fit into the wider plate circuit. By integrating the two-stage model into Gplates reconstructions we identify regions of overlap and areas where tracers of past plate motion could be identified.

  20. Active Magmatic Underplating in Western Eger Rift, Central Europe (United States)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst


    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  1. Legitimizing differentiated flood protection levels

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo


    The European flood risk management plan is a new instrument introduced by the Floods Directive. It introduces a spatial turn and a scenario approach in flood risk management, ultimately leading to differentiated flood protection levels on a catchment basis. This challenges the traditional sources of

  2. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    International Nuclear Information System (INIS)

    Ulmer, G.C.; Grandstaff, D.E.


    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs

  3. Study of the subduction-related magmatism and of the continental erosion, by uranium-series: constraints on the processes and the timescale

    International Nuclear Information System (INIS)

    Dosseto, A.


    (The first part of this research thesis in geochemistry proposes an overview of knowledge and a description of the contribution of uranium-series to the magmatism in subduction zones. The second part addresses the continental erosion, and more particularly the alteration regimes and the dynamics of transfer of sediments constrained by uranium-series. Already published articles complete this report: U-Th-Pa-Ra study of the Kamchatka arc: new constraints on genesis of arc basalts; Dehydration and partial melting in subduction zones: constraints from U-series disequilibria; Timescale and conditions of chemical weathering under tropical climate: study of the Amazon basin with U-series; Timescale and conditions of chemical weathering in the Bolivian Andes and their fore-land basin

  4. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.


    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in north-central Anatolia include locally coherent ophiolite complexes (∼ 179 Ma and ∼ 80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 256.9 ± 8.0 Ma, 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma indicating northern Tethys during the late Paleozoic through Cretaceous, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (∼ 67-63 Ma). All but the arc rocks occur in a shale-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the middle to late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant large ion lithophile elements (LILE) enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syenodioritic plutons exhibit high-K shoshonitic to medium- to high-K calc-alkaline compositions with strong enrichment in LILE, rare earth elements (REE) and Pb, and initial ɛNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syenodioritic plutons) in the southern part. The late Permian, Early to Late Jurassic, and Late Cretaceous amphibole-epidote schist, epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the northern

  5. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.


    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with

  6. Petrography and geochemistry of magmatic units from the western cordillera of Ecuador (0 deg. 30'S): tectonic implications

    International Nuclear Information System (INIS)

    Cosma, L.; Mamberti, M.; Gabriele, P.; Desmet, A.


    The cost and western Cordillera of Ecuador are made of accreted oceanic terranes, separated from from the continental margin by a suture zone containing tectonic slices of mafic rocks. The western Cordillera contains three distinct magmatic units. Ultramafic and mafic cumulates from the suture zone (San Juan slice) represent likely the plutonic roots of oceanic plateau basalts. The mafic cumulates are LREE(depleted and Ta and Pb enriched (primitive mantle). Their Nd and Pb isotopic compositions suggest that they derived from an enriched OIB type mantle source. Pre-Coniacian arc-tholeiites present flat REE patterns, low Pb and Th contents, and high ξ Nd(T=100Ma) (+7.5 to + 7.9) which are indicative of their derivation from a mantle source. These arc-tholeiites developed likely in an intra-oceanic setting. The Eocene calc-alkaline lavas differ from the arc-tholeiites because they are LREE-enriched and have lower ξ Nd(T=50Ma) ratios. Their high Pb and Th contents are probably related to crustal assimilation during the magmas ascent. Their Pb isotopic compositions support involvement of subducted pelagic sediments in their genesis. These lavas represent likely the remnants of a continental calc-alkaline magmatic arc. The continental-arc setting of the Eocene lavas demonstrates that these volcanic rocks postdate the accretion of the western Cordillera, upon which they rest unconformably. Therefore, the accretion of the western Cordillera may have occurred in late Paleocene times, as for part of the oceanic terranes of coastal Ecuador. Nevertheless, the occurrence of a collisional event during late Santonian-early Campanian times is strongly suggested by: the arrival of detrital quartz on oceanic series of the western Cordillera by Campanian-Maastrichtian times, a regional unconformity locally dates early Campanian, the arc-jump observed on coastal Ecuador in Santonian times, and finally a thermal event recognised in the eastern Cordillera around 85-80 Ma. (authors)

  7. Flood-proof motors

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Marcus [AREVA NP GmbH, Erlangen (Germany)


    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  8. Floods and Mold Growth (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.


    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  10. Flood-proof motors

    International Nuclear Information System (INIS)

    Schmitt, Marcus


    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  11. Deep Basalt Aquifers in Orcus Patera, Elysium Basin Mars: Perspectives for Exobiology Exploration (United States)

    Grin, E. A.; Cabrol, N. A.


    Direct indicators of shorelines, spillways, and terraces allowed to determine the extent of the Elysium Paleolake between the contour-lines 1000 and 500 m below the Martian datum. The Elysium Paleolake is bordered north by Orcus Patera (14N/181W), which lies west of the Tartarus Montes and Tartarus Colles. The Orcus Patera displays an ellipse-shaped collapsed caldera of 360-km long and 100-km wide. Viking topographic data show that the bottom of the caldera is located at 2500 below the Martian datum, and surrounded by a steep-walled ram art which crest is located at about 0 m elevation. Considering the localization of Orcus Patera in the Elysium paleolake, its altimetry, and the magmatic origin of this caldera, we propose the existence of a paleolake in Orcus Patera generated (a) by juvenile water from magma during the Noachian period, and (b) by intermittent influx of the Elysium Basin from Hesperian to Amazonian. Results are encouraging to consider this site as a potential high-energy source environment for microbial communities. are circumscribed by a 50-km wide lava field mapped as Noachian material. The structure of Orcus Patera represents the record of material erupted from a magmatic reservoir. The caldera is enclosed by steep inner walls (25% measured from topographic data), values which could be in agreement with the presence of a deep magmatic reservoir, as suggested by the typology of Crumpler The depth of the caldera might be due to the collapse of the magma reservoir, and the release of gases accompanying the magma thermal evolution. Origins of water for the paleolake(s): The water that generated a paleolake in Orcus Patera may have come from two origins: (1) Juvenile water: Plescia and Crips estimated a magma H20 content by weight between 0.5% and 1.5% using for the first value a comparison with terrestrial basalt, and for the second values from a Martian meteorite. The amount of H20 can be estimated by the volume of erupted lava, and the lava

  12. Flood hazard assessment in areas prone to flash flooding (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela


    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  13. Implications of Zn/Fe ratios for the sources of Colorado Plateau basalts (United States)

    Rudzitis, S.; Reid, M. R.


    Early Miocene to recent mafic magmatism migrated across the Arizona Transition Zone towards the center of the stable Colorado Plateau at a rate of ~ 3-6 km/Myr (Roy et al., 2009). Present-day volcanic centers are close to a stepwise change in the thickness of the lithosphere between the Colorado Plateau and Basin and Range. Accordingly, volcanic migration might track progressive thinning of the lithosphere towards the center of the Colorado Plateau. This project aims to determine the conditions of melt generation across the transition zone in order to investigate the temporal/spatial correlation between volcanism and thinning of the Colorado Plateau lithosphere. Pressure and temperature estimates for Colorado Plateau basalts can be obtained from the Mg and Si contents of melts (Lee et al, 2009) but require melting of a peridotitic source. Eclogite and pyroxenite xenoliths reported in Colorado Plateau basalts show that melt sources could be olivine-poor. Zn/Fe ratios in melts can help to distinguish contributions from olivine-poor sources because they are sensitive to differences in bulk chemistry and to mineralogy (Le Roux et al., 2010). Specifically, Zn/Fe is not fractionated between melt, olivine, and orthopyroxene, but is highly fractionated when clinopyroxene and garnet are present. Our work to date has focused on laser ablation-IC-PMS analysis of individual olivine grains from high-Mg basalts (>8.0 wt. %) from the San Francisco and Mormon Mountain volcanic fields. Preliminary values of Zn/Fe ratios that represent the averages of multiple analyses of several grains in individual samples range from 7.9 to 9.3 (x10000). Variations of up to 1.7 (x10000) in the ratios exist between individual grains within samples and could be the result of co-crystallization of clinopyroxene with olivine. The lowest values in each sample should approach the Zn/Fe ratios of parental melts, and are, in turn, similar to MORB values and predicted peridotite melts. The results suggest

  14. CO{sub 2} mineral trapping: an experimental study on the carbonation of basalts from the eastern Deccan Volcanic Province, India

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Nishi; Pathak, Vamdev; Shrivastava, J.P. [Department of Geology, University of Delhi, Delhi 110007 (India)


    Rock specimens from Deccan flood basalts have been reacted in the laboratory under high pCO{sub 2} (5 and 10 bars), total pressure (vessel pressure between 10 and 20 bars), and temperature (100 and 200 deg. C) conditions for 50, 60, 70, and 80 hours. XRD and SEM-EDS analyses show that calcite, aragonite, siderite and magnesite, and clays are derived from the alteration of Deccan basalts under water-saturated, hydrothermal-like conditions. Alteration reactions were accompanied by significant variation in the pH of the reacting aqueous solution, dependent upon time, pCO{sub 2}, and temperature variables of the experiment. Neo-formed secondary products also include significant amounts of smectite, chlorite, and smectite/chlorite mixed layer clays. (authors)

  15. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls (United States)

    Escartin, Javier


    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  16. Olivine-hosted melt inclusions as an archive of redox heterogeneity in magmatic systems (United States)

    Hartley, Margaret E.; Shorttle, Oliver; Maclennan, John; Moussallam, Yves; Edmonds, Marie


    The redox state of volcanic products determines their leverage on the oxidation of Earth's oceans and atmosphere, providing a long-term feedback on oxygen accumulation at the planet's surface. An archive of redox conditions in volcanic plumbing systems from a magma's mantle source, through crustal storage, to eruption, is carried in pockets of melt trapped within crystals. While melt inclusions have long been exploited for their capacity to retain information on a magma's history, their permeability to fast-diffusing elements such as hydrogen is now well documented and their retention of initial oxygen fugacities (fO2) could be similarly diffusion-limited. To test this, we have measured Fe3+/ΣFe by micro-XANES spectroscopy in a suite of 65 olivine-hosted melt inclusions and 9 matrix glasses from the AD 1783 Laki eruption, Iceland. This eruption experienced pre-eruptive mixing of chemically diverse magmas, syn-eruptive degassing at the vent, and post-eruptive degassing during lava flow up to 60 km over land, providing an ideal test of whether changes in the fO2 of a magma may be communicated through to its cargo of crystal-hosted melt inclusions. Melt inclusions from rapidly quenched tephra samples have Fe3+/ΣFe of 0.206 ± 0.008 (ΔQFM of +0.7 ± 0.1), with no correlation between their fO2 and degree of trace element enrichment or differentiation. These inclusions preserve the redox conditions of the mixed pre-eruptive Laki magma. When corrected for fractional crystallisation to 10 wt.% MgO, these inclusions record a parental magma [Fe3+/ΣFe](10) of 0.18 (ΔQFM of +0.4), significantly more oxidised than the Fe3+/ΣFe of 0.10 that is often assumed for Icelandic basalt magmas. Melt inclusions from quenched lava selvages are more reduced than those from the tephra, having Fe3+/ΣFe between 0.133 and 0.177 (ΔQFM from -0.4 to +0.4). These inclusions have approached equilibrium with their carrier lava, which has been reduced by sulfur degassing. The progressive re

  17. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.


    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  18. Quantifying the Effects of Spatial Uncertainty in Fracture Permeability on CO2 Leakage through Columbia River Basalt Flow Interiors (United States)

    Gierzynski, A.; Pollyea, R.


    Recent studies suggest that continental flood basalts may be suitable for geologic carbon sequestration, due to fluid-rock reactions that mineralize injected CO2 on relatively short time-scales. Flood basalts also possess a morphological structure conducive to injection, with alternating high-permeability (flow margin) and low-permeability (flow interior) layers. However, little information exists on the behavior of CO2 migration within field-scale fracture networks, particularly within flow interiors and at conditions near the critical point for CO2. In this study, numerical simulation is used to investigate the influence of fracture permeability uncertainty during gravity-driven CO2 migration within a jointed basalt flow interior as CO2 undergoes phase change from supercritical fluid to a subcritical phase. The model domain comprises a 2D fracture network mapped with terrestrial LiDAR scans of Columbia River Basalt acquired near Starbuck, WA. The model domain is 5 m × 5 m with bimodal heterogeneity (fracture and matrix), and initial conditions corresponding to a hydrostatic pressure gradient between 750 and 755 m depth. Under these conditions, the critical point for CO2 occurs 1.5 m above the bottom of the domain. For this model scenario, CO2 enters the base of the fracture network at 0.5 MPa overpressure, and matrix permeability is assumed constant. Fracture permeability follows a lognormal distribution on the basis of fracture aperture values from literature. In order to account for spatial uncertainty, the lognormal fracture permeability distribution is randomly located in the model domain and CO2 migration is simulated within the same fracture network for 50 equally probable realizations. Model results suggest that fracture connectivity, which is independent of permeability distribution, governs the path taken by buoyant CO2 as it rises through the flow interior; however, the permeability distribution strongly governs the CO2 flux magnitude. In particular

  19. Structure and tectonics of western continental margin of India: Implication for geologic hazards

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.; Ajay, K.K.

    characteristics of Western Continental Margin of India (WCMI) are closely related to the tectonic history of the Indian subcontinent, its break up during continental rifting, magmatic and sedimentary history, northward movement of India and finally collision... Continental Flood Basalt (DCFB) province on the western and central Indian (Duncan. 1990) as well as continental flood basalt on the Praslin Island in the Seychelles microcontinent (Devey and Stephens, 1991). The DCFB is the largest known continental flood...

  20. The 2012-2014 eruptive cycle of Copahue Volcano, Southern Andes. Magmatic-Hydrothermal system interaction and manifestations. (United States)

    Morales, Sergio; Alarcón, Alex; Basualto, Daniel; Bengoa, Cintia; Bertín, Daniel; Cardona, Carlos; Córdova, Maria; Franco, Luis; Gil, Fernando; Hernandez, Erasmo; Lara, Luis; Lazo, Jonathan; Mardones, Cristian; Medina, Roxana; Peña, Paola; Quijada, Jonathan; San Martín, Juan; Valderrama, Oscar


    Copahue Volcano (COPV), in Southern Andes of Chile, is an andesitic-basaltic stratovolcano, which is located on the western margin of Caviahue Caldera. The COPV have a NE-trending fissure with 9 aligned vents, being El Agrio the main currently active vent, with ca. 400 m in diameter. The COPV is placed into an extensive hydrothermal system which has modulated its recent 2012-2014 eruptive activity, with small phreatic to phreatomagmatic eruptions and isolated weak strombolian episodes and formation of crater lakes inside the main crater. Since 2012, the Southern Andes Volcano Observatory (OVDAS) carried out the real-time monitoring with seismic broadband stations, GPS, infrasound sensors and webcams. In this work, we report pre, sin, and post-eruptive seismic activity of the last two main eruptions (Dec, 2012 and Oct, 2014) both with different seismic precursors and superficial activity, showing the second one a particularly appearance of seismic quiescence episodes preceding explosive activity, as an indicator of interaction between magmatic-hydrothermal systems. The first episode, in late 2012, was characterized by a low frequency (0.3-0.4 Hz and 1.0-1.5 Hz) continuous tremor which increased gradually from background noise level amplitude to values of reduced displacement (DR), close to 50 cm2 at the peak of the eruption, reaching an eruptive column of ~1.5 km height. After few months of recording low energy seismicity, a sequence of low frequency, repetitive and low energy seismic events arose, with a frequency of occurrence up to 300 events/hour. Also, the VLP earthquakes were added to the record probably associated with magma intrusion into a deep magmatic chamber during all stages of eruptive process, joined to the record of VT seismicity during the same period, which is located throughout the Caviahue Caldera area. Both kind of seismic patterns were again recorded in October 2014, being the precursor of the new eruptive cycle at this time as well as the

  1. Glacial modulation of mid-ocean ridge magmatism and anomalous Pacific Antarctic Ridge volcanism during Termination II (United States)

    Asimow, P. D.; Lewis, M.; Lund, D. C.; Seeley, E.; McCart, S.; Mudahy, A.


    Glacially-driven sea level rise and fall may modulate submarine volcanism by superposing pressure changes on the tectonic decompression that causes melt production in the mantle below mid-ocean ridges. A number of recent studies have considered whether this effect is recorded in the periodicity of ridge flank bathymetry (Tolstoy, 2015; Crowley et al., 2015) but interpretation of the bathymetric data remains controversial (Goff, 2016; Olive et al., 2016). We have pursued an independent approach using hydrothermal metals in well-dated near-ridge sediment cores. Along the full length of the East Pacific Rise, in areas of the ocean with widely variable biologic productivity, there are large and consistent rises in Fe, Mn, and As concentrations during the last two glacial terminations. We interpret these cores as records of excess hydrothermal flux due to delayed delivery to the axis of excess melt generated by the preceding falls in sea level. Here we discuss the potentially related discovery, in a core near the Pacific Antarctic Ridge (PAR), of a 10 cm thick layer of basaltic ash shards up to 250 mm in size, coincident with the penultimate deglaciation (Termination II). Although the site was 8 km off-axis at the time, the glasses have major element, volatile, and trace element composition consistent with more evolved members of the axial MORB suite from the nearby ridge axis. Their morphologies are typical of pyroclastic deposits created by explosive submarine volcanism (Clague et al., 2009). We propose that a period of low magmatic flux following a sea-level rise caused cooling of crustal magmatic systems, more advanced fractionation in the axial magma chamber, and increases in viscosity and volatile concentration. We hypothesize subsequent arrival of high magmatic flux during Termination II then reactivated the system and triggered an unusually vigorous series of explosive eruptions along this segment of the PAR. Ash layers recording large eruptions such as this one

  2. Diffusion of hydrous species in model basaltic melt (United States)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei


    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  3. Stratigraphy of Oceanus Procellarum basalts - Sources and styles of emplacement (United States)

    Whitford-Stark, J. L.; Head, J. W., III


    The basaltic fill of Oceanus Procellarum has been formally subdivided into four lithostratigraphic formations: The Repsold Formation, the Telemann Formation, the Hermann Formation, and the Sharp Formation. The Repsold Formation is composed of high-Ti basalts and pyroclastic deposits with an estimated age of 3.75 + or - 0.05 b.y. and an estimated volume of about 2.1 x 10 to the 5th cu km. This is overlain by the Telemann Formation composed of very low-Ti basalts and pyroclastic deposits with an estimated age of 3.6 + or - 0.2 b.y. and a volume of 4.2 x 10 to the 5th cu km. The Hermann Formation, composed of intermediate basalts with an estimated age of 3.3 + or - 0.3 b.y., represents the next youngest unit with an estimated volume of 2.2 x 10 to the 5th cu km. The youngest materials in Procellarum are the medium-to-high-Ti basalts comprising the Sharp Formation with an estimated age of 2.7 + or - 0.7 b.y. and a volume of 1.8 x 10 to the 4th cu km.

  4. Similar microbial communities found on two distant seafloor basalts

    Directory of Open Access Journals (Sweden)

    Esther eSinger


    Full Text Available The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR (9˚N. Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  5. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars (United States)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.


    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  6. Devonian to Early Carboniferous magmatic alkaline activity in the Tafilalt Province, Eastearn Morocco: An Eovariscan episode in the Gondwana margin, north of the West African Craton (United States)

    Pouclet, André; El Hadi, Hassan; Bardintzeff, Jacques-Marie; Benharref, Mohammed; Fekkak, Abdelilah


    To the eastern edge of the Moroccan Anti-Atlas, the Tafilalt Province is the repository of a Lower Palaeozoic platform and basin sedimentation constrained by a W-E and NW-SE fault network. During the mid-late Devonian, an extensional tectonic activity, demonstrated by sharp changes in sediment thickness and development of syn-sedimentary faults, was contemporaneous with a significant magmatic activity. A great number of doleritic dykes, sills, and laccoliths intruded sedimentary Silurian to Lower Visean strata. The intrusions were linked to sub-water volcanic activities with spilitic lava flows and pyroclastites during two main pulses in the Famennian-Tournaisian and in the Early Visean. The rocks consist of basaltic dolerites, lamprophyric dolerites and analcite-bearing camptonites, sharing a sodic alkaline magma composition. The magma derived from low partial melting degree of the metasome layer of the lithospheric subcontinental mantle, below the spinel-garnet transition zone. This Tafilalt tectono-magmatic activity was coeval with the Eovariscan phase in the Moroccan Meseta, which was responsible for the opening of Western Meseta basins and their transitional to alkaline volcanic activities in the Late Devonian to Early Carboniferous time.

  7. Permanent groundwater storage in basaltic dyke fractures and termite mound viability (United States)

    Mège, Daniel; Rango, Tewodros


    Many basaltic dykes of the Ethiopian flood basalt province are observed in the northwestern Ethiopian lowlands. In this area, the termites preferentially build their epigeous mounds on the top of dolerite dykes. The relationship between termite mounds and dykes is investigated from the analysis of their distribution along one of these dykes, of thickness 2-5 m, that we could follow over 2000 m. Termite mounds are periodically spaced (mean distance 63 m, R2 = 0.995), and located exclusively where the topographic relief of the dyke is not more than 2 m above the surrounding area. From these observations and from the geological context, a hydrological circuit model is proposed in which (1) dykes are preferential conduits for groundwater drainage during the rainy season due to pervasive jointing, (2) during the dry season, the portion of the dyke forming a local topographic relief area dries up more quickly than the surroundings, the elevation difference between the dyke summit and the surroundings being a factor restricting termite mound development. For dyke topographic relief >2 m, drying is an obstacle for maintaining the appropriate humidity for the termite colony life. Periodic termite mound spacing is unlikely to be related to dyke or other geological properties. It is more likely related to termite population behaviour, perhaps to clay shortage, which restricts termite population growth by limiting the quantity of building material available for mound extension, and triggers exploration for a new colonization site that will be located along the dyke at a distance from the former colony that may be controlled by the extent of the zone covered by its trail pheromones. This work brings out the importance of dykes in channelling and storing groundwater in semiarid regions, and shows that dykes can store groundwater permanently in such settings even though the dry season is half the year long. It contributes also to shedding light on water supply conditions

  8. Mitigating flood exposure (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval


    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  9. Lithofacies characteristics of diatreme deposits: Examples from a basaltic volcanic field of SW Sardinia (Italy) (United States)

    Mundula, F.; Cioni, R.; Funedda, A.; Leone, F.


    suggest that the outcropping portion of these volcanic bodies represents the lower diatreme zone. The presence of diffuse welding and the globular shapes of some juvenile fragments, together with their vesicularity, suggest that magma fragmentation was mainly driven by magmatic gas exsolution occurring at a deeper level respect to classical, basaltic explosive activity. Textural features, facies association and facies architecture of the studied deposits are suggestive of an important affinity with kimberlitic and other ultramafic diatremes.

  10. Magmatic gases in fluid inclusions from hydrothermal ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Graney, J.; Kesler, S. (University of Michigan, MI (United States))


    In this study, magmatic gases in fluid inclusions from hydrothermal ore deposits have been analyzed. The gas composition of fluid inclusions from a wide range of extinct hydrothermal systems as represented by different ore deposit types was determined using a quadrupole mass spectrometer. Most samples used for analysis consisted of transparent quartz, although barite, jasperoid, opal, sphalerite, pyrite, chalcopyrite, and bornite were also analyzed. H2O was the dominant volatile component in fluid inclusions, and composed 95-99 mole percent of the inclusion fluid. CO2 comprised most of the remaining volatile component and the other gases were generally present in amounts smaller than 0.1 mole percent. Analysis from porphyry and acid-sulfate deposits, in which magmatic gas contributions are considered to be largest, plotted closest to the fumarolic gas compositions. These inclusion fluid volatile component comparisons have shown that there are systematic differences in inclusion fluids from different hydrothermal systems. 9 refs., 3 figs.

  11. Magmatic formations in the Okhotsk--Chukotka volcanogenic belt

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, A.P.


    The relationship between the Okhotsk-Chukotka volcanogenic belt of Northeast USSR and the stage of evolution of magnetism and tectonic development of the region are examined. Recognizing the associations of effusive and intrusive rocks that are typical of the southern part of the volcanogenic belt and that are joined together by some characteristic features, a basic plan is presented for examination of the problem of magnetic formations. On the basis of the distinctive characteristics of epigeosynclinal tectonic development of the territory and the sequence of formation of the magmatic rocks within it, three main groups: volcanic, coleanoplutonic, and plutonic, can be distinguished; and a general scheme of development of these types in space and time within the volcanogenic belt can be developed. According to this scheme, four main stages can be recognized in the Mesozoic and Cenozoic magmatic evolution of the Okhotsk-Chukotka belt. This scheme of classification takes into consideration the factor of the structural development of this tectonomagmatic element.

  12. Application of Flood Nomograph for Flood Forecasting in Urban Areas

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee


    Full Text Available Imperviousness has increased due to urbanization, as has the frequency of extreme rainfall events by climate change. Various countermeasures, such as structural and nonstructural measures, are required to prepare for these effects. Flood forecasting is a representative nonstructural measure. Flood forecasting techniques have been developed for the prevention of repetitive flood damage in urban areas. It is difficult to apply some flood forecasting techniques using training processes because training needs to be applied at every usage. The other flood forecasting techniques that use rainfall data predicted by radar are not appropriate for small areas, such as single drainage basins. In this study, a new flood forecasting technique is suggested to reduce flood damage in urban areas. The flood nomograph consists of the first flooding nodes in rainfall runoff simulations with synthetic rainfall data at each duration. When selecting the first flooding node, the initial amount of synthetic rainfall is 1 mm, which increases in 1 mm increments until flooding occurs. The advantage of this flood forecasting technique is its simple application using real-time rainfall data. This technique can be used to prepare a preemptive response in the process of urban flood management.

  13. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hrubcová, Pavla; Geissler, W.H.; Bräuer, K.; Vavryčuk, Václav; Tomek, Č.; Kämpf, H.


    Roč. 36, č. 12 (2017), s. 2846-2862 ISSN 0278-7407 R&D Projects: GA ČR GA17-19297S; GA ČR GC16-19751J Institutional support: RVO:67985530 Keywords : active intraplate magmatic underplating * mantle-derived fluids * high-velocity lower crust * reflection-free magma body Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 3.784, year: 2016

  14. The Magmatic Plumbing System of the Campi Flegrei Caldera. (United States)

    Lucia, C.; Ilenia, A.; Massimo, D.; Valeria, D.; Mauro, D.; Giovanni, O.


    The Campi Flegrei caldera is a nested and resurgent structure generated by at least two major collapses. Large sectors of the structural boundary of both calderas resulted from partial reactivation of pre-existing faults generated by regional tectonism. Its magmatic system is still active with the last eruption occurring in 1538 A.D. (Monte Nuovo), widespread fumaroles and hot springs activity, and the unrest episodes in the last 35 years, with a maximum net uplift of about 3.5 m in the Pozzuoli area. The definition of the history of the magmatic feeding system of this caldera, in terms of composition, time- scale and depth of crystallization, relation between composition of the erupted magma and structural position of the vent, and magma chamber processes, is of extreme importance for a better understanding of the dynamic conditions of the present day magma chamber and for evaluating of the extent to which the behavior of the magmatic system can be predicted. The Campi Flegrei caldera magmatic plumbing system is characterized by deep and shallow reservoirs. Campi Flegrei magmas originated in a subduction modified mantle source, stagnate at mid crustal level (20- 10 km depth), where they differentiated and are contaminated with the continental crust. From the "deep reservoir" shoshonitic to latitic magmas rise towards the surface along the NE aligned regional fault reactivated during the caldera collapse, whereas trachytic magmas rise mostly along faults and fractures bordering the resurgent block and the southern part of the Campi Flegrei caldera. Repeated arrival of trachytic to phonolitic magmas form shallow reservoirs at 4-3 km depth, in which differentiation and mixing processes occur before and during the eruption.

  15. Failed magmatic eruptions: Late-stage cessation of magma ascent (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.


    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  16. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China (United States)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei


    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  17. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj


    compositions at different eruption or replenishment rates. Intermediate rocks, including high-K, high-Mg basalts, are formed by mixing of the evolved and primitive magmas. Evolution of Tolbachik magmas is associated with large fractionation between incompatible trace elements (e.g., Rb/Ba, La/Nb, Ba/Th) and is strongly controlled by the relative difference in partitioning between crystal and liquid phases. The Tolbachik volcanic field shows that open-system scenarios provide more plausible and precise descriptions of long-lived arc magmatic systems than simpler, but often geologically unrealistic, closed-system models.

  18. Surface Deformation During a Magmatic Intrusion: the Example of the Dabba'hu Rift Crisis of 2005-2006 (Afar, Ethiopia) (United States)

    Grandin, R.; Socquet, A.; Binet, R.; Jacques, E.; Klinger, Y.; de Chabalier, J.; King, G.; Tait, S.; Tapponnier, P.; Delorme, A.; Elissalde, C.


    In September 2005, a magmato-tectonic episode initiated in Western Afar (Ethiopia) when a swarm of moderate magnitude earthquakes (Mpre-crisis aerial photographs and post-crisis high-resolution Quickbird images, combined with SAR coherence images, we are able to map the structures that were reactivated during the crisis, and show extensive evidence of newly exposed fractures in recent basalts. The motion on a large number of en echelon faults and fissures could be observed with much greater detail than during the main rifting event. Using a DEM of the area, generated using SPOT images, the relation between faulting and rift morphology is addressed. Concentric subsidence and/or uplift occurred at various stages of the crisis on distinct volcanic edifices, pointing to a complex scenario for the possible connection between shallow and deep magmatic chambers. The estimated extension rate of 15 mm/year across the plate boundary [Vigny et al., 2006] yields a recurrence time of the order of 500 years for events of this magnitude. Surprisingly, despite the large volume of magma intruded during the September 2005 event (~ 15 km2), no basalt flows were observed.

  19. Crowdsourcing detailed flood data (United States)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad


    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  20. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Melting model of Hawaiian plume (United States)

    Takahashi, E.; Gao, S.


    Eclogite component entrained in ascending plume is considered to be essentially important in producing flood basalts (e.g., Columbia River basalt, Takahashi et al., 1998 EPSL), alkalic OIBs (e.g., Kogiso et al.,2003), ferro-picrites (Tuff et al.,2005) and Hawaiian shield lavas (e.g., Hauri, 1996; Takahashi & Nakajima, 2002, Sobolev et al.,2005). Size of the entrained eclogite, which controls the reaction rates with ambient peridotite, however, is very difficult to constrain using geophysical observation. Among Hawaiian shield volcanoes, Koolau is the most enriched end-member in eclogite component (Frey et al, 1994). Reconstruction of Koolau volcano based on submarine study on Nuuanu landslide (AGU Monograph vol.128, 2002, Takahashi Garcia Lipman eds.) revealed that silica-rich tholeiite appeared only at the last stage (Makapuu stage) of Koolau volcano. Chemical compositions of lavas as well as isotopes change abruptly and coherently across a horizon (Shinozaki et al. and Tanaka et al. ibid.). Based on these observation, Takahashi & Nakajima (2002 ibid) proposed that the Makapuu stage lava in Koolau volcano was supplied from a single large eclogite block. In order to study melting process in Hawaiian plume, high-pressure melting experiments were carried out under dry and hydrous conditions with layered eclogite/peridotite starting materials. Detail of our experiments will be given by Gao et al (2015 AGU). Combined previous field observation with new set of experiments, we propose that variation in SiO2 among Hawaiian tholeiites represent varying degree of wall-rock interaction between eclogite and ambient peridotite. Makapuu stage lavas in Koolau volcano represents eclogite partial melts formed at ~3 GPa with various amount of xenocrystic olivines derived from Pacific plate. In other words, we propose that "primary magma" in the melting column of Hawaiian plume ranges from basaltic andesite to ferro-picrite depending on the lithology of the source. Solidus of

  1. Corrosion phase formation on container alloys in basalt repository environments

    International Nuclear Information System (INIS)

    Johnston, R.G.; Anantatmula, R.P.; Lutton, J.M.; Rivera, C.L.


    The Basalt Waste Isolation Project is evaluating the suitability of basalt in southeastern Washington State as a possible location for a nuclear waste repository. The performance of the waste package, which includes the waste form, container, and surrounding packing material, will be affected by the stability of container alloys in the repository environment. Primary corrosion phases and altered packing material containing metals leached from the container may also influence subsequent reactions between the waste form and repository environment. Copper- and iron-based alloys were tested at 50 0 to 300 0 C in an air/steam environment and in pressure vessels in ground-water-saturated basalt-bentonite packing material. Reaction phases formed on the alloys were identified and corrosion rates were measured. Changes in adhering packing material were also evaluated. The observed reactions and their possible effects on container alloy durability in the repository are discussed

  2. Regional basalt hydrology of the Columbia Plateau in Washington

    International Nuclear Information System (INIS)

    Tanaka, H.; Barrett, G.; Wildrick, L.


    This study is part of the Basalt Waste Isolation Project, operated for the US Department of Energy by Rockwell Hanford Operations. The overall purpose of the study is to assess locations within the Columbia River Basalt Group beneath the Hanford Site in south-central Washington suitable for a geologic repository for radioactive waste. This hydrologic study was made to describe the hydrologic characteristics of the basalt units of the Columbia Plateau. This was done by comprehensive data compilation, data interpretation and analysis. Data are presented in the form of maps and tables suitable as input information about the regional hydrology for possible future analysis by computer models. The report includes: an introduction; basic data; interpretation which covers stratigraphic trend surface, water levels, transmissivity and storage of aquifers, recharge, discharge, flow, subbasins, cross sections, references and appendix of record of wells

  3. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties

    International Nuclear Information System (INIS)

    Carmisciano, Salvatore; Rosa, Igor Maria De; Sarasini, Fabrizio; Tamburrano, Alessio; Valente, Marco


    A preliminary comparative study of basalt and E-glass woven fabric reinforced composites was performed. The fabrics were characterized by the same weave pattern and the laminates tested by the same fiber volume fraction. Results of the flexural and interlaminar characterization are reported. Basalt fiber composites showed higher flexural modulus and apparent interlaminar shear strength (ILSS) in comparison with E-glass ones but also a lower flexural strength and similar electrical properties. With this fiber volume fraction, scanning electron microscopy (SEM) analysis of the fractured surfaces enabled a better understanding both of the failure modes involved and of points of concern. Nevertheless, the results of this study seem promising in view of a full exploitation of basalt fibers as reinforcement in polymer matrix composites (PMCs).

  4. Corrosion and tribological properties of basalt fiber reinforced composite materials (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho


    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  5. Floods in Colorado (United States)

    Follansbee, Robert; Sawyer, Leon R.


    The first records of floods in Colorado antedated the settlement of the State by about 30 years. These were records of floods on the Arkansas and Republican Rivers in 1826. Other floods noted by traders, hunters and emigrants, some of whom were on their way to the Far West, occurred in 1844 on the Arkansas River, and by inference on the South Platte River. Other early floods were those on the Purgatoire, the Lower Arkansas, and the San Juan Rivers about 1859. The most serious flood since settlement began was that on the Arkansas River during June 1921, which caused the loss of about 100 lives and an estimated property loss of $19,000,000. Many floods of lesser magnitude have occurred, and some of these have caused loss of life and very considerable property damage. Topography is the chief factor in determining the location of storms and resulting floods. These occur most frequently on the eastern slope of the Front Range. In the mountains farther west precipitation is insufficient to cause floods except during periods of melting snow, in June. In the southwestern part of the State, where precipitation during periods of melting snow is insufficient to cause floods, the severest floods yet experienced resulted from heavy rains in September 1909 and October 1911. In the eastern foothills region, usually below an altitude of about 7,500 feet and extending for a distance of about 50 miles east of the mountains, is a zone subject to rainfalls of great intensity known as cloudbursts. These cloudbursts are of short duration and are confined to very small areas. At times the intensity is so great as to make breathing difficult for those exposed to a storm. The areas of intense rainfall are so small that Weather Bureau precipitation stations have not been located in them. Local residents, being cloudburst conscious, frequently measure the rainfall in receptacles in their yards, and such records constitute the only source of information regarding the intensity. A flood

  6. Geochemical Consequences of Lithospheric Delamination in the Eastern Mediterranean: Evidence From Young Turkish Basalts (United States)

    Furman, T.; Kurkcuoglu, B.; Plummer, C.


    Magmatism associated with continental collision is increasingly attributed to major disturbance of or within the lithosphere. Geochemical and isotopic data on post-collisional primitive mafic lavas from across the Anatolian plate enable us to assess the effects of lithospheric delamination (slab rollback and breakoff) as indicated by geophysical studies. The Anatolian province displays geodynamically complex manifestations of the closure of neo-Tethys and the collision between Africa and Europe that commenced circa 30 Ma. The current south- southwestward motion of Anatolia, a.k.a. "Turkish escape", is accommodated by slab rollback along the Hellenic trench and orogenic collapse along both the eastern and western margins of the microplate. Volcanism occurs primarily along the fault zones that border and cross-cut Anatolia, and major element characteristics of the lavas vary with both space and time. In Western Anatolia, early Miocene collisional calc- alkaline magmatism was followed by Quaternary alkaline volcanism (Alici et al. 1998, 2002; Aldanmaz et al. 2000, 2006) related to orogenic collapse, presumably resulting from slab rollback. Orogenic collapse in Eastern Anatolia is facilitated by slab breakoff as determined by geophysical studies (Zor et al. 2003; Angus et al. 2006; Lei & Zhao 2007). This transition was accompanied a change from mid-Miocene calc-alkaline to Quaternary alkaline volcanism (e.g., Yilmaz 1990; Pearce et al. 1990). Central Anatolia displays calc-alkaline and tholeiitic volcanism, including alkali olivine basalts; plate tectonic reconstructions (Lyberis et al. 1992) indicate that the African slab did not reach Central Anatolia. Sr-Nd isotope values from each volcanic province define linear arrays that converge upon a common unradiogenic value typical of global depleted mantle. We suggest that mafic volcanism throughout Anatolia is supported by a common asthenospheric component, modified by identifiable, location-specific additions. In areas

  7. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.


    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/l Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to 10 -6 mol/l and 8 x 10 -7 mol/l under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 references, 6 figures

  8. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.; Florida State Univ., Tallahassee)


    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/L Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to approx. 10 -6 mol/L and 8 x 10 -7 mol/L under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 refs., 6 tabs

  9. Basalt fiber reinforced polymer composites: Processing and properties (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  10. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project. (United States)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.


    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work

  11. Distribution and stratigraphy of basaltic units in Maria Tranquillitatis and Fecunditatis: A Clementine perspective (United States)

    Rajmon, D.; Spudis, P.


    Maria Tranquillitatis and Fecunditatis have been mapped based on Clementine image mosaics and derived iron and titanium maps. Impact craters served as stratigraphic probes enabling better delineation of compositionally different basaltic units, determining the distribution of subsurface basalts, and providing estimates of total basalt thickness and the thickness of the surface units. Collected data indicate that volcanism in these maria started with the eruption of low-Ti basalts and evolved toward medium- and high-Ti basalts. Some of the high-Ti basalts in Mare Tranquillitatis began erupting early and were contemporaneous with the low- and medium-Ti basalts; these units form the oldest units exposed on the mare surface. Mare Tranquillitatis is mostly covered with high- Ti basalts. In Mare Fecunditatis, the volume of erupting basalts clearly decreased as the Ti content increased, and the high-Ti basalts occur as a few patches on the mare surface. The basalt in both maria is on the order of several hundred meters thick and locally may be as thick as 1600 m. The new basalt thickness estimates generally fall within the range set by earlier studies, although locally differ. The medium- to high-Ti basalts exposed at the surfaces of both maria are meters to tens of meters thick.

  12. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.


    Hydrothermal waste package interaction tests were conducted with a mixture of crushed glass, basalt, and steel in methane-containing synthetic basalt groundwater. In the absence of gamma radiolysis, methane was found to have little influence on the corrosion behavior of the waste package constituents. Under gamma radiolysis, methane was found to significantly lower the solution oxidation potential when compared to identical tests without methane. In addition, colloidal hydrocarbon polymers that have been produced under the irradiation conditions of these experiments were not formed. The presence of the waste package constituents apparently inhibited the formation of the polymers. However, the mechanism which prevented their formation was not determined

  13. Friction Joint Between Basalt-Reinforced Composite and Aluminum

    DEFF Research Database (Denmark)

    Costache, Andrei; Glejbøl, Kristian; Sivebæk, Ion Marius


    The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing the frictio......The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing...

  14. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.


    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  15. Semi-adakitic magmatism of the Satkatbong diorite, South Korea: Geochemical implications for post-adakitic magmatism in southeastern Eurasia (United States)

    Lim, Hoseong; Woo, Hyeon Dong; Myeong, Bora; Park, Jongkyu; Jang, Yun-Deuk


    The Satkatbong diorite (190 Ma) and the older Yeongdeok granite (250 Ma) in the Yeongnam massif, which is part of the southeastern margin of the Eurasian plate, are affected by a subduction system that is associated with the Izanagi and Farallon plates. The Satkatbong diorite is characterized by its abundant mafic magmatic enclaves (MMEs), mantle affinity, and intermediate adakitic Sr/Y vs. Y signature, whereas the Yeongdeok granite is distinctly adakitic and felsic and contains few MMEs. These differences in adakitic features might be due to differences in the lithospheric mantle material and/or different mafic MME sources. The results of rare earth element (REE) analyses and newly proposed Sr/La modeling in this study indicate that these two plutons were both generated by slab-mantle mixing and continental assimilation, whereas the Satkatbong diorite was additionally affected by the injection of a mafic source of MMEs, which "diluted" its adakitic chemistry. The young and hot subducting ridge passing toward the northeast due to the oblique subduction of the Izanagi and Farallon plates during the Early Mesozoic could have given rise to slab melting and asthenospheric influence through slab melting regions and a slab window, respectively. This implies that the adakitic Yeongdeok granite produced by slab melting and then the semi-adakitic Satkatbong diorite produced by asthenospheric influence, including other similar adakitic to semi-adakitic magmatism, might have occurred along the areas affected by ridge subduction. We suggest that this sequential magmatism would be applicable for many continental arcs which experienced ridge subduction being one of the mechanisms of adakite to semi-adakite magmatism.

  16. Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars. (United States)

    Hausrath, Elisabeth M; Tschauner, Oliver


    Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet.

  17. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei


    The Na-rich intermediate-to-felsic granitic rocks provide insights into the generation of magmas in subduction zones. This paper presents zircon LA-ICP-MS U-Pb ages as well as whole-rock geochemical, mineral chemical, and in situ zircon Hf isotopic data on Na-rich granitic rocks from the Tengchong Block, SW China. The granodiorites and associated mafic magmatic enclaves (MMEs) from the Menglian batholith yield zircon U-Pb ages of 116.1 ± 0.8 to 117.8 ± 0.6 Ma and 117.7 ± 0.7 Ma, respectively. Both host granodiorites and enclaves show calc-alkaline and sodium-rich nature, enrichment in large-ion lithophile elements (LILEs), and variable depletion in zircon Hf isotopic compositions. Euhedral amphiboles in both granodiorites and associated enclaves are magnesian-hornblende with high Mg and Ca and contain euhedral plagioclase inclusions of labradorite to andesine (An36-57) composition. The granodiorite was most likely derived through the mixing of partial melts derived from juvenile basaltic lower crust and a minor evolved component of ancient crustal sources. The quartz monzodiorite-granodiorites and associated MMEs from the Xiaotang-Mangdong batholith yield zircon U-Pb ages of 120.3 ± 1.3 to 122.6 ± 0.8 Ma and 120.7 ± 1.5 Ma. These rocks are also sodium-rich and show calc-alkaline trend with negative zircon Hf isotopic compositions (- 5.55 to + 0.58). The MMEs in the host intrusions are monzogabbro with variable and depleted zircon Hf isotopic compositions. The amphiboles in the both host intrusions and the enclaves show Al-rich ferro-tschermakite composition. We infer that the quartz monzodiorite-granodiorites were derived from magmas generated by the melting of ancient basaltic rocks in the lower arc crust induced by the underplating of mantle-derived mafic magmas. The formation of the different types of Na-rich granitic rocks is correlated to the subduction of Bangong-Nujiang Tethyan ocean. A comparison with magmatism in the northern magmatic belt suggests

  18. Impact of Magmatism on the Geodynamic Evolution of Southern Georgia on the Example of the Lesser Caucasus Artvin-Bolnisi Block. (United States)

    Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio


    The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit

  19. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen


    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from

  20. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen


    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, creates a growing need for accurate and timely flood maps. This research focussed on creating flood maps using user generated content from Twitter. Twitter data has

  1. Mapping flood hazards under uncertainty through probabilistic flood inundation maps (United States)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.


    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  2. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.


    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  3. Exploitation of Documented Historical Floods for Achieving Better Flood Defense

    Directory of Open Access Journals (Sweden)

    Slobodan Kolaković


    Full Text Available Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach, involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods has been exploited in this study. The short presentation of the catchment of the Tisza River in this paper is followed by the overview of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of different extreme flood scenarios and to establish the Base Flood Elevation. The calibration has shown that the coefficient of friction in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the expected maximum water levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again. The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.

  4. Improving Global Flood Forecasting using Satellite Detected Flood Extent

    NARCIS (Netherlands)

    Revilla Romero, B.


    Flooding is a natural global phenomenon but in many cases is exacerbated by human activity. Although flooding generally affects humans in a negative way, bringing death, suffering, and economic impacts, it also has potentially beneficial effects. Early flood warning and forecasting systems, as well

  5. Bed-material entrainment potential, Roaring Fork River at Basalt, Colorado (United States)

    Elliott, John G.


    The Roaring Fork River at Basalt, Colorado, has a frequently mobile streambed composed of gravel, cobbles, and boulders. Recent urban and highway development on the flood plain, earlier attempts to realign and confine the channel, and flow obstructions such as bridge openings and piers have altered the hydrology, hydraulics, sediment transport, and sediment deposition areas of the Roaring Fork. Entrainment and deposition of coarse sediment on the streambed and in large alluvial bars have reduced the flood-conveying capacity of the river. Previous engineering studies have identified flood-prone areas and hazards related to inundation and high streamflow velocity, but those studies have not evaluated the potential response of the channel to discharges that entrain the coarse streambed. This study builds upon the results of earlier flood studies and identifies some potential areas of concern associated with bed-material entrainment. Cross-section surveys and simulated water-surface elevations from a previously run HEC?RAS model were used to calculate the boundary shear stress on the mean streambed, in the thalweg, and on the tops of adjacent alluvial bars for four reference streamflows. Sediment-size characteristics were determined for surficial material on the streambed, on large alluvial bars, and on a streambank. The median particle size (d50) for the streambed samples was 165 millimeters and for the alluvial bars and bank samples was 107 millimeters. Shear stresses generated by the 10-, 50-, and 100-year floods, and by a more common flow that just inundated most of the alluvial bars in the study reach were calculated at 14 of the cross sections used in the Roaring Fork River HEC?RAS model. The Shields equation was used with a Shields parameter of 0.030 to estimate the critical shear stress for entrainment of the median sediment particle size on the mean streambed, in the thalweg, and on adjacent alluvial bar surfaces at the 14 cross sections. Sediment

  6. The Global Flood Model (United States)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.


    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  7. Camp Marmal Flood Study (United States)


    was simulated by means of a broad - crested weir built into the topography of the mesh. There is 0.5 m of freeboard and the width of the weir is 30 m...ER D C/ CH L TR -1 2- 5 Camp Marmal Flood Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp , Steve H. Scott...Camp Marmal Flood Study Jeremy A. Sharp , Steve H. Scott, Mark R. Jourdan, and Gaurav Savant Coastal and Hydraulics Laboratory U.S. Army Engineer

  8. FEMA DFIRM Base Flood Elevations (United States)

    Minnesota Department of Natural Resources — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally,...

  9. 2013 FEMA Flood Hazard Boundaries (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  10. FEMA DFIRM Flood Hazard Areas (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  11. Base Flood Elevation (BFE) Lines (United States)

    Department of Homeland Security — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally if...

  12. National Flood Hazard Layer (NFHL) (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are...

  13. FEMA 100 year Flood Data (United States)

    California Natural Resource Agency — The Q3 Flood Data product is a digital representation of certain features of FEMA's Flood Insurance Rate Map (FIRM) product, intended for use with desktop mapping...

  14. 2013 FEMA Flood Control Structures (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  15. FEMA Q3 Flood Data (United States)

    Kansas Data Access and Support Center — The Q3 Flood Data are derived from the Flood Insurance Rate Maps (FIRMS) published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to...

  16. Preliminary feasibility study on storage of radioactive wastes in Columbia River basalts. Volume II

    Energy Technology Data Exchange (ETDEWEB)



    Volume II comprises four appendices: analytical data and sample locations for basalt flow type localities; Analytical data and sample locations for measured field sections in Yakima basalts; core hole lithology and analytical data; and geophysical logs. (LK)

  17. Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; Mourya, B.S.; Krishnamurthi, S.; Meena, R.M.; LokaBharathi, P.A.

    The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral...

  18. Petrographical indicators of petrogenesis: Examples from Central Indian Ocean Basin basalts

    Digital Repository Service at National Institute of Oceanography (India)

    Mislankar, P.G.; Iyer, S.D.

    Petrographical features of the Central Indian Basin (CIOB) basalts were studied to understand their genetic significance. The fresh basaltic pillows show three textural zones from the top glassy (zone A) through the intermediate (zone B...

  19. Use of solar power for the production of basalt-based mineral fibers

    International Nuclear Information System (INIS)

    Gulamova, D. D.; Shevchenko, V. P.; Tokunov, S. G.; Kim, R. B.


    The possibility of obtaining basalt mineral fibers using concentrating solar power and melt-quench technique is shown. The microstructure and physicochemical properties of basalt fibers are analyzed. (author)

  20. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom


    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  1. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)


    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  2. Geochemistry and origin of metamorphosed mafic rocks from the Lower Paleozoic Moretown and Cram Hill Formations of North-Central Vermont: Delamination magmatism in the western New England appalachians (United States)

    Coish, Raymond; Kim, Jonathan; Twelker, Evan; Zolkos, Scott P.; Walsh, Gregory J.


    The Moretown Formation, exposed as a north-trending unit that extends from northern Vermont to Connecticut, is located along a critical Appalachian litho-tectonic zone between the paleomargin of Laurentia and accreted oceanic terranes. Remnants of magmatic activity, in part preserved as metamorphosed mafic rocks in the Moretown Formation and the overlying Cram Hill Formation, are a key to further understanding the tectonic history of the northern Appalachians. Field relationships suggest that the metamorphosed mafic rocks might have formed during and after Taconian deformation, which occurred at ca. 470 to 460 Ma. Geochemistry indicates that the sampled metamorphosed mafic rocks were mostly basalts or basaltic andesites. The rocks have moderate TiO2 contents (1–2.5 wt %), are slightly enriched in the light-rare earth elements relative to the heavy rare earths, and have negative Nb-Ta anomalies in MORB-normalized extended rare earth element diagrams. Their chemistry is similar to compositions of basalts from western Pacific extensional basins near volcanic arcs. The metamorphosed mafic rocks of this study are similar in chemistry to both the pre-Silurian Mount Norris Intrusive Suite of northern Vermont, and also to some of Late Silurian rocks within the Lake Memphremagog Intrusive Suite, particularly the Comerford Intrusive Complex of Vermont and New Hampshire. Both suites may be represented among the samples of this study. The geochemistry of all samples indicates that parental magmas were generated in supra-subduction extensional environments during lithospheric delamination.

  3. Floods in a changing climate (United States)

    Theresa K. Andersen; Marshall J. Shepherd


    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  4. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft

    Directory of Open Access Journals (Sweden)

    Jamal Rasouli


    Full Text Available Introduction The Jebale-Barez Plutonic Complex (JBPC is composed of many intrusive bodies and is located in the southeastern province of Kerman on the longitude of the 57◦ 45 ' east to 58◦ 00' and Northern latitudes 28◦ 30' to 29◦ 00'. The petrologic composition is composed of granodiorite, quartzdiorite, granite, alkali-granite, and trace amounts of tonalite with dominant granodiorite composition. Previously, the JBPC was separated into three plutonic phases by Ghorbani (2014. The first plutonic phase is the main body of the complex with composition of quartz-diorite to granodiorite. After differentiation of magma in the magmatic chamber, the porphyritic and not fully consolidated magmas have intruded into the main body. Their compositions were dominantly granodiorite and granite that are defined as the second plutonic phase. Finally, the last phase was started by an intrusion of the holo- leucogranite into the previous bodies. This plutonic activity was pursued by the minor Quaternary basaltic volcanism that shows metamorphic haloes in the contacts. They are dominantly porphyric leucogranites. However, some bodies show dendritic texture that may imply the existence of silicic fluids in the latest crystallization stages. Materials and methods In this article different analysis methods were used. For example, we used a total of two hundred samples of the various granitoids that were selected for common thin section study. Forty four representative samples from the different granitic rocks were selected for whole rock chemical analyses. The analyses of both major and trace elements were performed at the Department of Earth Sciences, the University of Perugia, Italy. The analysis for all major elements was carried out by an X-ray fluorescence spectrometry (XRF using a tube completed with a Rn and W anode under conditions with acceleration voltage of 40-45 kV and electric current ranging from I=30-35 mA. After calcination of powdered

  5. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation


    Choi, Jeong-Il; Lee, Bang


    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  6. Diffusive exchange of trace elements between basaltic-andesite and dacitic melt: Insights into potential metal fractionation during magma mixing (United States)

    Fiege, A.; Ruprecht, P.; Simon, A. C.; Holtz, F.


    Mafic magma recharge is a common process that triggers physical and chemical mixing in magmatic systems and drives their evolution, resulting in, e.g., hybridization and volcanic eruptions. Once magma-magma contact is initiated, rapid heat-flux commonly leads to the formation of a cooling-induced crystal mush on the mafic side of the interface. Here, on a local scale (µm to cm), at the magma-magma interface, melt-melt diffusive exchange is required to approach equilibrium. Significant chemical potential gradients drive a complex, multi-element mass flux between the two systems (Liang, 2010). This diffusive-equilibration often controls crystal dissolution rates within the boundary layers and, thus, the formation of interconnected melt or fluid networks. Such networks provide important pathways for the transport of volatiles and trace metals from the mafic recharge magma to the felsic host magma, where the latter may feed volcanic activities and ore deposits. While major element diffusion in silicate melts is mostly well understood, even in complex systems, the available data for many trace element metals are limited (Liang, 2010; Zhang et al., 2010). Differences in diffusivity in a dynamic, mixing environment can cause trace element fractionation, in particular during crystallization and volatile exsolution and separation. This may affect trace element signatures in phenocrysts and magmatic volatile phases that can form near a magma-magma boundary. As a result, the chemistry of volcanic gases and magmatic-hydrothermal ore deposits may be partially controlled by such mixing phenomena. We performed melt-melt diffusion-couple experiments at 150 MPa, 1100°C, FMQ, FMQ+1 and FMQ+3 (FMQ: fayalite-magnetite-quartz oxygen fugacity buffer). Hydrated, sulfur-bearing cylinders of dacite and basaltic andesite were equilibrated for up to 20 h. Major and trace element gradients were measured by using laser-ablation ICP-MS and electron microprobe analyses. The results we will

  7. Flame-resistant pure and hybrid woven fabrics from basalt (United States)

    Jamshaid, H.; Mishra, R.; Militky, J.


    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  8. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.


    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  9. Genetic aspects of basalts from the Carlsberg Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    of the CR rocks are sparse. The bulk chemical, mineral chemical and ore mineralization aspects of the dredged basalts from a segment of the CR (at 3°37¢N, 64°57¢E) are synthesized to indicate the influence of fractional crystallization coupled with magma...

  10. Gas adsorption on crushed quartz and basalt. [in vacuum (United States)

    Barker, C.; Torkelson, B. E.


    The new surfaces generated by crushing rocks and minerals adsorb gases. Different gases are adsorbed to different extents so that both the total amount and composition of the released gases are changed. This affects the interpretation of the composition of the gases obtained by vacuum crushing lunar basalts, meteorites and minerals with fluid inclusions.

  11. Petrology of spinel lherzolite xenoliths in alkali basalts from Liri ...

    African Journals Online (AJOL)

    Al2O3), and Al-rich spinel occur in alkali basalts from Liri, South of the ... these spinel lherzolite xenoliths are reported, along with the analyses of ...... erupted in the Liri region. .... and temperatures with controlled activities of water, carbon.

  12. Petrography and chemistry of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    interior through a variolitic zone. The silica-alkalies relation show these basalts to be of sub-alkaline nature. Variable normative compositions and Mg number, increase in alkali index, differences in Al2O3/CaO and FeO/MgO ratios, variable trace element...

  13. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.


    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  14. Basalt Waste Isolation Project. Annual report, fiscal year 1979

    International Nuclear Information System (INIS)


    This project is aimed at examining the feasibility and providing the technology to design and construct a radwaste repository in basalt formations beneath and within the Hanford Site. The project is divided into seven areas: systems integration, geosciences, hydrologic studies, engineered barriers, near-surface test facility, engineering testing, and repository engineering. This annual report summarizes key investigations in these seven areas

  15. Evaluation of basalt flows as a waste isolation media

    International Nuclear Information System (INIS)

    Deju, R.A.


    Activities in basalt waste isolation programs in the Columbia River basin are reported. Work during the period is summarized for the overall program which is divided into systems integration, geology, hydrology, engineered barriers studies, engineering testing, and the construction of a near-surface test facility

  16. Nature and composition of interbedded marine basaltic pumice in the

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea. Sarajit Sensarma Hukam Singh R S Rana Debajyoti Paul ...

  17. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup


    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  18. Hydrologic testing methodology and results from deep basalt boreholes

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A.; Jackson, R.L.; Pidcoe, W.W.


    The objective of the hydrologic field-testing program is to provide data for characterization of the groundwater systems wihin the Pasco Basin that are significant to understanding waste isolation. The effort is directed toward characterizing the areal and vertical distributions of hydraulic head, hydraulic properties, and hydrochemistry. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. These models are then used for evaluating potential waste migration as a function of space and time. The groundwater system beneath the Hanford Site and surrounding area consists of a thick, accordantly layered sequence of basalt flows and associated sedimentary interbed that primarily occur in the upper part of the Columbia River basalt. Permeable horizons of the sequence are associated with the interbeds and the interflow zones within the basalt. The columnar interiors of a flow act as low-permeability aquitards, separating the more-permeable interflows or interbeds. This paper discusses the hydrologic field-gathering activities, specifically, field-testing methodology and test results from deep basalt boreholes

  19. Heat resistance study of basalt fiber material via mechanical tests (United States)

    Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.


    This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.

  20. Math Fights Flooding

    NARCIS (Netherlands)

    Besseling, Niels; Bokhove, Onno; Kolechkina, Alla; Molenaar, Jaap; van Nooyen, Ronald; Rottschäfer, Vivi; Stein, Alfred; Stoorvogel, Anton


    Due to climate changes that are expected in the coming years, the characteristics of the rainfall will change. This can potentially cause flooding or have negative influences on agriculture and nature. In this research, we study the effects of this change in rainfall and investigate what can be done

  1. Depleted basaltic lavas from the proto-Iceland plume, Central East Greenland

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Baker, Joel A.


    New geochemical and isotopic data are presented for volumetrically minor, depleted low-Ti basalts that occur in the Plateau Basalt succession of central East Greenland (CEG), formed during the initial stages of opening of the North Atlantic at 55 Ma. The basalts have MORB-like geochemistry (e.g. ...

  2. Geochemical study of young basalts in East Azerbaijan (Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Nasir Amel


    Full Text Available The young basalts in East Azerbaijan are placed in West Alborz – Azerbaijan zone. Volcanic activities have extended from the Pliocene to the Quaternary by eruption from fracture systems and faults. Rocks under study are olivine-basalt and trachybasalts. The main minerals are olivine, pyroxene, plagioclase set in glassy or microcrystalline matrix and olivine are present as phenocryst. The textures in the studied rocks are mainly hyaloporphyric, hyalomicrolitic and porphyritic. Trace elements and rare earth elements on spider diagrams have high LREE/HREE ratio. Rare earth elements on diagram display negative slope indicating alkaline nature for the basalts under study. As it may be observed, on tectonic diagrams, the Marand basalts are placed on Island Arc basalt (IAB field, whereas the Ahar, Heris, Kalaibar and Miyaneh basalts are classified as Ocean Island Basalts (OIB and finally the basalts of Sohrol area are plotted on continental rift Basalt (CRB field. The Marand and Sohrol basalts were likely originated from lithospheric - astenospheric mantle with 2 to 5 % partial melting whereas, the Ahar, Heris and Kalaibar basalts having same source experienced 1-2% partial melting rate and the Miyaneh basalts possibly produced from lithospheric mantle with 10-20% partial melting rate pointing to shallow depth of mantle and the higher rate of melting. Based on tectonic setting diagrams, all the rocks studied are plotted in post collisional environments.

  3. Behaviour of rare earth elements, as natural analogues of transuranium elements, during weathering of basaltic glasses

    International Nuclear Information System (INIS)

    Daux, V.; Crovisier, J.L.; Petit, J.C.


    Subglacial basaltic glasses from Iceland have been studied in order to investigate REE behaviour low-temperature weathering. Just as actinides accumulate in the hydrated superficial corrosion layer of borosilicate glasses, REEs are found to be enriched in the natural corrosion layer of basaltic glasses (palagonite). However, this enrichment is only relative for basaltic glasses [fr

  4. Flood model for Brazil (United States)

    Palán, Ladislav; Punčochář, Petr


    Looking on the impact of flooding from the World-wide perspective, in last 50 years flooding has caused over 460,000 fatalities and caused serious material damage. Combining economic loss from ten costliest flood events (from the same period) returns a loss (in the present value) exceeding 300bn USD. Locally, in Brazil, flood is the most damaging natural peril with alarming increase of events frequencies as 5 out of the 10 biggest flood losses ever recorded have occurred after 2009. The amount of economic and insured losses particularly caused by various flood types was the key driver of the local probabilistic flood model development. Considering the area of Brazil (being 5th biggest country in the World) and the scattered distribution of insured exposure, a domain covered by the model was limited to the entire state of Sao Paolo and 53 additional regions. The model quantifies losses on approx. 90 % of exposure (for regular property lines) of key insurers. Based on detailed exposure analysis, Impact Forecasting has developed this tool using long term local hydrological data series (Agencia Nacional de Aguas) from riverine gauge stations and digital elevation model (Instituto Brasileiro de Geografia e Estatística). To provide most accurate representation of local hydrological behaviour needed for the nature of probabilistic simulation, a hydrological data processing focused on frequency analyses of seasonal peak flows - done by fitting appropriate extreme value statistical distribution and stochastic event set generation consisting of synthetically derived flood events respecting realistic spatial and frequency patterns visible in entire period of hydrological observation. Data were tested for homogeneity, consistency and for any significant breakpoint occurrence in time series so the entire observation or only its subparts were used for further analysis. The realistic spatial patterns of stochastic events are reproduced through the innovative use of d-vine copula

  5. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies (United States)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel


    , the intrusion concentrates bending primarily at the periphery, resulting in a flat, tabular intrusion. We predict that this process will result in concentric fractures over the region of greatest bending. This location is close to the crater wall in large, flat-floored craters, as observed in the crater Humboldt, and interior to the crater over the domed floor in smaller craters, as observed in the crater Vitello. A variety of volcanic features are predicted to be associated with the solidification and degassing of the intrusion; these include: (1) surface lava flows associated with concentric fractures (e.g., in the crater Humboldt); (2) vents with no associated pyroclastic material, from the deflation of under-pressurized magmatic foam (e.g., the crater Damoiseau); and (3) vents with associated pyroclastic deposits from vulcanian eruptions of highly pressurized magmatic foam (e.g., the crater Alphonsus). The intrusion of basaltic magma beneath the crater is predicted to contribute a positive component to the Bouguer gravity anomaly; we assess the predicted Bouguer anomalies associated with FFCs and outline a process for their future interpretation. We conclude that our proposed mechanism serves as a viable formation process for FFCs and accurately predicts numerous morphologic, morphometric, and geophysical features associated with FFCs. These predictions can be further tested using GRAIL (Gravity Recovery and Interior Laboratory) data.

  6. Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area


    Chia Lin Chan; Yi Ju Yang; Chih Chin Yang


    Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall freque...

  7. Tholeitic basalts and ophiolitic complexes of the Mesorif Zone (External Rif, Morocco) at the Jurassic-Cretaceous boundary and the importance of the Ouerrha Accident in the palaeogeographic and geodynamic evolution of the Rif Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Benzaggagh, M.


    The stratigraphical series around the Jurassic-Cretaceous boundary of the External Rif Mountains, in particular those in the Mesorif Zone, exhibits many outcrops with volcanic materials spread westwards over 200 km. These materials show diverse aspects: basalt lithoclasts reworked into calcareous breccia beds or in marly matrix breccia, interstratified lava flows and volcanoclastic complexes incorporated within the Berriasian marls. In the Central Rif, several magmatic blocks outcrop, usually regarded as granite scales from the Paleozoic basement or as intrusive gabbros of Barremian age. Actually these magmatic massifs display typical ophiolitic sequences and they are overlaid by mega-olistoliths of Jurassic materials and locally by radiolarite layers. Geochemical analysis of several basalt and gabbro samples belonging to the Mesorif Zone evidenced that both display a typical E-MORB magma indicating at least partial oceanization of the Mesorif basement. Concerning geodynamics, the Mesorif Zone had undergone, at the Jurassic-Cretaceous boundary interval, two successive palaeogeographic phases: an uplift, close to emersion during the Kimmeridgian-Early Tithonian interval, stressed by important submarine volcanic activities and intense brecciation of the carbonate formations, followed by a general collapse at the Late Tithonian, underlined by lava flows, slumping as mega-olistoliths and the formation of an oceanic crust, at least in the Central Rif. These magmatic materials, distributed on both sides of the Ouerrha Valley, evidence that this westwards extending valley (the Nekor Accident), may correspond in the Central Rif, to two palaeo-subduction planes which become two major overlapping thrusts in the western part of the Rif Mountains. (Author)

  8. On the Hydrogranular Dynamics of Magmatic Gravity Currents (United States)

    McIntire, M. Z.; Bergantz, G. W.; Schleicher, J.; Burgisser, A.


    Magmatic processes are generally governed by multi-phase interactions of silicate liquid, crystals, and bubbles. However, the modes of dissipation and the manner that stress is transmitted are poorly understood. We use a model of a simple but widely applicable gravity current as a means to exemplify the hydrogranular dynamics in crystal-rich magmas. Viscous and lubrication forces are of special interest because they have a dual role in dispersal and mixing in a crystal-rich gravity current. For example, lubrication forces provide an initial apparent yield strength by inducing a negative pore pressure as crystals move apart. However, once the gravity current is underway, lubrication forces reduce the dissipation due to collision and frictional contact.The gravity current is initiated by a combination of toppling and sliding along a well-defined granular fault. This produces three distinct regimes: a quasi-static base, an overlying particle hump that translates in a quasi-plastic fashion by grain-passing and rolling until the angle of repose is reached, and a viscous particle current. The current initially forms a leading vortex at the head, but the loss of crystals by sedimentation-assisted granular capture by an upward growing particle front drains energy from the flow. The vortex is soon abandoned, but persists in the reservoir as a fossil feature of orphaned crystals in a smear of previous intercumulate fluid. The kinetic energy of the most active crystals decays in a dual fashion, initially linearly, then parabolically with a near symmetrical increase and loss of kinetic energy.There is very little entrainment and mixing between intercumulate and reservoir fluids from magmatic gravity currents. Only a thin seam of reservoir melt is captured by the base of the flow as it descends across the floor. Hence magmatic gravity currents, while producing modest amounts of crystal sorting, are not effective agents of mixing as lubrication and viscous forces inhibit

  9. Magmatic development of the outer Vøring Margin (United States)

    Breivik, Asbjorn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio


    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired on the Vøring and Lofoten margins. One profile crosses from the Vøring Plateau to the Vøring Spur, an oceanic plateau north of the EJMFZ. The P-wave data were modeled by ray-tracing in a 2D velocity model of the crust. The process behind the excess magmatism can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This profile and two other profiles farther north show a positive H-VP correlation, consistent with a hot mantle reservoir of finite extent under the margin at breakup. However, during the first two million years, magma production appears to be augmented by a secondary process. By 51-51.5 Ma melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows at least two inversion events, with the main episode tentatively in the Upper Miocene, apparently through igneous growth to create the up to 15 km crustal thickness. The H-VP correlation of the spur is low, indicating constant and moderate-degree mantle melting not tied to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, discounting that compressional flexure at the EJMFZ shaped the high. We also find no evidence for the proposed Early Eocene triple junction in the area.

  10. Magmatic carbon dioxide emissions at Mammoth Mountain, California (United States)

    Farrar, Christopher D.; Neil, John M.; Howle, James F.


    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts

  11. GIS Support for Flood Rescue

    DEFF Research Database (Denmark)

    Liang, Gengsheng; Mioc, Darka; Anton, François


    Under flood events, the ground traffic is blocked in and around the flooded area due to damages to roads and bridges. The traditional transportation network may not always help people to make a right decision for evacuation. In order to provide dynamic road information needed for flood rescue, we...... to retrieve the shortest and safest route in Fredericton road network during flood event. It enables users to make a timely decision for flood rescue. We are using Oracle Spatial to deal with emergency situations that can be applied to other constrained network applications as well....... developed an adaptive web-based transportation network application using Oracle technology. Moreover, the geographic relationships between the road network and flood areas are taken into account. The overlay between the road network and flood polygons is computed on the fly. This application allows users...

  12. Numerical simulation of flood barriers (United States)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  13. The Fe-Rich Clay Microsystems in Basalt-Komatiite Lavas: Importance of Fe-Smectites for Pre-Biotic Molecule Catalysis During the Hadean Eon (United States)

    Meunier, Alain; Petit, Sabine; Cockell, Charles S.; El Albani, Abderrazzak; Beaufort, Daniel


    During the Hadean to early Archean period (4.5-3.5 Ga), the surface of the Earth’s crust was predominantly composed of basalt and komatiite lavas. The conditions imposed by the chemical composition of these rocks favoured the crystallization of Fe-Mg clays rather than that of Al-rich ones (montmorillonite). Fe-Mg clays were formed inside chemical microsystems through sea weathering or hydrothermal alteration, and for the most part, through post-magmatic processes. Indeed, at the end of the cooling stage, Fe-Mg clays precipitated directly from the residual liquid which concentrated in the voids remaining in the crystal framework of the mafic-ultramafic lavas. Nontronite-celadonite and chlorite-saponite covered all the solid surfaces (crystals, glass) and are associated with tiny pyroxene and apatite crystals forming the so-called “mesostasis”. The mesostasis was scattered in the lava body as micro-settings tens of micrometres wide. Thus, every square metre of basalt or komatiite rocks was punctuated by myriads of clay-rich patches, each of them potentially behaving as a single chemical reactor which could concentrate the organics diluted in the ocean water. Considering the high catalytic potentiality of clays, and particularly those of the Fe-rich ones (electron exchangers), it is probable that large parts of the surface of the young Earth participated in the synthesis of prebiotic molecules during the Hadean to early Archean period through innumerable clay-rich micro-settings in the massive parts and the altered surfaces of komatiite and basaltic lavas. This leads us to suggest that Fe,Mg-clays should be preferred to Al-rich ones (montmorillonite) to conduct experiments for the synthesis and the polymerisation of prebiotic molecules.

  14. Magmatism and Tectonics in the Meso-Archean Pongola Supergroup, South Africa (United States)

    Wilson, Allan


    The Pongola Supergroup is one of the most extensive and well preserved volcano-sedimentary successions emplaced in a continental setting in the Meso-Archean (c. 2.95 Ga). It contrasts with both the older (Barberton type c.3.5 Ga) and younger (Belingwe type c.2.7 Ga) greenstone belts in southern Africa in that the sequence has not undergone the strong horizontal compressional tectonics typically related to greenstone belt-TTG environments. However, it is appropriate to compare this sequence with rocks of the Barberton greenstone belt by which the final phase of deposition preceded that of the juxtaposed Pongola basin with a relatively small time interval. The Pongola succession, which commenced with the first major magmatic event after the Barberton greenstone belt, overlies granitoids and remnants of greenstone belts in SE South Africa and in SW Swaziland. Formation was not in a continental rift environment but most likely in a marginal epicontinental basin with syn-depositional subsidence in a half-graben fault system in the type area. The Pongola rocks occur in two domains related to a NW-trending central basement high in the Kaapvaal Craton and achieving a maximum thickness of 8 km in the northern areas. The lower section (Nsuze group 3.7 km thick) is made up mainly of lavas and pyroclastic rocks and the upper section (Mozaan Group 4.3 km thick) is aranaceous sediments and argillites with a thick volcanic unit observed in the south-eastern facies. Chemical affinities of the lavas include tholeiite and calc-alkaline over the compositional range of basalt to rhyolite. There is a preponderance of andesites in the compositional array. The preservation of these rocks gives insight into the range of volcanic processes that took place at this stage of Earth history and in some areas it is possible to identify eruptions from a single source over several kilometres, as well as feeder-dyke systems to the lava flows. Simultaneous eruption of contrasting magmas from several

  15. Citizen involvement in flood risk governance: flood groups and networks

    Directory of Open Access Journals (Sweden)

    Twigger-Ross Clare


    Full Text Available Over the past decade has been a policy shift withinUK flood risk management towards localism with an emphasis on communities taking ownership of flood risk. There is also an increased focus on resilience and, more specifically, on community resilience to flooding. This paper draws on research carried out for UK Department for Environment Food and Rural Affairs to evaluate the Flood Resilience Community Pathfinder (FRCP scheme in England. Resilience is conceptualised as multidimensional and linked to exisiting capacities within a community. Creating resilience to flooding is an ongoing process of adaptation, learning from past events and preparing for future risks. This paper focusses on the development of formal and informal institutions to support improved flood risk management: institutional resilience capacity. It includes new institutions: e.g. flood groups, as well as activities that help to build inter- and intra- institutional resilience capacity e.g. community flood planning. The pathfinder scheme consisted of 13 projects across England led by local authorities aimed at developing community resilience to flood risk between 2013 – 2015. This paper discusses the nature and structure of flood groups, the process of their development, and the extent of their linkages with formal institutions, drawing out the barriers and facilitators to developing institutional resilience at the local level.

  16. Miocene Basaltic Lava Flows and Dikes of the Intervening Area Between Picture Gorge and Steens Basalt of the CRBG, Eastern Oregon (United States)

    Cahoon, E. B.; Streck, M. J.


    Mid-Miocene basaltic lavas and dikes are exposed in the area between the southern extent of the Picture Gorge Basalt (PGB) and the northern extent of Steens Basalt in a wide corridor of the Malheur National Forest, eastern Oregon. An approximate mid-Miocene age of sampled basaltic units is indicated by stratigraphic relationships to the 16 Ma Dinner Creek Tuff. Lavas provide an opportunity to extend and/or revise distribution areas of either CRBG unit and explore the petrologic transition between them. The PGB and the Steens Basalt largely represent geochemically distinct tholeiitic units of the CRBG; although each unit displays internal complexity. Lavas of PGB are relatively primitive (MgO 5-9 wt.%) while Steens Basalt ranges in MgO from >9 to 3 wt.% but both units are commonly coarsely porphyritic. Conversely, Steens Basalt compositions are on average more enriched in highly incompatible elements (e.g. Rb, Th) and relatively enriched in the lesser incompatible elements (e.g. Y, Yb) compared to the Picture Gorge basalts. These compositional signatures produce inclined and flat patterns on mantle-normalized incompatible trace element plots but with similar troughs and spikes, respectively. New compositional data from our study area indicate basaltic lavas can be assigned as PGB lava flows and dikes, and also to a compositional group chemically distinct between Steens Basalt and PGB. Distribution of lava flows with PGB composition extend this CRBG unit significantly south/southeast closing the exposure gap between PGB and Steens Basalt. We await data that match Steens Basalt compositions but basaltic lavas with petrographic features akin to Steens Basalt have been identified in the study area. Lavas of the transitional unit share characteristics with Upper Steens and Picture Gorge basalt types, but identify a new seemingly unique composition. This composition is slightly more depleted in the lesser incompatible elements (i.e. steeper pattern) on mantle normalized

  17. Consequences of the low density of the lunar primary crust on its magmatic history (Invited) (United States)

    Michaut, C.; Thorey, C.


    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick. This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Here, we provide evidence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Furthermore, at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by impact. The pressure release due to material removal by impact is significant over a depth equivalent to the crater radius. Because many of these floor-fractured craters are relatively small, i.e. less than 20 to 30 km in radius, this observation suggests that the magma at the origin of the intrusion was already stored within or just below the crust, in deeper intrusions. Thus, a large fraction of the mantle melt might have stored at depth below or within the light primary crust before reaching shallower layers. And hence, magma intrusions must have had a large influence on the thermal and geological evolution of the

  18. A coupled petrological-geodynamical model to investigate the evolution of crustal magmatic systems (United States)

    Kaus, B. J. P.; Rummel, L.; White, R. W.


    The evolution of crustal magmatic systems can be analyzed from different physical and chemical perspectives. Most previous work focus either on the petrological side (considering thermal effects and ignoring mechanics), or on the mechanical evolution (assuming a fixed melt chemistry). Here, we consider both by combining a 2D finite element code, MVEP2, with a thermodynamic modelling approach (Perple_X). Density, melt fraction and the chemical composition of the liquid and solid phase are computed for different starting rock compositions and the evolving chemistry is tracked on markers via 10 main oxides (SiO2-TiO2-Al2O3-Cr2O3-MgO-FeO-CaO-Na2O-K2O-H2O). As soon as the local chemistry changes due to melt extraction, new phase diagrams are computed based on the residual solid chemistry for the deflated magma chamber or on the liquid chemistry for newly generated magma filled fractures. To investigate the chemical evolution in magma chambers and magma filled fractures, we inject mafic sills periodically at varying depth levels into the continental crust. The initial sill injections are focused in either one or two main zones in the crust and may interact with each other. The formation of magma filled fractures from this partially molten zone is tracked with a semi analytical dike initiation algorithm that forms new dikes as a function of the local stress field above the partially molten region and subsequently depletes and compacts the magma source region. Dike generation is thus affected by the background strain rate, amount and depth of melt accumulations as well as parameters that control the plastic and viscous behaviour of the crust (e.g. cohesion, viscous creep flow low etc.). Results show that magma filled fractures triggered by sill injections preferentially form under extensional conditions, particularly within the middle crust (in ca. 25 km depth). Magma chambers in the lower continental crust, on the other hand, are stable over a longer period of time due a

  19. Late Miocene (Proto-Gulf) Extension and Magmatism on the Sonoran Margin (United States)

    Gans, P.; MacMillan, I.; Roldan-Quintana, J.


    Constraints on the magnitude and character of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California extensional province are key to understanding how and when Baja California was captured by the Pacific plate and how strain was partitioned during the early stages of this transtensional rift system. Our new geologic mapping in southwestern Sonora and 40Ar/39Ar dating of pre-, syn-, and post-tectonic volcanic units indicate that late Miocene deformation and volcanic activity were largely restricted to a NW-trending, 100-120 km wide belt adjacent to the coast. Inboard of this belt, NW-SE extension is mainly older (>15 Ma) and occurred in an intra-arc or back-arc setting. Proto-Gulf deformation within the coastal belt was profoundly transtensional, with NW-striking, dextral strike slip faults operating in concert with N-S and NNE-striking normal and oblique slip faults to produce an inferred NW or NNW tectonic transport direction. The total amount of late Miocene NW directed dextral shear within the coastal belt is still poorly constrained, but may exceed 100 km. The locus of deformation and volcanic activity migrated westward or northwestward within the Sonoran coastal belt. in the eastern portion (Sierra Libre and Sierra El Bacatete) major volcanic activity commenced at ˜13.0 Ma and peaked at 12.0 Ma, and major faulting and tilting is bracketed between 12.0 and 10.6 Ma. Further west in the Sierra El Aguaje/San Carlos region, major volcanic activity commenced at 11.5 Ma and peaked at 10.5 Ma, and most faulting and tilting is bracketed between 10.7 and 9.3 Ma. On the coastal mountains northwest of San Carlos, rift related faulting and tilting continued after 8.5 Ma. Voluminous late Miocene (13-8 Ma) volcanic rocks within the Sonoran coastal belt were erupted from numerous centers (e.g. Sierra Libre, Guaymas, Sierra El Aguaje). These thick volcanic sections are compositionally diverse (basalt to rhyolite, with abundant dacite and

  20. Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage

    Energy Technology Data Exchange (ETDEWEB)

    Min, Yahong; Fang, Ying; Huang, Xiaojun; Zhu, Yinhui; Li, Wensheng [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Yuan, Jianmin [College of Materials Engineering, Hunan University, Changsha, 410082 (China); Tan, Ligang [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 (China); Wang, Shuangyin [State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhenjun, E-mail: [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)


    Graphical abstract: - Highlights: • A new silane coupling agent was synthesized based on KH570. • Basalt surface was modified using the new silane coupling agent. • Chemical bond between basalt and the new silane coupling agent was formed. • Asphalt mixture which used modified basalt show superior water stability. - Abstract: A new silane coupling agent was synthesized based on γ-(methacryloyloxy) propyltrimethoxysilane (KH570). The surface of basalt rocks was modified by KH570 and the new silane coupling agent (NSCA), and the interfacial interaction between silane coupling agent and basalt was also studied. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis showed that the silane coupling agent molecule bound strongly with basalt rocks. Scanning electronic microscopy (SEM) observation showed that a thin layer of coupling agent was formed on the surface of modified basalt. The boiling test and immersion Marshall test confirmed that the moisture sensitivity of basalt modified with the new silane coupling agent increased more significantly than that untreated and treated with KH570. The Retained Marshall Strength of basalt modified with the new coupling agent increased from 71.74% to 87.79% compared with untreated basalt. The results indicated that the new silane coupling agent played an important role in improving the interfacial performance between basalt and asphalt.

  1. Investigation on mechanical properties of basalt composite fabrics (experiment study) (United States)

    Talebi Mazraehshahi, H.; Zamani, H.


    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  2. Investigation on mechanical properties of basalt composite fabrics (experiment study

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.


    Full Text Available To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for di