Sample records for flood basalt magmatism

  1. Volatiles and the tempo of flood basalt magmatism (United States)

    Black, Benjamin A.; Manga, Michael


    Individual flood basalt lavas often exceed 103 km3 in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas implies correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. The overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, and as a large magma body heats the surrounding rocks thermally activated creep will relax isotropic overpressure more rapidly. Here, we examine the viability of buoyancy overpressure as a trigger for continental flood basalt eruptions. We employ a new one-dimensional model that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape from Moho-depth and crustal chambers. We investigate the temporal evolution of degassing and the eruptibility of magmas using the Siberian Traps flood basalts as a test case. We suggest that the volatile inventory set during mantle melting and redistributed via bubble motion controls ascent of magma into and through the crust, thereby regulating the tempo of flood basalt magmatism. Volatile-rich melts from low degrees of partial melting of the mantle are buoyant and erupt to the surface with little staging or crustal interaction. Melts with moderate volatile budgets accumulate in large, mostly molten magma chambers at the Moho or in the lower crust. These large magma bodies may remain buoyant and poised to erupt-triggered by volatile-rich recharge or external stresses-for ∼106 yr. If and when such chambers fail, enormous volumes of magma can ascend into the upper crust, staging at shallow levels and initiating substantial assimilation that contributes to pulses of large-volume flood basalt eruption. Our model further predicts that the Siberian Traps may have released 1019-1020 g of CO2

  2. The Cenozoic magmatism of East-Africa: Part I - Flood basalts and pulsed magmatism (United States)

    Rooney, Tyrone O.


    Cenozoic magmatism in East Africa results from the interplay between lithospheric extension and material upwelling from the African Large Low Shear Velocity Province (LLSVP). The modern focusing of East African magmatism into oceanic spreading centers and continental rifts highlights the modern control of lithospheric thinning in magma generation processes, however the widespread, and volumetrically significant flood basalt events of the Eocene to Early Miocene suggest a significant role for material upwelling from the African LLSVP. The slow relative motion of the African plate during the Cenozoic has resulted in significant spatial overlap in lavas derived from different magmatic events. This complexity is being resolved with enhanced geochronological precision and a focus on the geochemical characteristics of the volcanic products. It is now apparent that there are three distinct pulses of basaltic volcanism, followed by either bimodal lavas or silicic volcanic products during this period: (A) Eocene Initial Phase from 45 to 34 Ma. This is a period of dominantly basaltic volcanism focused in Southern Ethiopia and Northern Kenya (Turkana). (B) Oligocene Traps phase from 33.9 to 27 Ma. This period coincides with a significant increase in the aerial extent of volcanism with broadly age equivalent 1 to 2 km thick sequences of dominantly basalt centered on the NW Ethiopian Plateau and Yemen, (C) Early Miocene resurgence phase from 26.9 to 22 Ma. This resurgence in basaltic volcanism is seen throughout the region at ca. 24-23 Ma, but is less volumetrically significant than the prior two basaltic pulses. With our developing understanding of the persistence of LLSVP anomalies within the mantle, I propose that the three basaltic pulses are ostensibly manifestations of the same plume-lithosphere interaction, requiring revision to the duration, magmatic extent, and magma volume of the African-Arabian Large Igneous Province.

  3. Magmatic recharge buffers the isotopic compositions against crustal contamination in formation of continental flood basalts (United States)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang


    Isotopic compositions of continental flood basalts are essential to understand their genesis and to constrain the character of their mantle sources. Because of potential crustal contamination, it needs to be evaluated if and to which degree these basalts record original isotopic signals of their mantle sources and/or crustal signatures. This study examines the Sr, Nd, Hf, and Pb isotopic compositions of the late Cenozoic Xinchang-Shengzhou (XS) flood basalts, a small-scale continental flood basalt field in eastern China. The basalts show positive correlations between 87Sr/86Sr and 143Nd/144Nd, and negative correlations between 143Nd/144Nd and 176Hf/177Hf, which deviate from compositional arrays of crustal contamination and instead highlight variations in magmatic recharge intensity and mantle source compositions. The lava samples formed by high-volume magmatic recharge recorded signals of recycled sediments in the mantle source, which are characterized by moderate Ba/Th (91.9-106.5), excess 208Pb/204Pb relative to 206Pb/204Pb, and excess 176Hf/177Hf relative to 143Nd/144Nd. Thus, we propose that magmatic recharge buffers the original isotopic compositions of magmas against crustal contamination. Identifying and utilizing the isotope systematics of continental flood basalts generated by high volumes of magmatic recharge are thus crucial to trace their mantle sources.

  4. Low titanium magmatism in northwest region of Paraná continental flood basalts (Brazil: volcanological aspects

    Directory of Open Access Journals (Sweden)

    F. B. Machado


    Full Text Available The early Cretaceous Paraná Continental Flood Basalts (PCFB is considered as one of the largest volcanic provinces in the world. In Brazil, it completes the last sequence of the sedimentary Paraná Basin (Serra Geral Fm.. The geological unit is contemporary to desert sandstones of Botucatu Fm. and precedes the continental sediments of the Bauru Basin. This Large Igneous Province (LIP is divided into different types of geochemical magmas which basically are based on TiO2 content (higher – HTi or lower LTi than 2 wt.% in TiO2 and incompatible trace elements ratio. Therefore, we studied the magma LTi (TiO2 2 > 2.0 wt.%. Based on rheology data considering anhydrous environment and the composition of plagioclase (An(42–67 and clinopyroxene (Wo(30–40En(34–46Fs(17–32 showed that the LTi magma is hotter than HTi, with temperatures that range from 1069 °C to 1248 °C while for the second range from 1020 °C to 1201 °C.

  5. Flood-basalt magmatism of the Vodlozero Block of the Karelian Craton: relations between high- and low-Cr Varieties (United States)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexii


    The early Paleoproterozoic (2.5-2.3 Ga) volcanic rocks of the Karelian Craton are ascribed to the large igneous province of the eastern Fennoscandian Shield. They are mainly represented by calc-alkaline low-Ti basalts and basaltic andesites with relatively high SiO2 and clearly pronounced continental trace element signatures. The compositions of the rocks vary in the different domains of the Karelian craton. In particular, basalts developed in the Central Domain are represented by strongly fractionated varieties (Mg # Mg rocks similar to the fractionated varieties developed in the Central Domain. They are characterized by high contents of Zr, Y, and REE, and LILE, fractionated REE patterns with (La/Yb)n = 5.44-12.34, (La/Sm)n = 4.4-2.03, and (Gd/Yb)n = 1.36-2.71), and demonstrate negative Ti and Nb anomalies. The second group is represented by more primitive high Cr (up to 1000 ppm) high Mg# (up to 68) basalts with high Ni contents. Such composition is close to the primary non-fractionated mantle-derived magmas and may be used to provide insight into parental melts of continental flood basalts and their crustal evolution. In the spidergrams they demonstrate weak positive Ti anomaly at positive or absent Zr anomaly and negative Nb anomaly. The rocks of the second group are also characterized (with rare exception) by LREE enriched but less fractionated patterns than the first group: ((La/Yb)n up to 7.5, (La/Sm)n = up to 2.8, (Gd/Yb)n = up to 2.0). High Cr and low Y contents are indicative of relatively high degree of partial melting of a depleted mantle source. These rocks are simulated by sequential fractionation of uncontaminated continental flood basalts leaving Ol residue and lower crustal contamination (rocks with low values of eNd). The percentage of crustal contamination is controlled by Nb/Th ratio. Examination of Nd isotope data revealed that both these types have negative eNd, but high-Cr rocks have slightly more radiogenic Nd isotope composition. A high

  6. Relative Contribution of Crust and Mantle to Flood Basalt Magmatism, Mahabaleshwar Area, Deccan Traps (United States)

    Cox, K. G.; Hawkesworth, C. J.


    The 1200 m section of flat-lying basalts in the Mahabaleshwar area is divided into three formations on the basis of the trace elements Sr, Ba, Rb, Zr and Nb. The lowermost unit, the Poladpur Formation, is characterized by high Ba, Rb, and Zr/Nb, and low Sr. These features are accompained by high K and Si, high and variable 87Sr/86Sr initial ratios (0.7043-0.7196), and low and variable ɛ Nd values (+2.6 to -17.4). The formation is interpreted as having developed by contamination of the overlying Ambenali magma-type with ancient granitic crust, with simultaneous fractionation of a gabbroic mineral assemblage. The more basic members of the formation are found towards the base of the succession and are more contaminated than the upper flows. The succeeding Ambenali Formation, characterized by the Ambenali magma type, has low Ba, Rb, Sr and Zr/Nb, and low and rather uniform 87Sr/86Sr initial ratios (0.7038-0.7043) coupled with high and relatively uniform ɛ Nd (+4.7 to +6.4). It is interpreted as being essentially uncontaminated and derived from a mantle source with a history of slight trace-element enrichment relative to m.o.r.b.-source. The uppermost group of flows, the Mahabaleshwar Formation, is, like the Poladpur, enriched in Ba, Rb, K and Si relative to the Ambenali, but has lower Zr/Nb and higher Sr. 87Sr/86Sr initial ratios (0.7040-0.7056) are slightly higher than in the Ambenali, and ɛ Nd lies in the range +7.1 to -3.0. In this formation Sr correlates positively with the other incompatible elements and with 87Sr/86Sr initial ratios. This is in strong contrast to the relations observed in the Poladpur, and we believe that the behaviour of Sr may be a simple pointer to the distinction between mantle and crustal contributions. Assuming that late-stage crystal fractionation processes can be allowed for, if Sr correlates positively with elements such as K, Rb and Ba then mantle enrichment processes are clearly implied. Conversely, as for example in the Poladpur

  7. Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.) (United States)

    Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh


    The Southern Oklahoma Aulocogen (SOA) stretches from southern Oklahoma through the Texas panhandle and into Colorado and New Mexico, and contains mafic through silicic magmatism related to the opening of the Iapetus Ocean during the early Cambrian. Cambrian magmatic products are best exposed in the Wichita Mountains (Oklahoma), where they have been extensively studied. However, their ultimate derivation is still somewhat contentious and centers on two very different models: SOA magmatism has been suggested to occur via [1] continental rifting (with or without mantle plume emplacement) or [2] transform-fault related magmatism (e.g., leaky strike-slip faults). Within the SOA, the subsurface in and adjacent to the Arbuckle Mountains in southern Oklahoma contains thick sequences of mafic to intermediate lavas, intrusive bodies, and phreatomagmatic deposits interlayered with thick, extensive rhyolite lavas, thin localized tuffs, and lesser silicic intrusive bodies. These materials were first described in the Arbuckle Mountains region by a 1982 drill test (Hamilton Brothers Turner Falls well) and the best available age constraints from SOA Arbuckle Mountains eruptive products are ~ 535 to 540 Ma. Well cuttings of the mafic through intermediate units were collected from that well and six others and samples from all but the Turner Falls and Morton wells are the focus of this study. Samples analyzed from the wells are dominantly subalkaline, tholeiitic, and range from basalt to andesite. Their overall bulk major and trace element chemistry, normative mineralogy, and Srsbnd Nd isotope ratios are similar to magmas erupted/emplaced in flood basalt provinces. When compared with intrusive mafic rocks that crop out in the Wichita Mountains, the SOA well cuttings are geochemically most similar to the Roosevelt Gabbros. New geochemical and isotope data presented in this study, when coupled with recent geophysical work in the SOA and the coeval relationship with rhyolites, indicates

  8. The eruption characteristics of the Tarim flood basalt



    Integration of field investigation, regional stratigraphic comparison, remote sensing and image interpretation allow us to divide the Tarim Permian flood basalt province into three eruptive cycles listed by decreasing age; Kupukuziman flood basalt (KP), Felsic pyroclastic rocks (FP), Kaipaizileike flood basalt (KZ). KP features flood basalt and tuff; in the outcrop in Keping and Yingmaili areas, it can be differentiated into two units containing three thick layers of basaltic lava flows. Thes...

  9. Tracing volatile loss during the eruption of individual flood basalt flows in the Columbia River Flood Basalt Province (United States)

    Burton, K. W.; Vye, C.; Gannoun, A.; Self, S.


    Continental flood basalt (CFB) volcanism is characterised by the repeated eruption of huge batches of magma, producing enormous basalt provinces (105-106 km3) over relatively brief intervals of time, and delivering large masses of volcanic gas to the atmosphere. The release of gases and aerosols during CFB volcanism is thought to have had a significant impact on the atmosphere, ocean chemistry and climate [1-3]. The key factors influencing atmospheric chemistry and the environmental impact of CFB eruptions are the timing, mechanism and duration of volatile release during individual eruptions, but for the most part such information remains poorly known. The 187Re-187Os isotope system offers a highly sensitive tracer of the evolution of melt chemistry, and of the timing and mechanism of volatile release. This is partly because the contrasting behaviour of Re and Os during melting results in the extreme fractionation of parent/daughter (Re/Os) isotope ratios, thus magmatic phases can yield precise chronological information, and crustal rocks develop highly radiogenic isotope compositions that can be readily traced if assimilated [4]. Partly also because Re behaves as a highly volatile element during sub-aerial volcanism [5]. This study presents 187Re-187Os isotope data for rocks and minerals from two flows in the Columbia River Flood Basalt Group, one of the youngest flood basalt provinces that formed over a 2 million year interval in the Mid-Miocene. The 2,660 km3 Sand Hollow flow field displays small major and trace element variations, both laterally and vertically across the flow, indicative of fractional crystallisation, but the elemental data cannot be used to distinguish source variations and/or crustal contamination. However, Os isotopes indicate systematic crustal contamination over the timescale of an individual eruption, where the earliest formed lavas show the greatest degree of contamination. Isotope and elemental data for phenocryst phases from the 40

  10. High water content in primitive continental flood basalts (United States)

    Xia, Qun-Ke; Bi, Yao; Li, Pei; Tian, Wei; Wei, Xun; Chen, Han-Lin


    As the main constituent of large igneous provinces, the generation of continental flood basalts (CFB) that are characterized by huge eruption volume (>105 km3) within short time span (basaltic melts and the partition coefficient of H2O between cpx and basaltic melt. The arc-like H2O content (4.82 ± 1.00 wt.%) provides the first clear evidence that H2O plays an important role in the generation of CFB. PMID:27143196

  11. Phase Equilibria Constraints on Relations of Ore-bearing Intrusionswith Flood Basalts in the Panxi Region, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaochong; HAO Yanli; AI Yu; LI Ying; ZHAO Li


    There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small uitramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-PI-OI-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and iow-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limabe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basaits. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.

  12. A mantle plume beneath California? The mid-Miocene Lovejoy Flood Basalt, northern California (United States)

    Garrison, N.J.; Busby, C.J.; Gans, P.B.; Putirka, K.; Wagner, D.L.


    The Lovejoy basalt represents the largest eruptive unit identified in California, and its age, volume, and chemistry indicate a genetic affinity with the Columbia River Basalt Group and its associated mantle-plume activity. Recent field mapping, geochemical analyses, and radiometric dating suggest that the Lovejoy basalt erupted during the mid-Miocene from a fissure at Thompson Peak, south of Susanville, California. The Lovejoy flowed through a paleovalley across the northern end of the Sierra Nevada to the Sacramento Valley, a distance of 240 km. Approximately 150 km3 of basalt were erupted over a span of only a few centuries. Our age dates for the Lovejoy basalt cluster are near 15.4 Ma and suggest that it is coeval with the 16.1-15.0 Ma Imnaha and Grande Ronde flows of the Columbia River Basalt Group. Our new mapping and age dating support the interpretation that the Lovejoy basalt erupted in a forearc position relative to the ancestral Cascades arc, in contrast with the Columbia River Basalt Group, which erupted in a backarc position. The arc front shifted trenchward into the Sierran block after 15.4 Ma. However, the Lovejoy basalt appears to be unrelated to volcanism of the predominantly calc-alkaline Cascade arc; instead, the Lovejoy is broadly tholeiitic, with trace-element characteristics similar to the Columbia River Basalt Group. Association of the Lovejoy basalt with mid-Miocene flood basalt volcanism has considerable implications for North American plume dynamics and strengthens the thermal "point source" explanation, as provided by the mantle-plume hypothesis. Alternatives to the plume hypothesis usually call upon lithosphere-scale cracks to control magmatic migrations in the Yellowstone-Columbia River basalt region. However, it is difficult to imagine a lithosphere-scale flaw that crosses Precambrian basement and accreted terranes to reach the Sierra microplate, where the Lovejoy is located. Therefore, we propose that the Lovejoy represents a rapid

  13. An ancient recipe for flood-basalt genesis. (United States)

    Jackson, Matthew G; Carlson, Richard W


    Large outpourings of basaltic lava have punctuated geological time, but the mechanisms responsible for the generation of such extraordinary volumes of melt are not well known. Recent geochemical evidence suggests that an early-formed reservoir may have survived in the Earth's mantle for about 4.5 billion years (ref. 2), and melts of this reservoir contributed to the flood basalt emplaced on Baffin Island about 60 million years ago. However, the volume of this ancient mantle domain and whether it has contributed to other flood basalts is not known. Here we show that basalts from the largest volcanic event in geologic history--the Ontong Java plateau--also exhibit the isotopic and trace element signatures proposed for the early-Earth reservoir. Together with the Ontong Java plateau, we suggest that six of the largest volcanic events that erupted in the past 250 million years derive from the oldest terrestrial mantle reservoir. The association of these large volcanic events with an ancient primitive mantle source suggests that its unique geochemical characteristics--it is both hotter (it has greater abundances of the radioactive heat-producing elements) and more fertile than depleted mantle reservoirs-may strongly affect the generation of flood basalts.

  14. Age of the youngest Palaeogene flood basalts in East Greenland

    DEFF Research Database (Denmark)

    Heilmann-Clausen, C.; Piasecki, Stefan; Abrahamsen, Niels


    results, this constrains the termination of the East Greenland Paleogene Igneous Province to the Early-Middle Eocene transition (nannoplankton chronozones NP13-NP14/earliest NP15). This is 6-8 Ma younger than according to previous biostratigraphic age assignments. The new data show that flood basalt...

  15. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry


    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  16. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.


    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  17. Assessing eruption column height in ancient flood basalt eruptions (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.


    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced

  18. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.


    calc-alkaline lava flows overlying the CRBG across the northern and central parts of the LOEA. The Day 2 field route migrates to southern parts of the LOEA, where rocks of the CRBG are associated in space and time with lesser known and more complex silicic volcanic stratigraphy associated with middle Miocene, large-volume, bimodal basalt-rhyolite vent complexes. Key stops will provide a broad overview of the structure and stratigraphy of the middle Miocene Mahogany Mountain caldera and middle to late Miocene calc-alkaline lavas of the Owyhee basalt. Stops on Day 3 will progress westward from the eastern margin of the LOEA, examining a transition linking the Columbia River Basalt-Yellowstone province with a northwestward-younging magmatic trend of silicic volcanism that underlies the High Lava Plains of eastern Oregon. Initial field stops on Day 3 will examine key outcrops demonstrating the intercalated nature of middle Miocene tholeiitic CRBG flood basalts, prominent ash-flow tuffs, and “Snake River-type” large-volume rhyolite lava flows exposed along the Malheur River. Subsequent stops on Day 3 will focus upon the volcanic stratigraphy northeast of the town of Burns, which includes regional middle to late Miocene ash-flow tuffs, and lava flows assigned to the Strawberry Volcanics. The return route to Portland on Day 4 traverses across the western axis of the Blue Mountains, highlighting exposures of the widespread, middle Miocene Dinner Creek Tuff and aspects of Picture Gorge Basalt flows and northwest-trending feeder dikes situated in the central part of the CRBG province.

  19. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California (United States)

    Bacon, C.R.; Metz, J.


    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller ??T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted. ?? 1984 Springer-Verlag.

  20. Basalt of Summit Creek: Eocene Magmatism Associated with Farallon Slab Break Off (United States)

    Kant, L. B.; Tepper, J. H.; Eddy, M. P.


    In the Pacific Northwest the Early-Middle Eocene was a time of widespread magmatism and tectonic reorganization that included accretion of the Siletzia terrane, Challis volcanism, and establishment of the modern Cascade arc. Although individual events are well documented our knowledge of the underlying tectonic framework is incomplete. To better understand the tectonic changes that occurred during this interval we studied the ~48 Ma Basalt of Summit Creek (BSC), a 1500m section of lavas located south of Mt. Rainier that erupted during the critical time period between the docking of Siletzia and the initiation of the modern Cascade arc. The BSC consists mainly of tholeiitic basalts (wt. % SiO2 = 45.54-63.45, Mg# = 0.68-0.30) with EMORB traits (La/YbN = 1.2-5.9; 206Pb/204Pb = 19.005-19.102; 207Pb/204Pb = 15.538-15.593; 208Pb/204Pb = 38.560-38.714). These lavas lack arc signatures (e.g., HFSE depletions) but overlap in elemental and isotopic composition with oceanic basalts of the Crescent Formation (part of Siletzia) located ~100 km to the west. We suggest that emplacement of lavas that lack arc traits in what was the forearc was a response to break off of the Farallon slab, which occurred as a result of the accretion of Siletzia at ~49 Ma (Wells et al., 2014). Break off opened a gap in the subducted slab, allowing upwelling and subsequent decompression melting. BSC lavas are consistent in age, location and composition with this model. After break off subduction resumed outboard of Siletzia, initiating the Cascade arc. Thus, BSC provides evidence of Farallon slab break off and furthers our understanding of the tectonic transition from widespread magmatism of the Early-Middle Eocene to the Cascade arc.

  1. Using 40Ar/39Ar ages of intercalated silicic tuffs to date flood basalts: Precise ages for Steens Basalt Member of the Columbia River Basalt Group (United States)

    Mahood, Gail A.; Benson, Thomas R.


    To establish causality between flood basalt eruptions and extinction events and global environmental effects recorded by isotopic excursions in marine sediments, highly accurate and precise ages for the flood basalts are required. But flood basalts are intrinsically difficult to date. We illustrate how 40Ar/39Ar feldspar ages for silicic tuffs intercalated with and overlying sections of Steens Basalt, the earliest lavas of the Middle Miocene Columbia River Basalt Group in the northwestern United States, provide high-precision ages that, for the first time, make it possible to resolve age differences with stratigraphic position within a section of these flood lavas. The stratigraphically lowest rhyolitic tuff, a fall deposit, yielded an age of 16.592 ± ± 0.028 Ma (FCs = 28.02 Ma), and the uppermost, the alkali rhyolite ignimbrite Tuff of Oregon Canyon, is 16.468 ± ± 0.014 Ma. The argon and stratigraphic data indicate that Steens Basalt eruptions occurred from ∼16.64 to 16.43 Ma in the southern end of its distribution. We estimate that the Steens Mountain geomagnetic reversal occurred at 16.496 ± ± 0.028 Ma (±0.18 Ma total error). Our estimates of the timing for initiation of volcanism and volumetric eruptive rates do not seem to support volcanic forcing by the initial stages of Columbia River Basalt Group eruptions as an explanation for the abrupt warming and carbonate dissolution at the beginning of the Miocene Climatic Optimum.

  2. East Greenland flood basalt volcanism: duration, volatile flux and correlation to the Paleocene-Eocene thermal maximum (United States)

    Tegner, C.; Heilmann-Clausen, C.; Larsen, R. B.; Kent, A. J. R.


    Massive flood basalt volcanism in the NE Atlantic 56 million years ago can be related to the initial manifestation of the Iceland plume and ensuing continental rifting, and has been correlated with a short (c. 200,000 years) global warming period, the Paleocene-Eocene thermal maximum (PETM). A hypothesis is that magmatic sills emplaced into organic-rich sediments on the Norwegian margin triggered rapid release of greenhouse gases. However, the largest exposed volcanic succession in the region, the E Greenland flood basalts provide additional details. The alkaline Ash-17 provides regional correlation of continental volcanism and pertubation of the oceanic environment. In E Greenland Ash-17 is interbedded with the uppermost part of the flood basalt succession. In the marine sections of Denmark, Ash-17 postdates PETM, most likely by 3-400,000 years. While radiometric ages bracket the duration of the main flood basalt event to less than a million years, the subsidence history of the Skaergaard intrusion due to flood basalt emplacement indicates it took less than 300,000 years. It is therefore possible that the main flood basalts in E Greenland postdates PETM. This is supported by a scarcity of ash layers within the PETM interval. Continental flood basalt provinces represent some of the highest sustained volcanic outputs preserved within the geologic record. Recent studies have focused on estimating the atmospheric loading of volatile elements and have led to the suggestion that they may be associated with significant global climate changes and mass extinctions. Estimates suggest that c. 400,000 km3 of basaltic lava erupted in E Greenland and the Faeroe islands. Based on measurements of melt inclusions and solubility models, approximately 3000 Gt of SO2 and 220 Gt of HCl were released by these basalts. Calculated yearly fluxes approach 10 Mt/y SO2 and 0.7 Mt/y HCl. Refinements of these estimates, based largely on further melt inclusion measurements, are proceeding. Our

  3. Age and Duration of the Paraná-Etendeka Flood Basalts and Related Plumbing System (United States)

    Renne, P. R.


    The Paraná-Etendeka Igneous Province (PEIP) comprises a large volume sequence of continental flood basalts presently distributed assymetrically between South America (mainly southern Brazil but also parts of Uruguay, Paraguay and Argentina) and southwestern Africa (Namibia, Angola), following opening of the South Atlantic ocean. The PEIP is dominated by tholeiitic basalts to basaltic andesites, with subordinate silicic rocks spanning the dacite-trachyte-rhyolite fields, which occur as lava flows, sills and dike swarms as well as intrusive complexes closely related to the eruptive rocks. The PEIP has long been subject of 40Ar/39Ar geochronologic and paleomagnetic studies which led to conclude its rapid formation near the Hauterivian stage (~133 Ma) with onward progression to Barremian from the intrusive equivalents exposed northwards. Two decades after publication of the first 40Ar/39Ar ages for the Paraná flood basalts (Renne et al., 1992) we report here an updated study of the age and duration of this magmatic event. We calibrated a set of sixty published and new results to the calibration of Renne et al. (2011), which indicates an inception age of the volcanism now estimated at 135 ± 1 Ma, before the initiation of sea floor spreading. Lava extrusion progressed over ~2 Ma from south to north. A protracted duration of ~10 Ma inferred by Stewart et al. (1996) for PEIP volcanism is clearly incorrect, as also concluded by Thiede and Vasconcelos (2010). Low-Ti mafic magmas prevailed during the earlier stages followed over time by enhanced dominance of their silicic equivalents. Eruption of the high-Ti (mafic and silicic) magmas initiated simultaneously ~0.5 m.y. later, continuing up to ~133 Ma with injection of the Ponta Grossa dyke swarm. Despite several paleomagnetic polarity intervals recorded by the lava piles in the southern (> 27°S) and central (latitudes of ~24-27°S) domains of the Brazilian PEIP, the paleomagnetic data show small dispersion in agreement

  4. Flood basalt hosted palaeosols:Potential palaeoclimatic indicators of global climate change

    Institute of Scientific and Technical Information of China (English)

    M.R.G. Sayyed


    Since continental sediments (in addition to the marine geological record) offer important means of deciphering environmental changes, the sediments hosted by the successive flows of the continental flood basalt provinces of the world should be treasure houses in gathering the palaeoclimatic data. Palaeosols developed on top of basalt flows are potentially ideal for palaeoenvironmental reconstructions because it is easy to determine their protolith geochemistry and also they define a definite time interval. The present paper summarizes the nature of the basalt-hosted palaeosols formed on the flood basalts provinces from different parts of the globe having different ages.

  5. Multiple Volcanic Episodes of Flood Basalts Caused by Underplating

    Institute of Scientific and Technical Information of China (English)

    ZHU Dan; XU Yi-gang; SONG Xie-yang; HU Rui-zhong


    @@ Most Large igneous provinces (LIPs) are emplaced within <10 Ma, with a main pulse of the magmatism in<1 Ma[1]. For example, the Siberian Traps [2] and the Deccan Traps [3] were probably erupted within one million years. Many events, such as the Columbia River event, feature a single pulse of magmatism, followed by a protrac-ted period of magmatism at a much lower rate that is linked to a plume tail[4].

  6. Signatures of the source for the Emeishan flood basalts in the Ertan area: Pb isotope evidence

    Institute of Scientific and Technical Information of China (English)


    The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31-18.41), 207Pb/204Pb (15.55-15.56) and 208Pb/204Pb (38.81-38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.

  7. Seeking a paleontological signature for mass extinctions caused by flood basalt eruptions (United States)

    Payne, J.; Bush, A. M.; Chang, E. T.; Heim, N. A.; Knope, M. L.; Pruss, S. B.


    Flood basalt eruptions coincide with numerous extinction events in the fossil record. Increasingly precise absolute age determinations for both the timing of eruption and of species extinctions have strengthened the case for flood basalt eruptions as the single most important trigger for major mass extinction events in the fossil record. However, the extent to which flood basalt eruptions cause a pattern of biotic loss distinctive from extinctions triggered by other geological or biological processes remains an open question. In the absence of diagnostic mapping between geological triggers and biological losses, establishing the identities of causal agents for mass extinctions will continue to depend primarily on evidence for temporal coincidence. Here we use a synoptic database of marine animal genera spanning the Phanerozoic, including times of first and last occurrence, body size, motility, life position, feeding mode, and respiratory physiology to assess whether extinction events temporally associated with flood basalt eruptions exhibit a diagnostic pattern of extinction selectivity. We further ask whether any events not associated with known large igneous provinces nevertheless display extinction patterns suggestive of such a cause. Finally, we ask whether extinction events associated with other primary causes, such as glaciation or bolide impact, are distinguishable from events apparently triggered by flood basalt eruptions on the basis of extinction selectivity patterns

  8. Mare Basaltic Magmatism: A View from the Sample Suite With and Without a Remote-Sensing Prospective (United States)

    Shearer, C. K.; Papike, J. J.; Gaddis, L. R.


    It has long been recognized that the lunar-sample suite returned by the Apollo and Luna missions is biased with regard to its representation of lunar mare basalts. This sampling bias is reflected in both an incorrect portrayal of the volume of mare basalt types and the absence of many basalt groups known to exist from spectral data. This bias obviously affects models for the petrogenesis of mare basalts and the interior of the Moon. Here, we explore the implications of this bias and compare models for lunar magmatism that are derived solely from samples with potential models derived from combined sample and remote-sensing data. We focus on the implications of these contrasts in several areas: volume, distribution, and age of mare basalts, KREEP enrichment on the nearside of the Moon, heat sources for melting, and depth of mare basalt source regions. The mare basalt sample suite indicates that the TiO2 distribution of crystalline mare basalt samples is bimodal, with a majority of the mare basalts occurring in the range of 1.5-5.5 and 10-13 wt% TiO2. A compositional gap appears to exist between 6 and 9 wt% TiO2. Although the population of picritic mare glasses also exhibits a bimodal distribution with regard to Ti02, it is dominated by very low-Ti glasses (Ti02. The simplest interpretation of the bimodal Ti distribution is that two distinct sources were melted to produce the mare basalts: late, rather shallow, Ti-rich lunar magma ocean (LMO) cumulates and early, rather deep, Ti-poor LMO cumulates. More recently, on the basis of Galileo SSI and Clementine UV-VIS data, global TiO2 distribution has been interpreted to be continuous in the maria with no hint of biomodality and an abundance peak between I and 3.5 wt% TiO2. These new observations indicate a mare source model in which a small volume of late, ilmenite-bearing LMO cumulates mixed with a large volume of early LMO cumulates in which ilmenite was absent. These differences in models have implications for heat

  9. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction (United States)

    Li, Hongbo; Zhang, Zhaochong; Santosh, M.; Lü, Linsu; Han, Liu; Liu, Wei


    We report the finding of a ∼20 m thick sequence of massive pyroxene-plagioclase-phyric basalt lava flows in the Yanghe area of the northeastern Sichuan Basin, within the Yangtze craton of SW China, which were previously considered to be located outside the Emeishan flood basalt province. This basaltic sequence above the middle Permian Maokou Formation (Fm.) is overlain by the late Permian Longtan Fm. Thus, the Yanghe basalts should be stratigraphically correlated with the Emeishan flood basalts. The Yanghe basalts show typical oceanic island basalt (OIB) affinity, and geochemically resemble Emeishan basalts, especially in the case of high-Ti (HT) basalts from the eastern domain of the Emeishan flood basalt province. The rocks have low age-corrected (87Sr/86Sr)t (t = 260 Ma) ratios (0.704158-0.704929) and Pb isotopic ratios [206Pb/204Pb(t) (18.264-18.524), 207Pb/204Pb(t) (15.543-15.58), and 208Pb/204Pb(t) (38.147-38.519)], and positive εNd(t) values (+3.15 to +3.61), suggesting that the lavas have not undergone any significant crustal contamination. The crystallization temperature of clinopyroxene is estimated to be 1368-1420 °C, suggesting anomalously thermal inputs from a mantle source and a possible plume-head origin. The fractionation of middle rare earth elements (MREE) to heavy REE (HREE) suggests that these rocks were produced by small degrees of partial melting of mantle peridotite within the garnet-spinel transition region. The stratigraphic relationships and similar geochemical signatures with the Emeishan flood basalts suggest that the Yanghe basalts are part of the Emeishan flood basalt province and can be considered as the northeastern limit of the Emeishan flood basalt province. Our finding extends the diameter of the Emeishan flood basalt province to ∼1200-1400 km, covering an area of up to ∼7 × 105 km2, two times more than previously estimated. The larger areal extent and giant eruption volume, incorporating the Sichuan Basin, lend support

  10. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Katherine A.; Cottrell, Elizabeth (Rhode Island); (Smithsonian)


    Subduction zone basalts are more oxidized than basalts from other tectonic settings (e.g., higher Fe{sup 3+}/{Sigma}Fe), and this contrast may play a central role in the unique geochemical processes that generate arc and continental crust. The processes generating oxidized arc magmas, however, are poorly constrained, although they appear inherently linked to subduction. Near-surface differentiation processes unique to arc settings might drive oxidation of magmas that originate in equilibrium with a relatively reduced mantle source. Alternatively, arc magmas could record the oxidation conditions of a relatively oxidized mantle source. Here, we present new measurements of olivine-hosted melt inclusions from a single eruption of Agrigan volcano, Marianas, in order to test the influence of differentiation processes vs. source conditions on the Fe{sup 3+}/{Sigma}Fe ratio, a proxy for system oxygen fugacity (fO{sub 2}). We determined Fe{sup 3+}/{Sigma}Fe ratios in glass inclusions using {mu}-XANES and couple these data with major elements, dissolved volatiles, and trace elements. After correcting for post-entrapment crystallization, Fe{sup 3+}/{Sigma}Fe ratios in the Agrigan melt inclusions (0.219 to 0.282), and their modeled fO{sub 2}s ({Delta}QFM + 1.0 to + 1.8), are uniformly more oxidized than MORB, and preserve a portion of the evolution of this magma from 5.7 to 3.2 wt.% MgO. Fractionation of olivine {+-} clinopyroxene {+-} plagioclase should increase Fe{sup 3+}/{Sigma}Fe as MgO decreases in the melt, but the data show Fe{sup 3+}/{Sigma}Fe ratios decreasing as MgO decreases below 5 wt.% MgO. The major element trajectories, taken in combination with this strong reduction trend, are inconsistent with crystallization of common ferromagnesian phases found in the bulk Agrigan sample, including magnetite. Rather, decreasing Fe{sup 3+}/{Sigma}Fe ratios correlate with decreasing S concentrations, suggesting that electronic exchanges associated with SO{sub 2} degassing may

  11. Paleomagnetism, rock-magnetism and geochemical aspects of early Cretaceous basalts of the Paraná Magmatic Province, Misiones, Argentina (United States)

    Mena, Mabel; Orgeira, María Julia; Lagorio, Silvia


    The basalts of the Posadas Formation were extruded during the huge continental volcanism that affected the Paraná Basin in the Lower Cretaceous. We have carried out a paleomagnetic and rock-magnetic study on samples collected along a basalt outcrop section in Misiones, Argentina and determined that rocks classified as tholeiitic basalts and andesi-basalts are characterized by a low to intermediate content of Ti. Paleomagnetic and rock-magnetic studies suggest that the main magnetic mineral is low-Ti titanomagnetite of superparamagnetic (SP) to single-domain (SD) sizes, and very low amounts of multi-domain (MD) particles. The stable magnetic remanence enabled us to define characteristic remanent magnetizations (ChRMs) with a maximum angular deviation (MAD) <5° in most cases; and in all the cases, a MAD <10°. The sequence has registered at least two polarity reversions, starting from a normal polarity at the base. The calculated virtual geomagnetic poles (VGPs) present an elongated distribution similar to other distributions of VGPs published for the Paraná Magmatic Province. The elongated distribution of the VGPs could be a real feature of the geomagnetic field at a time of frequent changes of polarity.

  12. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction. (United States)

    Whiteside, Jessica H; Olsen, Paul E; Eglinton, Timothy; Brookfield, Michael E; Sambrotto, Raymond N


    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO(2). The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie's Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO(2) super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date.

  13. Pb isotope evidence for contributions from different Iceland mantle components to Palaeogene East Greenland flood basalts

    DEFF Research Database (Denmark)

    Peate, David; Stecher, Ole


    We present new Pb isotope data on 21 samples of break-up-related flood basalts (56–54 Ma) from the Blosseville Kyst region of East Greenland. These samples show a considerable range in isotopic composition (206Pb/204Pb 17.6 to 19.3) that broadly correlates with compositional type. The ‘low-Ti’ type...

  14. Petrogenetic Models for the Origin of Diogenites and Their Relationship to Basaltic Magmatism on the HED Parent Body (United States)

    Shearer, C. K.; Papike, J. J.; Fowler, G.


    Diogenites have long been recognized as a major constituent of the HED meteorite group. Yet, their rather remarkable monotonous mineralogy (generally greater than 92% orthopyroxene and less than 1% plagioclase) and mineral chemistry (Fe/Fe + Mg in orthopyroxene = .21 to .30) has limited the extent diogenites could be used to reconstruct HED parent body magmatism. Recently, several papers exploring the trace element characteristics of diogenites have identified trace element systematics that appeared to mimic simple magmatic processes involving large degrees of fractional crystallization (60% to over 90%). However, several observations eliminate fractional crystallization as the primary process linking all the diogenites. Based on reasonable basaltic magma compositions, changes in temperature during orthopyroxene crystallization, and observations in terrestrial layered intrusions it is highly unlikely that extensive degrees of fractionation of a single basaltic magma (60% to 90%) should crystallize only orthopyroxene. The purpose of this paper is to explore other potential process for the chemical variability observed in diogenites and the relationship of diogenites to other HED lithologies.

  15. A brief comparison of lava flows from the Deccan Volcanic Province and the Columbia-Oregon Plateau Flood Basalts: Implications for models of flood basalt emplacement

    Indian Academy of Sciences (India)

    Ninad Bondre; Raymond A Duraiswami; Gauri Dole


    The nature and style of emplacement of Continental Flood Basalt (CFB) lava flows has been a atter of great interest as well as considerable controversy in the recent past. However, even a cursory review of published literature reveals that the Columbia River Basalt Group (CRBG) and Hawaiian volcanoes provide most of the data relevant to this topic. It is interesting to note, however, that the CRBG lava flows and their palaeotopographic control is atypical of other CFB provinces in the world. In this paper, we first present a short overview of important studies pertaining to the emplacement of flood basalt flows. We then briefly review the morphology of lava flows from the Deccan Volcanic Province (DVP) and the Columbia-Oregon Plateau flood basalts. The review underscores the existence of significant variations in lava flow morphology between different provinces, and even within the same province. It is quite likely that there were more than one way of emplacing the voluminous and extensive CFB lava flows. We argue that the establishment of general models of emplacement must be based on a comprehensive documentation of lava flow morphology from all CFB provinces.

  16. Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas (United States)

    Jennings, Eleanor S.; Gibson, Sally A.; Maclennan, John; Heinonen, Jussi S.


    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná-Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and ferropicrite olivine-hosted melt inclusions are remarkably uniform and closely reflect those of the host whole-rocks, except in a small subset affected by hydrothermal alteration. The Paraná-Etendeka picrites and ferropicrites are petrogenetically related to the more evolved and voluminous flood basalts, and so we propose that compositional homogeneity at the melt inclusion scale implies that the CFB parental mantle melts were well mixed prior to extensive crystallisation. The incompatible trace element homogeneity of olivine-hosted melt inclusions in Paraná-Etendeka and Karoo primitive magmatic rocks has also been identified in other CFB provinces and contrasts with findings from studies of basalts from mid-ocean ridges (e.g. Iceland and FAMOUS on the Mid Atlantic Ridge), where heterogeneity of incompatible trace elements in olivine-hosted melt inclusions is more pronounced. We suggest that the low variability in incompatible trace element contents of olivine-hosted melt inclusions in near-primitive CFB rocks, and also ocean island basalts associated with moderately thick lithosphere (e.g. Hawaii, Galápagos, Samoa), may reflect mixing along their longer transport pathways during ascent and/or a temperature contrast between the liquidus and the liquid when it arrives in the crust. These thermal paths promote mixing of mantle melts prior to their entrapment by growing olivine crystals in crustal magma chambers. Olivine-hosted melt inclusions of ferropicrites from the Paran

  17. Mid-Tertiary magmatism in western Big Bend National Park, Texas, U.S.A.: Evolution of basaltic source regions and generation of peralkaline rhyolite (United States)

    Parker, Don F.; Ren, Minghua; Adams, David T.; Tsai, Heng; Long, Leon E.


    Tertiary magmatism in the Big Bend region of southwestern Texas spanned 47 to 17 Ma and included representatives of all three phases (Early, Main and Late) of the Trans-Pecos magmatic province. Early phase magmatism was manifested in the Alamo Creek Basalt, an alkalic lava series ranging from basalt to benmoreite, and silicic alkalic intrusions of the Christmas Mountains. Main phase magmatism in the late Eocene/early Oligocene produced Bee Mountain Basalt, a lava series ranging from hawaiite and potassic trachybasalt to latite, widespread trachytic lavas of Tule Mountain Trachyte and silicic rocks associated with the Pine Mountain Caldera in the Chisos Mountains. Late main phase magmatism produced trachyte lava and numerous dome complexes of peralkaline Burro Mesa Rhyolite (~ 29 Ma) in western Big Bend National Park. Late stage basaltic magmatism is sparsely represented by a few lavas in the Big Bend Park area, the adjacent Black Gap area and, most notably, in the nearby Bofecillos Mountains, where alkalic basaltic rocks were emplaced as lava and dikes concurrent with active normal faulting. Trace element modeling, Nd isotope ratios and calculated depths of segregation for estimated ancestral basaltic magmas suggest that Alamo Creek basalts (ɛNdt ~ 6.15 to 2.33) were derived from depths (~ 120 to 90 km) near the lithosphere/asthenosphere boundary at temperatures of ~ 1600 to1560 °C, whereas primitive Bee Mountain basalts (ɛNdt ~ 0.285 to - 1.20) may have been segregated at shallower depths (~ 80 to 50 km) and lower temperatures (~ 1520 to 1430 °C) within the continental lithosphere. Nb/La versus Ba/La plots suggest that all were derived from OIB-modified continental lithosphere. Late stage basaltic rocks from the Bofecillos Mountains may indicate a return to source depths and temperatures similar to those calculated for Alamo Creek Basalt primitive magmas. We suggest that a zone of melting ascended into the continental lithosphere during main-phase activity and

  18. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia (United States)

    Sisson, T.W.; Bronto, S.


    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  19. Determination of properties of Proterozoic continental flood basalts of western part from North Qilian Mountains

    Institute of Scientific and Technical Information of China (English)

    夏林圻; 夏祖春; 赵江天; 徐学义; 杨合群; 赵东宏


    Proterozoic volcanic rocks of the western part from the North Qilian Mountains are the products of continental rift volcanism, belonging to continental flood basalts, the petrogeochemistry of which apears to suggest that they are derived from sub-lithospheric mantle plume sources, but that they also show evidence of continental lithosphere components involvement. Their formation is the consequences of plume-lithosphere interactions and is precursive to the opening of the North Qilian Early-Paleozoic ocean basin.

  20. The mode of emplacement of Neogene flood basalts in eastern Iceland: Facies architecture and structure of simple aphyric basalt groups (United States)

    Óskarsson, Birgir V.; Riishuus, Morten S.


    Simple flows (tabular) in the Neogene flood basalt sections of Iceland are described and their mode of emplacement assessed. The flows belong to three aphyric basalt groups: the Kumlafell group, the Hólmatindur group and the Hjálmadalur group. The groups can be traced over 50 km and originate in the Breiðdalur-Thingmuli volcanic zone. The groups have flow fields that display mixed volcanic facies architecture and can be classified after dominating type morphology. The Kumlafell and the Hólmatindur groups have predominantly simple flows of pāhoehoe and rubbly pāhoehoe morphologies with minor compound or lobate pāhoehoe flows. The Hjálmadalur group has simple flows of rubbly pāhoehoe, but also includes minor compound or lobate flows of rubble and 'a'ā. Simple flows are most common in the distal and medial areas from the vents, while more lobate flows in proximal areas. The simple flows are formed by extensive sheet lobes that are several kilometers long with plane-parallel contacts, some reaching thicknesses of ~ 40 m (aspect ratios inflation structures. Their internal structure consists generally of a simple upper vesicular crust, a dense core and a thin basal vesicular zone. The brecciated flow-top is formed by clinker and crustal rubble, the clinker often welded or agglutinated. The simple flows erupted from seemingly short-lived fissures and have the characteristics of cooling-limited flows. We estimate the effusion rates to be ~ 105 m3/s for the simple flows of the Kumlafell and Hólmatindur groups and ~ 104 m3/s for the Hjálmadalur group. The longest flows advanced 15-20 km from the fissures, with lava streams of fast propagating flows inducing tearing and brecciation of the chilled crust. Compound or lobate areas appear to reflect areas of low effusion rates or the interaction of the lava with topographic barriers or wetlands, resulting in chaotic flowage. Slowing lobes with brecciated flow-tops developed into 'a'ā flows. The groups interdigitated

  1. Insights into mare basalt thicknesses on the Moon from intrusive magmatism (United States)

    Michaut, Chloé; Thiriet, Mélanie; Thorey, Clément


    Magmatic intrusions preferentially spread along interfaces marked by rigidity and density contrasts. Thus the contact between a lunar mare and its substratum provides a preferential location for subsequent magmatic intrusions. Shallow intrusions that bend the overlying layer develop characteristic shapes that depend on their radius and on the overlying layer flexural wavelength and hence on their emplacement depth. We characterize the topography of seven, previously identified, candidate intrusive domes located within different lunar maria, using data from the Lunar Orbiter Laser Altimeter. Their topographic profiles compare very well with theoretical shapes from a model of magma flow below an elastic layer, supporting their interpretation as intrusive features. This comparison allows us to constrain their intrusion depths and hence the minimum mare thickness at these sites. These new estimates are in the range 400-1900 m and are generally comparable to or thicker than previous estimates, when available. The largest thickness (⩾ 1700 m) is obtained next to the Hortensius and Kepler areas that are proposed to be the relicts of ancient volcanic shields.

  2. A minimum UPb age for Siberian flood-basalt volcanism (United States)

    Kamo, S. L.; Czamanske, G. K.; Krogh, T. E.


    Establishing an accurate and precise age for Siberian flood-basalt volcanism is of great importance in evaluating causes for the unequaled mass extinction of flora and fauna at the Permian-Triassic boundary. We report a new, minimum UPb age obtained from zircon and baddeleyite from the mineralized Noril'sk I intrusion that cuts the lower third of this rapidly deposited, 3500-m-thick volcanic sequence near Noril'sk. This 251.2 ± 0.3 (2σ) Ma age is within analytical error of the SHRIMP UPb age for zircon from the Permian-Triassic boundary at Meishan, South China [251.1 ± 3.6 Ma (2σ)], and confirms Siberian basaltic volcanism as a possible contributor to the mass extinction.

  3. A minimum U-Pb age for Siberian flood-basalt volcanism (United States)

    Kamo, S.L.; Czamanske, G.K.; Krogh, T.E.


    Establishing an accurate and precise age for Siberian flood-basalt volcanism is of great importance in evaluating causes for the unequaled mass extinction of flora and fauna at the Permian-Triassic boundary. We report a new, minimum U-Pb age obtained from zircon and baddeleyite from the mineralized Noril'sk I intrusion that cuts the lower third of this rapidly deposited, 3500-m-thick volcanic sequence near Noril'sk. This 251.2 ?? 0.3 (2??) Ma age is within analytical error of the SHRIMP U-Pb age for zircon from the Permian-Triassic boundary at Meishan, South China [251.1 ?? 3.6 Ma (2??)], and confirms Siberian basaltic volcanism as a possible contributor to the mass extinction.

  4. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. (United States)

    Liu, Lijun; Stegman, Dave R


    The origin of the Steens-Columbia River (SCR) flood basalts, which is presumed to be the onset of Yellowstone volcanism, has remained controversial, with the proposed conceptual models involving either a mantle plume or back-arc processes. Recent tomographic inversions based on the USArray data reveal unprecedented detail of upper-mantle structures of the western USA and tightly constrain geodynamic models simulating Farallon subduction, which has been proposed to influence the Yellowstone volcanism. Here we show that the best-fitting geodynamic model depicts an episode of slab tearing about 17 million years ago under eastern Oregon, where an associated sub-slab asthenospheric upwelling thermally erodes the Farallon slab, leading to formation of a slab gap at shallow depth. Driven by a gradient of dynamic pressure, the tear ruptured quickly north and south and within about two million years covering a distance of around 900 kilometres along all of eastern Oregon and northern Nevada. This tear would be consistent with the occurrence of major volcanic dikes during the SCR-Northern Nevada Rift flood basalt event both in space and time. The model predicts a petrogenetic sequence for the flood basalt with sources of melt starting from the base of the slab, at first remelting oceanic lithosphere and then evolving upwards, ending with remelting of oceanic crust. Such a progression helps to reconcile the existing controversies on the interpretation of SCR geochemistry and the involvement of the putative Yellowstone plume. Our study suggests a new mechanism for the formation of large igneous provinces.

  5. Petrology of gabbroic xenoliths in 1960 Kilauea basalt: crystalline remnants of prior (1955) magmatism (United States)

    Fodor, R.V.; Moore, R.B.


    The 1960 Kapoho lavas of Kilauea's east rift zone contain 1-10 cm xenoliths of olivine gabbro, olivine gabbro-norite, and gabbro norite. Textures are poikilitic (ol+sp+cpx in pl) and intergranular (cpx+pl??ol??opx). Poikilitic xenoliths, which we interpret as cumulates, have the most primitive mineral compositions, Fo82.5, cpx Mg# 86.5, and An80.5. Many granular xenoliths (ol and noritic gabbro) contain abundant vesicular glass that gives them intersertal, hyaloophitic, and overall 'open' textures to suggest that they represent 'mush' and 'crust' of a magma crystallization environment. Their phase compositions are more evolved (Fo80-70, cpx Mg# 82-75, and An73-63) than those of the poikilitic xenoliths. Associated glass is basaltic, but evolved (MgO 5 wt%; TiO2 3.7-5.8 wt%). The gabbroic xenolith mineral compositions fit existing fractional crystallization models that relate the origins of various Kilauea lavas to one another. FeO/MgO crystal-liquid partitioning is consistent with the poikilitic ol-gabbro assemblage forming as a crystallization product from Kilauea summit magma with ???8 wt% MgO that was parental to evolved lavas on the east rift zone. For example, least squares calculations link summit magmas to early 1955 rift-zone lavas (???5 wt% MgO) through ???28-34% crystallization of the ol+sp+cpx+pl that comprise the poikilitic ol-gabbros. The other ol-gabbro assemblages and the olivine gabbro-norite assemblages crystallized from evolved liquids, such as represented by the early 1955 and late 1955 lavas (???6.5 wt% MgO) of the east rift zone. The eruption of 1960 Kapoho magmas, then, scoured the rift-zone reservoir system to entrain portions of cumulate and solidification zones that had coated reservoir margins during crystallization of prior east rift-zone magmas. ?? 1994 Springer-Verlag.

  6. Spatial Correlation of Deep Moonquakes and Mare Basalts and Implications for Lunar Present-day Mantle Structure, Magmatism and Thermal Evolution (United States)

    Muirhead, A. C.; Zhong, S.


    In order to understand the evolution and interior dynamics of the Moon, it is necessary to understand the petrogenesis of the mare basalts which dominate the nearside surface. Samples and observations from the Apollo program have helped put constraints on the composition and the geological processes of the mare basalts. Geochemical and petrological studies of lunar samples suggest that this magmatism must have originated from a heterogeneous mantle and were mostly emplaced between 3.85 and 3.0 billion years ago although the depth of the source regions of the mare basalts is poorly constrained by petrological experiments with estimated depths ranging from 100 to 500 km [Shearer et al, 2006]. This leads to different hypotheses with shallow and deep physical processes for mare basalt genesis [Zhong et al, 2000 and Wieczorek and Phillips, 2000]. Another important first order observation from the Apollo era is the presence of moonquakes recorded by the Apollo Seismic Network. Significant work has been done to locate the hypocenters of the moonquakes, especially those deemed deep moonquake clusters [e.g., Nakamura, 1982]. The deep moonquakes (DMQs) were found to occur at depths of 700-900 km in about 300 clusters or “nests” mostly on the nearside [Nakamura 2003, 2005]. Understanding the location and cause of the DMQ will help constrain the current state of the mantle, including the presence of heterogeneties. While it remains unresolved whether the nearside distribution of DMQs is due to biasing effects of the nearside distribution of Apollo seismic stations, it has been suggested that most of the DMQ nests tend to occur near mare basalt terrains [Minshull and Goult, 1988]. In this study, we have correlated the presence of mare basalts with the epicenters of ~100 deep moonquake clusters, using recent remote sensing data of FeO as a proxy for mare basalts [e.g.,Lawrence et al, 2000] and newly compiled locations of DMQs clusters [Nakamura, 2005]. Our results show that

  7. Platinum-group Elements Geochemistry of the Yangliuping Magmatic Ni-Cu-PGE Sulfide Deposit:Implications of Its Genetic Link with the Extrusive Basalts

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jianbin; CAO Zhimin; SONG Xieyan; AN Wei; LIU Ji


    Primitive mantle-normalized Platinum-group elements (PGE) concentration patterns for the Zhengziyanwo intrusion and Dashibao Formation basalts are of positive slope, similar to most of the world-class magmatic Ni-Cu-PGE sulfide deposits. Characters of this intrusion and its related ores and Dashibao Formation basalts are their negative Pt-anomaly and high concentration of Rh relative to Pt and Pd, facts being interpreted to be the results of crystallization and fractionation of Pt-alloys and spinel phase-free crystallization history for the magma, respectively. PGE parameters of the Dashibao Formation basalts are consistent with the general trend of those found for the Zhengziyanwo intrusion, and this might infer a genetic link between them.

  8. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism (United States)

    van de Schootbrugge, B.; Quan, T. M.; Lindström, S.; Püttmann, W.; Heunisch, C.; Pross, J.; Fiebig, J.; Petschick, R.; Röhling, H.-G.; Richoz, S.; Rosenthal, Y.; Falkowski, P. G.


    One of the five largest mass extinctions of the past 600million years occurred at the boundary of the Triassic and Jurassic periods, 201.6million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.

  9. Rock magnetic evidence of inflation of a flood basalt lava flow (United States)

    Cañón-Tapia, Edgardo; Coe, Robert


    The anisotropy of magnetic susceptibility (AMS) of lava flows is an innovative method which has been proved to be directly related to the shear history of lava. One of the advantages of this method is that it can be used in the absence of other morphological features commonly employed to study the mechanism of emplacement of lava flows. This feature of the AMS method makes it very attractive to gain insight into the mechanism of emplacement of massive, relatively featureless, long lava flows such as those forming flood basalt provinces. In this work, we report the results of the measurement of AMS as a function of vertical position within the Birkett lava flow, one of the Columbia River Basalt Group flows. The observed variation of AMS allows us to identify at least 16 discrete events of lava injection and to estimate the thickness of individual injection events. The AMS-estimated thickness of each injection event (in the range of 0.5-4.0 m) coincides with the range inferred for injected lava pulses in modern Hawaiian lava flows. Thus, the evidence provided by the AMS method supports the notion that at least some flood basalt lava flows were emplaced by the same mechanism as many present-day inflated pahoehoe flows. Regarding the orientation of the principal susceptibilities, in the central part of the flow they define a preferred orientation along an E-W trend, whereas in the outer parts of the flow they have a NNE-SSW trend. This difference in the orientation of the principal susceptibilities is interpreted as the result of a change of flow direction of the lava as emplacement progressed. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at

  10. Progress Towards a Thermo-Mechanical Magma Chamber Forward Model for Eruption Cycles, Applied to the Columbia River Flood Basalts (United States)

    Karlstrom, L.; Ozimek, C.


    Magma chamber modeling has advanced to the stage where it is now possible to develop self-consistent, predictive models that consider mechanical, thermal, and compositional magma time evolution through multiple eruptive cycles. We have developed such a thermo-mechanical-chemical model for a laterally extensive sill-like chamber beneath free surface, to understand physical controls on eruptive products through time at long-lived magmatic centers. This model predicts the relative importance of recharge, eruption, assimilation and fractional crystallization (REAFC, Lee et al., 2013) on evolving chemical composition as a function of mechanical magma chamber stability regimes. We solve for the time evolution of chamber pressure, temperature, gas volume fraction, volume, elemental concentration in the melt and crustal temperature field that accounts for moving boundary conditions associated with chamber inflation (and the possibility of coupled chambers at different depths). The density, volume fractions of melt and crystals, crustal assimilation and the changing viscosity and crustal properties of the wall rock are also tracked, along with joint solubility of water and CO2. The eventual goal is to develop an efficient forward model to invert for eruptive records at long-lived eruptive centers, where multiple types of data for eruptions are available. As a first step, we apply this model to a new compilation of eruptive data from the Columbia River Flood Basalts (CRFB), which erupted 210,000 km3 from feeder dikes in Washington, Oregon and Idaho between 16.9-6Ma. Data include volumes, timing and geochemical composition of eruptive units, along with seismic surveys and clinopyroxene geobarometry that constrain depth of storage through time. We are in the process of performing a suite of simulations varying model input parameters such as mantle melt rate, emplacement depth, wall rock compositions and rheology, and volatile content to explain volume, eruption timescales, and

  11. From Basalt to Dacite: Examining Magmatic Evolution at the 9° 03'N Overlapping Spreading Center, East Pacific Rise (United States)

    Wanless, D.; Perfit, M.; Ridley, W. I.; Klein, E.; Zaino, A.


    Over 280 rock samples were collected in the spring of 2007 from the 9°03' N Overlapping Spreading Center (OSC) using the ROV Jason II. This was done in combination with an extensive DSL 120A side-scan sonar survey, providing one of the most detailed sampling suites from an OSC. The site was also the focus of past geophysical studies that indicated the presence of an extensive magma lens in the region. Lava geochemistry at 9°03' N covers a wide range of compositions (Mg# from 17 to 56), including evolved MORB, FeTi basalts, andesites, and dacites (~67 wt% SiO2). The diversity in composition at the OSC appears to be related to geologic setting of the erupted lavas, shallow magma chamber processes, and variations in magma supply. The 9°03' N OSC can be divided into three main sections: the eastern limb propagating southward, the western receding limb, and an overlap basin separating the two limbs. Lavas erupted within the neovolcanic zone on the eastern limb span the range of compositions erupted at the OSC (7.29 to 0.67 wt% MgO), while those erupted over the northern portion of the overlap basin are more limited in composition (6.47 to 7.23 wt% MgO). Preliminary results suggest that the on-axis major element variations may be due to mixing of evolved MORB and a silica-rich melt beneath eastern limb axis. Magma mixing is also supported by petrographic and macroscopic textural observations. Eruptions on the southern tip of the east limb, which is propagating into cold crust, are more primitive in composition and contain large phenocrysts suggesting that both thermal conditions in the crust and low magma supply may be important factors in the magmatic evolution. The phenocryst abundance and composition of lavas erupted on the dying western limb may also be related to similar factors.

  12. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts (United States)

    Bezard, Rachel; Fischer-Gödde, Mario; Hamelin, Cédric; Brennecka, Gregory A.; Kleine, Thorsten


    Molybdenum (Mo) stable isotopes hold great potential to investigate the processes involved in planetary formation and differentiation. However their use is currently hampered by the lack of understanding of the dominant controls driving mass-dependent fractionations at high temperature. Here we investigate the role of magmatic processes and mantle source heterogeneities on the Mo isotope composition of Mid-Ocean Ridges Basalts (MORBs) using samples from two contrasting ridge segments: (1) the extremely fast spreading Pacific-Antarctic (66-41°S) section devoid of plume influence and; (2) the slow spreading Mohns-Knipovich segment (77-71°N) intercepted by the Jan Mayen Plume (71°N). We show that significant variations in Mo stable isotope composition exist in MORBs with δ98/95Mo ranging from - 0.24 ‰ to + 0.15 ‰ (relative to NIST SRM3134). The absence of correlation between δ98/95Mo and indices of magma differentiation or partial melting suggests a negligible impact of these processes on the isotopic variations observed. On the other hand, the δ98/95Mo variations seem to be associated with changes in radiogenic isotope signatures and rare earth element ratios (e.g., (La/Sm)N), suggesting mantle source heterogeneities as a dominant factor for the δ98/95Mo variations amongst MORBs. The heaviest Mo isotope compositions correspond to the most enriched signatures, suggesting that recycled crustal components are isotopically heavy compared to the uncontaminated depleted mantle. The uncontaminated depleted mantle shows slightly sub-chondritic δ98/95Mo, which cannot be produced by core formation and, therefore, more likely result from extensive anterior partial melting of the mantle. Consequently, the primitive δ98/95Mo composition of the depleted mantle appears overprinted by the effects of both partial melting and crustal recycling.

  13. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction (United States)

    Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.


    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  14. A Plagioclase Ultraphyric Basalt group in the Neogene flood basalt piles of eastern Iceland: Volcanic architecture and mode of emplacement (United States)

    Oskarsson, B. V.; Riishuus, M. S.


    3D photogrammetry in conjunction with ground mapping was applied in order to assess the architecture of a Plagioclase Ultraphyric Basalt (PUB) group in eastern Iceland, namely the Grænavatn group. The ~10 Myr old group is exposed in steep glacially carved fjords and can be traced over 60 km along strike. Two feeder dikes have been found and show that the group erupted along the trend of the dike swarm associated with the Breiddalur central volcano. The group has 9--14 flows where thickest, and thins to about 3--4 flows up-dip to the east within the distance of 15-20 km from the source. We have estimated the volume of the group to exceed 40 km3. The flows have mixed architecture of simple and compound morphology. The flow lobes have thicknesses from 1--24 m and many reach lengths over 1000 m. The surface morphology varies from rubbly to scoriaceous, but is dominantly of pahoehoe style. The internal structure of the lava flows is well preserved and the flows display abundant vesicle cylinders. The modal percentage of An-rich plagioclase macrocrysts varies from 25--50 % and they are in the range of 5--30 mm. The aspect ratio of the group and the nature of the flows indicate fissure-fed eruptions. A thick flow found at the base of the group in various locations seems to record the largest eruption episode in the formation of the group. This phase is also the most abundant in macrocryst. An asymmetric buildup is seen in one location and may have characterized the general buildup of the group. The general morphology of the lava flows suggests low viscous behavior, at odds with the high crystal content. Petrographic observations and mineral chemistry shows that the plagioclase macrocrysts are very calcic (An80-85) and in disequilibrium with the groundmass and plagioclases therein (An50-70). Thus the apparent lava rheology and emplacement of the PUBs was likely achieved due to fast ascent of the magma through the crust and transfer of heat from the primitive macrocrysts

  15. High-3He plume origin and temporal-spatial evolution of the Siberian flood basalts (United States)

    Basu, A.R.; Poreda, R.J.; Renne, P.R.; Teichmann, F.; Vasiliev, Y.R.; Sobolev, N.V.; Turrin, B.D.


    An olivine nephelinite from the lower part of a thick alkalic ultrabasic and mafic sequence of volcanic rocks of the northeastern part of the Siberian flood basalt province (SFBP) yielded a 40ArX39Ar plateau age of 253.3 ?? 2.6 million years, distinctly older than the main tholeiitic pulse of the SFBP at 250.0 million years. Olivine phenocrysts of this rock showed 3He/4He ratios up to 12.7 times the atmospheric ratio; these values suggest a lower mantle plume origin. The neodymium and strontium isotopes, rare earth element concentration patterns, and cerium/lead ratios of the associated rocks were also consistent with their derivation from a near-cnondritic, primitive plume. Geochemical data from the 250-million-year-old volcanic rocks higher up in the sequence indicate interaction of this high-3He SFBP plume with a suboceanic-type upper mantle beneath Siberia.

  16. Earth's evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry (United States)

    Greenough, John D.; McDivitt, Jordan A.


    Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69-0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite-trondhjemite-granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)-Nb/Y (% melting proxy) relationships supporting low pressure, high % melting

  17. Magmatic evolution of the fresh basalts from the Ridge axis near Egaria Fracture Zone, Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.V.

    composition (MgO ~ 9.50%) and from this the remaining basalts seem to have fractionated. Major and trace element data reveal low-pressure crystal fractionation in a shallow level magma chamber within the crust. The chemical data of the basalts under study...

  18. Ar-Ar and U-Pb geochronology of Late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism

    Institute of Scientific and Technical Information of China (English)

    FAN Weiming; WANG Yuejun; PENG Touping; MIAO Laicheng; GUO Feng


    The Late Paleozoic layered or stratoid-layered basalts in western Guangxi have similar elemental and isotopic compositions to Emeishan high-Ti basalts. Whole-rock 40Ar/39Ar and SHRIMP zircon U-Pb dating were carried out for the representative basalt samples in three typical profiles in the area. Three basalts from the upper segment of Yangxu profile and lower segment of Yufeng and Min'an profiles yield the 40Ar/39Ar plateau ages of 253.6±0.4 Ma (20BS-71),255.4±0.4 Ma (20BS-99) and 256.2±0.8 Ma (20BS-119), respectively. Twenty-three analyses on 23 zircons of the basalt from the upper segment of Yangxu profile give a weighted mean 206pb/238U age of 253.7±6.1 Ma with an MSWD = 2.8.These new and published geochronological data for Emeishan large igneous province (LIP) indicate that the Emeishan LIP was initiated at ~260 Ma, voluminously erupted between 253 and 256 Ma, and possibly ended at ~251-253Ma' The age (251-260 Ma) is generally consistent with that of the associated environmental deterioration and mass extinction events at the end-Guadalupian and Permo-Triassic boundary. These precise geochronological data provide important constraints on the dominantly eruptive time of the Emeishan LIP and understanding of the distribution of Emeishan high-Ti basalts and its mantle plume dynamics.

  19. Experimental Parameters for Wax Modeling of the Deccan Traps Flood Basalt Province (United States)

    Rader, E. L.; Vanderkluysen, L.; Clarke, A. B.


    The Deccan Traps consist of ~1,000,000 km3 of predominantly tholeiitic basaltic lava flows, which cover the western Indian subcontinent. Their eruption occurred over a ~1-3 million year period overlapping with the Cretaceous-Paleogene (K-Pg) boundary and, hence, has been implicated in one of the most significant extinction events in the history of the planet. The extent of environmental impacts caused by flood basalt eruptions is thought to be related, in part, to the amount, species, and timescales of volcanic gases released. Therefore, constraining the effusion rate of Deccan Traps lava flows is fundamental to understanding the K-Pg extinction event. Previous field and experimental work with polyethylene glycol (PEG) wax has shown that effusion rate is a primary factor controlling flow morphology. While sinuous flows and lava domes have been successfully recreated with PEG wax, the two most common morphologies seen in the Deccan Traps (compound and inflated sheet lobes) have not. We used heated PEG-400 wax injected into a tank of chilled water with a peristaltic pump to form experimental eruptions with high flow rate and low viscosity to replicate inflated flow lobes, and low flow rate with higher viscosity for compound flows. Unlike previous experiments, flow rate was varied during a single experiment to examine the effect on flow morphology. The Psi value is used as a scaling parameter to estimate effusion rates for compound and 'simple' inflated flows in the Deccan Traps. When combined with field work for volume estimates of the two flow types, these experiments will provide the best constraint on eruption rates to date.

  20. Changing compositions in the Iceland plume; Isotopic and elemental constraints from the Paleogene Faroe flood basalts

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin


    -type component similar in geochemistry to the Icelandic Öræfajökull lavas. This component is believed to be recycled pelagic sediments in the plume but it can alternatively be a local crustal or lithospheric mantle component. The enriched Faroe high-Ti lavas erupted inland from the rift have isotopic......Elemental and Sr, Nd, Hf and high precision Pb isotopic data are presented from 59 low-Ti and high-Ti lavas from the syn-break up part of the Faroe Flood Basalt Province. The depleted MORB-like low-Ti lavas erupted in the rift zone between the Faroe Islands and central East Greenland around...... the time of break up of the North Atlantic have isotopic end-member compositions different from the depleted Iceland lavas. We suggest that the main low-Ti mantle component is NAEM (North Atlantic End-Member (Ellam and Stuart, 2000, J. Petrol. 41, 919) and that the 207Pb/204Pb value of the component should...

  1. Magmatic sulfide-rich nickel-copper deposits related to picrite and (or) tholeiitic basalt dike-sill complexes-A preliminary deposit model (United States)

    Schulz, Klaus J.; Chandler, Val W.; Nicholson, Suzanne W.; Piatak, Nadine M.; Seal, Robert R., II; Woodruff, Laurel G.; Zientek, Michael L.


    Magmatic sulfide deposits containing nickel (Ni) and copper (Cu), with or without (?) platinum-group elements (PGEs), account for approximately 60 percent of the world's Ni production and are active exploration targets in the United States and elsewhere. On the basis of their principal metal production, magmatic sulfide deposits in mafic rocks can be divided into two major types: those that are sulfide-rich, typically with 10 to 90 percent sulfide minerals, and have economic value primarily because of their Ni and Cu contents; and those that are sulfide-poor, typically with 0.5 to 5 percent sulfide minerals, and are exploited principally for PGE. Because the purpose of this deposit model is to facilitate the assessment for undiscovered, potentially economic magmatic Ni-Cu?PGE sulfide deposits in the United States, it addresses only those deposits of economic significance that are likely to occur in the United States on the basis of known geology. Thus, this model focuses on deposits hosted by small- to medium-sized mafic and (or) ultramafic dikes and sills that are related to picrite and tholeiitic basalt magmatic systems generally emplaced in continental settings as a component of large igneous provinces (LIPs). World-class examples (those containing greater than 1 million tons Ni) of this deposit type include deposits at Noril'sk-Talnakh (Russia), Jinchuan (China), Pechenga (Russia), Voisey's Bay (Canada), and Kabanga (Tanzania). In the United States, this deposit type is represented by the Eagle deposit in northern Michigan, currently under development by Kennecott Minerals.

  2. Geochemistry of Paraná-Etendeka basalts from Misiones, Argentina: Some new insights into the petrogenesis of high-Ti continental flood basalts (United States)

    Rämö, O. Tapani; Heikkilä, Pasi A.; Pulkkinen, Arto H.


    The Early Cretaceous (˜135-131 Ma) Paraná-Etendeka continental flood basalts, preserved in bulk in the Paraná basin of southern Brazil and vicinity, have been divided into low-Ti and high-Ti types that govern the southern and northern halves of the basin, respectively. We have examined a new sample set from the southern margin of the northern high-Ti segment of Paraná basalts in Misiones, northeastern Argentina. These basalts are strongly to moderately enriched in TiO2 (2-4 wt.%), have relatively high Ti/Y (300-500), low MgO (3.5-6.5 wt.%), and high Fe (FeO(tot) 12-14 wt.%) and belong to the Pitanga and Paranapanema magma types of Peate et al. (1992). Nd and Sr isotope compositions are quite unvarying with ɛNd (at 133 Ma) values of -4.6 to -3.6 and initial 87Sr/86Sr of 0.7054-0.7059 and show no variation with fractionation. Compared to high-Ti lavas in the central and northern parts of the Paraná high-Ti basalt segment, the lavas from Misiones are similar to those in the northeastern magin of the basin but less radiogenic in initial Nd isotope composition than those in the central part. This variation probably reflects mixed EM1-EM2 source components in the sublithospheric mantle. A polybaric melt model of a sublithospheric mantle source at the garnet lherzolite-spinel lherzolite transition is compatible with the observed Ti budget of the Pitanga and Paranapanema lavas, regardless of the Nd isotope composition of their purported source.

  3. Palaeoweathering characteristics of an intrabasaltic red bole of the Deccan Flood Basalts near Shrivardhan of western coast of India

    Indian Academy of Sciences (India)

    M R G Sayyed; R G Pardeshi; R Islam


    An intrabasaltic red bole horizon is studied for its weathering characteristics with respect to the underlying and overlying basalts. The study indicates that all the three units have been considerably weathered; the red bole unit, however shows some distinctive characteristics. The red boles show a higher cation exchange capacity (CEC) and lower sodium adsorption ratio (SAR) and organic carbon (OC) as compared to the weathered basalts. The lower values of Al2O3, TiO2 and Fe2O3(T) in red boles indicate their lesser weathering than the underlying and overlying basalts, which is further corroborated by the weathering intensity measured by the indices like chemical index of alteration (CIA) and statistical empirical index of chemical weathering (W). It is also evident that the red bole samples show more retention of original mafic and felsic components. While K2O exhibits an erratic behaviour, the MgO and CaO do not show much leaching in red boles. Lesser leaching and salinity in the red boles is indicated by the higher values of calcification and lower values of salinization. The SiO2-Al2O3-Fe2O3 plot indicates that red bole samples are close to the basalt field, while the weathered upper basalt is more kaolinized than the weathered lower basalt. These observations reveal that the post-formational weathering processes have least affected the original palaeoweathering characters of the red bole horizon and hence the intrabasaltic palaeosols (weathering horizons) can effectively be used to constrain the palaeoweathering and palaeoclimates during the continental flood basalt episodes in the geologic past.

  4. The mafic rocks of Shao La (Kharta, S. Tibet): Ordovician basaltic magmatism in the greater himalayan crystallines of central-eastern Himalaya (United States)

    Visonà, Dario; Rubatto, Daniela; Villa, Igor M.


    In the Kharta area, east of Mount Everest, the Greater Himalayan Crystallines are significantly richer in mafic rocks than the surrounding areas, Sikkim-West Bhutan and Makalu-Cho Oyu. These rocks are lenses with a complex metamorphic history. The mafic lenses of Shao La, in the Greater Himalayan Sequence south of Kharta, are here considerated as dismembered dykes apparently escaped the Himalayan high-temperature metamorphism and only record a low-grade metamorphic event. They are calc-alkaline medium-K basalts to basaltic andesites, consisting of plagioclase (core 62% An and rim 55% An), augite (Wo 43-47En36 36-37Fs 16-20), hypersthene (Wo 1.6-3.3En 50-52Fs 46-48), and minor brown hornblende, biotite and ilmenite. They show strong enrichment in low ionic potential elements relative to high-field-strength elements, and only minor Ce and P enrichment with respect to MORB. Combined Sr-Nd systematics suggest contamination of a basic magma from a subcontinental mantle source with a small amount of crust (about 4 vol.%). This in turn indicates that the Shao La basalts and basaltic andesites have the geochemical fingerprint of a supra-subduction zone magma. U-Pb dating of zircon from one sample yielded an age of 457 ± 6 Ma for the crystallisation of the Shao La basic rocks, assigning them to the Cambro-Ordovician Bhimphedian orogenic event. The age and geochemical characteristics of the Shao La rocks are similar to those of the basic rocks of the Cambro-Ordovician Mandi pluton further west. This suggests the existence of an extensive supra-subduction zone magmatism along the Indian margin of Gondwana. Like the bimodal granite-gabbro magmatism in the Mandi-Kaplas area, the Shao La basic rocks are contemporaneous with the emplacement of granitic plutons in the Everest-Kharta area. This acid plutonism is interpreted as crustal melt triggered by the upwelling of metasomatised mantle in a back-arc setting. The age of basic and acidic plutonism in the Everest-Kharta area is

  5. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records (United States)

    Klemm, Veronika; Frank, Martin; Levasseur, Sylvain; Halliday, Alex N.; Hein, James R.


    Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10 Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10 Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12 Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the Nördlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum.

  6. Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies (United States)

    Grattan, John


    This paper is based on the premise that research into the environmental impact of continental flood basalt (CFB) volcanism has paid insufficient attention to the potential ecosystem damage that would result from the direct deposition of hundreds of megatons (Tg) of sulphur and other volatiles. The environmental impacts of the 1783 Laki Fissure eruption are reviewed in outline. It is shown that in a relatively brief period of volcanic activity, volatiles emitted by the eruption damaged and destroyed vegetation from the Arctic Ocean to the Mediterranean. Air pollution was so intense that human health was affected and the national death rate increased dramatically in both England and France. It is proposed that the events of 1783 may be used as a paradigm for the environmental impacts of a CFB lava flow, and the emissions of 1783 are scaled up to illustrate this point. Thus, if a Laki style event were to erupt for a year it would approach the physical scale of a single episode of the Roza flow in the Columbia River CFB and potentially yield 576 Tg of sulphur gases which could have been oxidised into approximately 945 Tg of aerosol. This could generate a tropospheric aerosol mass of approximately 708 Tg H 2SO 4. The ecosystem impact of the deposition of acids on this scale would be profound and, as with the actual Laki event, be continental in scale. All parts of the plant life cycle would be disrupted, including photosynthesis and fruiting. Inevitably, with the disruption of food webs animals would also be affected. Poorly buffered inland waters would be acidified, as would Boreal soils, reducing their biodiversity. In our already polluted and interdependent world, any future event on this scale would have serious consequences for human health and trade.

  7. Axial focusing of impact energy in the earth`s interior: A possible link to flood basalts and hotspots

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.; Campbell, D.L.


    We present the results of shock physics and seismological computational simulations that show how energy from a large impact can be coupled to the interior of the Earth. The radially-diverging shock wave generated by the impact decays to linearly elastic seismic waves. These waves reconverge (minus attenuation) along the axis of symmetry between the impact and its antipode. The locations that experience the most strain cycles with the largest amplitudes will dissipate the most energy and have the largest increases in temperature (for a given attenuation efficiency). We have shown that the locus of maximum energy deposition in the mantle lies along the impact axis. Moreover, the most intense focusing is within the asthenosphere at the antipode, within the range of depths where mechanical energy is most readily converted to heat. We propose that if large impacts on the Earth leave geological evidence anywhere other than the impact site itself, it will be at the antipode. We suggest that the most likely result of the focusing for a sufficiently large impact, consistent with features observed in the geological record, would be a flood basalt eruption at the antipode followed by hotspot volcanism. A direct prediction of this model would be the existence of undiscovered impact structures whose reconstructed locations would be antipodal to flood basalt provinces. One such structure would be in the Indian Ocean, associated with the Columbia River Basalts and Yellowstone; another would be a second K/T impact structure in the Pacific Ocean, associated with the Deccan Traps and Reunion.

  8. Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy) (United States)

    Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.


    The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the

  9. Spatial and temporal evolution of a back-arc Plio-pleistocene magmatic series: an example of Auca Mahuida and El Tromen volcanoes from Payenia Basaltic Province, Argentina (United States)

    Pallares, C.; Quidelleur, X.; Debreil, J. A.; Gillot, P. Y.; Tchilinguirian, P.


    The Auca Mahuida and El Tromen volcanoes are located in southern Payenia Basaltic Province (PBP), within a back-arc zone. New K-Ar ages and geochemistry analysis confirm that during the Plio-pleistocene epoch they erupted mainly basaltic and andesitic lavas. Normative minerals (Ol: 17.61, Ne: 3.86 and Ab: 23.57) of shield Auca Mahuida lavas characterize these rocks in the boundary between alkali basalts and basanites. Compatible elements (Ni: 227.30 ppm, Co: 50.75 ppm) and MgO values (9.70 %) reveal their primitive origin (OIB type). On the contrary, major and trace elements data from El Tromen volcano expose typical characteristics of more evolved laves. The Auca Mahuida magmas plotted in incompatible multi-element diagram [normalised to the primitive mantle (MP) of Sun & Mcdonough,1989] show moderately fractioned patterns (50 to 100 times the MP), a slight depletion in heavy REE and Y and a very slight depletion in Nb (signature of subduction?). However, the lavas of El Tromen show spidergrams similar to calc-alkaline or Low Silica Adakites patters: moderate enrichment in the most incompatible elements, negative anomaly in Nb, positive anomalies in K, Pb, Sr and depletion in heavy REE and Y. Furthermore, the Ba/La and La/Ta ratios of El Tromen lavas confirm an arc signature (20 and 29 respectively). The geochemical affinity of El Tromen volcano could be due to geographical proximity of the Andes arc. The very slight arc signature exposed by the shield Auca Mahuida volcano could be due to this volcano location (130 km SE of El Tromen) within a intersection between the PBP and Tromen-Domuyo belt, thus the alkaline source was only slightly modified. Finally, we think that in this region magmatic mantle sources were probably modified by subduction-related fluids; this metasomatism would generate the lavas of El Tromen volcano, while magmatic mantle sources of the shield Auca Mahuida were not considerably influenced by this metasomatism. Finally, our new K-Ar ages

  10. The survival of early Earth mantle reservoirs: Evidence from flood basalts (United States)

    Jackson, M. G.


    isotopic characteristics to match the predicted composition of a primitive, non-chondritic Earth. Jackson et al. (2010, Nature) reported primitive Nd and Pb isotopic compositions in Baffin Island lavas, which are known to host the highest terrestrial mantle 3He/4He ratios (Kent et al., 2003, Nature; Graham et al., 1998 EPSL). Baffin Island lavas constitute a large igneous province (LIP). Using the wisdom gained from Baffin Island, Jackson and Carlson (2011, Nature) prospected for primitive mantle isotopic characteristics in LIPs globally, and they identified a pervasive signature of non-chondritic primitive mantle 143Nd/144Nd and primitive Pb-isotopic ratios in the largest LIPs: Deccan, Siberia, Ontong Java, Kerguelen and Karoo. The geochemical and petrologic characteristics of a primitive mantle reservoir may explain its ubiquitous presence in LIPs. A primitive reservoir will host higher concentrations of the incompatible radioactive elements than depleted reservoirs, and it will therefore be hotter. Similarly, such a reservoir has never had melt extracted, so it will be more fertile and yield more melt. Therefore, a hotter, more fusible (non-chondritic) primitive mantle source sourcing LIPs may constitute the perfect recipe for flood basalt genesis.

  11. Comparison of the ages of large-body impacts, flood-basalt eruptions, ocean-anoxic events and extinctions over the last 260 million years: a statistical study (United States)

    Rampino, Michael R.; Caldeira, Ken


    Many studies have linked mass extinction events with the catastrophic effects of large-body impacts and flood-basalt eruptions, sometimes as competing explanations. We find that the ages of at least 10 out of a total of 11 documented extinction events over the last 260 Myr (12 out of 13 if we include two lesser extinction events) coincide, within errors, with the best-known ages of either a large impact crater (≥70 km diameter) or a continental flood-basalt eruption. The null hypothesis that this could occur by chance can be rejected with very high confidence (>99.999%). The ages of large impact craters correlate with recognized extinction events at 36 (two impacts), 66, 145 and 215 Myr ago (and possibly an event at 168 Myr ago), and the ages of continental flood basalts correlate with extinctions at 66, 94, 116, 183, 201, 252 and 259 Myr ago (and possibly at 133 Myr ago). Furthermore, at least 7 periods of widespread anoxia in the oceans of the last 260 Myr coincide with the ages of flood-basalt eruptions (with 99.999% confidence), and are coeval with extinctions, suggesting causal connections. These statistical relationships argue that most mass extinction events are related to climatic catastrophes produced by the largest impacts and large-volume continental flood-basalt eruptions.

  12. Chloritites of the Tocantins Group, Araguaia fold belt, central-northern Brazil: Vestiges of basaltic magmatism and metallogenetic implications (United States)

    Kotschoubey, Basile; Villas, Raimundo Netuno; Aires, Benevides


    Chloritites from different localities (Arapoema, Couto Magalhães Velho, Juarina, Morro Grande, Morro do Jabuti, Morro do Pau Ferrado, Morro do Salto, Serra do Jacu, Serra do Quatipuru, Serra do Tapa, Serrinha) of the Araguaia fold belt, Tocantins geotectonic province, central-northern Brazil, have been investigated. Based on field work and petrographic, diffractometric, geochemical and mineral chemistry data, these rocks, commonly associated with metacherts and banded iron formations, have been interpreted as products of ocean-floor exhalative-hydrothermal activity on MORB basalts. Distribution patterns of rare earth elements and diagrams of relatively immobile components in the hydrothermal environment highlight not only the genetic link between the chloritites and the basaltic rocks that occur in the region (Serra do Tapa and Morro do Agostinho), but also some peculiar characteristics of the submarine environment. The rock association and anomalous contents of Cu, Zn, Ni, As, and Au are suggestive that the region was favorable to the formation of volcanogenic massive sulfide deposits, what makes it a potential target for mineral exploration programs.

  13. Lava tubes from the Paraná-Etendeka Continental Flood Basalt Province: Morphology and importance to emplacement models (United States)

    Waichel, Breno L.; Tratz, Eliza B.; Pietrobelli, Gisele; Jerram, Dougal A.; Calixto, Geovane R.; Bacha, Rafael R.; Tomazzolli, Edison R.; da Silva, Wellington B.


    Lava tubes are a common feature in active volcanic areas around the world. They are related to pahoehoe and 'a'ā lava flow fields, that are predominantly basaltic, and form as the most efficient mechanism to transport lava in insulated fedder pathways. Continental Flood Basalt Provinces (CFBs) are thick volcanic sequences of predominantly basaltic lava flows and flow fields, which cover huge areas and are often related to continental breakup. The proposed emplacement model for CFB's is synonymous with the inflation processes observed in modern active flows. Although pahoehoe and 'a'ā lava flows are recognized in CFB's provinces, good examples of lava tubes, pipes or tube systems are rarely reported. Lava feeder systems (tube/pipes) are a common feature of modern pahoehoe flow systems so it would be expected to find good examples in CFB's provinces formed by the same emplacement processes. Here we describe the morphology of two lava tube systems discovered in the Paraná CFB Province in Southern Brazil. Comparisons are made with active systems and the importance of CFB lava tube systems, and their recognition in the rock record, are discussed in the context of the current emplacement model.

  14. Jurassic Intra-plate Basaltic Magmatism in Southeast China: Evidence from Geological and Geochemical Characteristics of the Chebu Gabbroite in Southern Jiangxi Province

    Institute of Scientific and Technical Information of China (English)


    Geochemical and isotopic investigations have been carried out on the Chebu gabbroite in southern Jiangxi Province, southeast China and these results are compared with gabbro bodies along the coast of Fujian Province in order to understand their magma sources and tectonic implications. The Chebu intrusion formed at the beginning of the Middle Jurassic (172±4.3 Ma). These rocks are Ti-rich and Al-poor in major elements, characterized by strong enrichment in large-ion lithophile elements (LILE) and moderate enrichment in high field strength elements (HFSE) and light rare-earth elements (LREE), without pronounced Nb or Ta anomalies. Age-correlated Sr-Nd isotope ratios show moderately high ranges of (87Sr/86Sr)i from 0.7065 to 0.7086 and 0.5124 to 0.5125 of (143Nd/144Nd)i. The geochemical characteristics of the Chebu gabbroite suggest that it is notably different from island-arc basalt and similar to intra-plate basaltic rocks. By combining interpretations of its geological and geochemical characteristics and the regional geological development history, the Chebu gabbroitic intrusion is thought to be the product of asthenosphere upwelling and rapid lithosphere extension during a transition of tectonic systems in southeast China. The tectonic environment and source characteristics of the intrusion are different from Cretaceous gabbro bodies along the coast of Fujian Province, The former formed in a tectonic environment of rapid intra-plate lithospheric extension and the source characteristics were of a weakly enriched primitive mantle, whereas the latter originated mainly in a volcanic-magmatic arc extensional tectonic environment and the nature of the source was an enriched mantle with more subduct subducted components.

  15. 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. (United States)

    Reichow, Marc K; Saunders, Andrew D; White, Rosalind V; Pringle, Malcolm S; Al'Mukhamedov, Alexander I; Medvedev, Alexander I; Kirda, Nikolay P


    Widespread basaltic volcanism occurred in the region of the West Siberian Basin in central Russia during Permo-Triassic times. New 40Ar/39Ar age determinations on plagioclase grains from deep boreholes in the basin reveal that the basalts were erupted 249.4 +/- 0.5 million years ago. This is synchronous with the bulk of the Siberian Traps, erupted further east on the Siberian Platform. The age and geochemical data confirm that the West Siberian Basin basalts are part of the Siberian Traps and at least double the confirmed area of the volcanic province as a whole. The larger area of volcanism strengthens the link between the volcanism and the end-Permian mass extinction.

  16. Chemostratigraphy of Flood Basalts in the Garzê-Litang Region and Zongza Block:Implications for Western Extension of the Emeishan Large Igneous Province, SW China

    Institute of Scientific and Technical Information of China (English)

    XIAO Long; XU Yigang; XU Jifeng; HE Bin; Pirajno FRANCO


    The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is just amaximum estimation because some parts of the ELIP were not recognized or dismembered and destroyed during thebasalts in petrography and geochemistry. Flood basalts in the Sanjiangkou area are composed of the lower part of the lowTi (LT) tholeiite and the upper part of the high-Ti (HT) tholeiite, which is the same as the flood basalts on the western craton, consist of HT tholeiite only. This is the same as the flood basalts within the Yangtze craton. Therefore we argue that these contemporary basalts all originated from the Emeishan mantle plume, and the ELIP could have a significant westward extension with an outcropped area of over 500,000 km2. This new scenario shows that the LT tholeiite occurs on the westem margin of the Yangtze craton, while the HT tholeiite overlying the LT basalts occupies the whole area of the ELIP.

  17. Developing a Methodology to Connect the Siberian Flood Basalts and the Permian-Triassic Extinction Through LA-ICP-MS (United States)

    Baransky, E.; Rodriguez, S.; Rampino, M. R.


    The Siberian flood basalts have been implicated as a major contributor to the End-Permian extinction (252 Mya), the largest mass extinction known to date. Their relation is still unclear and more information about Meishan, China, the Global Stratotype Section and Point for the Upper Permian stage, is needed to better understand their link. Due to the slow sedimentation rate, 0.36 - 0.17 cm/ka, of this time and region, a centimeter by centimeter sampling using a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS) will attain a comprehensive, detailed elemental analysis. In this study, we established a method for preparation of powdered Meishan, China samples to use with the LA-ICP-MS. Powdered samples remove cost prohibitive thin section sample preparation, create homogenous samples and provide a process which can be mimicked for standard calibration preparation. We performed more than 80 trials to develop sample preparation procedures of beds 24 - 28 and polyvinyl alcohol 8-88 (PVA) standards for analyses of the Meishan samples. Pellet preparation varied in mass, amount of PVA solution, drying time and pressure. For comparison, limestone sample, like Bed 24, requires 10 μL of 5% PVA solution and can be immediately pressed, while clay enriched sample, like Bed 25, requires no solution and is dried at 40 ° before being compacted with a pre-dried hydraulic press. The differing ideal procedures indicate that sample preparation should be developed on a sample-by-sample basis, but these methods can be used for future studies with similar sample composition. This procedure will be used for our continuing research with the LA-ICP-MS which will more accurately analyze for a broad scope of elements. We will focus on Os, Re, Ir, and Hg to search for further evidence of the relationship between flood-basalt volcanism and extinctions.

  18. The significance of PGE variations with Sr-Nd isotopes and lithophile elements in the Emeishan flood basalt province from SW China to northern Vietnam (United States)

    Li, Chusi; Ripley, Edward M.; Tao, Yan; Hu, Ruizhong


    New analyses of siderophile-lithophile elements and Sr-Nd isotopes in the Permian basalts and picrites from northern Vietnam, the southernmost occurrence of the Emeishan flood basalt province, together with previously published data, are used to address the question of whether any meaningful correlation between these elements and isotopes exists at a province scale. The available data show that negative correlations between εNd, (87Sr/86Sr)i and mantle-normalized (Nb/Th)n are present in the basalts but not in the associated picrites. This indicates that crustal contamination is negligible in the picrites but significant in some of the basalts. The picrites and basalts from the entire province show negative correlations between (Rh/Ru)n, (Pt/Ru)n, (Pd/Ru)n and Mg-number. This indicates that Ru behaves compatibly whereas Rh, Pt and Pd behave incompatibly during magma differentiation. The incompatible behavior of Rh in natural basaltic systems is also supported by the fact that (Pt/Rh)n remains constant with decreasing Mg-number in the lavas. Depletions of Pd and Pt, and to a lesser degree Cu, in some basaltic samples characterized by relatively low εNd and (Nb/Th)n support the notion that sulfide saturation in the magmas was triggered by a combination of siliceous crustal contamination and addition of external sulfur. Within the entire flood basalt province only the picrites from Song Da, northern Vietnam show clear depletion in Ir relative to Ru. These picrites are also characterized higher Al2O3/TiO2 and lower mantle-normalized La/Yb (0.2-2.4) than those from elsewhere in the province, possibly due to the involvement of an Ir-depleted, fertile mantle component in magma generation at this location.

  19. A non-plume model for the Permian protracted (266-286 Ma) basaltic magmatism in the Beishan-Tianshan region, Xinjiang, Western China (United States)

    Xue, Sheng-Chao; Li, Chusi; Qin, Ke-Zhang; Tang, Dong-Mei


    The convenient mantle plume model for the Permian protracted mafic-ultramafic intrusions and mafic dykes (266-286 Ma) in the Beishan-Tianshan region, northern Xinjiang, western China can be rejected, because their temporal-spatial distribution does not show a hotspot track predicted by such model. New zircon U-Pb ages reveal that two small mafic dyke clusters (Podong, 280.5 ± 2 Ma; Luodong, 266.2 ± 3.2 Ma) that are separated by only ~ 20 km in the Pobei area, the southernmost part of the Beishan-Tianshan region, have a large age difference of ~ 18 Ma. The older mafic dykes are characterized by nearly flat mantle-normalized rare-earth-element patterns, pronounced negative Nb-Ta anomalies and positive εNd(t) values from 5.5 to 7.5, similar to the majority of the Permian mafic-ultramafic intrusions in the region. The younger mafic dykes are characterized by significant light rare-earth-element enrichments as well as pronounced negative Nb-Ta anomalies, plus lower εNd(t) (- 1.2 to 2.6) values and higher initial 87Sr/86Sr ratios than the older mafic dykes. The observed compositional variations can be explained by source mantle heterogeneity plus different degrees of crustal contamination. Overall, the Permian mafic-ultramafic rocks in the Beishan-Tianshan region are geochemically consistent with the products of basaltic magmatism induced by lithospheric delamination and asthenosphere upwelling in a convergent tectonic zone.

  20. The Last Gasp - the Terminal Magmatic Stages of the Keweenaw LIP (United States)

    Rooney, T. O.; Brown, E.; Moucha, R.; Stein, C. A.; Stein, S.


    The Keweenaw Flood Basalts, which represent the magmatic record of the best preserved example of a Precambrian Large Igneous Province (LIP), erupted contemporaneously with the development of the failed Mid-Continent Rift ca. 1.1 Ga. At 2 x 106 km3 in volume, the Keweenaw LIP is roughly equivalent in scale to the Parana-Etendeka LIP, but the origin and evolution of the magmatic source of the Keweenaw LIP remains poorly constrained. Specifically, while modern LIPs have a primary magmatic pulse lasting <5Ma, followed by a long phase of waning activity, the Keweenaw LIP underwent significant flood basalt eruptions for ca. 21 Myr. Here we examine the geochemical characteristics of the final phases of magmatic activity within the Keweenaw LIP - the Lake Shore Traps - which erupted ca. 1087 Ma within an alluvial fan sequence (Copper Harbor Conglomerate). The Lake Shore Traps are best exposed at High Rock Bay, where 62 flows ( 1-30m thick) are observed intercalated with thin paleosols over a 530m thickness. Thus, while this late-stage activity might represent a waning phase of magmatism, the thickness represents some half of the total average thickness of modern continental flood basalt provinces. Our initial data suggests a dominantly tholeiitic magma series spanning an unexpectedly wide and continuous range of compositions from basalt to andesite; rare alkaline lavas are also evident. Distinctive geochemical stratigraphic patterns were observed suggesting crystal fractionation and recharge events dominated the magma system. Our initial data do not show any unambiguous parallels between the geochemical characteristics of the Lake Shore Traps and prior phases of magmatic activity in the province. We explore the potential source characteristics of these lavas to refine the source and conditions of melt generation during the terminal phase of activity in the region.

  1. Analysing diagenetic effects of flood basalts on sedimentary basins during Gondwanan break-up: case studies from NW Namibia. (United States)

    Thompson, G. A.; Jerram, D. A.; Harris, C.; Pearson, D. G.


    ABSTRACT The eruption of large volumes of lava associated with the break-up and dispersal of the Gondwana Supercontinent is a phenomenon that has been well documented in literature. The Etendeka Flood Basalt Province of NW Namibia is correlated with the Paraná Flood Basalt Province of South America and was extruded between 139Ma for the earliest flows and 130Ma for the most recent. The passive, inflated pahoehoe lava flows have preserved bedforms within sand dunes found in the Huab Basin without significant deformation. This allows the internal structures of the palaeo-dunes to be analysed with great accuracy; a phenomenon rarely seen within the geological record. The sediments directly beneath, and interbedded with, the Etendeka Flood Basalt are lithostratigraphically similar to those in the Kudu Gas Province, offshore Namibia, where gas-bearing aeolian sands are interspersed with lava flows. Research by the authors is focussed on the diagenetic effects, both direct and indirect, of the emplacement of the lava, and the associated sills and dykes, on the aeolian sands. Specific interests include: the compartmentalisation of the basin by sills/dykes/lava: how does this affect fluid flow paths? Diagenesis along hot contacts: is the dramatic reduction in porosity/permeability along such contacts the result of the igneous bodies alone or do they need ground water present? Can large igneous events trigger the movement of hot fluids through the basin and to what extent does this cause alteration to sediments? To address these issues we have identified a number of outcrop case studies within the Huab Basin in NW Namibia. Here, excellent 3 dimensional outcrop coupled with almost 100 percent exposure allows detailed sampling strategies to be employed on locations of interest. In some cases igneous dykes have acted as flow barriers to pore fluids and have therefore altered the type and degree of cementation either side of the dyke. Geochemical analysis of the cement can

  2. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola: Record of a major change in the Caribbean island arc magma sources (United States)

    Escuder Viruete, J.; Contreras, F.; Stein, G.; Urien, P.; Joubert, M.; Pérez-Estaún, A.; Friedman, R.; Ullrich, T.


    Located in the Cordillera Central of the Dominican Republic, the Late Cretaceous Tireo Fm (TF) records a major change of the magma sources in the Caribbean island arc. It comprises a > 3 km thick sequence of arc-related volcanic and volcano-sedimentary rocks with variable geochemical characteristics. Combined detailed mapping, stratigraphy, geochemistry and U-Pb/Ar-Ar geochronology show that the volcanic rocks of the Tireo Fm include two main volcanic sequences. The lower volcanic sequence is dominated by monotonous submarine vitric-lithic tuffs and volcanic breccias of andesite to basaltic andesite, with minor interbedded flows of basalts and andesites. Fossil and (U-Pb and 40Ar- 39Ar) geochronological data show that arc magmatism in the lower sequence began to accumulate before ˜ 90 Ma, from the Aptian to Turonian. These rocks constitute an island arc tholeiitic suite, derived from melting by fluxing of a mantle wedge with subduction-related hydrous fluids. The upper volcanic sequence is characterized by a spatial and temporal association of adakites, high-Mg andesites, and Nb-enriched basalts, which collectivelly define a shift in the composition of the subduction-related erupted lavas. A dacitic to rhyolitic explosive volcanism with subaerial and episodic aerial eruptions, and sub-volcanic emplacements of domes, characterize mainly this stratigraphic interval. The onset of this volcanism took place at Turonian-Coniacian boundary and continued in the Santonian to Lower Campanian, with minor events in the Late Campanian. Adakites represent melts of the subducting slab, magnesian andesites the product of hybridization of adakite liquids with mantle peridotite, and Nb-enriched basalts melts of the residue from hybridization. We propose a model of oblique ridge subduction at ˜ 90 Ma and possibly subsequent slab window formation, as principal cause of magmatic variations recorded in the Caribbean island arc, above a southwestern-dipping subduction zone.

  3. Eruption of the Continental Flood Basalts at ~259 Ma in the Emeishan Large Igneous Province, SW China: Evidence from Laser Microprobe 40Ar/39Ar Dating

    Institute of Scientific and Technical Information of China (English)

    HOU Zengqian; CHEN Wen; LU Jiren


    A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LLP), SW China was investigated for laser microprobe 40Ar/39Ar dating. There are two 40Ar/39Ar age groups for these basalts, corresponding to 259-246 Ma and 177-137 Ma, respectively. A well-defined isochron gives an eruption age of huge quantities of mafic magmas at 258.9±3.4 Ma, which is identical to previous dating and paleontological data. Much younger 40Ar/39Ar ages for some basalts with low-greenschist metamorphic facies probably recorded a late thermo-tectonic event caused by collision between the Yangtze and Qiangtang continental blocks during the Mesozoic, which resulted in the reset of argon isotope system. The 40Ar/39Ar age data, we present here, combined with previous dating and paleontological data, suggest relatively short duration (about 3 Ma) of mafic volcanism, which have important implication on mantle plume genesis of the Emeishan continental flood basalts in the LIP.

  4. Payenia Quaternary flood basalts (southern Mendoza, Argentina: Geophysical constraints on their volume

    Directory of Open Access Journals (Sweden)

    Mauro G. Spagnuolo


    Full Text Available The Quaternary volcanic province of Payenia is located in southern Mendoza and northern Neuquén provinces of Argentina and is characterized by a dominant basaltic composition. The volcanic province covers an area larger than 40,000 km2 and its origin and evolution has been the center of several studies. In this study we analyzed gravity data together with more accurate volcanic volumes calculations in order to investigate the subsurface structure of the Payenia volcanic province. The volume of material was calculated using digital elevation models and geographic information system (GIS techniques to estimate the volume of material erupted and then, with those values, make an estimation of the intrusive material that could be located within the crust. The results of the calculations were compared with different 2D-sections constructed to model the gravity data and compare with the observed satellite gravity. After evaluating different models which have been generated to match both: the observed gravity data and the subsurface material calculated, we discuss those that best fit with observation. The results clearly indicate that the lithosphere is attenuated below the region.

  5. Payenia Quaternary flood basalts (southern Mendoza, Argentina):Geophysical constraints on their volume

    Institute of Scientific and Technical Information of China (English)

    Mauro G. Spagnuolo; Darío L. Orts; Mario Gimenez; Andres Folguera; Victor A. Ramos


    The Quaternary volcanic province of Payenia is located in southern Mendoza and northern Neuquén provinces of Argentina and is characterized by a dominant basaltic composition. The volcanic province covers an area larger than 40,000 km2 and its origin and evolution has been the center of several studies. In this study we analyzed gravity data together with more accurate volcanic volumes calculations in order to investigate the subsurface structure of the Payenia volcanic province. The volume of material was calculated using digital elevation models and geographic information system (GIS) techniques to estimate the volume of material erupted and then, with those values, make an estimation of the intrusive material that could be located within the crust. The results of the calculations were compared with different 2D-sections constructed to model the gravity data and compare with the observed satellite gravity. After evaluating different models which have been generated to match both: the observed gravity data and the subsurface material calculated, we discuss those that best fit with observation. The results clearly indicate that the lithosphere is attenuated below the region.

  6. Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea

    Directory of Open Access Journals (Sweden)

    Kuo-Lung Wang


    Full Text Available This study reports age and geochemical analyses of basaltic rocks dredged from volcanic seamounts offshore SW Taiwan. 40Ar/39Ar dating results of these rocks show them to be of the early Miocene age of ~22 - 21 Ma. They are evolved alkali basalts that show OIB-type geochemical features similar to post-spreading seamount basalts (14 - 3.5 Ma in the South China Sea (SCS and Miocene intraplate basalts on the Penghu Islands (16 - 8 Ma and NW Taiwan (23 - 9 Ma. Their Sr-Nd-Pb isotope data plot within the range of the SCS seamount basalts that show an EM2-like component in the mantle source. The age and overall geochemical characteristics of the dredged basalts are comparable to those of the Kungkuan basalts, NW Taiwan and Baolai basalts, SW Taiwan, suggesting an extensive alkali basaltic volcanism along the southeastern Eurasian continental margin during the early Miocene that resulted from regional lithospheric extension in association with seafloor spreading in the South China Sea.

  7. Petrology, Mineralogy and Geochemistry of the Emeishan Continental Flood Basalts, SW China:Evidence for Activity of Mantle Plumes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaochong; HAO Yanli; WANG Fusheng; John J. MAHONEY


    Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated:T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Nas, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/Sm, (La/Nb)pM, (Th/Ta)pM, are in a limited range, show that they were derived from the mantle plume, and there was no or little crustal contamination during magma ascent en route to the surface. They were generated by 7% partial melting of garnet peridotite. The axis of the plume might be located beneath Lijiang Town, Yunnan province.

  8. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: A precise U-Pb baddeleyite/zircon age for a Chapecó-type dacite (United States)

    Janasi, Valdecir de Assis; de Freitas, Vivian Azor; Heaman, Larry H.


    We report the first U-Pb baddeleyite/zircon date for a felsic volcanic rock from the Paraná Large Igneous Province in south Brazil. The new date of 134.3 ± 0.8 Ma for a hypocrystalline Chapecó-type dacite from Ourinhos (northern Paraná basin) is an important regional time marker for the onset of flood basalt volcanism in the northern and western portion of the province. The dated dacite was erupted onto basement rocks and is overlain by a high-Ti basalt sequence, interpreted to be correlative with Pitanga basalts elsewhere. This new U-Pb date for the Ourinhos dacite is consistent with the local stratigraphy being slightly older than the few reliable step-heating 40Ar/39Ar dates currently available for overlying high-Ti basalts (133.6-131.5 Ma). This indicates an ~ 3 Ma time span for the building of the voluminous high-Ti lava sequence of the Paraná basin. On the other hand, it overlaps the 40Ar/39Ar dates (134.8-134.1 Ma) available for the stratigraphically older low-Ti basalt (Gramado + Esmeralda types) and dacite-rhyolite (Palmas type) sequences from South Brazil, which is consistent with the short-lived character of this volcanism and its rapid succession by the high-Ti sequence.

  9. 塔里木溢流玄武岩的喷发特征%The eruption characteristics of the Tarim flood basalt

    Institute of Scientific and Technical Information of China (English)

    上官时迈; 田伟; 徐义刚; 关平; 潘路


    通过对柯坪地区二叠系野外火山岩露头剖面和英买力、哈拉哈塘井区二叠系火山岩钻井剖面的对比,将塔里木早二叠世溢流玄武岩划分为三个旋回,从老到新依次是:库普库兹满溢流玄武岩旋回(KP),长英质火山碎屑岩旋回(FP)和开派兹雷克溢流玄武岩旋回(KZ).KP旋回以巨厚溢流玄武岩夹凝灰岩为特征,在柯坪露头区和英买力井区均可划分出三层巨厚玄武质熔岩流,至哈拉哈塘井区减少为一层玄武岩流,但长英质火山碎屑岩和熔岩厚度增加.FP旋回在柯坪露头区自下而上包括空落相凝灰岩,熔结凝灰岩,再沉积火山碎屑岩和正常碎屑岩夹火山灰层,该层可与英买力及哈拉哈塘井区的凝灰岩层对比,表明在塔北存在一期面积广泛的长英质火山喷发.KZ旋回以溢流玄武岩为主,在开派兹雷克剖面识别出四期喷发共8层溢流玄武岩和一期安山质玄武岩,每期喷发之间夹少量碎屑岩,但未见长英质火山碎屑岩夹层,该特征与英买力和哈拉哈塘井区的火山层序组合不同,而与塔中溢流玄武岩类似.三个火山旋回的划分表明塔里木大火成岩省经历了“基性溢流玄武岩-酸性火山碎屑岩-基性溢流玄武岩”的演变过程,与Afro-Arabian溢流玄武岩省相似,可进行对比研究.%Integration of field investigation, regional stran'graphic comparison, remote sensing and image interpretation allow us to divide the Tarim Permian flood basalt province into three eruptive cycles listed by decreasing age: Kupukuziman flood basalt ( KP), Felsic pyroclastic rocks (FP), Kaipaizileike flood basalt ( KZ). KP features flood basalt and tuff; in the outcrop in Keping and Yingmaili areas, it can be differentiated into two units containing three thick layers of basaltic lava flows. These three layers decrease to one layer of basaltic lava flow in the Halahatang area; however, felsic pyroclastic rocks and lava layer thicknesses

  10. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt (United States)

    Benson, Thomas R.; Mahood, Gail A.


    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at ~ 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single ~ 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins ~ 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  11. The 40Ar/39Ar age record and geodynamic significance of Indo-Madagascar and Deccan flood basalt volcanism in the Sarnu-Dandali alkaline complex, Rajasthan, northwestern India (United States)

    Vijayan, Anjali; Pande, Kanchan; Sheth, Hetu; Kant Sharma, Kamal


    The Sarnu-Dandali alkaline complex in Rajasthan, northwestern India, is considered to represent early, pre-tholeiite magmatism in the Deccan Traps continental flood basalt (CFB) province, based on a single 40Ar/39Ar age of 68.57 Ma. Rhyolites found in the complex are considered to be 750 Ma Malani basement. Our new 40Ar/39Ar ages of 88.9-86.8 Ma (for syenites, nephelinite, phonolite and rhyolite) and 66.3 ± 0.4 Ma (2σ, melanephelinite) provide clear evidence that whereas the Sarnu-Dandali complex has Deccan-age components, it is dominantly an older (by ˜20 million years) alkaline complex, with rhyolites included. Sarnu-Dandali is thus an alkaline igneous center active at least twice in the Late Cretaceous, and also much before as suggested by a basalt flow underlying the Early Cretaceous Sarnu Sandstone. The 89-86 Ma 40Ar/39Ar ages fully overlap with those for the Indo-Madagascar CFB province formed during continental break-up between India (plus Seychelles) and Madagascar. Recent 40Ar/39Ar work has shown polychronous emplacement (over ≥ 45 million years) of the Mundwara alkaline complex in Rajasthan, 100 km from Sarnu-Dandali, and 84-80 Ma ages obtained from Mundwara also arguably represent late stages of the Indo-Madagascar CFB volcanism. Remnants of the Indo-Madagascar CFB province are known from several localities in southern India but hitherto unknown from northwestern India 2000 km away. Additional equivalents buried under the vast Deccan Traps are highly likely. We relate the Sarnu-Dandali and Mundwara complexes to decompression melting of ancient, subduction-fluxed, enriched mantle lithosphere due to periodic lithospheric extension during much of the Cretaceous, and hundreds of kilometers inland from the India-Madagascar and India-Seychelles rifted margins.

  12. Petrogenesis and tectonic setting of an basalt-Trachyte-Rhyolite suite in the Spilli area (south of Siahkal, north of Iran: evidences of continental rift-related bimodal magmatism in Alborz

    Directory of Open Access Journals (Sweden)

    Shahrooz Haghnazar


    Full Text Available The spilli volcanic rocks suite consisting of Basalt- Trachyte- Rhyolite with upper Cretaceous, outcrop in the northern part of Alborz and south of Siahkal area (east of the Guilan province. Based on geochemical data, the studied suite attributed to transitional to alkali series. Negative correlation of Al2O3, CaO, P2O5 and positive correlation of Rb and Th versus SiO2 reveal the occurrence of fractional crystallization process. Also, the negative correlation of Sr versus Y, Sr/Zr versus Sr and CaO/Al2O3 versus SiO2 show that fractionation of plagioclase has played an important role in petrogenesis of the spilli Suite. The hypotheses is supported by the negative anomalies of Eu, Ba and Sr. The overall geochemical evidences indicate that the basic rocks belong to intra-continental rift zone whereas the felsic rocks are classified as A1 type derived from parent basaltic magmas via fractional crystallization in an anorogenic setting. The studied magmatism share many similarities with bimodal magmatism in continental rift zones.

  13. Strawberry Rhyolites, Oregon: Northwestern extent of mid-Miocene flood basalt related rhyolites of the Pacific Northwest (United States)

    Steiner, A. R.; Streck, M. J.


    Rhyolitic volcanism associated with the Columbia River-Steens flood basalts of the Pacific Northwest has traditionally been viewed to be centered at McDermitt caldera near the Oregon-Nevada border starting at ~16.5 Ma. In recent years, more rhyolitic centers along this latitude with ages between 16.5-15.5 Ma have been identified and associated with the inception of the Yellowstone hotspot. However the footprint of plume-head related rhyolites becomes much larger when silicic centers of mid-Miocene age in eastern Oregon are included extending the distribution of such rhyolites to areas near the towns of Baker City and John Day ~250 km north of McDermitt. This study addresses one of these rhyolitic centers that was virtually unknown and that constitutes the northwestern extent of mid-Miocene rhyolites. Rhyolites are centered ~40 km SSW of John Day and are considered part of the Strawberry Volcanic Field (SVF), which consists of a diverse group of volcanic rocks ranging from basalt to rhyolite with abundant intermediate compositions. One existing age date of 17.3 Ma ± 0.36 (Robyn, 1977) - if confirmed by our ongoing study - places these rhyolites at the very onset of plume-head related rhyolites. Strawberry rhyolitic lavas are most voluminous in the southwestern portion of the SVF covering approximately 500 km2 between Bear and Logan Valley. The rhyolitic lavas tend to be phenocryst-poor (Strawberry Rhyolites show minor variability except in, Sr (10 - 200 ppm), Zr (65 - 450 ppm), Ti (300 - 3500 ppm), and Ba (350 - 1600 ppm). When normalized to upper crustal values, Strawberry Rhyolites plot around 1 with significant troughs at Sr, P, Ti, and minor troughs in Ba, Nb, and Zr. REE patterns indicate slight LREE enrichment with LaN/YbN values ranging from 2.5 to 8.3 and higher values correlate positively with other differentiation indices (e.g. Ba, Sr, Eu/Eu*). Furthermore, major elements (e.g. SiO2 and FeO*) and trace elements (e.g. Ba, Sr, La, Zr/Hf) display common

  14. Geochemistry of Deccan Traps Dikes: Insights Into the Evolution of a Flood Basalt Feeder System (United States)

    Mahoney, J. J.; Vanderkluysen, L.; Hooper, P. R.; Sheth, H. C.; Ray, R.


    Three large dike swarms are exposed in the 500,000 km2 Deccan Traps of India: the dominantly N-S trending West Coast swarm, the ENE-WSW trending Narmada-Tapi swarm in the northern Deccan, and the Nasik-Pune swarm in the central western Deccan. Dikes of the Nasik-Pune swarm show no strongly preferred trend. This swarm is commonly postulated (e.g., Hooper, Nature, 349, 246, 1990) to be the principal locus of feeders for the lava pile, and the lack of a preferred trend taken as evidence that the flood volcanism was not accompanied by significant rifting-related lithospheric extension. Our combined major and trace element and Pb-Nd-Sr isotope data reveal that dikes with signatures matching those of the three major lava formations in the upper part of the lava pile (Poladpur, Ambenali, and Mahabaleshwar formations) are abundant in the coastal and Nasik-Pune swarms. As a group, these dikes have no preferred trend. Dikes with similarities to formations lower in the lava stratigraphy (i.e., the Igatpuri, Jawhar, and Bushe formations) are present but rare in these two swarms. However, many dikes with strong affinities to the lower and middle lava formations (e.g., Igatpuri, Jawhar, Bushe, and Thakurvadi formations) are present in the Narmada-Tapi swarm. These dikes have geometries indicative of N-S extension. We infer that rifting did not drive emplacement of the upper lava formations, but was occurring in the Narmada-Tapi region during the earlier phases of volcanism. Thus, N-S rifting cannot be ruled out as a trigger mechanism for the massive melting event. In contrast, our data provide no evidence that E-W extension along the coast triggered the event.

  15. Petrological and tectono-magmatic significance of ophiolitic basalts from the Elba Island within the Alpine Corsica-Northern Apennine system (United States)

    Saccani, Emilio; Principi, G.


    Two distinct ophiolitic units, which represent remnants of the Jurassic Ligurian-Piedmont Ocean, crop out in the Elba Island. They are the Monte Strega unit in central-eastern Elba and the Punta Polveraia-Fetovaia unit in western Elba. Ophiolitic rocks from the Monte Strega unit are commonly affected by ocean floor metamorphism, whereas those from the Punta Polveraia-Fetovaia unit are affected to various extent by thermal metamorphism associated with the Late Miocene Monte Capanne monzogranitic intrusion. Both ophiolitic units include pillow lavas and dykes with compositions ranging from basalt to basaltic andesite, Fe-basalt, and Fe-basaltic andesite. Basaltic rocks from these distinct ophiolitic units show no chemical differences, apart those due to fractional crystallization processes. They display a clear tholeiitic nature with low Nb/Y ratios and relatively high TiO2, P2O5, Zr, and Y contents. They generally display flat N-MORB normalized high field strength element patterns, which are similar to those of N-MORB. Chondrite-normalized rare earth element patterns show light REE / middle REE (LREE/MREE) depletion and marked heavy (H-) REE fractionation with respect to MREE. This HREE/MREE depletion indicates a garnet signature of their mantle sources. Accordingly, they can be classified as garnet-influenced MORB (G-MORB), based on Th, Nb, Ce, Dy, and Yb systematics. We suggest that the Elba Island ophiolitic basalts were generated at a magma starved, slow-spreading mid-ocean ridge. REE, Th, and Nb partial melting modelling shows that the compositions of the relatively primitive Elba Island ophiolitic basalts are compatible with partial melting of a depleted MORB mantle (DMM) source bearing garnet-pyroxenite relics. Hygromagmatophile element ratios suggest that basalts from both ophiolitic units were originated from chemically very similar mantle sources. A comparison with basalts and metabasalts from Alpine Corsica and northern Apennine ophiolitic units shows

  16. Repeated magmatism at 34 Ma and 23-20 Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc (United States)

    Sato, Makoto; Shuto, Kenji; Nohara-Imanaka, Rikako; Takazawa, Eiichi; Osanai, Yasuhito; Nakano, Nobuhiko


    The southern part of Okushiri Island in the present-day back-arc margin of the NE Japan arc is one of the rare convergent plate boundaries where similar magma types (high-magnesian adakitic andesite (HMAA) and high-TiO2 basalt (HTB)) have been erupted concurrently at more than one time. Oligocene HMAA can be divided into two types: HMAA-I is characterized by high Sr/Y and low Y, and HMAA-II by relatively low Sr/Y and high Y. HMAA-I is primitive in terms of MgO (8.5 wt.%), Mg# (67), Ni (232 ppm) and Cr (613 ppm) contents, and the most Mg-rich olivine phenocrysts plot within the mantle olivine array in terms of Fo and NiO. The similar Cr versus Ni relations of types I and II HMAA indicate some interaction of slab-derived adakitic melts with mantle peridotite, whereas Ni contents are higher than those of most boninites derived by partial melting of mantle peridotite at a given Cr content. Types I and II HMAA have more enriched Sr and Nd isotopic compositions than N-MORB. The petrography and geochemistry of these rocks, combined with published results on the genesis of high-magnesian andesite (HMA) indicate that types I and II HMAA could be produced by interaction of slab (N-MORB and sediment)-derived adakitic melts with mantle peridotite. The comagmatism of HMAA and HTB is ascribed to the following model. A cool, less hydrous, adakite magma (spherical diapir) would rise from the subducting slab (Pacific Plate) and become more hydrous as a result of its interaction with overlying hydrous peridotite. This hydrated adakitic diapir further ascends and is heated on entering the overlying mantle wedge. Subsequently, the temperature and H2O gradients in the ascending adakitic diapir and surrounding mantle peridotite would have been established. The HTB magma segregated from the surrounding mantle peridotite region (high temperature and low H2O content) at a depth of 60 km or more, whereas the adakitic diapir (low temperature and high H2O content) continued to rise, with its

  17. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry (United States)

    Howarth, Geoffrey H.; Harris, Chris


    Continental Flood Basalts (CFB) result from voluminous outpourings of magma that often precede continental break-up. Notwithstanding the petrogenetic importance of CFBs, the nature of the mantle source for such magmas is contentious, particularly with regard to picrites with Ni-rich olivine phenocrysts. Previous studies have suggested that Ni-rich olivines associated with plume volcanism in regions of thickened (>90 km) lithosphere are related to either source mineralogy differences (peridotite versus pyroxenite) or change in olivine-melt partitioning due to pressure increase. In order to evaluate these two hypotheses, we present trace element data for olivines from the Karoo CFB Tuli and Mwenezi picrites and the Etendeka CFB Horingbaai/LTZ-L type picrites, all of which erupted in regions of thickened (>90 km) lithosphere in southern Africa. Karoo picrite olivines are Ni-rich, Ca- and Mn-poor, and have low (1.4) 100*Mn/Fe, which is more consistent with high temperature melting of a dominantly peridotitic source. We also show that the Karoo and Etendeka olivines are characterized by distinct Mn/Zn ratios of 15, respectively. In addition, bulk rock geochemical data compilations and previously reported olivine δ18O for Karoo and Etendeka CFBs are discussed in order to further constrain source components based on previously described pyroxenite melt geochemical indices such as MgO-CaO systematics, FeO/MnO, Zn/Fe, and FC3MS (FeO/CaO-3*MgO/SiO2). These geochemical indices suggest a pyroxenite-dominated source for Karoo CFBs as well as for Etendeka ferropicrites whereas a peridotite-dominated source is indicated for Etendeka Horingbaai/LTZ-L type picrites analyzed in this study. Based on our data, Ni-enrichment of olivine in plume-related magmas in regions of thickened lithosphere in southern Africa is not ubiquitous. We therefore suggest that mineralogical variation of the source is a more likely major control of olivine chemistry and parent melt variations for Karoo

  18. Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA (United States)

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob


    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.

  19. Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob


    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.

  20. Was Global Warming at the Paleocene-Eocene Boundary Terminated by Flood Volcanism? (United States)

    Tegner, C.; Larsen, R. B.


    The Paleocene-Eocene thermal maximum (PETM) has recently been attributed to greenhouse gases released from sedimentary basins in the Northeast Atlantic due to interaction with continental flood basalt magmatism. In the marine section in Denmark the alkaline Ash-17 has been dated at 55.1 plus minus 0.1 Ma and the PETM at 55.6-55.4 Ma. A similar alkaline tephra deposit in the uppermost part of the East Greenland flood basalt succession has also been dated at 55.1 plus minus 0.1 Ma and provides a linkage to Ash-17. Our recent results on the pressure of the coeval Skaergaard intrusion indicate that the majority of flood basalts erupted in less than 300,000 years. It is therefore possible to correlate the main flood basalt event with the interval immediately postdating PETM (55.4-55.1 Ma). This is consistent with a report of a small dinoflagellate cyst assemblage with a high proportion of Apectodinium homomorphum in one productive sample from sediments within the lower volcanics underlying the main flood basalt succession. The Apectodinium genus is usually abundant in the PETM interval. A scarcity of ash layers within the PETM interval also supports a correlation of the main flood basalt event with the overlying marine section including more abundant ash layers. The high eruption rate of the main flood basalts is likely to have resulted in atmospheric cooling caused by sulfuric acid aerosols produced from volcanic sulfur dioxide. Available estimates for volume and composition of the Northeast Atlantic flood basalts indicate that at least 36 teratonnes of sulfur dioxide was pumped into the atmosphere. This average 120 megatonnes per year over 300,000 years. For comparison, the historic Laki eruption in Iceland is estimated to have released 120 megatonnes sulfur dioxide over 5 months. We suggest that flood volcanism of the Northeast Atlantic terminated the global warming event at the Paleocene-Eocene boundary.

  1. The first description and confirmation of the Vista Alegre impact structure in the Paraná flood basalts of southern Brazil (United States)

    Crósta, Alvaro P.; Koeberl, Christian; Furuie, Rafael A.; Kazzuo-Vieira, Cesar


    The Vista Alegre structure, centered at 25°57'S and 52°41'W, has been recently proposed as a meteorite impact structure. The 9.5km-diameter structure is located in the Paraná state of southern Brazil, within the Paraná Basin, which contains one of the largest and most extensive flood basalt provinces on Earth. The Paraná flood basalts belong to the Serra Geral Formation and are temporally related to the opening of the South Atlantic Ocean, having been dated at about 133-132Ma. Tholeiitic basalts dominate the western portion of Paraná state, with some minor rhyodacites. Morphologically, Vista Alegre has a prominent circular outline, in the form of an incomplete ring of escarpments, and an inner depression. The presence of a central uplift is not obvious, but it is inferred by the occurrence of deformed sandstone blocks near the center of the structure. These sandstones are possibly related to the Triassic Pirambóia Formation and/or to the Cretaceous Botucatu Formation. These units are normally at stratigraphic depths of about 700-800m below the present surface in this portion of the Paraná Basin. The structure appears to be in an advanced erosion stage and its interior is occupied by a soil cover several meters thick, extensively used for agriculture. As a result there are limited outcrops in the interior of the structure, all of polymict breccias, some of them melt-bearing. We report the extensive occurrence of shatter cones, in the form of fine-grained rock clasts within the polymict breccias. The shatter cone-bearing breccias occur at different locations within the structure, separated by several kilometers. The nested shatter cones range in size from about 0.5 to 20cm for individual cones, and up to half a meter for complete assemblages. The shatter cones formed in fine-grained Parana flood basalt and might be the first examples of shatter cones in such a rock type. In addition, planar deformation features (PDFs) were found in quartz grains within

  2. Isotopic and trace element geochemistry of alkalic-mafic-ultramafic-carbonatitic complexes and flood basalts in NE India: Origin in a heterogeneous Kerguelen plume (United States)

    Ghatak, Arundhuti; Basu, Asish R.


    The Archean East Indian cratonic margin was affected by the Kerguelen plume (KP) ˜117 Ma, causing flood-basalt eruptions of the Rajmahal-Bengal-Sylhet Traps (RBST). The RBST cover ˜one million km2 in and around the Bengal Basin as alkalic-ultrabasic intrusives in the west and Sikkim in the north, and Sylhet basalts and alkalic-carbonatitic-ultramafic complexes in the Shillong plateau - Mikir hills farther east of the Rajmahal-Bengal Traps. We provide new Nd-Sr-Pb-isotopic and trace element data on 21 unreported discrete lava flows of the Rajmahal Traps, 56 alkalic-carbonatitic-mafic-ultramafic rocks from four alkalic complexes, and three dikes from the Gondwana Bokaro coalfields, all belonging to the RBST. The data allow geochemical correlation of the RBST with some contemporaneous Kerguelen Plateau basalts and KP-related volcanics in the southern Indian Ocean. Specifically, the new data show similarity with previous data of Rajmahal group I-II basalts, Sylhet Traps, Bunbury basalts, and lavas from the southern Kerguelen Plateau, indicating a relatively primitive KP source, estimated as: ɛNd(I) = +2, 87Sr/86Sr(I) = 0.7046, with a nearly flat time-integrated rare earth element (REE) pattern. We model the origin of the uncontaminated RBST basalts by ˜18% batch melting with a 2× chondritic KP source in the spinel-peridotite stability depths of 60-70 km in the mantle. The new geochemical data similar to the Rajmahal group II basalts indicate a light REE enriched average source at ɛNd(I) = -5, 87Sr/86Sr(I) = 0.7069. Our geochemical modeling indicates these lavas assimilated granulites of the Eastern Ghats, reducing the thickness of the continental Indian lithosphere. Lack of an asthenospheric MORB component in the RBST province is indicated by various trace element ratios as well as the Nd-Sr isotopic ratios. Three alkalic complexes, Sung, Samchampi, and Barpung in NE India, and one in Sikkim to the north are of two groups: carbonatites, pyroxenites, lamproites

  3. The mode of emplacement of Neogene flood basalts in Eastern Iceland: Facies architecture and structure of the Hólmar and Grjótá olivine basalt groups (United States)

    Óskarsson, Birgir V.; Riishuus, Morten S.


    Hólmar and Grjótá are two stratigraphically distinct transitional alkaline olivine basalt lava groups within the westward-dipping Neogene flood basalts of eastern Iceland. The Hólmar olivine basalt group, separated from the overlying Grjótá olivine basalt group by only a few tholeiite flows, can be traced over 80 km north-south, with thicknesses varying from ~ 250 m where thickest to ~ 30 m where thinnest. The Grjótá group can be traced over 50 km also north-south, reaching thicknesses of ~ 250 m and thinning down-dip to ~ 10 m. In contrast to other groups in eastern Iceland that thicken down-dip, the studied olivine basalt groups thicken up-dip. The groups filled topographic confinements and formed aprons around central volcanoes. We have estimated the minimum volumes to be ~ 119 km3 for Hólmar and ~ 86 km3 for Grjótá. Scoria cones are found in the Hólmar group, and two thick olivine dolerite sills cross-cut the Hólmar group and probably belong to the plumbing system that fed the Grjótá group. The architecture of the lava groups are near identical. The architecture is compound, with lobes stacked horizontally and vertically, varying from 1-15 m thick and 2-200 m long, but do also encompass a number of thicker (15-20 m) and more extensive (> 1 km long) lava lobe in the stacks. Filled lava tubes are commonly observed within the lava flows. The constituent lobes of the flows are often directly emplaced or welded together, suggesting rapid buildup, but are also found interbedded with redbeds and thicker tuff deposits, and occasionally preserve tree molds. The internal structure follows the characteristics for lava lobe morphology in general, with an upper vesicular crust forming half to one third of the total thickness, a massive core with abundant vesicle cylinders, and a thin basal vesicular crust. Flow tops are of the pahoehoe type, seldom found with scoria or clinker. Inflation structures such as tumuli and inflation clefts were identified in the

  4. The mode of emplacement of Neogene flood basalts in Eastern Iceland: The plagioclase ultraphyric basalts in the Grænavatn group (United States)

    V. Óskarsson, Birgir; B. Andersen, Christina; S. Riishuus, Morten; Sørensen, Erik Vest; Tegner, Christian


    Plagioclase ultraphyric basalt lava with high fraction of solids have a mode of emplacement that is poorly understood. In this study we conduct detailed mapping of a PUB group in eastern Iceland, namely the Grænavatn group, and assess the group architecture, flow morphology and internal structure with additional constraints from petrography, petrology and crystal size distribution, to derive information on emplacement dynamics of plagioclase ultraphyric basalts. We also derive information on the plumbing system of the group with reference to the source of the macrocysts. The group is exposed in steep glacially carved fjords and can be traced for more than 70 km along strike. The flows have mixed architecture of simple and compound flows. Individual flow lobes have thicknesses in the range of 1-24 m and many reach widths and lengths exceeding 1000 m. The flows vary from rubbly to slabby pahoehoe, but are predominantly of pahoehoe type. The aspect ratio of the group and the nature of the flows indicate fissure-fed eruptions. The plagioclase macrocrysts (5-30 mm) are An-rich, exhibit bimodal size distribution and the modal proportions within the group varies from 15-40%. Clinopyroxene macrocrysts are also present ranging from 1-6%. The lowermost flow is thickest and carries the greatest crystal cargo load. The morphology of the lava flows suggests low viscous behavior, at odds with the high crystal content. The very calcic plagioclase macrocrysts (An80-85) are in disequilibrium with the groundmass and plagioclase microlaths therein (An50-70), meaning that the crystal-laden magmas quickly ascended from deeper crustal levels to the surface. The flows with highest crystal content may have maintained high temperatures by heat exchange with the primitive macrocrysts in the flows and developed non-Newtonian behavior such as shear thinning. Such conditions would have enabled the flows to advance rapidly during episodes with high effusion rates forming the simple flows, and

  5. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Directory of Open Access Journals (Sweden)

    Van Pham Thi


    Full Text Available Abstract Continental flood basalts (CFB are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass and the local equilibrium assumption for secondary phases (weathering products. The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C, magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present

  6. Pre-breakup magmatism on the Vøring Margin: Insight from new sub-basalt imaging and results from Ocean Drilling Program Hole 642E (United States)

    Abdelmalak, M. M.; Meyer, R.; Planke, S.; Faleide, J. I.; Gernigon, L.; Frieling, J.; Sluijs, A.; Reichart, G.-J.; Zastrozhnov, D.; Theissen-Krah, S.; Said, A.; Myklebust, R.


    Improvements in sub-basalt imaging combined with petrological and geochemical observations from the Ocean Drilling Program (ODP) Hole 642E core provide new constraints on the initial breakup processes at the Vøring Margin. New and reprocessed high-quality seismic data allow us to identify a new seismic facies unit which we define as the Lower Series Flows. This facies unit is seismically characterized by wavy to continuous subparallel reflections with an internal disrupted and hummocky shape. Drilled lithologies, which we correlate to this facies unit, have been interpreted as subaqueous flows extruding and intruding into wet sediments. Locally, the top boundary of this facies unit is defined as a negative in polarity reflection and referred as the K-Reflection. This reflection can be correlated with the spatial extent of pyroclastic deposits, emplaced during transitional shallow marine to subaerial volcanic activities during the rift to drift transition. The drilled Lower Series Flows consist of peraluminous, cordierite bearing peperitic basaltic andesitic to dacitic flows interbedded with thick volcano-sedimentary deposits and intruded sills. The peraluminous geochemistry combined with available C (from calcite which fills vesicles and fractures), Sr, Nd, and Pb isotopes data points toward upper crustal rock-mantle magma interactions with a significant contribution of organic carbon rich pelagic sedimentary material during crustal anatexis. From biostratigraphic analyses, Apectodinium augustum was found in the Lower Series Flows. This dinoflagellate cyst species is a marker for the Paleocene - Eocene Thermal Maximum (PETM). However, based on very high stable carbon isotope ratios of bulk organic matter we exclude that these strata represent the PETM. This implies that A. augustum was reworked into the early Eocene sediments of this facies unit. Crucially, this unit predates the breakup time of the Vøring Margin. Finally, a conceptual emplacement model for the

  7. Chemical evolution, petrogenesis, and regional chemical correlations of the flood basalt sequence in the central Deccan Traps, India

    Indian Academy of Sciences (India)

    Leone Melluso; Mario Barbieri; Luigi Beccaluva


    The lava sequence of the central-western Deccan Traps (from Jalgaon towards Mumbai) is formed by basalts and basaltic andesites having a significant variation in TiO2 (from 1.2 to 3.3 wt%), Zr (from 84 to 253 ppm), Nb (from 5 to 16 ppm) and Ba (from 63 to 407 ppm), at MgO ranging from 10 to 4.2 wt%. Most of these basalts follow a liquid line of descent dominated by low pressure fractionation of clinopyroxene, plagioclase and olivine, starting from the most mafic compositions, in a temperature range from 1220° to 1125°C. These rocks resemble those belonging to the lowermost formations of the Deccan Traps in the Western Ghats (Jawhar, Igatpuri and Thakurvadi) as well as those of the Poladpur formation. Samples analyzed for 87Sr/86Sr give a range of initial ratios from 0.70558 to 0.70621. A group of flows of the Dhule area has low TiO2 (1.2–1.5 wt%) and Zr (84–105 ppm) at moderate MgO (5.2–6.2 wt%), matching the composition of low-Ti basalts of Gujarat, low-Ti dykes of the Tapti swarm and Toranmal basalts, just north of the study area. This allows chemical correlations between the lavas of central Deccan, the Tapti dykes and the northwestern outcrops. The mildly enriched high field strength element contents of the samples with TiO2 < 1.5 wt% make them products of mantle sources broadly similar to those which generated the Ambenali basalts, but their high La/Nb and Ba/Nb, negative Nb anomalies in the mantle normalized diagrams, and relatively high 87Sr/86Sr, make evident a crustal input with crustally derived materials at less differentiated stages than those represented in this sample set, or even within the sub-Indian lithospheric mantle.

  8. InSAR observations of aseismic slip associated with an earthquake swarm in the Columbia River flood basalts (United States)

    Wicks, C.; Thelen, W.; Weaver, C.; Gomberg, J.; Rohay, A.; Bodin, P.


    In 2009 a swarm of small shallow earthquakes occurred within the basalt flows of the Columbia River Basalt Group (CRBG). The swarm occurred within a dense seismic network in the U.S. Department of Energys Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (InSAR) data from the European Space Agencys (ESA) ENVISAT satellite provide insight into the nature of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust fault and a near horizontal fault. We suggest that the near horizontal lying fault is a bedding-plane fault located between basalt flows. The geodetic moment of the modeled fault system is about eight times the cumulative seismic moment of the swarm. Precise location estimates of the swarm earthquakes indicate that the area of highest slip on the thrust fault, ???70mm of slip less than ???0.5km depth, was not located within the swarm cluster. Most of the slip on the faults appears to have progressed aseismically and we suggest that interbed sediments play a central role in the slip process. Copyright 2011 by the American Geophysical Union.

  9. InSAR observations of aseismic slip associated with an earthquake swarm in the Columbia River flood basalts (United States)

    Wicks, Charles; Thelen, Weston; Weaver, Craig; Gomberg, Joan; Rohay, Alan; Bodin, Paul


    In 2009 a swarm of small shallow earthquakes occurred within the basalt flows of the Columbia River Basalt Group (CRBG). The swarm occurred within a dense seismic network in the U.S. Department of Energy's Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (InSAR) data from the European Space Agency's (ESA) ENVISAT satellite provide insight into the nature of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust fault and a near horizontal fault. We suggest that the near horizontal lying fault is a bedding-plane fault located between basalt flows. The geodetic moment of the modeled fault system is about eight times the cumulative seismic moment of the swarm. Precise location estimates of the swarm earthquakes indicate that the area of highest slip on the thrust fault, ˜70 mm of slip less than ˜0.5 km depth, was not located within the swarm cluster. Most of the slip on the faults appears to have progressed aseismically and we suggest that interbed sediments play a central role in the slip process.

  10. Floods (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  11. Pressure conditions for the solidification of the Skaergaard intrusion: Eruption of East Greenland flood basalts in less than 300,000 years (United States)

    Larsen, Rune B.; Tegner, Christian


    Primary granophyres are differentiated from olivine tholeiitic magma and occur interstitially throughout the cumulus stratigraphy of the Skaergaard intrusion, East Greenland. Samples from the Lower Zones a-c (LZa-c), the Middle Zone (MZ) and the Sandwich Horizon (SH) are included in the present study together with granophyric accumulations in gabbroic pegmatite from LZa-c. Fluid inclusions in quartz and the mineral assemblage in the granophyres record the pressure under which the Skaergaard intrusion crystallised. Pegmatitic granophyre from LZa-c consists mainly of quartz, plagioclase (An 4-7) and alkali feldspar (Or 40-80) enclosing an earlier formed assemblage of ferrohastingsitic and ferroedenitic hornblende, fayalite (Fo 4-5), titanite, biotite and fluor-apatite. Granophyric quartz, albite and alkali feldspar crystallised from water-saturated granitic melts near eutectic minimum conditions between 680 and 660 °C. The pressure of granophyre crystallisation was modelled by the intercept between fluid inclusion isochores and the minimum melt solidus for granitic compositions. Pressures, recalculated to the roof pendant of the intrusion, are 0.7 ± 0.5 for LZa, 2.0 ± 0.2 for LZb-c, 2.3 ± 0.8 for MZ (the Triple Group level) and 3.3 ± 1.3 kb for SH. Amphibole geobarometry, independently, confirm the pressure estimates for pegmatitic granophyres in LZa-c. The granophyres formed as the intrusion cooled through the minimum melt solidus in LZa, LZb, LZc, MZ and SH, respectively. The pressure increase from LZa to SH granophyres is explained by progressive burial during cooling of the intrusion and contemporaneous outpouring of 5.3-6.3 ± 2.7 km of flood basalts during the initial opening of the Northeast Atlantic Ocean. Accordingly, the Skaergaard intrusion evolved from a subvolcanic magma chamber at emplacement to a more deep-seated igneous system during terminal crystallization when the majority of the intercumulus phases formed. The present cooling history suggests

  12. Meso- and microscale vein structures in fore-arc basalts and boninites related to post-magmatic tectonic deformation in the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352 (United States)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter


    The International Ocean Discovery Program (IODP) Expedition 352 aimed to drill through the entire volcanic sequence of the Izu-Bonin-Mariana fore arc. Two drill sites are situated on the outer fore arc composed of fore arc basalts (FAB) whereas two more sites are located on the upper trench slope penetrating the younger boninites. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured. Structures within the drill cores combined with borehole and site survey seismic data indicate that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement deformation was accommodated by shear along cataclastic fault zones and the formation of tension fractures, shear fractures and hybrid (tension and shear) fractures. Veins form by mineral filling of tension or hybrid fractures and show no or limited observable macroscale displacement along the fracture plane. (Low Mg-) Calcite and/or various types of zeolite are the major vein constituents, where the latter are considered to be alteration products of basaltic glass. Micrite contents vary significantly and are related to neptunian dikes. In boninites calcite develops mainly blocky shapes but veins with fibrous and stretched crystals also occur in places indicating antitaxial as well as ataxial growth, respectively. In FAB calcite forms consistently blocky crystals without any microscopic identifiable growth direction suggesting precipitation from a highly supersaturated fluid under dropping fluid pressure conditions. However, fluid pressure

  13. Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: Geochemical evidence for shallow melting of the mantle (United States)

    Shellnutt, J. Gregory; Bhat, Ghulam M.; Wang, Kuo-Lung; Brookfield, Michael E.; Jahn, Bor-Ming; Dostal, Jaroslav


    The Early Permian Panjal Traps of northern India represent a significant eruption of volcanic rocks which occurred during the opening of the Neotethys Ocean. Basaltic, basaltic-andesites, dacitic and rhyolitic rocks collected from Guryal Ravine and Pahalgam show evidence for subaerial and subaqueous eruptions indicating that they are contemporaneous with the formation of a shallow marine basin. The major and trace element geochemistry of the basalts is consistent with a within-plate setting and there are basalts which have high-Ti (TiO2 > 2.0 wt.%) and low-Ti (TiO2 < 1.8 wt.%) compositions. The ‘high-Ti’ basalts are similar to OIB whereas the ‘low-Ti’ basalts are similar to continental tholeiites. The identification of ‘high- and low-Ti’ basalts within the Panjal Traps is analogous to other large igneous provinces (e.g. Karoo, Deccan, Parana, Emeishan). The Sr-Nd isotopic values (εNd(T) = - 5.3 to + 1.3; ISr = 0.70432 to 0.71168) of both types of basalts overlap indicating that the rocks may have originated from the same ancient subcontinental lithospheric (i.e. EMII-like) mantle source (TDM = ~ 2000 Ma). The two groups of basalts can be modeled by using a primitive mantle source and different degrees of partial melting where the high-Ti rocks are produced by ~ 1% partial melting of a spinel peridotite source whereas the low-Ti rocks are produced by ~ 8% partial melting. Trace elemental and isotope modeling indicates that some of the basalts assimilated ≤ 10% crustal material. In contrast, the basaltic-andesites are likely formed by mixing between basaltic magmas and crustal melts which produced rocks with higher SiO2 (~ 55 wt.%) content and enriched isotopic signatures (εNd(T) = - 6.1; ISr = 0.70992). The Panjal Trap volcanism was likely due to partial melting of the SCLM within a passive extensional setting related to the rifting of Cimmeria from Gondwana. Contemporaneous volcanic and plutonic granitic rocks throughout the Himalaya are probably

  14. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination (United States)

    Wang, Xuan-Ce; Wilde, Simon A.; Xu, Bei; Pang, Chong-Jin


    Continental basalts generally display enrichment of fluid-mobile elements and depletion of high-field-strength elements, similar to those that evolved in the subduction environment, but different from oceanic basalts. Based on the continental flood basalt database for six large igneous provinces, together with rift-related basalt data from the Basin and Range Province, this study aimed to test the validity of geochemical tectonic discrimination diagrams in distinguishing arc-like intra-continental basalts from arc basalts and to further investigate the role of deep-Earth water cycling in producing arc-like signatures in large-scale intra-continental basalts. Our evaluation shows that arc-like intra-continental basalts can be distinguished from arc basalts by integrating the following factors: (1) the FeO, MgO, and Al2O3 concentrations of the primary melt; (2) Tisbnd V, Zrsbnd Zr/Y, Zrsbnd Ti, and Ti/Vsbnd Zr/Smsbnd Sr/Nd discrimination diagrams; (3) the coexistence of arc-like and OIB-like subtype basalts within the same province; (4) primitive mantle-normalized trace element distribution patterns. The similarity of enrichment in fluid-mobile elements (Ba, Rb, Sr, U, and K) between arc-like and true arc basalts suggests the importance of water flux melting in producing arc-like signatures in continental basalts. Experimentally determined liquid lines of descent (LLD) imply high magma water concentrations for continental flood basalts (CFBs) and the Basin and Range basalts. Furthermore, estimates based on the Al2O3-LLD method indicates 4.0-5.0 wt% pre-eruptive magma H2O concentration for CFBs and the Basin and Range basalts. The tight relationships between H2O/Ce and Ba/La, Ba/Nb and Rb/Nb based on global arc basalt data were further used to estimate the primary H2O concentrations. With the exception of the Emeishan CFBs (mainly containing 4.0-5.6 wt% H2O), all other CFBs investigated have similar estimated primary H2O contents, with values ranging from 1.0 to 2

  15. Magmatic tritium

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Aams, A.I. [Los Alamos National Lab., NM (United States); McMurtry, G.M. [Univ. of Hawaii, Honolulu, HI (United States); Shevenell, L. [Univ. of Nevada, Reno, NV (United States); Pettit, D.R. [National Aeronautics and Space Administration (United States); Stimac, J.A. [Union Geothermal Company (United States); Werner, C. [Pennsylvania State Univ., University Park, PA (United States)


    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics.

  16. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Wire-line log-based stratigraphy of flood basalts from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Boldreel, Lars O.


    Full Text Available The present study shows that it is possible to use conventional borehole logs to perform a detailed lithological/stratigraphical division of a column of subaerially extruded basalt. A stratigraphical division of the subaerial flood basalts penetrated by the Lopra-1/1A well has been carried out using new wire-line logging data measured in 1996 in the interval 200–2489 m depth. Resistivity data acquired in the interval 200–2178 m depth during 1981 after the initial drilling of the Lopra-1 well have also been incorporated. Eighty-six individual flow units, 18 compound flows and two dolerite dykes have been identified by combining the NPHI porosity, RHOB density, P-, S- and Stonely-sonic transit time, calliper and resistivity logs. Fifty-two sedimentary/tuffaceous layers have also been identified using the CGR and SGR gamma ray and potassium logs in combination with the aforementioned logs. Within the flow units, sonic velocity, density and resistivity are highest in the core where porosity is lowest. This relation is reversed in the uppermost and basal zones of the flow units. The sonic velocity in the core seems to be independent of the thickness of the flow unit. Porous zones seem abundant in some cores and the total section of cores containing porous zones constitutes more than 70% of the thickness of its flow unit, but where porous zones are absent the core makes up only roughly 50% of the thickness of the flow. It is suggested that the flow units with porous cores represent aa flows (88% of the flow units and the others pahoehoe flows (12% of the flow units.The log pattern of the flow units (crust, core and basal zone is similar to log patterns reported from other basalt plateaux. However the patterns in Lopra-1/1A show a larger variation than elsewhere,suggesting that the flow units are more complex vertically than previously thought. Statistical analysis of P-, S- and Stonely-waves, RHOB, NPHI, resistivity, gamma and calliper logs has

  17. Magmatism in the Asunción-Sapucai-Villarrica Graben (Eastern Paraguay) Revisited: Petrological, Geophysical, Geochemical, and Geodynamic Inferences


    Piero Comin-Chiaramonti; Angelo De Min; Aldo Cundari; Girardi,Vicente A. V.; Marcia Ernesto; GOMES,CELSO B.; Claudio Riccomini


    The Asunción-Sapucai-Villarrica graben (ASV) in Eastern Paraguay at the westernmost part of the Paraná Basin was the site of intense magmatic activity in Mesozoic and Tertiary times. Geological, petrological, mineralogical, and geochemical results indicate that the following magmatic events are dominant in the area: (1) tholeiitic basalt and basaltic andesites, flows and sills of low- and high-titanium types; (2) K-alkaline magmatism, where two suites are distinguished, that is, basanite to p...

  18. Upper cretaceous magmatic suites of the Timok magmatic complex

    Directory of Open Access Journals (Sweden)

    Banješević Miodrag


    Full Text Available The Upper Cretaceous Timok Magmatic Complex (TMC developed on a continental crust composed of different types of Proterozoic to Lower Cretaceous rocks. The TMC consists of the magmatic suites: Timok andesite (AT - Turonian-Santonian, Metovnica epiclastite (EM - Coniacian-Campanian, Osnić basaltic andesite (AO and Ježevica andesite (AJ - Santonian-Campanian, Valja Strž plutonite (PVS - Campanian and Boljevac latite (LB. The sedimentary processes and volcanic activity of the TMC lasted nearly continuously throughout nearly the whole Late Cretaceous. The sedimentation lasted from the Albian to the Maastrichtian and the magmatism lasted for 10 million years, from the Upper Turonian to the Upper Campanian. The volcanic front migrated from East to West. The volcanic processes were characterized by the domination of extrusive volcanic facies, a great amount of volcanic material, a change in the depositional environment during the volcanic cycle, sharp facial transitions and a huge deposition of syn- and post-eruptive resedimented volcaniclastics.

  19. Magmatism on the Moon (United States)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie


    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  20. Basaltic cannibalism at Thrihnukagigur volcano, Iceland (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.


    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  1. Recurrent Early Cretaceous, Indo-Madagascar (89-86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu-Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance (United States)

    Sheth, Hetu; Pande, Kanchan; Vijayan, Anjali; Sharma, Kamal Kant; Cucciniello, Ciro


    The Sarnu-Dandali alkaline complex in Rajasthan, northwestern India, is considered to represent early, pre-flood basalt magmatism in the Deccan Traps province, based on a single 40Ar/39Ar age of 68.57 Ma. Rhyolites found in the complex are considered to be 750 Ma Malani basement. Our new 40Ar/39Ar ages of 88.9-86.8 Ma (for syenites, nephelinite, phonolite and rhyolite) and 66.3 ± 0.4 Ma (2σ, melanephelinite) provide clear evidence that whereas the complex has Deccan-age (66 Ma) components, it is dominantly an older (by 20 million years) alkaline complex, with rhyolites included. Basalt is also known to underlie the Early Cretaceous Sarnu Sandstone. Sarnu-Dandali is thus a periodically rejuvenated alkaline igneous centre, active twice in the Late Cretaceous and also earlier. Many such centres with recurrent continental alkaline magmatism (sometimes over hundreds of millions of years) are known worldwide. The 88.9-86.8 Ma 40Ar/39Ar ages for Sarnu-Dandali rocks fully overlap with those for the Indo-Madagascar flood basalt province formed during continental breakup between India (plus Seychelles) and Madagascar. Recent 40Ar/39Ar work on the Mundwara alkaline complex in Rajasthan, 120 km southeast of Sarnu-Dandali, has also shown polychronous emplacement (over ≥ 45 million years), and 84-80 Ma ages obtained from Mundwara also arguably represent post-breakup stages of the Indo-Madagascar flood basalt volcanism. Remnants of the Indo-Madagascar province are known from several localities in southern India but hitherto unknown from northwestern India 2000 km away. Additional equivalents buried under the vast Deccan Traps are highly likely.

  2. Contrasting Sr isotope ratios in plagioclase from different formations of the mid-Miocene Columbia River Basalt Group (United States)

    Starkel, W. A.; Wolff, J.; Eckberg, A.; Ramos, F.


    Many early Columbia River Basalt flows of the Steens and Imnaha Formations are characterized by abundant, texturally complex, coarse plagioclase phenocrysts. In Imnaha lavas, the feldspars typically have more radiogenic 87Sr/86Sr than whole rock and matrix, and may exhibit complex isotopic zoning that is not correlated with An content. Imnaha plagioclase grains are interpreted as variably-contaminated crystals produced when high-crystallinity mid-crustal basaltic intrusions exchanged interstitial melt with adjacent partly-melted crustal rock; this isotopically variable debris was then remobilized by subsequent intrusion of mantle-derived basalt and brought to the surface as an isotopically heterogeneous mixture. In contrast, plagioclase grains in the texturally very similar Steens lavas are isotopically near-homogeneous and 87Sr/86Sr is not significantly displaced from that of the bulk rock. This is consistent with magma- crust interaction at low degrees of crustal melting during the early stages of the Columbia River flood basalt episode, where Steens and Imnaha lavas were erupted from distinct magma systems hosted by different types of crust that exerted different degrees of isotopic leverage on the mantle-derived magmas [1]. Thermal input to the Steens system declined at the same time as the Imnaha magmatic flux increased to ultimately produce the huge outpouring of Grande Ronde lavas, which are mixtures of mantle- and crust-derived liquids, the latter produced during high degrees of crustal melting during the time of peak magmatic flux. [1] Wolff et al. (2008) Nature Geoscience 1, 177-180.

  3. Two- and three-dimensional gravity modeling along western continental margin and intraplate Narmada-Tapti rifts: Its relevance to Deccan flood basalt volcanism

    Indian Academy of Sciences (India)

    Somdev Bhattacharji; Rajesh Sharma; Nilanjan Chatterjee


    The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan flood basalts. Three-dimensional gravity modeling of +70 mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, mafic-ultramafic type, elongated, roughly ellipsoidal body. It is approximately 12.0 ± 1.2 km thick with its upper surface at an approximate depth of 6.0 ± 0.6km, and its average density is 2935 kg/m3. Calculated dimension of the high density body in the upper crust is 300 ± 30km in length and 25 ± 2.5 to 40 ± 4 km in width. Three-dimensional gravity modeling of +10 mgal to −30 mgal Bouguer gravity highs along the intraplate Narmada-Tapti rift indicates the presence of eight small isolated high density mafic bodies with an average density of 2961 kg/m3. These mafic bodies are convex upward and their top surface is estimated at an average depth of 6.5 ± 0.6 (between 6 and 8 km). These isolated mafic bodies have an average length of 23.8 ± 2.4 km and width of 15.9 ± 1.5 km. Estimated average thickness of these mafic bodies is 12.4 ± 1.2 km. The difference in shape, length and width of these high density mafic bodies along the western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of large, ellipsoidal high density mafic bodies along the western continental margin and small, isolated mafic bodies along the Narmada-Tapti rift are related to lineamentreactivation and subsequent rifting due to interaction of hot mantle plume with the lithospheric weaknesses (lineaments) along the path of Indian plate motion over the R´eunion hotspot. Mafic bodies formed in the upper lithosphere as

  4. Panxi region (South-West China): Tectonics, magmatism and metallogenesis. A review (United States)

    Munteanu, Marian; Yao, Yong; Wilson, Allan H.; Chunnett, Gordon; Luo, Yaonan; He, Hong; Cioacă, Mihaela; Wen, Maolin


    The Panxi region of SW China makes up most of the western margin of the Yangtze craton. Its structural pattern, defined by NS-trending deep faults, is superimposed on a zone of late Proterozoic crustal extension. The Panxi region seems to have evolved as a continental rift in the Permian, and was subsequently subjected to compression, caused mainly by the Himalayan collision. This induced the uplift of its axial and western parts, generating a horst-type structure within the former rift graben. At ca. 260 Ma, mantle plume-related magmatism in the Panxi region generated the Emeishan flood basalts together with ultramafic and silicic volcanic rocks and with numerous intrusive bodies (peridotites, pyroxenites, layered gabbros, syenites, granites). A geochemical distinction between high-Ti and low-Ti Emeishan basalts can be made, but just with the significance of compositional end-members since the published data define a continuous variation of the entire compositional range. Similar compositional variation occurs in the ultramafic lavas (picrites and komatiites) intercalated in the sequence of the Emeishan basalts, which are considered to be the products of undifferentiated primary magmas. Based on the geochemical data, the primary magmas could have been generated from distinct source materials (mantle plume, asthenosphere, lithospheric mantle), from compositionally heterogeneous mantle plume source or from a common source but with various degrees of mantle melting and crustal contamination. Considering the picritic composition of the primary magmas, a deep-seated differentiation of large volume of magma is needed to produce the extrusion of the relatively evolved Emeishan basalts. World class Fe-Ti-V oxide ore deposits are associated with the layered gabbros, while the ultramafic intrusions can host small Ni-Cu and PGE sulfide deposits. The intrusions containing Fe-Ti-V oxide deposits show remarkably continuous layering and probably derived from mafic magmas

  5. The Mozambique Ridge: a document of massive multistage magmatism (United States)

    Fischer, Maximilian D.; Uenzelmann-Neben, Gabriele; Jacques, Guillaume; Werner, Reinhard


    The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ˜131 and ˜125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.

  6. Simulating the Thermochemical Magmatic and Tectonic Evolution of Venus's Mantle and Lithosphere: Intrusive vs. Extrusive Magmatism (United States)

    Tackley, Paul; Armann, Marina


    Here we extend the models of [1]. Numerical convection models of the thermochemical evolution of Venus are compared to present-day topography and geoid, recent resurfacing history and surface deformation. The models include melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that in stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick crust, inconsistent with observations. Partitioning of heat-producing elements into the crust helps but does not help enough. Episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ~150 Myr, initiating in one place and then spreading globally. During quiescent periods convection keeps the lithosphere thin. Magmatism keeps the mantle temperature constant over Venus's history. Crustal recycling occurs by entrainment in stagnant lid convection, and by lid overturn in episodic mode. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. The basalt density inversion below the olivine-perovskite transition causes compositional stratification around 730 km; breakdown of this layering increases episodicity but far less than episodic lid overturn. The classical stagnant lid mode with interior temperature rheological temperature scale lower than TCMB is not reached because mantle temperature is controlled by magmatism while the core cools slowly from a superheated start. Core heat flow decreases with time, possibly shutting off the dynamo, particularly in episodic cases. Here we extend [1] by considering intrusive magmatism as an alternative to

  7. Mantle source heterogeneity of the Early Jurassic basalt of eastern North America (United States)

    Gregory Shellnutt, J.; Dostal, Jaroslav; Yeh, Meng-Wan


    One of the defining characteristics of the basaltic rocks from the Early Jurassic Eastern North America (ENA) sub-province of the Central Atlantic Magmatic Province (CAMP) is the systematic compositional variation from South to North. Moreover, the tectono-thermal regime of the CAMP is debated as it demonstrates geological and structural characteristics (size, radial dyke pattern) that are commonly associated with mantle plume-derived mafic continental large igneous provinces but is considered to be unrelated to a plume. Mantle potential temperature (T P) estimates of the northern-most CAMP flood basalts (North Mountain basalt, Fundy Basin) indicate that they were likely produced under a thermal regime (T P ≈ 1450 °C) that is closer to ambient mantle (T P ≈ 1400 °C) conditions and are indistinguishable from other regions of the ENA sub-province (T Psouth = 1320-1490 °C, T Pnorth = 1390-1480 °C). The regional mantle potential temperatures are consistent along the 3000-km-long ENA sub-province suggesting that the CAMP was unlikely to be generated by a mantle plume. Furthermore, the mantle potential temperature calculation using the rocks from the Northern Appalachians favors an Fe-rich mantle (FeOt = 8.6 wt %) source, whereas the rocks from the South Appalachians favor a less Fe-rich (FeOt = 8.3 wt %) source. The results indicate that the spatial-compositional variation of the ENA basaltic rocks is likely related to differing amounts of melting of mantle sources that reflect the uniqueness of their regional accreted terranes (Carolinia and West Avalonia) and their post-accretion, pre-rift structural histories.

  8. Joint Inversion of Geoid Anomaly and Teleseismic P-Wave Delay Times: Modeling Density and Velocity Perturbations Beneath the Parana Magmatic Province (United States)

    Chaves, C. A. M.; Ussami, N.; Ritsema, J.


    The Parana Magmatic Province (PMP) is one of the largest continental igneous provinces (LIP) on Earth. It is well dated at 133 Ma preceding the opening of the South Atlantic Ocean, but the causative geodynamic processes are still poorly understood. Although a low-velocity anomaly has been imaged by seismic tomography in the northeast region of the PMP and interpreted as a fossil conduct of a mantle plume that is related to the flood basalt eruptions, geochemical data indicate that such magmatism is caused by the melting of a heterogeneous and enriched lithospheric mantle with no deep plume participation. Models of density perturbations in the upper mantle estimated from joint inversion of geoid anomalies and P-wave delay times will offer important constraints on mantle dynamics. A new generation of accurate global geopotential models derived from satellite-missions (e.g. GRACE, GOCE) allows us to estimate density distribution within the Earth from geoid inversion. In order to obtain the residual geoid anomaly related to the density structure of the mantle, we use the EGM2008 model removing estimated geoid perturbations owing to variations in crustal structure (i.e., topographical masses, Moho depth, thickness of sediments and basalts). Using a spherical-Earth approximation, the density model space is represented by a set of tesseroids and the velocity model is parameterized in nodes of a spherical grid where cubic B-splines are utilized as an interpolation function. To constrain the density inversion, we add more than 10,000 manually picked teleseismic P-wave delay times. During the inversion procedure, density and P-wave velocity are linked through the optimization of a constant linear factor correlating density and velocity perturbation. Such optimization will be performed using a probability density function (PDF) [Tarantola, 2005]. We will present the preliminary results of this joint inversion scheme and hypothesize on the geodynamic processes responsible for

  9. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism (United States)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.


    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  10. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia: The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block (United States)

    Fan, Hong-Peng; Zhu, Wei-Guang; Li, Zheng-Xiang; Zhong, Hong; Bai, Zhong-Jie; He, De-Feng; Chen, Cai-Jie; Cao, Chong-Yong


    Secondary ion mass spectroscopy (SIMS) zircon and baddeleyite U-Pb ages, elemental, and Nd isotopic data are reported for the Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block, South China. The mafic intrusions are dated at 1494 ± 6 Ma (zircon U-Pb), 1486 ± 3 Ma (baddeleyite U-Pb) and 1490 ± 4 Ma (baddeleyite U-Pb). The intrusions are dominantly gabbros that experienced variable degrees of alteration. All the studied rocks are high-Ti and alkaline in composition, and exhibit light rare earth element enrichment and "humped" incompatible trace-element patterns with no obvious Nb-Ta depletion, similar to intraplate alkali basaltic rocks in continental flood basalt (CFB) and ocean island basalt (OIB) provinces. Negative ɛNd(T) values (- 0.97 to - 3.58) and fractionation of the HREE of these rocks indicate that they were derived from a time-integrated, slightly enriched asthenospheric mantle source with minor crustal contamination. Like other Fe-Ti oxide mineralized rocks in plume-related layered intrusions or large igneous provinces around the world, the Zhuqing gabbros likely occurred in an intraplate setting. The ~ 1.5 Ga mafic magmatism was likely part of the global 1.6-1.2 Ga anorogenic magmatism related to the break-up of the supercontinent Nuna/Columbia, suggesting that the Yangtze Block may have been a component of the supercontinent.

  11. Atmospheric outgassing and native-iron formation during carbonaceous sediment-basalt melt interactions (United States)

    Pernet-Fisher, John F.; Day, James M. D.; Howarth, Geoffrey H.; Ryabov, Victor V.; Taylor, Lawrence A.


    Organic carbon-rich sediment assimilation by basaltic magmas leads to enhanced emission of greenhouse gases during continental flood basalt eruptions. A collateral effect of these interactions is the generation of low oxygen fugacities (fO2) (below the iron-wüstite [IW] buffer curve) during magmatic crystallization, resulting in the precipitation of native-iron. The occurrence of native-iron bearing terrestrial basaltic rocks are rare, having been identified at three locations: Siberia, West Greenland, and Central Germany. We report the first combined study of Re-Os isotopes, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), and trace-element abundances for these three occurrences, in addition to host sediments at West Greenland. To quantify the amount of crustal assimilation experienced by the magmas, we present combined crystallization and assimilation models, together with fractional crystallization models, to assess how relative abundances of the HSE have been modified during crystallization. The radiogenic osmium isotopic compositions (γOsinitial +15 to +193) of mafic igneous samples are consistent with assimilation of old high Re/Os crustal contaminants with radiogenic 187Os/188Os, whereas the HSE inter-element fractionations (Pd/Os 2 to >10,000) suggest that some Siberian samples underwent an early stage of sulfide removal. Metalliferous samples from the Siberian intrusions of Khungtukun and Dzhaltul (associated with the Siberian flood basalts) yield internal 187Re-187Os ages of 266 ± 83Ma and 249 ± 50Ma, respectively, reflecting late-Permian emplacement ages. These results imply that crustal assimilation took place prior to crystallization of native-Fe. In contrast, metalliferous samples from Disko Island and Bühl (associated with the West Greenland flood basalts, and the Central European Volcanic Province, respectively) have trends in 187Re/188Os-187Os/188Os space corresponding to apparent ages older than their reported crystallization ages

  12. Floods and Flash Flooding (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  13. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province (United States)

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto


    unique peraluminous composition. It has the lowest εNd and εHf values of the suite. Its isotopic compositions indicate that it is significantly older than the other granulites. Broken zircon cores encased by younger overgrowths suggest that this granulite includes a large component of pre-existing sedimentary rocks. Two distinct populations of zircons from S69-5 were dated by sensitive high-resolution ion microprobe. Abundant rounded zircons yield ages of 1104 ± 42 (2σ) Ma, which coincide with the Mid-Continent Rift flood basalt eruptions. Their morphology is similar to those found in lower-crustal rocks that have undergone granulite-facies metamorphism and thus they are considered to represent the age of Group 2 granulites. Also present are less abundant elongate zircon grains that yield a mean age of 1387 ± 32 (2σ) Ma. Their elongate shapes indicate growth from a melt or fluid, possibly associated with 1·3–1·5 Ga anorogenic granite magmatism exposed in the shallow crust to the south in Wisconsin, or related to an initial encroachment of the Keweenawan plume upon the lower crust. Older ages recognized in zircon cores are less well constrained but may be related to tectono-magmatic events in the southern Superior craton. Within the studied suite only S69-5 was recognized as a remnant of the Late Archean lower crust into which the Group 1 and 2 mafic granulite precursor basalts were intruded. Collectively, the data show that the lower crust beneath northern Michigan formed in Archean times and underwent a variety of tectono-magmatic processes throughout the Proterozoic, including orogenesis, partial melting and mafic magmatic underplating in response to upwelling mantle plumes.

  14. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc

    DEFF Research Database (Denmark)

    Bailey, John C; Jensen, E.S.; Hansen, A.;


    The geochemistry of basaltic to dacitic lavas and dykes in the volcanic centres of NorthSantorini (Greece) has been investigated using elemental and Sr-Nd-Pb isotopic data andthree main magmatic series with sub-parallel trace element patterns for basalts can bedistinguished. The basalts have Sr...... and Nd isotopic values consistent with varying levels of incompatible-element mantle depletion. A fourth magma group with only two basalt samples has a trace element pattern with even lower contents of incompatible elements, especially Th, and with lower 87Sr/86Sr but higher 206Pb/ 204Pb. Heterogeneous...

  15. Flooding and Flood Management (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim


    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  16. the role of magmatism and segmentation in the structural evolution of the Afar Rift (United States)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie


    A common issue at volcanic passive margins (VPM) is the lack of observation of the structures that accommodate stretching and thinning. Indeed, the most distal parts and the Ocean-Continent Transition is often masked by thick seaward-dipping reflectors (SDR) sequences. Some current challenges are then to know if the observed thinning fit the divergence (thinning vs dyking); and what is the rheological effect of magma supply that re-thickens the crust during extension? In the Central Afar magmatic rift (Ethiopia), the structures related to rifting since Oligocene are cropping out onshore and are well preserved. We present here a new structural model based on field data and lavas (U-Th/He and K/Ar) datings along a balanced cross-section of the Central Afar Western Margin. We mapped continent-ward normal fault array affecting highly tilted trapp series (29-30 Ma) unconformably overlain by tilted Oligo-Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. The Pliocene flood basalt (Stratoid series) is erupted over an already thinned crust. The bulk extension for the Afar Western Margin is ß ~ 2.50. Our main findings are: - Oligo-Miocene deformation in Central Afar appears to be largely distributed through space and time ("magmatic wide rift"). It has been accommodated in a 200-300 km wide strip being a diffuse incipient plate boundary during the whole rifting history until the formation of present-day magmatic segments. There is a period of tectonic quiescence accompanied with few magma erupted at the surface between 25 Ma and 7 Ma. We suggest that tectonic and magmatic activity was focused at that time on the highly faulted Danakil block and Southern Red Sea, away from our study zone. - ß ~ 2.50 is higher than the thinning factor of ~1.30 observed in geophysical studies. We propose that the continental crust in Central Afar has been re-thickened during extension by the syn

  17. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead-zinc mineralization (Gangdese, Tibet) (United States)

    Zhou, Jinsheng; Yang, Zhusen; Hou, Zengqian; Liu, Yingchao; Zhao, Xiaoyan; Zhang, Xiong; Zhao, Miao; Ma, Wang


    In addition to well-known subduction processes, the collision of two continents also generates abundant ore deposits, as in the case of the Tibetan Plateau, which is the youngest and most spectacular collisional belt on Earth. During the building history of the Gangdese magmatic belt, several magmatic flare-up events developed, however, significant magmatic-hydrothermal lead-zinc mineralization dominantly accompanied the magmatism during the syncollisional period ( 65-41 Ma). Based on integrated geochemical and isotopic data, we provide insights into the genesis and evolution of syncollisional magmas, and their implications for significant magmatic-hydrothermal lead-zinc mineralization. The Sr-Nd isotopic compositions of most syncollisional igneous rocks (87Sr/86Sr = 0.7034-0.7123; εNd(t) = - 9.0 to + 1.8) indicate a mixing origin between mantle-derived basaltic magmas and ancient crustal melts, and fractional crystallization is a fundamental mechanism by which syncollisional magmas evolve towards intermediate to silicic compositions. Most lead-zinc mineralization-related plutons are high silica (76.14% wt.% SiO2 on average), high oxygen fugacity (average ΔFMQ + 2.5) granites with highly evolved chemical signatures [average Eun/Eun* = 0.33, high Rb/Sr (average = 3.9)], and they represent the final products from primary magmas. Due to the contribution of ancient crustal melts to the genesis of mineralization-related parent magmas, the spatial distribution of Pb-Zn deposits within the northern Gangdese magmatic belt is controlled by the lithospheric architecture. In compressional environments, magmas have low evacuation efficiency and long magma chamber lifespan, which is favorable for basaltic parents evolved to high silica granites through sufficient fractional crystallization. This scenario contributes to our understanding of the significant magmatic-hydrothermal lead-zinc mineralization that occurred in the syncollisional period.

  18. The Mozambique Ridge: a document of massive multi-stage magmatism (United States)

    Fischer, Maximilian D.; Uenzelmann-Neben, Gabriele; Jacques, Guillaume; Werner, Reinhard


    The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intra-basement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ˜131 Ma and ˜125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.

  19. Geochemical characterization of oceanic basalts using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Iyer Sridhar D


    Full Text Available Abstract The geochemical discriminate diagrams help to distinguish the volcanics recovered from different tectonic settings but these diagrams tend to group the ocean floor basalts (OFB under one class i.e., as mid-oceanic ridge basalts (MORB. Hence, a method is specifically needed to identify the OFB as normal (N-MORB, enriched (E-MORB and ocean island basalts (OIB. We have applied Artificial Neural Network (ANN technique as a supervised Learning Vector Quantisation (LVQ to identify the inherent geochemical signatures present in the Central Indian Ocean Basin (CIOB basalts. A range of N-MORB, E-MORB and OIB dataset was used for training and testing of the network. Although the identification of the characters as N-MORB, E-MORB and OIB is completely dependent upon the training data set for the LVQ, but to a significant extent this method is found to be successful in identifying the characters within the CIOB basalts. The study helped to geochemically delineate the CIOB basalts as N-MORB with perceptible imprints of E-MORB and OIB characteristics in the form of moderately enriched rare earth and incompatible elements. Apart from the fact that the magmatic processes are difficult to be deciphered, the architecture performs satisfactorily.

  20. Geochemical characterization of oceanic basalts using Artificial Neural Network. (United States)

    Das, Pranab; Iyer, Sridhar D


    The geochemical discriminate diagrams help to distinguish the volcanics recovered from different tectonic settings but these diagrams tend to group the ocean floor basalts (OFB) under one class i.e., as mid-oceanic ridge basalts (MORB). Hence, a method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). We have applied Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) to identify the inherent geochemical signatures present in the Central Indian Ocean Basin (CIOB) basalts. A range of N-MORB, E-MORB and OIB dataset was used for training and testing of the network. Although the identification of the characters as N-MORB, E-MORB and OIB is completely dependent upon the training data set for the LVQ, but to a significant extent this method is found to be successful in identifying the characters within the CIOB basalts. The study helped to geochemically delineate the CIOB basalts as N-MORB with perceptible imprints of E-MORB and OIB characteristics in the form of moderately enriched rare earth and incompatible elements. Apart from the fact that the magmatic processes are difficult to be deciphered, the architecture performs satisfactorily.

  1. Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California (United States)

    du Bray, Edward A.; John, David A.


    Present-day High Cascades arc magmatism was preceded by ~40 m.y. of nearly cospatial magmatism represented by the ancestral Cascades arc in Washington, Oregon, and northernmost California (United States). Time-space-composition relations for the ancestral Cascades arc have been synthesized from a recent compilation of more than 4000 geochemical analyses and associated age data. Neither the composition nor distribution of ancestral Cascades magmatism was uniform along the length of the ancestral arc through time. Initial (>40 to 36 Ma) ancestral Cascades magmatism (mostly basalt and basaltic andesite) was focused at the north end of the arc between the present-day locations of Mount Rainier and the Columbia River. From 35 to 18 Ma, initial basaltic andesite and andesite magmatism evolved to include dacite and rhyolite; magmatic activity became more voluminous and extended along most of the arc. Between 17 and 8 Ma, magmatism was focused along the part of the arc coincident with the northern two-thirds of Oregon and returned to more mafic compositions. Subsequent ancestral Cascades magmatism was dominated by basaltic andesite to basalt prior to the post–4 Ma onset of High Cascades magmatism. Transitional tholeiitic to calc-alkaline compositions dominated early (before 40 to ca. 25 Ma) ancestral Cascades eruptive products, whereas the majority of the younger arc rocks have a calc-alkaline affinity. Tholeiitic compositions characteristic of the oldest ancestral arc magmas suggest development associated with thin, immature crust and slab window processes, whereas the younger, calc-alkaline magmas suggest interaction with thicker, more evolved crust and more conventional subduction-related magmatic processes. Presumed changes in subducted slab dip through time also correlate with fundamental magma composition variation. The predominance of mafic compositions during latest ancestral arc magmatism and throughout the history of modern High Cascades magmatism probably

  2. Differentiation mechanism of frontal-arc basalt magmas (United States)

    Kuritani, T.; Yoshida, T.; Kimura, J.; Hirahara, Y.; Takahashi, T.


    In a cooling magma chamber, magmatic differentiation can proceed both by fractionation of crystals from the main molten part of the magma body (homogeneous fractionation) and by mixing of the main magma with fractionated melt derived from low-temperature mush zones (boundary layer fractionation) (Jaupart and Tait, 1995, and references therein). The geochemical path caused by boundary layer fractionation can be fairly different from a path resulting from homogeneous fractionation (e.g., Langmuir, 1989). Therefore, it is important to understand the relative contributions of these fractionation mechanisms in magma chambers. Kuritani (2009) examined the relative roles of the two fractionation mechanisms in cooling basaltic magma chambers using a thermodynamics-based mass balance model. However, the basaltic magmas examined in the work were alkali-rich (Na2O+K2O > 4 wt.%). In this study, to explore differentiation mechanisms of frontal-arc basalt magmas that are volumetrically much more important than rear-arc alkali basalt magmas, the relative roles of the two fractionation mechanisms are examined for low-K tholetiitic basalt magma from Iwate Volcano, NE Japan arc, using the same mass balance model. First, the water content and the temperature of the Iwate magma were estimated. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-81) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase. It is inferred from these observations that the phenocrysts with variable compositions were derived from a common magma with variable temperature in a magma chamber, and the plagioclase phenocrysts were all derived from mushy boundary layers along the walls of the magma chamber. By

  3. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume? (United States)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.


    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  4. Early Yellowstone hotspot magmatism and gold metallogeny (United States)

    Hames, Willis; Unger, Derick; Saunders, James; Kamenov, George


    compatible with regional crustal units that host the gold ores, or the silicic igneous lithologies of the region, but have the same lead isotopic composition as basalts of the earliest Yellowstone plume (represented by the earliest lavas of the Columbia River basalt province, the Steens basalts, and Stonyford Volcanic Complex; Hanan et al., 2008). We propose that the gold studied and its traces of alloyed lead were derived together from the mantle, released from basaltic magma chambers of the province, and carried by low-density fluids into shallow geothermal systems during the earliest stages of Yellowstone hotspot magmatism.

  5. Apatite as a Tool for Tracking Magmatic CO2 Contents (United States)

    Riker, J.; Humphreys, M.; Brooker, R. A.


    CO2 plays a fundamental role in the evolution of magmatic and volcanic systems, but its low solubility in silicate melts means that direct records of magmatic CO2 concentrations remain elusive. The phosphate mineral apatite is unique among igneous minerals in its capacity to accommodate all major magmatic volatiles (H2O, F, Cl, CO2 and S). Although interest in apatite as a tool for tracking magmatic volatile contents (namely H2O, F, and Cl) has increased in recent years, its potential as a record of magmatic CO2contents remains untapped. We present the results of high-temperature, high-pressure experiments investigating the partitioning behaviour of CO2 between apatite and basaltic melt. Experiments were run in piston cylinder apparatus at 1 GPa and 1250 °C, with a slow initial cooling ramp employed to facilitate crystal growth. Each charge contained the starting basaltic powder doped with Ca-phosphate and variable proportions of H2O, CO2, and F. Run products are glass-rich charges containing 15-25 vol% large, euhedral apatite crystals (± cpx and minor biotite). Experimental apatites and glasses have been characterised by BSE imaging, electron microprobe, and ion microprobe. Apatites range in composition from near-endmember fluorapatite (3.0 wt% F), to near-endmember hydroxyapatite (1.7 wt% H2O), to carbon-rich apatite containing up to 1.6 wt% CO2. Apatite compositions are stoichiometric if all anions (F-, OH-, and CO32—) lie in the channel site, suggesting an "A-type" substitution under these conditions (i.e. CO32— + [] = 2X—, where X is another channel anion and [] is a vacancy; e.g. Fleet et al. 2004). Importantly, CO2 partitions readily into apatite at all fluid compositions considered here. CO2 is also more compatible in apatite than water at our run conditions, with calculated H2O-CO2 exchange coefficients close to or greater than 1. Our results indicate that when channel ions are primarily occupied by H2O and CO2 (i.e. F- and Cl-poor magmatic systems

  6. Petrogenesis of Early Cretaceous basaltic lavas from the North China Craton: Implications for cratonic destruction (United States)

    Qian, Sheng-Ping; Ren, Zhong-Yuan; Richard, Wysoczanski; Zhang, Le; Zhang, Yin-Hui; Hong, Lu-Bing; Ding, Xiang-Li; Wu, Ya-Dong


    The North China Craton (NCC) is believed to be the best example of cratonic destruction. However, the processes leading to cratonic destruction remain unclear, largely due to a lack of knowledge of the nature of the Mesozoic NCC lithospheric mantle. Here we report new petrological and geochemical data for Early Cretaceous NCC basalts, which provide insights into the nature of the underlying lithospheric mantle. The Early Cretaceous basalts (all tholeiites) show a limited variation in geochemical composition. In contrast, olivine-hosted melt inclusions from these basalts display a wide range in compositional variation and include both alkalic and tholeiitic basaltic compositions. This result provides the direct evidence of the contribution of silica-undersaturated alkali basaltic melts in the petrogenesis of the Early Cretaceous NCC basalts. In addition, the compositions of olivine phenocrysts and reconstructed primary melts indicate that the Early Cretaceous basalts are derived from a mixed peridotite and refertilized peridotite source. The Pb isotopic compositions of melt inclusions in high fugacity of oxygen (fo) olivines combined with trace element characteristics of these basalts reveal that heterogeneous lithospheric mantle sources for Early Cretaceous basalts were metasomatized by carbonate-bearing eclogite-derived melts. The Pb isotopic variations of the melt inclusions and clinopyroxene and plagioclase phenocrysts demonstrate that the mantle-derived magmas were variably contaminated by lower continental crust. We propose that multiple subduction events during the Phanerozoic, combined with mantle-plume activity, likely play a vital role in the generation of the Early Cretaceous voluminous magmatism and cratonic destruction.

  7. A historical overview of Moroccan magmatic events along northwest edge of the West African Craton (United States)

    Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane


    Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in

  8. Complex magmatic processes on Mars - Inferences from the SNC meteorites (United States)

    Longhi, J.


    Published data on the elemental and isotopic abundances in the shergottites-nakhlites-Chassigny (SNC) meteorites, considered to be of Martian origin, are compared with those for eucritic, lunar, and terrestrial basalt samples, with a focus on their implications for magmatic processes in the parent bodies. The major elements, the REEs and isotopes, and the other lithophile incompatible elements (such as high-field-strength elements, HFSEs) are discussed separately, and it is concluded that Mars had a magmatic history significantly different from that of the other bodies. The Martian pattern of HFSE and REE anomalies suggests extraction of carbonatic melts and remelting of the depleted source material, while the Nd isotopic constraints on the melting of Nakhla indicate very high fractionation of REEs, requiring exceedingly efficient porous flow down to depths of over 350 km.

  9. Space-Time-Isotopic Trends of Snake River Plain Basalts (United States)

    Jean, M. M.; Hanan, B. B.; Shervais, J. W.


    The Snake River Plain (SRP) volcanic province is an 800 km track of basalt extending from the Owyhee Plateau to its current terminus, the Yellowstone Plateau. It is one of several late-Tertiary magmatic terranes that also include the Cascades magmatic arc, the Columbia River basalts, and the Oregon Plateau basalts; all of which are adjacent to the Basin and Range Province extensional system (Hughes and McCurry, 2002). This province represents the track of the Yellowstone plume and consists of basalt that is compositionally similar to ocean-island basalt. This basalt overlies a series of rhyolitic eruptive centers (overlapping caldera complexes, ignimbrites, and caldera-filling eruptions) that signal the arrival of the plume head (Christiansen, 2001) and herald the onset of plume-related rhyolitic and basaltic volcanism (Pierce et al., 2002). Observed within the SRP are two basalt types: the dominant low-K olivine tholeiites and less common high-K alkaline basalts. We report new Sr-, Nd-, and Pb-isotopic analyses of these two basalt types from all three SRP provinces: eastern, central, and western. Low-K tholeiites are enriched in 143Nd/144Nd and 86Sr/87Sr and forms a quasi-linear array in Pb-isotope space, along with Craters of the Moon and eastern SRP basalts. High-K lavas are found largely in the western plain, and have a uniquely different isotopic signature. They are depleted in 143Nd/144Nd and 86Sr/87Sr, relative to the low-K tholeiites, and plot closer to the BSE component of Zindler and Hart (1986). They also share the same Pb-isotopic space with high-K basalts from Smith Prairie (Boise River Group 2 of Vetter and Shervais, 1992). One low-K tholeiite - Eureka North, plots with these high alkali basalts. Mass balance models have demonstrated an increasing plume component from the Yellowstone caldera in the east to the craton edge in the west. The lavas analyzed in this study conform remarkably to this model. The mass fraction of plume component in western

  10. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume? (United States)

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.


    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  11. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. (United States)

    Teng, Fang-Zhen; Dauphas, Nicolas; Helz, Rosalind T


    Magmatic differentiation helps produce the chemical and petrographic diversity of terrestrial rocks. The extent to which magmatic differentiation fractionates nonradiogenic isotopes is uncertain for some elements. We report analyses of iron isotopes in basalts from Kilauea Iki lava lake, Hawaii. The iron isotopic compositions (56Fe/54Fe) of late-stagemeltveins are 0.2 permil (per thousand) greater than values for olivine cumulates. Olivine phenocrysts are up to 1.2 per thousand lighter than those of whole rocks. These results demonstrate that iron isotopes fractionate during magmatic differentiation at both whole-rock and crystal scales. This characteristic of iron relative to the characteristics of magnesium and lithium, for which no fractionation has been found, may be related to its complex redox chemistry in magmatic systems and makes iron a potential tool for studying planetary differentiation.

  12. Does subduction zone magmatism produce average continental crust (United States)

    Ellam, R. M.; Hawkesworth, C. J.


    The question of whether present day subduction zone magmatism produces material of average continental crust composition, which perhaps most would agree is andesitic, is addressed. It was argued that modern andesitic to dacitic rocks in Andean-type settings are produced by plagioclase fractionation of mantle derived basalts, leaving a complementary residue with low Rb/Sr and a positive Eu anomaly. This residue must be removed, for example by delamination, if the average crust produced in these settings is andesitic. The author argued against this, pointing out the absence of evidence for such a signature in the mantle. Either the average crust is not andesitic, a conclusion the author was not entirely comfortable with, or other crust forming processes must be sought. One possibility is that during the Archean, direct slab melting of basaltic or eclogitic oceanic crust produced felsic melts, which together with about 65 percent mafic material, yielded an average crust of andesitic composition.

  13. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires (United States)

    Peucat, J. J.; Ruffault, P.; Fritsch, E.; Bouhnik-Le Coz, M.; Simonet, C.; Lasnier, B.


    Using ICP-MS-LA analyses, we demonstrate that the use of the Ga/Mg ratio, in conjunction with the Fe concentration, is an efficient tool in discriminating between "metamorphic" and "magmatic" blue sapphires. Magmatic blue sapphires found in alkali basalts (e.g. southeastern Asia, China, Africa) are commonly medium-rich to rich in Fe (with average contents between 2000 and 11000 ppm), high in Ga (> 140 ppm), and low in Mg (generally 10). Conversely, metamorphic blue sapphires found in basalts (e.g. Pailin pastel) and in metamorphic terrains (e.g. Mogok, Sri Lanka, Ilakaka) are characterized by low average iron contents ( 60 ppm) with low average Ga/Mg ratios (< 10). Basaltic magmatic sapphires have Fe, Ga and Mg contents similar to those obtained for primary magmatic sapphires found in the Garba Tula syenite. This suggests that these both sets of sapphires have a possible common "syenitic" origin, as previously proposed from other criteria. In addition, plumasite-related sapphires and metamorphic sapphires also exhibit similar composition in trace elements. Based on results from the present study, we suggest that fluid circulations during a metamorphic stage produced metasomatic exchanges between mafic and acidic rocks (plumasite model), thus explaining the high Mg contents and converging Ga/Mg ratios observed in metamorphic sapphires.

  14. Explosive deep water basalt in the sumisu backarc rift. (United States)

    Gill, J; Torssander, P; Lapierre, H; Taylor, R; Kaiho, K; Koyama, M; Kusakabe, M; Aitchison, J; Cisowski, S; Dadey, K; Fujioka, K; Klaus, A; Lovell, M; Marsaglia, K; Pezard, P; Taylor, B; Tazaki, K


    Eruption of 1-million-year-old tholeiitic basalt >1800 meters below sea level (>18 megapascals) in a backarc rift behind the Bonin arc produced a scoriaceous breccia similar in some respects to that formed during subaerial eruptions. Explosion of the magma is thought to have produced frothy agglutinate which welded either on the sea floor or in a submarine eruption column. The resulting 135-meter-thick pyroclastic deposit has paleomagnetic inclinations that are random at a scale of <2.5 meters. High magmatic water content, which is about 1.3 percent by weight after vesiculation, contributed to the explosivity.

  15. Hot subduction: Magmatism along the Hunter Ridge, SW Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, A.J.; Verbeeten, A.; Danyushevsky, L.V.; Sigurdsson, I.A. [SRC for Ore Deposit Research, Hobart, TAS (Australia); Maillet, P. [Australian National University, Canberra, ACT (Australia). Department of Geology; Maillet, P. [ORSTOM Centre de Brest, France, (France); Monzier, M. [ORSTOM Centre, Ecuador, (Ecuador)


    The Hunter `fracture zone` is generally regarded as a transform plate boundary linking the oppositely dipping Tongan and Vanuatu subduction systems. Dredging along the Hunter Ridge and sampling of its northernmost extent, exposed as the island of Kadavu in Fiji, has yielded a diversity of magmatic suites, including arc tholeiites and high-Ca boninites, high-Mg lavas with some affinities to boninites and some affinities to adakites, and true adakitic lavas associated with remarkable low-Fe, high-Na basalts with 8-16 ppm Nb (herein high-Nb basalts). Lavas which show clear evidence of slab melt involvement in their petrogenesis occur at either end of the Hunter Ridge, whereas the arc tholeiites and high-Ca boninites appear to be restricted to the south central part of the ridge. Mineralogical and whole rock geochemical data for each of these suites are summarized, and a tectono-magmatic model for their genesis and distribution is suggested. Trace element features and radiogenic isotope data for the Hunter Ridge lavas indicate compositions analogue to Pacific MORB-like mantle. Extended abstract. 6 refs., 2 figs.

  16. Interpreting chemical compositions of small scale basaltic systems: A review (United States)

    McGee, Lucy E.; Smith, Ian E. M.


    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  17. Magmatic systems of large continental igneous provinces

    Directory of Open Access Journals (Sweden)

    E. Sharkov


    Full Text Available Large igneous provinces (LIPs formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts (during Archean and early Paleoproterozoic to Phanerozoic-type geochemically enriched Fe-Ti basalts and picrites at 2.3 Ga. We propose that this upheaval could be related to the change in the source and nature of the mantle superplumes of different generations. The first generation plumes were derived from the depleted mantle, whereas the second generation (thermochemical originated from the core-mantle boundary (CMB. This study mainly focuses on the second (Phanerozoic type of LIPs, as exemplified by the mid-Paleoproterozoic Jatulian–Ludicovian LIP in the Fennoscandian Shield, the Permian–Triassic Siberian LIP, and the late Cenozoic flood basalts of Syria. The latter LIP contains mantle xenoliths represented by green and black series. These xenoliths are fragments of cooled upper margins of the mantle plume heads, above zones of adiabatic melting, and provide information about composition of the plume material and processes in the plume head. Based on the previous studies on the composition of the mantle xenoliths in within-plate basalts around the world, it is inferred that the heads of the mantle (thermochemical plumes are made up of moderately depleted spinel peridotites (mainly lherzolites and geochemically-enriched intergranular fluid/melt. Further, it is presumed that the plume heads intrude the mafic lower crust and reach up to the bottom of the upper crust at depths ∼20 km. The generation of two major types of mantle-derived magmas (alkali and tholeiitic basalts was previously attributed to the processes related to different PT-parameters in the adiabatic melting zone whereas this study relates to the fluid regime in the plume heads. It is also suggested that a newly-formed melt can occur on different sides of a critical plane of silica undersaturation and can

  18. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico (United States)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.


    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  19. Degassing and contamination of noble gases in Mid-Atlantic Ridge basalts


    Burnard, P.; Harrison, D.; Turner, G.; Nesbitt, R


    New He, Ne, Ar and CO2 stepped-crushing data from the Mid-Atlantic Ridge show that contamination of basalts by atmospheric noble gases involves three or more components: unfractionated air, fractionated air with high 36Ar/22Ne (45) and fractionated air with low 36Ar/22Ne (5). In addition, the magmatic noble gases trapped in these basaltic glasses are variably fractionated such that 4He/40Ar* (where the asterisk indicates corrected for atmospheric contamination based on all 36Ar being atmosphe...

  20. Lead isotopes and the sources of the Columbia River Basalt Group (United States)

    Chamberlain, V. E.; Lambert, R. St. J.


    set. R6 is similar in all its isotopic properties to the Precambrian basement that is exposed to the immediate north of the Columbia River Basalt Group. The overall model for Columbia River Basalt Group genesis is termed 'plume reinforced back arc magmatism'.

  1. Explosive eruption of coal and basalt and the end-Permian mass extinction. (United States)

    Ogden, Darcy E; Sleep, Norman H


    The end-Permian extinction decimated up to 95% of carbonate shell-bearing marine species and 80% of land animals. Isotopic excursions, dissolution of shallow marine carbonates, and the demise of carbonate shell-bearing organisms suggest global warming and ocean acidification. The temporal association of the extinction with the Siberia flood basalts at approximately 250 Ma is well known, and recent evidence suggests these flood basalts may have mobilized carbon in thick deposits of organic-rich sediments. Large isotopic excursions recorded in this period are potentially explained by rapid venting of coal-derived methane, which has primarily been attributed to metamorphism of coal by basaltic intrusion. However, recently discovered contemporaneous deposits of fly ash in northern Canada suggest large-scale combustion of coal as an additional mechanism for rapid release of carbon. This massive coal combustion may have resulted from explosive interaction with basalt sills of the Siberian Traps. Here we present physical analysis of explosive eruption of coal and basalt, demonstrating that it is a viable mechanism for global extinction. We describe and constrain the physics of this process including necessary magnitudes of basaltic intrusion, mixing and mobilization of coal and basalt, ascent to the surface, explosive combustion, and the atmospheric rise necessary for global distribution.

  2. Geochemical characteristics and petrogenesis of Mesozoic basalts from the North China Craton: A case study in Fuxin, Liaoning Province

    Institute of Scientific and Technical Information of China (English)


    Occurrence of Cretaceous basalts in Fuxin County, Liaoning Province provides us an opportunity to understand Mesozoic mantle processes beneath the northern margin of the North China Craton (NNCC). Fuxin Jianguo basalts occur as volcanic channel phases with well-developed columnar jointings and contain few spinel lherzolite and pyroxenite xenoliths. They are poor in silica and rich in alkalis, Ti and Al, belonging to alkaline basalts. In trace element compositions, Jianguo basalts are moderately enriched in LREE and LILE, but not depleted in HFSE. They have low Sr and high Nd and Pb isotopic ratios. These geochemical characteristics suggest that Jianguo basalts originated from the depleted asthenosphere, representing an undifferentiated and uncontaminated primitive magma. Presence of these basalts indicates that the lithosphere beneath the region had thickness less than 65 km at the time of basalt eruption and was mainly composed of fertile pargasite-bearing spinel lherzolite and plagioclase pyroxenite. The voluminous basaltic-andesitic magmatism during the early Jurassic-late Cretaceous time indicates that the commencement and accomplishment of lithosphere thinning in the NNCC was much earlier than that in the southern margin, since the mafic-intermediate volcanism only occurred at the Cretaceous time in the southern margin and the basalts with an asthenosphere isotopic signature at the Tertiary. This shows that highly spatial and temporal heterogeneity existed in the Mesozoic lithosphere evolution.

  3. Why Hexagonal Basalt Columns? (United States)

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens


    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  4. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, G.A.


    This chapter summarizes data collection and model calculations through FY 95 under Study Plan Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth`s surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository.

  5. Magmatism in the Asunción-Sapucai-Villarrica Graben (Eastern Paraguay Revisited: Petrological, Geophysical, Geochemical, and Geodynamic Inferences

    Directory of Open Access Journals (Sweden)

    Piero Comin-Chiaramonti


    Full Text Available The Asunción-Sapucai-Villarrica graben (ASV in Eastern Paraguay at the westernmost part of the Paraná Basin was the site of intense magmatic activity in Mesozoic and Tertiary times. Geological, petrological, mineralogical, and geochemical results indicate that the following magmatic events are dominant in the area: (1 tholeiitic basalt and basaltic andesites, flows and sills of low- and high-titanium types; (2 K-alkaline magmatism, where two suites are distinguished, that is, basanite to phonolite and alkali basalt to trachyte and their intrusive analogues; (3 ankaratrite to phonolite with strong Na-alkaline affinity, where mantle xenoliths in ultramafic rocks are high- and low-potassium suites, respectively. The structural and geophysical data show extensional characteristics for ASV. On the whole, the geochemical features imply different mantle sources, consistently with Sr-Nd isotopes that are Rb-Nd enriched and depleted for the potassic and sodic rocks, respectively. Nd model ages suggest that some notional distinct “metasomatic events” may have occurred during Paleoproterozoic to Neoproterozoic times as precursor to the alkaline and tholeiitic magmas. It seems, therefore, that the genesis of the ASV magmatism is dominated by a lithospheric mantle, characterized by small-scale heterogeneity.

  6. Formation and Significance of Magmatic Enclaves in From the 2006 Eruption of Augustine Volcano, Alaska (United States)

    Browne, B. L.; Vitale, M. L.


    Deposits from the 2006 eruption of Augustine Volcano, Alaska, record a complicated history of open system magmatic processes that produced a suite of intermediate (56.5 to 63.3% SiO2) lithologies containing rare and variably quenched basaltic to basaltic-andesite enclaves (49.5-57.3% SiO2). The eruption transitioned from an explosive phase (Jan 11-28) to a continuous phase (Jan 28-Feb 10) before ending following a month-long effusive phase in March. Whereas the explosive phase is dominated by a low-silica andesite (LSAS, 56.5-58.7% SiO2) lithology, high-silica andesite (HSA, 62.2-63.3% SiO2) is more common during the continuous phase and dense low-silica andesite (DLSA, 56.4-59.3% SiO2) occurs mostly during the effusive phase. Enclaves occur in all lithologies, although most commonly in DLSA and LSAS. Point-counting of enclaves in outcrop reveals an average abundance of Augustine Volcano record a complex and multi-step mixing and mingling scenario between intruding basalt and resident silicic mush, and possibly gabbroic cumulates/wall rock, that is inconsistent with any single currently employed mingling model (e.g., buoyant lift-off of vesiculated and undercooled basalt, prolonged undercooling of intruded basalt punctuated by subsequent intrusions, enclave dissagregation and ripening, or violent intrusion of bubbly basaltic plumes) that has been used to explain magmatic enclave formation at other arc systems characterized by lower magma temperature, higher crystallinity, and larger eruptive volumes (e.g., Unzen Volcano, Mt. Lassen, Soufriere Hills).

  7. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan (United States)

    Liu, Chih-Chun; Yang, Huai-Jen


    The pillow basalts from Baolai in southwestern Taiwan have been inferred to bear Dupal signautres based on their Th/Ce ratio, linking the Baolai basalts to the South China Sea (SCS) seamounts that are characterized by Dupal Pb isotope signatures (Smith and Lewis, 2007). In this study, thirty-two Baolai basalt samples were analyzed for abundances of major and trace elements as well as Pb and Nd isotope ratios to verify their Dupal characters and to constrain their petrogenesis significance. The Baolai basalts contain 4-10 % L.O.I.. Three stages of alteration are inferred from plots of L.O.I. abundance versus concentrations major oxides as well as mineral textures and compositions. The first alteration stage was characterized by albitization that converted Ca-rich plagioclase to albite. The second alteration stage was dominated by chloritization of olivine and augite, resulting in increases in L.O.I. abundance. The last alteration stage is represented by formation of secondary calcite in vesicles and cracks. These alteration processes reflect interaction with seawater and apparently did not affect the magmatic Pb isotope composition for the low Pb concentration in seawater. Relative to the North Hemisphere Reference Line (NHRL), the Baolai pillow basalts have higher 208Pb/204Pb ratios at a given 206Pb/204Pb value, showing Dupal anomaly. For their relatively higher 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios, the Baolai basalts are distinct from majority of the Cenozoic basalts in the Hainan-Leizhou peninsula, the Indochina peninsula, and the SCS seamounts, for which derivation from the Hainan mantle plume has been recently proposed (Wang et al., 2013). In contrast, the Baolai basalts and the Cenozoic basalts from eastern Guangdong at southeastern China have similar Pb and Nd isotope compositions, indicating derivation from similar mantle sources. However, the Baolai basalts have lower abundance ratios of Zr/Hf (40.3-45.6 versus 46.5-50.5), La/Yb (12

  8. Geodynamic of the Gulf of Suez-Red Sea rifting and origin of within plate magmatism (United States)

    Ragab, A. I.; El-Kaliouby, B. A.


    This study is an attempt to follow up the overall picture of the geologic processes of the "Wilson Cycle" in the Gulf of Suez Red Sea region. A plate-tectonic model is suggested covering the Pan-African collisional tectonics, post-Pan-African magmatism in space and time, and rifting stages in the Red Sea region. Field relations, petrography, and petrochemistry of the Tertiary basalt sheets of Abu Zenima area, Sinai, have been studied and correlated with some petrochemical data of Phanerozoic magmatic activities in the Red Sea region. The sequence of events of the tectonics and magmatic activities in the Gulf of Suez-Red Sea rift system may belong to six stages post Pan-African orogeny: (1) Paleozoic-Cretaceous continental bimodal alkaline magmatism resulting from the sinking of detached subducted oceanic plates, in the late stages of the Pan-African collisional tectonics. Consequently causing convection currents around them and partial melting of a deep undepleted mantle source; (2) Paleogene crustal doming and stretching as a result of asthenosphere upwelling activated by a long period of (≅ 300 m.y.) within plate alkaline magmatism; (3) Late Oligocene fissure-eruption of transitional (T-type MORBs) plateau basalts, dykes and sills on a regional scale. The transitional character of this basaltic activity is attributed to the soaking of the asthenosphere, during its slow upwelling, in the rising alkaline magmatism; (4) Early Miocene narrow long continental rifting in the Gulf of Suez-Red Sea region, probably due to a thermal contraction process resulting from the eruption of the Tertiary transitional, fissure-eruption basalts in large volumes from the upwelled asthenosphere; (5) Initiation of crustal separation of the very early stage of seafloor spreading, which is most probably characterized by mafic igneous rocks underplating of the crustal faulted blocks by dyke injection and related plutonic rocks; (6) Pliocene oceanic rifting and seafloor spreading

  9. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell


    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  10. Temperature profile around a basaltic sill intruded into wet sediments (United States)

    Baker, Leslie; Bernard, Andrew; Rember, William C.; Milazzo, Moses; Dundas, Colin M.; Abramov, Oleg; Kestay, Laszlo P.


    The transfer of heat into wet sediments from magmatic intrusions or lava flows is not well constrained from field data. Such field constraints on numerical models of heat transfer could significantly improve our understanding of water–lava interactions. We use experimentally calibrated pollen darkening to measure the temperature profile around a basaltic sill emplaced into wet lakebed sediments. It is well known that, upon heating, initially transparent palynomorphs darken progressively through golden, brown, and black shades before being destroyed; however, this approach to measuring temperature has not been applied to volcanological questions. We collected sediment samples from established Miocene fossil localities at Clarkia, Idaho. Fossils in the sediments include pollen from numerous tree and shrub species. We experimentally calibrated changes in the color of Clarkia sediment pollen and used this calibration to determine sediment temperatures around a Miocene basaltic sill emplaced in the sediments. Results indicated a flat temperature profile above and below the sill, with T > 325 °C within 1 cm of the basalt-sediment contact, near 300 °C at 1–2 cm from the contact, and ~ 250 °C at 1 m from the sill contact. This profile suggests that heat transport in the sediments was hydrothermally rather than conductively controlled. This information will be used to test numerical models of heat transfer in wet sediments on Earth and Mars.

  11. The relative roles of boundary layer fractionation and homogeneous fractionation in cooling basaltic magma chambers (United States)

    Kuritani, Takeshi


    In a cooling magma chamber, magmatic differentiation can proceed both by fractionation of crystals from the main molten part of the magma body (homogeneous fractionation) and by mixing of the main magma with fractionated melt derived from low-temperature mush zones (boundary layer fractionation). In this study, the relative roles of boundary layer fractionation and homogeneous fractionation in basaltic magma bodies were examined using a thermodynamics-based mass balance model. Model calculations show that boundary layer fractionation cannot be a dominant fractionation mechanism when magma chambers are located at low pressures (magmatic evolution. On the other hand, boundary layer fractionation can occur effectively when magmas are hydrous (> ~ 2 wt.%), such as arc basalt, and the magma chambers are located at depth (> ~ 100 MPa). Because the melt derived from mush zones is enriched in alkalis and H 2O, crystallization from the main magma is suppressed by mixing with the mush melt as a consequence of depression of the liquidus temperature. Therefore, homogeneous fractionation is more effectively suppressed in magma chambers in which boundary layer fractionation is more active. If magmatic differentiation proceeds primarily by boundary layer fractionation, magmas can remain free of crystals for long periods during magmatic evolution.

  12. Physical processes and effects of magmatism in the Yucca Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, G.A.; Crowe, B.M. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, New Mexico (USA). Dept. of Geology


    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth`s surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii.

  13. The parent magma of the Nakhla (SNC) meteorite: Reconciliation of composition estimates from magmatic inclusions and element partitioning (United States)

    Treiman, A. H.


    The composition of the parent magma of the Nakhla meteorite was difficult to determine, because it is accumulate rock, enriched in olivine and augite relative to a basalt magma. A parent magma composition is estimated from electron microprobe area analyses of magmatic inclusions in olivine. This composition is consistent with an independent estimate based on the same inclusions, and with chemical equilibria with the cores of Nakhla's augites. This composition reconciles most of the previous estimates of Nakhla's magma composition, and obviates the need for complex magmatic processes. Inconsistency between this composition and those calculated previously suggests that magma flowed through and crystallized into Nakhla as it cooled.

  14. Central Atlantic Magmatic Province (CAMP): The Palisade Sill Connection (United States)

    Ghatak, A.; Basu, A. R.


    The extensively studied 200Ma Central Atlantic Magmatic Province (CAMP) is considered to be the world's largest continental Large Igneous Province (LIP) covering up to 7 X 106 km2. This igneous province has been linked to the ~200Ma Mesozoic opening of the Central Atlantic Ocean. This opening fragmented the CAMP into several segments that occur on four different tectonic plates today. The CAMP related LIP is different from others in that it constitutes almost entirely of dikes and sills with sparse volcanic outflows. The 200 Ma Palisade Sill, exposed along the Hudson River in northeastern North America is an expression of the CAMP magmatism. On the basis of similar ages of eruption, Palisade Sill tholeiites have been correlated to other CAMP exposures in four continents. We provide an isotopic tracer study of the Palisade Sill basalts and relate them to low-Ti (gabbros, 3 chilled margin basalts, and 4 sandstones spanning the entire length and thickness of the Palisade Sill in New York and New Jersey. These geochemical data are essential to understand the relationship between mantle geodynamic processes involved in the generation of the CAMP tholeiites prior to the formation of the of the Atlantic Ocean crust. The Palisade Sill basalts of this study yield the typical composition of low-Ti CAMP tholeiites with small LREE enrichments (LaN/SmN = 1.7 to 2.3), radiogenic Sr and negative ɛNd(I) values (87Sr/87Sr(I) = 0.70668 to 0.71037; ɛNd(I) = -0.64 to -3.8), and Pb-isotopic ratios (e.g. 206Pb/204Pb = 18.11 to 18.69) above the NHRL and subparallel to it. These geochemical data indicate the Palisade Sill basalts were derived from a slightly enriched OIB-like mantle source. Further, these rocks were derived by ~15% melting of a slightly depleted spinel peridotite with up to 20% contamination by the continental lithosphere prior to or during the emplacement of these lavas. Since other low-Ti CAMP lavas have similar geochemistry and eruption ages of the Palisade Sill

  15. Late Carboniferous N-MORB-type basalts in central Inner Mongolia, China: Products of hydrous melting in an intraplate setting? (United States)

    Pang, Chong-Jin; Wang, Xuan-Ce; Xu, Bei; Zhao, Jian-Xin; Feng, Yue-Xing; Wang, Yan-Yang; Luo, Zhi-Wen; Liao, Wen


    Petrogenesis of the ca. 310 Ma Benbatu basalts in central Inner Mongolia is crucial for constraining the evolution of the Xing'an Mongolia Orogenic Belt (XMOB), eastern segment of the Central Asian Orogenic Belt. The Benbatu basalts have low initial 87Sr/86Sr ratios (0.7042-0.7048), positive εNd(t) (+ 8.99 to + 9.24) and εHf(t) values (+ 15.38 to + 15.65), and are characterized by relatively flat rare earth element patterns and enrichment of Rb, U, Pb, Zr and Hf, but depletion of Nb, Ta, Sr and Ti, resembling those of the normal Mid-Ocean-Ridge Basalt (N-MORB). Variations of trace element ratios (e.g., Sm/Yb and La/Sm) suggest that the basalts were derived from spinel peridotites, with a melting depth of recycling water in the generation of the Late Carboniferous magmatism in this region.

  16. Magmatic Evolution in the Los Tuxtlas Volcanic Field, Veracruz, Mexico (United States)

    Koster, A.; Kobs-Nawotniak, S. E.


    Magma evolution within the Los Tuxtlas Volcanic Field (LTVF) is poorly understood. The LTVF is a basaltic, monogenetic field in Veracruz, Mexico, that contains approximately 400 vents and has been active for the last 7 Ma, including a sub-Plinian eruption in 1793. The field is structurally controlled, with cones forming NW-SE lines consistent with local extension. By understanding magmatic evolution through ascent, storage, and mixing, it is possible to more accurately predict future trends in the system. Samples from two alignments of cinder cones located between San Martin Tuxtlas volcano and Laguna Catemaco were analyzed petrographically and geochemically. Geochemical data were plotted in Fenner and Harker diagrams to identify trends, including fractional crystallization and magma recharge. Mineral modes were calculated via point counting in thin sections, and micro-textural variations were noted. Cone morphometry was used as a rough proxy for age along with field relationships to develop an approximate order of events along the alignments. Preliminary data suggest that the aligned vents are part of a linked magmatic plumbing system undergoing periodic recharge.

  17. The Magmatic Structure of Mt. Vesuvius: Isotopic and Thermal Constraints (United States)

    Civetta, L.; D'Antonio, M.; de Lorenzo, S.; Gasparini, P.


    Mt. Vesuvius is an active volcano famous for the AD 79 eruption that destroyed Pompeii, Herculaneum and Stabiae. Because of the intense urbanization around and on the volcano, the risk today is very high. Therefore, the knowledge of the structure and behavior of the magmatic system is fundamental both for the interpretation of any change in the dynamics of the volcano and for prediction of eruptions. A review of available and new isotopic data on rocks from Mt. Vesuvius, together with mineralogical and geochemical data and recent geophysical results, allow us to constrain a thermal modeling that describes history and present state of Mt. Vesuvius magmatic system. This system is formed by a "deep", complex magmatic reservoir where mantle-derived magmas arrive, stagnate and differentiate. The reservoir extends discontinuously between 10 and 20 km of depth, is hosted in densely fractured crustal rocks, where magmas and crust can interact, and has been fed more than once since 400 ka. The hypothesis of crustal contamination is favored by the high temperatures reached by crustal rocks as a consequence of repetitive intrusions of magma. From the "deep" reservoir magmas of K-basaltic to K-tephritic to K-phonotephritic composition rise to shallow depths where they stagnate at 3-5 km of depth before plinian eruptions, and through crystallization and mixing processes with the residual portion of the feeding systems, generate isotopically and geochemically layered reservoirs. Alternatively, during "open conduit" conditions deep, volatile-rich magma batches rise from the "deep" reservoir to less than 1 km of depth and mix with the crystal-rich, volatile-poor resident magma, triggering eruptions.

  18. Bubble Growth in Lunar Basalts (United States)

    Zhang, Y.


    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  19. Detection of reduced carbon in basalt using Raman spectroscopy: a signpost to habitat on Mars (United States)

    Harris, L. V.; Hutchinson, I. B.; Parnell, J.; Ingley, R.; Edwards, H. G. M.


    In the search for evidence of the environmental history of the Martian surface, and the possibility of life at some stage in the planet's history, a key component is reduced carbon. Carbon is available to the surface environment through meteoritic infall [1] and erosion of abundant volcanic rocks which contain magmatic carbon [2][3], in addition to the possibility of some biogenic carbonaceous matter. However, reduced carbon has not yet been detected by a range of missions to Mars. Carbonate minerals, containing carbon in inorganic oxidized form, have been recorded [4], which together with carbon dioxide in the Martian atmosphere and magmatic carbon in Martian meteorites provide evidence for a carbon cycle on Mars [5][6]. The mobility of carbon on Mars is also evident in fracture-bound carbon in the Nakhla meteorite, derived from Martian basalt [7] [8]. Basalts are widespread on Mars, so are readily accessible for sampling and analysis. Basalt-hosted carbon could have a relationship to life in both a consequential or causative manner. Basalt could incorporate carbon from organic matter disseminated in sediments through which the basaltic magma passed. It is even possible that basalt could concentrate carbon scavenged from sediments into carbon-rich structures. Alternatively, basalt could act as a feedstock of carbon to provide biomass for colonizing microbes. In this way, the discovery of carbon in (Martian) basalt could be regarded as a signpost to habitat, i.e. the identification of carbon is a key aspect of the strategy for targeting where evidence of life should be sought. The ExoMars mission, currently intended to fly in 2018, includes a Raman spectroscopy instrument, whose targets for detection include reduced carbon. We report here the study of an analogue for the carbon-bearing Nakhla meteorite, representing nearsurface Martian crust, using Raman spectroscopy and other techniques to demonstrate the potential to detect the reduced carbon therein. The

  20. Petrography and geochemistry of metamafic rocks intercalated in gneisses from Goiás Magmatic Arc, region of Indiara (GO

    Directory of Open Access Journals (Sweden)

    Guillermo Rafael Beltran Navarro


    Full Text Available In Indiara region (GO, dozens of metamafic rocks lenses of various dimensions (metric to kilometric occur, intercalated in gneisses of the Goiás Magmatic Arc and oriented according to the direction of the main foliation (Sn. These lenses consist of amphibolite (amphibole schists and amphibolites, have chemical compositions of sub-alkaline basalts to andesitic basalts and sub-alkaline tholeiitic affinity. The distribution of major and trace elements, as well as rare earth elements (REE, suggests that these rocks are derived from a source with similar geochemical signature. The analyzed rocks are enriched in large ion litophile elements (Cs, Rb, Ba, K, Th and U in relation to elements of high field strength (Nb, Ta, Zr, Hf and Y and in relation to REE, Sr, P and Ti, showing weak to medium negative anomalies of Nb, Ta and P and suggesting that these rocks were generated in a magmatic arc environment.

  1. Spreading and collapse of big basaltic volcanoes (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael


    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  2. Density and P-wave velocity structure beneath the Paraná Magmatic Province: Refertilization of an ancient lithospheric mantle (United States)

    Chaves, Carlos; Ussami, Naomi; Ritsema, Jeroen


    We estimate density and P-wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P-wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P-wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 - 300 km. These values correlate with high-velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high-density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re-Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P-wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere

  3. Strength of Concrete Containing Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Parvez Imraan Ansari


    Full Text Available This paper presents the comparative study of effect of basalt fibre on compressive and split tensile strength of M40 grade concrete. The basalt fibre was mixed in concrete by (0.5%, 1%, and 1.5% of its total weight of cement in concrete. Results indicated that the strength increases with increase of basalt fibre content up to 1.0% beyond that there is a reduction in strength on increasing basalt fibre. The results show that the concrete specimen with 1.0% of basalt fibre gives better performance when it compared with 0.5%and 1.5% basalt fibre mix in concrete specimens.

  4. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer


    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  5. Characterizing silicic rocks in the Parana Magmatic Province: an update in their origin and emplacement (United States)

    Luchetti, A. F.; Nardy, A. R.; Machado, F. B.; Gravley, D. M.; Gualda, G. A.


    The Paraná Magmatic Province (PMP), a large igneous province in southern Brazil (with correlative rocks in western Africa), includes 800,000 km3 of flood basalts generated during the rifting that ultimately led to the opening of the South Atlantic and covers nearly 75% of the surface of the Paraná Basin. Towards the top of the volcanic pile, silicic rocks are observed in many areas. They comprise a small proportion of the total erupted volume (2.5%), yet correspond to a significant flare-up of silicic volcanism over a period of only a few million years. In Brazil, the silicic rocks are divided into two groups, the Chapecó Member, which appears more northerly and includes porphyritic, crystal-rich, high-Ti dacites and trachydacites; and the Palmas Member, which includes fine-grained, crystal-poor, low-Ti dacites and rhyolites. The mode of emplacement (lavas vs. pyroclastic flows) of the volcanic units has been the subject of much controversy. The aim of this project is to better understand the origin and evolution of the PMP silicic rocks. We are combining information from the regional to the thin section scale to better characterize eruption dynamics and magma distribution prior to eruption. In both Palmas and Chapecó units, we observe features consistent with emplacement in the form of pyroclastic density currents, e.g. fiamme, variable weathering patterns consistent with local variations in welding at the outcrop scale, vertical gas-escape structures, sedimentary dykes, and lythophysae. Some ignimbrite units can be traced for 10's of kilometers and with more research on their spatial distribution could reveal the location of eruptive centers. In the Palmas, ignimbrites can be observed juxtaposed against or overlying discrete eruptive centers in the form of discordant structures that resemble domes and coulees typical of lava extrusion and flow. However, many of the silicic rocks are ambiguous and difficult to characterize, with features that could be related

  6. Tachylyte in Cenozoic basaltic lavas from the Czech Republic and Iceland: contrasting compositional trends (United States)

    Ulrych, Jaromír; Krmíček, Lukáš; Teschner, Claudia; Řanda, Zdeněk; Skála, Roman; Jonášová, Šárka; Fediuk, Ferry; Adamovič, Jiří; Pokorný, Richard


    Tachylytes from rift-related volcanic rocks were recognized as: (i) irregular veinlets in host alkaline lava flows of the Kozákov volcano, Czech Republic, (ii) (sub)angular xenoliths in alkaline lava of the feeding channel of the Bukovec volcano, Czech Republic, and (iii) paleosurface of a tholeiitic lava flow from Hafrafell, Iceland. The tachylyte from Kozákov is phonotephrite to tephriphonolite in composition while that from Bukovec corresponds to trachyandesite to tephriphonolite. Both glass and host rock from Hafrafell are of tholeiitic basalt composition. The tachylyte from Kozákov, compared with the host rock, revealed a substantial enrichment in major elements such as Si, Al and alkalis along with Rb, Sr, Ba, Nb, Zr, REE, Th and U. The tachylyte from Bukovec displays contrasting trends in the incompatible element contents. The similarity in composition of the Hafrafell tachylyte paleosurface layer and parental tholeiitic basalt is characteristic for lavas. The host/parent rocks and tachylytes have similar initial Sr-Nd characteristics testifying for their co-magmatic sources. The initial ɛNd values of host/parent rocks and tachylytes from the Bohemian Massif (+3.4 to +3.9) and those from Iceland (+6.3) are interpreted as primary magma values. Only the tachylyte from Bukovec shows a different ɛNd value of -2.1, corresponding to a xenolith of primarily sedimentary/metamorphic origin. The tachylyte from Kozákov is a product of an additional late magmatic portion of fluids penetrating through an irregular fissure system of basaltic lava. The Bukovec tachylyte is represented by xenoliths originated during the interaction of ascending basaltic melt with granitoids or orthogneisses, whereas the Hafrafell tachylyte is a product of a rapid cooling on the surface of a basalt flow.

  7. Seismic constraints on Late Mesozoic magmatic plumbing system in the onshore-offshore area of Hong Kong (United States)

    Xia, S.; Qiu, X.; Wan, K.


    We used active source wide-angle seismic data to determine a crustal structure beneath the onshore-offshore area of Hong Kong at the southern end of a broad belt dominated by Late Mesozoic intrusive and extrusive rocks in the coastal region of Southeast China. High-resolution tomographic images provide direct seismic evidence for the magmatic plumbing system of Late Mesozoic calderas. A localized high-velocity anomaly is revealed in the lower crust offshore between Hong Kong and Dangan Island, which may reflect basaltic underplating that induced voluminous silicic eruptions and granitoid plutons in the onshore-offshore area of Hong Kong. Tilted high-velocity zones are revealed in the entire crust beneath Dangan Island and the Late Mesozoic calderas of Hong Kong, which may reflect ascending magma chambers. We propose a paleo-Pacific plate subduction model to interpret our tomographic results and the generation of strong granitic magmatism in the Hong Kong area. Combining the tomographic image beneath the Lianhuashan Fault Zone with the distribution of Late Mesozoic calderas, we infer that the Lianhuashan Fault Zone might be the dominant magmatic conduit for mantle-derived magmas ascending to the upper crust. In addition, intersecting faults with different orientations could control the distribution and geometry of the vents, calderas, dykes and plutons and play an important role in forming magma conduits for individual volcanoes. Keywords: Basaltic underplating; Magmatic plumbing; Southeast China; Calderas; Active-source seismic tomography

  8. Timing and geochemical characters of the Sanchazi magmatic arc in Mianlüe tectonic zone, South Qinling

    Institute of Scientific and Technical Information of China (English)


    The Sanchazi mafic-ultramafic complex in Mianlue tectonic zone, South Qinling can be subdivided into two blocks, i.e. Sanchazi paleo-magmatic arc and Zhuangkegou paleo-oceanic crust fragment (ophiolite). The Sanchazi paleo-magmatic arc is mainly composed of andesite, basaltic and basalt-andesitic gabbro (or diorite), andesitic dyke, plagiogranite and minor ultramafic rocks, which have typical geochemical features of island arc volcanic rocks, such as high field strength element (e.g. Nb, Ti) depletions and lower Cr, Ni contents. The Light rare earth element (LREE) and K enrichments of these rocks and zircon xenocrystals of 900 Ma from plagiogranite suggest that this magmatic arc was developed on the South active continental margin of the South Qinling micro-continent. The U-Pb age of (300 ± 61)Ma for zircons from plagiogranite indicates that the Mianlue paleo-oceanic crust was probably subducted underneath the South Qinling micro-continent in Carboniferous. This is consistent with the formation time (309Ma) of the Huwan eclogite originating from oceanic subduction in Dabie Mountains, suggesting that the Mianlue paleo-ocean probably extended eastward to the Dabie Mountains in Carboniferous. The high-Mg adakitic rocks in Sanchazi paleo-magmatic arc suggest that the subducted oceanic crust was relatively young (<25Ma) and hot.

  9. Basaltic lava characterization using magnetic susceptibility identification and presence of opaque minerals in Ijen volcanic complex, Banyuwangi, East Java (United States)

    Pratama, Aditya; Hafidz, Abd.; Bijaksana, Satria; Abdurrachman, Mirzam


    Reliable volcanic map and deep understanding of magmatic processes are very important in exploration of natural resources and mitigation of volcanic hazards. The conservative method in volcanic mapping still depends on qualitative approach thus it often failed to characterize volcanic products properly. Rock magnetic methods are quantitative approaches that classify rocks based on their magnetic properties. In this study, magmatic processes in basaltic lavas from Ijen volcanic complex in Banyuwangi, East Java were studied using combined rock magnetic and petrogenesis approaches. Samples of basaltic lavas from 13 localities, taken from three eruption sources were measuredfor their mass-specific magnetic susceptibility. The samples were then also subjected to petrographic and X-ray Fluorescence Spectrometry (XRF) analyses for their minerals composition and petrogenesis. Preliminary results show that the distinction in magnetic characters might be due to the quantity of magnetic minerals contained in rocks.

  10. Radiation shielding concrete made of Basalt aggregates. (United States)

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B


    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  11. Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence (United States)

    White, J. D. L.; Valentine, G. A.


    What are the fragmentation processes in volcanic eruptions? At meetings like this sessions ask "what can pyroclasts tell us?" and the answer is mostly "the properties of the magma at the point of solidification." The only place a pyroclast can preserve a fragmentation signature is at its surface, as the fracture or interface that made it a fragment. Commonly contrasted are "phreatomagmatic" and "magmatic" fragmentation in eruptions. Strictly, the latter means only fragmentation of magma without external water, but it often carries the connotation of disruption by bubbles of magmatic gas. Phreatomagmatic fragmentation implies a role for external water in fragmenting the magma, including vaporization and expansion of water as steam with rapid cooling/quenching of the magma. Magma is necessarily involved in phreatomagmatic fragmentation, and a common approach to assessing whether a pyroclast formed by magmatic or phreatomagmatic fragmentation is to make a stepwise assessment. This often uses particle vesicularity (high=magmatic), shape of particles (blocky=phreatomagmatic), degree of quenching (high=phreatomagmatic), or a glassy fluidal exterior film on particles (present=magmatic). It is widely known that no single one of these criteria is entirely diagnostic and other criteria are often considered, such as welding (=magmatic), particle aggregation (=phreatomagmatic), lithic-fragment abundance (high=phreatomagmatic), and proportion of fines (high=phreatomagmatic). Magmatic fragmentation varies, and even without water can yield anything from rhyolite pumice to obsidian to basaltic achneliths or carbonatitic globules. This makes direct argument for magmatic fragmentation difficult, and many papers have taken an alternative approach: they have "tested" for phreatomagmatism using the fingerprints listed above, and if the fingerprint is lacking a magmatic fragmentation process is considered to be "proven". In other words, absence of evidence for phreatomagmatic

  12. Large Igneous Provinces of the Central Asia: data on geochronology, geochemistry and petrology of the Tien Shan and Junggar basaltic complexes (United States)

    Simonov, V.; Mikolaichuk, A.


    During last years Large Igneous Provinces of the Central Asia were an object of steadfast attention of researchers. It was established that on a formation and development of continental earth crust a great influence was rendered by deep magmatic systems of mantle plumes of various age. Undoubtedly that these global processes of basaltic magmatism had in many respects crucial importance for ecology, climate and life development. Our researches of magmatic associations of the Tien Shan and Junggar have allowed to accumulate a considerable volume of new data on geochronology, geochemistry and physico-chemical parameters of petrogenesis of within-plate basaltic complexes of the Central Asia, which area of distribution covers territory over than 285000 km2. Analysis with the help of 40Ar/39Ar method has shown that the basaltic complexes of the Tien Shan have Cretaceous-Paleogene age (61-76 Ma). Basalts of the Southeast Kazakhstan (North Tien Shan) corresponds to Paleozoic age: 305-312 Ma. Rather close values of 40Ar/39Ar data are received for basalts of the Altynemel Ridge (South Junggar) - 282 Ma. Isotope 40Ar/39Ar dating of basalts of the Alakol site (Junggar) has shown Mesozoic age (186-198 Ma). As a whole, the carried out researches testify to formation of Tien Shan and Junggar within-plate basalt complexes as a result of influence of three plumes, operating in various time: Tarim (282-312 Ma), Junggar (186-198 Ma) and Tien Shan (61-76 Ma). Data on petrochemistry, geochemistry of trace and rare-earth elements and mineralogy shows an enriched plume characteristics (close to OIB) of Mesozoic-Cenozoic basalts and presence of group of Paleozoic rocks close to continental and oceanic plateau basalts. As a whole, successive evolution in time of geodynamics of within-plate basalt magmatism of Tien Shan and Junggar is established. Paleozoic - plateau basaltic magmatism like Siberian traps or oceanic plateau basalts of Ontong Java. Mesozoic - development of more local hot


    Directory of Open Access Journals (Sweden)

    Jakob Pamić


    Full Text Available In the paper are presented basic geological, petrologieca1, geochemi-cal and mineral deposit data for five main magmatic-metallogenic formations of the northwestern and central Dinarides: (lThe Permo Triassic rifting related andesite-diorite formations; (2 The Jurassic-Lower Cretaceous accretionary (ophiolite formations; (3 The Upper Cretaceous-Paleogene subduction related basalt-rhyohite formations; (4 The Paleogene collisional granite formations, and (5 The Oligo-cene-Neogene postsubduction andesite formations. All these magmatic-metallogenic formations originated in different geotectonic settings during the Alpine evolution of the Dinaridic parts of thc Tethys and the postorogenic evolution of the Paratethys and the Pannonian Basin, respectively.

  14. Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity (United States)

    Huang, Xiao-Wen; Su, Ben-Xun; Zhou, Mei-Fu; Gao, Jian-Feng; Qi, Liang


    Cenozoic basalts in SE China may be derived from a mixture of depleted MORB mantle (DMM) and enriched mantle 2 (EM2) sources, but whether these basalts share a common mantle source or magmatic history remains unknown. To investigate these unresolved issues, this study sampled basalts from Niutoushan and Mingxi (Fujian province), Xilong (Zhejiang province), and Penghu (Taiwan) for geochemical analysis. The basalt samples show OIB-like trace element patterns and have low PGE contents, with 0.02-0.7 ppb Ir and Pd, 0.05-1.4 ppb Ru, 0.01-0.2 ppb Rh, and 0.06-1.1 ppb Pt. All samples have high Cu/Pd ratios ranging from 69,000 to 3,500,000, and low Cu/Zr ratios ranging from 0.1 to 0.8, suggesting sulfur-saturated fractionation. Model calculations indicate that the basalts are depleted in PGE due to the retention of 0.001% to 0.1% sulfide in the mantle and the removal of up to 0.0022% sulfide during magma ascent. The crystallization of olivine and spinel, and partial melting are insufficient to account for the observed PGE variation in these basalts. Thus, the distinct PGE patterns in basalts with different ages may reflect the heterogeneity of the mantle source beneath SE China. The source heterogeneity may be due to compositional heterogeneity, particularly variations in oxygen fugacity and PGE mineral phases, or due to variable fluid/melt metasomatic agents in the sub-continental lithospheric mantle. This heterogeneity is possibly related to the westward subduction of the Paleo-Pacific Plate.

  15. Mesoarchean Gabbroanorthosite Magmatism of the Kola Region (United States)

    Kudryashov, N.; Mokrushin, A.


    The Kola peninsula is the region marked with development of anorthosite magmatism in the NE Baltic Shield. The Archaean gabbroanorthosites intrusions - Tsaginsky, Achinsky and Medvezhe-Schucheozersky - have the age of 2.7-2.6 Ga (Bayanova, 2004). The Patchemvarek and Severny gabbroanorthosites intrusions are located in the junction zone of the Kolmozero-Voronja greenstone belt and the Murmansk domain. Age data for sedimentaryvolcanogenic rocks of the Kolmozero-Voronja belt and Murmansk domain granitoids are 2.8-2.7 Ga. The gabbroanorthosites intrusions have more calcic composition (70-85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fiskenesset Complex (Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 29257 and 29358 Ma for the gabbroanorthosites of the Patchemvarek and Severny massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Cen = 2.2-4.2, Ybn = 1.6-2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Cen = 1.2, Ybn = 1.1, La/Ybn = 1.32), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive "Nd= + 2.68 for the gabbroanorthosites of the Severny Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. The rocks of the Severny and Patchemvarek massifs has 87Sr/86Sri = 0.702048 and 87Sr/86Sri = 0.70258_8, respectively. The oldest U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severny massifs marking the Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean and the Mesoarchean gabbroanorthosites suggest the existence of two mantle sources. One of them produced

  16. Charnockitic magmatism in southern India

    Indian Academy of Sciences (India)

    H M Rajesh; M Santosh


    Large charnockite massifs cover a substantial portion of the southern Indian granulite terrain. The older (late Archaean to early Proterozoic) charnockites occur in the northern part and the younger (late Proterozoic) charnockites occur in the southern part of this high-grade terrain. Among these, the older Biligirirangan hill, Shevroy hill and Nilgiri hill massifs are intermediate charnockites, with Pallavaram massif consisting dominantly of felsic charnockites. The charnockite massifs from northern Kerala and Cardamom hill show spatial association of intermediate and felsic charnockites, with the youngest Nagercoil massif consisting of felsic charnockites. Their igneous parentage is evident from a combination of features including field relations, mineralogy, petrography, thermobarometry, as well as distinct chemical features. The southern Indian charnockite massifs show similarity with high-Ba–Sr granitoids, with the tonalitic intermediate charnockites showing similarity with high-Ba–Sr granitoids with low K2O/Na2 ratios, and the felsic charnockites showing similarity with high-Ba–Sr granitoids with high K2O/Na2O ratios. A two-stage model is suggested for the formation of these charnockites. During the first stage there was a period of basalt underplating, with the ponding of alkaline mafic magmas. Partial melting of this mafic lower crust formed the charnockitic magmas. Here emplacement of basalt with low water content would lead to dehydration melting of the lower crust forming intermediate charnockites. Conversely, emplacement of hydrous basalt would result in melting at higher fH2O favoring production of more siliceous felsic charnockites. This model is correlated with two crustal thickening phases in southern India, one related to the accretion of the older crustal blocks on to the Archaean craton to the north and the other probably related to the collision between crustal fragments of East and West Gondwana in a supercontinent framework.

  17. Grain shape of basaltic ash populations: implications for fragmentation (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin


    Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within 45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.

  18. A combined analysis of basaltic melting and shear wave velocity anomalies to constrain dynamic support of western North America (United States)

    Klöcking, Marthe; White, Nicky; Maclennan, John; Fitton, Godfrey


    The region of western North America that encompasses the Basin and Range Province, the Snake River Plain and the Colorado Plateau is about 2 km higher than cratonic North America. This topographic difference broadly coincides with variations in lithospheric thickness (i.e. Mexico, and inverse modeling of regional drainage networks together suggest that this regional uplift occurred during Cenozoic time in at least two discrete phases. Earthquake tomographic models have imaged low velocity material beneath the bulk of western North America, including a ring-shaped anomaly encompassing the Colorado Plateau itself. Basaltic magmatism coincides with these low velocity zones and indicates an overall increase in melt volume at 40 Ma, as well as an abrupt change from lithospheric to asthenospheric signatures at 5 Ma. To investigate the quantitative relationship between seismic velocity anomalies and basaltic magmatism, we have analyzed >260 samples from volcanic centers throughout western North America for major, trace and rare earth elements using ICP-MS and XRF techniques. For asthenospheric samples, we observe a correlation between slow shear wave velocity anomalies and basaltic geochemistry. Using a combination of petrologic observations, forward and inverse modeling of major and rare earth elements, and shear wave velocity anomalies from tomographic models, we determine depth of melting and melt fraction. We explore the possibility that volatiles, anomalous source composition and/or temperature can give rise to basaltic magmatism and regional uplift. We then calculate mantle temperatures from shear wave velocity profiles beneath each volcanic field. In this way, we exploit a variety of approaches to constrain lithospheric thickness and mantle potential temperature. Our combined geochemical and geophysical results yield excess temperatures of 50-80 °C beneath a 60 km thin lithospheric plate. A dynamic topographic model of progressive lithospheric erosion over

  19. A magmatic probe linking mantle temperature and dynamic topography beneath western North America (United States)

    Klöcking, M.; White, N. J.; Maclennan, J.; Fitton, J. G.


    The region in western North America encompassing the Basin and Range Province, Snake River Plain and Colorado Plateau lies at an elevation 2 km higher than cratonic North America. This difference broadly coincides with variations in lithospheric thickness: Mexico, and inverse modeling of river profiles all suggest that regional uplift occurred in at least two distinct phases. USArray seismic tomographic models have imaged low velocity material beneath most of western North America, including a ring-shaped anomaly around the edges of the Colorado Plateau. Magmatism coincides with these low velocity zones and shows an overall increase in volume at 40 Ma as well as a change from lithospheric to asthenospheric signature at 5 Ma. To investigate the relationship between seismic imaging and basaltic magmatism, we have analyzed >260 samples from volcanic centers across western North America for major and trace elements using ICP-MS and XRF. For asthenospheric samples, we observe a strong correlation between slow velocity anomalies and both location and composition of basalts. Using a combination of petrology, forward and inverse modeling of major and rare earth elements, integrated with results from tomographic models, we determine depth of melting and melt fraction. We explore the possibility that volatiles, source composition and/or temperature cause magmatism and uplift of this region. Thus, we use a variety of methods to constrain lithospheric thickness and mantle potential temperature. A dynamic topographic model of progressive lithospheric erosion over an anomalously hot upper mantle could account for regional uplift together with the temporal and spatial distribution of magmatism across western North America.

  20. The development of extension and magmatism in the Red Sea rift of Afar (United States)

    Keir, Derek; Bastow, Ian D.; Pagli, Carolina; Chambers, Emma L.


    Despite the importance of continental breakup in plate tectonics, precisely how extensional processes such as brittle faulting, ductile plate stretching, and magma intrusion evolve in space and time during the development of new ocean basins remains poorly understood. The rifting of Arabia from Africa in the Afar depression is an ideal natural laboratory to address this problem since the region exposes subaerially the tectonically active transition from continental rifting to incipient seafloor spreading. We review recent constraints on along-axis variations in rift morphology, crustal and mantle structure, the distribution and style of ongoing faulting, subsurface magmatism and surface volcanism in the Red Sea rift of Afar to understand processes ultimately responsible for the formation of magmatic rifted continental margins. Our synthesis shows that there is a fundamental change in rift morphology from central Afar northward into the Danakil depression, spatially coincident with marked thinning of the crust, an increase in the volume of young basalt flows, and subsidence of the land towards and below sea-level. The variations can be attributed to a northward increase in proportion of extension by ductile plate stretching at the expense of magma intrusion. This is likely in response to a longer history of localised heating and weakening in a narrower rift. Thus, although magma intrusion accommodates strain for a protracted period during rift development, the final stages of breakup are dominated by a phase of plate stretching with a shift from intrusive to extrusive magmatism. This late-stage pulse of decompression melting due to plate thinning may be responsible for the formation of seaward dipping reflector sequences of basalts and sediments, which are ubiquitous at magmatic rifted margins worldwide.

  1. SIMS U-Pb, Sm-Nd isotope and geochemical study of an arkosite-amphibolite suite, Peräpohja Schist Belt: evidence for ca. 1.98 Ga A-type felsic magmatism in northern Finland

    Directory of Open Access Journals (Sweden)

    Eero Hanski


    Full Text Available In the northern and north-eastern part of the Peräpohja Schist Belt, northern Finland, an extensive supracrustal rock unit has been identified which is composed of alternating amphibolitic and arkositic components. The amphibolites form layers whose thickness varies from one millimeter to some tens of meters, being most often a few tens of centimeters. They represent mafic tuff beds deposited concurrently with more abundant arkositic rocks. Most of the arkosites have a modal and major and trace element compositionsimilar to that of A2-type granites. For example, they exhibit high LREE/HREE, negative Eu anomalies, and flat HREE and are moderately enriched in Nb, Zr, and Y. The genesis of the arkosites is enigmatic as they show features supporting either a volcaniclastic or an epiclastic origin. In the latter case, they were derived via erosion of a source dominated by A2-type granitic rocks. Previous conventional ID-TIMS and new SIMS U-Pb dating of zircons from two arkosite samples and one mica schist sample, all three picked from the northern part of the schist belt, indicate that these rocks contain a single population of zircons with an age of ca. 1975 Ma suggesting that they are among the youngest supracrustal rocks in the schist belt. In contrast, one mica schist sample from the western part of the belt revealed only the presence of Archean zircons. The samples do not differ markedly in terms of their Nd isotopecomposition as they all have a moderately negative εNd(1900 Ma. Regardless of the genesis of the arkosites, their isotopic and geochemical data suggest a previously unknown occurrence of extensive A-type felsic magmatism at ca. 1.98 Ga, contemporaneously withsome continental flood basalts. However, concrete evidence for this felsic A-type magmatism in the form of ca. 1.98 Ga felsic plutonic rocks is virtually absent in the presently exposed Fennoscandian Shield.

  2. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington (United States)

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen


    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  3. Strength of Concrete Containing Basalt Fibre



    This paper presents the comparative study of effect of basalt fibre on compressive and split tensile strength of M40 grade concrete. The basalt fibre was mixed in concrete by (0.5%, 1%, and 1.5%) of its total weight of cement in concrete. Results indicated that the strength increases with increase of basalt fibre content up to 1.0% beyond that there is a reduction in strength on increasing basalt fibre. The results show that the concrete specimen with 1.0% of basalt fibre gives be...

  4. What Controls Space-Time Patterns of Magmatism in Western North America: Plate Tectonics, Delamination, or Convection? (United States)

    Glazner, A. F.


    Mesozoic and Cenozoic magmatism in western North America is commonly explained by shallowing and steepening of subduction along the west coast of North America, and progressive destruction of the subduction system by development of the San Andreas transform fault system. This hypothesis makes several specific predictions about space-time patterns of magmatism, including eastward and westward sweeps, development of slab-window magmatism, and progressive northward extinction of an ancestral Cascade arc. However, analysis of space-time patterns using the NAVDAT database indicates that these predicted patterns are curiously obscure in the magmatic record, although other unexplained patterns are strong. Animation of about 29,000 Cenozoic U.S. points from NAVDAT ( demonstrates that: (1) calc- alkaline, intermediate volcanism is poorly linked to the subduction system; (2) there is little evidence for slab- window magmatism; (3) there was no ancestral Cascade arc south of Oregon until ca. 10 Ma; (4) magmatism shifted from primarily silicic to dominantly basaltic throughout the Miocene; and (5) magmatism was clearly migratory in several directions in ways that cannot be explained by plate-tectonic processes, at length scales ranging from 1000s to 10s of km. Space-time patterns that cannot be readily linked to plate-tectonic control include: (1) a silicic sweep from Montana into Nevada from 50 to 20 Ma; (2) a clockwise sweep around the Colorado Plateau from New Mexico to southern Nevada from about 30 to 15 Ma; (3) a burst of magmatism at about 16 Ma in northern Nevada, followed by outward sweeps to Yellowstone, Oregon, and the Sierra Nevada; (4) progressive encroachment of basaltic magmatism onto the Colorado Plateau, and (5) several local migrations, including from Phoenix north onto the Colorado Plateau and from the San Francisco Bay area north to the Geysers geothermal field. These migrations typically occurred at 20-50 mm/yr. Possible origins include

  5. Flooding On

    Institute of Scientific and Technical Information of China (English)



    @@ Drenched riverside towns in central and south parts of China were preparing for even worse flooding as water levels in the country's huge rivers surged and rainstorms continued. As of July 27,accumulated precipitation since June 16 in 70 percent of the drainage areas of the Yangtze River had exceeded 50 mm,after three rounds of rainstorms,said Cai Qihua,Deputy Director of the Yangtze River Flood Control and Drought Relief Headquarters.

  6. Magmatic Evolution of the Western Azores Islands (Corvo and Flores) (United States)

    Larrea, P.; Galé, C.; Ubide, T.; Widom, E.; Lago, M.; França, Z.; Tierz, P.


    Corvo and Flores islands belong to the western group of the Azores archipelago, to the west of the Mid-Atlantic Ridge. Several studies have proposed a common magmatic evolution for both islands. However, most of these studies focus on other Azorean islands. In order to investigate the processes that control the evolution of Corvo and Flores we have studied representative samples of the whole volcanostratigraphical sequence in both islands, including lava flows and dikes. Similarly to other oceanic islands, Corvo and Flores are made up of an alternation of porphyritic rocks and microlitic rocks. The former are picrobasalts and basalts with 5 to 60 volume fraction of large (2-15 mm), primitive antecrysts of olivine, clinopyroxene and plagioclase. The latter are Mg-poor hawaites to trachytes. The Mg-rich composition of the porphyritic rocks is due to the accumulation of primitive antecrysts within a more evolved groundmass. In contrast, the composition of the microlitic rocks provides information on the differentiation processes that controlled the evolution of both islands. The microlitic rocks present holocrystalline to hypocrystalline textures with a mineral assemblage mainly composed of microcrysts of plagioclase, olivine, clinopyroxene opaque minerals and accessory amphibole and apatite. Their major element whole rock composition can be best modeled by a polybaric fractional crystallization process (MELTS software) starting at 500 MPa with cooling steps of 5 degrees Celsius and a water content of 1 %, starting from the most primitive analyzed microlitic rock (MgO: 9.04%; Cr: 630 ppm; Ni: 200 ppm). Hence, we confirm that both islands derived from a common primary magma. The crystallization of the antecrysts included in the porphyritic rocks was probably related to the initial stages of the differentiation process. On the other hand, the microlitic rocks and the groundmass of the porphyritic rocks are related to the residual melts of the polybaric fractional

  7. Some thoughts on the origin of lunar ANT-KREEP and mare basalts (United States)

    Wakita, H.; Laul, J. C.; Schmitt, R. A.


    It is suggested that a series of ANT (anorthosite-norite-troctolite)-KREEP type rocks and the source material for mare basalts sampled by Apollo 11, 12, 15, and 17 may have been derived from a common magmatic differentiation. This differentiation is studied on the basis of a model which proposes that, in the early history of the moon, extensive melting occurred in the outer lunar shell and a magma layer of 100-200 km was formed. The presence of a residual liquid which has not yet been sampled is suspected between high-K KREEP and the Apollo 11 basalt materials. This residual liquid would have a FeO/MgO ratio greater than one and would be significantly enriched in apatite, zircon, K-feldspar, and ilmenite minerals.

  8. Geochemistry and Petrogenesis of Volcanic Rocks in the Yeba Formation on the Gangdise Magmatic Arc, Tibet

    Institute of Scientific and Technical Information of China (English)

    Geng Quanru; Pan Guitang; Jin Zhenmin; Wang Liquan; Liao Zhongli


    The Early Jurassic bimodal volcanic rocks in the Yeba Formation, situated between Lhasa, Dagzê and Maizhokunggar, composed of metabasalt, basaltic ignimbrite, dacite, silicic tuff and volcanic breccia, are an important volcanic suite for the study of the tectonic evolution of the Gangdise magmatic arc and the Mesozoic Tethys. Based on systematic field investigations, we carried out geochemical studies on representative rock samples. Major and trace element compositions were analyzed for these rock samples by XRF and ICP-MS respectively, and an isotope analysis of Rb-Sr and Sm-Nd was carried out by a MAT 262 mass spectrograph. The results show that the SiO2 contents in lava rocks are 41 %-50.4 % and 64 %-69 %, belonging to calc-alkaline basalt and dacite. One notable feature of the basalt is its low TiO2 content, 0.66 %-1.01 %, much lower than those of continental tholeiite. The ΣREE contents of basalt and dacite are 60.3-135 μg/g and 126.4-167.9 μg/g respectively. Both rocks have similar REE and other trace element characteristics, with enriched LREE and LILE relative to HREE and HFS, similar REE patterns without Eu anomaly. The basalts have depleted Ti, Ta and Nb and slightly negative Nb and Ta anomalies, with Nb*=0.54-1.17 averaging 0.84. The dacites have depleted P and Ti and also slightly negative Nb and Ta anomalies, with Nb*=0.74-1.06 averaging 0.86. Major and trace elemental and isotopic studies suggest that both basalt and dacite originated from the partial melting of the mantle wedge at different degrees above the subduction zone. The spinal lherzolite in the upper mantle is likely to be their source rocks, which might have been affected by the selective metasomatism of fluids with crustal geochemistry. The LILE contents of both rocks were affected by metamorphism at later stages. The Yeba bimodal volcanic rocks formed in a temporal extensional situation in a mature island arc resulting from the Indosinian Gangdise magmatic arc.

  9. An Experimental Melting—crystallization Study on Basalt at High Pressures

    Institute of Scientific and Technical Information of China (English)

    任国浩; 谢鸿森; 等


    A series of melting-crystallization experiments on alkali basalt samples from Minqing,Fujian Prov-ince was carried out in dry and water-bearing systems at high pressures.A high-pressure melting curve was obtained.The results indicate that clinopyroxene crystallized from basalt melt at 13.5-23.7kbar,spinel at 23.7-28.6kbar and garnet at>28.6kbar.With increasing pressure,the CaSiO3 contents of clinopyroxenes increase;and the FeSiO3 decreases,but the chemical composition of garnet does not show any significant difference.The minerals are larger and euhedral in the wa-ter-bearing system.Therefore,we consider that natural megacrysts of the basalt can crystallize from the water-bearing basalt magma at high pressure.So the megacysts may be derived from the upper mantle as a result of magmatic crystallization-fractionation under high pressure.

  10. Combating Floods

    Institute of Scientific and Technical Information of China (English)


    In summer and autumn of 1998, the river vatleys of the Changjiang, Songhua and Nenjiang rivers were stricken by exceptionally serious floods, As of the, 22nd of August, the flooded areas stretched over 52.4 million acres. More than 223 million people were affected by the flood. 4.97 million houses were ruined, economic losses totaled RMB 166 billion, and most tragically, 3,004 people lost their byes. It was one of the costliest disasters in Chinese history. Millions of People’s Liberation Army soldiers and local people joined hands to battle the floodwaters. Thanks to their unified efforts and tenacious struggle, they successfully withstood the rising, water, resumed production and began to rebuild their homes.

  11. Changes in magmatic oxidation state induced by degassing (United States)

    Brounce, M. N.; Stolper, E. M.; Eiler, J. M.


    Temporal variations in the oxygen fugacity (fO2) of the mantle may have been transmitted to Earth's atmosphere and oceans by volcanic degassing. However, it is unclear how redox states of volatiles relate to their source magmas because degassing and assimilation can impact fO2 before or during eruption. To explore this, we present µ-XANES measurements of the oxidation states of Fe and S and laser fluorination measurements of 18O/16O ratios in submarine glasses from two settings where degassing is recorded: 1) submarine glasses from the Reykjanes Ridge as it shoals to Iceland, including subglacial glasses from the Reykjanes Peninsula; and 2) submarine glasses from Mauna Kea recovered by the Hawaii Shield Drilling Program (HSDP). Glasses from both settings are basalts with 5.5-9.9 wt% MgO and 350-1790 ppm S. Submarine Reykjanes glasses are sulfide saturated. Subglacial Reykjanes and HSDP glasses are not sulfide saturated, and S and H2O contents are consistent with S+H2O degassing. Submarine Reykjanes glasses have 18O/16O indistinguishable from MORB and become progressively 18O-depleted as MgO decreases. Subglacial glasses have lower 18O/16O than submarine glasses at a given MgO, but both sample types project to a common 18O/16O near 10 wt% MgO, suggesting that 18O-depletion in these lavas is generated by fractional crystallization and assimilation of an 18O-depleted crustal component. The oxidation state of Fe increases only slightly as 18O/16O decrease, suggesting that the assimilant is not oxidized enough to change magmatic fO2. Fe and S do not oxidize or reduce with decreasing S or H2O, suggesting that relatively reduced magmas at depth degassed S+H2O without changing magmatic fO2, and that the fO2 of these lavas reflect the fO2of their mantle source. The oxidation states of Fe and S in HSDP glasses are broadly correlated and samples with the highest S concentrations are the most oxidized. Both Fe and S reduce with decreasing S and H2O contents. This suggests

  12. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    Energy Technology Data Exchange (ETDEWEB)

    Gulik, V.I. [Institute for Nuclear Research, pr. Nauky 47, Kyiv, 03680 (Ukraine); Biland, A.B. [HHK Technologies, 3535 Wilcreast Dr., Houston TX 77042 (United States)


    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spent nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)

  13. Charnockite microstructures: From magmatic to metamorphic

    Directory of Open Access Journals (Sweden)

    Jacques L.R. Touret


    Full Text Available Charnockites sensu lato (charnockite-enderbite series are lower crustal felsic rocks typically characterised by the presence of anhydrous minerals including orthopyroxene and garnet. They either represent dry (H2O-poor felsic magmas that are emplaced in the lower crust or granitic intrusions that have been dehydrated during a subsequent granulite facies metamorphic event. In the first case, post-magmatic high-temperature recrystallisation may result in widespread metamorphic granulite microstructures, superimposed or replacing the magmatic microstructures. Despite recrystallisation, magmatic remnants may still be found, notably in the form of melt-related microstructures such as melt inclusions. For both magmatic charnockites and dehydrated granites, subsequent fluid-mineral interaction at intergrain boundaries during retrogradation are documented by microstructures including K-feldspar microveins and myrmekites. They indicate that a large quantity of low-H2O activity salt-rich brines, were present (together with CO2 under immiscible conditions in the lower crust.

  14. Introduction to Special Section: Magmatism and Extension (United States)

    Metcalf, Rodney V.; Smith, Eugene I.


    The relationship between magmatism and the formation of continental rift zones is the subject of much controversy. In particular, the cause and effect relationships between magmatism and extension and the mode of generation of magma during the process of extension are still hotly debated. This controversy served as the theme of a symposium on "Cenozoic Magmatism in the Colorado River Extensional Corridor and Adjacent Areas" and a field trip held as part of the Geological Society of America Cordilleran/Rocky Mountain Section meeting in Reno, Nevada [Metcalf et al., 1993]. It was clear from data presented at the symposium that a considerable amount of new information has become available regarding magmatism and extension since the last special section on this topic published by the Journal of Geophysical Research (June 1989).

  15. Novel Concept of the Magmatic Heat Extraction

    CERN Document Server

    Labinov, Mark


    Enhanced Geothermal Systems are the primary sources of interest nowadays. The paper presents a novel concept for the extraction of the magmatic heat directly from the magma chamber by utilizing the thermodynamic Retrograde Condensation curve.

  16. Origin of the Grande Ronde Basalts, Columbia River Basalt Group (United States)

    Durand, S. R.; Sen, G.; Reidel, S. P.


    The Columbia River basalts are generally thought to have formed by plume melting. Takahashi et al. (1998) suggested that the near-aphyric Grande Ronde Basalts (GR), which comprise ~63% of the CRBG, are essentially primary melts formed by nearly complete fusion of eclogite source rock in the plume and that such melting took place ~2.0 GPa. Durand and Sen (2002) examined phenocrysts and whole rock analyses and concluded that all the basalts are non-primary and, more importantly, that they underwent significant "processing" in shallow crustal magma chambers which erased their higher pressure geochemical signal, thus casting doubt on the validity of the eclogitic plume melting model. Here we report the results of our efforts to simulate the higher pressure histories of GR basalts using COMAGMAT and MELTS software. Our intent was to evaluate (1) whether such melts could be derived from primary melts formed by partial melting of a peridotite source as an alternative to the eclogite model, or if bulk melting of eclogite is required; and (2) at what pressure such primary melts could have been in equilibrium with the mantle. We carried out both forward and inverse modeling. In the forward models we chose different starting melt compositions, all produced in laboratory experiments, from peridotite vs. eclogitic sources. Our starting melts were produced by 6-17% partial melting of the peridotite KLB-1 (Hirose and Kushiro, 1993) and 18-40% melting of eclogites (77SL-582; CRB72-31; Keshav et al., 2004; Takahashi et al., 1998) at 1-3.0 GPa. In a second model, our starting melt composition was the most primitive GR lava with 6.5 wt. % MgO. We extrapolated a linear regression through the GR data to 8 wt. % MgO. We then assumed that such a melt was only olivine-equilibrated, and incrementally added olivine while maintaining equilibrium between olivine and melt using a Kd of 0.3, until a melt in equilibrium with the mantle olivine (Fo89) was found. This composition was fractionated

  17. The Upper Triassic alkaline magmatism of the western Neo-Tethys (Bajo Ebro, NE Spain): age and geodynamic implications (United States)

    Sanz, T.; Lago, M.; Gil, A.; Pocoví, A.; Galé, C.; Ubide, T.; Larrea, P.; Ramajo, J.; Tierz, P.


    A set of mafic rocks crop out in the north-western margin of the Neo-Tethys (eastern Spain and France). These rocks show three common features: 1) they were emplaced into Upper Triassic sediments (Keuper facies), 2) they are mainly basalts and dolerites and show an alkaline geochemical affinity and 3) these magmas rose to their emplacement level through deep fractures; some of the fractures were newly opened as a result of the Triassic extension (Triassic-Liassic rifting), whereas others had been generated during the Permian extension (Lower Permian rifting) and were reopened. Magmatic activity has also been recognized in these areas during the Jurassic, the Cretaceous and the Quaternary. The Bajo Ebro sector (NE Spain) comprises two types of Upper Triassic mafic rocks: 1) massive rocks emplaced as dikes, sills and basaltic lavas (10-12 meters in thickness and up to kilometric in extension) and 2) a wide range of pyroclasts (from ash grains to bombs) forming layers more than 100 meters thick, which are usually interbedded with argillites and carbonates. Protrusions of the sills into the overlying sediments, together with spilitization of the igneous rocks, suggest that the magmas emplaced into unconsolidated sediments. Furthermore, a level of epiclastic-basaltic breccias is recognized overlying the magmatic levels and below the dolostones of the Imón Formation (Rhaetian in age); these breccias are interpreted to represent an erosive episode which affected the magmatic rocks in emerged areas. According to these criteria, these rocks can be considered Upper Triassic (pre-Rhaetian) in age. The basaltic lavas show alkaline mineral assemblages composed of: olivine (Fo79-65), Ti-rich clinopyroxene (Fs3-15, En52-35, Wo50-42), plagioclase (An80-50), Ti-rich magnetite and apatite. Their major and trace element whole rock compositions show contents in SiO2 (41,3-49,3 w.%), Nb/Y (1,5-4,1), Zr/TiO2 (0,0057-0,013), V (157,8-292,1 ppm) and Ti/1000 (11,3-18,53) which indicate

  18. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts (United States)

    Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.


    In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth

  19. Influence of Intrusive vs. Extrusive Magmatism on Venus' Tectonics and long-term Mantle Evolution: 2D and 3D Simulations (United States)

    Tackley, P. J.


    Here we extend the numerical convection models of Venus models of [1], which included melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that for stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick, cold crust, inconsistent with observations. In contrast, episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ˜150 Myr, initiating in one place and then spreading globally. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. Here we extend [1] by considering intrusive magmatism as an alternative to the purely extrusive magmatism previously assumed. Intrusive magmatism warms and weakens the crust, resulting in substantial surface deformation and a thinner crust. This is further enhanced by using a basaltic rheology for the crust instead of assuming the same rheological parameters as for the mantle. In some cases massive intrusive magmatism can even lead to episodic lithospheric overturn events without plastic yielding. Here we quantitatively analyse the resulting surface deformation and other signatures, and compare to observations in order to constrain the likely ratio of intrusive to extrusive magmatism. [1] Armann, M., and P. J. Tackley (2012), Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models, J. Geophys. Res., 117, E12003, doi:10.1029/2012JE004231.

  20. Flooding On

    Institute of Scientific and Technical Information of China (English)


    Drenched riverside towns in central and south parts of China were preparing for even worse flooding aswater levels in the country’s huge rivers surged and rainstorms continued.As of July 27,accumulated precipitation since June 16 in 70 percent of the drainage

  1. Late Mesozoic crust-mantle interaction and lower crust components in South China: A geochemical study of mafic granulite xenoliths from Cenozoic basalts

    Institute of Scientific and Technical Information of China (English)

    YU; Jinhai; (于津海); XU; Xisheng; (徐夕生); ZHOU; Xinmin; (周新民)


    Mafic granulite xenoliths collected from Cenozoic basalts in SE China can be classified as magmatic granulite and cumulate granulite. Magmatic granulites are characterized by highly concentrated Al2O3, K2O, P2O5, Ba, Sr, Pb and REE, and low contents of Nb, Zr, Hf and Th, and have an incompatible element abundance pattern similar to that of continental arc basalts. Cumulate granulites aredepleted in K2O, P2O5, Rb, Cs and Ba. These granulite xenoliths were the products of crystallization and recrystallization of the basaltic magma underplating into crust-mantle boundary in Late Mesozoic. Sr and Nd isotopic compositions and variation trend of these mafic rocks are the result of crust-mantle mixing and controlled by assimilation and fractional crystallization process (AFC). However,trace element and major element variations were mainly controlled by fractionalcrystallization. The granulites are similar in geochemistry to surface Late Mesozoic gabbro and basalt in the study area, suggesting a close petrogenetic link between them. Late Mesozoic basaltic magma activities are the most important cause for the formation of extensive contemporaneous granite and rhyolite in the study area. This study and previous data indicate that the lower crust beneath South China is composed of a variety of Paleo- to Meso-proterozoic metamorphic rocks and Late Mesozoic mafic granulites.

  2. Quaternary Magmatism in the Cascades - Geologic Perspectives (United States)

    Hildreth, Wes


    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  3. Cretaceous alkaline intra-plate magmatism in the Ecuadorian Oriente Basin: Geochemical, geochronological and tectonic evidence (United States)

    Barragán, Roberto; Baby, Patrice; Duncan, Robert


    Small volumes of Cretaceous alkaline basaltic magmas have been identified in the sedimentary infill of the Ecuadorian Oriente foreland basin. They are characterized by a restricted range of compositional variation, low LILE/HFSE ratios and Sr-Nd isotope values within the range of oceanic island basalts (OIB). Reflection seismic data show that a pre-existing NNE-SSW Triassic and Jurassic rift controls the location and occurrence of these alkaline eruptive sites. Radiometric ages ( 40Ar- 39Ar, incremental heating method) and the biostratigraphic record of their surrounding sediments indicate a NNE-SSW systematic age variation for the emplacement of this alkaline volcanism: from Albian (110 ± 5.2 Ma) in the northern part of the Oriente Basin, to Campanian (82.2 ± 2.0 Ma) in the west-central part. The geochemical, geochronological and tectonic evidences suggest that asthenospheric mantle has upwelled and migrated to the SSW, into the region underlying the pre-existing Triassic and Jurassic rift (thin-spot?). We propose that subduction was abandoned, subsequent to the accretion of allochthonous terranes onto the Ecuadorian and Colombian margin in the latest Jurassic-earliest Cretaceous, causing the relict slab material, corresponding to the eastwards-directed leading plate, to roll-back. Unmodified asthenospheric mantle migrated into the region previously occupied by the slab. This resulted in partial melting and the release of magmatic material to the surface in the northern part of the Oriente Basin since at least Aptian times. Then, magmatism migrated along the SSW-trending Central Wrench Corridor of the Oriente Basin during the Upper Cretaceous, probably as a consequence of the lateral propagation of the transpressive inversion of the Triassic-Jurassic rift. Eventually, the Late Cretaceous east-dipping Andean subduction system was renewed farther west, and the development of the compressional retro-foreland Oriente Basin system halted the Cretaceous alkaline

  4. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics (United States)

    Harrison, Lauren N.; Weis, Dominique; Garcia, Michael O.


    Oceanic island basalts sample mantle reservoirs that are isotopically and compositionally heterogeneous. The Hawaiian-Emperor chain represents ∼85 Myr of volcanism supplied by a deep mantle plume. Two geographically and geochemically delineated trends, Kea and Loa, are well documented within the Hawaiian Islands. Enriched Loa compositions originate from subduction recycled or primordial material stored in deep mantle reservoirs such as the large low shear velocity province (LLSVP) below Hawai'i. Loa compositions have not been observed along the Emperor Seamounts (>50 Ma), whereas lavas on the Hawaiian Islands (chain and the Hawaiian Islands record the geochemical evolution of the Hawaiian mantle plume over a time period when many geophysical parameters (volcanic propagation rate, magmatic flux, mantle potential temperature) increased significantly. Along the NWHR, the Loa geochemical component appears ephemerally, which we link to the sampling of different lower mantle compositional domains by the Hawaiian mantle plume. The plume initially sampled only the deep Pacific mantle (Kea component) from outside the LLSVP during the formation of the Emperor Seamounts. Southward migration and anchoring of the plume on the LLSVP led to entrainment of increasing amounts of LLSVP material (Loa component) along the NWHR as documented by an increase in 208Pb*/206Pb* with decreasing age. The correlation between 208Pb*/206Pb* and magmatic flux suggests source composition affects the magmatic flux, and explains why the Hawaiian mantle plume has dramatically strengthened through time.

  5. Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes (United States)

    Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Harris, Chris; Chadwick, Jane P.; Gertisser, Ralf; Schwarzkopf, Lothar M.; Borisova, Anastassia Y.; Bindeman, Ilya N.; Sumarti, Sri; Preece, Katie


    Indonesian volcano Merapi is one of the most hazardous volcanoes on the planet and is characterised by periods of active dome growth and intermittent explosive events. Merapi currently degasses continuously through high temperature fumaroles and erupts basaltic-andesite dome lavas and associated block-and-ash-flows that carry a large range of magmatic, coarsely crystalline plutonic, and meta-sedimentary inclusions. These inclusions are useful in order to evaluate magmatic processes that act within Merapi's plumbing system, and to help an assessment of which phenomena could trigger explosive eruptions. With the aid of petrological, textural, and oxygen isotope analysis we record a range of processes during crustal magma storage and transport, including mafic recharge, magma mixing, crystal fractionation, and country rock assimilation. Notably, abundant calc-silicate inclusions (true xenoliths) and elevated δ18O values in feldspar phenocrysts from 1994, 1998, 2006, and 2010 Merapi lavas suggest addition of limestone and calc-silicate materials to the Merapi magmas. Together with high δ13C values in fumarole gas, crustal additions to mantle and slab-derived magma and volatile sources are likely a steady state process at Merapi. This late crustal input could well represent an eruption trigger due to sudden over-pressurisation of the shallowest parts of the magma storage system independently of magmatic recharge and crystal fractionation. Limited seismic precursors may be associated with this type of eruption trigger, offering a potential explanation for the sometimes erratic behaviour of Merapi during volcanic crises.

  6. Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dingwu; LIU Yiqun; XING Xiujuan; HAO Jianrong; DONG Yunpeng; OUYANG Zhengjian


    The Turpan-Hami and Santanghu basins are the late Paleozoic-Mesozoic-Cenozoic reworked intracontinental basins that superposed on the folded basement of the Paleozoic orogenic belt. 40Ar/39Ar geochronological study of the basalts developed in the basins reveals that the formation period is Permain (293-266 Ma). From geochemical comparison of the basalts, the Santanghu basalts exhibit a strong depletion in Nb and Ta, and a selective enrichment in HFSE, reflecting that the source region is influenced by the subducted components related to subduction of the ancient oceanic crust and characterized with "lagged arc volcanic rocks". In contrast, the Turpan-Hami basalts show a slight depletion in Nb and Ta, high Th/Ta ratio, similar to the basalts formed in an intracontinental extensional zone or in an initial rift. Combined with the formation period of the ophiolite and ophiolite mélange zones and regional magmatic activities occurring on the post-orogenic extensional background in northern Xinjiang, it can be inferred from these geochemical characteristics that the tectonic background for forming the Turpan-Hami and Santanghu basins is closely related to the regional extension after the continent-continent collisional orogeny. The basalts of the two basins came from different sources on the post-orogenic extensional background of the similar basin-forming dynamics. Although the settings are all intracontinental rift, the source for the Santanghu basalts is obviously subjected to the metasomatism of the subducted components, implying the existence of the previous subduction.

  7. Subduction of the South Chile active spreading ridge: A 17 Ma to 3 Ma magmatic record in central Patagonia (western edge of Meseta del Lago Buenos Aires, Argentina) (United States)

    Boutonnet, E.; Arnaud, N.; Guivel, C.; Lagabrielle, Y.; Scalabrino, B.; Espinoza, F.


    The Chile Triple Junction is a natural laboratory to study the interactions between magmatism and tectonics during the subduction of an active spreading ridge beneath a continent. The MLBA plateau (Meseta del Lago Buenos Aires) is one of the Neogene alkali basaltic plateaus located in the back-arc region of the Andean Cordillera at the latitude of the current Chile Triple Junction. The genesis of MLBA can be related with successive opening of slabs windows beneath Patagonia: within the subducting Nazca Plate itself and between the Nazca and Antarctic plates. Detailed 40Ar/ 39Ar dating and geochemical analysis of bimodal magmatism from the western flank of the MLBA show major changes in the back-arc magmatism which occurred between 14.5 Ma and 12.5 Ma with the transition from calc-alkaline lavas (Cerro Plomo) to alkaline lavas (MLBA) in relation with slab window opening. In a second step, at 4-3 Ma, alkaline felsic intrusions were emplaced in the western flank of the MLBA coevally with the MLBA basalts with which they are genetically related. These late OIB-like alkaline to transitional basalts were generated by partial melting of the subslab asthenosphere of the subducting Nazca plate during the opening of the South Chile spreading ridge-related slab window. These basalts differentiated with small amounts of assimilation in shallow magma chambers emplaced along transtensional to extensional zones. The close association of bimodal magmatism with extensional tectonic features in the western MLBA is a strong support to the model of Patagonian collapse event proposed to have taken place between 5 and 3 Ma as a consequence of the presence of the asthenospheric window (SCR-1 segment of South Chile Ridge) below the MLBA area.

  8. Magmatism and Geodynamics of Eastern Turkey (United States)

    Keskin, Mehmet; Oyan, Vural; Sharkov, Evgenii V.; Chugaev, Andrey V.; Genç, Ş. Can; Ünal, Esin; Aysal, Namık; Duru, Olgun; Kavak, Orhan


    from the Afar plume reached beneath Eastern Anatolian by a mantle convection cell. We argue that both the uplift and the widespread volcanism across the region share a common reason: a major "slab-steepening and breakoff event beneath the large Eastern Anatolian Accretionary Complex". We argue that the older intermediate calc-alkaline volcanic products displaying a distinct subduction signature were possibly derived from the mantle wedge that opened out due to the steepening of the slab after the continental collision. Being unsupported by the subduction, the slab started to be steepened beneath the region, possibly resulting in widening, invasion and upwelling of the mantle wedge beneath E Anatolian accretionary complex. This possibly created a sucking effect on the asthenosphere, creating a mantle flow from the Pontides in the north to the south. The inferred asthenospheric flow perhaps pulled a portion of the asthenosphere that once had resided beneath the Pontide arc. Therefore, the subduction component was inherited from the previous Pontide arc magmatism. The widespread decompressional melting generated voluminous magmas with the aforementioned inherited subduction signature in a period from 15 to 10 Ma. The slab broke off beneath the region, creating a slab window at around 10 Ma. This caused the enriched asthenospheric mantle with no subduction component beneath the Arabian continent to flow to the north through a slab-window. As a result, the subduction-modified E Anatolian and the enriched Arabian asthenospheric mantles started to mix into each other. We interpret the eruption of the first alkaline lavas in the region at around 10 Ma (e.g. tephrites and alkaline basalts in the N of Lake Van) as the indication of the formation of the slab-window beneath the region due to tearing of the slab. The volcanism in the collision zone continued till the historical times. The region includes some of the largest volcanic centers (e.g. Ararat, Nemrut, Tendürek and S

  9. The Role of Magma Mixing in Creating Magmatic Diversity (United States)

    Davidson, J. P.; Collins, S.; Morgan, D. J.


    Most magmas derived from the mantle are fundamentally basaltic. An assessment of actual magmatic rock compositions erupted at the earth's surface, however, shows greater diversity. While still strongly dominated by basalts, magmatic rock compositions extend to far more differentiated (higher SiO2, LREE enriched) compositions. Magmatic diversity is generated by differentiation processes, including crystal fractionation/ accumulation, crustal contamination and magma mixing. Among these, magma mixing is arguably inevitable in magma systems that deliver magmas from source-to-surface, since magmas will tend to multiply re-occupy plumbing systems. A given mantle-derived magma type will mix with any residual magmas (and crystals) in the system, and with any partial melts of the wallrock which are generated as it is repeatedly flushed through the system. Evidence for magma mixing can be read from the petrography (identification of crystals derived from different magmas), a technique which is now well-developed and supplemented by isotopic fingerprinting (1,2) As a means of creating diversity, mixing is inevitably not efficient as its tendency is to blend towards a common composition (i.e. converging on homogeneity rather than diversity). It may be surprising then that many systems do not tend to homogenise with time, meaning that the timescales of mixing episodes and eruption must be similar to external magma contributions of distinct composition (recharge?). Indeed recharge and mixing/ contamination may well be related. As a result, the consequences of magma mixing may well bear on eruption triggering. When two magmas mix, volatile exsolution may be triggered by retrograde boiling, with crystallisation of anhydrous phase(s) in either of the magmas (3) or volatiles may be generated by thermal breakdown of a hydrous phase in one of the magmas (4). The generation of gas pressures in this way probably leads to geophysical signals too (small earthquakes). Recent work pulling

  10. Magmatic evolution of the Sarapiqui Miocene Arc, Costa Rica, Central America (United States)

    Gazel, E.; Alvarado, G. E.; Carr, M. J.; Obando, J.; Alfaro, A.


    The Sarapiqui Miocene Arc (22.2-11.4 Ma) is located in the modern back-arc region of northern Costa Rica, Central America. The arc basement is represented by serpentinized peridotites, Albian silicic pelagites, and Paleocene to Middle Eocene turbidites. Magmatic units vary from basalts to rhyolites and include lavas, pyroclastic deposits, and a few subvolcanic bodies. The magmatic evolution of the Sarapiqui Miocene Arc consists of three distinct stages: 1) Jardin Basalts (22.2 Ma) showing a primary tendency with high MgO, Ni, Cr, and Nb, high initial La/Yb ratios, and low Ba/La which increase with the slab fluids addition; 2) Arrepentidos Basaltic-andesites, Chaparron Pyroclasts, Hito Sar Basalts, Boca Tapada Gabro, and Chamorro Andesites, that represent the island arc evolution from 17.2 to 11.4 Ma; and 3) Crucitas Rhyolites (14.3 Ma) characterizated by low TiO2 and very high Ba/La ratios represent non-cogenetic, but contemporaneous felsic magmas produced by remelting of pre-existing intrusives. The REE patterns indicate a plagioclase rich, amphibole bearing source for this last unit. The Zr/Nb ratios (7-36) are evidence of the coalescing of a minor OIB source with a dominant MORB source, both modified by subduction. 87Sr/86Sr correlate positively with Ba/La; however, they are still within the OIB field. An inverse model using the REEs of the mafic units is consistent with a source mantle composition of garnet peridotite. All but one of the units show LILE enrichments and HFSE depletions typical of the island arc environment. The exception is a suite of near primary magmas, included in the Jardin Basalts, which probably originated by decompression melting. The Ba/La and La/Yb ratios of the Sarapiqui Miocene Arc are very similar to those of the modern Northern Costa Rican Arc, suggesting that the subduction fluid composition and the degree of partial melting have not changed significantly in the last 20 Ma.

  11. Geochemical Characteristics and Genesis of Late Cretaceous to Paleogene Basalts in the Tuyon Basin, South Tianshan Mountains

    Institute of Scientific and Technical Information of China (English)

    WANG Yanbin; WANG Yong; LIU Xun; FU Derong; XIAO Xuchang; QI Longshui


    The Tianshan Mountains is believed to be a typical intercontinental mountain belt, which is formed during the tectonic amalgamation of the Tarim and Tianshan blocks and the Siberian carton in Late Carboniferous-Permian period. A series of basaltic extrusive and intrusive units emplaced primarily into the Late Cretaceous-Paleogene sedimentary rocks in the Tuyon basin and its adjacent area, the South Tianshan Mountains. Geochemical data of the basalts show low Sr and Pb isotopic values and relative high Nd values (87Sr/86Sr = 0.703554 ~ 0.703884; 143Nd/144Nd = 0.512838 ~ 0.512904;206pb/204pb = 18.0063 ~ 18.4720; 207pb/204pb = 15.5060; 208Pb/204P b= 37.8072~37.9290). The data of major elements, trace elements and rare earth elements of the basalts indicate that these basaltic rocks are similar to those beneath the Hawaiian Islands. In the Tuyon basin and its adjacent areas, some Cenozoic alkaline basaltic magmatism may be related to the Cenozoic activity of mantle plume.

  12. Global Isotopic Signatures of Oceanic Island Basalts. (United States)


    Appendix). Samples in the data set are mainly basalt. with some gabbros and trachybasalts, trachytes and other silica-rich rocks relative to basalt...Hart (1984) contoured world maps of OIB isotope data for his three DUPAL anomaly criteria [ASr> 40; A7/4 > 3; A8/4 > 401. These maps show a

  13. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja;


    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...

  14. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja


    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...

  15. Technical program plan, Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)


    The Basalt Waste Isolation Program covers all activities necessary to assess the feasibility and provide the technology needed to design and construct a nuclear waste repository in basalt. The program is divided into the following areas: program management; systems integration; scientific technology; near-surface test facility; and repository studies. The program is discussed in detail.

  16. Magmatism in rifting and basin formation (United States)

    Thybo, H.


    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  17. Dissolution-precipitation reactions and permeability evolution from reactions of CO2-rich aqueous solutions with fractured basalt (United States)

    Wells, R. K.; Xiong, W.; Bae, Y.; Sesti, E.; Skemer, P. A.; Giammar, D.; Conradi, M.; Ellis, B. R.; Hayes, S. E.


    The injection of CO2 into fractured basalts is one of several possible solutions to mitigate global climate change; however, research on carbonation in natural basalts in relation to carbon sequestration is limited, which impedes our understanding of the processes that may influence the viability of this strategy. We are conducting bench-scale experiments to characterize the mineral dissolution and precipitation and the evolution of permeability in synthetic and natural basalts exposed to CO2-rich fluids. Analytical methods include optical and electron microscopy, electron microprobe, Raman spectroscopy, nuclear magnetic resonance (NMR), and micro X-ray computed tomography (μCT) with variable flow rates. Reactive rock and mineral samples consist of 1) packed powders of olivine or natural basalt, and 2) sintered cores of olivine or a synthetic basalt mixture. Each sample was reacted in a batch reactor at 100 °C, and 100 bars CO2. Magnesite is detected within one day in olivine packed beds, and within 15 days in olivine sintered cores. Forsterite and synthetic basalt sinters were also reacted in an NMR apparatus at 102 °C and 65 bars CO2. Carbonate signatures are observed within 72 days of reaction. Longer reaction times are needed for carbonate precipitation in natural basalt samples. Cores from the Columbia River flood basalt flows that contain Mg-rich olivine and a serpentinized basalt from Colorado were cut lengthwise, the interface mechanically roughened or milled, and edges sealed with epoxy to simulate a fractured interface. The cores were reacted in a batch reactor at 50-150 °C and 100 bars CO2. At lower temperatures, calcite precipitation is rare within the fracture after 4 weeks. At higher temperatures, numerous calcite and aragonite crystals are observed within 1 mm of the fracture entrance along the roughened fracture surface. In flow-through experiments, permeability decreased along the fracture paths within a few hours to several days of flow.

  18. Tsunami flooding (United States)

    Geist, Eric; Jones, Henry; McBride, Mark; Fedors, Randy


    Panel 5 focused on tsunami flooding with an emphasis on Probabilistic Tsunami Hazard Analysis (PTHA) as derived from its counterpart, Probabilistic Seismic Hazard Analysis (PSHA) that determines seismic ground-motion hazards. The Panel reviewed current practices in PTHA and determined the viability of extending the analysis to extreme design probabilities (i.e., 10-4 to 10-6). In addition to earthquake sources for tsunamis, PTHA for extreme events necessitates the inclusion of tsunamis generated by submarine landslides, and treatment of the large attendant uncertainty in source characterization and recurrence rates. Tsunamis can be caused by local and distant earthquakes, landslides, volcanism, and asteroid/meteorite impacts. Coastal flooding caused by storm surges and seiches is covered in Panel 7. Tsunamis directly tied to earthquakes, the similarities with (and path forward offered by) the PSHA approach for PTHA, and especially submarine landslide tsunamis were a particular focus of Panel 5.

  19. Magmatic evolution of Sulawesi (Indonesia): constraints on the Cenozoic geodynamic history of the Sundaland active margin (United States)

    Polvé, M.; Maury, R. C.; Bellon, H.; Rangin, C.; Priadi, B.; Yuwono, S.; Joron, J. L.; Atmadja, R. Soeria


    Tertiary and Quaternary magmatic rocks from West Sulawesi record the complex history of part of the Sundaland margin where subduction and collision have been and are still active. The present study, based on petrographic data, major- and trace-element chemistry and 40K 40Ar dating aims to document the age and chemical characteristics of the magmatic formations from West Sulawesi and to determine the corresponding constraints on the geodynamic evolution of the Sundaland border. The West Sulawesi magmatic province includes the South Arm of Sulawesi (Ujung Pandang area), the western part of Central Sulawesi with the Toraja and Palu areas, and finally, the North Arm, extending from Palu to Manado, which includes the Tolitoli and Manado areas. Paleocene magmatic activity seems to be restricted to an episode of calc-alkaline magmatism in the Ujung Pandang area (61-59 Ma). The major Eocene (50-40 Ma) magmatic event is tholeiitic and is documented in all areas except in Ujung Pandang. It led to the emplacement of tholeiitic pillow-lavas and basaltic dykes of back-arc basin (BAB) affinity. These rocks are potential equivalents to the Celebes Sea basaltic basement. From Oligocene to Miocene, magmatic eruptions produced successively island-arc tholeiitic (IAT) and calc-alkaline (CA) rock series. The youngest IAT activity occurred around 18 Ma in the central part (Palu area) and around 14 Ma in the North Arm (Tolitoli area) while CA magmas were emplaced in the North Arm at ca. 18 Ma (Tolitoli and Manado areas). Typical calc-alkaline activity resumed only in the North Arm (Tolitoli and Manado areas) during the Late Miocene (9 Ma) and is still active in the Manado region. In other areas (Palu, Toraja and Ujung Pandang areas) an important and widespread magmatic event occurred between 13 and 10 Ma and emplaced K-rich magmas, either silica-undersaturated alkali-potassic basalts (AK), ultrapotassic basanites (UK) or shoshonites (SH). K-rich activity continued in the south until

  20. Paleoproterozoic arc basalt-boninite-high magnesian andesite-Nb enriched basalt association from the Malangtoli volcanic suite, Singhbhum Craton, eastern India: Geochemical record for subduction initiation to arc maturation continuum (United States)

    Rajanikanta Singh, M.; Manikyamba, C.; Ganguly, Sohini; Ray, Jyotisankar; Santosh, M.; Dhanakumar Singh, Th.; Chandan Kumar, B.


    The Singhbhum Craton of eastern India preserves distinct signatures of ultramafic-mafic-intermediate-felsic magmatism of diverse geodynamic affiliations spanning from Paleo-Mesoarchean to Proterozoic. Here we investigate the 2.25 Ga Malangtoli volcanic rocks that are predominantly clinopyroxene- and plagioclase-phyric, calc-alkaline in nature, display basalt-basaltic andesite compositions, and preserve geochemical signatures of subduction zone magmatism. Major, trace and rare earth element characteristics classify the Malangtoli volcanic rocks as arc basalts, boninites, high magnesian andesites (HMA) and Nb enriched basalts (NEB). The typical LILE enriched-HFSE depleted geochemical attributes of the arc basalts corroborate a subduction-related origin. The boninitic rocks have high Mg# (0.8), MgO (>25 wt.%), Ni and Cr contents, high Al2O3/TiO2 (>20), Zr/Hf and (La/Sm)N (>1) ratios with low (Gd/Yb)N (54 wt.%), MgO (>6 wt.%), Mg# (0.47) with elevated Cr, Co, Ni and Th contents, depleted (Nb/Th)N, (Nb/La)N, high (Th/La)N and La/Yb (<9) ratio, moderate depletion in HREE and Y with low Sr/Y. The NEBs have higher Nb contents (6.3-24 ppm), lower magnitude of negative Nb anomalies with high (Nb/Th)pm = 0.28-0.59 and (Nb/La)pm = 0.40-0.69 and Nb/U = 2.8-34.4 compared to normal arc basalts [Nb = <2 ppm; (Nb/Th)pm = 0.10-1.19; (Nb/La)pm 0.17-0.99 and Nb/U = 2.2-44 respectively] and HMA. Arc basalts and boninites are interpreted to be the products of juvenile subduction processes involving shallow level partial melting of mantle wedge under hydrous conditions triggered by slab-dehydrated fluid flux. The HMA resulted through partial melting of mantle wedge metasomatized by slab-dehydrated fluids and sediments during the intermediate stage of subduction. Slab-melting and mantle wedge hybridization processes at matured stages of subduction account for the generation of NEB. Thus, the arc basalt-boninite-HMA-NEB association from Malangtoli volcanic suite in Singhbhum Craton

  1. Stages of late Paleozoic to early Mesozoic magmatism in the Song Ma belt, NW Vietnam: evidence from zircon U-Pb geochronology and Hf isotope composition (United States)

    Hieu, Pham Trung; Li, Shuang-Qing; Yu, Yang; Thanh, Ngo Xuan; Dung, Le Tien; Tu, Vu Le; Siebel, Wolfgang; Chen, Fukun


    The Song Ma zone in NW Vietnam bears important tectonic implications as a potential subduction corridor between the Indochina and South China blocks. On the basis of U-Pb ages, the Hf isotopic characteristics of zircons and the geochemical composition of granitoids, a two-stage magmatic evolution process of the Song Ma zone at ~290-260 and ~245-230 Ma can be proposed. Isotopic analyses indicate magmatic contributions from Neoproterozoic oceanic island basalt, Proterozoic continental crust, and depleted mantle or juvenile lithosphere. By combining geochronological and geochemical data from the granitoid rocks, we suggest that the staged magmatic processes of Song Ma zone may be related to a long-lasting period of ocean subduction (ca. 290-260 Ma) and subsequent syn-/post-collisional evolution (ca. 245-230 Ma).

  2. Magmatic gas scrubbing: Implications for volcano monitoring (United States)

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.


    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  3. Neoproterozoic magmatic activity and global change

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yongfei


    Neoproterozoic is a very important time in the history of the Earth, during which occurred supercontinent breakup, low-latitude glaciation, and biotic diversification. These concern a series of interdisciplinary studies involving ancient plate motion, climate change and life evolution, resulting in many forefront topics of general interest in the earth sciences. These include exact ages bracketing the Cryogenian System and glaciations, initial age and lasted duration of supercontinent breakup, dynamic reconstruction of China continents in supercontinental configurations, the nature of rift magmatism and extent of hydrothermal alteration, paleoclimatic implication of water-rock interaction and low-18O magmatism, and relationship between supercontinental evolution and global change. A number of outstanding advances in the above aspects have being made by Chinese scientists, leaving many important issues to be resolved: (1) did the Cryogenian start at either 800 to 820 Ma or 760 to 780 Ma? (2) was South China in the supercontinental configuration located in either southeast to Australia or north to India? (3) are Paleoproterozoic to Archean ages of crustal rocks a valid parameter in distinguishing North China from South China? Available observations suggest that Neoproterozoic mantle superwelling occurred as conspicuous magmatism in South China but as cryptical magmatism in North China. Mid-Neoproterozoic mantle superplume event and its derived rift-magmatism would not only result in the supercontinental demise, but also play a very important role in the generation and evolution of the snowball Earth event by initiating the global glaciation, causing the local deglaciation and terminating the snowball Earth event.

  4. Subseafloor basalts as fungal habitats (United States)

    Ivarsson, M.


    The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50-200 µm in diameter) body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter) are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  5. Geochemical mapping of magmatic gas water rock interactions in the aquifer of Mount Etna volcano (United States)

    Brusca, L.; Aiuppa, A.; D'Alessandro, W.; Parello, F.; Allard, P.; Michel, A.


    Systematic analysis of major and minor elements in groundwaters from springs and wells on the slopes of Mt. Etna in 1995-1998 provides a detailed geochemical mapping of the aquifer of the volcano and of the interactions between magmatic gas, water bodies and their host rocks. Strong spatial correlations between the largest anomalies in pCO 2 (pH and alkalinity) K, Rb, Mg, Ca and Sr suggest a dominating control by magmatic gas (CO 2) and consequent basalt leaching by acidified waters of the shallow (meteoric) Etnean aquifer. Most groundwaters displaying this magmatic-type interaction discharge within active faulted zones on the S-SW and E lower flanks of the volcanic pile, but also in a newly recognised area on the northern flank, possibly tracking a main N-S volcano-tectonic structure. In the same time, the spatial distribution of T°C, TDS, Na, Li, Cl and B allows us to identify the existence of a deeper thermal brine with high salinity, high content of B, Cl and gases (CO 2, H 2S, CH 4) and low K/Na ratio, which is likely hosted in the sedimentary basement. This hot brine reaches the surface only at the periphery of the volcano near the Village of Paternò, where it gives rise to mud volcanoes called "Salinelle di Paternò". However, the contribution of similar brines to shallower groundwaters is also detected in other sectors to the W (Bronte, Maletto), SW (Adrano) and SE (Acireale), suggesting its possible widespread occurrence beneath Etna. This thermal brine is also closely associated with hydrocarbon fields all around the volcano and its rise, generally masked by the high outflow of the shallow aquifer, may be driven by the ascent of mixed sedimentary-magmatic gases through the main faults cutting the sedimentary basement.

  6. The Mesozoic Continental Magmatism in Brazil: its Role in the Western Gondwana Evolution from Integrated Paleomagnetic and Geochemical Data (United States)

    Ernesto, M.; Marques, L. S.


    Most of the Paleozoic era in the South American platform represents a period of tectonic quiescence during which large sedimentary basins evolved. Subsequently an intense magmatic activity took place preceding the disclosure of the Gondwana from Pangea, and later the disruption of the western Gondwana blocks (South America and Africa separation). In Brazil Early Jurassic (~220-180 Ma) tholeiitic basalts erupted mostly in the northern area (Amazonas and Parnaíba basins), whereas the Early Cretaceous (~140-120 Ma) is best represented by the huge magmatism of the Serra Geral Formation (Paraná basin, southeastern Brazil). An intense associated intrusive activity in the form of dykes and sills of both ages is widespread all over the country but tends to concentrate towards the continental margins. The integration of paleomagnetic and geochemical data on the Brazilian Mesozoic magmatism put some constraints on the timing, duration and the mantle sources involved in the generation of the magma products related to the different magmatic events.

  7. Episodic magmatism at 105 Ma in the Kinki district, SW Japan: Petrogenesis of Nb-rich lamprophyres and adakites, and geodynamic implications (United States)

    Imaoka, T.; Nakashima, K.; Kamei, A.; Itaya, T.; Ohira, T.; Nagashima, M.; Kono, N.; Kiji, M.


    Cretaceous episodic magmatism produced Nb-rich lamprophyres and adakitic granitoids in the Kinki district of SW Japan. K-Ar dating of minerals from the lamprophyres, adakites, and hornblende peridotite xenoliths yielded ages of 109-99 Ma, indicating a short-lived episodic magmatism. The lamprophyres generally display primitive high-Mg basaltic to basaltic andesite compositions with high Mg# and high Cr and Ni contents that preclude substantial differentiation. Some high-Nb basalt (HNB) and Nb-enriched basalt (NEB) compositions also occur. The lamprophyres have high large-ion lithophile element (LILE) and high field-strength element (HFSE) contents and variable (La/Yb)n ratios, and can be divided into high-(La/Yb)n (12.5-22.1) and low-(La/Yb)n (3.6-6.1) groups. The former contains nepheline-normative rocks with positive initial ɛNd(T) values, whereas the latter contains hypersthene-normative subalkaline rocks with negative initial ɛNd(T) values. The adakitic granitoids have relatively high TiO2, Nb, and Ta contents compared to more typical high-silica adakites elsewhere, indicating that they were produced by high temperatures (ca. 920 to 970 °C) during slab melting.


    Directory of Open Access Journals (Sweden)

    Sergey V. Rasskazov


    Full Text Available Devonian dikes of the Urik-Belaya and Shagayte-Gol-Urik zones and Miocene lavas of the Urik volcanic field are spatially associated with each other at the structural junction between the Neoproterozoic Tuva-Mongolian massif and Siberian craton. The former dike belt is represented by basalts and basaltic andesites of tholeiitic series and the latter one by trachybasalts, trachyandesitic basalts of moderately alkaline series and trachybasalts, phonotephrites of highly alkaline one. The Urik volcanic field is composed of trachybasalts and trachyandesitic basalts of moderately alkaline series. A partial similarity between magmatic series of different age is found in terms of major oxides, trace elements, and Sr, Pb isotopes. The common component corrected for age was defined through its converging mixing trends with those of the lithospheric mantle and crust. The component identification was a basis for deciphering the nature of isotopic and geochemical heterogeneity of evolved magmatic sources. It was inferred that the common component characterizes either a modified (depleted reservoir of the lower mantle or, more likely, a local region of the convecting asthenospheric mantle that underlies the Tuva-Mongolian massif. The latter interpretation assumes the formation of a locally convecting asthenosphere in the middle Neoproterozoic, along with the development of the Oka zone at the massif, and puts constrains on later sufficient processing of the asthenosphere due to rising plumes or subducting slabs.

  9. Post-collisional magmatism in Wuyu basin, central Tibet:evidence for recycling of subducted Tethyan oceanic crust

    Institute of Scientific and Technical Information of China (English)

    赵志丹; 莫宣学; 张双全; 郭铁鹰; 周肃; 董国臣; 王勇


    The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism.

  10. The origin of Cenozoic magmatism of Libya (United States)

    Stuart, Finlay; Masoud, Abdelmoniem; Mark, Darren


    Cenozoic volcanic provinces cover 66,000 km2 of Libya. The main fields are aligned NNW-SSE where NE-SW trending structural features intersect the main regional uplift structures. They form some of the largest volcanic provinces in North Africa yet despite their size and relative accessibility they have been not studied in detail. We are engaged in a new study of the geochemistry (major-trace elements, REE, Sr-Nd-Pb isotopes) and geochronology (40Ar/39Ar and cosmogenic 3He) of basalts of the four main Cenozoic volcanic provinces (Garian, Jabal Al Hasawinah, Jabal As Sawda and Jabal Al Haruj) in order to elucidate the nature and origin of the volcanism. The volcanic fields are dominated by basaltic flows, with small volumes of phonolites present at Garian and Jabal Al Hasawinah. Basalt piles rarely exceed a few 10s metres thick and the presence of NW-SE trending dykes on the periphery of most fields implies that existing flows probably represent the latest phase of a protracted volcanic history in each region. The basalts tend to be alkali to mildly alkali. Compositional variation is dominated by fractional crystalisation with little indication of crustal contamination. Trace element and REE support an origin in 5 to 15 % melts of heterogeneous sub-lithosphere mantle. Nd and Sr isotopic composition of the Garian and Jabal Al Haruj basalts (0.5128-0.51294 and 0.703-0.704) overlap the Cenozoic volcanism of southern Italy characterized by Etna and Pantelleria. This is typical of the common European asthenosphere mantle reservoir, and lacks the influence of enriched mantle present in other North African Cenozoic basalt provinces. There has been no systematic change in the location of volcanism with time that is indicative of plate movement over a fixed mantle hotspot. The major pulse of basaltic volcanism in the northern (Garian) and southern (Jabal Al Haruj) provinces overlap in time (6-1 Ma,) while Jabal Al Hasawinah and Jabal As Sawda basalts were erupted

  11. The nature of magmatism at Palinpinon geothermal field, Negros Island, Philippines: implications for geothermal activity and regional tectonics (United States)

    Rae, Andrew J.; Cooke, David R.; Phillips, David; Zaide-Delfin, Maribel


    The Palinpinon geothermal field, Negros Island, Philippines is a high-temperature, liquid-dominated geothermal system in an active island-arc volcanic setting. This paper presents a regional context for the Palinpinon geology, discusses the petrogenetic evolution of magmatism in the district and assesses the genetic relationships between intrusion and geothermal circulation. The oldest rock formation, the Lower Puhagan Volcanic Formation (Middle Miocene), is part of a volcanic sequence that is traceable throughout the Visayas region and is related to subduction of the Sulu Sea oceanic basin in a southeasterly direction beneath the Sulu arc. Late Miocene to Early Pliocene times mark a period of regional subsidence and marine sedimentation. A thick sequence of calcareous sediments (Okoy Formation) was deposited during this period. Magmatism in Early Pliocene to Recent times coincided with commencement of subduction at the Negros-Sulu Arc. This produced basaltic andesites and andesites belonging to the Southern Negros and Cuernos Volcanic Formations. During this time the Puhagan dikes and the Nasuji Pluton intruded Middle Miocene, Late Miocene and Early-Late Pliocene formations. Based on radiogenic ( 40Ar/ 39Ar) dating of hornblende, the Puhagan dikes are 4.1-4.2 Ma and the Nasuji Pluton 0.3-0.7 Ma. This age difference confirms these intrusions are not genetically related. The Early Pliocene age of the Puhagan dikes also confirms they are not the heat source for the current geothermal system and that a much younger intrusion is situated beyond drill depths. Igneous rock formations in southern Negros are the products of regional island-arc magmatism with medium K, calc-alkaline, basaltic to dacitic compositions. Their adakitic affinity implies that the melting of subducted oceanic basalt has influenced magmatism in this region. Considering the regional tectonic history the most likely scenarios for the generation of slab melts are: (1) during the Middle Miocene, by the

  12. Flood lavas on Earth, Io and Mars (United States)

    Keszthelyi, L.; Self, S.; Thordarson, T.


    Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have

  13. High-Mg# andesitic lavas of the Shisheisky Complex, Northern Kamchatka: implications for primitive calc-alkaline magmatism (United States)

    Bryant, J. A.; Yogodzinski, G. M.; Churikova, T. G.


    Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high-Mg# (Mg/Mg + Fe > 0.65) basalts, basaltic andesites and andesites from the Kurile-Kamchatka subduction system. Primitive andesitic samples are from the Shisheisky Complex, a field of Quaternary-age, monogenetic cones located in the Aleutian-Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite volcano in Kamchatka. The Shisheisky lavas have Mg# of 0.66-0.73 at intermediate SiO2 (54-58 wt%) with low CaO (3.0 wt%) and K2O (>1.0 wt%). Olivine phenocryst core compositions of Fo90 appear to be in equilibrium with whole-rock `melts', consistent with the sparsely phyric nature of the lavas. Compared to the Shisheisky andesites, primitive basalts from the region (Kuriles, Tolbachik, Kharchinsky) have higher CaO (>9.9 wt%) and CaO/Al2O3 (>0.60), and lower whole-rock Na2O (andesites. The absence of plagioclase phenocrysts from the primitive andesitic lavas contrasts the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the primitive andesitic magmas compared to basalts. Estimated temperature and water contents for primitive basaltic andesites and andesites are 984-1,143°C and 4-7 wt% H2O. For primitive basalts they are 1,149-1,227°C and 2 wt% H2O. Petrographic and mineral compositions suggest that the primitive andesitic lavas were liquids in equilibrium with mantle peridotite and were not produced by mixing between basalts and felsic crustal melts, contamination by xenocrystic olivine, or crystal fractionation of basalt. Key geochemical features of the Shisheisky primitive lavas (high Ni/MgO, Na2O, Ni/Yb and Mg# at intermediate SiO2) combined with the location of the volcanic field above the edge of the subducting Pacific Plate support a genetic model that involves melting of eclogite or pyroxenite at or near the surface of the subducting plate, followed by interaction of that melt with

  14. Rifting, landsliding and magmatic variability in the Canary Islands (United States)

    Carracedo, J. C.; Troll, V. R.; Guillou, H.; Badiola, E. R.; Pérez-Torrado, F. J.; Wiesmaier, S.; Delcamp, A.; Gonzalez, A. R.


    Rifts, probably the most influential structures in the geology of the Canary Islands, may also be responsible for the development of central felsic volcanoes, which are consistently nested in the collapse basins of the massive lateral collapses found in the Canaries. Three main types of post-collapse volcanism have been observed, particularly in the western Canaries: 1. Collapses followed by relatively scant, non-differentiated volcanism inside the collapse depression (El Golfo, El Hierro; La Orotava and Güímar, Tenerife), 2. those with important, although short-lasting (tens of thousands of years), post-collapse activity including felsic (phonolitic, trachytic) central volcanism (Bejenado, La Palma; Vallehermoso, La Gomera), and 3. those with very important, long-lasting (>100 kyr) post-collapse activity, evolving from primitive to felsic magmatism, eventually resulting in very high stratovolcanoes (Teide, Tenerife). Three consecutive sector collapses (Micheque, Güímar and La Orotava) mass-wasted the flanks of in the NE rift of Tenerife after intense and concentrated eruptive activity, particularly from about 1.10 Ma to 0.96 Ma, with periods of growth up to 15-25 m/kyr. Volcanic activity completely filled the Micheque collapse, evolving from basaltic to differentiated trachytic eruptions. Conversely, nested volcanism was less abundant in the Güímar and La Orotava collapses. This requires two fundamentally different scenarios which may be a function of active versus passive flank collapse trigger mechanisms: 1. The collapse occurs as a result of one of these short but intense intrusive-eruptive periods and probably triggered by concurring extensional stresses at the rifts (rift push), or 2. the giant landslide is derived only from gravitational instability. In the first scenario, the collapse of the flank of the rift may disrupt an established fissural feeding system that rapidly fills the collapse basin. Due to its disruption and the progressive new

  15. Magmatic Processes at Loihi Seamount Inferred From 226Ra-230Th-234U-238U Disequilibria (United States)

    Pietruszka, A. J.; Hauri, E. H.; Garcia, M. O.


    We have conducted a detailed study of the U-series isotope geochemistry of young tholeiitic, transitional and alkalic Loihi basalts to examine the melt generation process during the preshield stage of a Hawaiian volcano. A previous study (Sims et al. 1999; GCA, v. 63) of two dredged lavas from the deep flanks of Loihi found a higher (230Th/238U) activity ratio in an alkalic basalt (1.07) compared to a tholeiitic basalt (1.04). This difference suggests that the tholeiitic basalt may have formed at a higher rate of mantle upwelling than the alkalic basalt. Our samples were collected from surface lava flows at Loihi's summit and along the volcano's south rift zone by submersible. Analyses were preformed using high-precision plasma ionization mass spectrometry. The samples display a relatively large range in the amount of excess 226Ra (0-13%) that extends to much lower values than observed at Kilauea Volcano (11-12%). The low (226Ra/230Th) ratios of Loihi lavas probably result from post-eruptive decay of 226Ra and imply eruption ages of 0-12 kyr. All of the Loihi samples (including the 1996 lava) have small amounts of excess 234U (0.2-0.8%). The most likely source for (234U/238U)>1 at Loihi is seawater, which has (234U/238U)=1.14. Since all of the samples were fresh, hand-picked glasses, these elevated (234U/238U) ratios may have resulted from the assimilation of a seawater-derived component within Loihi's magmatic plumbing system rather than post-eruptive U addition. The range of (230Th/238U) that we measured is 1.01-1.07, which is larger than the previous range known for Loihi. Mass balance calculations using the measured (234U/238U) ratios suggest that 1-6% of the U in the samples that we analyzed is ultimately derived from seawater. Correcting the 230Th-238U disequilibria of the Loihi lavas for this seawater-derived U results in a narrower range in the amount of excess 230Th (6-9%) with no significant differences between tholeiitic, transitional or alkalic basalts

  16. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes


    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  17. Naming Lunar Mare Basalts: Quo Vadimus Redux (United States)

    Ryder, G.


    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  18. Moho and magmatic underplating in continental lithosphere

    DEFF Research Database (Denmark)

    Thybo, Hans; Artemieva, Irina M.


    interacts with the surrounding crustal rocks which leads to smearing of geophysical signals from the underplated material. In terms of processes, there is no direct discriminator between the traditional concept of underplated material and lower crustal magmatic intrusions in the form of batholiths and sill...

  19. Basaltic Soil of Gale Crater: Crystalline Component Compared to Martian Basalts and Meteorites (United States)

    Treiman, A. H.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Schmidt, M.; Downs, R. T.; Stolper, E. M.; Blake, D. F.; Vaniman, D. T.; Achilles, C. N.; Chipera, S. J.; Bristow, T. F.; Crisp, J. A.; Farmer, J. A.; Morookian, J. M.; Morrison, S. M.; Rampe, E. B.; Sarrazin, P.; Yen, A. S.; Anderosn, R. C.; DesMarais, D. J.; Spanovich, N.


    A significant portion of the soil of the Rocknest dune is crystalline and is consistent with derivation from unweathered basalt. Minerals and their compositions are identified by X-ray diffraction (XRD) data from the CheMin instrument on MSL Curiosity. Basalt minerals in the soil include plagioclase, olivine, low- and high-calcium pyroxenes, magnetite, ilmenite, and quartz. The only minerals unlikely to have formed in an unaltered basalt are hematite and anhydrite. The mineral proportions and compositions of the Rocknest soil are nearly identical to those of the Adirondack-class basalts of Gusev Crater, Mars, inferred from their bulk composition as analyzed by the MER Spirit rover.

  20. Lead isotope signatures of Kerguelen plume-derived olivine-hosted melt inclusions: Constraints on the ocean island basalt petrogenesis (United States)

    Borisova, Anastassia Y.; Faure, François; Deloule, Etienne; Grégoire, Michel; Béjina, Frédéric; de Parseval, Philippe; Devidal, Jean-Luc


    The nature of magmatic sources reflected by isotopic composition of the ocean island basalt (OIB) remains an on-going question in igneous geochemistry. To constrain the magmatic sources for OIB related to the Kerguelen plume activity, we performed detailed microanalytical investigation of the 21.4 Ma picritic basalt (MD109-D6-87) dredged during the “Marion Dufresne” cruise on a seamount between Kerguelen Archipelago and Heard Island. Lead isotope compositions of olivine-hosted melt inclusions and matrix glasses were measured by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS) and Secondary Ion Mass Spectrometry (SIMS). We also performed major and trace element microanalyses and mapping of the inclusions and the host olivine phenocrysts by electron microprobe (wavelength-dispersive X-ray spectroscopy, WDS). The observed significant major element (K2O/P2O5, Al2O3/TiO2) and Pb isotope (207Pb/206Pb and 208Pb/206Pb) heterogeneities of parental melts (MgO = 7-10 wt.%) during early high pressure crystallisation stage (200-300 MPa, Fo82-86 mol%), and relative homogeneity at later lower-pressure crystallisation stage ( 4), Al2O3/TiO2 (> 4) ratios are attributed to assimilation of the plateau basaltic crust (≥ 50 wt.%) by the melts in the magma chamber at palaeodepths from 6 to 9 km. The crustal assimilation may have happened through plagioclase dissolution. The large chemical and isotopic heterogeneity of the parental OIB melts found by in situ microanalyses in this study suggests that the bulk rock chemistry alone cannot provide enough information to constrain the nature of the magmatic sources.

  1. Basalt: structural insight as a construction material

    Indian Academy of Sciences (India)



    The need for the development of novel and innovative materials is instrumental at every stage of societal improvements, leading to the overall development of a country. One such material of abundant source is basalt. The use of basalt in different forms like fibre, rod, grid and laminates has captured the interest of society from the 20th century onwards. Lately, basalt fibre has attracted attention as a possible construction material due to its properties such as high modulus of elasticity, high elastic strength, corrosion resistance, high-temperature resistance, extended operating temperature range and ease of handling. This paper explores the state of the art of basalt used in the construction industry with the overall layout of different subcategories of historical background starting from fibre development and different chemical and mechanical fibre properties to its applications in the field. Comparative studies have also been reported with respect to other high-strength fibre like glass, steel and carbon fibre based on different physical, chemical and mechanical properties. Along with these, a review hasbeen done on the usage of different basalt products like aggregate, rod, fibre, mesh, etc. in structural applications. The review also tends to identify critical constraints that restrain the implementation of basalt as a global construction material, thereby opening avenues of needed research. An insight on inconsistency reported in the literature with respect to the behaviour of basalt-fibre-reinforced composites is also expressed in this paper. The overall idea is to gain information and identify and prioritize research areas of the possible applications of basalt towards sustainable construction.

  2. Mineralogy of Yamato 983885 lunar polymict breccia with a KREEP basalt,a high-Al basalt, a very low-Ti basalt and Mg-rich rocks



    Y983885 is a polymict regolith breccia with a KREEP basalt, Mg-rich troctolite/norite, a high-Al basalt, a very low-Ti basalt, a granulite originated from ferroan anorthosite, and Si, Na-rich impact spherules. An igneous KREEP basalt is first reported among lunar meteorites to date. The KREEP basalt is mineralogically distinct from Apollo KREEP basalts due to the lack of the typical Ca zoning from orthopyroxene to pigeonite, instead, the presence of the co-existing pigeonite/augite with chemi...

  3. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core (United States)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.


    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  4. Magmatism in the brazilian sedimentary basins and the petroleum geology; Magmatismo nas bacias sedimentares brasileiras e sua influencia na geologia do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz Filho, Antonio; Antonioli, Luzia [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Geologia]. E-mails:;; Mizusaki, Ana Maria Pimentel [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Geociencias]. E-mail:


    In the recent years, the researches on the magmatic events that occurred in the Brazilian sedimentary basins had shown the importance of these episodes for the hydrocarbons exploration. The generation (heating), migration (structural and petrographic alterations), accumulation (basalt fractures) and migrations barriers (sills and dykes) of the hydrocarbons, produced for these rocks, are cited in the marginal and intra continental Brazilian basins. The magmatism produce the temperature increase in the sedimentary basin, around its intrusion, and this propitiate the maturation of the organic matter contained in the hydrocarbons generating rocks of the basin. At the same time, has been verified that the contacts dykes/sedimentary rocks can represent important ways for the hydrocarbons migrations. Recent studies have shown that the magmatism, in its extrusive manifestations, can be analyzed in view of the possibility of having acted as effective hydrocarbon seals and, in consequence, making possible the accumulation of hydrocarbons generated in the underlying sediments. The magmatism of predominantly basic to intermediary character is generated in the asthenosphere, that is, below the lithosphere. The dykes that had introduced in the basement of our sedimentary basins are good heat conductors and we can expect the geothermal gradients increase in the overlapped sedimentary deposits. The more detailed study of the magmatic processes in the Brazilian sedimentary basins must lead to new forms of hydrocarbons exploration in our sedimentary basins, also in those basins where the traditional exploration activities have not occasioned the waited expected successes. (author)

  5. Main peculiarities of N-Q magmatism of the Greater Caucasus (United States)

    Dokuchaev, A.; Bubnov, S.; Bogatikov, O.; Goltsman, Yu.


    Three stages are recognized in young magmatic activity of the Greater Caucasus: Late Miocene, Pliocene, and Quaternary. Products of Late Miocene stage are confined to the northern and southern margins of the Greater Caucasus, respectively: laccoliths of Caucasian Mineral Waters (CMW) (~8 Ma) and magmatic complexes of Central Georgian neovolcanic area (6.4-6.1 Ma) (Lebedev at al., 2006). CMW granitoids are represented by high-Mg# granosyenites, granites, and leucogranites with high alkalinity. They show Mo-Sn±Au-W and base metal ore-geochemical signature. Lavas of Central Georgian area correspond to K-Na subalkali and alkali basalts with high Mg# (0.56-0.67) and elevated Sr, Ba, Nb. Their ore-geochemical specialization has not been defined yet. Pliocene stage was responsible for the formation of Chegem volcanic center (~2.8 Ma), several plutonic complexes (Eldzhurta, Dzhimara, Sangutidon, Kyrtyk) (3.75-1.6 Ma), felsic ignimbrites, rhyolites, rhyodacites of NE and W Elbrus area (3.0-1.6 Ma), as well as dacites and rhyodacites of dikes and stocks of Tyrnyauz area (2.5-2.1 Ma) (Chernyshev et al., 2011). Rocks of Chegem center were formed during three main phases: (1) basaltic andesites of Surkh and Krandukh volcanoes; (2) pyroclastic sequences of Upper and Lower Chegem volcanic highlands and Dzhungusu intrusive massif (dacites, rhyolites, trachyrhyolites, granodiorite porphyries); (3) andesites of Kumtyube and Kyugenkaya stratovolcanoes. Initial and final stages represented by calc-alkaline rocks, whereas second stage was marked by K-Na subalkaline and calc-alkaline rocks. Chegem volcanic center have Pb-Zn±Mo ore-geochemical signatures. Eldzhurta Massif is made up of K-Na granites and leucogranites, while Dzhimara, Tepli, and Sangutidon massifs consist mainly of calc-alkaline diorites and granodiorites with high Ti and Mg contents. Granitoids of Eldzhurta Massif bear W-Mo-Sn-Cu-base-metal signatures, while the Tepli and Sangutidon massifs are characterized by Cu

  6. Constraining the timescale of magmatic ascent prior to the Skuggafjöll eruption, Iceland (United States)

    Mutch, E. J. F.; Maclennan, J.; Neave, D.; Edmonds, M.


    Advances in the spatial resolution and precision of micro-analytical techniques has made diffusion chronometry a powerful technique for extracting timescale information about sub-volcanic processes that occur days to months before eruption. In contrast to most previous studies, we estimate timescales using multiple mineral phases from the same sample of erupted material that are expected to have undergone the same magmatic history. This approach allows for testing of diffusion models tailored for individual minerals. The ultra-phyric lavas of the Skuggafjöll eruption, part of the Bárðarbunga volcanic system in southern Iceland, contain primitive macrocrysts of plagioclase (An90) and olivine (Fo86) with homogeneous cores surrounded by rims of more evolved material (An2014 Holuhraun eruption). If processes between melt injection and eruption in basaltic systems do indeed operate under a consistent temporal framework, this could offer a large breakthrough in eruption forecasting and hazard management.

  7. An experimental and petrologic investigation of the source regions of lunar magmatism in the context of the primordial differentiation of the moon (United States)

    Elardo, Stephen M.

    The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low

  8. Chromium Oxidation State in Planetary Basalts: Oxygen Fugacity Indicator and Critical Variable for Cr-Spinel Stability (United States)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jone, J.; Shearer, C. K.


    Cr is a ubiquitous and relatively abundant minor element in basaltic, planetary magmas. At the reduced oxidation states (basalts Cr is present in melts as both divalent and trivalent forms. The ratio of trivalent to divalent Cr present in the melt has many consequences for the stability and Cr concentration of magmatic phases such as spinel, clinopyroxene, and olivine. However, understanding the Cr valence in quenched melts has historically been plagued with analytical issues, and only recently has reliable methodology for quantifying Cr valence in quenched melts been developed. Despite this substantial difficulty, the pioneering works of Hanson and Jones and Berry and O'Neill provided important insights into the oxidation state of Cr in in silicate melts. Here we present a series of 1-bar gas mixing experiments performed with a Fe-rich basaltic melt in which have determined the Cr redox ratio of the melt at over a range of fO2 values by measuring this quantity in olivine with X-ray Absorption Near Edge Spectroscopy (XANES). The measured Cr redox ratio of the olivine phenocrysts can be readily converted to the ratio present in the conjugate melt via the ratio of crystal-liquid partition coefficients for Cr3+ and Cr2+. We have applied these results to modeling Cr spinel stability and Cr redox ratios in a primitive, iron-rich martian basalt.

  9. Wallula Basalt Pilot Demonstration Project: Post-Injection Results and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, Bernard P.; Schaef, Herbert T.; Spane, Frank A.; Horner, Jacob A.; Owen, Antoinette T.; Cliff, John B.; Qafoku, Odeta; Thompson, Christopher J.; Sullivan, Elsie C.


    Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO2 were injected over a 3-week period during July/August 2013. The target CO2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. During the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ13C, δ18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO2. Both the secondary mineral nodules and injected CO2 are measurably

  10. Flooding and Schools (United States)

    National Clearinghouse for Educational Facilities, 2011


    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  11. Magmatic and tectonic evolution of the Ladakh Block from field studies (United States)

    Raz, U.; Honegger, K.


    The Ladakh Block is in an intermediate position between the Indian plate in the south and the Karakorum-Tibetan plate in the north. To the west it is separated from the Kohistan Arc by the Nanga Parbat Syntaxis, to the east it is cut off from the Lhasa Block by the Gartok-Nubra Fault. Present data, together with previously published results, show, that the Ladakh Block consists of an island arc in the south and a calc-alkaline batholith in the north with remnants of a continental crust. Migmatitic gneisses and metasedimentary sequences, such as quartzites and metapelites, interbedded with basaltic volcanics and overlain by thick platform carbonates were found as evidence of a continental crust. Remnants of megafossils ( Megalodon and Lithiotis) within the high-grade metamorphic marbles indicate a probable age of Late Triassic to Early Jurassic. These sediments were intruded by a faintly layered hornblende-gabbro, which preceded the calc-alkaline magmatic episode. Gabbro and gabbronorites are found as roof pendants and large inclusions within diorites and granodiorites. The major part of the batholith consists of granodiorite and biotite-granite plutons, ranging from Late Cretaceous to Tertiary. Associated with the intrusives are volcanic rocks with trachyandesite to alkalibasalt and basalt-andesite to rhyolite compositions. Garnet-bearing leucogranites succeeded the emplacement of the major plutons. The magmatic stage ended, finally, by intense fracturing and injections of NE-SW striking andesitic dykes. The southernmost unit of the Ladakh Block is formed by oceanic crust with serpentinized peridotite and hornblende-gabbro and is covered by volcanics of an island-arc type (Dras volcanics). These units are intruded by gabbronorite, as well as Middle and Upper Cretaceous granodiorite and coarse-grained biotite-granite. In a plate tectonic view the Ladakh Block represents a transitional sector between the pure island arc of Kohistan in the west and the Andean type

  12. Mid-Miocene thermal Impact on the Lithosphere of Asia by sub-lithospheric convective Mantle Material: Temporal Transition from high- to moderate-Mg Magmatism beneath Vitim Plateau, Southern Siberia (United States)

    Chuvashova, Irina; Rasskazov, Sergei


    In Inner Asia, high-Mg lavas is characteristic of the Middle Miocene volcanism. In the Vitim plateau, we studied the high- and moderate-Mg volcanics, erupted at 16-14 and 14-13 Ma, respectively. In the former (small volume) unit, initial basaltic melts, contaminated by crustal material, were followed by uncontaminated high-Mg basanites and basalts of transitional (K-Na-K) compositions and afterwards by picrobasalts and basalts of K series. In the latter (high-volume) unit, initial basalts and basaltic andesites of transitional (Na-K-Na) compositions and basalts of Na series were overlain by basalts and trachybasalts of K-Na series. From pressure estimates after equation [Scarrow, Cox, 1995], we infer that the high-Mg melts were derived from the sub-lithospheric mantle as deep as 115-150 km, unlike the moderate-Mg ones that were produced by melting of the shallow lithospheric mantle. We suggest that the studied transition from high- and moderate-Mg magmatism reflected the mid-Miocene thermal impact on the lithosphere by a hot sub-lithospheric mantle material from the Transbaikalian low-velocity domain with potential temperature estimates up to 1510 oC. This thermal impact triggered rifting in the lithosphere of the Baikal Rift System. The study is supported by the Russian Foundation for Basic Research (Grant 14-05-31328).

  13. Repository site definition in basalt: Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.


    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  14. Radionuclide reactions with groundwater and basalts from Columbia River basalt formations

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.


    Chemical reactions of radionuclides with geologic materials found in Columbia River basalt formations were studied. The objective was to determine the ability of these formations to retard radionuclide migration from a radioactive waste repository located in deep basalt. Reactions that can influence migration are precipitation, ion-exchange, complexation, and oxidation-reduction. These reactions were studied by measuring the effects of groundwater composition and redox potential (Eh) on radionuclide sorption on fresh basalt surfaces, a naturally altered basalt, and a sample of secondary minerals associated with a Columbia River basalt flow. In addition, radionuclide sorption isotherms were measured for these materials and reaction kinetics were determined. The radionuclides studied were /sup 137/Cs, /sup 85/Sr, /sup 75/Se, /sup 95m/Tc, /sup 237/Np, /sup 241/Am, /sup 226/Ra and /sup 237/Pu. The Freundlich equation accurately describes the isotherms when precipitation of radionuclides does not occur. In general, sorption increased in the order: basalt < altered basalt < secondary minerals. This increase in sorption corresponds to increasing surface area and cation exchange capacity. The Eh of the system had a large effect on technetium, plutonium, and neptunium sorption. Technetium(VII), Pu(VI), and Np(V) are reduced to Tc(IV), Pu(IV), and Np(IV), respectively, under Eh conditions expected in deep basalt formations. The kinetics of radionuclide sorption and basalt-groundwater reactions were observed over a period of 18 weeks. Most sorption reactions stabilized after about four weeks. Groundwater composition changed the least in contact with altered basalt. Contact with secondary minerals greatly increased Ca, K, and Mg concentrations in the groundwater.

  15. Simulation modeling of the probability of magmatic disruption of the potential Yucca Mountain Site

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Perry, F.V.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wallmann, P.C.; Kossik, R. [Golder Associates, Inc., Redmond, WA (United States)


    The first phase of risk simulation modeling was completed for the probability of magmatic disruption of a potential repository at Yucca Mountain. E1, the recurrence rate of volcanic events, is modeled using bounds from active basaltic volcanic fields and midpoint estimates of E1. The cumulative probability curves for El are generated by simulation modeling using a form of a triangular distribution. The 50% estimates are about 5 to 8 {times} 10{sup 8} events yr{sup {minus}1}. The simulation modeling shows that the cumulative probability distribution for E1 is more sensitive to the probability bounds then the midpoint estimates. The E2 (disruption probability) is modeled through risk simulation using a normal distribution and midpoint estimates from multiple alternative stochastic and structural models. The 50% estimate of E2 is 4.3 {times} 10{sup {minus}3} The probability of magmatic disruption of the potential Yucca Mountain site is 2.5 {times} 10{sup {minus}8} yr{sup {minus}1}. This median estimate decreases to 9.6 {times} 10{sup {minus}9} yr{sup {minus}1} if E1 is modified for the structural models used to define E2. The Repository Integration Program was tested to compare releases of a simulated repository (without volcanic events) to releases from time histories which may include volcanic disruptive events. Results show that the performance modeling can be used for sensitivity studies of volcanic effects.

  16. Can we identify source lithology of basalt? (United States)

    Yang, Zong-Feng; Zhou, Jun-Hong


    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  17. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation (United States)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.


    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  18. Calcium isotopic compositions of mid-ocean ridge basalts (United States)

    Zhu, H.; Zhang, Z.; Sun, W.; Wang, G. Q.


    Previous studies have demonstrated that Earth's mantle has heterogeneous calcium isotopic compositions. But the reason why mantle has its heterogeneity remains uncertain. In general, δ44/40Ca values of mantle xenolith samples have a variation of >0.45‰. While ultramafic rocks, especially dunites, have higher δ44/40Ca values than volcanic rocks, and there is a positive correlation between δ44/40Ca and Ca/Mg. These phenomena imply that the heterogeneity of Ca isotopic compositions of mantle xenolith samples might result from different degrees of melt extraction, as indicated by large Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene. However, because ancient marine carbonate has its own unique calcium isotopic characteristics, recycling of even a small amount of ancient marine carbonates into the mantle could also cause the heterogeneity of Ca isotopes in Earth's mantle. This could be the reason why oceanic island basalts (OIB) have lighter Ca isotopic compositions than the mantle xenolith. Thus, the lighter Ca isotopic compositions in the mantle source cannot only be ascribed to magmatic processes. Therefore, it is more important to know calcium isotopic characteristics during partial melting and oceanic crust contamination.Mid-ocean ridge basalts (MORB) are formed from the partial melts of the upper mantle and are rarely affected by crustal contamination. Different types of MORB, including D-MORB, N-MORB and E-MORB, have experienced different degrees of partial melting and contamination of enriched end-members. Here we report calcium isotopic characteristic of different types of MORB, we believe it will be very helpful to understand the behaviors of Ca isotopes during partial melting and it is possible to provide further information to discover the reason why calcium isotopic compositions is heterogeneous in Earth's mantle. This work was supported by Natural Science Foundation of China (No. 41373007, No. 41490632 and No. 91328204

  19. Lithospheric convective removal related post-collisional middle Eocene magmatism along the Izmir-Ankara-Erzincan suture zone (NE Turkey). (United States)

    Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can


    Obliteration of the Mesozoic Neo-Tethyan Ocean and succeeding collision of the micro plates along the northern part of Turkey lead the development of the İzmir-Ankara-Erzincan suture zone (IAESZ). The suturing and collision stages terminate with the amalgamation of the three different crustal blocks (Pontides, Central Anatolian Crystalline Complex and Anatolide-Tauride Block) in the Paleocene-Early Eocene period. After the collisional stage; a new phase of extension and magmatism concomitantly developed at the both sides and as well as along the IAESZ during the Middle Eocene period. However, the origin, mechanism and driving force of the post-collisional magmatism is still enigmatic. To understand and better constrain the syn-to post collisional evolutionary stages, we have carried out volcano-stratigraphy and geochemistry based study on the middle Eocene magmatic associations along a transect ( 100 km) from Pontides to the Central Anatolian Crystalline Complex (CACC) at the NE part of the Turkey. Middle Eocene magmatic activity in the region has been represented by calc-alkaline, alkaline, shoshonitic volcanic and granitic rocks together with scarce gabbroic intrusions. We particularly focused on middle Eocene volcano-sedimentary successions (MEVSS) to constrain the tectono-magmatic evolution of the abovementioned transect. The volcano-sedimentary succsessions are coevally developed and cover the crustal blocks (Pontides and CACC) and the IAESZ with a region wide unconformity. We have differentiated three lava series (V1-V2-V3) and their sub-groups (V1a-V1b; V2a-V2b) in MEVSS. Generally, all lava series have middle-K to shoshonitic composition with distinct subduction characteristics. V1 series is marked by presence of hydrous phenocrysts such as amphibole+biotite. V1a sub-group constitute the first volcanic product and characterized by the high Mg# (42-69); alkaline basaltic andesite, and hawaiites. V1b sub-group is represented by calc-alkaline, low Mg# (24

  20. Giant magmatic water reservoir beneath Uturuncu volcano and Altiplano-Puna region (Central Andes) (United States)

    Laumonier, Mickael; Gaillard, Fabrice; Muir, Duncan; Blundy, Jon; Unsworth, Martyn


    Volcanism at continental arcs is the surface manifestation of long-lived crustal magmatic processes whereby mantle-derived hydrous basalt magma differentiates to more silica-rich magmas by a combination of crystallization and crustal melting. What erupts is just a fraction of the total volume of magma produced by these processes; the unerupted, plutonic residues solidify and are inaccessible to direct study until millions of years of uplift and erosion bring them to the surface. In contrast, geophysical surveys, using electromagnetic and seismic waves, can provide real-time images of subduction zone magmatic systems. Several such studies have revealed that arc volcanoes are underlain by large partially molten regions at depths of >10 km, the largest known example being the Altiplano-Puna magma body (APMB) in central Andes. Interpreting such geophysical images in terms of amount, composition and distribution of partial melts is limited by our lack of knowledge of the physical properties of silicate melts at elevated pressures and temperatures. Here we present high-pressure, in situ experimental data showing that the electrical conductivity of andesitic melts is primarily controlled by their dissolved water contents. Linking our new measurements to petrological constraints from andesites erupted on the Altiplano, we show that the APMB is composed of 10-20% of an andesitic melt containing 8-10 wt% dissolved water. This implies that the APMB is a giant water anomaly in the global subduction system, with a total mass of dissolved magmatic water about half of the water contained within the Adriatic Sea. In addition to the controls on the physical properties of the melts, the abundance of dissolved water governs the structural levels of magma ponding, equivalent to the depth of water saturation, where degassing and crystallisation promote partial melting and weakening of the upper crust. Unexpectedly, very high concentrations of water in andesite magmas shall impede their

  1. Os and U-Th isotope signatures of arc magmatism near Mount Mazama, Crater Lake, Oregon (United States)

    Ankney, Meagan E.; Shirey, Steven B.; Hart, Garret L.; Bacon, Charles R.; Johnson, Clark M.


    Interaction of mantle melts with the continental crust can have significant effects on the composition of the resulting melts as well as on the crust itself, and tracing this interaction is key to our understanding of arc magmatism. Lava flows and pyroclastic deposits erupted from ∼50 to 7.7 ka at Mt. Mazama (Crater Lake, Oregon) were analyzed for their Re/Os and U-Th isotopic compositions. Mafic lavas from monogenetic vents around Mt. Mazama that erupted during the buildup to its climactic eruption have lower 187Os/188Os ratios (0.1394 to 0.1956) and high 230Th excess ((230Th/238U)0 of 1.180 to 1.302), whereas dacites and rhyodacites tend to have higher 187Os/188Os ratios (0.2292 to 0.2788) and significant 238U excess ((230Th/238U)0 of 0.975 to 0.989). The less radiogenic Os isotope compositions of the mafic lavas can be modeled by assimilation of young (∼2.5 to 7 Ma), mafic lower crust that was modified during regional extension, whereas the more radiogenic Os isotope compositions of the dacites and rhyodacites can be attributed to assimilation of older (∼10 to 16 Ma), mid to upper crust that acquired its composition during an earlier period of Cascade magmatism. Production of Th excesses in the lower crust requires very young garnet formation accompanying dehydration melting in the lower crust at less than a few 100 ka by heat from recent basaltic magma injection. The results from this study suggest that the combination of Os and Th isotopes may be used to provide insights into the timescales of evolution of the continental crust in arc settings, as well as the influence of the crust on erupted magmas, and suggest a link between the age and composition of the lower and upper crust to regional tectonic extension and/or earlier Cascade magmatism.

  2. (26)Al-(26)Mg dating of asteroidal magmatism in the young Solar System

    DEFF Research Database (Denmark)

    Schiller, Martin; Baker, Joel; Bizzarro, Martin


    meteorites have (26)Mg excesses (delta(26)Mg* = +0.0135 to +0.0392 parts per thousand). The (26)Mg excesses cannot be explained by analytical artefacts, cosmogenic effects or heterogeneity of initial (26)Al/(27)Al, Al/Mg ratios or Mg isotopes in asteroidal parent bodies as compared to Earth or chondrites....... The (26)Mg excesses record asteroidal melting and formation of basaltic magmas with super-chondritic Al/Mg and confirm that radioactive decay of short-lived (26)Al was the primary heat source that melted plane-testimals. Model (26)Al-(26)Mg ages for magmatism on the eucrite/mesosiderite, angrite and NWA...... 29 (7) over bar6 parent bodies are 2.6-3.2, 3.9-4.1 and 3.5 Myr, respectively, after formation of calcium aluminium-rich inclusions (CAIs). However, the validity of these model ages depends on whether the elevated Al/Mg ratios of basaltic meteorites result from magma ocean evolution on asteroids...

  3. 26Al-26Mg dating of asteroidal magmatism in the young Solar System

    DEFF Research Database (Denmark)

    Schiller, Martin; Baker, Joel A.; Bizzarro, Martin


    meteorites have (26)Mg excesses (delta(26)Mg* = +0.0135 to +0.0392 parts per thousand). The (26)Mg excesses cannot be explained by analytical artefacts, cosmogenic effects or heterogeneity of initial (26)Al/(27)Al, Al/Mg ratios or Mg isotopes in asteroidal parent bodies as compared to Earth or chondrites....... The (26)Mg excesses record asteroidal melting and formation of basaltic magmas with super-chondritic Al/Mg and confirm that radioactive decay of short-lived (26)Al was the primary heat source that melted plane-testimals. Model (26)Al-(26)Mg ages for magmatism on the eucrite/mesosiderite, angrite and NWA...... 29 (7) over bar6 parent bodies are 2.6-3.2, 3.9-4.1 and 3.5 Myr, respectively, after formation of calcium aluminium-rich inclusions (CAIs). However, the validity of these model ages depends on whether the elevated Al/Mg ratios of basaltic meteorites result from magma ocean evolution on asteroids...

  4. Prolonged magmatism on 4 Vesta inferred from Hf-W analyses of eucrite zircon (United States)

    Roszjar, J.; Whitehouse, M. J.; Srinivasan, G.; Mezger, K.; Scherer, E. E.; Van Orman, J. A.; Bischoff, A.


    The asteroid 4 Vesta is the second most massive planetesimal in the Solar System and a rare example of a planetary object that possibly can be linked to a specific group of differentiated meteorites, the howardite-eucrite-diogenite suite. The 182Hf-182W chronometry of individual zircon grains from six basaltic eucrites revealed distinct growth episodes ranging from 4532 - 11 / + 6 Ma to 4565.0 ± 0.9 Ma and constrains the early thermal history of 4 Vesta, indicating that its mantle generated basaltic melts for at least 35 million years (Myr). Initially, the energy needed for melting was provided by decay of short-lived isotopes, mostly 26Al. The long duration of magmatism despite the short lifetime of 26Al implies that the asteroid must have accreted within the first ∼4 Myr of Solar System formation, similar to the formation of iron meteorite parent bodies, and that its interior must have been thermally well insulated by an early-formed crust that prevented heat loss.

  5. Tectonic implications of Early Miocene OIB magmatism in a near-trench setting: The Outer Zone of SW Japan and the northernmost Ryukyu Islands (United States)

    Kiminami, Kazuo; Imaoka, Teruyoshi; Ogura, Kazuki; Kawabata, Hiroshi; Ishizuka, Hideo; Mori, Yasushi


    The Outer Zone of the SW Japan and northernmost Ryukyu arcs was affected by intense igneous activity during the Miocene, characterized by MORB-like basalts, alkaline basalts, and S-type (with subordinate I-type) felsic to intermediate volcano-plutonic complexes. These igneous rocks are inferred to be the products of near-trench magmatism. Early Miocene (∼18 Ma) alkaline basalt dikes from the Shingu-Otoyo area in central northern Shikoku, and an alkaline lamprophyre dike from Tanegashima, one of the northernmost Ryukyu Islands, pre-date the Middle Miocene felsic to intermediate igneous rocks. The basalts and lamprophyre have compositions of basanite, basalt, trachybasalt and phonotephrite. They are characterized by elevated large-ion lithophile elements (LILEs; e.g., Sr, Ba, and Th) and high concentrations of high-field strength elements (HFSEs; e.g., TiO2, Nb, and Zr). The geochemical signatures of the basalts and lamprophyre suggest an ocean island basalt-type (OIB-type) mantle source. The occurrence of alkaline basalts and lamprophyre with OIB-type, intraplate geochemical signatures in a near-trench setting is unusual with regard to plate tectonic processes. We propose that trench-ward motion of the overriding plate during the period around the Early Miocene resulted in a shallowly dipping slab, and interplate coupling between the subducting Philippine Sea Plate (PSP) and the overlying crust beneath most of the Outer Zone in the western part of SW Japan and the northernmost Ryukyu Islands. The OIB-type magmatism in the near-trench environment is most plausibly explained by the upwelling of asthenospheric material from beneath the subducting slab, which migrated through fractures and/or tears in the slab. We envisage two possible scenarios for the formation of these fractures or tears: (1) the shallowing dip angle of the subducted PSP resulted in concave-upwards flexure of the slab, generating fractures in the flexed region; and (2) differential motion within

  6. Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas (United States)

    Kinzler, R.J.; Donnelly-Nolan, J. M.; Grove, T.L.


    This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years B.P.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ~3000 14C years B.P.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes.

  7. CO2 sequestration in basalts: laboratory measurements (United States)

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.


    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  8. Experimental modeling of the chemical remanent magnetization and Thellier procedure on titanomagnetite-bearing basalts (United States)

    Gribov, S. K.; Dolotov, A. V.; Shcherbakov, V. P.


    The results of the experimental studies on creating chemical and partial thermal remanent magnetizations (or their combination), which are imparted at the initial stage of the laboratory process of the oxidation of primary magmatic titanomagnetites (Tmts) contained in the rock, are presented. For creating chemical remanent magnetization, the samples of recently erupted Kamchatka basalts were subjected to 200-h annealing in air in the temperature interval from 400 to 500°C under the action of the magnetic field on the order of the Earth's magnetic field. After creation of this magnetization, the laboratory modeling of the Thellier-Coe and Wilson-Burakov paleointensity determination procedures was conducted on these samples. It is shown that when the primary magnetization is chemical, created at the initial stage of oxidation, and the paleointensity determined by these techniques is underestimated by 15-20% relative to its true values.

  9. A geochemical approach to distinguishing competing tectono-magmatic processes preserved in small eruptive centres (United States)

    McGee, Lucy E.; Brahm, Raimundo; Rowe, Michael C.; Handley, Heather K.; Morgado, Eduardo; Lara, Luis E.; Turner, Michael B.; Vinet, Nicolas; Parada, Miguel-Ángel; Valdivia, Pedro


    Small eruptive centres (SECs) representing short-lived, isolated eruptions are effective samples of mantle heterogeneity over a given area, as they are generally of basaltic composition and show evidence of little magmatic processing. This is particularly powerful in volcanic arcs where the original melting process generating stratovolcanoes is often obscured by additions from the down-going slab (fluids and sediments) and the overlying crust. The Pucón area of southern Chile contains active and dormant stratovolcanoes, Holocene, basaltic SECs and an arc-scale strike-slip fault (the Liquiñe Ofqui Fault System: LOFS). The SECs show unexpected compositional heterogeneity considering their spatial proximity. We present a detailed study of these SECs combining whole rock major and trace element concentrations, U-Th isotopes and olivine-hosted melt inclusion major element and volatile contents to highlight the complex inter-relations in this small but active area. We show that heterogeneity preserved at individual SECs relates to different processes: some start in the melting region with the input of slab-derived fluids, whilst others occur later in a centre's magmatic history with the influence of crustal contamination prior to olivine crystallisation. These signals are deduced through the combination of the different geochemical tools used in this study. We show that there is no correlation between composition and distance from the arc front, whilst the local tectonic regime has an effect on melt composition: SECs aligned along the LOFS have either equilibrium U-Th ratios or small Th-excesses instead of the large—fluid influenced—U-excesses displayed by SECs situated away from this feature. One of the SECs is modelled as being generated from fluid-enriched depleted mantle, a source which it may share with the stratovolcano Villarrica, whilst another SEC with abundant evidence of crustal contamination may share its plumbing system with its neighbouring

  10. Subduction of the South-Chile active spreading ridge: a 17 Ma to 3 Ma magmatic record in central Patagonia (western edge of Meseta del Lago Buenos Aires, Argentina) (United States)

    Boutonnet, Emmanuelle; Arnaud, Nicolas; Guivel, Christèle; Lagabrielle, Yves; Scalabrino, Bruno; Espinoza, Felipe


    The Chile Triple Junction is a natural laboratory to study the interactions between magmatism and tectonics during the subduction of an active spreading ridge beneath a continent. The MLBA plateau (Meseta del Lago Buenos Aires) is one of the Neogene alkali basaltic plateaus located in the back-arc region of the Andean Cordillera at the latitude of the current Chile Triple Junction. The genesis of MLBA can be related with successive opening of slabs windows beneath Patagonia: within the subducting Nazca Plate itself and between the Nazca and Antarctic plates. Detailed 40Ar/39Ar dating and geochemical analysis of bimodal magmatism from the western flank of the MLBA show major changes in the back-arc magmatism which occurred between 14.5 Ma and 12.5 Ma with the transition from calc-alkaline lavas (Cerro Plomo) to alkaline lavas (MLBA) in relation with slab window opening. In a second step, at 4- 3 Ma, alkaline felsic intrusions were emplaced in the western flank of the MLBA coevally with the MLBA basalts with which they are genetically related. These late OIB-like alkaline to transitional basalts were generated by partial melting of the subslab asthenosphere of the subducting Nazca plate during the opening of the South Chile spreading ridge-related slab window. These basalts differentiated with small amounts of assimilation in shallow magma chambers emplaced along transtensional to extensional zones. The close association of bimodal magmatism with extensional tectonic features in the western MLBA is a strong support to the model of Patagonian collapse event proposed to have taken place between 5 and 3 Ma as a consequence of the presence of the asthenospheric window (SCR-1 segment of South Chile Ridge) below the MLBA area.

  11. Evidence of sheared sills related to flank destabilization in a basaltic volcano (United States)

    Berthod, C.; Famin, V.; Bascou, J.; Michon, L.; Ildefonse, B.; Monié, P.


    Piton des Neiges basaltic volcano (La Réunion) has been deeply dissected by erosion, exposing large volumes of debris avalanche deposits. To shed light on the factors that led to volcano flank destabilizations, we studied the structure, the crystallographic and magnetic fabrics of the substratum of a debris avalanche unit. This substratum is a complex of > 50 seaward-dipping sills that has been exposed by the avalanche. Structural observations show that the sill plane in contact with the avalanche is one of the latest intrusions in the sill complex. In this uppermost sill, the anisotropy of magnetic susceptibility (AMS) is correlated to the crystallographic preferred orientation of magmatic silicate minerals, allowing us to use AMS as a proxy to infer the magmatic flow. The AMS fabric across the intrusion is strongly asymmetric, which reveals that the contact sill was emplaced with a normal shear displacement of its hanging wall. The shear displacement and the magma flow in the intrusion are both directed toward the NNE, i.e. toward the sea, which is also the direction of the slope and of the debris avalanche runout. Because all the sills in the intrusion complex have a similar dip and dip direction, it is likely that several of them also underwent a cointrusive slip toward the NNE. We conclude that this cointrusive normal slip, repeated over many intrusions of the sill complex, increased the flank instability of the volcano. This incremental instability may have ended up into the observed debris avalanche deposit. At Piton de la Fournaise, the active volcano of La Réunion, sill intrusion and cointrusive flank displacement have been inferred from geophysical studies for the April 2007 eruption. By providing direct evidence of sheared sills, our study substantiates the idea that repeated sill intrusions may eventually trigger flank destabilizations in basaltic volcanoes.

  12. Geochemical and petrologic investigation of the Ola Plateau-basalts from the Okhotsk-Chukotka Volcanic Belt (NE Russia) (United States)

    Leitner, Jürgen; Ntaflos, Theodoros; Akinin, Vyacheslav; Tschegg, Cornelius


    The Okhotsk-Chukotka volcanic belt to a large degree consists of coeval Cretaceous and Early Tertiary volcanic and plutonic rocks that occur along the continental margin in northeast Russia. These igneous-arc related rocks build up an Andean-style magmatic arc sequence that occurs for about 3.500 km along the entire length of the Eurasian continent, from Chukotka Peninsula in the north down to north-east China. The rocks of the Okhotsk-Chukotka Volcanic Belt (OCVB) comprise Late Cretaceous, andesitic basalts, andesites, dacites, rhyolites, tuffs, rare beds of nonmarine clastic rocks with conglomerates and sandstones in the base and locally Paleocene gently dipping basalts. The duration of the magmatic activity in the Okhotsk-Chukotka volcanic belt is still in debate but generally it has been estimated from middle of Albian to Campanian. The studied area, the Ola Plateau Basalts (OPB) and the Hypotetica Basalts (HB), comprise basaltic andesites, trachy- basalts, basaltic trachy- andesite and rhyolitic dykes, belongs to the Okhotsk-Cukotka volcanic belt and represents the last volcanic activity related to the subduction of the palaeo-Pacific plate in this region. The exposed lavas have a thickness of 0.5 km and the estimated volume is about 222 km³. Fine grained 4 m thick rhyolitic dykes represent the very last event of the studied sequence. According to Ar/Ar and U/Pb dating (Hourigan, Akinin, 2004;), the average age of the OPB/ HB is 78.8 to 74 Ma. The basaltic rocks that build up the Ola Plateau are mainly fine grained calc- alkaline basalts with clinopyroxene, plagioclase and strongly to moderately altered olivine phenocrysts with spinel inclusions. The Mg# of the calc- alkaline basalts vary from 0.35 to 0.57 and the TiO2 from 1.2 to 2.2 wt% whereas CaO correlates positive with MgO contents. The OPB and HB lavas, according to their primitive mantle normalized trace elements, can be divided into three groups: Group (I) is characterized by positive Sr anomaly with

  13. An Overview of the Origin of A-type Silicic Magmatism Along the Snake River Plain-Yellowstone Hotspot Track (United States)

    Christiansen, E. H.; Bindeman, I. N.; Leishman, J. R.


    Disparate models have been proposed for the origin of A-type rhyolites--a volumetrically minor part of modern terrestrial magmatism. But understanding the origin of A-type granites and rhyolites has significance for understanding the formation of the Earth's first silicic crust and for planetary magmatism--small volumes of such granitic materials have been found in lunar rocks, martian and asteroidal meteorites, and have been speculated to have formed on Venus. On other planets, vertical tectonics and plume-like mantle convection dominate, not the recycling of wet, oxidized plates of lithosphere as on Earth. Thus, understanding the origins of A-type silicic magma is important on multiple levels. Voluminous A-type rhyolite were produced on the Snake River Plain-Yellowstone hotspot track and provide the opportunity to better understand these important silicic magmas. Detailed petrologic studies suggest that most Snake River Plain rhyolites ultimately formed by partially melting of previously emplaced basaltic intrusions rather than by fractional crystallization of basalt or melting of Archean crust. This hypothesis is favored because of the bimodal association of rhyolite and basalt without linking intermediate compositions. In addition, incompatible element ratios (e.g., La/Nb, Pb/Ce), a lack of old zircon antecrysts, low-U inherited zircon, high ɛNd and ɛHf values, high eruption temperatures (1050°C to 850°C), low fO2 (near QFM), and H2O (as low as 1.5%), link the rhyolites to a plume-derived basaltic parent through partial melting with lesser incorporation of the Archean to Mesozoic crust that underlies the plain. Moreover, the contrast with wetter, lower temperature rhyolites that must have formed by direct crustal melting (e.g., Arbon Valley Tuff) strengthens this interpretation. Many of the rhyolites also have low δ18O values that must be produced in two stages: first by partial melting of already hydrothermally altered basalt, and subsequently in single

  14. The effects of weathering on the strength and chemistry of Columbia River Basalts and their implications for Mars Exploration Rover Rock Abrasion Tool (RAT) results (United States)

    Thomson, B. J.; Hurowitz, J. A.; Baker, L. L.; Bridges, N. T.; Lennon, A. M.; Paulsen, G.; Zacny, K.


    Basalt physical properties such as compressive strength and density are directly linked to their chemistry and constitution; as weathering progresses, basalts gradually become weaker and transition from intact rock to saprolite and ultimately, to soil. Here we quantify the degree of weathering experienced by the Adirondack-class basalts at the Mars Exploration Rover Spirit site by performing comparative analyses on the strength and chemistry of a series of progressively weathered Columbia River Basalt (CRB) from western Idaho and eastern Washington. CRB samples were subjected to compressive strength tests, Rock Abrasion Tool grinds, neutron activation analysis, and inductively coupled plasma optical emission spectroscopy. Analyses of terrestrial basalts indicate linked strength-chemical changes, as expected. Weathering sufficient to induce the loss of more than 50% of some cations (including >50% of MgO and MnO as well as ∼38% of Fe2O3 and 34% of CaO) was observed to weaken these samples by as much as 50% of their original strength. In comparison with the terrestrial samples, Adirondack-class basalts are most similar to the weakest basalt samples measured in terms of compressive strength, yet they do not exhibit a commensurate amount of chemical alteration. Since fluvial and lacustrine activity in Gusev crater appears to have been limited after the emplacement of flood basalt lavas, the observed weakness is likely attributable to thin-film weathering on exposed, displaced rocks in the Gusev plains (in addition to some likely shock effects). The results indicate that Adirondack-class basalts may possess a several mm-thick weak outer rind encasing an interior that is more pristine than otherwise indicated, and also suggest that long rock residence times may be the norm.

  15. Geochronology and magmatic evolution of the Dieng Volcanic Complex, Central Java, Indonesia and their relationships to geothermal resources (United States)

    Harijoko, Agung; Uruma, Ryusuke; Wibowo, Haryo Edi; Setijadji, Lucas Doni; Imai, Akira; Yonezu, Kotaro; Watanabe, Koichiro


    We analyzed new radiometric dating and petrological data of DVC in an attempt to reconstruct volcanic history as groundwork to understand magmatic temporal and spatial evolution. The magma of DVC can be divided on the basis of mineral composition into three types: olivine bearing basalt-basaltic andesite, pyroxene basaltic andesite-andesite, and biotite andesite-dacite, which coincide with three volcanic episodes of DVC: pre-caldera, second, and youngest episode, respectively. The pre-caldera episode was active no later than 1 Ma, the second episode occurred between 0.3 and 0.4 Ma, and the youngest occurred after 0.27 Ma. Plots of CaO, K2O, Al2O3, and Rb/Sr against FeO*/MgO and/or MgO suggest that each volcanic episode has distinct differentiation trends, indicating the presence of multiple shallow magma chambers. The close spatial relationship between the geothermal manifestation, geophysical anomalies, geothermal production zones and volcanic edifices supports the presence of multiple shallow magma chambers beneath DVC, which act as a heat source for the existing geothermal system.

  16. Petrographic and geochemical characterization of the Triassic and Jurassic magmatic and volcanic rocks of southeastern Ecuador (United States)

    Villares, Fabián; Eguez, Arturo; Yanez, Ernesto


    Formely, the subandean zone in the southeastern Ecuador involved large volcanic and magmatic rocks included in the Misahualli Formation and Zamora batholith, both as expression of the Jurassic cal-alcaline volcanic arc. The aim of the project carried out by the INIGEMM (Instituto Nacional de Investigación Geológico Minero Metalúrgico) was discriminate the volcanic products including a continuous set going from basalts to ryolithes and volcanoclastic rocks. Geochemical characterization was done using representative 16 whole - rock chemical analysis. The oldest rocks of the investigated area called Pachicutza Unit, include greenish to black, massive basalts and basaltic andesites, locally showing pillows structures. The texture is aphanitic to microporphyritic with slight crystal growth of plagioclase and pyroxenes. The Unit include also local pyroclastic breccias and tuffs showing variable skarnification related to the intrusion of the jurassic Zamora Batholith. Two samples of basalts show tholeiitic affinity, corresponding to an N- MORB, probably representing an early stage in opening of a regional Triassic rift reported since Colombia to Peru in the Andes. These geochemical characteristics are similar to the amphibolites of Monte Olivo Unit in the Real Cordillera. The Jurassic large volcanic assembly of the Misahualli Formation was also differenciated. Basal volcanics include green, subporphyritic andesites and volcanic breccias possibly generated at an early stage of the volcanic arc, caused by a change of extensive to compressive regime. Continental volcano sedimentary and sedimentary rock were discriminate as Nueva Esperanza and Suarez Units, respectively. The volcanosedimentary sequence include massive to laminate tuffs and tuffites of intermediate composition. The sediments of the Suarez Unit include dominant conglomerats and sandstones of fluvial domain. The regional volcanic sequence is completed by the Las Peñas Unit that includes aphanitic to

  17. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle (United States)

    Teng, F.-Z.; Wadhwa, M.; Helz, R.T.


    To investigate whether magnesium isotopes are fractionated during basalt differentiation, we have performed high-precision Mg isotopic analyses by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) on a set of well-characterized samples from Kilauea Iki lava lake, Hawaii, USA. Samples from the Kilauea Iki lava lake, produced by closed-system crystal-melt fractionation, range from olivine-rich cumulates to highly differentiated basalts with MgO content ranging from 2.37 to 26.87??wt.%. Our results demonstrate that although these basalts have diverse chemical compositions, mineralogies, crystallization temperatures and degrees of differentiation, their Mg isotopic compositions display no measurable variation within the limits of our external precision (average ??26Mg = - 0.36 ?? 0.10 and ??25Mg = - 0.20 ?? 0.07; uncertainties are 2SD). This indicates that Mg isotopic fractionation during crystal-melt fractionation at temperatures of ??? 1055????C is undetectable at the level of precision of the current investigation. Calculations based on our data suggest that at near-magmatic temperatures the maximum fractionation in the 26Mg/24Mg ratio between olivine and melt is 0.07???. Two additional oceanic basalts, two continental basalts (BCR-1 and BCR-2), and two primitive carbonaceous chondrites (Allende and Murchison) analyzed in this study have Mg isotopic compositions similar to the Kilauea Iki lava lake samples. In contrast to a recent report [U. Wiechert, A.N. Halliday, Non-chondritic magnesium and the origins of the inner terrestrial planets, Earth and Planetary Science Letters 256 (2007) 360-371], the results presented here suggest that the Bulk Silicate Earth has a chondritic Mg isotopic composition. ?? 2007.

  18. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; YANG Yaomin; WANG Kunshan


    Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea,the characteristics of volcanic activi-ty of the South China Sea after spreading were studied.The potassium - argon ages of eight alkali basalt samples from the South China Sea,and the argon - argon ages of two samples among them are reported.Apparent ages of the whole rock are 3.80 to 7.91 Ma with an average value of 5.43 Ma (potassium- argon,whole rock),and there is little difference among samples at the same location,e.g.,4.76~5.78 Ma for location S04-12.The argon - argon ages for the two samples are 6.06 and 4.71 Ma,which lie within the age scope of potassium - argon method.The dating results indicate that rock-forming age is from late Miocene to Pli-ocene,which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea.Volcanic activities occur after the cessation of spreading of the South China Sea,which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea.These dating results,combined with geochemical characteristics of these basalts,the published chronological data for the South China Sea and its adjacent regions,and the updated geophysical data near Hainan Island,suggest that after the cessation of spreading of the South China Sea,there occur widely distributing magmatic activities which primarily is alkali basalt,and the volcanic activity continues to Quaternary.The activity may be relative to Hainan mantle plume originated from core/mantle boundary.

  19. South China Flooded

    Institute of Scientific and Technical Information of China (English)


    Vehicles traverse a flooded street in Liuzhou, guangxi zhuang Autonomous Region, on May 19.heavy rainstorms repeatedly struck China this month, triggering floods, mudflows and landslides. hunan, guangdong and Jiangxi provinces and Chongqing Municipality were the worst hit.

  20. Base Flood Elevation (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  1. Flood Control Structures (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  2. Flooding: Prioritizing protection? (United States)

    Peduzzi, Pascal


    With climate change, urban development and economic growth, more assets and infrastructures will be exposed to flooding. Now research shows that investments in flood protection are globally beneficial, but have varied levels of benefit locally.

  3. Flood Hazard Area (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  4. Flood Hazard Boundaries (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  5. Petrography of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Petrographic characteristics of basalts collected from a segment of the Carlsberg Ridge (lat. 3 degrees 35'N to 3 degrees 41'N; long. 64 degrees 05'E to 64 degrees 09'E) show typical pillow lava zonations with variable concentrations of plagioclase...

  6. Site identification presentation: Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)


    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included. (DMC)

  7. Flood Risk Regional Flood Defences: Technical report

    NARCIS (Netherlands)

    Lendering, K.T.


    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  8. Flood Risk Regional Flood Defences: Technical report

    NARCIS (Netherlands)

    Lendering, K.T.


    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an ext

  9. Petrology, geochemistry, and age of low-Ti mare-basalt meteorite Northeast Africa 003-A: A possible member of the Apollo 15 mare basaltic suite (United States)

    Haloda, Jakub; Týcová, Patricie; Korotev, Randy L.; Fernandes, Vera A.; Burgess, Ray; Thöni, Martin; Jelenc, Monika; Jakeš, Petr; Gabzdyl, Pavel; Košler, Jan


    Northeast Africa 003 (NEA 003) is a lunar meteorite found as a two paired stones (6 and 118 g) in Libya, 2000 and 2001. The main portion (˜75 vol%) of the 118 g meteorite, used for this study, (NEA 003-A) consists of mare-basalt and a smaller adjacent portion (˜25 vol%) is a basaltic breccia (NEA 003-B). NEA 003-A has a coarse-grained magmatic texture consisting mainly of olivine, pyroxene and plagioclase. The late-stage mineral association is composed mainly of elongated plagioclase, ilmenite, troilite, fayalite, Si-K-rich glass, apatite, and a rare SiO 2 phase. Other accessory minerals include ulvöspinel, chromite, and trace Fe-Ni metal. Olivine and pyroxene contain shock-induced fractures, and plagioclase is completely converted into maskelynite. The Fe/Mn values of the whole rock, olivines and pyroxenes, and the bulk-rock oxygen isotopic composition provide evidence for the lunar origin of NEA 003-A meteorite. This is further supported by the presence of Fe-Ni metal and the anhydrous mineral association. NEA 003-A is geochemically and petrographically distinct from previously described mare-basalt meteorites and is not paired with any of them. The petrography and major element composition of NEA 003-A is similar to the composition of low-Ti olivine mare basalts from Apollo 12 and olivine-normative basalts from Apollo 15. The NEA 003-A meteorite shows obvious geochemical similarities in trace elements contents with Apollo 15 olivine-normative basalts and could represent a yet unknown geochemically primitive member of the olivine-normative basalt series. The meteorite is depleted in rare earth elements (REE) and incompatible trace elements indicating a primitive character of the parental magma. The bulk-rock chemical composition demonstrates that the parent melt of NEA 003-A was not contaminated with KREEP components as a result of magma mixing or assimilation processes. Results of crystallization modelling and low minimum cooling rate estimates (˜0.07

  10. The facial levels of the melting of the Permian - Triassic trap basalts of West Siberian plate and Siberian platform. (United States)

    Sharapov, Victor; Vasiliev, Yury


    Statistical processing of numerical information allow to indicate the following regional petro- geochemical characteristics of Permo-Triassic trap magmatism in West Siberian plate WSP: 1) Examined regional petrochemical trend of major element chemistry variation of trap magmatism from north to the south is appeared in increase of the acidity, a decrease of Mg and alumina and potassium of the igneous rocks, for other components existing data do not allow to determine regularities; 2) According to (La/Yb)n, (Gd/Yb)n and(Tb/Yb)n ratios all basic melts belong to the spinel facie. In general the trap basalts of Siberian Platform reveal the following structural facial features are characteristic: 1) From west and east the region of the basalt effusions practically coincides with the area of Devonian sea depressions, 2) from the west to east lava shields are framed by the zones of the variously differentiated intrusive basic bodies grouped within the zones of arched and linear faults; 3) the region of effusive volcanics appearance has the zone - distributed structural - material areas, the tholeitic "super-shield" (plateau Putorana) occupyingthe center part of the Tunguska syneclise), framed from the West, and NW by the local lava shields located in rounded depressions( mulda) in which the lavas are more magnesian, titaniferrous and alkaline. 4) examined overall petrochemical zonation of basic rocks in Siberian platform reveal general decrease from the Norilsk mulda to Angara- Ilim iron-ore deposit region, with the growth of Ti02 and alkalinity of the basic rocks. The statistical wavelet analysis of the cyclic recurrence of the effusive rock sections along the eastern board of Khatanga rift show substantially different characteristics of the spectra of time series, in Norilsk -Kharaelakh depression the low-frequency modules predominate, whereas for The Meimecha-Kotuy effusion section the high frequency values are characteristic. The comparison of the possible facial

  11. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism (United States)

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.


    Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data

  12. Silicon isotope fractionation during magmatic differentiation (United States)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Burton, Kevin W.; Halliday, Alex N.


    The Si isotopic composition of Earth's mantle is thought to be homogeneous (δ 30Si = -0.29 ± 0.08‰, 2 s.d.) and not greatly affected by partial melting and recycling. Previous analyses of evolved igneous material indicate that such rocks are isotopically heavy relative to the mantle. To understand this variation, it is necessary to investigate the degree of Si isotopic fractionation that takes place during magmatic differentiation. Here we report Si isotopic compositions of lavas from Hekla volcano, Iceland, which has formed in a region devoid of old, geochemically diverse crust. We show that Si isotopic composition varies linearly as a function of silica content, with more differentiated rocks possessing heavier isotopic compositions. Data for samples from the Afar Rift Zone, as well as various igneous USGS standards are collinear with the Hekla trend, providing evidence of a fundamental relationship between magmatic differentiation and Si isotopes. The effect of fractionation has been tested by studying cumulates from the Skaergaard Complex, which show that olivine and pyroxene are isotopically light, and plagioclase heavy, relative to the Si isotopic composition of the Earth's mantle. Therefore, Si isotopes can be utilised to model the competing effects of mafic and felsic mineral fractionation in evolving silicate liquids and cumulates. At an average SiO 2 content of ˜60 wt.%, the predicted δ 30Si value of the continental crust that should result from magmatic fractionation alone is -0.23 ± 0.05‰ (2 s.e.), barely heavier than the mantle. This is, at most, a maximum estimate, as this does not take into account weathered material whose formation drives the products toward lighter δ 30Si values. Mass balance calculations suggest that removal of continental crust of this composition from the upper mantle will not affect the Si isotopic composition of the mantle.

  13. Igneous Rocks of the East Pacific Rise: The alkali volcanic suite appear to be differentiated from a tholeiitic basalt extruded from the mantle. (United States)

    Engel, A E; Engel, C G


    The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K(2)O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K(2)O by weight and more than 48 percent SiO(2). Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts. The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 10(4).

  14. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt (United States)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.


    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe

  15. The Origin and Emplacement Patterns of Paleoproterozoic (2.5-1.8 Ga) Mafic/Ultramafic Magmatism (United States)

    Heaman, L. M.


    The Paleoproterozoic (~2.5-1.8 Ga) is a stunning period in Earth history where numerous giant dyke swarms were emplaced and can be found transecting Archean cratons worldwide, the onset of this magmatism follows closely the ~2.6 Ga stabilization of most Archean cratons. Based on conservative estimates, the volumes of basaltic magma produced in the Paleoproterozoic rival more contemporary LIPs (>1M km3). Often, only the root zones of Paleoproterozoic LIPs are preserved (mafic/ultramafic dyke swarms and layered mafic intrusions) so the complete erosion of the volcanic succession in many examples, the repeated emplacement of dyke swarms into zones of crustal weakness over protracted periods of time (e.g. >400 m.y.), and the fact that some Proterozoic LIPs are metamorphosed adds to the difficulty in deciphering their origin. Equally challenging is determining whether this period of voluminous outpouring of mafic magma could be the cause of several unique features of Earth evolution at this time; for example, triggering extreme climate conditions, initiating the abrupt increase in the oxygen content of the atmosphere, promoting the rapid production of banded iron formations, causing isobaric high-grade metamorphism and granite production in the lower crust, and contributing to substantial downward continental root growth through underplating of basaltic magma. Based on a compilation of more than 200 precise and accurate U-Pb dates for Paleoproterozoic mafic/ultramafic dykes, sills and layered mafic intrusions, at least three synchronous global events (~2.50, 2.23, and 1.88 Ga) and two active mantle-derived magmatic cycles can be identified in the period 2.5-1.8 Ga (2520-2370 and 2230-1820 Ma), with a distinct hiatus between 2370 and 2230 Ma. The beginning of each magmatic cycle is represented by the widespread emplacement of dyke swarms on several cratons within a relatively short time interval of ~20 m.y. In the Superior Province, Canada the onset of 2.52-2.50 Ga mafic

  16. H 2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes (United States)

    Sisson, T. W.; Layne, G. D.


    Total dissolved H 2O and major element abundances were measured in basalt and basaltic andesite glass inclusions in olivine phenocrysts from Quaternary eruptions of four subduction-related volcanoes to test the hypothesis that low-MgO high-alumina basalts contain high H 2O at depth [1] and to reveal any petrogenetically significant correlations between arc basalt compositions and H 2O contents. Total dissolved H 2O (combined molecular H 2O and OH groups) measured by ion microprobe in mafic glass inclusions from the 1974 eruption of Fuego, Guatemala, reaches 6.2 wt.%. Dissolved H 2O contents decrease in more evolved Fuego glasses. Correlations of H 2O with MgO, Na 2O, K 2O, S and Cl indicate that aqueous fluid exsolution during magma ascent forced crystallization and differentiation of residual liquids. Low-K 2O magnesian high-alumina basalt glass inclusions from the 3 ka eruption of Black Crater (Medicine Lake volcano, California) have low H 2O contents, near 0.2 wt.%, which are consistent with the MORB-like character of these and other primitive lavas of the Medicine Lake region. Basalt and basaltic andesite glass inclusions from Copco Cone and Goosenest volcano on the Cascade volcanic front north of Mt. Shasta have H 2O contents of up to 3.3 wt.%. The range of H 2O contents in Cascade mafic magmas is too large to have resulted solely from enrichment by crystallization and indicates the participation of an H 2O-rich component in magma generation or crustal-level modification. Whereas fluid-absent melting of amphibole-bearing peridotite can account for the H 2O in most mafic arc liquids, the very high H 2O/alkali ratios of the 1974 Fuego eruptives suggest that an aqueous fluid was involved in the generation of Fuego basalts.

  17. Soil differentiation in two toposequences developed from basaltic rocks in North-Central region of the Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Marcos Aparecido Gonçalves


    Full Text Available In regions where there were basaltic rocks formation due to magmatic flows, variation in particle sizes and rock composition determine characteristic reliefs influencing chemical and physical attributes. The aim of the article was to characterize two different toposequences over basaltic rock basis, in order to identify the influence of their variation in soil formation, morphological properties and their distribution along the slope. The study was carried out in the Third Plateau of Parana State, Brazil, at Serra Geral geological formation, There were chosen two toposequences in equidistant 2000m parallel transects in southwest-northeast direction with different relief and rock composition and features. It was named undulated relief slope (VRO and gently undulated relief slope (VSO in which there were carried out profile morphological description with soil classes identifying, chemical analysis and clay mineralogical analysis. The results permitted to conclude that the internal dynamic and the magmatic segregation process were responsible for relief shapes and rock types formed with significant variation in soil types according variation in composition in the same rock, Both relief shapes and basalt differentiation had strong influence in soil evolution level and soil type distribution along the slopes with distinct B horizons, Nitic B and Latosolic B

  18. Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety (United States)

    Craddock, Robert A.; Golombek, Matthew P.


    We analyzed the morphometry of basaltic rock populations that have been emplaced or affected by a variety of geologic processes, including explosive volcanic eruptions (as a proxy for impact cratering), catastrophic flooding, frost shattering, salt weathering, alluvial deposition, and chemical weathering. Morphometric indices for these rock populations were compared to an unmodified population of rocks that had broken off a solidified lava flow to understand how different geologic processes change rock shape. We found that a majority of rocks have an sphericity described as either a disc or sphere in the Zingg classification system and posit that this is a function of cooling fractures in the basalt (Zingg [1935] Schweiz. Miner. Petrogr. Mitt., 15, 39-140). Angularity (roundness) is the most diagnostic morphometric index, but the Corey Shape Factor (CSF), Oblate-Prolate Index (OPI) and deviation from compactness (D) also sometimes distinguished weathering processes. Comparison of our results to prior analyses of rock populations found at the Mars Pathfinder, Spirit, and Curiosity landing sites support previous conclusions. The observation that the size-frequency distribution of terrestrial rock populations follow exponential functions similar to lander and orbital measurements of rocks on Mars, which is expected from fracture and fragmentation theory, indicates that these distributions are being dominantly controlled by the initial fracture and fragmentation of the basalt.

  19. Raton-Clayton Volcanic Field magmatism in the context of the Jemez Lineament (United States)

    Schrader, C. M.; Pontbriand, A.


    The Raton-Clayton Volcanic Field (RCVF) was active from 9 Ma to approximately 50 Ka and stretches from Raton, New Mexico in the west to Clayton, New Mexico in the east. The field occurs in the Great Plains at the northeastern end of the Jemez Lineament, a major crustal feature and focus of volcanism that extends southwest to the Colorado Plateau in Arizona and encompasses five other major volcanic fields. Jemez Lineament magmatism is temporally related to Rio Grande Rift magmatism, though it extends NE and SW from the rift itself, and it has been suggested that it represents an ancient crustal suture that serves as a conduit for magmatism occurring beneath the larger region of north and central New Mexico (Magnani et al., 2004, GEOL SOC AM BULL, 116:7/8, pp. 1-6). This study extends our work into the RCVF from prior and ongoing work in the Mount Taylor Volcanic Field, where we identified different mantle sources with varying degrees of subduction alteration and we determined some of the crustal processes that contribute to the diversity of magma chemistry and eruptive styles there (e.g., AGU Fall Meeting, abst. #V43D-2884 and #V43D-2883). In the RCVF, we are analyzing multiple phases by electron microprobe and plagioclase phenocrysts and glomerocrysts by LA-ICPMS for Sr isotopes and trace elements. We are undertaking this investigation with the following goals: (1) to evaluate previous magma mixing and crustal assimilation models for Sierra Grande andesites (Zhu, 1995, unpublished Ph.D. dissertation, Rice University; Hesse, 1999, unpublished M.S. thesis, Northern Arizona University); (2) to evaluate subduction-modified mantle as the source for RCVF basanites (specifically those at Little Grande); and (3) to assess the possible role of deep crustal cumulates in buffering transitional basalts. In the larger context, these data will be used to evaluate the varying degree of subduction-modification and the effect of crustal thickness on magmatism along the Jemez

  20. The development of extension and magmatism during continent-ocean transition: evidence from Ethiopia (United States)

    Bastow, Ian; Keir, Derek; Booth, Adam; Corti, Giacomo; Magee, Craig; Jackson, Christopher; Wilkinson, Jason


    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate and timing of extension. Preexisting plate architecture and/or the evolving kinematics of extension during breakup may also influence magmatism strongly. The Ethiopian and Afar Rift systems provide an excellent opportunity to address these issues since they expose, along strike, several sectors of ongoing, asynchronous rift development from embryonic continental rifting in the south to incipient oceanic spreading in the north. A consensus has now emerged from a variety of disciplines in Ethiopia that a considerable proportion of extension in Ethiopia is accommodated by focused dyke intrusion in narrow axial zones, without marked crustal (and plate?) thinning. These "magmatic segments" may mark the final breakup boundary and location of an incipient oceanic spreading centre. However, observations of markedly thinned crust and a pulse in Quaternary-Recent basaltic volcanism within the Danakil Depression have recently been cited as evidence that an abrupt, late stage of localised plate stretching may instead mark the final stages of continent-ocean transition (Bastow & Keir, 2011). We explore this hypothesis using recently-acquired seismic reflection data and accompanying borehole geological constraints from Danakil. Thick sequences of evaporites have been deposited in an asymmetric basin, whose subsidence has been controlled primarily by a major, east dipping normal fault. Surprisingly, no significant magmatism is observed in the upper ~1000m. Age constraints on a potash-bearing sequence presently being mined in the basin point towards rapid basin infill in the last several tens-to-hundreds of thousands of years. Basin formation cannot be easily attributed to the effects of magmata intrusion. Instead, an abrupt, localised, late-stage, plate

  1. Contrasting mechanisms of magma fragmentation during coeval magmatic and hydromagmatic activity: the Hverfjall Fires fissure eruption, Iceland (United States)

    Liu, E. J.; Cashman, K. V.; Rust, A. C.; Höskuldsson, A.


    Growing evidence for significant magmatic vesiculation prior to magma-water interaction (MWI) has brought into question the use of `diagnostic' features, such as low vesicularities and blocky morphologies, to identify hydromagmatic pyroclasts. We address this question by quantifying co-variations in particle size, shape and texture in both magmatic and hydromagmatic deposits from the Hverfjall Fires fissure eruption, Iceland. Overlapping vesicularity and bubble number density distributions measured in rapidly quenched magmatic and hydromagmatic pyroclasts indicate a shared initial history of bubble nucleation and growth, with substantial vesiculation prior to MWI. Hydromagmatic fragmentation occurred principally by brittle mechanisms, where the length scale and geometry of fracturing was controlled by the bubble population. This suggests that the elevated fragmentation efficiency of hydromagmatic deposits is driven, at least in part, by brittle disintegration of vesicular pyroclasts due to high thermal stress generated during rapid cooling. In this way, the shape and size distributions of hydromagmatic pyroclasts, both critical input parameters for ash dispersion models, are strongly influenced by the dynamics of vesiculation prior to MWI. This result underlines the need to analyse multiple grain-size fractions to characterise the balance between magmatic and hydromagmatic processes. During the Hverfjall Fires eruption, the external water supply was sufficient to maintain MWI throughout the eruption, with no evidence for progressive exhaustion of a water reservoir. We suggest that both the longevity and the spatial distribution of MWI were determined by the pre-existing regional hydrology and represent continuous interaction between a propagating dike and a strong groundwater flow system hosted within permeable basalt lavas.

  2. The evolution of Sumba Island (Indonesia) revisited in the light of new data on the geochronology and geochemistry of the magmatic rocks (United States)

    Abdullah, C. I.; Rampnoux, J.-P.; Bellon, H.; Maury, R. C.; Soeria-Atmadja, R.


    The island of Sumba, presently located in the southern row of islands of the Eastern Nusa Tenggara province of Eastern Indonesia, has a unique position, being part of the Sunda-Banda magmatic arc and subduction system. It represents a continental crustal fragment located at the boundary between the Sunda oceanic subduction system and the Australian arc-continent collision system, separating the Savu Basin from the Lombok Basin. New data on magmatic rocks collected from Sumba are presented in this paper, including bulk rock major and trace element chemistry, petrography and whole rock and mineral 40K- 40Ar ages. Three distinct calc-alkaline magmatic episodes have been recorded during Cretaceous-Paleogene, all of them characterized by similar rock assemblages (i.e. pyroclastic rocks, basaltic-andesitic lava flows and granodioritic intrusions). They are: (i) the Santonian-Campanian episode (86-77 Ma) represented by volcanic and plutonic rock exposures in the Masu Complex in Eastern Sumba; (ii) the Maastrichtian-Thanetian episode (71-56 Ma) represented by the volcanic and plutonic units of Sendikari Bay, Tengairi Bay and the Tanadaro Complex in Central Sumba; and (iii) the Lutetian-Rupelian episode (42-31 Ma) of which the products are exposed at Lamboya and Jawila in the western part of Sumba. No Neogene magmatic activity has been recorded.

  3. Magmatic evolution of the Ilopango Caldera, El Salvador, Central America (United States)

    Zezin, D.; Mann, C. P.; Hernández, W.; Stix, J.


    The Ilopango caldera (16 x 13 km) is an active, long-lived magmatic system, erupting voluminous amounts of pyroclastic material numerous times over the course of its evolution. The caldera is presently water filled and the most recent activity is a dome growth event in 1880. Established age constraints from extracaldera pyroclastic sequences, indicate caldera forming events occur ~ every 10,000 years over the last 40,000 years. The most recent pyroclastic eruption (TBJ) is constrained to A.D. 429 erupting 70 km3 DRE of pyroclastic material. We combine major element and trace element chemistry with 40Ar/39Ar age constraints of the intracaldera domes and intracaldera pyroclastic deposits to extent the caldera history. The intracaldera domes are andesitic to rhyolitic in composition (57 - 76 wt. % SiO2), some with basaltic enclaves (54 wt. % SiO2) and pyroclastic units observed inside the caldera (San Agustín Pumice Breccia) are dacitic to rhyolitic in composition (69 -75 wt. % SiO2). Formation of an intracaldera andesitic dome at 359±7.9 ka provides a minimum age of caldera formation and extends the caldera history back ~ 320 ka years. The variable composition of the intracaldera domes, the presence of mafic enclaves in the dome lavas, mafic clasts in the TB4 plinian fall, mafic banding in the TB3 and TB2, attest to the obvious involvement of a more mafic magma The highly evolved compositions of the pyroclastic units and the volume of erupted material, point towards a large evolving magma reservoir at depth. The mafic magma may replenish the subsurface reservoir and act as a catalyst for volcanic eruption. The presence of an intracaldera lake, the regularity with which the volcano erupts and the presence of a more mafic magma are the ingredients for a catastrophic disaster. The Ilopango caldera, located 10 km to the east of the capital city of San Salvador (~ 1.5 million people) poses a threat both locally and globally as demonstrated 1600 years ago as it

  4. Interdisciplinary Study of Magmatic Carbon Dioxide at Mammoth Mountain, California (United States)

    Mangan, M.; Evans, W. C.; Farrar, C. D.; Hill, D. P.; Ingebritsen, S.; Klinger, R.; McFarland, J.; Schulz, M. S.; Shelly, D. R.; Stonestrom, D. A.; Waldrop, M. P.


    A unique opportunity for studying carbon exchange between the deep earth and the surface exists at Mammoth Mountain in eastern California, where mantle-derived carbon dioxide has leaked through soils, springs, and fumaroles for decades, if not centuries. An estimated 3.5 × 10E9 kg of CO2 has escaped in the past 20 years. A long-term program of geochemical monitoring of gas at numerous sites reveals a consistent chemical and isotopic signature indicative of a large, well-mixed, CO2-rich gas reservoir residing within a few kilometers of the surface. Leakage of CO2 increases when the low-permeability seal capping the gas reservoir fails due to critical build-up of fluid-pressure, magma intrusion, and/or tectonic earthquakes. The high CO2 efflux at Mammoth Mountain has caused human fatalities, ecosystem disturbance, acidification of local water supplies, and raises the specter of CO2-rich gas explosions. The USGS Volcano Hazards Program recently launched an integrated geochemical, geophysical, hydrologic, and biologic research project aimed at holistic understanding of the origin, transport, and impact of magmatic carbon dioxide, with Mammoth Mountain as a natural, outdoor laboratory. Key elements of the project include: (I) Lithosphere Studies: Experimental investigation of deep, CO2-rich degassing of basaltic magmas, spatial-temporal analysis of fluid-driven earthquakes, and modeling of dynamic permeability provide insight into the origin and transport of CO2-rich fluids. (II) Hydrosphere/Atmosphere Studies: Tracking the concentration and geochemistry of surface exhalations through fumarole and spring sampling, soil efflux measurements, and 14C depletion in tree cores provide characteristics of the shallow gas reservoir and a time-series record of total CO2 efflux. (III) Biosphere Studies: Field-based studies and greenhouse experiments investigate the effect of elevated CO2 on biogeochemical cycles, soil nutrient levels, and changes in vegetation and microbial

  5. Copahue volcano and its regional magmatic setting (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin


    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  6. Geochemical modeling of magmatic gas scrubbing

    Directory of Open Access Journals (Sweden)

    B. Gambardella


    Full Text Available The EQ3/6 software package, version 7.2 was successfully used to model scrubbing of magmatic gas by pure water at 0.1 MPa, in the liquid and liquid-plus-gas regions. Some post-calculations were necessary to account for gas separation effects. In these post-calculations, redox potential was considered to be fixed by precipitation of crystalline a-sulfur, a ubiquitous and precocious process. As geochemical modeling is constrained by conservation of enthalpy upon water-gas mixing, the enthalpies of the gas species of interest were reviewed, adopting as reference state the liquid phase at the triple point. Our results confirm that significant emissions of highly acidic gas species (SO2(g, HCl(g, and HF(g are prevented by scrubbing, until dry conditions are established, at least locally. Nevertheless important outgassing of HCl(g can take place from acid, HCl-rich brines. Moreover, these findings support the rule of thumb which is generally used to distinguish SO2-, HCl-, and HF-bearing magmatic gases from SO2-, HCl-, and HF-free hydrothermal gases.

  7. Magmatic heat and the El Nino cycle (United States)

    Shaw, H.R.; Moore, J.G.


    Large submarine lava flows with apparent volumes exceeding 10 km3 have recently been imaged on the deep ocean floor in various parts of the Pacific by means of GLORIA and SeaMarc side-looking sonar surveys. Such flows may produce thermal anomalies large enough to perturb the cyclic processes of the ocean and could be a factor in the genesis of El Nino phenomena. We find that known volume rates of mid-ocean magma production could generate repetitive thermal anomalies as large as 10% of the average El Nino sea surface anomaly at intervals of about 5 years (the mean interval of El Nino events between 1935 and 1984). Likewise, estimated rates of eruption, cooling of lava on the seafloor, and transfer of heat to the near-surface environment could reasonably produce a thermal anomaly comparable to that associated with El Nino. Larger magmatic events, associated with fluctuations in the total magmatic power and seismicity along the East Pacific Rise, are possible at longer intervals and may explain the extreme size of some El Nino events, such as that of 1982-1983. -Authors

  8. Flood Impact Modelling and Natural Flood Management (United States)

    Owen, Gareth; Quinn, Paul; ODonnell, Greg


    Local implementation of Natural Flood Management methods are now being proposed in many flood schemes. In principal it offers a cost effective solution to a number of catchment based problem as NFM tackles both flood risk and WFD issues. However within larger catchments there is the issue of which subcatchments to target first and how much NFM to implement. If each catchment has its own configuration of subcatchment and rivers how can the issues of flood synchronisation and strategic investment be addressed? In this study we will show two key aspects to resolving these issues. Firstly, a multi-scale network water level recorder is placed throughout the system to capture the flow concentration and travel time operating in the catchment being studied. The second is a Flood Impact Model (FIM), which is a subcatchment based model that can generate runoff in any location using any hydrological model. The key aspect to the model is that it has a function to represent the impact of NFM in any subcatchment and the ability to route that flood wave to the outfall. This function allows a realistic representation of the synchronisation issues for that catchment. By running the model in interactive mode the user can define an appropriate scheme that minimises or removes the risk of synchornisation and gives confidence that the NFM investment is having a good level of impact downstream in large flood events.

  9. Urban pluvial flood prediction

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer


    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numerically both...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0–2 h lead time, and numerical weather models with lead times up to 24 h are used as inputs...... to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on a small town Lystrup in Denmark, which has been flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps...

  10. Additive Construction using Basalt Regolith Fines (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.


    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  11. The Upper Miocene magmatism of the Island of Elba (Central Italy): compositional characteristics, petrogenesis and implications for the origin of the Tuscany Magmatic Province (United States)

    Poli, Giampiero; Peccerillo, Angelo


    -member whose origin deserves further studies to be understood. Petrogenetic processes occurred at Elba allow a better understanding of magma genesis at the regional scale. Some of the first-order petrological characteristics of the Tuscany Magmatic Province are comprised inside the space defined by three main end-member compositions, represented by acidic peraluminous rocks, calcalkaline-shoshonitic basalts, and mafic ultrapotassic lamproites. Mixing of various proportions of end-members generated a wide spectrum of hybrid compositions. These, in turn, were affected by evolution processes, such as fractional crystallisation and crustal assimilation, further complicating the petrological puzzle of the Tuscany Magmatic Province. The lamproitic and calcalkaline magmas were respectively generated by melting of phlogopite-bearing harzburgitic and lherzolitic mantle rocks, which were contaminated by subducted upper crustal siliceous materials. Lithospheric mantle contamination occurred during the Eocene, forming harzburgite-sediment mélange bodies. These were dismembered by ascent of lherzolitic asthenosphere behind the eastward migrating Northern Apennine subduction front, during Miocene to Quaternary backarc extension. Asthenospheric upwelling generated an increase in temperature, dehydration and melting of dispersed harburgite-sediment mélange megaliths, with release of fluids that contaminated the surrounding newly emplaced lherzolites. Melting of such a heterogeneous mantle gave the wide range of mafic magmas observed in Tuscany. Backarc mantle doming and uprise of hot mafic magmas prompted anatexis within the continental crust of the overriding plate.

  12. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation (United States)

    Potts, Nicola J.; TartèSe, Romain; Anand, Mahesh; Westrenen, Wim; Griffiths, Alexandra A.; Barrett, Thomas J.; Franchi, Ian A.


    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.

  13. Geochemistry of apollo 15 basalt 15555 and soil 15531. (United States)

    Schnetzler, C C; Philpotts, J A; Nava, D F; Schuhmann, S; Thomas, H H


    Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?).

  14. Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas (United States)

    Hickey-Vargas, R.; Sun, M.; Holbik, S.


    In the Central Southern Volcanic Zone (CSVZ) of the Andes, the location of stratovolcanoes and monogenetic small eruptive centers (SEC) is controlled by the Liquiñe-Ofqui Fault Zone (LOFZ), a trench-parallel strike-slip feature of over 1000 km length. The geochemistry of basalts from SEC is different from those of stratovolcanoes, and are termed Type 2 and Type 1 basalts, respectively. In the region of Villarrica stratovolcano, contemporaneous SEC are more MgO-rich, and have greater light rare earth element (LREE) enrichment, lower 87Sr/86Sr and 143Nd/144Nd, and lower ratios of large ion lithophile elements (LILE) to LREE and high field strength elements (HFSE). A unique finding in this region is that basalts from one SEC, San Jorge, has Type 1 character, similar to basalts from Villarrica stratovolcano. Type 1 basalts from Villarrica and San Jorge SEC have strong signals from time-sensitive tracers of subduction input, such as high 10Be/9Be and high (238U/230Th), while Type 2 SEC have low 10Be/9Be and (238U/230Th) near secular equilibrium. Based on new trace element, radiogenic isotope and mineral analyses, we propose that Type 1 basaltic magma erupted at San Jorge SEC and Villarrica stratovolcano forms by melting of the ambient actively subduction-modified asthenosphere, while Type 2 SEC incorporate melts of pyroxenite residing in the supra-subduction zone mantle lithosphere. This scenario is consistent with the close proximity of the volcanic features and their inferred depths of magma separation. The pyroxenite forms from arc magma produced during earlier episodes of subduction modification and magmatism, which extend back >300 Ma along this segment of the western South American margin. Type 2 basaltic magmas may reach the surface during LOFZ-related decompression events, and they may also be a normal but episodic part of the magma supply to large stratovolcanoes, resulting in cryptic geochemical variations over time. The presence and mobilization of stored

  15. Microbial Diversity in the Columbia River Basalt Group and the Context for Life in Subsurface Basalts (United States)

    Lavalleur, H. J.; Smith, A.; Fisk, M. R.; Colwell, F. S.


    Large igneous provinces constitute a sizable volume of porous and fractured materials in the Earth's crust and many of these environments exist within the boundaries of survival for subsurface life. The results of microbiological studies of basalts and other igneous materials in subsurface settings hint at the types of microbes that dwell in these environments. We investigated the microbes in aquifers in the Columbia River Basalt Group (CRBG) and also considered the microbial communities in subsurface basalts more broadly to determine if there are recurrent themes in the types of microbes and the nature of diversity present in these geological systems. Bacteria and Archaea collected from five intervals in the CRBG were examined using high-throughput DNA sequencing directed at the 16S rRNA genes. The highest bacterial biomass and the highest bacterial diversity were observed in the deepest samples (>1018 meters below land surface) whereas the highest archaeal diversity was detected in the shallowest samples (Actinobacteria dominated the aquifers. These findings are generally consistent with earlier cultivation- and clone library-based studies performed on microbes from the CRBG and the Snake River Plain aquifer. Microbes associated with marine basalts are similar to those found in terrestrial settings and include Proteobacteria, Firmicutes, candidate division bacterium OP1, Euryarchaeota, and Crenarchaeota. Based on 16S rRNA sequence similarities to known microbes, both basaltic regions have taxa with representative physiologies likely to include hydrogen oxidation, iron and sulfur metabolism, acetogenesis, and hydrocarbon metabolism. Research on the microbiology of basalt rich provinces on the planet has informed our understanding of biogeochemical cycling where igneous rocks dominate. The knowledge gained in these investigations also promotes our ability to verify the remediation of contaminants and the sequestration of carbon in basalts.

  16. Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts

    Institute of Scientific and Technical Information of China (English)

    NIU Yaoling


    Basaltic magmatism that builds intra-plate ocean islands is often considered to be genetically associated with "hotspots"or "mantle plumes".While there have been many discussions on why ocean island basalts (OIB) are geochemically highly enriched as an integral part of the mantle plume hypothesis,our current understanding on the origin of OIB source material remains unsatisfactory,and some prevailing ideas need revision.One of the most popular views states that OIB source material is recycled oceanic crust (ROC).Among many problems with the ROC model,the ocean crust is simply too depleted (e.g.,[La/Sm]_(pM)>1) OIB.Another popular view states that the enriched component of OIB comes from recycled continental crust (RCC,i.e.; terrigenous sediments).While both CC and OIB are enriched in many incompatible elements (e.g.,both have [La/Sm]PM>>1),the CC has characteristic enrichment in Pb and deletion in Nb,Ta,P and Ti.Such signature is too strong to be eliminated such that CC is unsuitable as source material for OIB.Plate tectonics and mantle circulation permit the presence of ROC and RCC materials in mantle source regions of basalts,but they must be volumetrically insignificant in contributing to basalt magmatism.The observation that OIB are not only enriched in incompatible elements,but also enriched in the progressively more incompatible elements indicates that the enriched component of OIB is of magmatic origin and most likely associated with low-degree melt metasomatism.H_2O and CO_2 rich incipient melt may form in the seismic low velocity zone (LVZ).This melt will rise because of buoyancy and concentrate into a melt rich layer atop the LVZ to metasomatize the growing lithosphere,forming the metasomatic vein lithologies.Erupted OIB melts may have three components:(1) fertile OIB source material from depth that is dominant,(2) the melt layer,and (3) assimilation of the metasomatic vein lithologies formed earlier in the growing/grown lithosphere.It is probable that

  17. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.


    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary r...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses.......The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...

  18. Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data (United States)

    Moghadam, Hadi Shafaii; Corfu, Fernando; Chiaradia, Massimo; Stern, Robert J.; Ghorbani, Ghasem


    The poorly known Sabzevar-Torbat-e-Heydarieh ophiolite belt (STOB) covers a large region in NE Iran, over 400 km E-W and almost 200 km N-S. The Sabzevar mantle sequence includes harzburgite, lherzolite, dunite and chromitite. Spinel Cr# (100Cr/(Cr + Al)) in harzburgites and lherzolites ranges from 44 to 47 and 24 to 26 respectively. The crustal sequence of the Sabzevar ophiolite is dominated by supra-subduction zone (SSZ)-type volcanic as well as plutonic rocks with minor Oceanic Island Basalt (OIB)-like pillowed and massive lavas. The ophiolite is covered by Late Campanian to Early Maastrichtian (~ 75-68 Ma) pelagic sediments and four plagiogranites yield zircon U-Pb ages of 99.9, 98.4, 90.2 and 77.8 Ma, indicating that the sequence evolved over a considerable period of time. Most Sabzevar ophiolitic magmatic rocks are enriched in Large Ion Lithophile Elements (LILEs) and depleted in High Field Strength Elements (HFSEs), similar to SSZ-type magmatic rocks. They (except OIB-type lavas) have higher Th/Yb and plot far away from mantle array and are similar to arc-related rocks. Subordinate OIB-type lavas show Nb-Ta enrichment with high Light Rare Earth Elements (LREE)/Heavy Rare Earth Elements (HREE) ratio, suggesting a plume or subcontinental lithosphere signature in their source. The ophiolitic rocks have positive εNd (t) values (+ 5.4 to + 8.3) and most have high 207Pb/204Pb, indicating a significant contribution of subducted sediments to their mantle source. The geochemical and Sr-Nd-Pb isotope characteristics suggest that the Sabzevar magmatic rocks originated from a Mid-Ocean Ridge Basalt (MORB)-type mantle source metasomatized by fluids or melts from subducted sediments, implying an SSZ environment. We suggest that the Sabzevar ophiolites formed in an embryonic oceanic arc basin between the Lut Block to the south and east and the Binalud mountains (Turan block) to the north, and that this small oceanic arc basin existed from at least mid-Cretaceous times

  19. Nanoparticulate mineral matter from basalt dust wastes. (United States)

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O


    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region.

  20. Technical program plan, Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)



    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included. (DC)

  1. Magmatism evolution in the Nori'lsk region (Siberian trap province) (United States)

    Krivolutskaya, Nadezhda


    The NW Siberian trap province is very important for our understanding of evolution of huge magmatic system (T1) and origin unique Pt-Cu-Ni deposits. To solve these genetic problems (including correlation between effusive and intrusive rocks) it is necessary to get accurate information about magmatism migration in space and in time inside different tectonic structures in the Noril'sk region. Thed latter takes outstanding place on the Siberian platform due to its geological features. It consists of two main areas covered by volcanic rocks: I. Kharaelakhsky trough (on West) and II. plateau Putorana (on East) are subdivided by carbonate-terrigenouse rocks (C-P2) of Khantaisko-Rybninsky swell . These two zones differ one from another by thickness of basalts and their composition.The fist zone extents along the Khatanga fault and contains all suits, including three lowest ones - ivakinsky (Iv), syverminsky (Sv), gudchikhinsky (Gd). II zone essentially consists of the middle and upper suits - hakanchansky (Hk), tuklonsky (Tk), nadezhdinsky (Nd), morongovsky (Mr), mokulaevsky (Mk), kharaekakhsky (Kh), kumginsky (Km) and samoedsky (Sm). Usually it is constructed the complete section of the Noril'sk volcanites from rocks of two zones. But every suit has its own areal extent., which to contour it not so easy because volcanic rocks represent very similar tholeiitic basalts ( in term of texture and petrochemistry). Their differentiation is just possible using rare elements and isotopes contents in the rocks [1]. We have studied a lot of basalt sections based on their outcrops and cores of drill holes (4 570 m) and intrusive bodies graduated in mineralization (internal structure, geochemistry, mineralogy, isotopes composition). According new data areoles of the lowers and the upper suits separate in space. The thicknesses Iv and Sv suits (TiO2=2-4 mas. %; Gg/Yb = 2.2.) decreases synchronously from NW Kharaelakh and the towards Putorana at 30%. Gd suit (TiO2=1-2 mas.% and Gd

  2. The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks (United States)

    Stroncik, Nicole A.; Klügel, Andreas; Hansteen, Thor H.


    A thermobarometric and petrologic study of basanites erupted from young volcanic cones along the submarine portions of the three El Hierro rift zones (NE-Rift, NW-Rift and S-Ridge) has been performed to reconstruct magma plumbing and storage beneath the island. Mineral-melt thermobarometry applied to naturally quenched glass and clinopyroxene rims yields pressures ranging from 350 to 1070 MPa with about 80% of the calculated pressures being in the range of 600-800 MPa. This corresponds to a depth range of 19-26 km, implying that the main level of final crystal fractionation is within the uppermost mantle. No systematic dependence between sample locality and fractionation pressures could be observed. Olivine and clinopyroxene crystals in the rocks are complexly zoned and have, on an inter-sample as well as on an intra-sample scale, highly variable core and rim compositions. This can best be explained by mixing of multiply saturated (olivine, magnetite, clinopyroxene, ilmenite), moderately evolved magmas with more mafic magmas being either only saturated with olivine + spinel or with olivine + spinel + clinopyroxene. The inter-sample differences indicate derivation from small, isolated magma chambers which have undergone distinct fractionation and mixing histories. This is in contrast to oceanic intraplate volcanoes situated on plumes with high melt supply rates, e.g. Kilauea Volcano (Hawaii), where magma is mainly transported through a central conduit system and stored in a shallow magma chamber prior to injection into the rift zones. The plumbing system beneath El Hierro rather resembles the magma storage systems beneath, e.g. Madeira or La Palma, indicating that small, intermittent magma chambers might be a common feature of oceanic islands fed by plumes with relatively low fluxes, which results in only limited and periodic magma supply.

  3. Generation and disaggregation of magmatic mush in the premonitory stages of the AD 1783 Laki eruption (United States)

    Maclennan, J.; Neave, D.; Passmore, E.; Thordarson, T.; Fitton, J. G.


    found to evolve in situ, producing distinctive overgrowths on plagioclase primocrysts. However, the Laki phenocrysts do not display such overgrowths, and no recognisable zones in the phenocrysts are in equilibrium with melts more evolved than the carrier. This observation is puzzling, and indicates that the Laki mush liquid did not form by in situ crystallisation overgrowth on the mush crystals. Instead, we present a model that accounts for the observations by intrusion of a porphyritic basalt into a shallow magma chamber containing dense, viscous ferrobasalt. Recovery of mushy cumulate nodules from basaltic eruptions combined with recognition of the geochemical consequences of mush disaggregation in magma provide an excellent opportunity for linking the volcanic and plutonic records of magma chamber processes. Advancing understanding of the physical properties of magmatic mushes and the physical processes that lead to their development and disaggregation will improve models of the triggering and evolution of large and environmentally significant basaltic eruptions.

  4. Geocemical provinces of magmatism in the south-eastern part of the Pacific Ocean (United States)

    Sushchevskaya, Nadezhda; Belyatsky, Boris; Teterin, Dmitry


    Comparison of geochemical signatures of island magmatism in the south-eastern part of the Pacific Ocean and tholeiites of the Bransfield and Powell rift zones revealed the similar character of the enrichment which reflects the melting of a close mantle source. But alkaline magmatism of the islands in the west of Antarctic and Marie Byrd Land differs from the enriched basalts of the northern province (Bransfield, Powell, BTJ) by showing more radiogenic Sr values and non-radiogenic Nd. The tectonic development of the South Ocean is characterized by its formation under stationary conditions of Antarctic continent. As a result of this, for the volcanic islands distributed at the western part of the Antarctic we observe no long mountain ridges typical for their development under conditions of the moving plate. Intraplate magmatism evolution was coincided with the extinction of the old subduction zones, formation of the new rift zones and separation of South America from Antarctic [Udintsev, Schenke, 2007; Teterin, 2008]. Such complicated geodynamics caused the possibility of formation of rupture cracks reaching the underlying metasomatizated mantle and decompression melting with further island formation. In Oligocene due to migration of asthenospheric flow from the west to east in the result of destruction of previously united continental blocks there was formed the Scotia Sea, South Sandwich island arc as well as Drake Passage. This caused the mechanical weakening of South Atlantic lithosphere and the starting at the end of Oligocene - beginning Miocene of the new plate border formation - American-Antarctic ridge, which propagated in the eastern direction till the Bouvet triple junction [Dubinin et al., 1999]. The close geochemical signatures of mantle source for islands basalts including the Bouvet Island and the enriched tholeiites of the western extremity of the SW Indian Ridge proves the development of a specific geochemical province enveloping the southeastern

  5. Moho and magmatic underplating in continental lithosphere

    DEFF Research Database (Denmark)

    Thybo, Hans; Artemieva, Irina M.


    fractionation during cooling and solidification in the lower crust. Separation of the low density material from the high-density residue may be a main process of formation of continental crust with its characteristic low average density, also during the early evolution of the Earth. Despite the assumed...... importance of underplating processes and associated fractionation, the available geophysical images of underplated material remain relatively sparse and confined to specific tectonic environments. Direct ponding of magma at the Moho is only observed in very few locations, probably because magma usually...... interacts with the surrounding crustal rocks which leads to smearing of geophysical signals from the underplated material. In terms of processes, there is no direct discriminator between the traditional concept of underplated material and lower crustal magmatic intrusions in the form of batholiths and sill...

  6. Crustal-scale magmatism and its control on the longevity of magmatic systems (United States)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef


    Constraining the duration and evolution of crustal magma reservoirs is crucial to our understanding of the eruptive potential of magmatic systems, as well as the volcanic:plutonic ratios in the crust, but estimates of such parameters vary widely in the current literature. Although no consensus has been reached on the lifetime of magma reservoirs, recent studies have revealed about the presence, location, and melt fraction of multi-level (polybaric) storage zones in the crust. If magma accumulates at different crustal levels, it must redistribute significant enthalpy within the crustal column and therefore must influence the lifetime of magma plumbing systems. However, an evaluation of the mass and heat budget of the entire crustal column is lacking. Here, we use a two-dimensional thermal model to determine the thermal conditions under which both lower and upper crustal magma bodies form. We find that large lower crustal mush zones supply heat to the upper crust and reduce the amount of thermal energy necessary to form subvolcanic reservoirs. This indicates that the crust is thermally viable to sustain partially molten magma reservoirs over long timescales (>10^5-106 yr) for a range of magma fluxes (10^-4 to 10^-2 km^3/yr). Our results reconcile physical models of crustal magma evolution and field-based estimates of intrusion rates in numerous magmatic provinces (which include both volcanic and plutonic lithologies). We also show that young magmatic provinces ( 106 yr) can accumulate magma and build reservoirs capable of triggering supereruptions, even with intrusion rates as low as ≤10^-2 km^3/yr. Hence, the total duration of magmatism is critical in determining the size of the magma reservoirs, and should be combined with the magma intrusions rates to assess the capability of volcanic systems to form the largest eruptions on Earth.

  7. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas (United States)

    Kuritani, Takeshi; Yoshida, Takeyoshi; Kimura, Jun-Ichi; Hirahara, Yuka; Takahashi, Toshiro


    The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4-5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at ~200 MPa.

  8. Structural, geochronological, magnetic and magmatic constraints of a ridge collision/ridge subduction-related ophiolite (United States)

    Anma, Ryo


    A mid-oceanic ridge system subducts underneath South American plate at latitude 46S off Chilean coast, forming a ridge-trench-trench type triple junction. At ~ 6 Ma, a short segment of the Chile ridge system subducted in south of the present triple junction. This ridge subduction event resulted in emplacement of a young ophiolite (5. 6 to 5. 2 Ma) and rapid crustal uplift (partly emerged after 4.9 Ma), and synchronous magmatism. This ophiolite, namely the Taitao ophiolite, provides criteria for the recognition of ridge collision/ridge subduction-related ophiolites. Aiming to establish recognition criteria, we studied distribution of structures, magnetic properties, geochemical characteristics, and radiometric ages of the Taitao ophiolite and related igneous rocks. The Taitao ophiolite exhibits a classic Penrose-type stratigraphy: ultramafic rocks and gabbros (collectively referred as plutonic section hereafter) in the south, and sheeted dike complex (SDC) and volcanic sequences in the north. Composite foliations developed in the plutonic section, which were folded. SDC were exposed in two isolated blocks having orthogonal strikes of dike margins. Geochemically, gabbros have an N-MORB composition whereas basalts of the volcanic sequence have an E-MORB composition. U-Pb ages of zircons separated from gabbros, SDC and sediments interbeded with billow lavas implied that the center of magmatic activities migrated from the plutonic section to volcanic section during ~5.6 Ma and ~5.2 Ma. Zircon fission track ages of gabbros coincide with U-Pb ages within error range, implying rapid cooling. Demagnetization paths for SDC and lavas form a straight line, whereas those from the plutonic section are Z-shaped and divisble into two components: low coercivity and high coercivity. Restored orientation of gabbro structures imply that the magnetization acquired while gabbroic structures were folding. Thus, magma genesis and emplacement of the plutonic section of ophiolite took place

  9. Making rhyolite in a basalt crucible (United States)

    Eichelberger, John


    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  10. Magmatism of the Shuteen Complex and Carboniferous subduction of the Gurvansaikhan terrane, South Mongolia (United States)

    Batkhishig, Bayaraa; Noriyoshi, Tsuchiya; Greg, Bignall


    The Carboniferous Shuteen Complex, a volcano-plutonic ring complex associated with Cu-Au porphyry mineralization, is located in the Gurvansaikhan island arc terrane of South Mongolia. This paper presents new data on the petrography, major and trace element chemistry, and Sr-Nd isotopic chemistry of the Shuteen Complex. We discuss the relationship between volcanic and plutonic rocks of the complex, and consider their similarity to high-Al 2O 3 trondhjemite-tonalite-granodiorite and adakites. We also consider the origin, magma source, and dynamic processes of the Shuteen Complex; propose a petrogenetic model; and investigate the composition of the subducting slab and the features of arc volcanism at the time. We assess some of the magmatic processes likely to have occurred within the Shuteen Complex, such as Carboniferous slab subduction and partial melting, and examine their influence on magma composition. The Shuteen Complex is geochemically similar to adakite-type rocks. The complex is silica-saturated (SiO 2 ⩾ 56%), rich in Al 2O 3 (⩾15%), MgO (400 ppm), and depleted in high field strength elements. It also has a high Sr/Y value, and ( 87Sr/ 86Sr) I arc setting, and partial melting was the dominant process during petrogenesis. The primary Shuteen magma had an adakitic composition and was probably derived from the partial melting of subducting oceanic crust, possibly with minor local interaction with mantle material. The results of quantitative modelling of mass balance and partial melt equilibrium for the magma source indicate that the subducting slab contained oceanic basalt and a minor component of oceanic sediment, which together with a restite eclogite phase formed the source of the Shuteen magma. The conclusive results of this study provide new insights into the magmatic evolution of the Shuteen Complex.

  11. RASOR flood modelling (United States)

    Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje


    Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the

  12. The Mineralogical Record of Oxygen Fugacity Variation and Alteration in Northwest Africa 8159: Evidence for Interaction Between a Mantle Derived Martian Basalt and a Crustal Component(s) (United States)

    Shearer, Charles K.; Burger, Paul V.; Bell, Aaron S.; McCubbin, Francis M.; Agee, Carl; Simon, Justin I.; Papike, James J.


    A prominent geochemical feature of basaltic magmatism on Mars is the large range in initial Sr isotopic ratios (approx. 0.702 - 0.724) and initial epsilon-Nd values (approx. -10 to greater than +50). Within this range, the shergottites fall into three discreet subgroups. These subgroups have distinct bulk rock REE patterns, mineral chemistries (i.e. phosphate REE patterns, Ni, Co, V in olivine), oxygen fugacity of crystallization, and stable isotopes, such as O. In contrast, nakhlites and chassignites have depleted epsilon-Nd values (greater than or equal to +15), have REE patterns that are light REE enriched, and appear to have crystallized near the FMQ buffer. The characteristics of these various martian basalts have been linked to different reservoirs in the martian crust and mantle, and their interactions during the petrogenesis of these magmas. These observations pose interesting interpretive challenges to our understanding of the conditions of the martian mantle (e.g. oxygen fugacity) and the interaction of mantle derived magmas with the martian crust and surface. Martian meteorite NWA 8159 is a unique fine-grained augite basalt derived from a highly depleted mantle source as reflected in its initial epsilon-Nd value, contains a pronounced light REE depleted pattern, and crystallized presumably under very oxidizing conditions. Although considerably older than both shergottites and nahklites, it has been petrogenetically linked to both styles of martian magmatism. These unique characteristics of NWA 8159 may provide an additional perspective for deciphering the petrogenesis of martian basalts and the nature of the crust of Mars.

  13. Magmatic Source Composition and Magmatism of the Volcanic Rocks in the Area of Kuruktag, Southern Xinjiang

    Institute of Scientific and Technical Information of China (English)

    JIANG Changyi; BAI Kaiyin; HI Aizhi; ZHAO Xiaoning; ZHANG Hongbo


    In the Sinian-Cambrian strata in the area of Kuruktag, southern Xingjiang, four layers of volcanic rocks occurred in the Early Sinian Beiyixi Formation, Late Sinian Zhamoketi Formation and Shuiquan Formation, and Early Cambrian Xishanbulake Formation, respectively. Volcanics of the Shuiquan Formation and Xishanbulake Formation are of alkali basalt series, those of the Zhamoketi Formation are of alkali basalt series and tholeiite series, and those of the Beiyixi Formation are obviously characterized by bimodal assemblage and mostly belong to alkali volcanics. Multi-element distribution patterns of the rocks show continental tumescence characters of interplate basalt.Fractional crystallization of plagioclase led to negative Eu-anomalies of some volcanics and the cumulation of olivine resulted in high MgO and low SiO2 content of some volcanic rocks. The SiO2 saturability of volcanic rocks of the Xishanbulake Formation and Shuiquan Formation is lower than that of tholeiite of the Zhamoketi Formation. Correspondingly, the abundance of incompatible elements in the first two formations is higher than those in the last formation, and the differences can be attributed to the different degrees of partial melting. The intense fractionation of REE and the obvious depletion of HREE suggest that these volcanic rocks were derived from garnet Iherzolite of the mantle in the continental lithosphere. The Ba/Nb, La/Nb, Ba/La, Ba/Th and Rb/Nb rations demonstrate that these volcanic rocks were exclusively derived from the enriched mantle, mainly the EMI type mantle.

  14. Volcanic stratigraphy of intermediate to acidic rocks in southern Paraná Magmatic Province, Brazil

    Directory of Open Access Journals (Sweden)

    Liza Angélica Polo


    Full Text Available This article presents the first map in detail scale for an area covered by Palmas type volcanic rocks in the south border of the eocretaceous Paraná Magmatic Province, south Brazil. The study of the structural features coupled with petrography and geochemistry made it possible to separate these rocks into three main volcanic sequences and recognize their stratigraphy. The older Caxias do Sul sequence rests directly over the first low-Ti basalt flows (Gramado type, and corresponds to the stacking of lobated lava flows, laminar flows and lava domes, mostly emitted as continuous eruptions; only the latest eruptions are intercalated with thin sandstone deposits. These rocks have dacitic composition (~ 68 wt% SiO2 with microphenocrysts of plagioclase and subordinate pyroxenes and Ti-magnetite immersed in glassy or devitrified matrix. A second volcanic sequence, named Barros Cassal, is composed of several lava flows of basaltic andesite, andesitic and dacitic composition (~ 54; ~ 57 and ~ 63 wt% SiO2 , respectively, with microphenocrysts of plagioclase, pyroxenes and Ti-magnetite. The frequent intercalation of sandstone between the flows attests to the intermittent behaviour of this event. The upper sequence, Santa Maria, is made up of more silica-rich (~ 70 wt% SiO2 rocks occurring as laminar flows, lobated flows and lava-domes. These rocks have rhyolitic composition with microphenocrysts of plagioclase and Ti-magnetite set in a glassy or devitrified matrix with microlites. The structures and textures of all three silicic sequences favor the interpretation that they had a predominantly effusive character, which is thought to be a reflection of the remarkably high temperatures of the lavas (~ 1,000 ºC.

  15. Magmatism and tectonics in continental Chiloé, Chile (42° 42°30'S) (United States)

    Pankhurst, R. J.; Hervé, F.; Rojas, L.; Cembrano, J.


    The Chiloé-Chonos region seems to preserve the oldest depositional events in the fore-arc accretionary complex of the Southeast Pacific margin. There are isolated occurrences of low-grade metamorphic rocks, including slates with a Devonian trilobite fauna and schists that give Rb-Sr evidence of a ca. 290 Ma metamorphism. Pillow basalts and ultramafic rocks may represent parts of the Pan-Thalassic ocean floor on which the Palaeozoic sediments were laid down. Emergence of a magmatic arc is indicated by Jurassic to Early Cretaceous volcanogenic and marine deposits. During the mid-Cretaceous climax of plutonic activity, these were intruded by monzogranites, which here constitute the eastern portion of the North Patagonian batholith. They give Rb-Sr isochron ages of 120-100 Ma (Barremian-Albian). Initial 87Sr/ 86Sr ratios of 0.7040-0.7045, and ɛNdt values of +0.5 to +1.5, indicate a simple petrogenesis with a mantle source. The western part of the batholith is petrologically more primitive, being composed predominantly of tonalite, diorite and gabbro, and initial 87Sr/ 86Sr ratios are more variable. Late Cenozoic movement of the Liquiñe-Ofqui fault zone (LOFZ) generated deep pull-apart basins to the west of the uplifted batholith/basement complex. These were filled by thick marine sequences of volcanogenic debris, indicating the wide extent of a mainly rhyolitic volcanic field during Miocene times. Pliocene tonalite and granodiorite plutons (dated by a Rb-Sr whole-rock isochron at 4.7 ± 0.5 Ma) and Holocene andesite-basalt stratovolcanoes are located along the LOFZ. The latter feature has thus been a major influence on the tectonic evolution of the area. There is no evidence for major post-Palaeozoic compression or crustal shortening.

  16. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... Pleistocene times. These basalts mark the end of a period of shallow subduction of the Nazca slab beneath the Payenia province and volcanism in the Nevado volcanic field apparently followed the downwarping slab in a north-northwest direction ending in the Northern Segment. The northern Payenia basalts...... the literature. The Nevado basalts have been modelled by 4-10 % melting of a primitive mantle added 1-5 % upper continental crust. In the southern Payenia province, intraplate basalts dominate. The samples from the Payún Matrú and Río Colorado volcanic fields are apparently unaffected by the subducting slab...

  17. Integrated geochemical modelling of magmatic degassing and hydrothermal interaction: a case study from Kawah Ijen volcano, Indonesia (United States)

    Vigouroux-Caillibot, N.; Williams-Jones, G.; Berlo, K.; van Hinsberg, V.; Palmer, S.; Scher, S.; Williams-Jones, W.; Wallace, P. J.


    Monitoring active volcanoes requires an understanding of magmatic degassing in relation to magma depth, temperature, composition, style of degassing (open vs closed) and interactions with hydrothermal systems. This study combines results of subsurface degassing (interpreted from melt inclusions) with measurements of fumarole gases and acid spring waters from Kawah Ijen volcano, Indonesia. Kawah Ijen is a stratovolcano with a growing rhyolite dome on the shore of a hyperacidic crater lake. The dome is emitting sulfur-rich gases from high temperature fumaroles (350-450°C). Matrix glass and melt inclusion compositions (including H2O, CO2, S, Cl and F) were measured for basaltic, dacitic and rhyolitic magmas. The behavior of the volatile species (Dvap-melt) during ascent, degassing and crystallization were modeled for an open system (including vapor fluxing) assuming Rayleigh fractionation, and for closed system processes assuming batch degassing and crystallization. The variable H2O-CO2 contents of the melt inclusions suggest that open system vapor fluxing (XH2Ovapor = 0.25-0.95 for basalt; 0.9-0.95 for dacite) is the dominant degassing style. The modeled S Dvap-melt values for basalt remain low (2-10) as the melt ascends (P= 400 to 100 MPa), then increase sharply to 200 at pressures independent of pressure. Evolution from dacite to rhyolite is characterized by a constant Dvap-melt value of 35. Chlorine behavior is strongly affected by crystallization of Cl-rich apatite in the basaltic magma. In dacite and rhyolite, Cl is mostly dissolved in the melt. The Dvap-melt values range from 7-9 as basalt evolves to dacite and reach 5 for dacite to rhyolite (low pressure degassing). Fluorine contents are highly variable due to crystallization of F-apatite, especially in the more evolved rocks. This precludes meaningful modeling of F-release to the vapor. The best-fit modeled gas compositions (mass ratio) are: CO2/H2O = 0.13-0.27, CO2/S(total) = 2.9-5.7, H2O/S(total) = 21

  18. NASA Global Flood Mapping System (United States)

    Policelli, Fritz; Slayback, Dan; Brakenridge, Bob; Nigro, Joe; Hubbard, Alfred


    Product utility key factors: Near real time, automated production; Flood spatial extent Cloudiness Pixel resolution: 250m; Flood temporal extent; Flash floods short duration on ground?; Landcover--Water under vegetation cover vs open water

  19. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars (United States)

    Kestay, Laszlo P.; Jaeger, Windy L.


    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  20. Geochemical study on magmatic water. Part 1. Jitsuzai no magumasui (1); Magumasui no chikyu kagakuteki kenkyu (1). Actual magmatic water

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, I. [Tokyo Inst. of Tech. (Japan)


    Magmatic waters are the water contained in magma and the water originated directly from magma, and the latter originated directly from magma is generally called magmatic water. All the magmatic water produced from magma is not necessarily primordial water. Magma emanation is separated from magma, and gradually provided with various characteristics by such phenomena as reaction and mixing with materials in the passage until it erupts to the ground surface as volcanic emanation. In regard to studies on actual magmatic water, descriptions are made on magmatic water, residual magmatic water, as well as magmatic water and the quantity of emanation of Miharayama, a volcano in Izu Oshima. Various kinds of volcanic emanation and magma water are produced from the same lava which is the ground surface magma, even in the same place due to difference in the passage of time since the emission of volcanic emanation and physical and chemical environmental changes (atmospheric phenomena, weather, temperature, and wind velocity). An instance of the presence of various types of magma water is introduced. 37 refs., 5 figs., 7 tabs.

  1. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data (United States)

    Chen, Ling; Tang, Limei; Yu, Xing; Dong, Yanhui


    We present new major element, ICP-MS trace element, and Sr-Nd-Pb isotope data of basalts from four locations along the Carlsberg Ridge (CR), northern Indian Ocean. The basalts are low-K tholeiites with 7.52-9.51 wt% MgO, 49.40-50.60 wt% SiO2, 0.09-0.27 wt% K2O, 2.55-2.90 wt% Na2O, and 0.60-0.68 Mg#. Trace element contents of the basalts show characteristics similar to those of average normal MORB, such as LREE depleted patterns with (La/Sm)N ratio of 0.55-0.69; however, some samples are enriched in large-ion lithophile elements such as K and Rb, suggesting probable modification of the mantle source. Poor correlations between the compatible elements [e.g. Ni, Cr, and Sr (related to olivine, clinopyroxene and plagioclase, respectively)] and the incompatible elements (e.g. Zr and Y), and positive correlations in the Zr versus Zr/Y and Nb versus Nb/Y plots suggest a magmatic evolution controlled mainly by mantle melting rather than fractional crystallization. Our results extend the CR basalt range to higher radiogenic Pb isotopes and lower 143Nd/144Nd. These basalts and basalts from the northern Indian Ocean Ridge show lower 143Nd/144Nd and higher 87Sr/86Sr values than those of the depleted mantle (DM), defining a trend towards pelagic sediment composition. The Pb isotopic ratios of basalts from CR 3-4°N lie along the compositional mixing lines between the DM and the upper continental crust. However, the low radiogenic Pb of basalts from CR 9-10°N lie on the mixing line between the DM and lower continental crust. Since the Pb isotopic ratio of MORB would decrease if the source mantle was contaminated by continental lithospheric mantle, we suggest that CR contains continental lithospheric material, resulting in heterogeneous mantle beneath different ridge segments. The continental lithospheric material was introduced into the asthenosphere before or during the breakup of the Gondwana. These results support the long-term preservation of continental material in the


    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich


    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  3. The heat budgets of magmatic arcs: Discrepancies between heat flow measurements, volatile fluxes, and interpretations of the geologic record (United States)

    Van Buer, N. J.


    Arc magmatic processes, from differentiation to emplacement, depend crucially on the rate at which heat and magma are supplied to the arc crust. In active arcs, the total heat flow can be estimated relatively directly by measuring and quantifying the amounts of heat lost via conduction, hydrothermal circulation, and eruption. This total heat flow can be used to calculate the implied magmatic flux at depth. Alternatively, magmatic flux in active arcs can be estimated from measured rates of volatile emissions, usually SO2. Unfortunately, heat flow and volatile flux data sufficiently detailed to make these calculations exist for only a handful of active arcs. In the geologic record, rates of arc magmatic flux have most frequently been estimated by measuring the preserved volumes of intrusive and extrusive products and dividing by the geochronologically determined duration of arc activity. This can be converted to heat flow by assuming a certain amount of heat carried per volume of magma. The ranges of magmatic flux estimated via either heat flow or SO2 are similar for modern arcs, but, on average, estimates from the geologic record are lower by about a factor of three (Fig. 1). This discrepancy may indicate that the assumption that preserved igneous rock volumes represent the total advective flux is a poor choice when interpreting the geologic record. Recycling of early solidified magma and loss of cumulates to the mantle may be important, i.e., the time-integrated advective flux might significantly exceed the net preserved intrusive volume. This is also supported by other lines of evidence, including geochemical mass-balance arguments, thermal models of basalt flux needed to allow substantial assimilation and/or crystal fractionation in the lower crust, high-temperature thermochronology in arcs, and thermal models of the conditions necessary to cause large, explosive eruptions from upper crustal magma chambers. Substantial recycling or convection within the arc crust

  4. Mare basalt genesis - Modeling trace elements and isotopic ratios (United States)

    Binder, A. B.


    Various types of mare basalt data have been synthesized, leading to the production of an internally consistent model of the mare basalt source region and mare basalt genesis. The model accounts for the mineralogical, major oxide, compatible siderophile trace element, incompatible trace element, and isotopic characteristics of most of the mare basalt units and of all the pyroclastic glass units for which reliable data are available. Initial tests of the model show that it also reproduces the mineralogy and incompatible trace element characteristics of the complementary highland anorthosite suite of rocks and, in a general way, those of the lunar granite suite of rocks.

  5. Quantifying glassy and crystalline basalt partitioning in the oceanic crust (United States)

    Moore, Rachael; Ménez, Bénédicte


    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  6. Microbial colonization and alteration of basaltic glass (United States)

    Einen, J.; Kruber, C.; Øvreås, L.; Thorseth, I. H.; Torsvik, T.


    Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004). The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM), and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE) in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group of prosthecate oligotrophic

  7. Microbial colonization and alteration of basaltic glass

    Directory of Open Access Journals (Sweden)

    J. Einen


    Full Text Available Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004. The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM, and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group

  8. Volatile Exsolution Experiments: Sampling Exsolved Magmatic Fluids (United States)

    Tattitch, B.; Blundy, J. D.


    In magmatic arcs the conditions of volatile exsolution exert a direct control on the composition of exsolved magmatic volatiles phases (MVPs), as well as on their parental magmas. The ability to accurately assess the exchange of major and trace elements between MVPs and magmas is key to understanding the evolution of arc magmas. The trace element signatures measured in arc volcanoes, fumaroles, and hydrothermal ore deposits are greatly influenced by the role of MVPs. In order to investigate the interplay and evolution of melts and MVPs we need experimental methods to simulate MVP exsolution that impose minimal external constraints on their equilibration. Previous experiments have focused on evaluating the exchange of elements between aqueous fluids and silicate melts under equilibrium conditions[1,2]. However, the large mass proportion of fluid to melt in these experiment designs is unrealistic. As a result, the idealized compositions of the aqueous fluids may exert a strong control on melt compositions for which they are out of equilibrium, especially at low melt fractions. In contrast, other experiments have focused on the melt during crystallization but must calculate MVP compositions by mass balance[3]. In order to investigate MVPs and magmas during this critical period of MVP exsolution, we present a new two-stage fluid-melt experimental design. Stage one experiments generate super-liquidus hydrous melts using Laguna del Maule rhyolites and dactites, as analogues for ascending arc magmas. Stage two experiments allow aliquots of stage one melt/glass to crystallize and exsolve MVPs. The design then uses pressure cycling to promote infiltration of in-situ fractured quartz[4] and traps the MVPs as synthetic fluid inclusions. We present results from trial stage 2 experiments, which produced synthetic fluid inclusions consistent with literature values of fluid-melt Cl partitioning[5] and of sufficient size for LA-ICPMS analysis. Trace element partitioning for Li, Na

  9. Influence of magmatism on mantle cooling, surface heat flow and Urey ratio (United States)

    Nakagawa, Takashi; Tackley, Paul J.


    Two-dimensional thermo-chemical mantle convection simulations are used to investigate the influence of melting-inducted differentiation on the thermal evolution of Earth's mantle, focussing in particular on matching the present-day surface heat flow and the 'Urey ratio'. The influence of internal heating rate, initial mantle temperature and partitioning of heat-producing elements into basaltic crust are studied. High initial mantle temperatures, which are expected following Earth's accretion, cause major differences in early mantle thermo-chemical structures, but by the present-day surface heat flux and internal structures are indistinguishable from cases with a low initial temperature. Assuming three different values of mantle heat production that vary by more than a factor of two results in small differences in present-day heat flow, as does assuming different partitioning ratios of heat-producing elements into crust. Indeed, all of the cases presented here, regardless of exact parameters, have approximately Earth's present-day heat flow, with substantial fractions coming from the core and from mantle cooling. As a consequence of the model present-day surface heat flow varying only slightly with parameters, the Urey ratio (the ratio of total heat production to the total surface heat flow) is highly dependent on the amount of internal heat production, and due to the large uncertainty in this, the Urey ratio is considered to be a much poorer constraint on thermal evolution than the heat flow. The range of present-day Urey ratio observed in simulations here is about 0.3 to 0.5, which is consistent with observational and geochemical constraints (Jaupart et al., 2007). Magmatic heat transport contributes an upper bound of 9% to Earth's present-day heat loss but a much higher fraction at earlier times—often more than convective heat loss—so neglecting this causes an overestimation of the Urey ratio. Magmatic heat transport also plays an important role in mantle

  10. The Deep Crust Magmatic Refinery, Part 1: A Coupled Thermodynamic and Two-phase Flow Model (United States)

    Riel, N., Jr.; Bouilhol, P.; Van Hunen, J.; Velic, M.; Magni, V.


    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To assess the dynamics of this deep magmatic system we developed a new 2-D two-phase flow code using finite volume method. Our formulation takes into account: (i) melt flow through a viscous porous matrix with temperature- and melt-content dependent host-rock viscosity, (ii) heat transfer, assuming local thermal equilibrium between solid and liquid, (iii) thermodynamic modelling of stable phases, (iv) injection of fractionated melt from crystallizing basalt at the Moho and (v) chemical advection of both the solid and liquid compositions. Here we present the core of our modelling approach, especially the petrological implementation. We show in details that our thermodynamic model can reproduce well both the sub- and supra solidus phase relationship and composition of the host-rock. We apply our method to an idealized amphibolite lower crust that is affected by a magmatic event represented by the intrusion of a wet mantle melt into the crust at Moho depth. The models [see Bouilhol et al

  11. Clinopyroxene with diverse origins in alkaline basalts from the western Pannonian Basin: Implications from trace element characteristics (United States)

    Jankovics, M. Éva; Taracsák, Zoltán; Dobosi, Gábor; Embey-Isztin, Antal; Batki, Anikó; Harangi, Szabolcs; Hauzenberger, Christoph A.


    Clinopyroxene crystals of various origins occur in the unusually crystal- and xenolith-rich alkaline basalts of the Bondoró-hegy and the Füzes-tó scoria cone, which are the youngest eruptive centres in the Bakony-Balaton Highland Volcanic Field, western Pannonian Basin. The clinopyroxenes show diverse textural and zoning features as well as highly variable major and trace element chemistry. Xenocryst, megacryst and phenocryst crystal populations can be distinguished on the basis of their compositional differences. The trace element patterns of green clinopyroxene cores display a large range in composition and indicate that most of them have a metamorphic origin. Most of them were incorporated from lower crustal mafic granulite wall rocks, while only a few of them are of magmatic origin representing pyroxenite (Type II) cumulates. The colourless clinopyroxene xenocrysts reflect the texturally and geochemically diverse nature of the subcontinental lithospheric mantle beneath the studied area, mainly representing regions characterised by various stages of metasomatism. The colourless and green megacrysts are genetically related to each other, having crystallised as early and late crystallisation products, respectively, from petrogenetically related melts as part of a fractional crystallisation sequence. These melts represent earlier alkaline basaltic magmas (as represented by the Type II xenoliths), having stalled and crystallised near the crust-mantle boundary in the uppermost part of the mantle. This serves as evidence that the deep magmatic systems beneath monogenetic volcanic fields are complex, involving several phases of melt generation, accumulation and fractionation at variable depths. We show that in situ trace element analysis is necessary in order to unravel the origins and relationships of the diverse clinopyroxene populations. Such studies significantly contribute to our understanding of the ascent histories of alkaline basaltic magmas and provide

  12. On Flood Alert

    Institute of Scientific and Technical Information of China (English)


    lina braces fora particularly dangerous flood season in the wake of disastrous rainstorms Aseries of heavy storms since early May led to severe flooding and landslides in south and southwest China,causing heavy casualties and economic losses. Severe convective weather such as downpours,

  13. Discover Floods Educators Guide (United States)

    Project WET Foundation, 2009


    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  14. Geochemistry and Petrology of Emeishan Basalts and Subcontinental Mantle Evolution in Southwestern China

    Institute of Scientific and Technical Information of China (English)

    汪云亮; S.S.HUGHES; 等


    Three major volcanic rock sequences in the P2β formation(Emeishan basalts)were sampled dur-ing a comprehensive study of the Late Permian volcanics associated with the Panxi paleorift in southwestern China .Two of the three sections-Emei and Tangfang are composed of continental flood basalts(CFB) while the third-Ertan is an alkalic center.Multi-element chemical analyses indi-cate a predominance of low MgO transitional quartz tholeiites at Emei and Tangfang,whereas the Ertan suite ranges from high-MgO alkaline olivine basalts to rhombic porphyry trachytes and quartz-bearing aegerine-augite syenites.Consanguineity of the rocks from the three sections is sug-gested by consistently high TiO2 ,K2O,incompatible trace elements and uniformly fractionated REE patterns typical of alkalic compositions,but antypical of CFB.Sr isotope data for ten Emei basalt samples(87Sr/86Sr=0.7066-0.7082)which show no correla-tion with Rb/Sr ratios (0.02-0.12) and Nd isotopes for two of the samples(143Nd/144Nd=0.51171-0.51174)are interpreted as being related to the mantle evolution.The primary magmas re-sponsible for all the three sequences have been modeled in terms of a uniformly metasomatized man-tle source.Trace element models support the derivation of the Emei and Tangfang primary magmas from 10-15 percent partial melting of spinel lherzolite,followed by fractional crystallization of olivive and clinopyroxene.The primary alkaline olivine basalts at Ertan are generated by 7-10 percent par-tial melting of a chemically equivalent source in the garnet-peridodite stability region.The assumed mantle composition is characterixzed by Rb=3.8-5.5 ppm,Sr=62-83ppm,Ba=45-64 ppm,La=3.8-5.6ppm,and Yb=0.46-0.57ppm.The proposed mechanism of regional mantle enrichment requires metasomatic stabilization of phlogopite which becomes depleted later during par-tial melting.Such enrichment is consistent with the models proposed for alkalic systems in which a large mantle diaper acts as the agent for upward

  15. Paraná-Etendeka basalts in Misiones, Argentina; characterization and petrogenetic inferences (United States)

    Rämö, O. T.; Heikkilä, P. A.


    The Early Cretaceous (ca. 130 Ma) Paraná-Etendeka flood basalts constitute one of the major Phanerozoic LIP sequences with an original volume probably in excess of 2.3 Mkm3.The bulk of this volcanic system is preserved in South America (Brazil, Uruguay, Paraguay, Argentina), where it manifests the onset of South Atlantic opening at present 25 degrees Southern Latitude. The sequence is overwhelmingly basaltic (ca. 90%), but also includes contemporaneous silicic volcanic rocks. Known as the Serra Geral Suite (e.g., Bellieni et al., 1984), it fills the Paraná Basin with a northward deepening strata of lavas with a maximum thickness of ca. 1500 m. We have collected and examined basalt samples from the west-central part (western flank) of the Paraná Basin in Misiones State, northeastern Argentina (54-55 degrees Western Longitude), where the estimated thickness of the basalt succession decreases from ca. 700 m in the east to ca. 300 m in the west. The examined samples are massive, aphyric (or microphyric with plagioclase and altered olivine microphenocrysts), and geochemically relatively evolved (Mg number 50-35) basalts and basaltic andesites. Their MgO values are between 6 and 3.7 wt.% and Ni content is relatively low (65-20 ppm). Incompatible trace element values increase with increasing fractionation (decreasing Mg number), e.g., Zr from 135 to 290 ppm, Ce from 45 to 105 ppm, Nd from 20 to 50 ppm, Sm from 5 to 11 ppm, Ba from 280 to 600 ppm, and Y from 25 to 50 ppm. In terms of Ti, the samples fall into two groups (1.9-2.3 and ca. 3.8 wt.% TiO2). These values conform, respectively, to the high-Ti, high-Ti/Y Paranapanema and Pitanga magma types of Peate et al. (1992) that govern the northern half of the Paraná basalt succession. Initial Nd and Sr isotope compositions of the two groups are remarkably uniform. Our analyzed ten samples have an average initial (at 134.6 Ma) epsilon-Nd value of -4.2 × 0.3 (1 SD) and an average initial 87Sr/86Sr of 0.70570 × 0

  16. Latest Cretaceous and Cenozoic magmatic rocks of Alaska: polygon data (United States)

    U.S. Geological Survey, Department of the Interior — This map is a statewide summary of magmatic (igneous) rocks grouped into geologic units that can be portrayed cartographically at 1:2,500,000. This dataset consists...

  17. A Preliminary Research on Skarns of Magmatic Origin

    Institute of Scientific and Technical Information of China (English)


    Skarns of magmatic origin, or magmatic skarns as called, are formed by crystallization of skarnic magma injecting into structural fissures. They occur in various rocks (rock formations), mainly in form of veins. Usually, they possess massive structure and cumulative texture. They mainly consist of calc-silicate, without or with minor water-bearing silicates. The typical minerals in it include alkali-feldspar, calcite and anhydrite. Some silicate melt inclusions and high temperature, high salinity poly-phase inclusions can be seen in the crystals of their host minerals. The particular members of the magmatic skarns are transitional skarn and skarnic pegmatite. The magmatic skarn and the congenetic alkali-rich diorite usually collaborate in a conjugating and complementary manner. They probably are the products of calcic contamination, degassing, desilicification and separation in melt state of deep-seated (high-level magma chamber) alkali-rich intermediate-acid magma.

  18. Age and origin of magmatism along the Cenozoic Red River shear belt, China (United States)

    Zhang, Lian-Sheng; Schärer, Urs

    To decipher the geodynamic significance of Cenozoic magmatism along the Red River shear belt, geochemical analyses, U-Pb and Rb-Sr dating, and Pb-Sr-Nd isotope tracing were undertaken. Zircon, monazite, titanite, and a Ti-U-oxide from foliated granitoid intrusions in the shear belt gneisses yield U-Pb emplacement ages of 33.1+/-0.2 (2σ), 31.9+/-0.3, 25.8+/-0.2 and 24.7+/-0.2Ma, and an age of 35.0+/-0.3Ma was obtained for the roughly 100km long, adjacent Jinping (Phan Si Pang) alkali granite. Together with our previous data the new ages suggest that magmatism and left-lateral strike-slip movements occurred coevally during latest Eocene-Oligocene times from 33 to 22Ma. The Rb-Sr dating of muscovite and biotite from the northernmost gneisses indicates that cooling to 500°C occurred at 52.6+/-1.1Ma, pre-dating the onset of magmatism, whereas further cooling to 300°C took place at 28.9+/-0.6. This shows that unroofing in the north took place almost 9million years earlier than in the central gneiss segments of the shear zone. Geochemical data substantiate two types of magmas: (1) amphibole-bearing intrusions of alkaline trend which are derived from sources with Isr: 0.7065-0.7089 and iNd: -3.7 to -6.6 (2) leucogranitic layers and bodies having Isr: 0.7084-0.7354 and iNd: -3.3 to -13.4. The former type of intrusion is found in both the gneisses and the adjacent unmetamorphosed cover rocks, whereas leucogranites are restricted to the shear belt gneisses. Source signatures of the alkaline intrusions lie adjacent to the those of OIB, plotting at the lower end of the Mantle Array. Contamination of these melts by continental material seems to be very limited. On the other hand, the leucogranitic layers are essentially crustal derived but none of the them has country rock isotope signatures, requiring melting of crust different from the actually exposed gneisses. Magma sources similar to those of ocean island basalt indicate magmatism to involve melting of light rare earth

  19. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes (United States)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel


    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  20. From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution (United States)

    Cucciniello, Ciro; Melluso, Leone; le Roex, Anton P.; Jourdan, Fred; Morra, Vincenzo; de'Gennaro, Roberto; Grifa, Celestino


    The Ankaratra volcanic field covers an area of 3800 km2 in central Madagascar and comprises of lava flows, lava domes, scoria cones, tuff rings and maars emplaced at different ages (Miocene to Recent). The volcanic products include ultramafic-mafic (olivine-leucite nephelinite, basanite, alkali basalt, hawaiite and tholeiitic basalt), intermediate (mugearite and benmoreite) and felsic rocks (trachyphonolite, quartz trachyte and rhyolite), the latter often peralkaline. The 40Ar/39Ar determinations for mafic lavas yield ages of 17.45 ± 0.12 Ma, 16.63 ± 0.08 Ma and 8.62 ± 0.09 Ma, indicating a prolonged magmatic activity. The mineralogical and geochemical variations suggest that the magmatic evolution of the alkali basalt-hawaiite-mugearite-benmoreite-trachyte series can be accounted for by removal of olivine, feldspars, clinopyroxene, Fe-Ti oxides and accessory phases, producing residual trachytic and trachyphonolitic compositions mineralogically very similar to those of other volcanic areas and tectonic settings. The Ankaratra olivine leucite nephelinites, basanites and tholeiitic basalts do not seem to be associated with significant amounts of evolved comagmatic rocks. The 87Sr/86Sr (0.70504-0.71012), 143Nd/144Nd (0.51259-0.51244) and 206Pb/204Pb (17.705-18.563) isotopic ratios of trachytes and comendite are consistent with open-system processes. However, other trachyphonolites have 143Nd/144Nd (0.51280), 206Pb/204Pb (18.648), 207Pb/204Pb (15.582) and 208Pb/204Pb (38.795) similar to those of mafic rocks, suggesting differentiation processes without appreciable interaction with crustal materials. The Ankaratra volcanism is to be directly linked to a broadly E-W-trending intracontinental extension. A large-scale thermal anomaly, associated with an anomalously hot source region, is not required to explain the Cenozoic magmatism of Madagascar.

  1. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13 (United States)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.


    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  2. Numerical simulation of magmatic hydrothermal systems (United States)

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.


    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  3. Nominally hydrous magmatism on the Moon. (United States)

    McCubbin, Francis M; Steele, Andrew; Hauri, Erik H; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J


    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca(5)(PO(4))(3)(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H(2)O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher.

  4. Platinum metals in magmatic sulfide ores (United States)

    Naldrett, A.J.; Duke, J.M.


    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. Copyright ?? 1980 AAAS.

  5. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province (United States)

    Steiner, A. R.; Streck, M. J.


    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  6. Zircon U-Pb Age Determination of Volcanic Eruptions in Lutao and Lanyu in the Northern Luzon Magmatic Arc

    Directory of Open Access Journals (Sweden)

    Wen-Yu Shao


    Full Text Available This paper reports for the first time zircon U-Pb ages of volcanic rocks and sands from Lutao and Lanyu, two islets off SE Taiwan in the north Luzon arc. The samples include (1 seven andesites from four volcanic units and three river/beach sands from Lutao and (2 five basaltic andesites from four volcanic units and two river/beach sands from Lanyu. The Lutao andesites contain abundant magmatic zircons, aging from ~1.54 to ~1.24 Ma for individual sample, which yielded an overall mean 206Pb/238U age of 1.31 ±± 0.03 Ma (n = 190, MSWD = 2.6. This is slightly older than, or broadly coincident with, a mean 206Pb/238U age of 1.23 ±± 0.03 Ma (n = 103, MSWD = 1.9 given by detrital zircons from the three sands. The Lanyu volcanics appear to have less abundant magmatic zircons, aging from ~2.72 to ~2.35 Ma for individual sample, which yielded an overall mean 206Pb/238U age of 2.61 ±± 0.13 Ma (n = 11, MSWD = 1.8. This accords with a mean 206Pb/238U age of 2.69 ±± 0.11 Ma (n = 34, MSWD = 4.7 obtained by detrital zircons from the two sands. The age data suggest that in Lutao and Lanyu the major volcanic eruptions occurred at ~1.3 and ~2.6 Ma, respectively. Moreover, volcanic samples from both islets contain various amounts of older inherited zircons, ~11% in Lutao and up to ~82% in Lanyu, which together with detrital zircons from the sands show main age peaks at ~150 Ma and ~1.9 and ~2.5 Ga, consistent with the notion for a _ continental crust involved in the genesis of the northern Luzon magmatic arc.

  7. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle (United States)

    Wang, Jian; Li, Chun-Feng


    The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.

  8. Slab melting, adakite differentiation and emplacement in a fossile subduction channel: the late Paleocene Sabzevar magmatism (NE Iran) (United States)

    Rossetti, Federico; Nasrabady, Mohsen; Gerdes, Axel; Moniè, Patrick; Theye, Thomas; Lucci, Federico; Vignaroli, Gianluca


    This study describes the structural setting, petrogenesis, and geochronology of a suite of acidic magmatic rocks that are intruded in the metamorphic core of the Tertiary ophiolitic suture zone of the Sabzevar Range, NE central Iran. This ophiolitic complex consists of a ductile-to-brittle, S/SE-verging orogenic domain, where a frontal nonmetamorphic and an inner metamorphic sector can be identified in the field. The metamorphic domain consists of a major ophiolitic tectonic mélange, where variably sized, foliated metabasic rocks (blueschists, greenschists, and amphibolites) occur dispersed as centimetre- to kilometre-size blocks into a highly sheared serpentinite matrix. The granitoids occur as leucocratic tabular bodies, with variably developed contact metamorphic zones that are typically gradational in the field and concordant with the regional country rock foliation. The field relations with the host rocks and the internal (magmatic to solid state) fabrics in the Sabzevar granitoids document a syntectonic magma emplacement scenario, based on: (1) concordance of pluton shapes and internal structures with regional structures (S-L fabrics); (2) the existence of a continuum of magmatic through solid-state noncoaxial flow consistent with the regional sense of shear (top-to-the-SSE); and (3) occurrence of foliated wall-rock xenoliths, incorporated by flowing magma into the marginal sectors of the intrusive bodies. These points, together with the evidence that magma preferentially migrated along flats, attest that the Sabzevar granitoids intruded into rocks that were actively deforming during compressional shearing. In the TAS diagram, the granitoid compositions define a medium-K calc-alkaline suite, spanning from basaltic andesite to the dacite and rhyolite fields. They show characteristic low MgO (0.15-0.60 wt%) and Ni (

  9. Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): Implications for the geodynamic evolution of the Celebes basin; Basaltes de bassin arriere-arc de l`Eocene-Miocene et tholeiites d`arc insulaire associees du nord Sulawesi (Indonesie): implications pour l`evolution geodynamique du bassin des Celebes

    Energy Technology Data Exchange (ETDEWEB)

    Rangin, C. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Maury, R.C.; Bellon, H.; Cotten, J. [Universite de Bretagne Occidentale, 29 - Brest (France); Polve, M. [Universite Paul Sabatier, 31 - Toulouse (France); Priadi, B.; Soeria-Atmadja, R. [Department of Geology, ITB, Bandung (Indonesia); Joron, J.L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules


    Eocene BABB basalts intruded by tholeiitic and calk-alkalic island arc magmatic rocks are reported from the north arm of Sulawesi (Indonesia). Age and geochemical similarities between these basalts and those drilled in the Celebes Sea indicate this North Sulawesi volcanic arc was built on the same oceanic crust. The 25 deg late Neogene clockwise rotation of the north arm of Sulawesi following its collision with fragments of Australia (Sula, Buton) is not sufficient to explain the asymmetrical magnetic anomalies in the Celebes basin. The North Sulawesi island arc could be interpreted as having progressively retreated northward on its own Celebes sea back arc basin, during an episode of Palaeogene-early Neogene tectonic erosion along the trench. (authors) 37 refs.

  10. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)



    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  11. An assessment of the record in compositional variations from mantle source to magmatism at East Island, Crozet archipelago (United States)

    Meyzen, C. M.; Marzoli, A.; Bellieni, G.


    The Crozet archipelago, located midway between Madagascar and Antarctica, constitutes the emerged part of the easternmost bank of the Crozet plateau, which lies upon upper Cretaceous oceanic seafloor derived from the Southeast Indian Ridge. It forms an elongated chain of five islands and islets, divided into two groups: an older eastern island group (Terres Australes et Antarctiques Francaises' expedition in 1969 from the northern part of East Island. Our alkali basalts from the Crozet archipelago are distinct from other oceanic within-plate magmatic rocks in showing ubiquitous large depletions in LILE with respect to other incompatible elements, although these rocks constitute one of the most incompatible-element-enriched suites among Earth's oceanic island basalts (OIB). The similarity of their trace element ratios and parallelism of their rare earth element patterns indicate: (1) a mantle source homogeneity over at least 1 Ma; (2) an uniformity of the melting conditions (i.e. degree of melting and residual mineralogy) during most of the sub-aerial eruptive history involving very small melting degrees of a garnet-phlogopite bearing, enriched mantle source, as to be expected to occur beneath an old tectonic plate where the bottom of the lithosphere is likely near the garnet to spinel transition. We will present new geodynamical and geochemical constraints on the mechanisms of formation for such garnet-phlogopite-bearing sources in oceanic island environments.

  12. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky


    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  13. Transregional lineament of Central Asia, its magmatism, metallogeny and seismicity (United States)

    Sidorova, I.


    The analysis of the place and role of such large fault as Central Kyzylkum, North Nurata and South Ferghana, Atbashin, which were regarded earlier as separate independent structures led us to the idea that they are parts of a single global structure. We suggest that it should be called "Transregional lineament of Central Asia". Transregional lineament of Central Asia is multisutured long-term, and in the nodal points of some parts it is complicated by deep fault zones of «Anti Tien-Shan» trend.There are large gold ore deposits (Muruntau, Kokpatas, Kumtor) in the intersection of some of these faults. Within the lineament there are 4 mafite - ultramafite associations of different age, that are presented as isolated or combined blocks, zones and regions. The most ancient is ophiolite one (I association). Best of all it is developed in Sultanuvais and Northern Tamdytau, Uzbekistan. The second, rift association of this belt is picrite-gabbro-diabase-alkali-olivine-basalt is widespread within the belt (northern Bukantau, northern Nuratau, northern slope of the Altay ridge).The third association is peridotite-gabbroic. It is represented by the Tebinbulak intrusive of Sultanuvais. Coverings, small stocks, dikes and explosion tubes formed by potassic mafite-ultramafites ore related to much later inter-plate (P-T) occurrences of mafite-ultramafite magmatism (IY association). On Kyrgyzstan's territory the studied lineament is observed as a system of regional deep faults -Atbashi-Inylchek and Southern Ferghana, with which the ophiolite ultramafite-mafite formation is associated. The rocks have the traces of tectonic movements, which can be the ground to regard them as protrusions. Tectonically, the vast territory of Mongolia is divided into two large blocks: northern and southern. This part of the lineament called Transmongolian. This part is week studied-a special investigation was only carried out in its western part - Bulgan fault. Thus, in the presence of linear

  14. Neotectonic deformation within an extensional stepover in El Salvador magmatic arc, Central America: Implication for the interaction of arc magmatism and deformation (United States)

    Garibaldi, Nicolás; Tikoff, Basil; Hernández, Walter


    Dominantly westward movement of the El Salvador forearc at rates of 11 mm/yr is accommodated by a series of E-W to WNW oriented, dextral, strike-slip fault zones herein referred to as the El Salvador Fault System (ESFS). The geometry of the ESFS defines a series of extensional step-overs. Along the arc, basaltic volcanism in the stepovers is associated with NNW-oriented normal faults, whereas rhyolitic volcanism is associated with strike-slip fault zones of the ESFS. On the ESFS, the San Salvador Extensional Stepover (SSES) is bound to the south by the San Vicente fault zone, where the rhyolitic Ilopango caldera is located. In the SSES, tephras from Ilopango -the Tierra Blanca (TB) sequence- track long-term elongation. Older TB units (TB5-8) contain abundant normal faults; lying unconformably above these older TB units, younger TB members (TBJ, TB2-4) are generally unfaulted. Analyses of faults in TB5-8 indicate NE- to ENE-oriented elongation in the SSES. Deformation occurred between deposition of the TB4 and TB5 units, during quiescence of the Ilopango eruptive center. Using this temporal constraint, minimum elongation rates of 3.50 × 10- 15 s- 1, 2.06 × 10- 14 s- 1 and 4.42 × 10- 14 s- 1 were calculated for three traverses. From regional geodetic data and fault kinematics throughout El Salvador, we interpret the SSES as part of a series of pull-apart structures along the arc axis. The calculated paleostress orientations are consistent with a pull-apart geometry resulting from forearc movement. The extensional deformation occurs during a 50 k.y. lull in rhyolitic activity, suggesting an interplay between magmatism and deformation within the arc. During significant rhyolitic volcanic activity, only minor elongation is observed in the SSES, despite ongoing translation of the Salvadoran forearc. We speculate that rhyolitic magmatism along upper crustal faults may facilitate strike-slip movement on the ESFS, rather than distributing deformation throughout the

  15. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. (United States)

    McSween, H Y; Grove, T L; Lentz, R C; Dann, J C; Holzheid, A H; Riciputi, L R; Ryan, J G


    Observations of martian surface morphology have been used to argue that an ancient ocean once existed on Mars. It has been thought that significant quantities of such water could have been supplied to the martian surface through volcanic outgassing, but this suggestion is contradicted by the low magmatic water content that is generally inferred from chemical analyses of igneous martian meteorites. Here, however, we report the distributions of trace elements within pyroxenes of the Shergotty meteorite--a basalt body ejected 175 million years ago from Mars--as well as hydrous and anhydrous crystallization experiments that, together, imply that water contents of pre-eruptive magma on Mars could have been up to 1.8%. We found that in the Shergotty meteorite, the inner cores of pyroxene minerals (which formed at depth in the martian crust) are enriched in soluble trace elements when compared to the outer rims (which crystallized on or near to the martian surface). This implies that water was present in pyroxenes at depth but was largely lost as pyroxenes were carried to the surface during magma ascent. We conclude that ascending magmas possibly delivered significant quantities of water to the martian surface in recent times, reconciling geologic and petrologic constraints on the outgassing history of Mars.

  16. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki


    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  17. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki


    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  18. Middle Jurassic Topawa group, Baboquivari Mountains, south-central Arizona: Volcanic and sedimentary record of deep basins within the Jurassic magmatic arc (United States)

    Haxel, G.B.; Wright, J.E.; Riggs, N.R.; Tosdal, R.M.; May, D.J.


    Among supracrustal sequences of the Jurassic magmatic arc of the southwestern Cordillera, the Middle Jurassic Topawa Group, Baboquivari Mountains, south-central Arizona, is remarkable for its lithologic diversity and substantial stratigraphic thickness, ???8 km. The Topawa Group comprises four units (in order of decreasing age): (1) Ali Molina Formation-largely pyroclastic rhyolite with interlayered eolian and fluvial arenite, and overlying conglomerate and sandstone; (2) Pitoikam Formation-conglomerate, sedimentary breccia, and sandstone overlain by interbedded silt- stone and sandstone; (3) Mulberry Wash Formation-rhyolite lava flows, flow breccias, and mass-flow breccias, with intercalated intraformational conglomerate, sedimentary breccia, and sandstone, plus sparse within-plate alkali basalt and comendite in the upper part; and (4) Tinaja Spring Porphyry-intrusive rhyolite. The Mulberry Wash alkali basalt and comendite are genetically unrelated to the dominant calcalkaline rhyolite. U-Pb isotopic analyses of zircon from volcanic and intrusive rocks indicate the Topawa Group, despite its considerable thickness, represents only several million years of Middle Jurassic time, between approximately 170 and 165 Ma. Sedimentary rocks of the Topawa Group record mixing of detritus from a minimum of three sources: a dominant local source of porphyritic silicic volcanic and subvolcanic rocks, identical or similar to those of the Topawa Group itself; Meso- proterozoic or Cambrian conglomerates in central or southeast Arizona, which contributed well-rounded, highly durable, polycyclic quartzite pebbles; and eolian sand fields, related to Middle Jurassic ergs that lay to the north of the magmatic arc and are now preserved on the Colorado Plateau. As the Topawa Group evidently represents only a relatively short interval of time, it does not record long-term evolution of the Jurassic magmatic arc, but rather represents a Middle Jurassic "stratigraphic snapshot" of the arc

  19. Mafic sill/dykes intruding into late Maastrichtian-early Paleocene calciclastic units, NE-Turkey: Petrographical and geochemical features of latest magmatic activity before collision in the eastern Sakarya zone (United States)

    Aydin, Faruk; Oǧuz, Simge; Karsli, Orhan; Kandemir, Raif; Şen, Cüneyt; Uysal, İbrahim


    We present here new petrographical, mineralogical and whole-rock geochemical data for mafic sill/dykes intruding into late Maastrichtian-early Paleocene calciclastic units in the Düzköy (Trabzon) and Cankurtaran (Artvin) areas (NE Turkey) of the eastern Sakarya zone (ESZ) in order to decipher the latest magmatic activity in the final stage of subduction-related magmatism of the ESZ. U-Pb zircon dating for the mafic sill/dykes in the region yielded ages varying from 83.6 to 78.5Ma (i.e. Early Campanian). Mafic sill/dykes consist of mostly basalts and lesser basaltic-andesites with komatiitic basalts. Most of the dyke samples display aphyric to porphyritic texture with phenocrysts of plagioclase (mostly replaced by calcite), clinopyroxene (partly uralized), olivine (almost serpentinized), and amphibole (partly chloritized). Based on the MgO, Nb and Zr contents with Nb/Y ratio, the mafic dykes from Düzköy area are mainly classified as two subgroups (basalts and basaltic andesites) while those of Cankurtaran can be divided into three different groups (low- and high-Nb normal basalts and komatitic basalts). Düzköy basaltic dykes have higher MgO (3.8-7.8%) and lower Nb (3-4ppm) and Zr (53-62ppm) contents with Nb/Y ratio (˜0.2) than those of Düzköy basaltic-andesitic dykes (MgO: ˜1.8%, Nb: 6-15ppm, Zr: 106-145ppm, Nb/Y: 0.3-0.6). On the other hand, Cankurtaran mafic sill/dykes have relatively high MgO contents (˜4-20%). These sill/dykes with 15-20% of MgO and group 1 and 4.0-4.4% for group 2), Nb (3-14ppm for group 1 and 19-21ppm for group 2), Zr (94-111ppm for group 1 and 125-140ppm for group 2) contents, and Nb/Y ratio (˜0.2-0.8 for group 1 and (˜1.0-1.2 for group 2). Although the studied mafic sill/dykes have generally subalkaline composition, they show a geochemical character changing from mostly tholeiitic to rarely calc-alkaline and show typical features of late Cretaceous subduction-related magmatic rocks as in the ESZ. On the chondrite-normalized REE

  20. Flood insurance in Canada: implications for flood management and residential vulnerability to flood hazards. (United States)

    Oulahen, Greg


    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  1. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards (United States)

    Oulahen, Greg


    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  2. Health impacts of floods. (United States)

    Du, Weiwei; FitzGerald, Gerard Joseph; Clark, Michele; Hou, Xiang-Yu


    Floods are the most common hazard to cause disasters and have led to extensive morbidity and mortality throughout the world. The impact of floods on the human community is related directly to the location and topography of the area, as well as human demographics and characteristics of the built environment. The aim of this study is to identify the health impacts of disasters and the underlying causes of health impacts associated with floods. A conceptual framework is developed that may assist with the development of a rational and comprehensive approach to prevention, mitigation, and management. This study involved an extensive literature review that located >500 references, which were analyzed to identify common themes, findings, and expert views. The findings then were distilled into common themes. The health impacts of floods are wide ranging, and depend on a number of factors. However, the health impacts of a particular flood are specific to the particular context. The immediate health impacts of floods include drowning, injuries, hypothermia, and animal bites. Health risks also are associated with the evacuation of patients, loss of health workers, and loss of health infrastructure including essential drugs and supplies. In the medium-term, infected wounds, complications of injury, poisoning, poor mental health, communicable diseases, and starvation are indirect effects of flooding. In the long-term, chronic disease, disability, poor mental health, and poverty-related diseases including malnutrition are the potential legacy. This article proposes a structured approach to the classification of the health impacts of floods and a conceptual framework that demonstrates the relationships between floods and the direct and indirect health consequences.

  3. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China (United States)

    Zhao, Yun; Xue, Chunji; Liu, Sheng-Ao; Symons, David T. A.; Zhao, Xiaobo; Yang, Yongqiang; Ke, Junjun


    Although it has been recently demonstrated that Cu isotope fractionation during mantle melting and basaltic magma differentiation is limited, the behavior of Cu isotopes during magmatic differentiation involving significant sulfide segregation remains unclear. Magmatic Ni-Cu deposits, which formed via sulfide segregation from basaltic or picritic magmas, are appropriate targets to address this issue. Here we report Cu isotope data for sulfides (chalcopyrite) from the Tulaergen Ni-Cu sulfide deposit in Xinjiang, NW China. Sulfides, including sparsely disseminated (hosted by hornblende gabbro), moderately disseminated (hosted by hornblende olivine websterite), densely disseminated (hosted by hornblende lherzolite) and massive sulfides (sandwiched between country rocks and mafic-ultramafic rocks), were collected from adits at 1050 m, 1100 m and 1150 m levels. The sparsely and moderately disseminated sulfides on 1150 m and 1050 m levels have a restricted range of δ65Cu values from - 0.38‰ to 0.15‰, whereas disseminated and massive sulfides on 1100 m level have δ65Cu values ranging widely from - 1.98‰ to - 0.04‰ and from - 1.08‰ to - 0.52‰, respectively. The δ65Cu values of disseminated sulfides are negatively correlated with whole-rock S and Cu concentrations, and sulfides formed at later stages have heavier δ65Cu values. These observations suggest significant Cu isotope fractionation during sulfide-magma differentiation above 600 °C. During the formation of the Tulaergen magmatic Ni-Cu deposit, sulfide segregation and crystallization of olivine and pyroxene caused the increase of Fe3 + contents in the residual magmas, which would move the redox reaction Cu+ + Fe3 + = Fe2 + + Cu2 + toward larger amounts of Cu2 + in the melt. The presence of Cu2 + in melt allowed redox transformation to happen during sulfide segregation. The residual magmas are enriched in heavy Cu isotopes due to the removal of 65Cu-depleted sulfides, and sulfides formed at later

  4. Het Zevengebergte als supergroeve. Drachenfels, Stenzelberger, Wolkenburger en basalt

    NARCIS (Netherlands)

    Nijland, T.G.


    Vanuit Nederlands perspectief kan het Zevengebergte aan de Rijn tegenover Bonn als één grote groeve worden beschouwd. In de middeleeuwen leverde het gebied de bekende Drachenfels trachiet. In de 19e eeuw stichten Nederlanders de Basalt AG in Linz om aan de grote vraag naar basalt voor waterbouwkundi

  5. On Linear Relationships between Trace Elements in Oceanic Basalts

    Institute of Scientific and Technical Information of China (English)



    On the basis of the batch melting model*,the author explains the linear relationships between the elements which are often recognized in oceanic basalts,has established mathematic models,discusses some relevant questions,and finally gives an example to show how to apply the method to research on basalts.

  6. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  7. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.


    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO/sub 3/, which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs/sub 2/MoO/sub 4/, Cs/sub 2/U/sub 2/O/sub 7/) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO/sub 4/, with the production of pollucite exceeding that of CsAlSiO/sub 4/. Dissolution of ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO/sub 3/.3H/sub 2/O) during some experiments containing basalt phases, indicates a tendency to oxidize U/sup 4 +/ to U/sup 6 +/. When diopside (nominally CaMgSi/sub 2/O/sub 6/) and ..beta..-Cs/sub 2/U/sub 2/O/sub 7/ were hydrothermally reacted, at 300/sup 0/C both UO/sub 2/ and UO/sub 3/.3H/sub 2/O were produced. Results of experiments on SrZrO/sub 3/ show it to be

  8. Collision Event during 177-135 Ma on the Eastern Margin of the Qinghai-Tibet Plateau: Evidence from 40Ar/ 39Ar Dating for Basalts on the Western Margin of the Yangtze Platform

    Institute of Scientific and Technical Information of China (English)

    侯增谦; 陈文; 卢记仁


    Geochronology of continental flood basalts sampled from the Emei large igneous province (LIP) on the western margin of the Yangtze platform was investigated by the laser microprobe 40Ar/39Ar dating technique. These basalts yield a fairly wide range of 40Ar/39Ar ages, varying from 259 to 135 Ma. One basalt sample, at least altered, recorded the oldest 40Ar/39Ar age of about 259 Ma, corresponding to a peak eruption age of the Emei LIP continental flood basalts. Most of the samples yield much younger ages from 135 to 177 Ma, which are consistent with the K-Ar ages for the same samples (122.8-172.1 Ma). The dating data suggest that these Permian basalts had been widely affected by the regional tectonothermal event at 177-135 Ma. The event was probably caused by the convergence and collision among the Laurasia, Yangtze and Qiangtang-Qamdo continental blocks on the eastern margin of the Qinghai-Tibet plateau after the late Triassic. The age of the event reflects the timing of the peak collisional orogeny.

  9. Linking magma composition with volcano size and eruptive style in basaltic monogenetic systems (United States)

    Smith, I. E.; McGee, L. E.; Cronin, S. J.


    Magma composition, volcano size and eruptive style (together with vent locations) are the definitive parameters of basaltic monogenetic systems. These variables are not independent, but the relationships between them are complex. Monogenetic volcano fields that episodically erupt small-volume, discrete magma batches such as the Auckland Volcanic Field (AVF, northern New Zealand), typically represent primary mantle melts variably modified by near source processes. In such cases, where the volume of magma is small, eruption styles are strongly controlled by the interaction of magma with the surficial environment and this is determined by both magma volume and its rise rate. The magmatic compositional extremes of primitive magmas in the AVF define a spectrum ranging from strongly silica-undersaturated nephelinite to sub-alkalic basalt. Nephelinites are low SiO2 (~40 wt.%), highly incompatible-element enriched compositions, representing very low degrees of partial melting (indicates that all of these magmas are sourced within the same general mantle region at depths of 80-70 km. The two compositional extremes also define extremes in volume of magma and ultimately magma flux at the surface. The surficial environment of the AVF is characterized by highly water saturated sediments of variable competency and many pressurized aquifer systems. Where there is a combination of small volumes and low flux rates, environmental factors dominate and phreatomagmatic explosive eruptions ensue, forming tuff cones, rings and maars. Larger volumes and flux rates result in dry eruptions forming cinder cones and lava fields. Thus at a fundamental level defining magma source characteristics and temporal or spatial variation in these (such as cyclic or evolutionary trends) can inform better long term forecasts of surface eruption processes and thus should be more closely examined in hazard studies of monogentic fields.

  10. Development of flood index by characterisation of flood hydrographs (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman


    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  11. Nogales flood detention study (United States)

    Norman, Laura M.; Levick, Lainie; Guertin, D. Phillip; Callegary, James; Guadarrama, Jesus Quintanar; Anaya, Claudia Zulema Gil; Prichard, Andrea; Gray, Floyd; Castellanos, Edgar; Tepezano, Edgar; Huth, Hans; Vandervoet, Prescott; Rodriguez, Saul; Nunez, Jose; Atwood, Donald; Granillo, Gilberto Patricio Olivero; Ceballos, Francisco Octavio Gastellum


    Flooding in Ambos Nogales often exceeds the capacity of the channel and adjacent land areas, endangering many people. The Nogales Wash is being studied to prevent future flood disasters and detention features are being installed in tributaries of the wash. This paper describes the application of the KINEROS2 model and efforts to understand the capacity of these detention features under various flood and urbanization scenarios. Results depict a reduction in peak flow for the 10-year, 1-hour event based on current land use in tributaries with detention features. However, model results also demonstrate that larger storm events and increasing urbanization will put a strain on the features and limit their effectiveness.

  12. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California (United States)

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.


    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  13. Evidence from Olivine-Hosted Melt Inclusions that the Martian Mantle has a Chondritic D/H Ratio and that Some Young Basalts have Assimilated Old Crust (United States)

    Usui, Tomohiro; Alexander, O'D.; Wang, J.; Simon, J. I.; Jones, J. H.


    Magmatic degassing of volatile elements affects the climate and near-surface environment of Mars. Telescopic and meteorite studies have revealed that the Martian atmosphere and near-surface materials have D/H ratios 5-6 times terrestrial values [e.g., 1, 2]. Such high D/H ratios are interpreted to result from the preferential loss of H relative to heavier D from the Martian atmosphere, assuming that the original Martian water inventory had a D/H ratio similar to terrestrial values and to H in primitive meteorites [e.g., 1, 3]. However, the primordial Martian D/H ratio has, until now, not been well constrained. The uncertainty over the Martian primordial D/H ratio has arisen both from the scarcity of primitive Martian meteorites and as a result of contamination by terrestrial and, perhaps, Martian surface waters that obscure the signature of the Martian mantle. This study reports a comprehensive dataset of magmatic volatiles and D/H ratios in Martian primary magmas based on low-contamination, in situ ion microprobe analyses of olivine-hosted melt inclusions from both depleted [Yamato 980459 (Y98)] and enriched [Larkman Nunatak 06319 (LAR06)] Martian basaltic meteorites. Analyses of these primitive melts provide definitive evidence that the Martian mantle has retained a primordial D/H ratio and that young Martian basalts have assimilated old Martian crust.

  14. [Determination of Total Iron and Fe2+ in Basalt]. (United States)

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen


    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  15. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas. (United States)

    Hamilton, W


    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  16. The Grizzly Lake complex (Yellowstone Volcano, USA): Mixing between basalt and rhyolite unraveled by microanalysis and X-ray microtomography (United States)

    Morgavi, Daniele; Arzilli, Fabio; Pritchard, Chad; Perugini, Diego; Mancini, Lucia; Larson, Peter; Dingwell, Donald B.


    Magma mixing is a widespread petrogenetic process. It has long been suspected to operate in concert with fractional crystallization and assimilation to produce chemical and temperature gradients in magmas. In particular, the injection of mafic magmas into felsic magma chambers is widely regarded as a key driver in the sudden triggering of what often become highly explosive volcanic eruptions. Understanding the mechanistic event chain leading to such hazardous events is a scientific goal of high priority. Here we investigate a mingling event via the evidence preserved in mingled lavas using a combination of X-ray computed microtomographic and electron microprobe analyses, to unravel the complex textures and attendant chemical heterogeneities of the mixed basaltic and rhyolitic eruption of Grizzly Lake in the Norris-Mammoth corridor of the Yellowstone Plateau volcanic field (YVF). We observe evidence that both magmatic viscous inter-fingering of magmas and disequilibrium crystallization/dissolution processes occur. Furthermore, these processes constrain the timescale of interaction between the two magmatic components prior to their eruption. X-ray microtomography images show variegated textural features, involving vesicle and crystal distributions, filament morphology, the distribution of enclaves, and further textural features otherwise obscured in conventional 2D observations and analyses. Although our central effort was applied to the determination of mixing end members, analysis of the hybrid portion has led to the discovery that mixing in the Grizzly Lake system was also characterized by the disintegration and dissolution of mafic crystals in the rhyolitic magma. The presence of mineral phases in both end member, for example, forsteritic olivine, sanidine, and quartz and their transport throughout the magmatic mass, by a combination of both mixing dynamics and flow imposed by ascent of the magmatic mass and its eruption, might have acted as a "geometric

  17. Lead isotopic composition and lead source of the Tongchanghe basalt-type native copper-chalcocite deposit in Ninglang, western Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian; ZHU Xiaoqing; ZHANG Zhengwei


    The Tongchanghe native copper-chalcocite deposit at Ninglang occurs in low-Ti basalts of western Yunnan, and the mode of fault-filling & metasomatism metallogenesis indicates that this deposit is of late-stage hydrothermal origin. This makes it more complicated to define the source of ore-forming materials. This paper introduces the Pb isotope data of Himalayan alkali-rich porphyries, regional Early-Middle Proterozoic metamorphic rock basement and various types of rocks of the mining district in western Yunnan with an attempt to constrain the origin of the Tongchanghe native copper-chalcocite deposit at Ninglang.The results showed that the ores are relatively homogeneous in Pb isotopic composition, implying a simple ore-forming material source. The three sets of Pb isotopic ratios in the Himalayan alkali-rich porphyries are all higher than those of the ores; the regional basement metamorphic rocks show a wide range of variations in Pb isotopic ratio, quite different from the isotopic composition of ore lead; the Pb isotopic composition of the Triassic sedimentary rocks and mudstone and siltstone interbeds in the Late Permian Heinishao Formation (corresponding to the forth cycle of basaltic eruption) in the mining district has the characteristics of radiogenic lead and is significantly different from the isotopic composition of ore lead; like the ores, the Emeishan basalts in the mining district and those regionally distributed possess the same Pb isotopic composition, showing a complete overlap with respect to their distribution range. From the above, the possibilities can be ruled out that the ore-forming materials of the Tongchanghe deposit were derived from the basement, a variety of Himalayan magmatic activities, etc. It is thereby defined that the ore-forming materials were derived largely from the Emeishan basalts. From the data available it is deduced that the native cupper-chalcocite-type metallogenesis that occurred in the Emeishan basalt-distributed area

  18. Post-Hercynian subvolcanic magmatism in the Serre Massif (Central-Southern Calabria, Italy) (United States)

    Romano, V.; Cirrincione, R.; Fiannacca, P.; Mazzoleni, P.; Tranchina, A.


    In the Serre Massif (Central-Southern Calabria, Italy) dykes and subvolcanic bodies intrude diffusively both Hercynian metamorphic rocks and late-Hercynian granitoids. They range in composition from basaltic andesites to dacite-rhyodacites and can be ascribed to the extensive magmatic activity that affects the entire Hercynian orogenic belt in late Paleozoic - early Mesozoic time. The geodinamic framework of the magmatic activity is still matter of debate, nevertheless most authors agree in correlating magmatism both to the late-orogenic collapse of the Hercynian belt and to the lithosphere thinning responsible for the subsequent continental rifting. In this work, we propose a petrogenetic model for acidic to basic hypabissal bodies from southern Calabria in order to define the nature of sources, discriminate magmatic processes and supply a contribution in the geodynamic reconstruction of the Late Palaeozoic in the Calabria-Peloritani Orogen. In relation to their geochemical affinity, studied dykes have been divided in two groups: a medium- to high-K calc-alkaline and a tholeiitic one. Dykes belonging to the former group, andesitic and dacitic-rhyodacitic in composition, show typical features of subduction-related magmatism, such as LILE and LREE enrichments, depletions in HFSE, peaks in Rb, Th and Ce, accentuated troughs in Ba, Nb-Ta, P and Ti (White and Dupré, 1986; McCulloch and Gamble, 1991), contrasting with the late Hercynian collisional context. On the other side, features typical of intra-plate magmatic activity, such as a moderate enrichment in Ta, Nb, Ce, P, Zr, Hf and Sm relative to MORB composition are also present in studied rocks (Shimizu & Arculus, 1975; Pearce, 1982). REE-patterns are strongly to weakly fractionated for the andesitic rocks (Lan/Ybn = 10.03-13.98) and the dacitic-rhyodacitic ones (Lan/Ybn = 6.00 to 2.82), respectively. The latter rocks exhibit a very slight negative Eu anomaly, whereas no Eu anomaly is recognizable in the andesite


    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  20. Localized Flood Management (United States)

    practitioners will cover a range of practices that can help communities build flood resilience, from small scale interventions such as rain gardens and permeable pavement to coordinated open space and floodplain preservation

  1. Floods and Mold Growth (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  2. Permian basalts and trachytes from Esterel (SE France): a transitional tholeiitic suite emplaced during lithosphere thinning; Basaltes et trachytes permiens de l`Esterel (SE France): une serie tholeiitique transitionnelle epanchee pendant l`amincissement lithospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, H.; Basile, Ch. [Grenoble-1 Univ., 38 - Grenoble (France). Laboratoire de Geodynamique des Chaines Alpines, CNRS UPRES-A5025; Dupuis, V. [Institut de Geodynamique, UMR Geosciences Azur, 06 - Valbonne (France)


    Geochemical (major, trace and rare earth elements) and isotopic ({sup 143}Nd/{sup 144}Nd) compositions of lavas emplaced in the Esterel Massif (eastern Provence, France) at the end of the Permian allow to estimate the evolution of the continental lithosphere between the end of the Hercynian orogenesis and the beginning of the Tethyan rifting. Basalts from Agay basin and trachyte from Batterie des Lions belong to a transitional tholeiitic suite, characterized by negative Nb and Ta anomalies (relative to N-MORB) and homogeneous {epsilon}Nd{sub (T=250Ma)} ratios, close to the Bulk Earth. This suggests that the basalts from Agay basin and trachyte from Batterie des Lions derived from the partial melting of a mantle contaminated by lower continental crust. Maure Vieille trachytes differ from the differentiated rocks of the transitional suite by higher heavy rare earth abundances and {epsilon}Nd{sub (T=250Ma)} of +4/+5. These high {xi}Nd ratios suggest that the Maure Vieille trachytes could derive from the partial melting of a more depleted source, likely an asthenospheric mantle. The isotopic compositions of the Permian lavas from Esterel suggest the thinning (and perhaps the disappearance) of the lithospheric mantle which is associated at the surface with a NNW-SSE extension. The progressive change recorded in Agay basin from a stretching regime to a strike-slip regime may be related to the end of the lithospheric thinning and of the Permian magmatism. (authors) 37 refs.

  3. The Terrible Flood

    Institute of Scientific and Technical Information of China (English)

    Dorine; Houston


    Dear Xiao Lan. ’Several times a week, no matter which of the major television news networksI turn to, the screen is filled with tragic pictures of flooding along the YangtzeRiver, and I grieve for the suffering people whose lives are being so terriblydisrupted by this disaster. Even more to be grieved is the terrible number of peoplewho have been killed by the floods and their effects.

  4. Neoarchean-Early Paleoproterozoic and Early Neoproterozoic arc magmatism in the Lützow-Holm Complex, East Antarctica: Insights from petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes (United States)

    Tsunogae, Toshiaki; Yang, Qiong-Yan; Santosh, M.


    The Lützow-Holm Complex (LHC) of East Antarctica forms part of the Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb and Lu-Hf isotopic data for meta-igneous rocks including charnockite, felsic gneiss, metagabbro, and mafic granulite from the LHC and evaluate the Neoarchean to Early Paleoproterozoic (ca. 2.5 Ga) and Early Neoproterozoic (ca. 1.0 Ga) arc magmatic events. The trace element geochemical signatures reveal a volcanic arc affinity for the charnockites from Sudare Rocks and Vesleknausen and felsic gneiss from Rundvågshetta, suggesting that the protoliths of these rocks were derived from felsic arc magmas. In contrast, metagabbros from Skallevikshalsen and Austhovde, occurring as boudins in metasediments, show non-arc signatures (within-plate basalt or mid-oceanic ridge basalt). The upper intercept ages of magmatic zircons in charnockite plotted on concordia diagrams yielded 2508 ± 14 Ma (Sudare Rocks) and 2490 ± 18 Ma (Vesleknausen), clearly suggesting a Neoarchean to Early Paleoproterozoic arc magmatic event. A subsequent thermal event during Early Neoproterozoic traced by 206Pb/238U age of oscillatory-zoned core of zircon in mafic granulite from Langhovde (973 ± 10 Ma) is consistent with a similar Early Neoproterozoic magmatic event reported from the LHC, suggesting a second stage of arc magmatism. The timing of peak metamorphism has been inferred from 206Pb/238U mean ages of structureless zircons in metagabbros from Skallevikshalsen and Austhovde, mafic granulite from Langhovde, and felsic gneiss from Rundvågshetta in the range of 551 ± 5.4 to 584 ± 5.0 Ma. Zircon Lu-Hf data of Neoarchean charnockites from Sudare Rocks and Vesleknausen indicate that the protolith magma was sourced from Paleo- to Neoarchean juvenile components mixed with reworked ancient crustal materials. Protolith magmatic rock of the felsic gneiss from Rundvågshetta might

  5. The Deep Crust Magmatic Refinery, Part 2 : The Magmatic Output of Numerical Models. (United States)

    Bouilhol, P.; Riel, N., Jr.; Van Hunen, J.


    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To better constrain lower crust processes, we have built up a numerical model [see Riel et al. associated abstract for methods] to explore different parameters, unravelling the complex interplay between melt percolation / crystallization and degassing / re-melting in a so called "hot zone" model. We simulated the intrusion of water bearing mantle melts at the base of an amphibolitized lower crust during a magmatic event that lasts 5 Ma. We varied several parameters such as Moho depth and melt rock ratio to better constrain what controls the final melt / lower crust composition.. We show the evolution of the chemical characteristics of the melt that escape the system during this magmatic event, as well as the resulting lower crust characteristics. We illustrate how the evolution of melt major elements composition reflects the progressive replacement of the crust towards compositions that are dominated by the mantle melt input. The resulting magmas cover a wide range of composition from

  6. Flood Bypass Capacity Optimization (United States)

    Siclari, A.; Hui, R.; Lund, J. R.


    Large river flows can damage adjacent flood-prone areas, by exceeding river channel and levee capacities. Particularly large floods are difficult to contain in leveed river banks alone. Flood bypasses often can efficiently reduce flood risks, where excess river flow is diverted over a weir to bypasses, that incur much less damage and cost. Additional benefits of bypasses include ecosystem protection, agriculture, groundwater recharge and recreation. Constructing or expanding an existing bypass costs in land purchase easements, and levee setbacks. Accounting for such benefits and costs, this study develops a simple mathematical model for optimizing flood bypass capacity using benefit-cost and risk analysis. Application to the Yolo Bypass, an existing bypass along the Sacramento River in California, estimates optimal capacity that economically reduces flood damage and increases various benefits, especially for agriculture. Land availability is likely to limit bypass expansion. Compensation for landowners could relax such limitations. Other economic values could affect the optimal results, which are shown by sensitivity analysis on major parameters. By including land geography into the model, location of promising capacity expansions can be identified.

  7. Re and Os concentrations in arc basalts: The roles of volatility and source region fO 2 variations (United States)

    Righter, K.; Chesley, J. T.; Caiazza, C. M.; Gibson, E. K., Jr.; Ruiz, J.


    Olivine and spinel compositions, major elements (including ferric and ferrous iron), S, Re and Os contents have been measured for a suite of primitive (most >6 wt% MgO) basalts from the Trans Mexican Volcanic Belt (TMVB), including the western Mexican volcanic belt, the Michoacan-Guanajuato Volcanic Field, Sierra Chichinautzin, Pico de Orizaba region, Palma Sola, San Martin Tuxtlas, and the eastern alkaline province (EAP). Sulfur contents at sulfide saturation were calculated to determine whether the measured S contents are representative of sulfide saturated liquids. Most of the samples have S contents much lower than expected for sulfide saturation. A few have higher contents than calculated perhaps due to the presence of sulfate in the measured total sulfur (i.e., more oxidized samples). Comparison of the TMVB samples along with previously analyzed MORB, OIB, BABB and arc samples reveals a continuum of Re and Os contents that is best explained by variation in oxygen fugacity—and thus sulfide stability—in the source region. High Re and Os magmatic suites are best explained by derivation by melting of oxidized mantle, where sulfide is no longer stable and Re and Os behave incompatibly, whereas low Re and Os magmatic suites are derived from melting of relatively reduced mantle where sulfide is stable, and Re and Os behave compatibly. Intermediate examples abound, and arc magmas span a wide range of Re and Os concentrations due to variation of fO 2 in the source during genesis of arc magmas. Low Re magmatic suites are furthermore potentially affected by volatility which can lower Re by a factor of 3-5.

  8. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally

  9. Palaeomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, Gerardus Henricus Martina Anna


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally

  10. Palaeomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, Gerardus Henricus Martina Anna


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally accept

  11. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally accept

  12. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts (United States)

    Rizo, Hanika; Walker, Richard J.; Carlson, Richard W.; Horan, Mary F.; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G.


    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth’s primary accretionary period have survived to the present.

  13. Palaeomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, Gerardus Henricus Martina Anna


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally accept

  14. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.


    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally accept

  15. Study on lithogeochemistry of Middle Jurassic basalts from southern China represented by the Fankeng basalts from Yongding of Fujian Province

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Jincheng; JIANG; Shaoyong; WANG; Xiaolei; YANG; Jinghong; ZHANG; Mengqun


    There exists an E-W trending Middle Jurassic volcanic zone in southern China. The Fankeng basalts in the Yongding basin of Fujian Province are considered to be a typical example. The Fankeng basalts have TiO2 contents in the range of 1.92%-3.21%. They are classified as high-Ti basalts. They also have higher total Fe (averaging FeO*= 11.09%). The Middle Jurassic Fankeng basalts from southwestern Fujian have obvious distinctive lithogeochemical features from early Cretaceous basalts from southeastern coast of China. They have higher HFSE, such as Th, Nb, Ta, Zr and Ti. Their element ratios related with HFSE, such as Zr/Ba, La/Nb, La/Ta ,Zr/Y, Ti/Y, Ba/Nb, K/Ti and Rb/Zr are similar to those of OIB. The most samples have εNd(T) of -0.70-0.24, which are near chondrite. Some samples have higher εNd(T) of 1.87-3.55.Therefore, these basaltic magmas might be derived from depleted asthenospheric mantle. The lithogeochemical characteristics of the Fankeng basalts may be caused by interaction between asthenosphere and lithosphere at the time. The (Early-)Middle Jurassic basalts and gabbros from southeastern Hunan, southern Jiangxi and northern Guangdong provinces show similar geochemical features to those of the Fankeng basalts from the Yongding of Fujian. Occurrence of these OIB-type basalts in the area may be regarded as the petrological mark of upwelling of asthenosphere at the time. Upwelling of asthenosphere has led to tectonic extension and the formation of rifted basin in the area.

  16. Explorers Presentation: Flooding and Coastal Communities


    Institute, Marine


    : Explorers Flooding and Coastal Communities presentation provides an introduction to flooding. This can be used with the lesson plan on building flood defences. It covers: What is a fl