WorldWideScience

Sample records for flood assessment area

  1. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  2. Assessment of flood risk in Tokyo metropolitan area

    Science.gov (United States)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments

  3. Assessment of Socioeconomic Vulnerability to Floods in the Bâsca Chiojdului Catchment Area

    Directory of Open Access Journals (Sweden)

    REMUS PRĂVĂLIE

    2014-12-01

    Full Text Available Hydrological risk phenomena such as floods are among the most costly natural disasters worldwide, effects consisting of socioeconomic damages and deaths. The Bâsca Chiojdului catchment area, by its morphometric and hydrographic peculiarities, is prone to generate these hydrological risk phenomena, so there is a high vulnerability in the socioeconomic elements. This paper is focused on the identification of the main socioeconomic elements vulnerable to hydrological risk phenomena such as floods, based on the assessment of their manifestation potential. Thus, following the delimitation of areas with the highest flood occurrence potential (susceptibility to floods, major socioeconomic factors existing in the basin, considering human settlements (constructions, transport infrastructure, and agricultural areas (the most important category, were superimposed. Results showed a high vulnerability for all three exposed socioeconomic elements especially in valley sectors, of which household structures were the most vulnerable, given both their importance and the high number of areas highly exposed to floods (approximately 2,500 houses and outbuildings, out of a total of about 10,250, intersect the most susceptible area to floods in the study area.

  4. Flood Risk Assessment in Urban Areas Based on Spatial Analytics and Social Factors

    Directory of Open Access Journals (Sweden)

    Costas Armenakis

    2017-11-01

    Full Text Available Flood maps alone are not sufficient to determine and assess the risks to people, property, infrastructure, and services due to a flood event. Simply put, the risk is almost zero to minimum if the flooded region is “empty” (i.e., unpopulated, has not properties, no industry, no infrastructure, and no socio-economic activity. High spatial resolution Earth Observation (EO data can contribute to the generation and updating of flood risk maps based on several aspects including population, economic development, and critical infrastructure, which can enhance a city’s flood mitigation and preparedness planning. In this case study for the Don River watershed, Toronto, the flood risk is determined and flood risk index maps are generated by implementing a methodology for estimating risk based on the geographic coverage of the flood hazard, vulnerability of people, and the exposure of large building structures to flood water. Specifically, the spatial flood risk index maps have been generated through analytical spatial modeling which takes into account the areas in which a flood hazard is expected to occur, the terrain’s morphological characteristics, socio-economic parameters based on demographic data, and the density of large building complexes. Generated flood risk maps are verified through visual inspection with 3D city flood maps. Findings illustrate that areas of higher flood risk coincide with areas of high flood hazard and social and building exposure vulnerability.

  5. Damage assessment methodology for vehicles exposed to flooding in urban areas

    Directory of Open Access Journals (Sweden)

    E. Martínez Gomariz

    2017-10-01

    Full Text Available Urban floods may provoke important damages to vehicles, usually not taken into account within most studies related to urban flood risks damage assessments. Herein a methodology to estimate damages to vehicles exposed to urban floods is presented. After a state-of-the-art review, the most recent damage curves for vehicles developed by the U.S. Army Corps of Engineers (USACE, 2009 are presented as the best adaptive and the most comprehensively performed so far. The proposed methodology is applied to the Spanish municipality of Badalona, framed in the H2020 European Project BINGO. In order to conduct this methodology some aspects such as the vehicular distribution are analyzed within the study area. Finally, Expected Annual Damage (EAD for flooded vehicles is calculated based on inundations related to design storms of different return periods (1, 10, 100 and 500 years.

  6. Flood impact assessment on the development of Archaia Olympia riparian area in Greece.

    Science.gov (United States)

    Pasaporti, Christina; Podimata, Marianthi; Yannopoulos, Panayotis

    2013-04-01

    A long list of articles in the literature examines several issues of flood risk management and applications of flood scenarios, taking into consideration the climate changes, as well as decision making tools in flood planning. The present study tries to highlight the conversation concerning flood impacts on the development rate of a riparian area. More specifically, Archaia (Ancient) Olympia watershed was selected as a case study area, since it is considered as a region of special interest and international significance. In addition, Alfeios River, which is the longest river of Peloponnisos Peninsula, passes through the plain of Archaia Olympia. Flood risk scenarios allow scientists and practitioners to understand the adverse effects of flooding on development activities such as farming, tourism etc. and infrastructures in the area such as road and railway networks, Flokas dam and the hydroelectric power plant, bridges, settlements and other properties. Flood risks cause adverse consequences on the region of Archaia Olympia (Ancient Olympic stadium) and Natura 2000 site area. Furthermore, SWOT analysis was used in order to quantify multicriteria and socio-economic characteristics of the study area. SWOT analysis, as a planning method, indicates the development perspective by identifying the strengths, weaknesses, threads and opportunities. Subsequent steps in the process of intergraded River Management Plan of Archaia Olympia could be derived from SWOT analysis. The recognition and analysis of hydro-geomorphological influences on riparian development activities can lead to the definition of hazardous and vulnerability zones and special warning equipment. The former information combined with the use of the spatial database for the catchment area of the River Alfeios, which aims to gather multiple watershed data, could serve in preparing the Management Plan of River Basin District 01 where Alfeios R. belongs. Greece has to fulfill the obligation of implementing River

  7. Fragility analysis of flood protection structures in earthquake and flood prone areas around Cologne, Germany for multi-hazard risk assessment

    Science.gov (United States)

    Tyagunov, Sergey; Vorogushyn, Sergiy; Munoz Jimenez, Cristina; Parolai, Stefano; Fleming, Kevin; Merz, Bruno; Zschau, Jochen

    2013-04-01

    The work presents a methodology for fragility analyses of fluvial earthen dikes in earthquake and flood prone areas. Fragility estimates are being integrated into the multi-hazard (earthquake-flood) risk analysis being undertaken within the framework of the EU FP7 project MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe) for the city of Cologne, Germany. Scenarios of probable cascading events due to the earthquake-triggered failure of flood protection dikes and the subsequent inundation of surroundings are analyzed for the area between the gauges Andernach and Düsseldorf along the Rhine River. Along this river stretch, urban areas are partly protected by earthen dikes, which may be prone to failure during exceptional floods and/or earthquakes. The seismic fragility of the dikes is considered in terms of liquefaction potential (factor of safety), estimated by the use of the simplified procedure of Seed and Idriss. It is assumed that initiation of liquefaction at any point throughout the earthen dikes' body corresponds to the failure of the dike and, therefore, this should be taken into account for the flood risk calculations. The estimated damage potential of such structures is presented as a two-dimensional surface (as a function of seismic hazard and water level). Uncertainties in geometrical and geotechnical dike parameters are considered within the framework of Monte Carlo simulations. Taking into consideration the spatial configuration of the existing flood protection system within the area under consideration, seismic hazard curves (in terms of PGA) are calculated for sites along the river segment of interest at intervals of 1 km. The obtained estimates are used to calculate the flood risk when considering the temporal coincidence of seismic and flood events. Changes in flood risk for the considered hazard cascade scenarios are quantified and compared to the single-hazard scenarios.

  8. Flood risk in a changing world - a coupled transdisciplinary modelling framework for flood risk assessment in an Alpine study area

    Science.gov (United States)

    Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine

    2017-04-01

    Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the

  9. Landslide and flood hazard assessment in urban areas of Levoča region (Eastern Slovakia)

    Science.gov (United States)

    Magulova, Barbora; Caporali, Enrica; Bednarik, Martin

    2010-05-01

    The case study presents the use of statistical methods and analysis tools, for hazard assessment of "urbanization units", implemented in a Geographic Information Systems (GIS) environment. As a case study, the Levoča region (Slovakia) is selected. The region, with a total area of about 351 km2, is widely affected by landslides and floods. The problem, for small urbanization areas, is nowadays particularly significant from the socio-economic point of view. It is considered, presently, also an increasing problem, mainly because of climate change and more frequent extreme rainfall events. The geo-hazards are evaluated using a multivariate analysis. The landslide hazard assessment is based on the comparison and subsequent statistical elaboration of territorial dependence among different input factors influencing the instability of the slopes. Particularly, five factors influencing slope stability are evaluated, i.e. lithology, slope aspect, slope angle, hypsographic level and present land use. As a result a new landslide susceptibility map is compiled and different zones of stable, dormant and non-stable areas are defined. For flood hazard map a detailed digital elevation model is created. A compose index of flood hazard is derived from topography, land cover and pedology related data. To estimate flood discharge, time series of stream flow and precipitation measurements are used. The assessment results are prognostic maps of landslide hazard and flood hazard, which presents the optimal base for urbanization planning.

  10. Urban flood return period assessment through rainfall-flood response modelling

    Science.gov (United States)

    Murla Tuyls, Damian; Thorndahl, Søren

    2017-04-01

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g. DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized catchment area of 440ha and 10.400inhab. located in Jutland (Denmark), which has received the impact of several pluvial flooding in the last recent years. A historical rainfall dataset from the last 35 years from two different rain gauges located at 2 and 10 km from the study area has been provided by the Danish Wastewater Pollution Committee and the Danish Meteorological Institute (DMI). The most extreme 25 rainfall events have been selected through a two-step multi-criteria procedure, ensuring an adequate variability of rainfall, from extreme high peak storms with a short duration to moderate rainfall with longer duration. In addition, a coupled 1D/2D surface and network UDS model of the catchment area developed in an integrated MIKE URBAN and MIKE Flood model (DHI 2014), considering both permeable and impermeable areas, in combination with a DTM (2x2m res.) has been used to study and assess in detail flood RP. Results show an ambiguous relation between rainfall RP and flood response. Local flood levels, flood area and volume RP estimates should therefore not be neglected in

  11. Flood evolution assessment and monitoring using hydrological modelling techniques: analysis of the inundation areas at a regional scale

    Science.gov (United States)

    Podhoranyi, M.; Kuchar, S.; Portero, A.

    2016-08-01

    The primary objective of this study is to present techniques that cover usage of a hydrodynamic model as the main tool for monitoring and assessment of flood events while focusing on modelling of inundation areas. We analyzed the 2010 flood event (14th May - 20th May) that occurred in the Moravian-Silesian region (Czech Republic). Under investigation were four main catchments: Opava, Odra, Olše and Ostravice. Four hydrodynamic models were created and implemented into the Floreon+ platform in order to map inundation areas that arose during the flood event. In order to study the dynamics of the water, we applied an unsteady flow simulation for the entire area (HEC-RAS 4.1). The inundation areas were monitored, evaluated and recorded semi-automatically by means of the Floreon+ platform. We focused on information about the extent and presence of the flood areas. The modeled flooded areas were verified by comparing them with real data from different sources (official reports, aerial photos and hydrological networks). The study confirmed that hydrodynamic modeling is a very useful tool for mapping and monitoring of inundation areas. Overall, our models detected 48 inundation areas during the 2010 flood event.

  12. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    Science.gov (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  13. Urban flood return period assessment through rainfall-flood response modelling

    DEFF Research Database (Denmark)

    Murla, Damian; Thorndahl, Søren Liedtke

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS......), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g.DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may...... cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized...

  14. Assessing coastal flood risk and sea level rise impacts at New York City area airports

    Science.gov (United States)

    Ohman, K. A.; Kimball, N.; Osler, M.; Eberbach, S.

    2014-12-01

    Flood risk and sea level rise impacts were assessed for the Port Authority of New York and New Jersey (PANYNJ) at four airports in the New York City area. These airports included John F. Kennedy International, LaGuardia, Newark International, and Teterboro Airports. Quantifying both present day and future flood risk due to climate change and developing flood mitigation alternatives is crucial for the continued operation of these airports. During Hurricane Sandy in October 2012 all four airports were forced to shut down, in part due to coastal flooding. Future climate change and sea level rise effects may result in more frequent shutdowns and disruptions in travel to and from these busy airports. The study examined the effects of the 1%-annual-chance coastal flooding event for present day existing conditions and six different sea level rise scenarios at each airport. Storm surge model outputs from the Federal Emergency Management Agency (FEMA) provided the present day storm surge conditions. 50th and 90thpercentile sea level rise projections from the New York Panel on Climate Change (NPCC) 2013 report were incorporated into storm surge results using linear superposition methods. These projections were evaluated for future years 2025, 2035, and 2055. In addition to the linear superposition approach for storm surge at airports where waves are a potential hazard, one dimensional wave modeling was performed to get the total water level results. Flood hazard and flood depth maps were created based on these results. In addition to assessing overall flooding at each airport, major at-risk infrastructure critical to the continued operation of the airport was identified and a detailed flood vulnerability assessment was performed. This assessment quantified flood impacts in terms of potential critical infrastructure inundation and developed mitigation alternatives to adapt to coastal flooding and future sea level changes. Results from this project are advancing the PANYNJ

  15. Application of Flood Nomograph for Flood Forecasting in Urban Areas

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee

    2018-01-01

    Full Text Available Imperviousness has increased due to urbanization, as has the frequency of extreme rainfall events by climate change. Various countermeasures, such as structural and nonstructural measures, are required to prepare for these effects. Flood forecasting is a representative nonstructural measure. Flood forecasting techniques have been developed for the prevention of repetitive flood damage in urban areas. It is difficult to apply some flood forecasting techniques using training processes because training needs to be applied at every usage. The other flood forecasting techniques that use rainfall data predicted by radar are not appropriate for small areas, such as single drainage basins. In this study, a new flood forecasting technique is suggested to reduce flood damage in urban areas. The flood nomograph consists of the first flooding nodes in rainfall runoff simulations with synthetic rainfall data at each duration. When selecting the first flooding node, the initial amount of synthetic rainfall is 1 mm, which increases in 1 mm increments until flooding occurs. The advantage of this flood forecasting technique is its simple application using real-time rainfall data. This technique can be used to prepare a preemptive response in the process of urban flood management.

  16. Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability

    Directory of Open Access Journals (Sweden)

    Hyomin Kim

    2016-01-01

    Full Text Available Countermeasures to urban flooding should consider long-term perspectives, because climate change impacts are unpredictable and complex. Urban green spaces have emerged as a potential option to reduce urban flood risks, and their effectiveness has been highlighted in notable urban water management studies. In this study, flooded areas in Seoul, Korea, were divided into four flooded area types by cluster analysis based on topographic and physical characteristics and verified using discriminant analysis. After division by flooded area type, logistic regression analysis was performed to determine how the flooding probability changes with variations in green space area. Type 1 included regions where flooding occurred in a drainage basin that had a flood risk management infrastructure (FRMI. In Type 2, the slope was steep; the TWI (Topographic Wetness Index was relatively low; and soil drainage was favorable. Type 3 represented the gentlest sloping areas, and these were associated with the highest TWI values. In addition, these areas had the worst soil drainage. Type 4 had moderate slopes, imperfect soil drainage and lower than average TWI values. We found that green spaces exerted a considerable influence on urban flooding probabilities in Seoul, and flooding probabilities could be reduced by over 50% depending on the green space area and the locations where green spaces were introduced. Increasing the area of green spaces was the most effective method of decreasing flooding probability in Type 3 areas. In Type 2 areas, the maximum hourly precipitation affected the flooding probability significantly, and the flooding probability in these areas was high despite the extensive green space area. These findings can contribute towards establishing guidelines for urban spatial planning to respond to urban flooding.

  17. Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France

    Directory of Open Access Journals (Sweden)

    J. F. Breilh

    2013-06-01

    Full Text Available This study aims to assess the performance of raster-based flood modeling methods on a wide diversity of coastal marshes. These methods are applied to the flooding associated with the storm Xynthia, which severely hit the western coast of France in February 2010. Static and semi-dynamic methods are assessed using a combination of LiDAR data, post-storm delineation of flooded areas and sea levels originating from both tide gauge measurements and storm surge modeling. Static methods are applied to 27 marshes showing a wide geomorphological diversity. It appears that these methods are suitable for marshes with a small distance between the coastline and the landward boundary of the marsh, which causes these marshes to flood rapidly. On the contrary, these methods overpredict flooded areas for large marshes where the distance between the coastline and the landward boundary of the marsh is large, because the flooding cannot be considered as instantaneous. In this case, semi-dynamic methods based on surge overflowing volume calculations can improve the flooding prediction significantly. This study suggests that static and semi-dynamic flood modeling methods can be attractive and quickly deployed to rapidly produce predictive flood maps of vulnerable areas under certain conditions, particularly for small distances between the coastline and the landward boundary of the low-lying coastal area.

  18. Assessment of flood Response Characteristics to Urbanization and extreme flood events-Typhoons at Cheongju, Chungbuk

    Science.gov (United States)

    Chang, HyungJoon; Lee, Hyosang; Hwang, Myunggyu; Jang, Sukhwan

    2016-04-01

    The changes of land use influence on the flood characteristics, which depend on rainfall runoff procedures in the catchment. This study assesses the changes of flood characteristics due to land use changes between 1997 and 2012. The catchment model (HEC-HMS) is calibrated with flood events of 1990's and 2000's respectively, then the design rainfall of 100, 200, 500year return period are applied to this model, which represent the catchment in 1990's and 2000's, to assess the flood peaks. Then the extreme flood events (i.e., 6 typhoon events) are applied to assess the flood responses. The results of comparison between 1990's and 2000's show that the flood peak and level of 2000's are increasing and time to peak of 2000's is decreasing comparing to those of 1990's :3% to 78% increase in flood peak, 3% in flood level and 10.2% to 16% decrease in time to peak in 100year return period flood. It is due to decreasing of the farmland area (2.18%), mountainous area (8.88%), and increasing of the urbanization of the area (5.86%). This study also estimates the responses to extreme flood events. The results of 2000's show that the increasing of the flood peak and time to peak comparing to 1990's. It indicates that the extreme rainfall is more responsible at unurbanized catchment ( 2000's), which resulting with a 11% increasing of the peak volume. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  19. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    Science.gov (United States)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  20. Probabilistic Flood Defence Assessment Tools

    Directory of Open Access Journals (Sweden)

    Slomp Robert

    2016-01-01

    Full Text Available The WTI2017 project is responsible for the development of flood defence assessment tools for the 3600 km of Dutch primary flood defences, dikes/levees, dunes and hydraulic structures. These tools are necessary, as per January 1st 2017, the new flood risk management policy for the Netherlands will be implemented. Then, the seven decades old design practice (maximum water level methodology of 1958 and two decades old safety standards (and maximum hydraulic load methodology of 1996 will formally be replaced by a more risked based approach for the national policy in flood risk management. The formal flood defence assessment is an important part of this new policy, especially for flood defence managers, since national and regional funding for reinforcement is based on this assessment. This new flood defence policy is based on a maximum allowable probability of flooding. For this, a maximum acceptable individual risk was determined at 1/100 000 per year, this is the probability of life loss of for every protected area in the Netherlands. Safety standards of flood defences were then determined based on this acceptable individual risk. The results were adjusted based on information from cost -benefit analysis, societal risk and large scale societal disruption due to the failure of critical infrastructure e.g. power stations. The resulting riskbased flood defence safety standards range from a 300 to a 100 000 year return period for failure. Two policy studies, WV21 (Safety from floods in the 21st century and VNK-2 (the National Flood Risk in 2010 provided the essential information to determine the new risk based safety standards for flood defences. The WTI2017 project will provide the safety assessment tools based on these new standards and is thus an essential element for the implementation of this policy change. A major issue to be tackled was the development of user-friendly tools, as the new assessment is to be carried out by personnel of the

  1. Return period assessment of urban pluvial floods through modelling of rainfall–flood response

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Thorndahl, Søren Liedtke; Rasmussen, Michael Robdrup

    2018-01-01

    Intense rainfall in urban areas can often generate severe flood impacts. Consequently, it is crucial to design systems to minimize potential flood damages. Traditional, simple design of urban drainage systems assumes agreement between rainfall return period and its consequent flood return period......; however, this does not always apply. Hydraulic infrastructures found in urban drainage systems can increase system heterogeneity and perturb the impact of severe rainfall response. In this study, a surface flood return period assessment was carried out at Lystrup (Denmark), which has received the impact...... of flooding in recent years. A 35 years' rainfall dataset together with a coupled 1D/2D surface and network model was used to analyse and assess flood return period response. Results show an ambiguous relation between rainfall and flood return periods indicating that linear rainfall–runoff relationships will...

  2. Reserve Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  3. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars

    1998-12-31

    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  4. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis

    Science.gov (United States)

    Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan

    2018-03-01

    GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.

  5. Flood Damage Assessment in Pearl River Delta Rural Area Application in Huashan Town, Huadu District,Guanghzou during the 2017 5.7 Heavy Rain Storm

    Science.gov (United States)

    Wang, X.

    2017-12-01

    The Pearl River Delta (PRD) in China, the summer rain storm occurs frequently, the flood damage is very serious. Damage assessment is the basis of scientific decision-making in disaster mitigation. All approaches of flood damage analysis contain uncertainties due to the inaccuracies and generalisations used, the lack of data aggravates this problem, making methods very rough. This study presents a detailed flood damage assessment framework in Pearl River Delta rural area, using 2017 "5.7" heavy rain storm event to simulate the process and estimate the flood loss in resident building and property, agriculture production. The framework integrates four modules,1) utilize the remote sensing and statistical yearbook and so on to construct the disaster bearing bodies GIS database; 2) using hydraulics model to simulate the flood extent and depth spatial distribution;3)through field investigation to obtain the flood loss data for all kinds of hazard-affected body, using statistical analysis method to get the damage curves;4)Integrate flood scenarios, disaster bearing bodies GIS database and damage curves to calculate the flood loss estimation value. Using this methodology, in the 2017 "5.7" heavy rain storm event, Huashan Town flood damage loss is underestimate compared with the government report, because of not considering the damage of water conservancy facilities. But the disaster loss value on the spatial distribution is consistent with actual situation. In terms of aggregated values in the whole town, the model is capable of obtaining figures that are within the same order of magnitude. This study produce a flood damage assessment framework taking into account the regional characteristics of PRD rural area, provide a template for future practice. This study only considers the current impacts, the framework should be improved by taking into account socio-economic and climatic changes, as well as implementing adaptation measures to be applied to assess the potential

  6. Elephant Butte Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  7. CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas

    Science.gov (United States)

    Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J.

    2013-12-01

    When a flood affects an urban area, the managers and services responsible for public safety need precise and real time information on the localization of the flooded areas, on the submersion heights in those areas, but also on the vulnerability of people exposed to this hazard. Such information is essential for an effective crisis management. Despite a growing interest in this topic over the last 15 years, the development of flood risk assessment tools mainly focused on quantitative modeling of the monetary damages caused by floods to residential buildings or to critical infrastructures. Little attention was paid to the vulnerability of people exposed to flooding but also to the effects of the failure or destruction of critical infrastructures and residential building on people health and security during the disaster. Moreover, these models do not integrate the dynamic features of the flood (extent, submersion heights) and the evolution of human vulnerability in the same mapping tool. Thus, an accurate and precise evaluation of human risk induced by urban flooding is hardly feasible using such models. This study presents CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas, which fills the actual needs in terms of flood risk evaluation and management. This innovative tool integrates a methodology of flood hazard mapping that simulates, for a given discharge, the associated water level, and subsequently determines the extent of the flooded area and the submersion heights at each point of the flooded area, using a DEM. The dynamics of human vulnerability is then mapped at the household level, according to the characteristics of the flood hazard. Three key components of human vulnerability have been identified and are integrated to CADYRI: 1, the intrinsic vulnerability of the population, estimated by specific socio-economic indicators; 2, the vulnerability of buildings, assessed by their structural features; 3, the vulnerability of

  8. FEMA DFIRM Flood Hazard Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  9. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area

  10. Influence of spreading urbanization in flood areas on flood damage in Slovenia

    International Nuclear Information System (INIS)

    Komac, B; Zorn, M; Natek, K

    2008-01-01

    Damage caused by natural disasters in Slovenia is frequently linked to the ignoring of natural factors in spatial planning. Historically, the construction of buildings and settlements avoided dangerous flood areas, but later we see increasing construction in dangerous areas. During the floods in 1990, the most affected buildings were located on ill-considered locations, and the majority was built in more recent times. A similar situation occurred during the floods of September 2007. Comparing the effects of these floods, we determined that damage was always greater due to the urbanization of flood areas. This process furthermore increasingly limits the 'manoeuvring space' for water management authorities, who due to the torrential nature of Slovenia's rivers can not ensure the required level of safety from flooding for unsuitably located settlements and infrastructure. Every year, the Environmental Agency of the Republic of Slovenia issues more than one thousand permits for interventions in areas that affect the water regime, and through decrees the government allows construction in riparian zones, which is supposedly forbidden by the Law on Water. If we do not take measures with more suitable policies for spatial planning, we will no long have the possibility in future to reduce the negative consequences of floods. Given that torrential floods strike certain Slovene regions every three years on average and that larger floods occur at least once a decade, it is senseless to lay the blame on climate change.

  11. Urban floods: a case study in the Savigliano area (North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Audisio

    2011-11-01

    Full Text Available Flood processes and effects are examined, concerning two rivers in an urbanized area in North-Western Italy (Piedmont – Cuneo Plain. In May 2008, some areas in Northern Italy were struck by intense and persistent rainfall. In the Cuneo province (Southern Piedmont, floodplain with some urban areas was inundated over ca. ten square kilometres, and the city of Savigliano (about 21 000 inhabitants was particularly hit by flood. A purposely-made historical research has evidenced approximately fifty flood events as having occurred since 1350 in the Savigliano area. Based upon historical data, both documents and maps, GIS (Geographical Information System technique and field surveys were used to quantitatively assess the growing urbanization of the city and to describe flood processes and effects over years. This work aims to describe the dynamic behaviour of the 2008 flood, also comparing it to past events, in particular those that occurred in 1896. It is emphasized how the knowledge of past events can be helpful in reducing urban flooding.

  12. Multi-dimensional flood vulnerability assessment using data envelopment analysis

    Science.gov (United States)

    Zahid, Zalina; Saharizan, Nurul Syuhada; Hamzah, Paezah; Hussin, Siti Aida Sheikh; Khairi, Siti Shaliza Mohd

    2017-11-01

    Malaysia has been greatly impacted by flood during monsoon seasons. Even though flood prone areas are well identified, assessment on the vulnerability of the disaster is lacking. Assessment of flood vulnerability, defined as the potential for loss when a disaster occurs, is addressed in this paper. The focus is on the development of flood vulnerability measurement in 11 states in Peninsular Malaysia using a non-parametric approach of Data Envelopment Analysis. Scores for three dimensions of flood vulnerability (Population Vulnerability, Social Vulnerability and Biophysical) were calculated using secondary data of selected input and output variables across an 11-year period from 2004 to 2014. The results showed that Johor and Pahang were the most vulnerable to flood in terms of Population Vulnerability, followed by Kelantan, the most vulnerable to flood in terms of Social Vulnerability and Kedah, Pahang and Terengganu were the most vulnerable to flood in terms of Biophysical Vulnerability among the eleven states. The results also showed that the state of Johor, Pahang and Kelantan to be most vulnerable across the three dimensions. Flood vulnerability assessment is important as it provides invaluable information that will allow the authority to identify and develop plans for flood mitigation and to reduce the vulnerability of flood at the affected regions.

  13. Flood damage in Italy: towards an assessment model of reconstruction costs

    Science.gov (United States)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto

    2016-04-01

    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy

  14. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region

    Science.gov (United States)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.

    2017-12-01

    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  15. Truth or Consequences Special Flood Hazard Areas (SFHA)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This vector dataset depicts the 1% annual flood boundary (otherwise known as special flood hazard area or 100 year flood boundary) for its specified area. The data...

  16. Flood risk assessment and mapping for the Lebanese watersheds

    Science.gov (United States)

    Abdallah, Chadi; Hdeib, Rouya

    2016-04-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs

  17. Simple Method for Assessing Spread of Flood Prone Areas under Historical and Future Rainfall in the Upper Citarum Watershed

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Dasanto

    2014-06-01

    Full Text Available From 1931 to 2010 the flood frequency in Upper Citarum Watershed had increased sharply indicating the decline of the wateshed quality. With the change of climate, risk of the flood may get worse. This study aims to determine effective rainfall that caused flooding and to evaluate the impact of future rainfall changes on the flood prone areas. Effective rainfall which contributes to direct runoff (DRO and leads to flooding was determined using regression equation relating the DRO and cumulative rainfall of a number of consecutive days. Mapping the flood prone areas was developed using the GIS techniques. Results showed that the effective rainfall which caused flooding was the rainfall accumulation for four consecutive days before occurrence of peak of DRO. The percentage of accuracy between estimated and actual flood maps was about 76.9%. According to historical rainfall, the flood prone areas spreaded at right and left directions of the Upstream Citarum River. If this area experiences the climate change, the frequency and flood extents will increase. This study can only identify locations and possibility of flood occurrence but it cannot demonstrate widespread of flood inundation precisely. However, this simple approach can evaluate the flood frequency and intensity quite well.

  18. Flood Risk Assessment as a Part of Integrated Flood and Drought Analysis. Case Study: Southern Thailand

    Science.gov (United States)

    Prabnakorn, Saowanit; Suryadi, Fransiscus X.; de Fraiture, Charlotte

    2015-04-01

    Flood and drought are two main meteorological catastrophes that have created adverse consequences to more than 80% of total casualties universally, 50% by flood and 31% by drought. Those natural hazards have the tendency of increasing frequency and degree of severity and it is expected that climate change will exacerbate their occurrences and impacts. In addition, growing population and society interference are the other key factors that pressure on and exacerbate the adverse impacts. Consequently, nowadays, the loss from any disasters becomes less and less acceptable bringing about more people's consciousness on mitigation measures and management strategies and policies. In general, due to the difference in their inherent characteristics and time occurrences flood and drought mitigation and protection have been separately implemented, managed, and supervised by different group of authorities. Therefore, the objective of this research is to develop an integrated mitigation measure or a management policy able to surmount both problems to acceptable levels and is conveniently monitored by the same group of civil servants which will be economical in both short- and long-term. As aforementioned of the distinction of fundamental peculiarities and occurrence, the assessment processes of floods and droughts are separately performed using their own specific techniques. In the first part of the research flood risk assessment is focused in order to delineate the flood prone area. The study area is a river plain in southern Thailand where flooding is influenced by monsoon and depression. The work is mainly concentrated on physically-based computational modeling and an assortment of tools was applied for: data completion, areal rainfall interpolation, statistical distribution, rainfall-runoff analysis and flow model simulation. The outcome from the simulation can be concluded that the flood prone areas susceptible to inundation are along the riparian areas, particularly at the

  19. Assessment of Three Flood Hazard Mapping Methods: A Case Study of Perlis

    Science.gov (United States)

    Azizat, Nazirah; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Flood is a common natural disaster and also affect the all state in Malaysia. Regarding to Drainage and Irrigation Department (DID) in 2007, about 29, 270 km2 or 9 percent of region of the country is prone to flooding. Flood can be such devastating catastrophic which can effected to people, economy and environment. Flood hazard mapping can be used is an important part in flood assessment to define those high risk area prone to flooding. The purposes of this study are to prepare a flood hazard mapping in Perlis and to evaluate flood hazard using frequency ratio, statistical index and Poisson method. The six factors affecting the occurrence of flood including elevation, distance from the drainage network, rainfall, soil texture, geology and erosion were created using ArcGIS 10.1 software. Flood location map in this study has been generated based on flooded area in year 2010 from DID. These parameters and flood location map were analysed to prepare flood hazard mapping in representing the probability of flood area. The results of the analysis were verified using flood location data in year 2013, 2014, 2015. The comparison result showed statistical index method is better in prediction of flood area rather than frequency ratio and Poisson method.

  20. A methodology for urban flood resilience assessment

    Science.gov (United States)

    Lhomme, Serge; Serre, Damien; Diab, Youssef; Laganier, Richard

    2010-05-01

    In Europe, river floods have been increasing in frequency and severity [Szöllösi-Nagy and Zevenbergen, 2005]. Moreover, climate change is expected to exacerbate the frequency and intensity of hydro meteorological disaster [IPCC, 2007]. Despite efforts made to maintain the flood defense assets, we often observe levee failures leading to finally increase flood risk in protected area. Furthermore, flood forecasting models, although benefiting continuous improvements, remain partly inaccurate due to uncertainties arising all along data calculation processes. In the same time, the year 2007 marks a turning point in history: half of the world population now lives in cities (UN-Habitat, 2007). Moreover, the total urban population is expected to double from two to four billion over the next 30 to 35 years (United Nations, 2006). This growing rate is equivalent to the creation of a new city of one million inhabitants every week, and this during the next four decades [Flood resilience Group]. So, this quick urban development coupled with technical failures and climate change have increased flood risk and corresponding challenges to urban flood risk management [Ashley et al., 2007], [Nie et al., 2009]. These circumstances oblige to manage flood risk by integrating new concepts like urban resilience. In recent years, resilience has become a central concept for risk management. This concept has emerged because a more resilient system is less vulnerable to risk and, therefore, more sustainable [Serre et al., 2010]. But urban flood resilience is a concept that has not yet been directly assessed. Therefore, when decision makers decide to use the resilience concept to manage urban flood, they have no tool to help them. That is why this paper proposes a methodology to assess urban flood resilience in order to make this concept operational. Networks affect the well-being of the people and the smooth functioning of services and, more generally, of economical activities. Yet

  1. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    Science.gov (United States)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  2. An operational procedure for rapid flood risk assessment in Europe

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  3. Living in Prone Flooding Area: in Coastal Areas of Semarang

    Science.gov (United States)

    Tyas, W. P.

    2018-02-01

    When settlements are not able to provide a comfort area to live in, in this case because of a periodic threat of tidal flood coming to certain settlement areas, it is likely that the people still cannot leave the area. This paper explores the leading factors of the attachment of people to the areas, from economic, physical, social and psychological factors, including a place attachment. Therefore, the approach of the problem solution to tackle the tidal flooding in the areas should be also concern and have considerations relate to the factors.

  4. Flood disaster risk assessment of rural housings--a case study of Kouqian Town in China.

    Science.gov (United States)

    Zhang, Qi; Zhang, Jiquan; Jiang, Liupeng; Liu, Xingpeng; Tong, Zhijun

    2014-04-03

    Floods are a devastating kind of natural disaster. About half of the population in China lives in rural areas. Therefore, it is necessary to assess the flood disaster risk of rural housings. The results are valuable for guiding the rescue and relief goods layout. In this study, we take the severe flood disaster that happened at Kouqian Town in Jilin, China in 2010 as an example to build an risk assessment system for flood disaster on rural housings. Based on the theory of natural disaster risk formation and "3S" technology (remote sensing, geography information systems and global positioning systems), taking the rural housing as the bearing body, we assess the flood disaster risk from three aspects: hazard, exposure and vulnerability. The hazard presented as the flood submerging range and depth. The exposure presented as the values of the housing and the property in it. The vulnerability presented as the relationship between the losses caused by flood and flood depth. We validate the model by the field survey after the flood disaster. The risk assessment results highly coincide with the field survey losses. This model can be used to assess the risk of other flood events in this area.

  5. Improving the analysis of social component of flash-floods risk assessment: Application to urban areas of Castilla y León (Spain)

    Science.gov (United States)

    Aroca Jimenez, Estefanía; Bodoque del Pozo, Jose Maria; Garcia Martin, Juan Antonio; Diez Herrero, Andres

    2016-04-01

    The increasing evidence of anthropogenic climate change, the respective intensification of extreme events as well as the increase in human exposure to natural hazards and their vulnerability show that the enhancement of strategies on how to reduce disaster risk and promote adaptation to extreme events is critical to increase resilience. Growing economic losses, high numbers of casualties and the disruption of livelihoods in various places of the world, at an even higher rate than the increase of magnitude and frequency of extreme events, underline that the vulnerability of societies exposed is a key aspect to be considered. Social vulnerability characterizes the predisposition of society to be afflicted by hazards such as floods, being flash floods one of the hazards with the greatest capacity to generate risk. Despite its importance, social vulnerability is often a neglected aspect of traditional risk assessments which mainly focus on economic and structural measures. The aim of this research is to identify those social characteristics which render people vulnerable to flash flood hazards, and consider whether these characteristics are identifiable as local patterns at regional level. The result of this task is a Social Susceptibility Index (SSI) based on susceptibility profiles of the population per township. These profiles are obtained by Hierarchical Segmentation and Latent Class Analysis of demographic and socio-economic information provided by different public organisms. By adding exposure information to SSI, a Social and Infraestructure Flood Vulnerability Index (SIFVI) is created. The methodology proposed here is implemented in the region of Castilla y León (94,226 km2). Townships that are included in this study meet two requirements: i) city centres are affected by an area where potential significant flash-flood risk exists (i.e. villages are crossed by rivers with a longitudinal slope higher than 0.01); ii) city centres are affected by an area with low

  6. A framework for global river flood risk assessments

    Science.gov (United States)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.

    2013-05-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM

  7. A framework for global river flood risk assessments

    Directory of Open Access Journals (Sweden)

    H. C. Winsemius

    2013-05-01

    Full Text Available There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population. The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE. We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from

  8. Flood characteristics of the Haor area in Bangladesh

    Science.gov (United States)

    Suman, Asadusjjaman; Bhattacharya, Biswa

    2013-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Bangladesh is a country, which is frequently suffering from flooding. The current research is conducted in the framework of a project, which focuses on the flooding issues in the Haor region in the north-east of Bangladesh. A haor is a saucer-shaped depression, which is used during the dry period (December to mid-May) for agriculture and as a fishery during the wet period (June-November), and thereby presents a very interesting socio-economic perspective of flood risk management. Pre-monsoon flooding till mid-May causes agricultural loss and lot of distress whereas monsoon flooding brings benefits. The area is bordering India, thereby presenting trans-boundary issues as well, and is fed by some flashy Indian catchments. The area is drained mainly through the Surma-Kushiyara river system. The terrain generally is flat and the flashy characteristics die out within a short distance from the border. Limited studies on the region, particularly with the help of numerical models, have been carried out in the past. Therefore, an objective of the current research was to set up numerical models capable of reasonably emulating the physical system. Such models could, for example, associate different gauges to the spatio-temporal variation of hydrodynamic variables and help in carrying out a systemic study on the impact of climate changes. A 1D2D model, with one-dimensional model for the rivers (based on MIKE 11 modelling tool from Danish Hydraulic Institute) and a two

  9. Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood

    Directory of Open Access Journals (Sweden)

    Gareth Ireland

    2015-03-01

    Full Text Available This study explored the capability of Support Vector Machines (SVMs and regularised kernel Fisher’s discriminant analysis (rkFDA machine learning supervised classifiers in extracting flooded area from optical Landsat TM imagery. The ability of both techniques was evaluated using a case study of a riverine flood event in 2010 in a heterogeneous Mediterranean region, for which TM imagery acquired shortly after the flood event was available. For the two classifiers, both linear and non-linear (kernel versions were utilised in their implementation. The ability of the different classifiers to map the flooded area extent was assessed on the basis of classification accuracy assessment metrics. Results showed that rkFDA outperformed SVMs in terms of accurate flooded pixels detection, also producing fewer missed detections of the flooded area. Yet, SVMs showed less false flooded area detections. Overall, the non-linear rkFDA classification method was the more accurate of the two techniques (OA = 96.23%, K = 0.877. Both methods outperformed the standard Normalized Difference Water Index (NDWI thresholding (OA = 94.63, K = 0.818 by roughly 0.06 K points. Although overall accuracy results for the rkFDA and SVMs classifications only showed a somewhat minor improvement on the overall accuracy exhibited by the NDWI thresholding, notably both classifiers considerably outperformed the thresholding algorithm in other specific accuracy measures (e.g. producer accuracy for the “not flooded” class was ~10.5% less accurate for the NDWI thresholding algorithm in comparison to the classifiers, and average per-class accuracy was ~5% less accurate than the machine learning models. This study provides evidence of the successful application of supervised machine learning for classifying flooded areas in Landsat imagery, where few studies so far exist in this direction. Considering that Landsat data is open access and has global coverage, the results of this study

  10. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    Science.gov (United States)

    Aksoy, Hafzullah; Sadan Ozgur Kirca, Veysel; Burgan, Halil Ibrahim; Kellecioglu, Dorukhan

    2016-05-01

    Geographic Information Systems (GIS) are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses) wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS) software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  11. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2016-05-01

    Full Text Available Geographic Information Systems (GIS are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  12. A National Assessment of Changes in Flood Exposure in the United States

    Science.gov (United States)

    Lam, N.; Qiang, Y.; Cai, H.; Zou, L.

    2017-12-01

    Analyzing flood exposure and its temporal trend is the first step toward understanding flood risk, flood hazard, and flood vulnerability. This presentation is based on a national, county-based study assessing the changes in population and urban areas in high-risk flood zones from 2001-2011 in the contiguous United States. Satellite land use land cover data, Federal Emergency Management Agency (FEMA)'s 100-year flood maps, and census data were used to extract the proportion of developed (urban) land in flood zones by county in the two time points, and indices of difference were calculated. Local Moran's I statistic was applied to identify hotspots of increase in urban area in flood zones, and geographically weighted regression was used to estimate the population in flood zones from the land cover data. Results show that in 2011, an estimate of about 25.3 million people (8.3% of the total population) lived in the high-risk flood zones. Nationally, the ratio of urban development in flood zones is less than the ratio of land in flood zones, implying that Americans were responsive to flood hazards by avoiding development in flood zones. However, this trend varied from place to place, with coastal counties having less urban development in flood zones than the inland counties. Furthermore, the contrast between coastal and inland counties increased during 2001-2011. Finally, several exceptions from the trend (hotspots) were detected, most notably New York City and Miami where significant increases in urban development in flood zones were found. This assessment provides important baseline information on the spatial patterns of flood exposure and their changes from 2001-2011. The study pinpoints regions that may need further investigations and better policy to reduce the overall flood risks. Methodologically, the study demonstrates that pixelated land cover data can be integrated with other natural and human data to investigate important societal problems. The same

  13. Integrated urban flood risk assessment – adapting a multicriteria approach to a city

    Directory of Open Access Journals (Sweden)

    C. Kubal

    2009-11-01

    Full Text Available Flood risk assessment is an essential part of flood risk management. As part of the new EU flood directive it is becoming increasingly more popular in European flood policy. Particularly cities with a high concentration of people and goods are vulnerable to floods. This paper introduces the adaptation of a novel method of multicriteria flood risk assessment, that was recently developed for the more rural Mulde river basin, to a city. The study site is Leipzig, Germany. The "urban" approach includes a specific urban-type set of economic, social and ecological flood risk criteria, which focus on urban issues: population and vulnerable groups, differentiated residential land use classes, areas with social and health care but also ecological indicators such as recreational urban green spaces. These criteria are integrated using a "multicriteria decision rule" based on an additive weighting procedure which is implemented into the software tool FloodCalc urban. Based on different weighting sets we provide evidence of where the most flood-prone areas are located in a city. Furthermore, we can show that with an increasing inundation extent it is both the social and the economic risks that strongly increase.

  14. Flood Disaster Risk Assessment of Rural Housings — A Case Study of Kouqian Town in China

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2014-04-01

    Full Text Available Floods are a devastating kind of natural disaster. About half of the population in China lives in rural areas. Therefore, it is necessary to assess the flood disaster risk of rural housings. The results are valuable for guiding the rescue and relief goods layout. In this study, we take the severe flood disaster that happened at Kouqian Town in Jilin, China in 2010 as an example to build an risk assessment system for flood disaster on rural housings. Based on the theory of natural disaster risk formation and “3S” technology (remote sensing, geography information systems and global positioning systems, taking the rural housing as the bearing body, we assess the flood disaster risk from three aspects: hazard, exposure and vulnerability. The hazard presented as the flood submerging range and depth. The exposure presented as the values of the housing and the property in it. The vulnerability presented as the relationship between the losses caused by flood and flood depth. We validate the model by the field survey after the flood disaster. The risk assessment results highly coincide with the field survey losses. This model can be used to assess the risk of other flood events in this area.

  15. Flood Disaster Risk Assessment of Rural Housings — A Case Study of Kouqian Town in China

    Science.gov (United States)

    Zhang, Qi; Zhang, Jiquan; Jiang, Liupeng; Liu, Xingpeng; Tong, Zhijun

    2014-01-01

    Floods are a devastating kind of natural disaster. About half of the population in China lives in rural areas. Therefore, it is necessary to assess the flood disaster risk of rural housings. The results are valuable for guiding the rescue and relief goods layout. In this study, we take the severe flood disaster that happened at Kouqian Town in Jilin, China in 2010 as an example to build an risk assessment system for flood disaster on rural housings. Based on the theory of natural disaster risk formation and “3S” technology (remote sensing, geography information systems and global positioning systems), taking the rural housing as the bearing body, we assess the flood disaster risk from three aspects: hazard, exposure and vulnerability. The hazard presented as the flood submerging range and depth. The exposure presented as the values of the housing and the property in it. The vulnerability presented as the relationship between the losses caused by flood and flood depth. We validate the model by the field survey after the flood disaster. The risk assessment results highly coincide with the field survey losses. This model can be used to assess the risk of other flood events in this area. PMID:24705363

  16. Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model.

    Science.gov (United States)

    Yang, Weichao; Xu, Kui; Lian, Jijian; Bin, Lingling; Ma, Chao

    2018-05-01

    Flood is a serious challenge that increasingly affects the residents as well as policymakers. Flood vulnerability assessment is becoming gradually relevant in the world. The purpose of this study is to develop an approach to reveal the relationship between exposure, sensitivity and adaptive capacity for better flood vulnerability assessment, based on the fuzzy comprehensive evaluation method (FCEM) and coordinated development degree model (CDDM). The approach is organized into three parts: establishment of index system, assessment of exposure, sensitivity and adaptive capacity, and multiple flood vulnerability assessment. Hydrodynamic model and statistical data are employed for the establishment of index system; FCEM is used to evaluate exposure, sensitivity and adaptive capacity; and CDDM is applied to express the relationship of the three components of vulnerability. Six multiple flood vulnerability types and four levels are proposed to assess flood vulnerability from multiple perspectives. Then the approach is applied to assess the spatiality of flood vulnerability in Hainan's eastern area, China. Based on the results of multiple flood vulnerability, a decision-making process for rational allocation of limited resources is proposed and applied to the study area. The study shows that multiple flood vulnerability assessment can evaluate vulnerability more completely, and help decision makers learn more information about making decisions in a more comprehensive way. In summary, this study provides a new way for flood vulnerability assessment and disaster prevention decision. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Environmental Health Risk Assesement in Flood-prone Area in Tamangapa Sub-District Makassar

    Science.gov (United States)

    Haris, Ibrahim Abdul; Basir, Basir

    2018-05-01

    Environmental health in Indonesia is still caution to concern, poor sanitation in Indonesia is characterized by the high incidence of infectious diseases in society. The society in flood-prone area has a high-risk exposure on the disease based on the environment because they live in disaster-prone area. This research aimed to describe the condition of sanitary facilities and risky behavior on public health in flood-prone areas in Manggala district particularly in Tamangapa sub-district of Makassar. This reserach uses an observation method with a descriptive approach. The data is processed by using SPSS and Arc View GIS applications. Environmental risk category is determined by the approach of Environmental Health Risk Assessment (EHRA). The results showed that the flood-prone area in RT 04 RW 06 was included in very high-risk category at 229 with an index value of environmental health risks 212-229. Meanwhile, RT 04 RW 05 was in the category of low risk in the amount of 155 with an index of 155-173. Environmental health hazards identified in Tamangapa flood-prone areas sub-district includes domestic sources of clean water, domestic wastewater, and household garbage.

  18. Multi-source data fusion and modeling to assess and communicate complex flood dynamics to support decision-making for downstream areas of dams: The 2011 hurricane irene and schoharie creek floods, NY

    Science.gov (United States)

    Renschler, Chris S.; Wang, Zhihao

    2017-10-01

    In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better

  19. Lessons learned from Khartoum flash flood impacts: An integrated assessment.

    Science.gov (United States)

    Mahmood, Mohamad Ibrahim; Elagib, Nadir Ahmed; Horn, Finlay; Saad, Suhair A G

    2017-12-01

    This study aims at enabling the compilation of key lessons for decision makers and urban planners in rapidly urbanizing cities regarding the identification of representative, chief causal natural and human factors for the increased level of flash flood risk. To achieve this, the impacts of flash flood events of 2013 and 2014 in the capital of Sudan, Khartoum, were assessed using seven integrated approaches, i.e. rainfall data analysis, document analysis of affected people and houses, observational fieldwork in the worst flood affected areas, people's perception of causes and mitigation measures through household interviews, reported drinking water quality, reported water-related diseases and social risk assessment. Several lessons have been developed as follows. Urban planners must recognize the devastating risks of building within natural pathways of ephemeral watercourses. They must also ensure effective drainage infrastructures and physio-geographical investigations prior to developing urban areas. The existing urban drainage systems become ineffective due to blockage by urban waste. Building of unauthorized drainage and embankment structures by locals often cause greater flood problems than normal. The urban runoff is especially problematic for residential areas built within low-lying areas having naturally low infiltration capacity, as surface water can rapidly collect within hollows and depressions, or beside elevated roads that preclude the free flow of floodwater. Weak housing and infrastructure quality are especially vulnerable to flash flooding and even to rainfall directly. Establishment of services infrastructure is imperative for flash flood disaster risk reduction. Water supply should be from lower aquifers to avoid contaminant groundwater. Regular monitoring of water quality and archiving of its indicators help identify water-related diseases and sources of water contamination in the event of environmental disasters such as floods. Though the

  20. Analysis of economic vulnerability to flash floods in urban areas of Castilla y León (Spain)

    Science.gov (United States)

    Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; García, Juan Antonio; Diez-Herrero, Andres

    2017-04-01

    The growth of exposed population to floods, the expansion in allocation of economical activities to flood-prone areas and the rise of extraordinary event frequency over the last few decades, have resulted in an increase of flash flood-related casualties and economic losses. The increase in these losses at an even higher rate than the increase of magnitude and frequency of extreme events, underline that the vulnerability of societies exposed is a key aspect to be considered. Vulnerability is defined as the conditions determined by physical, social, economic and environmental factors or processes which increase the susceptibility of a community to the impact of hazards such as floods, being flash floods one of the natural hazards with the greatest capacity to generate risk. In recent years, numerous papers have deal with the assessment of the social dimension of vulnerability. However, economic factors are often a neglected aspect in traditional risk assessments which mainly focus on structural measures and flood damage models. In this context, the aim of this research is to identify those economic characteristics which render people vulnerable to flash flood hazard, and consider whether these characteristics are identifiable as local patterns at regional level. The result of this task is an Economic Vulnerability Index (EVI) based on susceptibility profiles of the population per township. These profiles are obtained by Hierarchical Segmentation and Latent Class Cluster Analysis of economic information provided by different public institutional databases. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2), placed in Central-Northern Spain. Townships included in this study meet two requirements: i) urban areas are potentially affected by flash floods (i.e. villages are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1); ii) urban areas are affected by an area with low or exceptional probability of

  1. Flood Hazard Areas - High Risk

    Data.gov (United States)

    Department of Homeland Security — The S_Fld_Haz_Ar table contains information about the flood hazards within the study area. A spatial file with locational information also corresponds with this data...

  2. Flash flood characterisation of the Haor area of Bangladesh

    Science.gov (United States)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  3. Maximum flood hazard assessment for OPG's deep geologic repository for low and intermediate level waste

    International Nuclear Information System (INIS)

    Nimmrichter, P.; McClintock, J.; Peng, J.; Leung, H.

    2011-01-01

    Ontario Power Generation (OPG) has entered a process to seek Environmental Assessment and licensing approvals to construct a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW) near the existing Western Waste Management Facility (WWMF) at the Bruce nuclear site in the Municipality of Kincardine, Ontario. In support of the design of the proposed DGR project, maximum flood stages were estimated for potential flood hazard risks associated with coastal, riverine and direct precipitation flooding. The estimation of lake/coastal flooding for the Bruce nuclear site considered potential extreme water levels in Lake Huron, storm surge and seiche, wind waves, and tsunamis. The riverine flood hazard assessment considered the Probable Maximum Flood (PMF) within the local watersheds, and within local drainage areas that will be directly impacted by the site development. A series of hydraulic models were developed, based on DGR project site grading and ditching, to assess the impact of a Probable Maximum Precipitation (PMP) occurring directly at the DGR site. Overall, this flood assessment concluded there is no potential for lake or riverine based flooding and the DGR area is not affected by tsunamis. However, it was also concluded from the results of this analysis that the PMF in proximity to the critical DGR operational areas and infrastructure would be higher than the proposed elevation of the entrance to the underground works. This paper provides an overview of the assessment of potential flood hazard risks associated with coastal, riverine and direct precipitation flooding that was completed for the DGR development. (author)

  4. Risk assessment of urban flood disaster in Jingdezhen City based on analytic hierarchy process and geographic information system

    Science.gov (United States)

    Sun, D. C.; Huang, J.; Wang, H. M.; Wang, Z. Q.; Wang, W. Q.

    2017-08-01

    The research of urban flood risk assessment and management are of great academic and practical importance, which has become a widespread concern throughout the world. It’s significant to understand the spatial-temporal distribution of the flood risk before making the risk response measures. In this study, the urban region of Jingdezhen City is selected as the study area. The assessment indicators are selected from four aspects: disaster-causing factors, disaster-pregnant environment, disaster-bearing body and the prevention and mitigation ability, by consideration of the formation process of urban flood risk. And then, a small-scale flood disaster risk assessment model is developed based on Analytic Hierarchy Process(AHP) and Geographic Information System(GIS), and the spatial-temporal distribution of flood risk in Jingdezhen City is analysed. The results show that the risk decreases gradually from the centre line of Changjiang River to the surrounding, and the areas of high flood disaster risk is decreasing from 2010 to 2013 while the risk areas are more concentred. The flood risk of the areas along the Changjiang River is the largest, followed by the low-lying areas in Changjiang District. And the risk is also large in Zhushan District where the population, the industries and commerce are concentrated. The flood risk in the western part of Changjiang District and the north-eastern part of the study area is relatively low. The results can provide scientific support for flood control construction and land development planning in Jingdezhen City.

  5. FLOOD SUSCEPTIBILITY ASSESSMENT IN THE NIRAJ BASIN

    Directory of Open Access Journals (Sweden)

    SANDA ROŞCA

    2012-03-01

    Full Text Available Flood susceptibility assessment in the Niraj basin. In the context of global warming and the increasing frequency of extreme weather events, it becomes evident that we have to face natural hazards, such as floods. In the area of Niraj basin this phenomenon is specific both in the spring, because of the snow melting and of the precipitations which come along with the season, and then in the summer because of the torrential precipitations but rarely in autumn and winter. The aim of this paper is to determinate the susceptibility of the zone and obtain a map which will take into consideration the possibility of a flooding. Defining vulnerability can help us understand this type of natural disasters and find the best ways to reduce it. For this purpose we use thematic layers, morphological characteristics (slope and depth fragmentation, hydrological characteristics, geology, pedology (permeability and soil texture, landuse, precipitation data, and human interventions because in this way we have the possibility to use data mining for this purpose. Data mining will allow us to extract new information based on the existing sets of data.The final result will be a thematic map that highlights the areas which are exposed to the flood. Therefore, this map can be used as a support decision for local government or business purposes.

  6. Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts

    Science.gov (United States)

    Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf

    2016-04-01

    flood scenario, the resulting number of affected residents, houses and therefore the losses are computed. This integral assessment leads to a hydro-economical characterisation of each floodplain. Based on that, a transfer function between discharge forecast and damages can be elaborated. This transfer function describes the relationship between predicted peak discharge, flood volume and the number of exposed houses, residents and the related losses. It also can be used to downscale the regional discharge forecast to a local level loss forecast. In addition, a dynamic map delimiting the probable flooded areas on the basis of the forecasted discharge can be prepared. The predicted losses and the delimited flooded areas provide a complementary information for assessing the need of preventive measures on one hand on the long-term timescale and on the other hand 6h-24h in advance of a predicted flood. To conclude, we can state that the transfer function offers the possibility for an integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts. The procedure has been developed and tested in the alpine and pre-alpine environment of the Aare river catchment upstream of Bern, Switzerland.

  7. Flood loss assessment in the Kota Tinggi

    International Nuclear Information System (INIS)

    Tam, T H; Ibrahim, A L; Rahman, M Z A; Mazura, Z

    2014-01-01

    Malaysia is free from several destructive and widespread natural disasters but frequently affected by floods, which caused massive flood damage. In 2006 and 2007, an extreme rainfall occured in many parts of Peninsular Malaysia, which caused severe flooding in several major cities. Kota Tinggi was chosen as study area as it is one the seriously affected area in Johor state. The aim of this study is to estimate potential flood damage to physical elements in Kota Tinggi. The flood damage map contains both qualitative and quantitative information which corresponds to the consequences of flooding. This study only focuses on physical elements. Three different damage functions were adopted to calculate the potential flood damage and flood depth is considered as the main parameter. The adopted functions are United States, the Netherlands and Malaysia. The estimated flood damage for housing using United States, the Netherlands and Malaysia was RM 350/m 2 RM 200/m 2 and RM 100/m 2 respectively. These results successfully showed the average flood damage of physical element. Such important information needed by local authority and government for urban spatial planning and aiming to reduce flood risk

  8. A global framework for future costs and benefits of river-flood protection in urban areas

    Science.gov (United States)

    Ward, Philip J.; Jongman, Brenden; Aerts, Jeroen C. J. H.; Bates, Paul D.; Botzen, Wouter J. W.; Diaz Loaiza, Andres; Hallegatte, Stephane; Kind, Jarl M.; Kwadijk, Jaap; Scussolini, Paolo; Winsemius, Hessel C.

    2017-09-01

    Floods cause billions of dollars of damage each year, and flood risks are expected to increase due to socio-economic development, subsidence, and climate change. Implementing additional flood risk management measures can limit losses, protecting people and livelihoods. Whilst several models have been developed to assess global-scale river-flood risk, methods for evaluating flood risk management investments globally are lacking. Here, we present a framework for assessing costs and benefits of structural flood protection measures in urban areas around the world. We demonstrate its use under different assumptions of current and future climate change and socio-economic development. Under these assumptions, investments in dykes may be economically attractive for reducing risk in large parts of the world, but not everywhere. In some regions, economically efficient investments could reduce future flood risk below today’s levels, in spite of climate change and economic growth. We also demonstrate the sensitivity of the results to different assumptions and parameters. The framework can be used to identify regions where river-flood protection investments should be prioritized, or where other risk-reducing strategies should be emphasized.

  9. Uncertainty quantification in flood risk assessment

    Science.gov (United States)

    Blöschl, Günter; Hall, Julia; Kiss, Andrea; Parajka, Juraj; Perdigão, Rui A. P.; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2017-04-01

    Uncertainty is inherent to flood risk assessments because of the complexity of the human-water system, which is characterised by nonlinearities and interdependencies, because of limited knowledge about system properties and because of cognitive biases in human perception and decision-making. On top of the uncertainty associated with the assessment of the existing risk to extreme events, additional uncertainty arises because of temporal changes in the system due to climate change, modifications of the environment, population growth and the associated increase in assets. Novel risk assessment concepts are needed that take into account all these sources of uncertainty. They should be based on the understanding of how flood extremes are generated and how they change over time. They should also account for the dynamics of risk perception of decision makers and population in the floodplains. In this talk we discuss these novel risk assessment concepts through examples from Flood Frequency Hydrology, Socio-Hydrology and Predictions Under Change. We believe that uncertainty quantification in flood risk assessment should lead to a robust approach of integrated flood risk management aiming at enhancing resilience rather than searching for optimal defense strategies.

  10. Torrential Flood Hazards Assessment, Management, And Mitigation, In Wadi Aday, Muscat Area, Sultanate Of Oman, A GIS and RS Approach

    International Nuclear Information System (INIS)

    SalehI, A.S.; AI-Hatrushi, S.M.

    2009-01-01

    Flash flood hazard of Wadi Aday threaten human activities in an important urban area of Muscat City, the capital of Sultanate of Oman. To evaluate and mitigate these floods; Remote Sensing (IKONOS Images), Topographic and Cadastral maps, data of rainfall, floods and other data sources have been used under a GIS environment and manipulated. The study determined the areas under the flood risk, and clarified the risk class and degree for each of human activities object in the lower part of Wadi Aday. In order to mitigate the flood hazards, and to utilize the floods water in such extreme hot desert; the study suggested: establishing two dams and artificial channel added to some methods that reduce the erosion on canyon reach road

  11. A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas

    Directory of Open Access Journals (Sweden)

    Szymon Szewrański

    2018-06-01

    Full Text Available The interplay of an ever-growing number of inhabitants, sprawl development, soil sealing, changes in urban traffic characteristics, as well as observed climate trends gives rise to more frequent pluvial flooding in cities, a higher run-off of water, and an increasing pollution of surface water. The aim of this research is to develop a location intelligence system for the assessment of pluvial flooding risks and the identification of storm water pollutant sources from roads in newly-developed areas. The system combines geographic information systems and business intelligence software, and it is based on the original Pluvial Flood Risk Assessment tool. The location intelligence system effectively identifies the spatial and temporal distribution of pluvial flood risks, allows to preliminarily evaluate the total run-off from roads, and helps localise potential places for new water management infrastructure. Further improvements concern the modelling of a flow accumulation and drainage system, the application of weather radar precipitation data, and traffic monitoring and modelling.

  12. THE ASSESSMENT OF ECONOMICAL LOSS CAUSED BY FLOODS AND FLASH-FLOODS BY USING COMPUTER TECHNIQUES. CASE STUDY: LOPĂTARI VILLAGE, SLĂNIC RIVER

    Directory of Open Access Journals (Sweden)

    COSTACHE R.

    2015-03-01

    Full Text Available The present study aims to provide an example of the assessment of economical loss caused by floods and flash-floods, by integrating GIS techniques of hydraulic and hydrological modelling. The case study was performed in Lopătari village, which is located in the upper area of Slănic River, one of the most affected areas by floods and flash-floods. The flood event produced on 29.V.2012 was considered in order to perform this study. Thus, a flood hydrograph was simulated by using software HEC-HMS 3.5, based on hourly precipitation data from Bisoca meteorological station from 29.V.2012. The peak discharge resulting from the hydrological modelling software was used in HEC-RAS 4.1 hydraulic modelling software in order to determine the extent of flooding band, the number of the affected elements and the local economical loss. Finally, 21 flooded buildings were identified and 550 m of affected road, the estimated economical damage being about 800,000 RON.

  13. Impact of modelling scale on probabilistic flood risk assessment: the Malawi case

    Directory of Open Access Journals (Sweden)

    Rudari Roberto

    2016-01-01

    Full Text Available In the early months of 2015, destructive floods hit Malawi, causing deaths and economic losses. Flood risk assessment outcomes can be used to increase scientific-supported awareness of risk. The recent increase in availability of high resolution data such as TanDEM-X at 12m resolution makes possible the use of detailed physical based flood hazard models in risk assessment. Nonetheless the scale of hazard modelling still remains an issue, which requires a compromise between level of detail and computational efforts. This work presents two different approaches on hazard modelling. Both methods rely on 32-years of numeric weather re-analysis and rainfall-runoff transformation through a fully distributed WFLOW-type hydrological model. The first method, applied at national scale, uses fast post-processing routines, which estimate flood water depth at a resolution of about 1×1km. The second method applies a full 2D hydraulic model to propagate water discharge into the flood plains and best suites for small areas where assets are concentrated. At the 12m resolution, three hot spots with a model area of approximately 10×10 km are analysed. Flood hazard maps obtained with both approaches are combined with flood impact models at the same resolution to generate indicators for flood risk. A quantitative comparison of the two approaches is presented in order to show the effects of modelling scale on both hazard and impact losses.

  14. Colombia Mi Pronostico Flood Application: Updating and Improving the Mi Pronostico Flood Web Application to Include an Assessment of Flood Risk

    Science.gov (United States)

    Rushley, Stephanie; Carter, Matthew; Chiou, Charles; Farmer, Richard; Haywood, Kevin; Pototzky, Anthony, Jr.; White, Adam; Winker, Daniel

    2014-01-01

    Colombia is a country with highly variable terrain, from the Andes Mountains to plains and coastal areas, many of these areas are prone to flooding disasters. To identify these risk areas NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to construct a digital elevation model (DEM) for the study region. The preliminary risk assessment was applied to a pilot study area, the La Mosca River basin. Precipitation data from the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM)'s near-real-time rainfall products as well as precipitation data from the Instituto de Hidrologia, Meteorologia y Estudios Ambientales (the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM) and stations in the La Mosca River Basin were used to create rainfall distribution maps for the region. Using the precipitation data and the ASTER DEM, the web application, Mi Pronóstico, run by IDEAM, was updated to include an interactive map which currently allows users to search for a location and view the vulnerability and current weather and flooding conditions. The geospatial information was linked to an early warning system in Mi Pronóstico that can alert the public of flood warnings and identify locations of nearby shelters.

  15. Weighted normalized risk factor for floods risk assessment

    Directory of Open Access Journals (Sweden)

    Ashraf Mohamed Elmoustafa

    2012-12-01

    Full Text Available Multi Criteria Analysis (MCA describes any structured approach used to determine overall preferences among alternative options, where options accomplish certain or several objectives. The flood protection of properties is a highly important issue due to the damage, danger and other hazards associated to it to human life, properties, and environment. To determine the priority of execution of protection works for any project, many aspects should be considered in order to decide the areas to start the data collection and analysis with. Multi criteria analysis techniques were tested and evaluated for the purpose of flood risk assessment, hydro-morphological parameters were used in this analysis. Finally a suitable technique was chosen and tested to be adopted as a mark of flood risk level and results were presented.

  16. Development of a precipitation-area curve for warning criteria of short-duration flash flood

    Science.gov (United States)

    Bae, Deg-Hyo; Lee, Moon-Hwan; Moon, Sung-Keun

    2018-01-01

    This paper presents quantitative criteria for flash flood warning that can be used to rapidly assess flash flood occurrence based on only rainfall estimates. This study was conducted for 200 small mountainous sub-catchments of the Han River basin in South Korea because South Korea has recently suffered many flash flood events. The quantitative criteria are calculated based on flash flood guidance (FFG), which is defined as the depth of rainfall of a given duration required to cause frequent flooding (1-2-year return period) at the outlet of a small stream basin and is estimated using threshold runoff (TR) and antecedent soil moisture conditions in all sub-basins. The soil moisture conditions were estimated during the flooding season, i.e., July, August and September, over 7 years (2002-2009) using the Sejong University Rainfall Runoff (SURR) model. A ROC (receiver operating characteristic) analysis was used to obtain optimum rainfall values and a generalized precipitation-area (P-A) curve was developed for flash flood warning thresholds. The threshold function was derived as a P-A curve because the precipitation threshold with a short duration is more closely related to basin area than any other variables. For a brief description of the P-A curve, generalized thresholds for flash flood warnings can be suggested for rainfall rates of 42, 32 and 20 mm h-1 in sub-basins with areas of 22-40, 40-100 and > 100 km2, respectively. The proposed P-A curve was validated based on observed flash flood events in different sub-basins. Flash flood occurrences were captured for 9 out of 12 events. This result can be used instead of FFG to identify brief flash flood (less than 1 h), and it can provide warning information to decision-makers or citizens that is relatively simple, clear and immediate.

  17. Upstream structural management measures for an urban area flooding in Turkey

    Science.gov (United States)

    Akyurek, Z.; Bozoğlu, B.; Sürer, S.; Mumcu, H.

    2015-06-01

    In recent years, flooding has become an increasing concern across many parts of the world of both the general public and their governments. The climate change inducing more intense rainfall events occurring in short period of time lead flooding in rural and urban areas. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is performed. MIKE21 with flexible grid is used in 2-dimensional shallow water flow modelling. 1 × 1000-1 scaled maps with the buildings for the urbanized area and 1 × 5000-1 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of 500 m3 s-1 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The upstream structural base precautions against flooding are modelled. The effect of four main upstream catchments on the flooding in the downstream urban area are modelled as different scenarios. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in one of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed.

  18. Swift delineation of flood-prone areas over large European regions

    Science.gov (United States)

    Tavares da Costa, Ricardo; Castellarin, Attilio; Manfreda, Salvatore; Samela, Caterina; Domeneghetti, Alessio; Mazzoli, Paolo; Luzzi, Valerio; Bagli, Stefano

    2017-04-01

    According to the European Environment Agency (EEA Report No 1/2016), a significant share of the European population is estimated to be living on or near a floodplain, with Italy having the highest population density in flood-prone areas among the countries analysed. This tendency, tied with event frequency and magnitude (e.g.: the 24/11/2016 floods in Italy) and the fact that river floods may occur at large scales and at a transboundary level, where data is often sparse, presents a challenge in flood-risk management. The availability of consistent flood hazard and risk maps during prevention, preparedness, response and recovery phases are a valuable and important step forward in improving the effectiveness, efficiency and robustness of evidence-based decision making. The present work aims at testing and discussing the usefulness of pattern recognition techniques based on geomorphologic indices (Manfreda et al., J. Hydrol. Eng., 2011, Degiorgis et al., J Hydrol., 2012, Samela et al., J. Hydrol. Eng., 2015) for the simplified mapping of river flood-prone areas at large scales. The techniques are applied to 25m Digital Elevation Models (DEM) of the Danube, Po and Severn river watersheds, obtained from the Copernicus data and information funded by the European Union - EU-DEM layers. Results are compared to the Pan-European flood hazard maps derived by Alfieri et al. (Hydrol. Proc., 2013) using a set of distributed hydrological (LISFLOOD, van der Knijff et al., Int. J. Geogr. Inf. Sci., 2010, employed within the European Flood Awareness System, www.efas.eu) and hydraulic models (LISFLOOD-FP, Bates and De Roo, J. Hydrol., 2000). Our study presents different calibration and cross-validation exercises of the DEM-based mapping algorithms to assess to which extent, and with which accuracy, they can be reproduced over different regions of Europe. This work is being developed under the System-Risk project (www.system-risk.eu) that received funding from the European Union

  19. Flood Risk Assessment Based On Security Deficit Analysis

    Science.gov (United States)

    Beck, J.; Metzger, R.; Hingray, B.; Musy, A.

    Risk is a human perception: a given risk may be considered as acceptable or unac- ceptable depending on the group that has to face that risk. Flood risk analysis of- ten estimates economic losses from damages, but neglects the question of accept- able/unacceptable risk. With input from land use managers, politicians and other stakeholders, risk assessment based on security deficit analysis determines objects with unacceptable risk and their degree of security deficit. Such a risk assessment methodology, initially developed by the Swiss federal authorities, is illustrated by its application on a reach of the Alzette River (Luxembourg) in the framework of the IRMA-SPONGE FRHYMAP project. Flood risk assessment always involves a flood hazard analysis, an exposed object vulnerability analysis, and an analysis combing the results of these two previous analyses. The flood hazard analysis was done with the quasi-2D hydraulic model FldPln to produce flood intensity maps. Flood intensity was determined by the water height and velocity. Object data for the vulnerability analysis, provided by the Luxembourg government, were classified according to their potential damage. Potential damage is expressed in terms of direct, human life and secondary losses. A thematic map was produced to show the object classification. Protection goals were then attributed to the object classes. Protection goals are assigned in terms of an acceptable flood intensity for a certain flood frequency. This is where input from land use managers and politicians comes into play. The perception of risk in the re- gion or country influences the protection goal assignment. Protection goals as used in Switzerland were used in this project. Thematic maps showing the protection goals of each object in the case study area for a given flood frequency were produced. Com- parison between an object's protection goal and the intensity of the flood that touched the object determine the acceptability of the risk and the

  20. Development of method for evaluating estimated inundation area by using river flood analysis based on multiple flood scenarios

    Science.gov (United States)

    Ono, T.; Takahashi, T.

    2017-12-01

    Non-structural mitigation measures such as flood hazard map based on estimated inundation area have been more important because heavy rains exceeding the design rainfall frequently occur in recent years. However, conventional method may lead to an underestimation of the area because assumed locations of dike breach in river flood analysis are limited to the cases exceeding the high-water level. The objective of this study is to consider the uncertainty of estimated inundation area with difference of the location of dike breach in river flood analysis. This study proposed multiple flood scenarios which can set automatically multiple locations of dike breach in river flood analysis. The major premise of adopting this method is not to be able to predict the location of dike breach correctly. The proposed method utilized interval of dike breach which is distance of dike breaches placed next to each other. That is, multiple locations of dike breach were set every interval of dike breach. The 2D shallow water equations was adopted as the governing equation of river flood analysis, and the leap-frog scheme with staggered grid was used. The river flood analysis was verified by applying for the 2015 Kinugawa river flooding, and the proposed multiple flood scenarios was applied for the Akutagawa river in Takatsuki city. As the result of computation in the Akutagawa river, a comparison with each computed maximum inundation depth of dike breaches placed next to each other proved that the proposed method enabled to prevent underestimation of estimated inundation area. Further, the analyses on spatial distribution of inundation class and maximum inundation depth in each of the measurement points also proved that the optimum interval of dike breach which can evaluate the maximum inundation area using the minimum assumed locations of dike breach. In brief, this study found the optimum interval of dike breach in the Akutagawa river, which enabled estimated maximum inundation area

  1. Assess the flood resilience tools integration in the landuse projects

    Science.gov (United States)

    Moulin, E.; Deroubaix, J.-F.

    2012-04-01

    Despite a severe regulation concerning the building in flooding areas, 80% of these areas are already built in the Greater Paris (Paris, Val-de-Marne, Hauts-de-Seine and Seine-Saint-Denis). The land use in flooding area is presented as one of the main solutions to solve the ongoing real estate pressure. For instance some of the industrial wastelands located along the river are currently in redevelopment and residential buildings are planned. So the landuse in the flooding areas is currently a key issue in the development of the Greater Paris area. To deal with floods there are some resilience tools, whether structural (such as perimeter barriers or building aperture barriers, etc) or non structural (such as warning systems, etc.). The technical solutions are available and most of the time efficient1. Still, we notice that these tools are not much implemented. The people; stakeholders and inhabitants, literally seems to be not interested. This papers focus on the integration of resilience tools in urban projects. Indeed one of the blockages in the implementation of an efficient flood risk prevention policy is the lack of concern of the landuse stakeholders and the inhabitants for the risk2. We conducted an important number of interviews with stakeholders involved in various urban projects and we assess, in this communication, to what extent the improvement of the resilience to floods is considered as a main issue in the execution of an urban project? How this concern is maintained or could be maintained throughout the project. Is there a dilution of this concern? In order to develop this topic we rely on a case study. The "Ardoines" is a project aiming at redeveloping an industrial site (South-East Paris), into a project including residential and office buildings and other amenities. In order to elaborate the master plan, the urban planning authority brought together some flood risk experts. According to the comments of the experts, the architect in charge of the

  2. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines

    Science.gov (United States)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.

    2016-12-01

    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the

  3. A long-term, continuous simulation approach for large-scale flood risk assessments

    Science.gov (United States)

    Falter, Daniela; Schröter, Kai; Viet Dung, Nguyen; Vorogushyn, Sergiy; Hundecha, Yeshewatesfa; Kreibich, Heidi; Apel, Heiko; Merz, Bruno

    2014-05-01

    The Regional Flood Model (RFM) is a process based model cascade developed for flood risk assessments of large-scale basins. RFM consists of four model parts: the rainfall-runoff model SWIM, a 1D channel routing model, a 2D hinterland inundation model and the flood loss estimation model for residential buildings FLEMOps+r. The model cascade was recently undertaken a proof-of-concept study at the Elbe catchment (Germany) to demonstrate that flood risk assessments, based on a continuous simulation approach, including rainfall-runoff, hydrodynamic and damage estimation models, are feasible for large catchments. The results of this study indicated that uncertainties are significant, especially for hydrodynamic simulations. This was basically a consequence of low data quality and disregarding dike breaches. Therefore, RFM was applied with a refined hydraulic model setup for the Elbe tributary Mulde. The study area Mulde catchment comprises about 6,000 km2 and 380 river-km. The inclusion of more reliable information on overbank cross-sections and dikes considerably improved the results. For the application of RFM for flood risk assessments, long-term climate input data is needed to drive the model chain. This model input was provided by a multi-site, multi-variate weather generator that produces sets of synthetic meteorological data reproducing the current climate statistics. The data set comprises 100 realizations of 100 years of meteorological data. With the proposed continuous simulation approach of RFM, we simulated a virtual period of 10,000 years covering the entire flood risk chain including hydrological, 1D/2D hydrodynamic and flood damage estimation models. This provided a record of around 2.000 inundation events affecting the study area with spatially detailed information on inundation depths and damage to residential buildings on a resolution of 100 m. This serves as basis for a spatially consistent, flood risk assessment for the Mulde catchment presented in

  4. FLOOD RISK ASSESSMENT IN RIVER TIMIS BASIN - THE CARANSEBES - LUGOJ SECTOR- USING GIS TECHNIQUE

    Directory of Open Access Journals (Sweden)

    MIHAI VALENTIN HERBEI

    2012-11-01

    Full Text Available Flood risk assessment in Timis River basin - the Caransebes -Lugoj sector- using GIS technique. Over time freshets, thus floods constituted and constitute a particularly important issue that requires attention. In many cases, flood damages are extensive to the environment, to the economy and also socially. The purpose of this paper is to identify flood-prone areas between Caransebes and Lugoj, land that is part of the Timis river basin. This paper is based on a theoretical model in which we considered the building elements of the flood produced on the Timis river in April 2005 (levels and flows. to represent the zones flood – prone, we used the numerical model of the terrain, created for the abovementioned area. On this model , according to levels measured at hydrometric stations, were defined those flood prone areas. The Timis river hydrographic basin includes a varied terrain (mountains, hills and plains, with pronounced differences in altitude and massiveness, resulting from tectonic movements that have affected the region, this fact has affected water flow processes, both directly through fragmentation and slope, and indirectly, by creating the vertical climate, vegetation and soils zones. Using GIS technology to study hydrological phenomena and their impact on the geographic area are of particular importance due to the complexity of these techniques, which enables detailed analysis and analytical precision as well as an increased speed of the analysis. Creating theoretical models that give scale to the hydrological phenomena, in this case representing the flood areas, is of great practical importance because based on these models the areas can be defined and viewed, having the possibility of taking measures to prevent environmental effects on the natural and / or anthropogenic environment. In the studied area review of the flood of 2005, were represented flood areas, therefore, according with the researches, several villages, located in

  5. Keep Children Safe From Drowning in Flooded Areas

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    As the cleanup process begins after a natural disaster, there may be areas of flooding. Watch your children to prevent them from playing in or around flood water.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/22/2007.

  6. Upstream Structural Management Measures for an Urban Area Flooding in Turkey and their Consequences on Flood Risk Management

    Science.gov (United States)

    Akyurek, Z.; Bozoglu, B.; Girayhan, T.

    2015-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies

  7. Internal Flooding Probabilistic Safety Assessment of an OPR-1000 Plant during Low Power and Shutdown Operation

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Park, Jin Hee; Lim, Ho Gon

    2016-01-01

    In 2009, the electric power research institute (EPRI) published a guideline for the development of IF-PRA that addresses the requirements of the ASME/ANS RASa-2009 PRA consensus standard. The EPRI guideline delineates a level of detail and assessment complexity that has been significantly increased with respect to the guidance for IF assessment performed for the individual plant examination (IPE) to address Generic Letter 88- 20. The main differences include: A more systematic approach to the definition of flood area. The identification, screening and analysis of flooding sources and scenarios. The calculation of the initiating-event frequency (IEF) based on the actual length and characteristics of the piping. The inclusion of spatial effects such as spray from pipe leaks. The specific documentation associated with the plant walkdowns. Among these differences, this research focused on the third and fourth items when performing the internal flooding PSA. This is done by identifying the pipe and fluid characteristics, assessing the pipe pressure, characterizing the pipe (i.e., pipe diameter, length, etc.) and determining the pressure boundary failure frequency. The results were summed for the various piping systems within a given flood area to arrive at an overall internal flood initiating frequency for a given flood mode (i.e., spray, general flood, or major flood) for that particular area by each POS (Plant Operational State). In this initiating event frequency evaluations, the POS duration time is especially considered to get the real values for LPSD state. Characterizations of spray scenarios were evaluated to determine their impact on plant risk caused by internal flooding events.

  8. Uncertainty Analysis of A Flood Risk Mapping Procedure Applied In Urban Areas

    Science.gov (United States)

    Krause, J.; Uhrich, S.; Bormann, H.; Diekkrüger, B.

    In the framework of IRMA-Sponge program the presented study was part of the joint research project FRHYMAP (flood risk and hydrological mapping). A simple con- ceptual flooding model (FLOODMAP) has been developed to simulate flooded areas besides rivers within cities. FLOODMAP requires a minimum of input data (digital el- evation model (DEM), river line, water level plain) and parameters and calculates the flood extent as well as the spatial distribution of flood depths. of course the simulated model results are affected by errors and uncertainties. Possible sources of uncertain- ties are the model structure, model parameters and input data. Thus after the model validation (comparison of simulated water to observed extent, taken from airborne pictures) the uncertainty of the essential input data set (digital elevation model) was analysed. Monte Carlo simulations were performed to assess the effect of uncertain- ties concerning the statistics of DEM quality and to derive flooding probabilities from the set of simulations. The questions concerning a minimum resolution of a DEM re- quired for flood simulation and concerning the best aggregation procedure of a given DEM was answered by comparing the results obtained using all available standard GIS aggregation procedures. Seven different aggregation procedures were applied to high resolution DEMs (1-2m) in three cities (Bonn, Cologne, Luxembourg). Basing on this analysis the effect of 'uncertain' DEM data was estimated and compared with other sources of uncertainties. Especially socio-economic information and monetary transfer functions required for a damage risk analysis show a high uncertainty. There- fore this study helps to analyse the weak points of the flood risk and damage risk assessment procedure.

  9. Floods and climate: emerging perspectives for flood risk assessment and management

    DEFF Research Database (Denmark)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, Karsten

    2014-01-01

    context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical......, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand......Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction...

  10. Quantitative risk analysis of urban flooding in lowland areas

    NARCIS (Netherlands)

    Ten Veldhuis, J.A.E.

    2010-01-01

    Urban flood risk analyses suffer from a lack of quantitative historical data on flooding incidents. Data collection takes place on an ad hoc basis and is usually restricted to severe events. The resulting data deficiency renders quantitative assessment of urban flood risks uncertain. The study

  11. Flash Flood Type Identification within Catchments in Beijing Mountainous Area

    Science.gov (United States)

    Nan, W.

    2017-12-01

    Flash flood is a common type of disaster in mountainous area, Flash flood with the feature of large flow rate, strong flushing force, destructive power, has periodically caused loss to life and destruction to infrastructure in mountainous area. Beijing as China's political, economic and cultural center, the disaster prevention and control work in Beijing mountainous area has always been concerned widely. According to the transport mechanism, sediment concentration and density, the flash flood type identification within catchment can provide basis for making the hazards prevention and mitigation policy. Taking Beijing as the study area, this paper extracted parameters related to catchment morphological and topography features respectively. By using Bayes discriminant, Logistic regression and Random forest, the catchments in Beijing mountainous area were divided into water floods process, fluvial sediment transport process and debris flows process. The results found that Logistic regression analysis showed the highest accuracy, with the overall accuracy of 88.2%. Bayes discriminant and Random forest had poor prediction effects. This study confirmed the ability of morphological and topography features to identify flash flood process. The circularity ratio, elongation ratio and roughness index can be used to explain the flash flood types effectively, and the Melton ratio and elevation relief ratio also did a good job during the identification, whereas the drainage density seemed not to be an issue at this level of detail. Based on the analysis of spatial patterns of flash flood types, fluvial sediment transport process and debris flow process were the dominant hazards, while the pure water flood process was much less. The catchments dominated by fluvial sediment transport process were mainly distributed in the Yan Mountain region, where the fault belts were relatively dense. The debris flow process prone to occur in the Taihang Mountain region thanks to the abundant

  12. Flood Disaster Risk Assessment of Rural Housings — A Case Study of Kouqian Town in China

    OpenAIRE

    Zhang, Qi; Zhang, Jiquan; Jiang, Liupeng; Liu, Xingpeng; Tong, Zhijun

    2014-01-01

    Floods are a devastating kind of natural disaster. About half of the population in China lives in rural areas. Therefore, it is necessary to assess the flood disaster risk of rural housings. The results are valuable for guiding the rescue and relief goods layout. In this study, we take the severe flood disaster that happened at Kouqian Town in Jilin, China in 2010 as an example to build an risk assessment system for flood disaster on rural housings. Based on the theory of natural disaster ris...

  13. Assessment of the spatial scaling behaviour of floods in the United Kingdom

    Science.gov (United States)

    Formetta, Giuseppe; Stewart, Elizabeth; Bell, Victoria

    2017-04-01

    Floods are among the most dangerous natural hazards, causing loss of life and significant damage to private and public property. Regional flood-frequency analysis (FFA) methods are essential tools to assess the flood hazard and plan interventions for its mitigation. FFA methods are often based on the well-known index flood method that assumes the invariance of the coefficient of variation of floods with drainage area. This assumption is equivalent to the simple scaling or self-similarity assumption for peak floods, i.e. their spatial structure remains similar in a particular, relatively simple, way to itself over a range of scales. Spatial scaling of floods has been evaluated at national scale for different countries such as Canada, USA, and Australia. According our knowledge. Such a study has not been conducted for the United Kingdom even though the standard FFA method there is based on the index flood assumption. In this work we present an integrated approach to assess of the spatial scaling behaviour of floods in the United Kingdom using three different methods: product moments (PM), probability weighted moments (PWM), and quantile analysis (QA). We analyse both instantaneous and daily annual observed maximum floods and performed our analysis both across the entire country and in its sub-climatic regions as defined in the Flood Studies Report (NERC, 1975). To evaluate the relationship between the k-th moments or quantiles and the drainage area we used both regression with area alone and multiple regression considering other explanatory variables to account for the geomorphology, amount of rainfall, and soil type of the catchments. The latter multiple regression approach was only recently demonstrated being more robust than the traditional regression with area alone that can lead to biased estimates of scaling exponents and misinterpretation of spatial scaling behaviour. We tested our framework on almost 600 rural catchments in UK considered as entire region and

  14. Risk assessment of flood disaster and forewarning model at different spatial-temporal scales

    Science.gov (United States)

    Zhao, Jun; Jin, Juliang; Xu, Jinchao; Guo, Qizhong; Hang, Qingfeng; Chen, Yaqian

    2018-05-01

    Aiming at reducing losses from flood disaster, risk assessment of flood disaster and forewarning model is studied. The model is built upon risk indices in flood disaster system, proceeding from the whole structure and its parts at different spatial-temporal scales. In this study, on the one hand, it mainly establishes the long-term forewarning model for the surface area with three levels of prediction, evaluation, and forewarning. The method of structure-adaptive back-propagation neural network on peak identification is used to simulate indices in prediction sub-model. Set pair analysis is employed to calculate the connection degrees of a single index, comprehensive index, and systematic risk through the multivariate connection number, and the comprehensive assessment is made by assessment matrixes in evaluation sub-model. The comparison judging method is adopted to divide warning degree of flood disaster on risk assessment comprehensive index with forewarning standards in forewarning sub-model and then the long-term local conditions for proposing planning schemes. On the other hand, it mainly sets up the real-time forewarning model for the spot, which introduces the real-time correction technique of Kalman filter based on hydrological model with forewarning index, and then the real-time local conditions for presenting an emergency plan. This study takes Tunxi area, Huangshan City of China, as an example. After risk assessment and forewarning model establishment and application for flood disaster at different spatial-temporal scales between the actual and simulated data from 1989 to 2008, forewarning results show that the development trend for flood disaster risk remains a decline on the whole from 2009 to 2013, despite the rise in 2011. At the macroscopic level, project and non-project measures are advanced, while at the microcosmic level, the time, place, and method are listed. It suggests that the proposed model is feasible with theory and application, thus

  15. Geomorphic Flood Area (GFA): a QGIS tool for a cost-effective delineation of the floodplains

    Science.gov (United States)

    Samela, Caterina; Albano, Raffaele; Sole, Aurelia; Manfreda, Salvatore

    2017-04-01

    Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, 16(10), 781-790. Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth, G., & Sole, A. (2014). Investigation on the Use of Geomorphic Approaches for the Delineation of Flood Prone Areas, Journal of Hydrology, 517, 863-876. Manfreda, S., Samela, C., Gioia, A., Consoli, G., Iacobellis, V., Giuzio, L., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, Vol. 79 (2), pp 735-754. Samela, C. (2016), 100-year flood susceptibility maps for the continental U.S. derived with a geomorphic method. University of Basilicata. Dataset. Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. (2016). DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. Journal of Hydrologic Engineering, 21(2), 1-10. Samela, C., Troy, T.J., Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments, Advances in Water Resources (under review).

  16. FloodProBE: technologies for improved safety of the built environment in relation to flood events

    International Nuclear Information System (INIS)

    Ree, C.C.D.F. van; Van, M.A.; Heilemann, K.; Morris, M.W.; Royet, P.; Zevenbergen, C.

    2011-01-01

    The FloodProBE project started as a FP7 research project in November 2009. Floods, together with wind related storms, are considered the major natural hazard in the EU in terms of risk to people and assets. In order to adapt urban areas (in river and coastal zones) to prevent flooding or to be better prepared for floods, decision makers need to determine how to upgrade flood defences and increasing flood resilience of protected buildings and critical infrastructure (power supplies, communications, water, transport, etc.) and assess the expected risk reduction from these measures. The aim of the FloodProBE-project is to improve knowledge on flood resilience and flood protection performance for balancing investments in flood risk management in urban areas. To this end, technologies, methods and tools for assessment purposes and for the adaptation of new and existing buildings and critical infrastructure are developed, tested and disseminated. Three priority areas are addressed by FloodProBE. These are: (i) vulnerability of critical infrastructure and high-density value assets including direct and indirect damage, (ii) the assessment and reliability of urban flood defences including the use of geophysical methods and remote sensing techniques and (iii) concepts and technologies for upgrading weak links in flood defences as well as construction technologies for flood proofing buildings and infrastructure networks to increase the flood resilience of the urban system. The primary impact of FloodProBE in advancing knowledge in these areas is an increase in the cost-effectiveness (i.e. performance) of new and existing flood protection structures and flood resilience measures.

  17. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Science.gov (United States)

    2010-10-01

    ... local flood protection systems no longer provide base flood protection. 65.14 Section 65.14 Emergency... § 65.14 Remapping of areas for which local flood protection systems no longer provide base flood... process of restoring a flood protection system that was: (i) Constructed using Federal funds; (ii...

  18. Flood hazard assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  19. A framework for global river flood risk assessments

    NARCIS (Netherlands)

    Winsemius, H.C.; van Beek, L.P.H.|info:eu-repo/dai/nl/14749799X; Jongman, B.; Ward, P.J.; Bouwman, A.

    2013-01-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and

  20. The Impact of Changing Storage Area on Flood Magnitude and Occurrence

    Directory of Open Access Journals (Sweden)

    Kusumastuti D.I.

    2012-01-01

    Full Text Available This study focuses on the impact of combined catchment and storage upon flood occurrences and flood peaks. A significant factor that plays an important role of the combined catchment and storage is the ratio of contributing catchment area to storage area (AC/AS where the impact significantly shows increasing frequency of storage overflow and flood peaks with the increasing of AC/AS. Some case studies examined in this work, i.e. Way Pegadungan (Lampung, Sumatra and NagaraRiver (South Kalimantan catchments show similar behavior. Swamps located on the sides of downstream of Way Pegadungan as well as Nagara River act as storages during flood events. The dyke which was planned to be built increases the ratio of AC/AS significantly as storage area reduced considerably. This has an impact on flood peaks which can increase considerably. The improved understanding of these process controls will be useful in assisting the management of such catchments, particularly to assist in flood prevention and mitigation.

  1. Identification and delineation of areas flood hazard using high accuracy of DEM data

    Science.gov (United States)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  2. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. A method was developed to determine the probabilistic flood hazard curves for SRS facilities. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  3. Low cost, multiscale and multi-sensor application for flooded area mapping

    Directory of Open Access Journals (Sweden)

    D. Giordan

    2018-05-01

    Full Text Available Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed and multispectral sensors (MODIS, Sentinel-2. Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  4. Assessment on the pedestrian risk during floods based on numerical simulation - A case study in Jinan City

    Science.gov (United States)

    Cheng, T.; Xu, Z.; Hong, S.

    2017-12-01

    Flood disasters frequently attack the urban area in Jinan City during past years, and the city is faced with severe road flooding which greatly threaten pedestrians' safety. Therefore, it is of great significance to investigate the pedestrian risk during floods under specific topographic condition. In this study, a model coupled hydrological and hydrodynamic processes is developed in the study area to simulate the flood routing process on the road for the "7.18" rainstorm and validated with post-disaster damage survey information. The risk of pedestrian is estimated with a flood risk assessment model. The result shows that the coupled model performs well in the rainstorm flood process. On the basis of the simulation result, the areas with extreme risk, medium risk, and mild risk are identified, respectively. Regions with high risk are generally located near the mountain front area with steep slopes. This study will provide scientific support for the flood control and disaster reduction in Jinan City.

  5. Flood risk management in Flanders: from flood risk objectives to appropriate measures through state assessment

    Directory of Open Access Journals (Sweden)

    Verbeke Sven

    2016-01-01

    Full Text Available In compliance with the EU Flood Directive to reduce flood risk, flood risk management objectives are indispensable for the delineation of necessary measures. In Flanders, flood risk management objectives are part of the environmental objectives which are judicially integrated by the Decree on Integrated Water Policy. Appropriate objectives were derived by supporting studies and extensive consultation on a local, regional and policy level. Under a general flood risk objective sub-objectives are formulated for different aspects: water management and safety, shipping, ecology, and water supply. By developing a risk matrix, it is possible to assess the current state of flood risk and to judge where action is needed to decrease the risk. Three different states of flood risk are distinguished: a acceptable risk, where no action is needed, b intermediate risk where the risk should be reduced by cost efficient actions, and c unacceptable risk, where action is necessary. For each particular aspect, the severity of the consequences of flooding is assessed by quantifiable indicators, such as economic risk, people at risk and ecological flood tolerance. The framework also allows evaluating the effects of the implemented measures and the autonomous development such as climate change and land use change. This approach gives a quantifiable assessment of state, and enables a prioritization of flood risk measures for the reduction of flood risk in a cost efficient and sustainable way.

  6. Novel flood risk assessment framework for rapid decision making

    Science.gov (United States)

    Valyrakis, Manousos; Koursari, Eftychia; Solley, Mark

    2016-04-01

    The impacts of catastrophic flooding, have significantly increased over the last few decades. This is due to primarily the increased urbanisation in ever-expanding mega-cities as well as due to the intensification both in magnitude and frequency of extreme hydrologic events. Herein a novel conceptual framework is presented that incorporates the use of real-time information to inform and update low dimensionality hydraulic models, to allow for rapid decision making towards preventing loss of life and safeguarding critical infrastructure. In particular, a case study from the recent UK floods in the area of Whitesands (Dumfries), is presented to demonstrate the utility of this approach. It is demonstrated that effectively combining a wealth of readily available qualitative information (such as crowdsourced visual documentation or using live data from sensing techniques), with existing quantitative data, can help appropriately update hydraulic models and reduce modelling uncertainties in future flood risk assessments. This approach is even more useful in cases where hydraulic models are limited, do not exist or were not needed before unpredicted dynamic modifications to the river system took place (for example in the case of reduced or eliminated hydraulic capacity due to blockages). The low computational cost and rapid assessment this framework offers, render it promising for innovating in flood management.

  7. Effective delineation of urban flooded areas based on aerial ortho-photo imagery

    Science.gov (United States)

    Zhang, Ying; Guindon, Bert; Raymond, Don; Hong, Gang

    2016-10-01

    The combination of rapid global urban growth and climate change has resulted in increased occurrence of major urban flood events across the globe. The distribution of flooded area is one of the key information layers for applications of emergency planning and response management. While SAR systems and technologies have been widely used for flood area delineation, radar images suffer from range ambiguities arising from corner reflection effects and shadowing in dense urban settings. A new mapping framework is proposed for the extraction and quantification of flood extent based on aerial optical multi-spectral imagery and ancillary data. This involves first mapping of flood areas directly visible to the sensor. Subsequently, the complete area of submergence is estimated from this initial mapping and inference techniques based on baseline data such as land cover and GIS information such as available digital elevation models. The methodology has been tested and proven effective using aerial photography for the case of the 2013 flood in Calgary, Canada.

  8. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  9. Remote Sensing and GIS Assessment of Flood Vulnerability of ...

    African Journals Online (AJOL)

    Lokoja, the Kogi state capital, is located at the Niger-Benue confluence. Hazards erupt when human activities in the confluence area are not properly managed. This article uses the Remote Sensing and GIS technique to assess the flood vulnerability zones of the town using the bench mark minimum and maximum water ...

  10. The effect of a disastrous flood on the quality of life in Dongting lake area in China.

    Science.gov (United States)

    Tan, H Z; Luo, Y J; Wen, S W; Liu, A Z; Li, S Q; Yang, T B; Sun, Z Q

    2004-01-01

    We carried out an epidemiological study to assess the impact of flood on the quality of life (QOL) of residents in the affected areas in China. We used a natural experiment approach, randomly selected 494 adults from 18 villages, which suffered from flooding as a result of embankments collapsing, 473 adults from 16 villages, which suffered from, soaked flood, and 773 adults from 11 villages without flood (control group). We used the Generic QOL Inventory-74 (GQOLI-74), social support scale, and questionnaires to assess the QOL of all study participants. The QOL was significantly poorer in soaked group (58.4) and (especially) in collapsed group (55.1) than in control group (59.5, pintrovert personality, and residents with adverse life-events, whereas social support and extrovert personalities offset the negative impact of flood on QOL.

  11. Flood Hazard Area

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  12. Application of STORMTOOLS's simplified flood inundation model with sea level rise to assess impacts to RI coastal areas

    Science.gov (United States)

    Spaulding, M. L.

    2015-12-01

    The vision for STORMTOOLS is to provide access to a suite of coastal planning tools (numerical models et al), available as a web service, that allows wide spread accessibly and applicability at high resolution for user selected coastal areas of interest. The first product developed under this framework were flood inundation maps, with and without sea level rise, for varying return periods for RI coastal waters. The flood mapping methodology is based on using the water level vs return periods at a primary NOAA water level gauging station and then spatially scaling the values, based on the predictions of high resolution, storm and wave simulations performed by Army Corp of Engineers, North Atlantic Comprehensive Coastal Study (NACCS) for tropical and extratropical storms on an unstructured grid, to estimate inundation levels for varying return periods. The scaling for the RI application used Newport, RI water levels as the reference point. Predictions are provided for once in 25, 50, and 100 yr return periods (at the upper 95% confidence level), with sea level rises of 1, 2, 3, and 5 ft. Simulations have also been performed for historical hurricane events including 1938, Carol (1954), Bob (1991), and Sandy (2012) and nuisance flooding events with return periods of 1, 3, 5, and 10 yr. Access to the flooding maps is via a web based, map viewer that seamlessly covers all coastal waters of the state at one meter resolution. The GIS structure of the map viewer allows overlays of additional relevant data sets (roads and highways, wastewater treatment facilities, schools, hospitals, emergency evacuation routes, etc.) as desired by the user. The simplified flooding maps are publically available and are now being implemented for state and community resilience planning and vulnerability assessment activities in response to climate change impacts.

  13. Flood damage curves for consistent global risk assessments

    Science.gov (United States)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra

  14. Impacts of dyke development in flood prone areas in the Vietnamese Mekong Delta to downstream flood hazard

    Science.gov (United States)

    Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan

  15. How useful are Swiss flood insurance data for flood vulnerability assessments?

    Science.gov (United States)

    Röthlisberger, Veronika; Bernet, Daniel; Zischg, Andreas; Keiler, Margreth

    2015-04-01

    vulnerability and resilience assessments. For instance, the collation of insurance loss data with event documentations containing information on flood intensity allows to develop damage curves. Flood damage curves are fundamental for many risk analysis methodologies but to date only few are published and the spatial and temporal scope of their applicability is subject of discussion. Another possibility of using insurance data lies in the field of assessment exposure, where the analysis of comprehensive insurance portfolio data can improve the understanding of the physical but also the socio-economical vulnerability of a society. The poster spotlights key opportunities and challenges scientists are facing when using insurance data for flood vulnerability assessments.

  16. When nature frowns: A comprehensive impact assessment of the 2012 Babessi floods on people’s livelihoods in rural Cameroon

    Directory of Open Access Journals (Sweden)

    Roland A. Balgah

    2015-11-01

    Full Text Available Floods are the most common natural disasters worldwide. Much of the growing literature on the impact of floods, especially in developed countries, and to a lesser extent in rural areas of developing countries, concentrates on economic rather than a comprehensive assessment of combined effects on people’s livelihoods. Holistic floods impact assessments are often done long after the shock, raising problems of data reliability following long recall periods, although post-disaster needs assessments when carried out earlier can facilitate appropriate disaster recovery, relief and reconstruction activities. We applied the sustainable livelihoods framework as a comprehensive approach to assess the impacts of the Babessi floods in 2012 on livelihoods in rural (north western region of Cameroon 6 weeks after the floods. Using a structured questionnaire, data was collected from victims before and after the floods, using recall methods. A matched sample of nonvictims randomly selected from the same village as the victims was used to assess vulnerability to the floods by household type. Floods were found to have serious economic, social, human and food security impacts on victims. Both government and nongovernmental support were jointly crucial for household recovery. Comparatively observed high levels of recovery were attributed to the low loss of human lives. The article concludes with the need for comprehensive approaches to floods impact assessments. The need for combining formal and informal instruments in post-disaster management in rural areas is also emphasised.

  17. Prehistoric floods on the Tennessee River—Assessing the use of stratigraphic records of past floods for improved flood-frequency analysis

    Science.gov (United States)

    Harden, Tessa M.; O'Connor, Jim E.

    2017-06-14

    Stratigraphic analysis, coupled with geochronologic techniques, indicates that a rich history of large Tennessee River floods is preserved in the Tennessee River Gorge area. Deposits of flood sediment from the 1867 peak discharge of record (460,000 cubic feet per second at Chattanooga, Tennessee) are preserved at many locations throughout the study area at sites with flood-sediment accumulation. Small exposures at two boulder overhangs reveal evidence of three to four other floods similar in size, or larger, than the 1867 flood in the last 3,000 years—one possibly as much or more than 50 percent larger. Records of floods also are preserved in stratigraphic sections at the mouth of the gorge at Williams Island and near Eaves Ferry, about 70 river miles upstream of the gorge. These stratigraphic records may extend as far back as about 9,000 years ago, giving a long history of Tennessee River floods. Although more evidence is needed to confirm these findings, a more in-depth comprehensive paleoflood study is feasible for the Tennessee River.

  18. DEM-based Approaches for the Identification of Flood Prone Areas

    Science.gov (United States)

    Samela, Caterina; Manfreda, Salvatore; Nardi, Fernando; Grimaldi, Salvatore; Roth, Giorgio; Sole, Aurelia

    2013-04-01

    The remarkable number of inundations that caused, in the last decades, thousands of deaths and huge economic losses, testifies the extreme vulnerability of many Countries to the flood hazard. As a matter of fact, human activities are often developed in the floodplains, creating conditions of extremely high risk. Terrain morphology plays an important role in understanding, modelling and analyzing the hydraulic behaviour of flood waves. Research during the last 10 years has shown that the delineation of flood prone areas can be carried out using fast methods that relay on basin geomorphologic features. In fact, the availability of new technologies to measure surface elevation (e.g., GPS, SAR, SAR interferometry, RADAR and LASER altimetry) has given a strong impulse to the development of Digital Elevation Models (DEMs) based approaches. The identification of the dominant topographic controls on the flood inundation process is a critical research question that we try to tackle with a comparative analysis of several techniques. We reviewed four different approaches for the morphological characterization of a river basin with the aim to provide a description of their performances and to identify their range of applicability. In particular, we explored the potential of the following tools. 1) The hydrogeomorphic method proposed by Nardi et al. (2006) which defines the flood prone areas according to the water level in the river network through the hydrogeomorphic theory. 2) The linear binary classifier proposed by Degiorgis et al. (2012) which allows distinguishing flood-prone areas using two features related to the location of the site under exam with respect to the nearest hazard source. The two features, proposed in the study, are the length of the path that hydrologically connects the location under exam to the nearest element of the drainage network and the difference in elevation between the cell under exam and the final point of the same path. 3) The method by

  19. Flood Hazard and Risk Analysis in Urban Area

    Science.gov (United States)

    Huang, Chen-Jia; Hsu, Ming-hsi; Teng, Wei-Hsien; Lin, Tsung-Hsien

    2017-04-01

    Typhoons always induce heavy rainfall during summer and autumn seasons in Taiwan. Extreme weather in recent years often causes severe flooding which result in serious losses of life and property. With the rapid industrial and commercial development, people care about not only the quality of life, but also the safety of life and property. So the impact of life and property due to disaster is the most serious problem concerned by the residents. For the mitigation of the disaster impact, the flood hazard and risk analysis play an important role for the disaster prevention and mitigation. In this study, the vulnerability of Kaohsiung city was evaluated by statistics of social development factor. The hazard factors of Kaohsiung city was calculated by simulated flood depth of six different return periods and four typhoon events which result in serious flooding in Kaohsiung city. The flood risk can be obtained by means of the flood hazard and social vulnerability. The analysis results provide authority to strengthen disaster preparedness and to set up more resources in high risk areas.

  20. A methodology for the assessment of flood hazards at the regional scale

    Science.gov (United States)

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Marcomini, Antonio

    2013-04-01

    In recent years, the frequency of water-related disasters has increased and recent flood events in Europe (e.g. 2002 in Central Europe, 2007 in UK, 2010 in Italy) caused physical-environmental and socio-economic damages. Specifically, floods are the most threatening water-related disaster that affects humans, their lives and properties. Within the KULTURisk project (FP7) a Regional Risk Assessment (RRA) methodology is proposed to evaluate the benefits of risk prevention in terms of reduced environmental risks due to floods. The method is based on the KULTURisk framework and allows the identification and prioritization of targets (i.e. people, buildings, infrastructures, agriculture, natural and semi-natural systems, cultural heritages) and areas at risk from floods in the considered region by comparing the baseline scenario (i.e. current state) with alternative scenarios (i.e. where different structural and/or non-structural measures are planned). The RRA methodology is flexible and can be adapted to different case studies (i.e. large rivers, alpine/mountain catchments, urban areas and coastal areas) and spatial scales (i.e. from the large river to the urban scale). The final aim of RRA is to help decision-makers in examining the possible environmental risks associated with uncertain future flood hazards and in identifying which prevention scenario could be the most suitable one. The RRA methodology employs Multi-Criteria Decision Analysis (MCDA functions) in order to integrate stakeholder preferences and experts judgments into the analysis. Moreover, Geographic Information Systems (GISs) are used to manage, process, analyze, and map data to facilitate the analysis and the information sharing with different experts and stakeholders. In order to characterize flood risks, the proposed methodology integrates the output of hydrodynamic models with the analysis of site-specific bio-geophysical and socio-economic indicators (e.g. slope of the territory, land cover

  1. A new approach for river flood extent delineation in rural and urban areas combining RADARSAT-2 imagery and flood recurrence interval data

    Science.gov (United States)

    Tanguy, Marion; Bernier, Monique; Chokmani, Karem

    2015-04-01

    When a flood hits an inhabited area, managers and services responsible for public safety need precise, reliable and up to date maps of the areas affected by the flood, in order to quickly roll out and to coordinate the adequate intervention and assistance plans required to limit the human and material damages caused by the disaster. Synthetic aperture radar (SAR) sensors are now considered as one of the most adapted tool for flood detection and mapping in a context of crisis management. Indeed, due to their capacity to acquire data night and day, in almost all meteorological conditions, SAR sensors allow the acquisition of synoptic but detailed views of the areas affected by the flood, even during the active phases of the event. Moreover, new generation sensors such as RADARSAT-2, TerraSAR-X, COSMO-SkyMed, are providing very high resolution images of the disaster (down to 1m ground resolution). Further, critical improvements have been made on the temporal repetitivity of acquisitions and on data availability, through the development of satellite constellations (i.e the four COSMO-Skymed or the Sentinel-1A and 1B satellites) and thanks to the implementation of the International Charter "Space and Major Disasters", which guarantees high priority images acquisition and delivery with 4 to 12 hours. If detection of open water flooded areas is relatively straightforward with SAR imagery, flood detection in built-up areas is often associated with important issues. Indeed, because of the side looking geometry of the SAR sensors, structures such as tall vegetation and structures parallel to the satellite direction of travel may produce shadow and layover effects, leading to important over and under-detections of flooded pixels. Besides, the numerous permanent water-surfaces like radar response areas present in built-up environments, such as parking lots, roads etc., may be mixed up with flooded areas, resulting in substantial inaccuracies in the final flood map. In spite of

  2. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2012-07-01

    Full Text Available Floodplain lakes and peatlands in the middle Mahakam lowland area are considered as ecologically important wetland in East Kalimantan, Indonesia. However, due to a lack of data, the hydrological functioning of the region is still poorly understood. Among remote sensing techniques that can increase data availability, radar is well-suitable for the identification, mapping, and measurement of tropical wetlands, for its cloud unimpeded sensing and night and day operation. Here we aim to extract flood extent and flood occurrence information from a series of radar images of the middle Mahakam lowland area. We explore the use of Phased Array L-band Synthetic Aperture Radar (PALSAR imagery for observing flood inundation dynamics by incorporating field water level measurements. Water level measurements were carried out along the river, in lakes and in peatlands, using pressure transducers. For validation of the open water flood occurrence map, bathymetry measurements were carried out in the main lakes. A series of PALSAR images covering the middle and lower Mahakam area in the years 2007 through 2010 were collected. A fully inundated region can be easily recognized on radar images from a dark signature. Open water flood occurrence was mapped using a threshold value taken from radar backscatter of the permanently inundated river and lakes areas. Radar backscatter intensity analysis of the vegetated floodplain area revealed consistently high backscatter values, indicating flood inundation under forest canopy. We used those values as the threshold for flood occurrence mapping in the vegetated area.

  3. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    Science.gov (United States)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  4. An Assessment of the Effectiveness of Tree-Based Models for Multi-Variate Flood Damage Assessment in Australia

    Directory of Open Access Journals (Sweden)

    Roozbeh Hasanzadeh Nafari

    2016-07-01

    Full Text Available Flood is a frequent natural hazard that has significant financial consequences for Australia. In Australia, physical losses caused by floods are commonly estimated by stage-damage functions. These methods usually consider only the depth of the water and the type of buildings at risk. However, flood damage is a complicated process, and it is dependent on a variety of factors which are rarely taken into account. This study explores the interaction, importance, and influence of water depth, flow velocity, water contamination, precautionary measures, emergency measures, flood experience, floor area, building value, building quality, and socioeconomic status. The study uses tree-based models (regression trees and bagging decision trees and a dataset collected from 2012 to 2013 flood events in Queensland, which includes information on structural damages, impact parameters, and resistance variables. The tree-based approaches show water depth, floor area, precautionary measures, building value, and building quality to be important damage-influencing parameters. Furthermore, the performance of the tree-based models is validated and contrasted with the outcomes of a multi-parameter loss function (FLFArs from Australia. The tree-based models are shown to be more accurate than the stage-damage function. Consequently, considering more parameters and taking advantage of tree-based models is recommended. The outcome is important for improving established Australian flood loss models and assisting decision-makers and insurance companies dealing with flood risk assessment.

  5. Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach

    Directory of Open Access Journals (Sweden)

    R. Archetti

    2011-10-01

    Full Text Available The operating conditions of urban drainage networks during storm events depend on the hydraulic conveying capacity of conduits and also on downstream boundary conditions. This is particularly true in coastal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration, but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of climate variables. The case study is a portion of the drainage system of Rimini (Italy, implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system identified the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables' values has lead to the definition of charts representing the combined degree of risk "rainfall-sea level" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year rainfall-sea level time series has demonstrated the reliability of the analysis.

  6. An empirical assessment of which inland floods can be managed.

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A; Hoegh, Andrew B; Angermeier, Paul L

    2016-02-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m(3)/s) but quicker (0.41 days) floods than non-urban watersheds (50 m(3)/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m(3)/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m(3)/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help

  7. An empirical assessment of which inland floods can be managed

    Science.gov (United States)

    Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul

    2016-01-01

    Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that

  8. Economic Risk Evaluation in Urban Flooding and Instability-Prone Areas: The Case Study of San Giovanni Rotondo (Southern Italy

    Directory of Open Access Journals (Sweden)

    Roberta Pellicani

    2018-03-01

    Full Text Available Estimating economic losses caused on buildings and other civil engineering works due to flooding events is often a difficult task. The accuracy of the estimate is affected by the availability of detailed data regarding the return period of the flooding event, vulnerability of exposed assets, and type of economy run in the affected area. This paper aims to provide a quantitative methodology for the assessment of economic losses associated with flood scenarios. The proposed methodology was performed for an urban area in Southern Italy prone to hydrogeological instabilities. At first, the main physical characteristics of the area such as rainfall, land use, permeability, roughness, and slopes of the area under investigation were estimated in order to obtain input for flooding simulations. Afterwards, the analysis focused on the spatial variability incidence of the rainfall parameters in flood events. The hydraulic modeling provided different flood hazard scenarios. The risk curve obtained by plotting economic consequences vs. the return period for each hazard scenario can be a useful tool for local authorities to identify adequate risk mitigation measures and therefore prioritize the economic resources necessary for the implementation of such mitigation measures.

  9. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Science.gov (United States)

    2010-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  10. MODIS-based multi-parametric platform for mapping of flood affected areas. Case study: 2006 Danube extreme flood in Romania

    Directory of Open Access Journals (Sweden)

    Craciunescu Vasile

    2016-12-01

    Full Text Available Flooding remains the most widely distributed natural hazard in Europe, leading to significant economic and social impact. Earth observation data is presently capable of making fundamental contributions towards reducing the detrimental effects of extreme floods. Technological advance makes development of online services able to process high volumes of satellite data without the need of dedicated desktop software licenses possible. The main objective of the case study is to present and evaluate a methodology for mapping of flooded areas based on MODIS satellite images derived indices and using state-of-the-art geospatial web services. The methodology and the developed platform were tested with data for the historical flood event that affected the Danube floodplain in 2006 in Romania. The results proved that, despite the relative coarse resolution, MODIS data is very useful for mapping the development flooded area in large plain floods. Moreover it was shown, that the possibility to adapt and combine the existing global algorithms for flood detection to fit the local conditions is extremely important to obtain accurate results.

  11. Assessment of flood mitigation through riparian detention in ...

    Indian Academy of Sciences (India)

    19

    changing climate – a case study. 2. 3. Kwan Tun ... expected to mitigate flood damage in downstream urban areas. In this study ... recognized as the most vulnerable region in respect of natural disasters. In the main ..... An integrated numerical model was developed in this study for flooding simulation to realize. 21 the flood ...

  12. Analysis of flood vulnerability in urban area; a case study in deli watershed

    Science.gov (United States)

    Indrawan, I.; Siregar, R. I.

    2018-03-01

    Based on the National Disaster Management Agency of Indonesia, the distribution of disasters and victims died until the year 2016 is the largest flood disaster. Deli River is a river that has the greatest flood potential through Medan City. In Deli Watershed, flow discharge affected by the discharge from its tributaries, the high rainfall intensity and human activity. We should anticipate reducing and preventing the occurrence of losses due to flood damage. One of the ways to anticipate flood disaster is to predict which part of urban area is would flood. The objective of this study is to analyze the flood inundation areas due to overflow of Deli River through Medan city. Two-dimensional modeling by HEC-RAS 5.0.3 is a widely used hydraulic software tool developed by the U.S Army Corps of Engineers, which combined with the HEC-HMS for hydrological modeling. The result shows flood vulnerability in Medan by a map to present the spot that vulnerable about flood. The flooded area due to the overflowing of Deli River consists of seven sub districts, namely Medan Johor, Medan Selayang, Medan Kota, Medan Petisah, Medan Maimun, Medan Perjuangan and Medan Barat.

  13. Evaluating extreme flood characteristics of small mountainous basins of the Black Sea coastal area, Northern Caucasus

    Directory of Open Access Journals (Sweden)

    L. S. Lebedeva

    2015-06-01

    Full Text Available The probability of heavy rains and river floods is expected to increase with time in the Northern Caucasus region. Densely populated areas in the valleys of small mountainous watersheds already frequently suffer from catastrophic peak floods caused by intense rains at higher elevations. This study aimed at assessing the flood characteristics of several small basins in the piedmont area of the Caucasus Mountains adjacent to the Black Sea coast including ungauged Cemes River in the Novorossiysk city. The Deterministic-Stochastic Modelling System which consists of hydrological model Hydrograph and stochastic weather generator was applied to evaluate extreme rainfall and runoff characteristics of 1% exceedance probability. Rainfall intensity is shown to play more significant role than its depth in formation of extreme flows within the studied region.

  14. Evaluation of Flooding Risk and Engineering Protection Against Floods for Ulan-Ude

    Science.gov (United States)

    Borisova, T. A.

    2017-11-01

    The report presents the results of the study on analysis and risk assessment in relation to floods for Ulan-Ude and provides the developed recommendations of the activities for engineering protection of the population and economic installations. The current situation is reviewed and the results of the site survey are shown to identify the challenges and areas of negative water influence along with the existing security system. The report presents a summary of floods and index risk assessment. The articles describes the scope of eventual flooding, underflooding and enumerates the economic installations inside the urban areas’ research-based zones of flooding at the rated levels of water to identify the likeliness of exceedance. The assessment of damage from flood equal to 1% is shown.

  15. Regional flood impact assessment for Kiel and Eckernförde, Germany

    Science.gov (United States)

    Shustikova, Iuliia; Viavattene, Christophe; Seiß, Guntram

    2017-04-01

    It is well-observed that extreme flood events bring considerable destruction to coastal communities. The estimates of damage increases when direct and indirect losses are both considered in the assessment. This study applied the INtegrated DisRuption Assessment (INDRA) model which is designed to estimate and compare not only tangible but also intangible losses such as risk to life, recovery mechanisms and household displacement. Multi-criteria analysis (MCA) was performed in order to compare hotspots of high flood risk on the regional scale and detect which impact indicators influence results the most. INDRA allowed assessing the following impact indicators: direct damages to buildings and roads, transport disruption, risk to life and financial recovery mechanisms of private households and businesses. The focus was on two hotspots of flood risk, where direct and indirect impacts from 200 years flood were assessed and analyzed in terms of relative importance to the region. The region here was defined as municipalities located on the Baltic Sea coast within the Schleswig-Holstein state, Germany. The hotspots are the towns of Kiel and Eckernförde. They are urban areas with a high concentration of people and assets, which previously experienced extreme flood events. From the performed investigation it was found out that modeled flood differently impacts Kiel and Eckernförde. The results produced by MCA show that the scores of direct and indirect damage are slightly higher in Eckernförde than in Kiel. Transport disruption is a compelling element in the performed regional impact assessment and demonstrated immense weight. Extreme events may pose significant direct and indirect impacts on the coastal roads, obstructing not only the access to important landmarks such as hospitals, train stations, harbors, etc. but also to contiguous municipalities. Yet, the analysis showed that other impact indicators are rather of local importance and would not cause vast damage on a

  16. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment

    Directory of Open Access Journals (Sweden)

    Kathryn Lane

    2013-01-01

    Full Text Available Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  17. Health effects of coastal storms and flooding in urban areas: a review and vulnerability assessment.

    Science.gov (United States)

    Lane, Kathryn; Charles-Guzman, Kizzy; Wheeler, Katherine; Abid, Zaynah; Graber, Nathan; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  18. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    Science.gov (United States)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  19. GIS Analysis of Flood Vulnerable Areas In Benin- Owena River Basin, Nigeria

    Directory of Open Access Journals (Sweden)

    Adebayo Oluwasegun Hezekiah

    2017-07-01

    Full Text Available The frequency and intensity of flood disasters have become serious issues in the national development process of Nigeria as flood disasters have caused serious environmental damages, loss of human lives and other heavy economic losses;  putting the issue of disaster reduction and risk management higher on the policy agenda of affected governments, multilateral agencies and NGOs. The starting point of concrete flood disaster mitigation efforts is to identify the areas with higher risk levels and fashion out appropriate preventive and response mechanisms. This research paper explored the potentials of Geographic Information System (GIS in data capture, processing and analysis in identifying flood-prone areas for the purpose of planning for disaster mitigation and preparedness, using Benin-Owena river basin of Nigeria as a unit of analysis. The data used in this study were obtained from FORMECU and were entered and use to develop a flood risk information system. Analysis and capability of the developed system was illustrated and shown graphically. The research showed that over one thousand settlements harbouring over ten million people located in the study area are at grave risk of flooding.   Key words: Flood, Risk, Vulnerability, Geographical Information System (GIS, River -Basin

  20. Prioritising watersheds on the basis of regional flood susceptibility and vulnerability in mountainous areas through the use of indicators

    Science.gov (United States)

    Rogelis, Carolina; Werner, Micha

    2013-04-01

    Settlements in peri-urban areas of many cities in mountainous areas such as in the Andes are susceptible to hazards such as flash floods and debris flows. Additionally these settlements are in many cases informal and thus vulnerable to such hazards, resulting in significant risk. Such watersheds are often quiet small, and generally there is little or no information from gauges to help characterise risk. To help identify watersheds in which flood management measures are to be targeted, a rapid assessment of risk is required. In this paper a novel approach is presented where indicators of susceptibility and vulnerability to flash floods were used to prioritize 106 mountain watersheds in Bogotá (Colombia). Variables recognized in literature to determine the dominant processes both in susceptibility and vulnerability to flash floods were used to construct the indicators. Susceptibility was considered to increase with flashiness and the possibility of debris flow events occurring. This was assessed through the use of an indicator composed of a morphometric indicator and a land use indicator. The former was constructed using morphological variables recognized in literature to significantly influence flashiness and occurrence of debris flows; the latter was constructed in terms of percentage of vegetation cover, urban area and bare soil. The morphometric indicator was compared with the results of a debris flow propagation algorithm to assess its capacity in indentifying the morphological conditions of a watershed that make it able to transport debris flows. Propagation was carried out through the use of the Modified Single Flow Direction algorithm, following previous identification of source areas by applying thresholds identified in the area-slope curve of the watersheds and empirical thresholds. Results show that the morphometric variables can be grouped in four categories: size, shape, hypsometry and energy, with the energy the component found to best explain the

  1. Enhanced Effects of Flood Disasters Due to Hillside Development in Urban Areas

    Directory of Open Access Journals (Sweden)

    Wei-Hsien Teng

    2013-02-01

    Full Text Available In recent years, the Taiwan government has established a number of flood control facilities such as dikes, pumping stations and drainage systems to effectively reduce downstream flooding. However, with continued development and urbanization of catchment areas, the original designs of most flood control facilities have become outdated. Hillside lands in the upper and middle reaches of river basins have undergone urban development through unsound engineering practices, paving the way for heavy downstream flooding. Therefore, proper river basin management should include both upstream and downstream sides. The main purpose of the paper is to simulate non-urban inundation areas with various degrees of development (0%, 10%, 20%, 40% and 60%, over two different return periods of 25 years and 200 years, for intensive rainfall events in the Shi-Chi District, Taiwan. Through hydrological analysis and numerical simulations of inundation, quantitative data on inundation potential have been established based on the land development conditions along the hillsides on the upper and middle reaches of the Keelung River Basin. The simulated results show that the increase in the extent of land development in the upper reaches causes an increase in the area and depth of inundation, resulting in an increased risk of flooding in downstream areas. If the land-use policy makers in the upper reaches of the river basin’s hillsides do not properly manage the land development, the risk of flooding in downstream areas will increase. In such an event, the policy makers should first review the situation to understand the problem with the consideration of this study. Thus, proper development and flood mitigation in hillsides can be established.

  2. An assessment of flood vulnerability on physical development along ...

    African Journals Online (AJOL)

    Mohammad

    Key words: Drainage channel, flood, risk assessment, vulnerability. INTRODUCTION ... hydraulic and other control structures.” The effects of floods are always ..... An application of Geographic Information System in mapping flood risk zones in ...

  3. FINANCING OF THE FLOOD DEFENSE IN DABULENI-CETATE AREA

    Directory of Open Access Journals (Sweden)

    Dorin COSMA

    2014-11-01

    Full Text Available Danube River Basin has been frequently affected by floods in the last decades which often gained historical meanings, the latest being recorded in 2006 and 2013. The material losses were very high and on the Cetate-Dabuleni sector of the Danube river, after the floods of 2006 the dikes have been damaged and partially destroyed. In the end the Rast locality was almost total relocated. Following these events, we need to rebuild the flood defense infrastructure in the Lower Danube, but after the first assessment the costs are very high. With this paper we propose the ways of funding the flood protection works on the Lower Danube, research being done on the Cetate-Dabuleni Danube's sector.

  4. Assessing coastal flooding hazard in urban areas: the case of estuarian villages in the city of Hyères-les-Palmiers

    Directory of Open Access Journals (Sweden)

    Le Roy Sylvestre

    2016-01-01

    Full Text Available This study, conducted on the city of Hyéres-les-Palmiers (French Riviera to guide the future land use planning, aimed to evaluate how sea level rise could modify coastal flooding hazards in urban areas located near small estuaries in a microtidal context. A joint probability approach allowed establishing typical storm parameters for specific return periods (30, 50 and 100 years, integrating offshore conditions (sea level and significant wave height and the river level. Storm scenarios have been established from these parameters and the chronology of the most impacting recent storm. Sea level rise has been integrated (20 cm for year 2030 and 60 cm for year 2100, and the coastal flooding has been simulated with a non-hydrostatic non-linear shallow-water model (SWASH. The calculations have been realized on high resolution DEM (1 to 5 m mesh size, integrating buildings and coastal protections. The approach has been validated by reproducing a recent flooding event. Obtained results show the importance of wave overtopping in current coastal flooding hazard in this area. Nevertheless, if Hyéres-les-Palmiers is currently little exposed to coastal flooding, these simulations highlight an increasing role of overflowing due to sea level rise, leading to significant flooding in 2100, even for quite frequent events.

  5. A Mediterranean case study of flood evolution: the Metropolitan Area of Barcelona

    Science.gov (United States)

    Llasat, Maria Carmen; Gilabert, Joan; Llasat-Botija, Montserrat; Cortès, Maria; Marcos, Raül; Martín-Vide, Juan Pedro; Turco, Marco; Falcón, Lluis

    2016-04-01

    Flood risk changes in Mediterranean Region integrate multiple factors, some of them related with the hazard (i.e. rainfall intensity), the vulnerability and exposure (i.e. population or assets), feedback processes that affect both hazard and vulnerability (i.e. urbanization of flood prone areas), mitigation and adaptation measures (i.e. rainwater tanks or early warning systems), and the available information used to estimate flood events (i.e. newspapers or gauged data). Flood events in the West Mediterranean region are usually produced as a consequence of very intense and local precipitation, mainly recorded on late summer and autumn that can give place to flash-floods in little torrential rivers (usually non-permanent flows) or urban floods. The Metropolitan Area of Barcelona (AMB), Spain, constitutes a good paradigm of a Mediterranean coast region, with strong urbanization of flood prone areas and high population density in an area crossed by numerous streams. The AMB is constituted by 36 municipalities with a total population above 3.200.000 inhabitants in an extension of 636 km². The major part of the population is concentrated between the Besós River and the Llobregat River, the Littoral Range and the Mediterranean Sea. Although both rivers have experienced catastrophic flood events (i.e. 25 September 1962, 815 deaths; 19-23 September 1971, 19 deaths; October 1987, 8 deaths), the most frequent situation is related with floods in non-permanent streams. Their main impacts are consequence of drainage and runoff problems and can affect both urban and rural areas. This contribution explores the evolution of land uses, population and precipitation from the middle of the 20th century until now, and how these changes have affected (or not), the flood risk. To do it, daily and sub-daily rainfall series, discharge series for the Llobregat and Besós Rivers, population data and land use changes have been analyzed. Future precipitation projections provided by an

  6. Application of gis on determination of flood prone areas and critical arterial road network by using chaid method in bandung area

    Directory of Open Access Journals (Sweden)

    Darwin

    2018-01-01

    Full Text Available Floods in Bandung area often occur when the rainfall is high then the water volume exceed the capacity of Citarum watershed. Floods cause economic and social losses. The purpose of this research is to get the GIS application model in the estimation of puddle area and road network in Bandung Metropolitan Area has disturbed.Geospatial map preparation methodology used statistical data from 11041 flood points, which divided into two groups, 7729 flood points to estimate the decision tree model and 3312 flood points to validate the model. The process of making flood vulnerability maps is approached by Chi-square Automatic Interaction Detection (CHAID method, and validation using Receiver Operating Characteristic (ROC method. Validation results in the area under the curve with a value of 93.1% for success rate and 92.7% for the prediction level.Chaid result is class 0 - 0,047 covering 76,68% area; Grades of 0.047-0.307 include 5.37%; Grades 0.307 - 0.599 (Low covering 5.36%; Grades 0.599 to 0.4444 include 5.31% and grade 0.844-1 (high covering 7.27% of the research area. Flood-prone road network is Link from Rancaekek (Area of PT Kahatex, link from Solokan Jeruk (Cicalengka-Majalaya, Link Baleendah, and linkDayeuhkolot (M.Toha - Andir

  7. Quantitative flood risk assessment for Polders

    International Nuclear Information System (INIS)

    Manen, Sipke E. van; Brinkhuis, Martine

    2005-01-01

    In the Netherlands, the design of dikes and other water retaining structures is based on an acceptable probability (frequency) of overtopping. In 1993 a new safety concept was introduced based on total flood risk. Risk was defined as the product of probability and consequences. In recent years advanced tools have become available to calculate the actual flood risk of a polder. This paper describes the application of these tools to an existing lowland river area. The complete chain of calculations necessary to estimate the risk of flooding of a polder (or dike ring) is presented. The difficulties in applying the present day tools and the largest uncertainties in the calculations are shown

  8. Quantitative flood risk assessment for Polders

    Energy Technology Data Exchange (ETDEWEB)

    Manen, Sipke E. van [Ministry of Transport, Public Works and Water Management, Bouwdienst Rijkswaterstaat, Griffioenlaan 2, Utrecht 3526 (Netherlands)]. E-mail: s.e.vmanen@bwd.rws.minvenw.nl; Brinkhuis, Martine [Ministry of Transport, Public Works and Water Management, Delft (Netherlands)

    2005-12-01

    In the Netherlands, the design of dikes and other water retaining structures is based on an acceptable probability (frequency) of overtopping. In 1993 a new safety concept was introduced based on total flood risk. Risk was defined as the product of probability and consequences. In recent years advanced tools have become available to calculate the actual flood risk of a polder. This paper describes the application of these tools to an existing lowland river area. The complete chain of calculations necessary to estimate the risk of flooding of a polder (or dike ring) is presented. The difficulties in applying the present day tools and the largest uncertainties in the calculations are shown.

  9. Vulnerability assessment including tangible and intangible components in the index composition: An Amazon case study of flooding and flash flooding.

    Science.gov (United States)

    Andrade, Milena Marília Nogueira de; Szlafsztein, Claudio Fabian

    2018-07-15

    The vulnerability of cities and communities in the Amazon to flooding and flash flooding is increasing. The effects of extreme events on populations vary across landscapes, causing vulnerability to differ spatially. Traditional vulnerability studies in Brazil and across the world have used the vulnerability index for the country and, more recently, municipality scales. The vulnerability dimensions are exposure, sensitivity, and adaptive capacity. For each of these dimensions, there is a group of indicators that constitutes a vulnerability index using quantitative data. Several vulnerability assessments have used sensitivity and exposure analyses and, recently, adaptive capacity has been considered. The Geographical Information Systems (GIS) analysis allows spatial regional modeling using quantitative vulnerability indicators. This paper presents a local-scale vulnerability assessment in an urban Amazonian area, Santarém City, using interdisciplinary methods. Data for exposure and sensitivity were gathered by remote sensing and census data, respectively. However, adaptive capacity refers to local capacities, whether infrastructural or not, and the latter were gathered by qualitative participatory methods. For the mixed data used to study adaptive capacity, we consider tangible components for countable infrastructure that can cope with hazards, and intangible components that reflect social activities based on risk perceptions and collective action. The results indicate that over 80% of the area is highly or moderately vulnerable to flooding and flash flooding. Exposure and adaptive capacity were determinants of the results. Lower values of adaptive capacity play a significant role in vulnerability enhancement. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Urban flooding and health risk analysis by use of quantitative microbial risk assessment

    DEFF Research Database (Denmark)

    Andersen, Signe Tanja

    D thesis is to identify the limitations and possibilities for optimising microbial risk assessments of urban flooding through more evidence-based solutions, including quantitative microbial data and hydrodynamic water quality models. The focus falls especially on the problem of data needs and the causes......, but also when wading through a flooded area. The results in this thesis have brought microbial risk assessments one step closer to more uniform and repeatable risk analysis by using actual and relevant measured data and hydrodynamic water quality models to estimate the risk from flooding caused...... are expected to increase in the future. To ensure public health during extreme rainfall, solutions are needed, but limited knowledge on microbial water quality, and related health risks, makes it difficult to implement microbial risk analysis as a part of the basis for decision making. The main aim of this Ph...

  11. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems.

    Science.gov (United States)

    Lim, Joongbin; Lee, Kyoo-Seock

    2017-03-01

    Every summer, North Korea (NK) suffers from floods, resulting in decreased agricultural production and huge economic loss. Besides meteorological reasons, several factors can accelerate flood damage. Environmental studies about NK are difficult because NK is inaccessible due to the division of Korea. Remote sensing (RS) can be used to delineate flood inundated areas in inaccessible regions such as NK. The objective of this study was to investigate the spatial characteristics of flood susceptible areas (FSAs) using multi-temporal RS data and digital elevation model data. Such study will provide basic information to restore FSAs after reunification. Defining FSAs at the study site revealed that rice paddies with low elevation and low slope were the most susceptible areas to flood in NK. Numerous sediments from upper streams, especially streams through crop field areas on steeply sloped hills, might have been transported and deposited into stream channels, thus disturbing water flow. In conclusion, NK floods may have occurred not only due to meteorological factors but also due to inappropriate land use for flood management. In order to mitigate NK flood damage, reforestation is needed for terraced crop fields. In addition, drainage capacity for middle stream channel near rice paddies should be improved.

  12. A framework for probabilistic pluvial flood nowcasting for urban areas

    Science.gov (United States)

    Ntegeka, Victor; Murla, Damian; Wang, Lipen; Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent; Van Herk, Kristine; Van Ootegem, Luc; Willems, Patrick

    2016-04-01

    Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes. Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution in space (~1km) and time (~5min). In this regard, it is vital to evaluate the potential of nowcasting products for urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban inundation risk mapping. STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead time of up to 2 hours using a 4 C-band radar composite as input. Forecasts' verification was performed over the cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer network and an innovative 'nested' 2D surface model to model 2D urban surface inundations at high resolution. The surface components are categorized into three groups and each group is modelled using triangular meshes at different resolutions; these include streets (3.75 - 15 m2), high flood hazard areas (12.5 - 50 m2) and low flood hazard areas (75 - 300 m2). Functions describing urban flood damage and social consequences were empirically derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation. The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are part of the

  13. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    'A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods.'

  14. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    Science.gov (United States)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for

  15. Assessing the environmental justice consequences of flood risk: a case study in Miami, Florida

    Science.gov (United States)

    Montgomery, Marilyn C.; Chakraborty, Jayajit

    2015-09-01

    Recent environmental justice (EJ) research has emphasized the need to analyze social inequities in the distribution of natural hazards such as hurricanes and floods, and examine intra-ethnic diversity in patterns of EJ. This study contributes to the emerging EJ scholarship on exposure to flooding and ethnic heterogeneity by analyzing the racial/ethnic and socioeconomic characteristics of the population residing within coastal and inland flood risk zones in the Miami Metropolitan Statistical Area (MSA), Florida—one of the most ethnically diverse MSAs in the U.S. and one of the most hurricane-prone areas in the world. We examine coastal and inland flood zones separately because of differences in amenities such as water views and beach access. Instead of treating the Hispanic population as a homogenous group, we disaggregate the Hispanic category into relevant country-of-origin subgroups. Inequities in flood risk exposure are statistically analyzed using socio-demographic variables derived from the 2010 U.S. Census and 2007-2011 American Community Survey estimates, and 100-year flood risk zones from the Federal Emergency Management Agency (FEMA). Social vulnerability is represented with two neighborhood deprivation indices called economic insecurity and instability. We also analyze the presence of seasonal/vacation homes and proximity to public beach access sites as water-related amenity variables. Logistic regression modeling is utilized to estimate the odds of neighborhood-level exposure to coastal and inland 100-year flood risks. Results indicate that neighborhoods with greater percentages of non-Hispanic Blacks, Hispanics, and Hispanic subgroups of Colombians and Puerto Ricans are exposed to inland flood risks in areas without water-related amenities, while Mexicans are inequitably exposed to coastal flood risks. Our findings demonstrate the importance of treating coastal and inland flood risks separately while controlling for water-related amenities, and

  16. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    Science.gov (United States)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  17. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012

    Directory of Open Access Journals (Sweden)

    Akhtar Ali Memon

    2015-06-01

    Full Text Available This paper uses Normalized Difference Water Index (NDWI of McFeeters (1996, Water Index (WI introduced by Rogers and Kearney (2004, referred to as Red and Short Wave Infra-Red (RSWIR and WI suggested as the best by Ji et al. (2009, referred to as Green and Short Wave Infra-Red (GSWIR for delineating and mapping of surface water using MODIS (Terra near real time images during 2012 floods in Pakistan. The results from above indices have been compared with Landsat ETM+ classified images aiming to assess the accuracy of the indices. Accuracy assessment has been performed using spatial statistical techniques and found NDWI, RSWIR and GSWIR with kappa coefficient (κ of 46.66%, 70.80% and 60.61% respectively. It has been observed using statistical analysis and visual interpretation (expert knowledge gained by past experience that the NDWI and GSWIR have tendencies to underestimate and overestimate respectively the inundated area. Keeping in view the above facts, RSWIR has proved to be the best of the three indices. In addition, assessment of the damages has been carried out considering accumulated flood extent obtained from RSWIR. The information derived proved to be essential and valuable for disaster management plan and rehabilitation.

  18. Framework for probabilistic flood risk assessment in an Alpine region

    Science.gov (United States)

    Schneeberger, Klaus; Huttenlau, Matthias; Steinberger, Thomas; Achleitner, Stefan; Stötter, Johann

    2014-05-01

    Flooding is among the natural hazards that regularly cause significant losses to property and human lives. The assessment of flood risk delivers crucial information for all participants involved in flood risk management and especially for local authorities and insurance companies in order to estimate the possible flood losses. Therefore a framework for assessing flood risk has been developed and is introduced with the presented contribution. Flood risk is thereby defined as combination of the probability of flood events and of potential flood damages. The probability of occurrence is described through the spatial and temporal characterisation of flood. The potential flood damages are determined in the course of vulnerability assessment, whereas, the exposure and the vulnerability of the elements at risks are considered. Direct costs caused by flooding with the focus on residential building are analysed. The innovative part of this contribution lies on the development of a framework which takes the probability of flood events and their spatio-temporal characteristic into account. Usually the probability of flooding will be determined by means of recurrence intervals for an entire catchment without any spatial variation. This may lead to a misinterpretation of the flood risk. Within the presented framework the probabilistic flood risk assessment is based on analysis of a large number of spatial correlated flood events. Since the number of historic flood events is relatively small additional events have to be generated synthetically. This temporal extrapolation is realised by means of the method proposed by Heffernan and Tawn (2004). It is used to generate a large number of possible spatial correlated flood events within a larger catchment. The approach is based on the modelling of multivariate extremes considering the spatial dependence structure of flood events. The input for this approach are time series derived from river gauging stations. In a next step the

  19. STUDY REGARDING DELINEATION OF FLOOD HAZARD ZONES IN THE HYDROGRAPHIC BASIN OF THE SOMEŞ RIVER, BORDER AREA

    Directory of Open Access Journals (Sweden)

    STOICA F.

    2014-03-01

    Full Text Available The hydrological studies will provide the characteristic parameters for the floods occurred for the calculus discharges with overflow probabilities of 0,1%; 1%, 5%, 10%. The hydrologic and hydraulic models will be made by using the hydro-meteorological data base and the topographical measurements on site; them calibration will be done according to the records of the historical floods. The studies on the hydrologic and hydraulic models will be necessary for the establishment of the carrying capacity of the riverbeds, for the delimitation of the flood plains and for the detection of the transit discharges at the hydro-technical installations, but also for the establishment of the parameters needed for the structural measures’ projects. These will be based on the 1D and 2D unstable hydro-dynamic models. Therefore, the users would be able to assess the proposed measures and the impact over the river’s system; of course with the potential combination of the 1D and 2D. The main objectives followed by the project are: • identification of the river basins or river sub-basins with flood risks; • regionalization of the flood hazard; • presentation of the main flash floods occurred during the last 30 years, which induced floods; • assessment of the consequences of eventual flood over the population, properties and environment; • the establishment of the protection degree, accepted for the human settlements, for the economic and social objectives, for the farm areas, etc.;

  20. Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure

    Science.gov (United States)

    Tsai, C.; Yeh, J. J. J.

    2017-12-01

    A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.

  1. LiDAR and IFSAR-Based Flood Inundation Model Estimates for Flood-Prone Areas of Afghanistan

    Science.gov (United States)

    Johnson, W. C.; Goldade, M. M.; Kastens, J.; Dobbs, K. E.; Macpherson, G. L.

    2014-12-01

    Extreme flood events are not unusual in semi-arid to hyper-arid regions of the world, and Afghanistan is no exception. Recent flashfloods and flashflood-induced landslides took nearly 100 lives and destroyed or damaged nearly 2000 homes in 12 villages within Guzargah-e-Nur district of Baghlan province in northeastern Afghanistan. With available satellite imagery, flood-water inundation estimation can be accomplished remotely, thereby providing a means to reduce the impact of such flood events by improving shared situational awareness during major flood events. Satellite orbital considerations, weather, cost, data licensing restrictions, and other issues can often complicate the acquisition of appropriately timed imagery. Given the need for tools to supplement imagery where not available, complement imagery when it is available, and bridge the gap between imagery based flood mapping and traditional hydrodynamic modeling approaches, we have developed a topographic floodplain model (FLDPLN), which has been used to identify and map river valley floodplains with elevation data ranging from 90-m SRTM to 1-m LiDAR. Floodplain "depth to flood" (DTF) databases generated by FLDPLN are completely seamless and modular. FLDPLN has been applied in Afghanistan to flood-prone areas along the northern and southern flanks of the Hindu Kush mountain range to generate a continuum of 1-m increment flood-event models up to 10 m in depth. Elevation data used in this application of FLDPLN included high-resolution, drone-acquired LiDAR (~1 m) and IFSAR (5 m; INTERMAP). Validation of the model has been accomplished using the best available satellite-derived flood inundation maps, such as those issued by Unitar's Operational Satellite Applications Programme (UNOSAT). Results provide a quantitative approach to evaluating the potential risk to urban/village infrastructure as well as to irrigation systems, agricultural fields and archaeological sites.

  2. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards

    Science.gov (United States)

    Schubert, Jochen E.; Burns, Matthew J.; Fletcher, Tim D.; Sanders, Brett F.

    2017-10-01

    This research outlines a framework for the case-specific assessment of Green Infrastructure (GI) performance in mitigating flood hazard in small urban catchments. The urban hydrologic modeling tool (MUSIC) is coupled with a fine resolution 2D hydrodynamic model (BreZo) to test to what extent retrofitting an urban watershed with GI, rainwater tanks and infiltration trenches in particular, can propagate flood management benefits downstream and support intuitive flood hazard maps useful for communicating and planning with communities. The hydrologic and hydraulic models are calibrated based on current catchment conditions, then modified to represent alternative GI scenarios including a complete lack of GI versus a full implementation of GI. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 1-63% and durations from 10 min to 24 h. Flood hazard benefits mapped by the framework include maximum flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Application of the system to the Little Stringybark Creek (LSC) catchment shows that across the range of AEPs tested and for storm durations equal or less than 3 h, presently implemented GI reduces downstream flooded area on average by 29%, while a full implementation of GI would reduce downstream flooded area on average by 91%. A full implementation of GI could also lower maximum flow intensities by 83% on average, reducing the drowning hazard posed by urban streams and improving the potential for access by emergency responders. For storm durations longer than 3 h, a full implementation of GI lacks the capacity to retain the resulting rainfall depths and only reduces flooded area by 8% and flow intensity by 5.5%.

  3. Regional flood hazard assessment of the Paducah and Portsmouth Gaseous Diffusion Plants

    International Nuclear Information System (INIS)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1991-01-01

    Regional flood-hazard assessments performed for the Paducah and Portsmouth Gaseous Diffusion Plants are reviewed, compared, and contrasted to determine the relationship of probable maximum flood methodology with respect to US Department of Energy design and evaluation guidelines. The Paducah assessment was carried out using probable minimum flood methodology, while the Portsmouth assessment utilized probabilistic techniques. Results indicated that regional flooding along nearby rivers would not inundate either plant, and that the guidelines were satisfied. A comparison of results indicated that the probable minimum flood recurrence interval associated with the Paducah assessment exceeded the 10,000-year requirement of the guidelines, while recurrence intervals obtained in the Portsmouth assessment could be above or below 10,000 years depending on the choice of the probabilistic model used to perform the assessment. It was concluded, based on an analysis of two data points, that smaller watersheds driven by single event storms could be assessed using probabilistic techniques, while probable maximum flood methodology could be applied to larger drainage basins flooded by storm sequences

  4. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing.

    Science.gov (United States)

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas.

  5. Improving Flood Damage Assessment Models in Italy

    Science.gov (United States)

    Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.

    2015-12-01

    The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.

  6. A Bayesian Network approach for flash flood risk assessment

    Science.gov (United States)

    Boutkhamouine, Brahim; Roux, Hélène; Pérès, François

    2017-04-01

    influencing variables. Each node of the graph corresponds to a variable and arcs represent the probabilistic dependencies between these variables. Both the quantification of the strength of these probabilistic dependencies and the computation of inferences are based on Bayes' theorem. In order to use BNs for the assessment of the flooding risks, the modelling work is divided into two parts. First, identifying all the factors controlling the flood generation. The qualitative explanation of this issue is then reached by establishing the cause and effect relationships between these factors. These underlying relationships are represented in what we call Conditional Probabilities Tables (CPTs). The next step is to estimate these CPTs using information coming from network of sensors, databases and expertise. By using this basic cognitive structure, we will be able to estimate the magnitude of flood risk in a small geographical area with a homogeneous hydrological system. The second part of our work will be dedicated to the estimation of this risk on the scale of a basin. To do so, we will create a spatio-temporal model able to take in consideration both spatial and temporal variability of all factors involved in the flood generation. Key words: Flash flood forecasting - Uncertainty modelling - flood risk management -Bayesian Networks.

  7. Blending satellite data and RADAR tool for rapid flood damage assessment in Agriculture: A case study in Sri Lanka

    Science.gov (United States)

    Amarnath, Giriraj; Inada, Yoshiaki; Inoue, Ryosuke; Alahacoon, Niranga; Smakhtin, Vladimir

    2014-05-01

    During the catastrophic flooding it is critically important to estimate losses as it is essential for facilitating good decision making at the district, province and national levels of government and to appraise aid agencies for necessary assistance. Flood loss estimates can also be used to evaluate the cost effectiveness of alternative approaches to strengthening flood control measures. In the case of Sri Lanka there were limited knowledge and application system exist for carrying out rapid damage assessment for Agriculture in Sri Lanka. FAO has developed the tool "Rapid Agricultural Disaster Assessment Routine" (RADAR) based on theoretical approach that uses simple tools for assessing the impact on agriculture of a disastrous event. There are two knowledge bases that contain information needed for calculation of the value loss or damage. The procedure of rapid impact assessment implies the use of knowledge-bases, database and GIS. In this study, the user friendly application of RADAR system has been developed. Three components were considered including agriculture, livestock and farmers asset to estimate the losses. The application will allow estimating flood damage at various scales and this being tested at district level and specific example for the 2011 floods in Sri Lanka. In order to understand flood inundation cycle, time-series optical MODIS satellite data (2000-2011) and microwave ALOS PALSAR (2006-2011) were used to derive annual flood extent, flood duration and recurrent areas to identify flood risk and impact of seasonal flooding on agriculture. This study demonstrates how RADAR & satellite-based flood products can be effectively used for rapid damage assessment and managing the floods.

  8. Flood damage assessment – Literature review and recommended procedure

    DEFF Research Database (Denmark)

    Olesen, Lea; Löwe, Roland; Arnbjerg-Nielsen, Karsten

    The assessment of flood risk is an essential tool in evaluating the potential consequences of a flood. The analysis of the risk can be applied as part of the flood plain management, but can also be used in a cost-benefit analysis, when comparing different adaption strategies. This analysis is the...

  9. Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS

    Science.gov (United States)

    Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun

    2015-12-01

    Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.

  10. Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

    OpenAIRE

    Chia Lin Chan; Yi Ju Yang; Chih Chin Yang

    2011-01-01

    Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall freque...

  11. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Science.gov (United States)

    2010-10-01

    ... mapping coastal flood hazard areas. 65.11 Section 65.11 Emergency Management and Assistance FEDERAL... Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.11 Evaluation of sand dunes in mapping coastal flood hazard areas. (a) General conditions. For purposes of the NFIP, FEMA will consider...

  12. Assessing the Effects of Periodic Flooding on the Population Structure and Recruitment Rates of Riparian Tree Forests

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Berthelot

    2014-08-01

    Full Text Available Riparian forest stands are subjected to a variety of hydrological stresses as a result of annual fluctuations in water levels during the growing season. Spring floods create additional water-related stress as a result of a major inflow of water that floods riverside land. This exploratory study assesses the impacts of successive floods on tree dynamics and regeneration in an active sedimentation area, while determining the age of the stands using the recruitment rates, tree structure and tree rings based on dendrochronological analysis. Environmental data were also recorded for each vegetation quadrat. In total, 2633 tree stems were tallied throughout the quadrats (200 m2, and tree specimens were analyzed based on the various flood zones. A total of 720 specimens were counted (100 m2 strip to measure natural regeneration. Higher recruitment rates are noted for the no-flood zones and lower rates in active floodplains. During the period of the establishment of tree species, the survival rates are comparable between the flood zones and the no-flood zones. Tree diameter distribution reveals a strong predominance of young trees in flooded areas. Different factors appear to come into play in the dynamics of riparian forest stands, including the disruptions associated with successive flooding.

  13. Assessment of factors contributing to flood disaster in Ibadan ...

    African Journals Online (AJOL)

    Climate change has brought with it some forms of extreme weather events. One of such is heavy rainfall which often leads to flood. In recent times, flood disaster has been a regular occurrence destroying lives and property. This study was carried out to identify and assess contributing factors to flood disaster in Ibadan ...

  14. A quantitative flood risk analysis methodology for urban areas with integration of social research data

    Science.gov (United States)

    Escuder-Bueno, I.; Castillo-Rodríguez, J. T.; Zechner, S.; Jöbstl, C.; Perales-Momparler, S.; Petaccia, G.

    2012-09-01

    Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009-2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative). First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.

  15. FORECAST OF THE DYNAMICS FLOODING OF THE CRIMEAN AREA DURING OF FLASH FLOODS IN 2012ON THE BASIS COMPUTER SIMULATION

    Directory of Open Access Journals (Sweden)

    E. O. Agafonnikova

    2014-01-01

    Full Text Available The dynamics features of the surface waters for the territory of the Crimea area of Krasnodar region in flash flood conditions have been studied. The parameters of flooding depending on the precipitation intensity have been defined.

  16. ICUD-0147 Extreme event statistics of urban pluvial floods – Return period assessment and rainfall variability impacts

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Nielsen, Rasmus; Thorndahl, Søren Liedtke

    2017-01-01

    A return period assessment of urban flood has been performed and its adhered impact of rainfall variability studied over a urban drainage catchment area in Aalborg, Denmark. Recorded rainfall from 7 rain gauges has been used, located in a range of 7.5Km and for a period varying form 18-37 years....... Return period of rainfall and flood at catchment and local scale has been estimated, its derived ambiguities analysed and the variability of rain gauge based rainfall investigated regarding to flood estimation results. Results show a clear contrast between rainfall and flood return period estimates...

  17. Assessing the Impacts of Flooding Caused by Extreme Rainfall Events Through a Combined Geospatial and Numerical Modeling Approach

    Science.gov (United States)

    Santillan, J. R.; Amora, A. M.; Makinano-Santillan, M.; Marqueso, J. T.; Cutamora, L. C.; Serviano, J. L.; Makinano, R. M.

    2016-06-01

    In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the

  18. A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    Chinh Luu

    2018-04-01

    Full Text Available Vietnam is highly vulnerable to flood and storm impacts. Holistic flood risk assessment maps that adequately consider flood risk factors of hazard, exposure, and vulnerability are not available. These are vital for flood risk preparedness and disaster mitigation measures at the local scale. Unfortunately, there is a lack of knowledge about spatial multicriteria decision analysis and flood risk analysis more broadly in Vietnam. In response to this need, we identify and quantify flood risk components in Quang Nam province through spatial multicriteria decision analysis. The study presents a new approach to local flood risk assessment mapping, which combines historical flood marks with exposure and vulnerability data. The flood risk map output could assist and empower decision-makers in undertaking flood risk management activities in the province. Our study demonstrates a methodology to build flood risk assessment maps using flood mark, exposure and vulnerability data, which could be applied in other provinces in Vietnam.

  19. What are people thinking about floods? A study in two Mediterranean areas: Costa Brava, Spain and Talcahuano City, Chile

    Science.gov (United States)

    Lara, A.; Ribas, A.; Cifuentes, L. A.

    2013-05-01

    Mediterranean areas are not immune to flood problems. The Spanish Mediterranean coast is a reflection of this, where flooding continues to be the greatest natural hazard with negative effects on the territory. The urbanization of coastal watersheds, very pronounced in the last 15 years, has led to the creation of authentic urban continuums in the seafront and the appearance of residential developments therein. The municipalities of Costa Brava, in the province of Girona, are an example of this dynamic of the increasing risk, exposure, and impact of floods. In Chile, floods are considered one of the main natural hazards, especially in the province of Concepcion. One of the most important cities of this area is Talcahuano, which has suffered continual flood episodes during recent years. Flood episodes could yet increase in the future due to the high frequency of extraordinary atmospheric events and a higher exposure to flood risk created by the development of intensive urbanization processes. However, after the February 27th 8.8 degrees earthquake (Richter scale) that affected the center-south of Chile and originated the tsunami which flooded a large percentage of the residential area and military base of the city of Talcahuano, the risk, vulnerability, resilience and copy capacity concepts changed. This research looks at the social perception and social knowledge of Mediterranean residents affected and unaffected by floods, emphasizing which is their risk, vulnerability, resilience and copy capacity concept and what kind of measures they proposed to reduce their flood vulnerability. The end objective of this research is to become a framework for future local flood policies and a tool that could be reviewed by specialists in other regions that might be affected by this hazard. This social assessment has been carried out through surveys of residents in Costa Brava and Talcahuano whose endogenous and exogenous characteristics have been significant in explaining their

  20. Mapping Infected Area after a Flash-Flooding Storm Using Multi Criteria Analysis and Spectral Indices

    Science.gov (United States)

    Al-Akad, S.; Akensous, Y.; Hakdaoui, M.

    2017-11-01

    This research article is summarize the applications of remote sensing and GIS to study the urban floods risk in Al Mukalla. Satellite acquisition of a flood event on October 2015 in Al Mukalla (Yemen) by using flood risk mapping techniques illustrate the potential risk present in this city. Satellite images (The Landsat and DEM images data were atmospherically corrected, radiometric corrected, and geometric and topographic distortions rectified.) are used for flood risk mapping to afford a hazard (vulnerability) map. This map is provided by applying image-processing techniques and using geographic information system (GIS) environment also the application of NDVI, NDWI index, and a method to estimate the flood-hazard areas. Four factors were considered in order to estimate the spatial distribution of the hazardous areas: flow accumulation, slope, land use, geology and elevation. The multi-criteria analysis, allowing to deal with vulnerability to flooding, as well as mapping areas at the risk of flooding of the city Al Mukalla. The main object of this research is to provide a simple and rapid method to reduce and manage the risks caused by flood in Yemen by take as example the city of Al Mukalla.

  1. Thunderstorms and flooding of August 17, 2007, with a context provided by a history of other large storm and flood events in the Black Hills area of South Dakota

    Science.gov (United States)

    Driscoll, Daniel G.; Bunkers, Matthew J.; Carter, Janet M.; Stamm, John F.; Williamson, Joyce E.

    2010-01-01

    The Black Hills area of western South Dakota has a history of damaging flash floods that have resulted primarily from exceptionally strong rain-producing thunderstorms. The best known example is the catastrophic storm system of June 9-10, 1972, which caused severe flooding in several major drainages near Rapid City and resulted in 238 deaths. More recently, severe thunderstorms caused flash flooding near Piedmont and Hermosa on August 17, 2007. Obtaining a thorough understanding of peak-flow characteristics for low-probability floods will require a comprehensive long-term approach involving (1) documentation of scientific information for extreme events such as these; (2) long-term collection of systematic peak-flow records; and (3) regional assessments of a wide variety of peak-flow information. To that end, the U.S. Geological Survey cooperated with the South Dakota Department of Transportation and National Weather Service to produce this report, which provides documentation regarding the August 17, 2007, storm and associated flooding and provides a context through examination of other large storm and flood events in the Black Hills area. The area affected by the August 17, 2007, storms and associated flooding generally was within the area affected by the larger storm of June 9-10, 1972. The maximum observed 2007 precipitation totals of between 10.00 and 10.50 inches occurred within about 2-3 hours in a small area about 5 miles west of Hermosa. The maximum documented precipitation amount in 1972 was 15.0 inches, and precipitation totals of 10.0 inches or more were documented for 34 locations within an area of about 76 square miles. A peak flow of less than 1 cubic foot per second occurred upstream from the 2007 storm extent for streamflow-gaging station 06404000 (Battle Creek near Keystone); whereas, the 1972 peak flow of 26,200 cubic feet per second was large, relative to the drainage area of only 58.6 square miles. Farther downstream along Battle Creek, a 2007

  2. An assessment of flood vulnerability in Khyber Pukhtunkhwa province of Pakistan

    Directory of Open Access Journals (Sweden)

    Said Qasim

    2017-02-01

    Full Text Available In this research we have attempted to measure vulnerability of the communities living in the flood prone area of Khyber Pukhtunkhwa province of Pakistan. Extensive literature review was conducted to identify the flood vulnerability indicators. Primary data were used to achieve the objective of this study. Questionnaires were used to collect the primary data from the selected households and from the director of Centre for Disaster Preparedness and Management. Subjective assessment technique was used to allocate weights to the selected indicators of vulnerability. A sample size of 280 respondents was taken from three selected locations of Charsadda, Nowshera and Peshawar. Simple random sampling was employed for the selection of respondents. Results revealed that overall vulnerability as well as component vulnerability for the selected locations was very high. The study therefore recommends preparedness, provision of funds for building houses with flood resistant materials and building houses in safer places. There is also a need for enhancing the adaptive capacities of the concerned communities through their socio-economic uplift. Implementation of these policies would lower the vulnerability of the communities to flood disasters.

  3. Effects of flood on farmers in peri-urban area of Ibadan, Oyo state ...

    African Journals Online (AJOL)

    One of the commonest environmental hazards threatening food security now in Nigeria is flood. The study therefore investigated the effects of flood on farmers in peri – urban areas of Ibadan. Using a snow ball research method, 60 farmers were selected from the six local governments in the peri – urban areas of Ibadan and ...

  4. Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks

    Directory of Open Access Journals (Sweden)

    B. Büchele

    2006-01-01

    Full Text Available Currently, a shift from classical flood protection as engineering task towards integrated flood risk management concepts can be observed. In this context, a more consequent consideration of extreme events which exceed the design event of flood protection structures and failure scenarios such as dike breaches have to be investigated. Therefore, this study aims to enhance existing methods for hazard and risk assessment for extreme events and is divided into three parts. In the first part, a regionalization approach for flood peak discharges was further developed and substantiated, especially regarding recurrence intervals of 200 to 10 000 years and a large number of small ungauged catchments. Model comparisons show that more confidence in such flood estimates for ungauged areas and very long recurrence intervals may be given as implied by statistical analysis alone. The hydraulic simulation in the second part is oriented towards hazard mapping and risk analyses covering the whole spectrum of relevant flood events. As the hydrodynamic simulation is directly coupled with a GIS, the results can be easily processed as local inundation depths for spatial risk analyses. For this, a new GIS-based software tool was developed, being presented in the third part, which enables estimations of the direct flood damage to single buildings or areas based on different established stage-damage functions. Furthermore, a new multifactorial approach for damage estimation is presented, aiming at the improvement of damage estimation on local scale by considering factors like building quality, contamination and precautionary measures. The methods and results from this study form the base for comprehensive risk analyses and flood management strategies.

  5. [The assessment of vulnerability to floods in Guangdong province at district level].

    Science.gov (United States)

    Zhu, Qi; Liu, Tao; Zhang, Yong-hui; Luo, Yuan; Wei, Yao; Xiao, Jian-peng; Zeng, Si-qing; Ma, Wen-jun

    2012-11-01

    To evaluate the vulnerability to floods in Guangdong province at district level. Data were collected from the sixth census, the 2010 Statistical Yearbook of Guangdong, the 2010 Health Statistics Yearbook of Guangdong and China Disease Prevention and Control information systems, etc. The weight of each indicator was determined based on subjective method and objective method respectively; and finally the results of the two methods were compared. 13 indicators were selected for the assessment of vulnerability to floods, including 6 sensitivity indicators, 5 adaptability indicators and 2 exposure indicators. Indicators with large weight (subjective weight/objective weight) were the proportion of population older than 65 years old (0.31/0.30), the proportion of population older than 65 years old (0.16/0.23), infant mortality rate (0.18/0.20), the total Gross Domestic Product (GDP) per capita (0.33/0.21), the proportion of illiterate in the population older than 15 years old (0.19/0.28), history frequency of floods (0.75/0.75). The mean vulnerability index (VI) calculated by subjective method was 0.35 with the standard deviation of 0.10; the mean vulnerability index calculated by objective method was 0.31 with the standard deviation of 0.08. The two weighting methods showed consistent results of vulnerability index (ICC = 0.975, P 0.50 or objective VI > 0.40 should pay more attention to floods, including parts of the coastal areas, Beijiang River Basin, the eastern tributary area of Dongjiang River and the northern part of Pearl River Delta. Dapu district of Meizhou (0.55/0.45), Dianbai district and Maogang district of Maoming (0.54/0.48) were most vulnerable. Districts of Heyuan, Dongguan, Zhaoqing and Huizhou were less vulnerable, Yuancheng district of Heyuan showed least vulnerable to floods (0.15/0.12) followed by Dongguan (0.18/0.16), Duanzhou district (0.18/0.16) and Guangning (0.17/0.15) district of Zhaoqing. The score of indicators differed among different level

  6. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.

    Science.gov (United States)

    Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu

    2018-06-15

    Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A Computational Framework for Flood Risk Assessment in The Netherlands

    Directory of Open Access Journals (Sweden)

    A.A. Markus

    2010-01-01

    Full Text Available The safety of dikes in The Netherlands, located in the delta of the rivers Rhine, Meuse and Scheldt, has been the subject of debate for more than ten years. The safety (or flood risk of a particular area may depend on the safety of other areas. This is referred to as effects of river system behaviour on flood risk (quantified as the estimated number of casualties and economic damage. A computational framework was developed to assess these effects. It consists of several components that are loosely coupled via data files and Tcl scripts to manage the individual programs and keep track of the state of the computations. The computations involved are lengthy (days or even weeks on a Linux cluster, which makes the framework currently more suitable for planning and design than for real-time operation. While the framework was constructed ad hoc, it can also be viewed more formally as a tuplespace Realising this makes it possible to adopt the philosophy for other similar frameworks.

  8. A quantitative flood risk analysis methodology for urban areas with integration of social research data

    Directory of Open Access Journals (Sweden)

    I. Escuder-Bueno

    2012-09-01

    Full Text Available Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009–2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative. First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.

  9. Flood Response System—A Case Study

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Singh

    2017-06-01

    Full Text Available Flood Response System (FRS is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of damage. The inputs to FRS are provided using two components: (1 a semi-automated application developed indigenously, to delineate inundated areas for Near-Real Time Flood Monitoring using Active Microwave Remote Sensing data and (2 a two-dimensional (2D hydrodynamic river model generated outputs for water depth and velocity in flooded areas for an embankment breach scenario. The 2D Hydrodynamic model, CCHE2D (Center for Computational Hydroscience and Engineering Two-Dimensional model, was used to simulate an area of 600 km2 in the flood-prone zone of the Brahmaputra basin. The resultant inundated area from the model was found to be 85% accurate when validated with post-flood optical satellite data.

  10. High-resolution flood modeling of urban areas using MSN_Flood

    Directory of Open Access Journals (Sweden)

    Michael Hartnett

    2017-07-01

    Full Text Available Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme, MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region. Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.

  11. Construction of an integrated social vulnerability index in urban areas prone to flash flooding

    Science.gov (United States)

    Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres

    2017-09-01

    Among the natural hazards, flash flooding is the leading cause of weather-related deaths. Flood risk management (FRM) in this context requires a comprehensive assessment of the social risk component. In this regard, integrated social vulnerability (ISV) can incorporate spatial distribution and contribution and the combined effect of exposure, sensitivity and resilience to total vulnerability, although these components are often disregarded. ISV is defined by the demographic and socio-economic characteristics that condition a population's capacity to cope with, resist and recover from risk and can be expressed as the integrated social vulnerability index (ISVI). This study describes a methodological approach towards constructing the ISVI in urban areas prone to flash flooding in Castilla y León (Castile and León, northern central Spain, 94 223 km2, 2 478 376 inhabitants). A hierarchical segmentation analysis (HSA) was performed prior to the principal components analysis (PCA), which helped to overcome the sample size limitation inherent in PCA. ISVI was obtained from weighting vulnerability factors based on the tolerance statistic. In addition, latent class cluster analysis (LCCA) was carried out to identify spatial patterns of vulnerability within the study area. Our results show that the ISVI has high spatial variability. Moreover, the source of vulnerability in each urban area cluster can be identified from LCCA. These findings make it possible to design tailor-made strategies for FRM, thereby increasing the efficiency of plans and policies and helping to reduce the cost of mitigation measures.

  12. Surging Seas Risk Finder: A Tool for Local-Scale Flood Risk Assessments in Coastal Cities

    Science.gov (United States)

    Kulp, S. A.; Strauss, B.

    2015-12-01

    Local decision makers in coastal cities require accurate, accessible, and thorough assessments of flood exposure risk within their individual municipality, in their efforts to mitigate against damage due to future sea level rise. To fill this need, we have developed Climate Central's Surging Seas Risk Finder, an interactive data toolkit which presents our sea level rise and storm surge analysis for every coastal town, city, county, and state within the USA. Using this tool, policy makers can easily zoom in on their local place of interest to receive a detailed flood risk assessment, which synthesizes a wide range of features including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and many other critical facilities. Risk Finder can also be used to identify specific points of interest in danger of exposure at different flood levels. Additionally, this tool provides localized storm surge probabilities and sea level rise projections at tidal gauges along the coast, so that users can quickly understand the risk of flooding in their area over the coming decades.

  13. Rapid assessment of household needs in the Houston area after Tropical Storm Allison.

    Science.gov (United States)

    Waring, Stephen C; Reynolds, Kaye M; D'Souza, Gypsyamber; Arafat, Raouf R

    2002-09-01

    Tropical Storm Allison, which hit landfall near Galveston, Texas, on June 5, 2001, caused the most severe flood-related damage ever recorded in the Houston metropolitan area. The main goal of the public health response to tropical storm Allison was to evaluate the immediate health needs of the community. To estimate damage and household needs, we conducted a rapid needs assessment in the areas most affected by flooding with use of a modified cluster sampling method facilitated by Geographical Information Systems methodology. A total of 420 households participated in the survey, 210 each from the 2 sampling areas. We found a 4-fold increase in illness among persons living in flooded homes compared with those living in nonflooded homes. These findings suggest a need for rapid resolution of flood-related damage and the possibility that residents should seek temporary housing during clean-up and repair. In addition, we obtained reliable estimates of damage and household needs to help guide relief efforts. The findings underscore the usefulness of a rapid-needs assessment as a tool to identify actual health threats and to facilitate delivery of resources to those with the greatest and most immediate need.

  14. Evolutionary leap in large-scale flood risk assessment needed

    OpenAIRE

    Vorogushyn, Sergiy; Bates, Paul D.; de Bruijn, Karin; Castellarin, Attilio; Kreibich, Heidi; Priest, Sally J.; Schröter, Kai; Bagli, Stefano; Blöschl, Günter; Domeneghetti, Alessio; Gouldby, Ben; Klijn, Frans; Lammersen, Rita; Neal, Jeffrey C.; Ridder, Nina

    2018-01-01

    Current approaches for assessing large-scale flood risks contravene the fundamental principles of the flood risk system functioning because they largely ignore basic interactions and feedbacks between atmosphere, catchments, river-floodplain systems and socio-economic processes. As a consequence, risk analyses are uncertain and might be biased. However, reliable risk estimates are required for prioritizing national investments in flood risk mitigation or for appraisal and management of insura...

  15. Investigation of Flood Risk Assessment in Inaccessible Regions using Multiple Remote Sensing and Geographic Information Systems

    Science.gov (United States)

    Lim, J.; Lee, K. S.

    2017-12-01

    Flooding is extremely dangerous when a river overflows to inundate an urban area. From 1995 to 2016, North Korea (NK) experienced annual extensive damage to life and property almost each year due to a levee breach resulting from typhoons and heavy rainfall during the summer monsoon season. Recently, Hoeryeong City (2016) experienced heavy rainfall during typhoon Lionrock and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings and settlements (11,600). The NK state media described it as the biggest national disaster since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a serious impact, which makes it necessary to figure out the extent of floods in restoring the damaged environment. In addition, traditional hydrological model is impractical to delineate Flood Damaged Areas (FDAs) in NK due to the inaccessibility. Under such a situation, multiple optical Remote Sensing (RS) and radar RS along with a Geographic Information System (GIS)-based spatial analysis were utilized in this study (1) to develop modelling FDA delineation using multiple RS and GIS methods and (2) to conduct flood risk assessment in NK. Interpreting high-resolution web-based satellite imagery were also implemented to confirm the results of the study. From the study result, it was found that (1) on August 30th, 2016, an area of 117.2 km2 (8.6%) at Hoeryeong City was inundated. Most floods occurred in flat areas with a lower and middle stream order. (2) In the binary logistic regression model applied in this study, the distance from the nearest stream map and landform map variables are important factors to delineate FDAs because these two factors reflect heterogeneous mountainous NK topography. (3) Total annual flood risk of study area is estimated to be ₩454.13 million NKW ($504,417.24 USD, and ₩576.53 million SKW). The risk of the confluence of the Tumen River and Hoeryeong stream appears to be the highest. (4) High resolution

  16. An influence diagram for urban flood risk assessment through pluvial flood hazards under non-stationary conditions

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra; Friis Hansen, P.; Garrè, Luca

    2014-01-01

    Urban flooding introduces significant risk to society. Non-stationarity leads to increased uncertainty and this is challenging to include in actual decision-making. The primary objective of this study was to develop a risk assessment and decision support framework for pluvial urban flood risk under...... non-stationary conditions using an influence diagram (ID) which is a Bayesian network (BN) extended with decision and utility nodes. Non-stationarity is considered to be the influence of climate change where extreme precipitation patterns change over time. The overall risk is quantified in monetary...... terms expressed as expected annual damage. The network is dynamic in as much as it assesses risk at different points in time. The framework provides means for decision-makers to assess how different decisions on flood adaptation affect the risk now and in the future. The result from the ID was extended...

  17. Assessment of the Influence of the Hydrological Regime of the Volga River on the Dynamics of Flooding on Sarpinsky Island

    Directory of Open Access Journals (Sweden)

    A.S. Rulev

    2017-03-01

    Full Text Available The seasonal dynamics of flooding on Sarpinsky Island, which is included in the city of Volgograd, following the damming by the Volga HPP has been considered. The following research problems have been set: firstly, to establish seasonal patterns of flooding in the island territory; secondly, to find out if there is a flooding threat to social infrastructure facilities. The flooded area of the island has been assessed by Landsat multispectral images with a spatial resolution of 30 m. Only images with the survey date corresponding to the peak of high waters (with the difference of not more than 7–10 days have been analyzed. The flooding areas of the island have been calculated for the date when flooding peaked (April–May during the period from 1985 to 2016. The phases of spring flooding determined by the island landscape and the water discharge from the Volga HPP have been revealed. The curve of the area of flooding reaches maximum values after the water discharge is up to 11–12 km3, which depends on the initial filling of floodplain reservoirs (landscape depressions in depth without any increase in the area of flooding. The average shift between the peaks of water discharge and the area of flooding is 10–15 days and reflects gradual filling of floodplain reservoirs on Sarpinsky Island after the beginning of water discharge from the Volga HPP. It has been found that there is no threat to infrastructure facilities on Sarpinsky Island under the current volumes of water discharge during the flooding period. The obtained results are important for urban planning on the island, as well as for management of the regimes of water passage through the dam of the Volga HPP.

  18. A web GIS based integrated flood assessment modeling tool for coastal urban watersheds

    Science.gov (United States)

    Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.

    2014-03-01

    Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.

  19. Assessing flood forecast uncertainty with fuzzy arithmetic

    Directory of Open Access Journals (Sweden)

    de Bruyn Bertrand

    2016-01-01

    Full Text Available Providing forecasts for flow rates and water levels during floods have to be associated with uncertainty estimates. The forecast sources of uncertainty are plural. For hydrological forecasts (rainfall-runoff performed using a deterministic hydrological model with basic physics, two main sources can be identified. The first obvious source is the forcing data: rainfall forecast data are supplied in real time by meteorological forecasting services to the Flood Forecasting Service within a range between a lowest and a highest predicted discharge. These two values define an uncertainty interval for the rainfall variable provided on a given watershed. The second source of uncertainty is related to the complexity of the modeled system (the catchment impacted by the hydro-meteorological phenomenon, the number of variables that may describe the problem and their spatial and time variability. The model simplifies the system by reducing the number of variables to a few parameters. Thus it contains an intrinsic uncertainty. This model uncertainty is assessed by comparing simulated and observed rates for a large number of hydro-meteorological events. We propose a method based on fuzzy arithmetic to estimate the possible range of flow rates (and levels of water making a forecast based on possible rainfalls provided by forcing and uncertainty model. The model uncertainty is here expressed as a range of possible values. Both rainfall and model uncertainties are combined with fuzzy arithmetic. This method allows to evaluate the prediction uncertainty range. The Flood Forecasting Service of Oise and Aisne rivers, in particular, monitors the upstream watershed of the Oise at Hirson. This watershed’s area is 310 km2. Its response time is about 10 hours. Several hydrological models are calibrated for flood forecasting in this watershed and use the rainfall forecast. This method presents the advantage to be easily implemented. Moreover, it permits to be carried out

  20. Potentially pathogenic free-living amoebae in some flood-affected areas during 2011 Chiang Mai flood.

    Science.gov (United States)

    Wannasan, Anchalee; Uparanukraw, Pichart; Songsangchun, Apichart; Morakote, Nimit

    2013-01-01

    The survey was carried out to investigate the presence of potentially pathogenic free-living amoebae (FLA) during flood in Chiang Mai, Thailand in 2011. From different crisis flood areas, seven water samples were collected and tested for the presence of amoebae using culture and molecular methods. By monoxenic culture, FLA were detected from all samples at 37 °C incubation. The FLA growing at 37 °C were morphologically identified as Acanthamoeba spp., Naegleria spp. and some unidentified amoebae. Only three samples (42.8%), defined as thermotolerant FLA, continued to grow at 42 °C. By molecular methods, two non-thermotolerant FlA were shown to have 99% identity to Acanthamoeba sp. and 98% identity to Hartmannella vermiformis while the two thermotolerant FLA were identified as Echinamoeba exundans (100% identity) and Hartmannella sp. (99% identity). This first report of the occurrence of FLA in water during the flood disaster will provide information to the public to be aware of potentially pathogenic FLA.

  1. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2017-04-01

    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  2. The necessity of flood risk maps on Timis River

    International Nuclear Information System (INIS)

    Aldescu, Geogr Catalin

    2008-01-01

    The paper aims to clarify the necessity of risk reduction in flood prone areas along the Timis River. Different methods to reduce risk in flood prone areas are analyzed as well. According to the EU Flood Directive it is mandatory for the European countries to develop flood maps and flood risk maps. The maps help to assess the vulnerable zones in the floodable (i.e. flood prone) areas. Many European countries have produced maps which identify areas prone to flooding events for specific known return periods. In Romania the flood risk maps have not been yet produced, but the process has been started to be implemented at the national and regional level, therefore the first results will be soon available. Banat Hydrographical Area was affected by severe floods on Timis River in 2000, 2005 and 2006. The 2005 flood was the most devastating one with large economic losses. As a result of these catastrophes the need for generating flood risk maps along the Timis. River was clearly stated. The water management experts can use these maps in order to identify the 'hot spots' in Timis catchment, give the people a better understanding of flood risk issues and help reducing flood risk more efficient in the identified vulnerable areas.

  3. Estimation of Internal Flooding Frequency for Screening Analysis of Flooding PSA

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Jun Eon

    2005-01-01

    The purpose of this paper is to estimate the internal frequency for the quantitative screening analysis of the flooding PSA (Probabilistic Safety Assessment) with the appropriate data and estimation method. In the case of the existing flood PSA for domestic NPPs (Nuclear Power Plant), the screening analysis was performed firstly and then detailed analysis was performed for the area not screened out. For the quantitative screening analysis, the plant area based flood frequency by MLE (Maximum Likelihood Estimation) method was used, while the component based flood frequency is used for the detailed analysis. The existing quantitative screening analysis for domestic NPPs have used data from all LWRs (Light Water Reactor), namely PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) for the internal flood frequency of the auxiliary building and turbine building. However, in the case of the primary auxiliary building, the applicability of the data from all LWRs needs to be examined carefully because of the significant difference in equipments between the PWR and BWR structure. NUREG/CR-5750 suggested the Bayesian update method with Jeffrey's noninformative prior to estimate the initiating event frequency for the flood. It, however, did not describe any procedure of the flood PSA. Recently, Fleming and Lydell suggested the internal flooding frequency in the unit of the plant operation year-pipe length (in meter) by pipe size of each specific system which is susceptible to the flooding such as the service water system and the circulating water system. They used the failure rate, the rupture conditional probability given the failure to estimate the internal flooding frequency, and the Bayesian update to reduce uncertainties. To perform the quantitative screening analysis with the method, it requires pipe length by each pipe size of the specific system per each divided area to change the concept of the component based frequency to the concept of the plant area

  4. Review Article: A comparison of flood and earthquake vulnerability assessment indicators

    Science.gov (United States)

    de Ruiter, Marleen C.; Ward, Philip J.; Daniell, James E.; Aerts, Jeroen C. J. H.

    2017-07-01

    In a cross-disciplinary study, we carried out an extensive literature review to increase understanding of vulnerability indicators used in the disciplines of earthquake- and flood vulnerability assessments. We provide insights into potential improvements in both fields by identifying and comparing quantitative vulnerability indicators grouped into physical and social categories. Next, a selection of index- and curve-based vulnerability models that use these indicators are described, comparing several characteristics such as temporal and spatial aspects. Earthquake vulnerability methods traditionally have a strong focus on object-based physical attributes used in vulnerability curve-based models, while flood vulnerability studies focus more on indicators applied to aggregated land-use classes in curve-based models. In assessing the differences and similarities between indicators used in earthquake and flood vulnerability models, we only include models that separately assess either of the two hazard types. Flood vulnerability studies could be improved using approaches from earthquake studies, such as developing object-based physical vulnerability curve assessments and incorporating time-of-the-day-based building occupation patterns. Likewise, earthquake assessments could learn from flood studies by refining their selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies for exploring risk assessment methodologies across different hazard types.

  5. USGS environmental characterization of flood sediments left in the New Orleans area after Hurricanes Katrina and Rita, 2005--Progress Report

    Science.gov (United States)

    Plumlee, Geoffrey S.; Meeker, Gregory P.; Lovelace, John K.; Rosenbauer, Robert J.; Lamothe, Paul J.; Furlong, Edward T.; Demas, Charles R.

    2006-01-01

    Introduction: The flooding in the greater New Orleans area that resulted from Hurricanes Katrina and Rita in September, 2005, left behind accumulations of sediments up to many centimeters thick on streets, lawns, parking lots, and other flat surfaces. These flood sediment deposits have been the focus of extensive study by the US Environmental Protection Agency (EPA) and Louisiana Department of Environmental Quality (LDEQ) due to concerns that the sediments may contain elevated levels of heavy metals, organic contaminants, and microbes. The U.S. Geological Survey (USGS) is characterizing a limited number of flood sediment samples that were collected on September 15-16 and October 6-7, 2005, from the greater New Orleans area by personnel from the USGS Louisiana Water Science Center in Baton Rouge. Small samples (< 3 pints each) of wet to dry flood sediment were collected from 11 localities around downtown New Orleans on September 15, 2005, and two large samples (40 pints each) of wet flood sediment were collected from the Chalmette area on September 16. Twelve additional samples (8-10 pints each) were collected from New Orleans, Slidell, Rigolets, and Violet on October 6 and 7. The USGS characterization studies of these flood sediments are designed to produce data and interpretations regarding how the sediments and any contained contaminants may respond to environmental processes. This information will be of use to cleanup managers and DoI/USGS scientists assessing environmental impacts of the hurricanes and subsequent cleanup activities.

  6. Assessment of vulnerability to extreme flash floods in design storms.

    Science.gov (United States)

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  7. Financing increasing flood risk: evidence from millions of buildings

    Science.gov (United States)

    Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.

    2014-01-01

    The effectiveness of disaster risk management and financing mechanisms depends on the accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on the ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information can contribute to discussions on possible risk financing practices. The case-study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood prone areas has been higher than in not flood prone areas. We also find that property values in flood prone areas are lower than those in not flood prone areas. We argue that the increase in the share of economic value located in potential flood prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.

  8. An integrated simulation method for flash-flood risk assessment: 2. Effects of changes in land-use under a historical perspective

    Science.gov (United States)

    Rosso, R.; Rulli, M. C.

    The influence of land use changes on flood occurrence and severity in the Bisagno River (Thyrrenian Liguria, N.W. Italy is investigated using a Monte Carlo simulation approach (Rulli and Rosso, 2002). High resolution land-use maps for the area were reconstructed and scenario simulations were made for a pre-industrial (1878), an intermediate (1930) and a current (1980) year. Land-use effects were explored to assess the consequences of distributed changes in land use due to agricultural practice and urbanisation. Hydraulic conveyance effects were considered, to assess the consequences of channel modifications associated with engineering works in the lower Bisagno River network. Flood frequency analyses of the annual flood series, retrieved from the simulations, were used to examine the effect of land-use change and river conveyance on flood regime. The impact of these effects proved to be negligible in the upper Bisagno River, moderate in the downstream river and severe in the small tributaries in the lower Bisagno valley that drain densely populated urban areas. The simulation approach is shown to be capable of incorporating historical data on landscape and river patterns into quantitative methods for risk assessment.

  9. Enhancement of global flood damage assessments using building material based vulnerability curves

    Science.gov (United States)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  10. Integrated flash flood vulnerability assessment: Insights from East Attica, Greece

    Science.gov (United States)

    Karagiorgos, Konstantinos; Thaler, Thomas; Heiser, Micha; Hübl, Johannes; Fuchs, Sven

    2016-10-01

    In the framework of flood risk assessment, vulnerability is a key concept to assess the susceptibility of elements at risk. Besides the increasing amount of studies on flash floods available, in-depth information on vulnerability in Mediterranean countries was missing so far. Moreover, current approaches in vulnerability research are driven by a divide between social scientists who tend to view vulnerability as representing a set of socio-economic factors, and natural scientists who view vulnerability in terms of the degree of loss to an element at risk. Further, vulnerability studies in response to flash flood processes are rarely answered in the literature. In order to close this gap, this paper implemented an integrated vulnerability approach focusing on residential buildings exposed to flash floods in Greece. In general, both physical and social vulnerability was comparable low, which is interpreted as a result from (a) specific building regulations in Greece as well as general design principles leading to less structural susceptibility of elements at risk exposed, and (b) relatively low economic losses leading to less social vulnerability of citizens exposed. The population show high risk awareness and coping capacity to response to natural hazards event and in the same time the impact of the events are quite low, because of the already high use of local protection measures. The low vulnerability score for East Attica can be attributed especially to the low physical vulnerability and the moderate socio-economic well-being of the area. The consequence is to focus risk management strategies mainly in the reduction of the social vulnerability. By analysing both physical and social vulnerability an attempt was made to bridge the gap between scholars from sciences and humanities, and to integrate the results of the analysis into the broader vulnerability context.

  11. Neighbourhood Socio Economic Disadvantage Index’s Analysis of the Flood Disasters Area at East Jakarta in 1996 and 2016

    Science.gov (United States)

    Ranti Ristiani, Christina; Rokhmatuloh; Hernina, Revi

    2017-12-01

    Flood is one of natural disasters that have often happened in East Jakarta. Flood can give several negative impacts and it can affect all aspects of society lives such as economics, political, cultural, socials and others. East Jakarta is an urban area which continuously grows and establishes to become a rapid area. It can be seen from the highest population density in East Jakarta (BPS, 2016) and categorized into a region prone to flooding based on data Prone Flood Map in 1996 and 2016. The higher population exists in East Jakarta, the bigger possibility of the negative effects of disaster it gets. The negative impacts of flood disaster can affect societies especially with socio-economic disadvantage. One of the index to measure socio-economic disadvantage is NSDI (Neighbourhood socio-economic disadvantage index). However, to adjust indicators used in NSDI with Indonesia statistical data compatibility, it needs further assessment and evaluation. Therefore, this paper evaluates previous main indicators used in previous NSDI studies and improves with indicators which more suitable with statistical records in Indonesia. As a result, there will be improved 19 indicators to be used in NSDI, but the groups of indicators remain the same as previous namely; income, education, occupation, housing, and population.

  12. Recent advances in flood forecasting and flood risk assessment

    Directory of Open Access Journals (Sweden)

    G. Arduino

    2005-01-01

    Full Text Available Recent large floods in Europe have led to increased interest in research and development of flood forecasting systems. Some of these events have been provoked by some of the wettest rainfall periods on record which has led to speculation that such extremes are attributable in some measure to anthropogenic global warming and represent the beginning of a period of higher flood frequency. Whilst current trends in extreme event statistics will be difficult to discern, conclusively, there has been a substantial increase in the frequency of high floods in the 20th century for basins greater than 2x105 km2. There is also increasing that anthropogenic forcing of climate change may lead to an increased probability of extreme precipitation and, hence, of flooding. There is, therefore, major emphasis on the improvement of operational flood forecasting systems in Europe, with significant European Community spending on research and development on prototype forecasting systems and flood risk management projects. This Special Issue synthesises the most relevant scientific and technological results presented at the International Conference on Flood Forecasting in Europe held in Rotterdam from 3-5 March 2003. During that meeting 150 scientists, forecasters and stakeholders from four continents assembled to present their work and current operational best practice and to discuss future directions of scientific and technological efforts in flood prediction and prevention. The papers presented at the conference fall into seven themes, as follows.

  13. Urban Flooding Analysis Using Radar Rainfall Data and 2-D Hydrodynamic Model: A Pilot Study of Back Cover Area, Portland, Maine

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Eugene [Argonne National Lab. (ANL), Argonne, IL (United States); Pierce, Julia [Argonne National Lab. (ANL), Argonne, IL (United States); Mahat, Vinod [Argonne National Lab. (ANL), Argonne, IL (United States); Jared, Alissa [Argonne National Lab. (ANL), Argonne, IL (United States); Collis, Scott [Argonne National Lab. (ANL), Argonne, IL (United States); Verner, Duane [Argonne National Lab. (ANL), Argonne, IL (United States); Wall, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    This project is a part of the Regional Resiliency Assessment Program, led by the Department of Homeland Security, to address flooding hazards of regional significance for Portland, Maine. The pilot study was performed by Argonne National Laboratory to identify differences in spatial rainfall distributions between the radar-derived and rain-gauge rainfall datasets and to evaluate their impacts on urban flooding. The flooding impact analysis utilized a high-resolution 2-dimensional (2-D) hydrodynamic model (15 ft by 15 ft) incorporating the buildings, streets, stream channels, hydraulic structures, an existing city storm drain system, and assuming a storm surge along the coast coincident with a heavy rainfall event. Two historical storm events from April 16, 2007, and September 29, 2015, were selected for evaluation. The radar-derived rainfall data at a 200-m resolution provide spatially-varied rainfall patterns with a wide range of intensities for each event. The resultant maximum flood depth using data from a single rain gauge within the study area could be off (either under- or over-estimated) by more than 10% in the 2007 storm and more than 60% in the 2015 storm compared to the radar-derived rainfall data. The model results also suggest that the inundation area with a flow depth at or greater than 0.5 ft could reach 11% (2007 storm) and 17% (2015 storm) of the total study area, respectively. The lowland areas within the neighborhoods of North Deering, East Deering, East and West Baysides and northeastern Parkside, appear to be more vulnerable to the flood hazard in both storm events. The high-resolution 2-D hydrodynamic model with high-resolution radar-derived rainfall data provides an excellent tool for detailed urban flood analysis and vulnerability assessment. The model developed in this study could be potentially used to evaluate any proposed mitigation measures and optimize their effects in the future for Portland, ME.

  14. Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network

    Science.gov (United States)

    Khan, U. T.

    2016-12-01

    Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged

  15. Assessing flood risk at the global scale: model setup, results, and sensitivity

    International Nuclear Information System (INIS)

    Ward, Philip J; Jongman, Brenden; Weiland, Frederiek Sperna; Winsemius, Hessel C; Bouwman, Arno; Ligtvoet, Willem; Van Beek, Rens; Bierkens, Marc F P

    2013-01-01

    Globally, economic losses from flooding exceeded $19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP ($1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures. (letter)

  16. Assessment of flood potential for eight buildings at the Y-12 Plant

    International Nuclear Information System (INIS)

    Eiffe, M.A.

    1997-01-01

    In 1995, P-SQUARED Technologies, Inc., (P2T) was tasked with defining the flood potential for seven buildings at the Y-12 Plant (Buildings 9204-2, 9204-2E, 9206, 9212, 9215, 9720-5, and 9995) in the assumed event of a design storm with a recurrence interval of 10,000 years. At the conclusion of the study, P2T prepared and submitted a report summarizing the flood potential for those seven buildings. In November of 1997, P2T was tasked with (1) defining flood potential for the same seven buildings listed above for design storms with recurrence intervals of 500 years and 2000 years, and (2) defining flood potential for Building 9720-38 for design storms with recurrence intervals of 500 years, 2000 years, and 10,000 years. This report presents the results of the analyses conducted to define flood potential at these locations and for these recurrence intervals. None of the buildings investigated are completely safe from flooding during the storms considered. Runoff from rooftops may cause limited flooding in any areas where water is allowed to pond next to doors, vents, windows, or other openings. Flooding depths inside buildings in these areas should be limited to 1 ft or less. Buildings with openings below the grade of adjacent roads are also subject to flooding, with flood levels dependent upon the topography in that location

  17. Integrating human behaviour dynamics into flood disaster risk assessment

    Science.gov (United States)

    Aerts, J. C. J. H.; Botzen, W. J.; Clarke, K. C.; Cutter, S. L.; Hall, J. W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H.

    2018-03-01

    The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.

  18. The climate and flood risk potential of northern areas of Pakistan

    International Nuclear Information System (INIS)

    Awan, S.A.

    2002-01-01

    The extreme floods in northern parts of Pakistan are caused by glacier lake outbursts and Dam-Breaks following landslides, which block river valleys. Geographically glacier dams in mountain rivers and valleys have occurred from the east-western and west-western Karakuram ranges and in the lesser Karakuram range floods which arise from Karakuram precipitation and temperature of various region pose greater problem, as these floods are neither homogeneous nor stationary. These floods arise from various generating mechanisms i. e. generated by melting of snow and glacier and those generated from the monsoon rainfall and dam-breaks following landslide into the river and out burst of glacier lake. The estimation of present and future risk of flooding at sites in northern Pakistan requires an understanding, of the climate, which provides, the generating mechanism of floods. Climates are extremely variable and depend op broad global circulation patterns and local topographic influences. The variables of the climate are studied using available data, with emphasis on temperature and precipitation Spatial Co-relation in northern area stations have been conducted to find Co-relation Co-efficient, using regression analysis. This is spread over intra seasonal and inter station comparison. The time series analysis of the climatic variables has been conducted to examine geographically and statistically the trend in their behaviour. This may be reflected in the hydrological regime of glaciers and rivers and it can cause non linear flood series through changes in any one of the flood generating mechanism. The climate feed-back mechanism has been discussed, which are practically important because they assist seasonal prediction of climate and flow in the Indus. Additionally if climate warming is causing an upward Trend in winter and spring temperature and reduction in snowfall, the effect might be felt more widely over the region. The non-linear changes with elevation and differences

  19. Interim report on flash floods, Area 5 - Nevada Test Site

    International Nuclear Information System (INIS)

    French, R.H.

    1980-09-01

    Examination of the presently available data indicates that consideration must be given to the possibility of flash floods when siting waste management facilities in Area 5 of the Nevada Test Site. 6 figures, 7 tables

  20. The role of interactions along the flood process chain and implications for risk assessment

    Science.gov (United States)

    Vorogushyn, Sergiy; Apel, Heiko; Viet Nguyen, Dung; Guse, Björn; Kreibich, Heidi; Lüdtke, Stefan; Schröter, Kai; Merz, Bruno

    2017-04-01

    Floods with their manifold characteristics are shaped by various processes along the flood process chain - from triggering meteorological extremes through catchment and river network process down to impacts on societies. In flood risk systems numerous interactions and feedbacks along the process chain may occur which finally shape spatio-temporal flood patterns and determine the ultimate risk. In this talk, we review some important interactions in the atmosphere-catchment, river-dike-floodplain and vulnerability compartments of the flood risk system. We highlight the importance of spatial interactions for flood hazard and risk assessment. For instance, the role of spatial rainfall structure or wave superposition in river networks is elucidated with selected case studies. In conclusion, we show the limits of current methods in assessment of large-scale flooding and outline the approach to more comprehensive risk assessment based on our regional flood risk model (RFM) for Germany.

  1. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  2. Increasing flood exposure in the Netherlands: implications for risk financing

    Science.gov (United States)

    Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.

    2014-05-01

    The effectiveness of disaster risk management and financing mechanisms depends on an accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information provides valuable input to discussions on possible risk financing practices. The case study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood-prone areas has been higher than in non-flood-prone areas. We also find that property values in flood-prone areas are lower than those in non-flood-prone areas. We argue that the increase in the share of economic value located in potential flood-prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.

  3. Natural radioactivity levels in soil samples around the flood affected salt field area, Kelambakkam, Chennai, Tamilnadu, India using gamma ray spectrometry

    International Nuclear Information System (INIS)

    Rajalakshmi, A.; Chandrasekaran, A.; Thangam, V.; Jananee, B.

    2018-01-01

    Humans are exposed to natural radiation from external sources, which include radionuclides in the earth and cosmic radiation. Gamma Ray spectroscopic technique was used to assess the natural radioactivity in soils around the flood affected salt field area, Kelambakkam Chennai, Tamilnadu, India. The activity concentration of 238 U, 232 Th, 40 K and absorbed dose rate of soil samples were calculated to assess the radiation hazards in the study area

  4. Comparison of Flood Vulnerability Assessments to Climate Change by Construction Frameworks for a Composite Indicator

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2018-03-01

    Full Text Available As extreme weather conditions due to climate change can cause deadly flood damages all around the world, a role of the flood vulnerability assessment has become recognized as one of the preemptive measures in nonstructural flood mitigation strategies. Although the flood vulnerability is most commonly assessed by a composite indicator compiled from multidimensional phenomena and multiple conflicting criteria associated with floods, directly or indirectly, it has been often overlooked that the construction frameworks and processes can have a significant influence on the flood vulnerability indicator outcomes. This study has, therefore, compared the flood vulnerability ranking orders for the 54 administrative districts in the Nakdong River Watershed of the Korean Peninsula, ranked from composite indicators by different frameworks and multi-attribute utility functions for combining the three assessment components, such as exposure, sensitivity, and coping, presented in the IPCC Third Assessment Report. The results show that the different aggregation components and utility functions under the same proxy variable system can lead to larger volatility of flood vulnerability rankings than expected. It is concluded that the vulnerability indicator needs to be derived from all three assessment components by a multiplicative utility function for a desirable flood vulnerability assessment to climate change.

  5. Towards a Flood Severity Index

    Science.gov (United States)

    Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.

    2017-12-01

    Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio

  6. Flood Mapping: Assessing the uncertainty associated with flood inundation modelling. A case study of the Mora River, Sweden

    OpenAIRE

    Åberg, Isabelle

    2017-01-01

    Expansion of cities and major infrastructure projects lead to changes in land use and river flows. The probability of flooding is expected to increase in the future as a result of these changes in combination with climate change. Hydraulic models can be used to obtain simulated water levels to investigate the risk of flooding and identify areas that might potentially be flooded due to climate change. Since a model is a simplification of the reality it is important to be aware of a model’s unc...

  7. Flood risk assessment. Case of study: Motozintla de Mendoza, Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    David A. Novelo-Casanova

    2016-09-01

    Full Text Available Due to its geographical location, the community of Motozintla de Mendoza (Motozintla in the State of Chiapas, Mexico, is continuously exposed to the impact of natural hazards. In this work, we assessed the flood risk of Motozintla considering the structural, socioeconomic, organizational, and global (structural, socioeconomic, and organizational vulnerabilities. In addition, we also measured the local risk perception. Spatial maps were generated to determine the most vulnerable and risk areas of this community. Our results indicate that the population has a high level of risk to flooding mainly because (1 the majority of the local houses has high structural vulnerability; (2 a high percentage of the families has a daily income less than the official Mexican minimum wage and lacks of basic public services as well as of proper social security services; (3 most of the community does not know any existing Civil Protection Plan; and (4 the community organization for disaster mitigation and response is practically non-existent. For these reasons, we believe that it is necessary for local authorities to establish in the short-term, preparedness, mitigation and response plans as well as land-use measures to reduce the risk to floods in Motozintla.

  8. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    Science.gov (United States)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  9. Improving flood risk mapping in Italy: the FloodRisk open-source software

    Science.gov (United States)

    Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru

    2017-04-01

    Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood

  10. Coastal Hazard Vulnerability Assessment: A Case Study of Erosion and Flooding on Herschel Island, Yukon Territory, Canada

    Science.gov (United States)

    Radosavljevic, B.; Lantuit, H.; Overduin, P. P.; Fritz, M.

    2015-12-01

    Coastal infrastructure, cultural, and archeological sites are increasingly vulnerable to erosion and flooding along permafrost coasts. Amplified warming of the Arctic, sea level rise, lengthening of the open water period, and a predicted increase in frequency of major storms compound these threats. Mitigation necessitates decision-making tools at an appropriate scale. We present a study of coastal erosion combining it with a flooding risk assessment for the culturally important historic settlement on Herschel Island, a UNESCO World Heritage candidate site. The resulting map may help local stakeholders devise management strategies to cope with rapidly changing environmental conditions. We analyzed shoreline movement using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, and 2011. Using these data, forecasts of shoreline positions were made for 20 and 50 years into the future. Flooding risk was assessed using a cost-distance map based on a high-resolution Light Detection and Ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement for different periods of the study ranges from -5.5 to 2.7 m·a-1 (mean -0.6 m·a-1). Mean coastal retreat decreased from -0.6 m·a-1 to -0.5 m·a-1, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a-1 in the period 2000-2011. Ice-rich coastal sections, and coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map resulting from shoreline projections and flood risk analysis indicates that most of the area occupied by the historic settlement is at extreme or very high risk of flooding, and some buildings are vulnerable to coastal erosion. The results of this study indicate a greater threat by coastal flooding than erosion. Our assessment may be applied in other locations where limited data are available.

  11. Near Real-Time Flood Monitoring and Impact Assessment Systems. Chapter 6; [Case Study: 2011 Flooding in Southeast Asia

    Science.gov (United States)

    Ahamed, Aakash; Bolten, John; Doyle, Colin; Fayne, Jessica

    2016-01-01

    Floods are the costliest natural disaster, causing approximately 6.8 million deaths in the twentieth century alone. Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD. Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries. Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change. Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assess flooding and extend analytical methods to estimate impacted population and infrastructure. Measuring flood extent in situ is generally impractical, time consuming, and can be inaccurate. Remotely sensed imagery acquired from space-borne and airborne sensors provides a viable platform for consistent and rapid wall-to-wall monitoring of large flood events through time. Terabytes of freely available satellite imagery are made available online each day by NASA, ESA, and other international space research institutions. Advances in cloud computing and data storage technologies allow researchers to leverage these satellite data and apply analytical methods at scale. Repeat-survey earth observations help provide insight about how natural phenomena change through time, including the progression and recession of floodwaters. In recent years, cloud-penetrating radar remote sensing techniques (e.g., Synthetic Aperture Radar) and high temporal resolution imagery platforms (e.g., MODIS and its 1-day return period), along with high performance computing infrastructure, have enabled significant advances in software systems that provide flood warning, assessments, and hazard reduction potential. By incorporating social and economic data

  12. Flood Response System—A Case Study

    OpenAIRE

    Yogesh Kumar Singh; Upasana Dutta; T. S. Murugesh Prabhu; I. Prabu; Jitendra Mhatre; Manoj Khare; Sandeep Srivastava; Subasisha Dutta

    2017-01-01

    Flood Response System (FRS) is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the critica...

  13. Pakistan flood damage mapped by UNOSAT at CERN

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    As the waters recede, the Pakistan floods are attracting less attention in the world's media. But at the CERN-based headquarters of UNOSAT, the UN Institute for Training and Research Operational Satellite Application Programme, mapping the damage caused by the floods remains the top priority as the “emergency phase” is only now beginning to level off.   Flood analysis in Pakistan from 28 July to 16 September 2010. Credits: © UNOSAT UNOSAT uses impartial, objective data to assess the specifics of a disaster: What surface area has the flood covered? How many bridges and roads have been destroyed? How many areas are impenetrable? Although there are statistical answers to these questions, UNOSAT’s assessment of the damage caused by the Pakistan floods can be simply described in one word: catastrophic. The images used by UNOSAT are taken from a variety of different sources – commercial and scientific. Once a satellite takes an image, the owne...

  14. A rainfall distribution and their influence on flood generation in the eastern Slovakia

    Directory of Open Access Journals (Sweden)

    Lenka Gaňová

    2013-01-01

    Full Text Available This paper aims to geographically assess the flood occurrence in eastern Slovakia by using one of the methods of multi-criteria analysis – rank sum method. Flood risk assessment is conducted in three specific cases: the long term period 1989–2009, the extremely wet 2010 year, and the extremely dry 2011 year. In the analyses, some of the causative factors for flooding in a basin area are taken into account. We use set of causative factors concerning mostly hydrological and physio-geographical characteristic of the target area that can be measured and evaluated such as soil type, daily precipitation (for the years 1989–2009, 2010, 2011, land use, catchment area and basin slope. For recommendation which causative factors should be preferred we use method of multicriteria analysis – ranking method. In the ranking method (RM, every factor/criterion under consideration is ranked in the order of the decision-maker’s preference. Geographic approach to flood risk assessment provides a descriptive presentation of the results obtained. Geographic information systems as a visualization tool is presented in a manner that aids understanding in a user friendly way.Regarding our task of flood risk assessment, the partial results are three composite maps, which present comparison of flood risk zones in percentage of the area in years 1989–2009, 2010, and 2011. The composite maps are background for risk assessment of the impact of rainfall on flood generation.This study of hydrological data and physio-geographical characteristic was carried out with the purpose of the identification of flood risk occurrence in eastern Slovakia. Results from our study shows, that rainfall distribution has high influence on flood risk of the area. Area percentage with very high flood risk index was calculated for “wet” year 2010 as 11.73 %, for “dry” year 2011 as 0.01 % and for period 1989–2009 as 0.28 %.

  15. Hydrological Modelling using HEC-HMS for Flood Risk Assessment of Segamat Town, Malaysia

    Science.gov (United States)

    Romali, N. S.; Yusop, Z.; Ismail, A. Z.

    2018-03-01

    This paper presents an assessment of the applicability of using Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS) for hydrological modelling of Segamat River. The objective of the model application is to assist in the assessment of flood risk by providing the peak flows of 2011 Segamat flood for the generation of flood mapping of Segamat town. The capability of the model was evaluated by comparing the historical observed data with the simulation results of the selected flood events. The model calibration and validation efficiency was verified using Nash-Sutcliffe model efficiency coefficient. The results demonstrate the interest to implement the hydrological model for assessing flood risk where the simulated peak flow result is in agreement with historical observed data. The model efficiency of the calibrated and validated exercises is 0.90 and 0.76 respectively, which is acceptable.

  16. "Flooding Risk Analysis and the Understanding of Hydrological Disturbance due to the Rapid Urbanization in a Low-Scale Subwatershed in Houston Area". ( The project develops a relavant Model of flooding risk assessment to define the connection between increased streamflow/flooding and the rapid urban land development).

    Science.gov (United States)

    Geldiyev, P.

    2017-12-01

    Rapid urban development and changing climate influences the frequency and magnitude of flooding in Houston area. This proposed project aims to evaluate the flooding risks with the current and future land use changes by 2040 for one subbasin of the San Jacinto Brazos/Neches-Trinity Coastal basin. Surface environments and streamflow data of the Clear Creek are analyzed and stimulated to discuss the possible impact of urbanization on the occurrence of floods. The streamflow data is analyzed and simulated with the application of the Geographic Information Systems and its extensions. Both hydrologic and hydraulic models of the Clear Creek are created with the use of HEC-HMS and HEC-RAS software. Both models are duplicated for the year 2040, based on projected 2040 Landcover Maps developed by Houston and Galveston Area Council. This project examines a type of contemporary hydrologic disturbance and the interaction between land cover and changes in hydrological processes. Expected results will be very significant for urban development and flooding management.

  17. Extensive spatio-temporal assessment of flood events by application of pair-copulas

    Directory of Open Access Journals (Sweden)

    M. Schulte

    2015-06-01

    Full Text Available Although the consequences of floods are strongly related to their peak discharges, a statistical classification of flood events that only depends on these peaks may not be sufficient for flood risk assessments. In many cases, the flood risk depends on a number of event characteristics. In case of an extreme flood, the whole river basin may be affected instead of a single watershed, and there will be superposition of peak discharges from adjoining catchments. These peaks differ in size and timing according to the spatial distribution of precipitation and watershed-specific processes of flood formation. Thus, the spatial characteristics of flood events should be considered as stochastic processes. Hence, there is a need for a multivariate statistical approach that represents the spatial interdependencies between floods from different watersheds and their coincidences. This paper addresses the question how these spatial interdependencies can be quantified. Each flood event is not only assessed with regard to its local conditions but also according to its spatio-temporal pattern within the river basin. In this paper we characterise the coincidence of floods by trivariate Joe-copula and pair-copulas. Their ability to link the marginal distributions of the variates while maintaining their dependence structure characterizes them as an adequate method. The results indicate that the trivariate copula model is able to represent the multivariate probabilities of the occurrence of simultaneous flood peaks well. It is suggested that the approach of this paper is very useful for the risk-based design of retention basins as it accounts for the complex spatio-temporal interactions of floods.

  18. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    Science.gov (United States)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  19. Comparison of 2D numerical models for river flood hazard assessment: simulation of the Secchia River flood in January, 2014

    Science.gov (United States)

    Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio

    2017-04-01

    Hydrodynamic modeling of inundation events still brings a large array of uncertainties. This effect is especially evident in the models run for geographically large areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution in order to avoid uncertainties and limitations coming from the incorrect interpretation of flood dynamics and an unrealistic reproduction of the terrain topography. This, however, affects the computational efficiency increasing the running time and hardware demands. Concerning this point, our study evaluates and compares numerical models of different complexity by testing them on a flood event that occurred in the basin of the Secchia River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach and consequent flooding of over 75 km2 of the plain behind the dike within 48 hours causing population displacement, one death and economic losses in excess of 400 million Euro. We test the well-established TELEMAC 2D, and LISFLOOD-FP codes, together with the recently launched HEC-RAS 5.0.3 (2D model), all models are implemented using different grid size (2-200 m) based on the 1 m digital elevation model resolution. TELEMAC is a fully 2D hydrodynamic model which is based on the finite-element or finite-volume approach. Whereas HEC-RAS 5.0.3 and LISFLOOD-FP are both coupled 1D-2D models. All models are calibrated against observed inundation extent and maximum water depths, which are retrieved from remotely sensed data and field survey reports. Our study quantitatively compares the three modeling strategies highlighting differences in terms of the ease of implementation, accuracy of representation of hydraulic processes within floodplains and computational efficiency. Additionally, we look into the different grid resolutions in terms of the results accuracy and computation time. Our study is a preliminary assessment that focuses on smaller areas in order to identify potential modeling schemes

  20. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  1. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico

    Science.gov (United States)

    Haer, Toon; Botzen, W. J. Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M.; Ward, Philip J.

    2018-06-01

    Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  2. Insights from Guideline for Performance of Internal Flooding Probabilistic Risk Assessment (IFPRA)

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joo Eon

    2009-01-01

    An internal flooding (IF) risk assessment refers to the quantitative probabilistic safety assessment (PSA) treatment of flooding as a result of pipe and tank breaks inside the plants, as well as from other recognized flood sources. The industry consensus standard for Internal Events Probabilistic Risk Assessment (ASME-RA-Sb-2005) includes high-level and supporting technical requirements for developing internal flooding probabilistic risk assessment (IFPRA). This industry standard is endorsed in Regulatory Guide 1.200, Revision 1 as an acceptable approach for addressing the risk contribution from IF events for risk informed applications that require U.S. Nuclear Regulatory commission (NRC) approval. In 2006, EPRI published a draft report for IFPRA that addresses the requirements of the ASME PRA consensus standard and have made efforts to refine and update the final EPRI IFPRA guideline. Westinghouse has performed an IFPRA analysis for several nuclear power plants (NPPs), such as Watts Bar and Fort Calhoun, using the draft EPRI guidelines for development of an IFPRA. Proprietary methodologies have been developed to apply the EPRI guidelines. The objectives of the draft report for IFPRA guideline are to: · Provide guidance for PSA practitioners in the performance of the elements of a PRA associated with internal flooding events consistent with the current state of the art for internal flooding PRA · Provide guidance regarding acceptable approaches that is sufficient to meeting the requirements of the ASME PRA Standard associated with internal flooding · Incorporate lessons learned in the performance of internal flooding PRAs including those identified as pilot applications of earlier drafts of this procedures guide The purpose of this paper is to present a vision for domestic nuclear power plants' IFPRA by comparing the method of the draft EPRI guidelines with the existing IFPRA method for domestic NPPs

  3. Insights from Guideline for Performance of Internal Flooding Probabilistic Risk Assessment (IFPRA)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Yeong; Yang, Joo Eon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    An internal flooding (IF) risk assessment refers to the quantitative probabilistic safety assessment (PSA) treatment of flooding as a result of pipe and tank breaks inside the plants, as well as from other recognized flood sources. The industry consensus standard for Internal Events Probabilistic Risk Assessment (ASME-RA-Sb-2005) includes high-level and supporting technical requirements for developing internal flooding probabilistic risk assessment (IFPRA). This industry standard is endorsed in Regulatory Guide 1.200, Revision 1 as an acceptable approach for addressing the risk contribution from IF events for risk informed applications that require U.S. Nuclear Regulatory commission (NRC) approval. In 2006, EPRI published a draft report for IFPRA that addresses the requirements of the ASME PRA consensus standard and have made efforts to refine and update the final EPRI IFPRA guideline. Westinghouse has performed an IFPRA analysis for several nuclear power plants (NPPs), such as Watts Bar and Fort Calhoun, using the draft EPRI guidelines for development of an IFPRA. Proprietary methodologies have been developed to apply the EPRI guidelines. The objectives of the draft report for IFPRA guideline are to: {center_dot} Provide guidance for PSA practitioners in the performance of the elements of a PRA associated with internal flooding events consistent with the current state of the art for internal flooding PRA {center_dot} Provide guidance regarding acceptable approaches that is sufficient to meeting the requirements of the ASME PRA Standard associated with internal flooding {center_dot} Incorporate lessons learned in the performance of internal flooding PRAs including those identified as pilot applications of earlier drafts of this procedures guide The purpose of this paper is to present a vision for domestic nuclear power plants' IFPRA by comparing the method of the draft EPRI guidelines with the existing IFPRA method for domestic NPPs.

  4. Assessment of channel changes, model of historical floods, and effects of backwater on flood stage, and flood mitigation alternatives for the Wichita River at Wichita Falls, Texas

    Science.gov (United States)

    Winters, Karl E.; Baldys, Stanley

    2011-01-01

    In cooperation with the City of Wichita Falls, the U.S. Geological Survey assessed channel changes on the Wichita River at Wichita Falls, Texas, and modeled historical floods to investigate possible causes and potential mitigation alternatives to higher flood stages in recent (2007 and 2008) floods. Extreme flooding occurred on the Wichita River on June 30, 2007, inundating 167 homes in Wichita Falls. Although a record flood stage was reached in June 2007, the peak discharge was much less than some historical floods at Wichita Falls. Streamflow and stage data from two gages on the Wichita River and one on Holliday Creek were used to assess the interaction of the two streams. Changes in the Wichita River channel were evaluated using historical aerial and ground photography, comparison of recent and historical cross sections, and comparison of channel roughness coefficients with those from earlier studies. The floods of 2007 and 2008 were modeled using a one-dimensional step-backwater model. Calibrated channel roughness was larger for the 2007 flood compared to the 2008 flood, and the 2007 flood peaked about 4 feet higher than the 2008 flood. Calibration of the 1941 flood yielded a channel roughness coefficient (Manning's n) of 0.030, which represents a fairly clean natural channel. The step-backwater model was also used to evaluate the following potential mitigation alternatives: (1) increasing the capacity of the bypass channel near River Road in Wichita Falls, Texas; (2) removal of obstructions near the Scott Avenue and Martin Luther King Junior Boulevard bridges in Wichita Falls, Texas; (3) widening of aggraded channel banks in the reach between Martin Luther King Junior Boulevard and River Road; and (4) reducing channel bank and overbank roughness. Reductions in water-surface elevations ranged from 0.1 foot to as much as 3.0 feet for the different mitigation alternatives. The effects of implementing a combination of different flood-mitigation alternatives were

  5. THE USE OF LIDAR AND VOLUNTEERED GEOGRAPHIC INFORMATION TO MAP FLOOD EXTENTS AND INUNDATION

    Directory of Open Access Journals (Sweden)

    K. McDougall

    2012-07-01

    Full Text Available Floods are one of the most destructive natural disasters that threaten communities and properties. In recent decades, flooding has claimed more lives, destroyed more houses and ruined more agricultural land than any other natural hazard. The accurate prediction of the areas of inundation from flooding is critical to saving lives and property, but relies heavily on accurate digital elevation and hydrologic models. The 2011 Brisbane floods provided a unique opportunity to capture high resolution digital aerial imagery as the floods neared their peak, allowing the capture of areas of inundation over the various city suburbs. This high quality imagery, together with accurate LiDAR data over the area and publically available volunteered geographic imagery through repositories such as Flickr, enabled the reconstruction of flood extents and the assessment of both area and depth of inundation for the assessment of damage. In this study, approximately 20 images of flood damaged properties were utilised to identify the peak of the flood. Accurate position and height values were determined through the use of RTK GPS and conventional survey methods. This information was then utilised in conjunction with river gauge information to generate a digital flood surface. The LiDAR generated DEM was then intersected with the flood surface to reconstruct the area of inundation. The model determined areas of inundation were then compared to the mapped flood extent from the high resolution digital imagery to assess the accuracy of the process. The paper concludes that accurate flood extent prediction or mapping is possible through this method, although its accuracy is dependent on the number and location of sampled points. The utilisation of LiDAR generated DEMs and DSMs can also provide an excellent mechanism to estimate depths of inundation and hence flood damage

  6. The Use of LIDAR and Volunteered Geographic Information to Map Flood Extents and Inundation

    Science.gov (United States)

    McDougall, K.; Temple-Watts, P.

    2012-07-01

    Floods are one of the most destructive natural disasters that threaten communities and properties. In recent decades, flooding has claimed more lives, destroyed more houses and ruined more agricultural land than any other natural hazard. The accurate prediction of the areas of inundation from flooding is critical to saving lives and property, but relies heavily on accurate digital elevation and hydrologic models. The 2011 Brisbane floods provided a unique opportunity to capture high resolution digital aerial imagery as the floods neared their peak, allowing the capture of areas of inundation over the various city suburbs. This high quality imagery, together with accurate LiDAR data over the area and publically available volunteered geographic imagery through repositories such as Flickr, enabled the reconstruction of flood extents and the assessment of both area and depth of inundation for the assessment of damage. In this study, approximately 20 images of flood damaged properties were utilised to identify the peak of the flood. Accurate position and height values were determined through the use of RTK GPS and conventional survey methods. This information was then utilised in conjunction with river gauge information to generate a digital flood surface. The LiDAR generated DEM was then intersected with the flood surface to reconstruct the area of inundation. The model determined areas of inundation were then compared to the mapped flood extent from the high resolution digital imagery to assess the accuracy of the process. The paper concludes that accurate flood extent prediction or mapping is possible through this method, although its accuracy is dependent on the number and location of sampled points. The utilisation of LiDAR generated DEMs and DSMs can also provide an excellent mechanism to estimate depths of inundation and hence flood damage

  7. Flood Inundation Mapping and Management using RISAT-1 derived Flood Inundation Areas, Cartosat-1 DEM and a River Flow Model

    Science.gov (United States)

    Kuldeep, K.; Garg, P. K.; Garg, R. D.

    2017-12-01

    The frequent occurrence of repeated flood events in many regions of the world causing damage to human life and property has augmented the need for effective flood risk management. Microwave satellite data is becoming an indispensable asset for monitoring of many environmental and climatic applications as numerous space-borne synthetic aperture radar (SAR) sensors are offering the data with high spatial resolutions and multi-polarization capabilities. The implementation and execution of Flood mapping, monitoring and management applications has become easier with the availability of SAR data which has obvious advantages over optical data due to its all weather, day and night capabilities. In this study, the exploitation of the SAR dataset for hydraulic modelling and disaster management has been highlighted using feature extraction techniques for water area identification and water level extraction within the floodplain. The availability of high precision digital elevation model generated from the Cartosat-1 stereo pairs has enhanced the capability of retrieving the water depth maps by incorporating the SAR derived flood extent maps. This paper illustrates the flood event on June 2013 in Yamuna River, Haryana, India. The water surface profile computed by combining the topographic data with the RISAT-1 data accurately reflects the true water line. Water levels that were computed by carrying out the modelling using hydraulic model in HECRAS also suggest that the water surface profiles provided by the combined use of topographic data and SAR accurately reflect the true water line. The proposed approach has also been found better in extraction of inundation within vegetated areas.

  8. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  9. NB Power's Mactaquac Dam : is it possible for the Mactaquac Dam to mitigate the flooding in the Maugerville/Sheffield area?

    International Nuclear Information System (INIS)

    Ismail, S.; Harriman, F.

    1997-04-01

    The feasibility of using the Mactaquac Dam to control river flows and mitigate flooding in the Maugerville/Sheffield area in New Brunswick was discussed. The area is located in the Saint John River valley and has often been subjected to flooding. The causes of the floods in the section of the river were examined in order to evaluate the effectiveness of using the Mactaquac Dam in this manner. The storage capability of the Mactaquac headpond was also examined. The 1973 flood was used as an example to demonstrate the capability of the dam to control flood levels. It was concluded that the flooding in the area is a natural phenomenon and that the Mactaquac Development was not designed and does not have the ability to mitigate flood levels. 1 fig

  10. Assessment of the effectiveness of flood adaptation strategies for HCMC

    Science.gov (United States)

    Lasage, R.; Veldkamp, T. I. E.; de Moel, H.; Van, T. C.; Phi, H. L.; Vellinga, P.; Aerts, J. C. J. H.

    2014-06-01

    Coastal cities are vulnerable to flooding, and flood risk to coastal cities will increase due to sea-level rise. Moreover, Asian cities in particular are subject to considerable population growth and associated urban developments, increasing this risk even more. Empirical data on vulnerability and the cost and benefits of flood risk reduction measures are therefore paramount for sustainable development of these cities. This paper presents an approach to explore the impacts of sea-level rise and socio-economic developments on flood risk for the flood-prone District 4 in Ho Chi Minh City, Vietnam, and to develop and evaluate the effects of different adaptation strategies (new levees, dry- and wet proofing of buildings and elevating roads and buildings). A flood damage model was developed to simulate current and future flood risk using the results from a household survey to establish stage-damage curves for residential buildings. The model has been used to assess the effects of several participatory developed adaptation strategies to reduce flood risk, expressed in expected annual damage (EAD). Adaptation strategies were evaluated assuming combinations of both sea-level scenarios and land-use scenarios. Together with information on costs of these strategies, we calculated the benefit-cost ratio and net present value for the adaptation strategies until 2100, taking into account depreciation rates of 2.5% and 5%. The results of this modelling study indicate that the current flood risk in District 4 is USD 0.31 million per year, increasing up to USD 0.78 million per year in 2100. The net present value and benefit-cost ratios using a discount rate of 5 % range from USD -107 to -1.5 million, and from 0.086 to 0.796 for the different strategies. Using a discount rate of 2.5% leads to an increase in both net present value and benefit-cost ratio. The adaptation strategies wet-proofing and dry-proofing generate the best results using these economic indicators. The information

  11. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    Science.gov (United States)

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  12. Natural flood retention in mountain areas by forests and forest like short rotation coppices

    Science.gov (United States)

    Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens

    2017-04-01

    Natural water retention is an important element of flood risk management in flood generating headwater areas in the low mountain ranges of Central Europe. In this context forests are of particular interest because of the high infiltration capacities of the soils and to increase water retention reforestation of agricultural land would be worthwhile. However competing claims for land use in intensely cultivated regions in Central Europe impede reforestation plans so the potential for a significant increase of natural water retention in forests is strongly limited. Nevertheless the development of innovative forms of land use and crop types opens new perspectives for a combination of agricultural land use with the water retention potential of forests. Recently the increasing demand for renewable energy resources leads to the cultivation of fast growing poplar and willow hybrids on agricultural land in short rotation coppices (SRC). Harvested in cycles of three to six years the wood from the plantations can be used as wood chips for heat and electricity production in specialized power plants. With short rotation plantations a crop type is established on arable land which is similar to forests so that an improvement of water retention can be expected. To what extend SRC may contribute to flood attenuation in headwater areas is investigated for the Chemnitzbach watershed (48 km2) in the Eastern Ore Mountains (Free State of Saxony, Germany), a low mountain range which is an important source of flood runoff in the Elbe basin. The study is based on a rainfall-runoff model of flood events using the conceptual modelling system NASIM. First results reveal a significant reduction of the flood peaks after the implementation of short rotation coppices. However the effect strongly depends on two factors. The first factor is the availability of areas for the plantations. For a substantial impact on the watershed scale large areas are required and with decreasing percentages of SRC

  13. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    that combines a model for the socio-economic development of cities (DANCE4WATER) with an urban flood model. The urban flood model is a 1D-2D spatially distributed hydrologic and hydraulic model that, for a given urban layout, simulates flow in the sewer system and the surface flow in the catchment (MIKE FLOOD......). The socio-economic model computes urban layouts that are transferred to the hydraulic model in the form of changes of impervious area and potential flow paths on the surface. Estimates of flood prone areas, as well as the expected annual damage due to flooding, are returned to the socio-economic model...... as an input for further refinement of the scenarios for the urban development. Our results in an Australian case study suggest that urban development is a major driver for flood risk and vice versa that flood risk can be significantly reduced if it is accounted for in the development of the cities...

  14. Dynamic model of forest area on flood zone of Padang City, West Sumatra Province-Indonesia

    Science.gov (United States)

    Dewata, Indang; Iswandi, U.

    2018-05-01

    The flood disaster has caused many harm to human life, and the change of watershed characteristic is one of the factors causing the flood disaster. The increase of deforestation due to the increase of water causes the occurrence of flood disaster in the rainy season. The research objective was to develop a dynamic model of forest on flood hazard zone using powersim 10.1. In model development, there are three scenarios: optimistic, moderate, and pessimistic. The study shows that in Padang there are about 13 percent of high flood hazard zones. Deforestation of 4.5 percent/year is one cause that may increased the flooding intensity in Padang. There will be 14 percent of total forest area when management policy of forest absence in 2050.

  15. Uncertainty assessment of climate change adaptation using an economic pluvial flood risk framework

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    2012-01-01

    It is anticipated that climate change is likely to lead to an increasing risk level of flooding in cities in northern Europe. One challenging question is how to best address the increasing flood risk and assess the costs and benefits of adapting to such changes. We established an integrated...... approach for identification and assessment of climate change adaptation options by incorporating climate change impacts, flood inundation modelling, economic tool and risk assessment and management. The framework is further extended and adapted by embedding a Monte Carlo simulation to estimate the total...

  16. Flood Hazard Recurrence Frequencies for C-, F-, E-, S-, H-, Y-, and Z-Areas

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    A method was developed to determine the probabilistic flood elevation curves for Savannah River Site facilities. This report presents the method used to determine the probabilistic flood elevation curves for C-, F-, E-, H-, S-, Y-, and Z-Areas due to runoff from the Upper Three Runs and Fourmile Branch basins

  17. Environmental and geochemical assessment of surface sediments on irshansk ilmenite deposit area

    Directory of Open Access Journals (Sweden)

    Наталия Олеговна Крюченко

    2015-03-01

    Full Text Available It is revealed the problem of pollution of surface sediments of Irshansk ilmenite deposit area of various chemical elements hazard class (Mn, V, Ba, Ni, Co, Cr, Mo, Cu, Pb, Zn. It is determined its average content in surface sediments of various functional areas (forest and agricultural land, flood deposits, reclaimed land, calculated geochemical criteria, so given ecological and geochemical assessment of area

  18. September 2013 Storm and Flood Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Walterscheid, J. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurred between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.

  19. Combining Satellite Measurements and Numerical Flood Prediction Models to Save Lives and Property from Flooding

    Science.gov (United States)

    Saleh, F.; Garambois, P. A.; Biancamaria, S.

    2017-12-01

    Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.

  20. Analysis the Accuracy of Digital Elevation Model (DEM) for Flood Modelling on Lowland Area

    Science.gov (United States)

    Zainol Abidin, Ku Hasna Zainurin Ku; Razi, Mohd Adib Mohammad; Bukari, Saifullizan Mohd

    2018-04-01

    Flood is one type of natural disaster that occurs almost every year in Malaysia. Commonly the lowland areas are the worst affected areas. This kind of disaster is controllable by using an accurate data for proposing any kinds of solutions. Elevation data is one of the data used to produce solutions for flooding. Currently, the research about the application of Digital Elevation Model (DEM) in hydrology was increased where this kind of model will identify the elevation for required areas. University of Tun Hussein Onn Malaysia is one of the lowland areas which facing flood problems on 2006. Therefore, this area was chosen in order to produce DEM which focussed on University Health Centre (PKU) and drainage area around Civil and Environment Faculty (FKAAS). Unmanned Aerial Vehicle used to collect aerial photos data then undergoes a process of generating DEM according to three types of accuracy and quality from Agisoft PhotoScan software. The higher the level of accuracy and quality of DEM produced, the longer time taken to generate a DEM. The reading of the errors created while producing the DEM shows almost 0.01 different. Therefore, it has been identified there are some important parameters which influenced the accuracy of DEM.

  1. A spatial assessment framework for evaluating flood risk under extreme climates.

    Science.gov (United States)

    Chen, Yun; Liu, Rui; Barrett, Damian; Gao, Lei; Zhou, Mingwei; Renzullo, Luigi; Emelyanova, Irina

    2015-12-15

    Australian coal mines have been facing a major challenge of increasing risk of flooding caused by intensive rainfall events in recent years. In light of growing climate change concerns and the predicted escalation of flooding, estimating flood inundation risk becomes essential for understanding sustainable mine water management in the Australian mining sector. This research develops a spatial multi-criteria decision making prototype for the evaluation of flooding risk at a regional scale using the Bowen Basin and its surroundings in Queensland as a case study. Spatial gridded data, including climate, hydrology, topography, vegetation and soils, were collected and processed in ArcGIS. Several indices were derived based on time series of observations and spatial modeling taking account of extreme rainfall, evapotranspiration, stream flow, potential soil water retention, elevation and slope generated from a digital elevation model (DEM), as well as drainage density and proximity extracted from a river network. These spatial indices were weighted using the analytical hierarchy process (AHP) and integrated in an AHP-based suitability assessment (AHP-SA) model under the spatial risk evaluation framework. A regional flooding risk map was delineated to represent likely impacts of criterion indices at different risk levels, which was verified using the maximum inundation extent detectable by a time series of remote sensing imagery. The result provides baseline information to help Bowen Basin coal mines identify and assess flooding risk when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in this research offers the Australian mining industry, and social and environmental studies around the world, an effective way to produce reliable assessment on flood risk for managing uncertainty in water availability under climate change. Copyright © 2015. Published by Elsevier B.V.

  2. 44 CFR 65.5 - Revision to special hazard area boundaries with no change to base flood elevation determinations.

    Science.gov (United States)

    2010-10-01

    ... zones and floodways) it may be feasible to elevate areas with engineered earthen fill above the base... area boundaries with no change to base flood elevation determinations. 65.5 Section 65.5 Emergency... § 65.5 Revision to special hazard area boundaries with no change to base flood elevation determinations...

  3. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  4. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Long-term experiences with pluvial flood risk management

    Directory of Open Access Journals (Sweden)

    Fritsch Kathrina

    2016-01-01

    Full Text Available The awareness of pluvial (rain-related flood risk has grown significantly in the past few years but pluvial flooding is not handled with the same intensity throughout Europe. A variety of methods and modelling technologies are used to assess pluvial flood hazard and risk and to develop suggestions for flood mitigation measures. A brief overview of current model approaches is followed by the description of a modelling methodology that has been developed throughout the last 15 years with the focus on processing large scale areas. Experiences from several projects show that only high quality models of whole catchment areas yield results with enough accuracy to gain credibility among stakeholders, planners and the public. As a best practice example shows, the model approach also helps to plan effective decentral flood protection measures. To ensure successful flood risk management, a long-term preservation of flood risk awareness among local authorities and the public is necessary.

  6. Assessment of big floods in the Eastern Black Sea Basin of Turkey.

    Science.gov (United States)

    Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman

    2013-01-01

    In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.

  7. Optimization of wetland restoration siting and zoning in flood retention areas of river basins in China: A case study in Mengwa, Huaihe River Basin

    Science.gov (United States)

    Zhang, Xiaolei; Song, Yuqin

    2014-11-01

    Wetland restoration in floodplains is an ecological solution that can address basin-wide flooding issues and minimize flooding and damages to riverine and downstream areas. High population densities, large economic outputs, and heavy reliance on water resources make flood retention and management pressing issues in China. To balance flood control and sustainable development economically, socially, and politically, flood retention areas have been established to increase watershed flood storage capacities and enhance the public welfare for the populace living in the areas. However, conflicts between flood storage functions and human habitation appear irreconcilable. We developed a site-specific methodology for identifying potential sites and functional zones for wetland restoration in a flood retention area in middle and eastern China, optimizing the spatial distribution and functional zones to maximize flood control and human and regional development. This methodology was applied to Mengwa, one of 21 flood retention areas in China's Huaihe River Basin, using nine scenarios that reflected different flood, climatic, and hydraulic conditions. The results demonstrated improved flood retention and ecological functions, as well as increased economic benefits.

  8. Towards large scale stochastic rainfall models for flood risk assessment in trans-national basins

    Science.gov (United States)

    Serinaldi, F.; Kilsby, C. G.

    2012-04-01

    While extensive research has been devoted to rainfall-runoff modelling for risk assessment in small and medium size watersheds, less attention has been paid, so far, to large scale trans-national basins, where flood events have severe societal and economic impacts with magnitudes quantified in billions of Euros. As an example, in the April 2006 flood events along the Danube basin at least 10 people lost their lives and up to 30 000 people were displaced, with overall damages estimated at more than half a billion Euros. In this context, refined analytical methods are fundamental to improve the risk assessment and, then, the design of structural and non structural measures of protection, such as hydraulic works and insurance/reinsurance policies. Since flood events are mainly driven by exceptional rainfall events, suitable characterization and modelling of space-time properties of rainfall fields is a key issue to perform a reliable flood risk analysis based on alternative precipitation scenarios to be fed in a new generation of large scale rainfall-runoff models. Ultimately, this approach should be extended to a global flood risk model. However, as the need of rainfall models able to account for and simulate spatio-temporal properties of rainfall fields over large areas is rather new, the development of new rainfall simulation frameworks is a challenging task involving that faces with the problem of overcoming the drawbacks of the existing modelling schemes (devised for smaller spatial scales), but keeping the desirable properties. In this study, we critically summarize the most widely used approaches for rainfall simulation. Focusing on stochastic approaches, we stress the importance of introducing suitable climate forcings in these simulation schemes in order to account for the physical coherence of rainfall fields over wide areas. Based on preliminary considerations, we suggest a modelling framework relying on the Generalized Additive Models for Location, Scale

  9. A Multi-Faceted Debris-Flood Hazard Assessment for Cougar Creek, Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Matthias Jakob

    2017-01-01

    Full Text Available A destructive debris flood occurred between 19 and 21 June 2013 on Cougar Creek, located in Canmore, Alberta. Cougar Creek fan is likely the most densely developed alluvial fan in Canada. While no lives were lost, the event resulted in approximately $40 M of damage and closed both the Trans-Canada Highway (Highway 1 and the Canadian Pacific Railway line for a period of several days. The debris flood triggered a comprehensive hazard assessment which is the focus of this paper. Debris-flood frequencies and magnitudes are determined by combining several quantitative methods including photogrammetry, dendrochronology, radiometric dating, test pit logging, empirical relationships between rainfall volumes and sediment volumes, and landslide dam outburst flood modeling. The data analysis suggests that three distinct process types act in the watershed. The most frequent process is normal or “clearwater” floods. Less frequent but more damaging are debris floods during which excessive amounts of bedload are transported on the fan, typically associated with rapid and extensive bank erosion and channel infilling and widening. The third and most destructive process is interpreted to be landslide dam outbreak floods. This event type is estimated to occur at return periods exceeding 300 years. Using a cumulative magnitude frequency technique, the data for conventional debris floods were plotted up to the 100–300s year return period. A peak-over-threshold approach was used for landslide dam outbreak floods occurring at return periods exceeding 300 years, as not all such events were identified during test trenching. Hydrographs for 6 return period classes were approximated by using the estimated peak discharges and fitting the hydrograph shape to integrate to the debris flood volumes as determined from the frequency-magnitude relationship. The fan volume was calculated and compared with the integrated frequency-magnitude curve to check of the validity of

  10. Floods and climate: emerging perspectives for flood risk assessment and management

    NARCIS (Netherlands)

    Merz, B.; Aerts, J.C.J.H.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; Delgado, J.M.; Gocht, M.; Guzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H. -H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P.J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-01-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of

  11. Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM Based Time Series Analyses

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2013-02-01

    Full Text Available Satellite remote sensing is a valuable tool for monitoring flooding. Microwave sensors are especially appropriate instruments, as they allow the differentiation of inundated from non-inundated areas, regardless of levels of solar illumination or frequency of cloud cover in regions experiencing substantial rainy seasons. In the current study we present the longest synthetic aperture radar-based time series of flood and inundation information derived for the Mekong Delta that has been analyzed for this region so far. We employed overall 60 Envisat ASAR Wide Swath Mode data sets at a spatial resolution of 150 meters acquired during the years 2007–2011 to facilitate a thorough understanding of the flood regime in the Mekong Delta. The Mekong Delta in southern Vietnam comprises 13 provinces and is home to 18 million inhabitants. Extreme dry seasons from late December to May and wet seasons from June to December characterize people’s rural life. In this study, we show which areas of the delta are frequently affected by floods and which regions remain dry all year round. Furthermore, we present which areas are flooded at which frequency and elucidate the patterns of flood progression over the course of the rainy season. In this context, we also examine the impact of dykes on floodwater emergence and assess the relationship between retrieved flood occurrence patterns and land use. In addition, the advantages and shortcomings of ENVISAT ASAR-WSM based flood mapping are discussed. The results contribute to a comprehensive understanding of Mekong Delta flood dynamics in an environment where the flow regime is influenced by the Mekong River, overland water-flow, anthropogenic floodwater control, as well as the tides.

  12. Evaluation of the Benefit of Flood Reduction by Artificial Groundwater Recharge Lake Operation in a Coastal Area

    Science.gov (United States)

    Chen, Ching-Nuo; Tsai, Chih-Heng

    2017-04-01

    Inundation disasters often occur in the southwestern coastal plains of Taiwan. The coastal plains suffers mostly from land-subsidence, surface water is difficult to be drained during the typhoon period, leading to more severe flood disasters. Global climate warming has become more significant, which in turn has resulted in the increase in amplitude and frequency of climate change related disasters. In addition, climate change also induces a rise in sea water level year by year. The rise in sea water level does not only weakens the function of existing drainage system but also increases tidal levels and storm tide levels, which increases the probability and amount of inundation disasters. The serious land subsidence area at Linbian river basin was selected as the study area. An artificial groundwater recharge lake has been set up in Linbian river basin by Pingtung government. The development area of this lake is 58 hectare and the storage volume is 2.1 million cubic meters (210 × 104m3). The surface water from Linbian basin during a wet season is led into the artificial groundwater recharge lake by water diversion project, and then employ special hydro-geological conditions of the area for groundwater recharge, increase groundwater supply and decrease land subsidence rate, and incidentally some of the flood diversion, detention, reduce flooding. In this study, a Real-time Interactive Inundation Model is applied to simulate different flooding storage volume and gate operations to estimate the benefits of flood mitigation. According to the simulation results, the hydrograph shape, peak-flow reduction and time lag to peak of the flood reduction hydrograph into the lake are apparently different for each case of different gate operation at the same storage volume. Therefore, the effect of flood control and disaster mitigation is different. The flood control and disaster mitigation benefits are evaluated by different operation modes, which provide decision makers to

  13. Assessing uncertainty in SRTM elevations for global flood modelling

    Science.gov (United States)

    Hawker, L. P.; Rougier, J.; Neal, J. C.; Bates, P. D.

    2017-12-01

    The SRTM DEM is widely used as the topography input to flood models in data-sparse locations. Understanding spatial error in the SRTM product is crucial in constraining uncertainty about elevations and assessing the impact of these upon flood prediction. Assessment of SRTM error was carried out by Rodriguez et al (2006), but this did not explicitly quantify the spatial structure of vertical errors in the DEM, and nor did it distinguish between errors over different types of landscape. As a result, there is a lack of information about spatial structure of vertical errors of the SRTM in the landscape that matters most to flood models - the floodplain. Therefore, this study attempts this task by comparing SRTM, an error corrected SRTM product (The MERIT DEM of Yamazaki et al., 2017) and near truth LIDAR elevations for 3 deltaic floodplains (Mississippi, Po, Wax Lake) and a large lowland region (the Fens, UK). Using the error covariance function, calculated by comparing SRTM elevations to the near truth LIDAR, perturbations of the 90m SRTM DEM were generated, producing a catalogue of plausible DEMs. This allows modellers to simulate a suite of plausible DEMs at any aggregated block size above native SRTM resolution. Finally, the generated DEM's were input into a hydrodynamic model of the Mekong Delta, built using the LISFLOOD-FP hydrodynamic model, to assess how DEM error affects the hydrodynamics and inundation extent across the domain. The end product of this is an inundation map with the probability of each pixel being flooded based on the catalogue of DEMs. In a world of increasing computer power, but a lack of detailed datasets, this powerful approach can be used throughout natural hazard modelling to understand how errors in the SRTM DEM can impact the hazard assessment.

  14. Risk Mapping Case Study: Industrial Area Of Trinec Town (Czech Republic) potentially endangered by floods and landslides

    Science.gov (United States)

    Dobes, P.; Hrdina, P.; Kotatko, A.; Danihelka, P.; Bednarik, M.; Krejci, O.; Kasperakova, D.

    2009-04-01

    One of present questions in the context of natural and technological risk mapping, which become important in last years, is analysis and assessment of selected types of multirisks. It results from relevant R&D projetcs and also from international workshops and conferences. From various surveys and presented activities it is evident existence a lot of data and methodological approaches for single risk categories but a lack of tested methodological approaches for multirisks. Within framework of workgroup was done literature search of multirisk assessment methodologies and innovations. The idea of this relatively small, local scale case study arose during the 3rd Risk Mapping Workshop, coordinated by EC DG JRC, IPSC in November 2007. The proposal was based on the previous risk analysis and assessment project, which has been done for Frydek-Mistek County area (Czech Republic) in the year 2002. Several industrial facilities in the Trinec are partly situated in the inundation area of river Olše and are partly protected by concrete barriers built on the banks of Olše. It has to be mentioned that these banks are unstable and in the permanent slow movement. If iron-concrete barriers will be overflowed by water as the result of sudden bank landslide or flood wave, it could trigger several industrial accidents on steel and energy production facilities. Area is highly developed from demographic and socioeconomic point of view. Selected area is in high stage of geological, engineering geological and hydrogeological investigation. Most important scenarios of acidents in the area were developed by What-If analysis and Black box analysis (just growth of several different scenarios; qualitative analysis). In the period of few years later, more QRA analyses of industrial risks were proceeded separately, thanks to District Office, public and Seveso II Directive requirements. General scenarios of multi-hazard events was considered. In the case study, three methodologies was applied

  15. Systematic testing of flood adaptation options in urban areas through simulations

    Science.gov (United States)

    Löwe, Roland; Urich, Christian; Sto. Domingo, Nina; Mark, Ole; Deletic, Ana; Arnbjerg-Nielsen, Karsten

    2016-04-01

    While models can quantify flood risk in great detail, the results are subject to a number of deep uncertainties. Climate dependent drivers such as sea level and rainfall intensities, population growth and economic development all have a strong influence on future flood risk, but future developments can only be estimated coarsely. In such a situation, robust decision making frameworks call for the systematic evaluation of mitigation measures against ensembles of potential futures. We have coupled the urban development software DAnCE4Water and the 1D-2D hydraulic simulation package MIKE FLOOD to create a framework that allows for such systematic evaluations, considering mitigation measures under a variety of climate futures and urban development scenarios. A wide spectrum of mitigation measures can be considered in this setup, ranging from structural measures such as modifications of the sewer network over local retention of rainwater and the modification of surface flow paths to policy measures such as restrictions on urban development in flood prone areas or master plans that encourage compact development. The setup was tested in a 300 ha residential catchment in Melbourne, Australia. The results clearly demonstrate the importance of considering a range of potential futures in the planning process. For example, local rainwater retention measures strongly reduce flood risk a scenario with moderate increase of rain intensities and moderate urban growth, but their performance strongly varies, yielding very little improvement in situations with pronounced climate change. The systematic testing of adaptation measures further allows for the identification of so-called adaptation tipping points, i.e. levels for the drivers of flood risk where the desired level of flood risk is exceeded despite the implementation of (a combination of) mitigation measures. Assuming a range of development rates for the drivers of flood risk, such tipping points can be translated into

  16. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, MERCED COUNTY, CALIFORNIA AND INCORPORATED AREAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  17. Flood-resilient waterfront development in New York City: bridging flood insurance, building codes, and flood zoning.

    Science.gov (United States)

    Aerts, Jeroen C J H; Botzen, W J Wouter

    2011-06-01

    Waterfronts are attractive areas for many-often competing-uses in New York City (NYC) and are seen as multifunctional locations for economic, environmental, and social activities on the interface between land and water. The NYC waterfront plays a crucial role as a first line of flood defense and in managing flood risk and protecting the city from future climate change and sea-level rise. The city of New York has embarked on a climate adaptation program (PlaNYC) outlining the policies needed to anticipate the impacts of climate change. As part of this policy, the Department of City Planning has recently prepared Vision 2020: New York City Comprehensive Waterfront Plan for the over 500 miles of NYC waterfront (NYC-DCP, 2011). An integral part of the vision is to improve resilience to climate change and sea-level rise. This study seeks to provide guidance for advancing the goals of NYC Vision 2020 by assessing how flood insurance, flood zoning, and building code policies can contribute to waterfront development that is more resilient to climate change. © 2011 New York Academy of Sciences.

  18. Flood risk index pattern assessment: case study in Langat River Basin

    African Journals Online (AJOL)

    This study focus on the creation of flood risk index in the study area based on secondary data derived from the Department of Drainage and Irrigation (DID) since 1982-2012. Based on the result, it shows that the water level is the best variable to be taken for the purposed of flood warning alert system as the result for ...

  19. Participatory flood vulnerability assessment: a multi-criteria approach

    Science.gov (United States)

    Madruga de Brito, Mariana; Evers, Mariele; Delos Santos Almoradie, Adrian

    2018-01-01

    This paper presents a participatory multi-criteria decision-making (MCDM) approach for flood vulnerability assessment while considering the relationships between vulnerability criteria. The applicability of the proposed framework is demonstrated in the municipalities of Lajeado and Estrela, Brazil. The model was co-constructed by 101 experts from governmental organizations, universities, research institutes, NGOs, and private companies. Participatory methods such as the Delphi survey, focus groups, and workshops were applied. A participatory problem structuration, in which the modellers work closely with end users, was used to establish the structure of the vulnerability index. The preferences of each participant regarding the criteria importance were spatially modelled through the analytical hierarchy process (AHP) and analytical network process (ANP) multi-criteria methods. Experts were also involved at the end of the modelling exercise for validation. The final product is a set of individual and group flood vulnerability maps. Both AHP and ANP proved to be effective for flood vulnerability assessment; however, ANP is preferred as it considers the dependences among criteria. The participatory approach enabled experts to learn from each other and acknowledge different perspectives towards social learning. The findings highlight that to enhance the credibility and deployment of model results, multiple viewpoints should be integrated without forcing consensus.

  20. Swiss Re Global Flood Hazard Zones: Know your flood risk

    Science.gov (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  1. Assessment of urban vulnerability towards floods using an indicator-based approach – a case study for Santiago de Chile

    Directory of Open Access Journals (Sweden)

    A. Müller

    2011-08-01

    Full Text Available Regularly occurring flood events do have a history in Santiago de Chile, the capital city of Chile and study area for this research. The analysis of flood events, the resulting damage and its causes are crucial prerequisites for the development of risk prevention measures. The goal of this research is to empirically investigate the vulnerability towards floods in Santiago de Chile as one component of flood risk. The analysis and assessment of vulnerability is based on the application of a multi-scale (individual, household, municipal level set of indicators and the use of a broad range of data. The case-specific set of indicators developed in this study shows the relevant variables and their interrelations influencing the flood vulnerability in the study area. It provides a decision support tool for stakeholders and allows for monitoring and evaluating changes over time. The paper outlines how GIS, census, and remote sensing data as well as household surveys and expert interviews are used as an information base for the derivation of a vulnerability map for two municipalities located in the eastern part of Santiago de Chile. The generation of vulnerability maps representing the two different perspectives of local decision makers (experts and affected households is exemplified and discussed using the developed methodology.

  2. Flood risk assessment in France: comparison of extreme flood estimation methods (EXTRAFLO project, Task 7)

    Science.gov (United States)

    Garavaglia, F.; Paquet, E.; Lang, M.; Renard, B.; Arnaud, P.; Aubert, Y.; Carre, J.

    2013-12-01

    In flood risk assessment the methods can be divided in two families: deterministic methods and probabilistic methods. In the French hydrologic community the probabilistic methods are historically preferred to the deterministic ones. Presently a French research project named EXTRAFLO (RiskNat Program of the French National Research Agency, https://extraflo.cemagref.fr) deals with the design values for extreme rainfall and floods. The object of this project is to carry out a comparison of the main methods used in France for estimating extreme values of rainfall and floods, to obtain a better grasp of their respective fields of application. In this framework we present the results of Task 7 of EXTRAFLO project. Focusing on French watersheds, we compare the main extreme flood estimation methods used in French background: (i) standard flood frequency analysis (Gumbel and GEV distribution), (ii) regional flood frequency analysis (regional Gumbel and GEV distribution), (iii) local and regional flood frequency analysis improved by historical information (Naulet et al., 2005), (iv) simplify probabilistic method based on rainfall information (i.e. Gradex method (CFGB, 1994), Agregee method (Margoum, 1992) and Speed method (Cayla, 1995)), (v) flood frequency analysis by continuous simulation approach and based on rainfall information (i.e. Schadex method (Paquet et al., 2013, Garavaglia et al., 2010), Shyreg method (Lavabre et al., 2003)) and (vi) multifractal approach. The main result of this comparative study is that probabilistic methods based on additional information (i.e. regional, historical and rainfall information) provide better estimations than the standard flood frequency analysis. Another interesting result is that, the differences between the various extreme flood quantile estimations of compared methods increase with return period, staying relatively moderate up to 100-years return levels. Results and discussions are here illustrated throughout with the example

  3. A Global Geospatial Database of 5000+ Historic Flood Event Extents

    Science.gov (United States)

    Tellman, B.; Sullivan, J.; Doyle, C.; Kettner, A.; Brakenridge, G. R.; Erickson, T.; Slayback, D. A.

    2017-12-01

    A key dataset that is missing for global flood model validation and understanding historic spatial flood vulnerability is a global historical geo-database of flood event extents. Decades of earth observing satellites and cloud computing now make it possible to not only detect floods in near real time, but to run these water detection algorithms back in time to capture the spatial extent of large numbers of specific events. This talk will show results from the largest global historical flood database developed to date. We use the Dartmouth Flood Observatory flood catalogue to map over 5000 floods (from 1985-2017) using MODIS, Landsat, and Sentinel-1 Satellites. All events are available for public download via the Earth Engine Catalogue and via a website that allows the user to query floods by area or date, assess population exposure trends over time, and download flood extents in geospatial format.In this talk, we will highlight major trends in global flood exposure per continent, land use type, and eco-region. We will also make suggestions how to use this dataset in conjunction with other global sets to i) validate global flood models, ii) assess the potential role of climatic change in flood exposure iii) understand how urbanization and other land change processes may influence spatial flood exposure iv) assess how innovative flood interventions (e.g. wetland restoration) influence flood patterns v) control for event magnitude to assess the role of social vulnerability and damage assessment vi) aid in rapid probabilistic risk assessment to enable microinsurance markets. Authors on this paper are already using the database for the later three applications and will show examples of wetland intervention analysis in Argentina, social vulnerability analysis in the USA, and micro insurance in India.

  4. National flood risk mapping of the Danish coastline

    DEFF Research Database (Denmark)

    Jumppanen Andersen, Kaija; Earnshaw, Matthew; Sørensen, Carlo

    2015-01-01

    Ocean flooding related to extreme storm surges poses a large damage potential for society. With future climate changes such as sea level rise and increased storminess, ocean flooding becomes one of the largest challenges for Denmark, due to its many islands and long low-lying coastline....... At The Danish Coastal Authority under the Ministry of the Environment we are carrying out a rapid screening of the areas vulnerable to ocean flooding throughout the whole of Denmark; today, in 2065 and in 2100, respectively, to determine hazard areas and vulnerabilities towards floods. With this information we...... can estimate the future requirement for sea defences along the Danish coastline now and into the future. While carrying out this screening we have to assess the factors influencing the flood level. This includes changes in the topography from glacial isostasy and subsidence along with future mean sea...

  5. Flood Hazard Recurrence Frequencies for A-, K- and L-Areas, and Revised Frequencies for C-, F-, E-, S-, H-, Y- and Z-Areas

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this report is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. Methods were developed to determine the probabilistic flood elevation curves for Savannah River Site (SRS) facilities. This report presents the methods used to determine the probabilistic flood elevation curves for A-, K-, C-, F-, E-, H-, S-, Y-, Z- and L-Areas

  6. Assessing and optimising flood control options along the Arachthos river floodplain (Epirus, Greece)

    Science.gov (United States)

    Drosou, Athina; Dimitriadis, Panayiotis; Lykou, Archontia; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas; Mamassis, Nikos

    2015-04-01

    We present a multi-criteria simulation-optimization framework for the optimal design and setting of flood protection structures along river banks. The methodology is tested in the lower course of the Arachthos River (Epirus, Greece), downstream of the hydroelectric dam of Pournari. The entire study area is very sensitive, particularly because the river crosses the urban area of Arta, which is located just after the dam. Moreover, extended agricultural areas that are crucial for the local economy are prone to floods. In the proposed methodology we investigate two conflicting criteria, i.e. the minimization of flood hazards (due to damages to urban infrastructures, crops, etc.) and the minimization of construction costs of the essential hydraulic structures (e.g. dikes). For the hydraulic simulation we examine two flood routing models, named 1D HEC-RAS and quasi-2D LISFLOOD, whereas the optimization is carried out through the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modeling with the effectiveness and efficiency of the EAS method.

  7. A statistical approach to evaluate flood risk at the regional level: an application to Italy

    Science.gov (United States)

    Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea

    2016-04-01

    Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate

  8. Assessment of Tangible Direct Flood Damage Using a Spatial Analysis Approach under the Effects of Climate Change: Case Study in an Urban Watershed in Hanoi, Vietnam

    Directory of Open Access Journals (Sweden)

    Mohamed Kefi

    2018-01-01

    Full Text Available Due to climate change, the frequency and intensity of Hydro-Meteorological disasters, such as floods, are increasing. Therefore, the main purpose of this work is to assess tangible future flood damage in the urban watershed of the To Lich River in Hanoi, Vietnam. An approach based on spatial analysis, which requires the integration of several types of data related to flood characteristics that include depth, in particular, land-use classes, property values, and damage rates, is applied for the analysis. To simulate the future scenarios of flooding, the effects of climate change and land-use changes are estimated for 2030. Additionally, two scenarios based on the implementation of flood control measures are analyzed to demonstrate the effect of adaptation strategies. The findings show that climate change combined with the expansion of built-up areas increases the vulnerability of urban areas to flooding and economic damage. The results also reveal that the impacts of climate change will increase the total damage from floods by 26%. However, appropriate flood mitigation will be helpful in reducing the impacts of losses from floods by approximately 8% with the restoration of lakes and by approximately 29% with the implementation of water-sensitive urban design (WSUD. This study will be useful in helping to identify and map flood-prone areas at local and regional scales, which can lead to the detection and prioritization of exposed areas for appropriate countermeasures in a timely manner. In addition, the quantification of flood damage can be an important indicator to enhance the awareness of local decision-makers on improving the efficiency of regional flood risk reduction strategies.

  9. Flash-flood potential assessment and mapping by integrating the ...

    Indian Academy of Sciences (India)

    Romulus Costache

    2017-06-16

    Jun 16, 2017 ... torrential phenomena considered for the study (training area) and for the results' testing (validating ... Service (USA). At that ... to improve the quality of flash-flood forecasts. ...... offers the possibility to obtain more credible and.

  10. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments

    Science.gov (United States)

    Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko

    2018-01-01

    This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to

  11. A hydro-meteorological ensemble prediction system for real-time flood forecasting purposes in the Milano area

    Science.gov (United States)

    Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Romero, Romualdo; Homar, Victor; Mancini, Marco

    2015-04-01

    Analysis of forecasting strategies that can provide a tangible basis for flood early warning procedures and mitigation measures over the Western Mediterranean region is one of the fundamental motivations of the European HyMeX programme. Here, we examine a set of hydro-meteorological episodes that affected the Milano urban area for which the complex flood protection system of the city did not completely succeed before the occurred flash-floods. Indeed, flood damages have exponentially increased in the area during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. The flood forecasting system tested in this work comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models, in order to provide a hydrological ensemble prediction system (HEPS). Deterministic and probabilistic quantitative precipitation forecasts (QPFs) have been provided by WRF model in a set of 48-hours experiments. HEPS has been generated by combining different physical parameterizations (i.e. cloud microphysics, moist convection and boundary-layer schemes) of the WRF model in order to better encompass the atmospheric processes leading to high precipitation amounts. We have been able to test the value of a probabilistic versus a deterministic framework when driving Quantitative Discharge Forecasts (QDFs). Results highlight (i) the benefits of using a high-resolution HEPS in conveying uncertainties for this complex orographic area and (ii) a better simulation of the most of extreme precipitation events, potentially enabling valuable probabilistic QDFs. Hence, the HEPS copes with the significant deficiencies found in the deterministic QPFs. These shortcomings would prevent to correctly forecast the location and timing of high precipitation rates and

  12. Morphometric Analysis to Prioritize Sub-Watershed for Flood Risk Assessment in Central Karakoram National Park Using Gis/rs Approach

    Science.gov (United States)

    Syed, N. H.; Rehman, A. A.; Hussain, D.; Ishaq, S.; Khan, A. A.

    2017-11-01

    Morphometric analysis is vital for any watershed investigation and it is inevitable for flood risk assessment in sub-watershed basins. Present study undertaken to carry out critical evaluation and assessment of sub watershed morphological parameters for flood risk assessment of Central Karakorum National Park (CKNP), where Geographical information system and remote sensing (GIS & RS) approach used for quantifying the parameter and mapping of sub watershed units. ASTER DEM used as a geo-spatial data for watershed delineation and stream network. Morphometric analysis carried out using spatial analyst tool of ArcGIS 10.2. The parameters included were bifurcation ratio (Rb), Drainage Texture (Rt), Circulatory ratio (Rc), Elongated ratio (Re), Drainage density (Dd), Stream Length (Lu), Stream order (Su), Slope and Basin length (Lb) have calculated separately. The analysis revealed that the stream order varies from order 1 to 6 and the total numbers of stream segments of all orders were 52. Multi criteria analysis process used to calculate the risk factor. As an accomplished result, map of sub watershed prioritization developed using weighted standardized risk factor. These results helped to understand sensitivity of flush floods in different sub watersheds of the study area and leaded to better management of the mountainous regions in prospect of flush floods.

  13. Predicted high-water elevations for selected flood events at the Albert Pike Recreation Area, Ouachita National Forest

    Science.gov (United States)

    D.A. Marion

    2012-01-01

    The hydraulic characteristics are determined for the June 11, 2010, flood on the Little Missouri River at the Albert Pike Recreation Area in Arkansas. These characteristics are then used to predict the high-water elevations for the 10-, 25-, 50-, and 100-year flood events in the Loop B, C, and D Campgrounds of the recreation area. The peak discharge and related...

  14. A probabilistic approach for assessing the vulnerability of transportation infrastructure to flooding from sea level rise and storm surge.

    Science.gov (United States)

    Douglas, E. M.; Kirshen, P. H.; Bosma, K.; Watson, C.; Miller, S.; McArthur, K.

    2015-12-01

    There now exists a plethora of information attesting to the reality of our changing climate and its impacts on both human and natural systems. There also exists a growing literature linking climate change impacts and transportation infrastructure (highways, bridges, tunnels, railway, shipping ports, etc.) which largely agrees that the nation's transportation systems are vulnerable. To assess this vulnerability along the coast, flooding due to sea level rise and storm surge has most commonly been evaluated by simply increasing the water surface elevation and then estimating flood depth by comparing the new water surface elevation with the topographic elevations of the land surface. While this rudimentary "bathtub" approach may provide a first order identification of potential areas of vulnerability, accurate assessment requires a high resolution, physically-based hydrodynamic model that can simulate inundation due to the combined effects of sea level rise, storm surge, tides and wave action for site-specific locations. Furthermore, neither the "bathtub" approach nor other scenario-based approaches can quantify the probability of flooding due to these impacts. We developed a high resolution coupled ocean circulation-wave model (ADCIRC/SWAN) that utilizes a Monte Carlo approach for predicting the depths and associated exceedance probabilities of flooding due to both tropical (hurricanes) and extra-tropical storms under current and future climate conditions. This required the development of an entirely new database of meteorological forcing (e.g. pressure, wind speed, etc.) for historical Nor'easters in the North Atlantic basin. Flooding due to hurricanes and Nor'easters was simulated separately and then composite flood probability distributions were developed. Model results were used to assess the vulnerability of the Central Artery/Tunnel system in Boston, Massachusetts to coastal flooding now and in the future. Local and regional adaptation strategies were

  15. Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR.

    Science.gov (United States)

    Pierdicca, Nazzareno; Chini, Marco; Pulvirenti, Luca; Macina, Flavia

    2008-07-10

    A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR) measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM). The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later) the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated.

  16. Vulnerability assessment and mitigation for the Chinese railway system under floods

    International Nuclear Information System (INIS)

    Hong, Liu; Ouyang, Min; Peeta, Srinivas; He, Xiaozheng; Yan, Yongze

    2015-01-01

    The economy of China and the travel needs of its citizens depend significantly on the continuous and reliable services provided by its railway system. However, this system is subject to frequent natural hazards, such as floods, earthquakes, and debris flow. A mechanism to assess the railway system vulnerability under these hazards and the design of effective vulnerability mitigation strategies are essential to the reliable functioning of the railway system. This article proposes a comprehensive methodology to quantitatively assess the railway system vulnerability under floods using historical data and GIS technology. The proposed methodology includes a network representation of the railway system, the generation of flood event scenarios, a method to estimate railway link vulnerability, and a quantitative vulnerability value computation approach. The railway system vulnerability is evaluated in terms of its service disruption related to the number of interrupted trains and the durations of interruption. A maintenance strategy to mitigate vulnerability is proposed that simultaneously considers link vulnerability and number of trains using it. Numerical experiments show that the flood-induced vulnerability of the proposed representation of the Chinese railway system reaches its maximum monthly value in July, and the proposed vulnerability mitigation strategy is more effective compared to other strategies. - Highlights: • We propose a methodology to assess flood-induced railway system vulnerability. • Railway system vulnerability is evaluated in terms of its service disruption. • Chinese railway system reaches its maximum monthly vulnerability in July. • We propose an effective maintenance strategy considering link vulnerability and burden

  17. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-01-01

    uncertainty analysis, which can assess and quantify the overall uncertainty in relation to climate change adaptation to urban flash floods. The analysis is based on an uncertainty cascade that by means of Monte Carlo simulations of flood risk assessments incorporates climate change impacts as a key driver......There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation...... to increasing urban flood risk. Assessment of adaptation strategies often requires a comprehensive risk-based economic analysis of current risk, drivers of change of risk over time, and measures to reduce the risk. However, such studies are often associated with large uncertainties. The uncertainties arise from...

  18. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    Science.gov (United States)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  19. IMPACT ASSESSMENT OF STRUCTURAL FLOOD MITIGATION MEASURES

    Directory of Open Access Journals (Sweden)

    ZVIJAKOVA LENKA

    2015-03-01

    Full Text Available The objective of the paper is to propose a methodology for assessing water constructions, which will allow impact assessment of water constructions on the environment and hence select the best option for the permission process. The result is “Guideline for environmental impact assessment of flood protection object”, which uses the method of UMRA (universal matrix of risk analysis, which is one of the methods of risk analysis proposed not only to enhance the transparency and sensitivity of the evaluation process, but also to cope with the requirements of the EIA system in the Slovakia and Europe Union.

  20. Flood risk assessment through 1D/2D couple HEC-RAS hydrodynamic modeling- A case study of Surat City, Lower Tapi Basin, India

    Science.gov (United States)

    Patel, Dhruvesh; Ramirez, Jorge; Srivastava, Prashant; Bray, Michaela; Han, Dawei

    2017-04-01

    Surat, known as the diamond city of Gujart is situated 100 km downstream of Ukai dam and near the mouth of river Tapi and affected by the flood at every alternate year. The city experienced catastrophic floods in 1933, 1959, 1968, 1970, 1994, 1998 and 2006. It is estimated that a single flood event during August 6-12, 2006 in Surat and Hazira twin-city, caused heavy damages, resulted in the death of 300 people and property damage worth € 289 million. The peak discharge of 25768 m3 s-1 release from Ukai dam was responsible for the disastrous flood in Surat city. To identifylow lying areas prone to inundation and reduce the uncertainty in flood mitigation measures, HEC-RAS based 1D/2D Couple hydrodynamic modeling is carried out for Surat city. Release from the Ukai dam and tidal level of the sea are considered for upstream and downstream boundary condition. 299 surveyed cross-sections have been considered for 1D modeling, whereas a topographic map at 0.5 m contour interval was used to produce a 5 m grid and SRTM (30 & 90 m) grid has been considered for Suart and Lower Tapi Basin (LTB). Flow is simulated under unsteady conditions, calibrated for the year 1998 and validated for the year 2006. The simulated result shows that the 9th August 18.00 hr was the worst day for Surat city and maximum 75-77 % area was under inundation. Most of the flooded area experienced 0.25 m/s water velocity with the duration of 90 hr. Due to low velocity and high duration of the flood, a low lying area within the west zone and south-west zone of the city was badly affected by the flood, whereas the south zone and south-east zone was least. Simulated results show good correlation when compared with an observed flood level map. The simulated results will be helpful to improve the flood resilience strategy at Surat city and reduce the uncertainty for flood inundation mapping for future dam releases. The present case study shows the applicability of 1D/2D coupled hydrodynamic modeling for

  1. Flood Hazard Mapping by Applying Fuzzy TOPSIS Method

    Science.gov (United States)

    Han, K. Y.; Lee, J. Y.; Keum, H.; Kim, B. J.; Kim, T. H.

    2017-12-01

    There are lots of technical methods to integrate various factors for flood hazard mapping. The purpose of this study is to suggest the methodology of integrated flood hazard mapping using MCDM(Multi Criteria Decision Making). MCDM problems involve a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria. In this study, to apply MCDM to assessing flood risk, maximum flood depth, maximum velocity, and maximum travel time are considered as criterion, and each applied elements are considered as alternatives. The scheme to find the efficient alternative closest to a ideal value is appropriate way to assess flood risk of a lot of element units(alternatives) based on various flood indices. Therefore, TOPSIS which is most commonly used MCDM scheme is adopted to create flood hazard map. The indices for flood hazard mapping(maximum flood depth, maximum velocity, and maximum travel time) have uncertainty concerning simulation results due to various values according to flood scenario and topographical condition. These kind of ambiguity of indices can cause uncertainty of flood hazard map. To consider ambiguity and uncertainty of criterion, fuzzy logic is introduced which is able to handle ambiguous expression. In this paper, we made Flood Hazard Map according to levee breach overflow using the Fuzzy TOPSIS Technique. We confirmed the areas where the highest grade of hazard was recorded through the drawn-up integrated flood hazard map, and then produced flood hazard map can be compared them with those indicated in the existing flood risk maps. Also, we expect that if we can apply the flood hazard map methodology suggested in this paper even to manufacturing the current flood risk maps, we will be able to make a new flood hazard map to even consider the priorities for hazard areas, including more varied and important information than ever before. Keywords : Flood hazard map; levee break analysis; 2D analysis; MCDM; Fuzzy TOPSIS

  2. Impacts of 21st century sea-level rise on a Danish major city - an assessment based on fine-resolution digital topography and a new flooding algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Moeslund, Jesper Erenskjold; Svenning, Jens-Christian [Ecoinformatics and Biodiversity Group, Department of Biological Sciences, Aarhus University (Denmark); Boecher, Peder Klith [Department of Agroecology and Environment, Aarhus University (Denmark); Moelhave, Thomas; Arge, Lars, E-mail: jesper.moeslund@biology.au.d [MADALGO - Center for Massive Data Algorithmics, Aarhus University (Denmark)

    2009-11-01

    This study examines the potential impact of 21st century sea-level rise on Aarhus, the second largest city in Denmark, emphasizing the economic risk to the city's real estate. Furthermore, it assesses which possible adaptation measures that can be taken to prevent flooding in areas particularly at risk from flooding. We combine a new national Digital Elevation Model in very fine resolution ({approx}2 meter), a new highly computationally efficient flooding algorithm that accurately models the influence of barriers, and geospatial data on real-estate values to assess the economic real-estate risk posed by future sea-level rise to Aarhus. Under the A2 and A1FI (IPCC) climate scenarios we show that relatively large residential areas in the northern part of the city as well as areas around the river running through the city are likely to become flooded in the event of extreme, but realistic weather events. In addition, most of the large Aarhus harbour would also risk flooding. As much of the area at risk represent high-value real estate, it seems clear that proactive measures other than simple abandonment should be taken in order to avoid heavy economic losses. Among the different possibilities for dealing with an increased sea level, the strategic placement of flood-gates at key potential water-inflow routes and the construction or elevation of existing dikes seems to be the most convenient, most socially acceptable, and maybe also the cheapest solution. Finally, we suggest that high-detail flooding models similar to those produced in this study will become an important tool for a climate-change-integrated planning of future city development as well as for the development of evacuation plans.

  3. Impacts of 21st century sea-level rise on a Danish major city - an assessment based on fine-resolution digital topography and a new flooding algorithm

    International Nuclear Information System (INIS)

    Moeslund, Jesper Erenskjold; Svenning, Jens-Christian; Boecher, Peder Klith; Moelhave, Thomas; Arge, Lars

    2009-01-01

    This study examines the potential impact of 21st century sea-level rise on Aarhus, the second largest city in Denmark, emphasizing the economic risk to the city's real estate. Furthermore, it assesses which possible adaptation measures that can be taken to prevent flooding in areas particularly at risk from flooding. We combine a new national Digital Elevation Model in very fine resolution (∼2 meter), a new highly computationally efficient flooding algorithm that accurately models the influence of barriers, and geospatial data on real-estate values to assess the economic real-estate risk posed by future sea-level rise to Aarhus. Under the A2 and A1FI (IPCC) climate scenarios we show that relatively large residential areas in the northern part of the city as well as areas around the river running through the city are likely to become flooded in the event of extreme, but realistic weather events. In addition, most of the large Aarhus harbour would also risk flooding. As much of the area at risk represent high-value real estate, it seems clear that proactive measures other than simple abandonment should be taken in order to avoid heavy economic losses. Among the different possibilities for dealing with an increased sea level, the strategic placement of flood-gates at key potential water-inflow routes and the construction or elevation of existing dikes seems to be the most convenient, most socially acceptable, and maybe also the cheapest solution. Finally, we suggest that high-detail flooding models similar to those produced in this study will become an important tool for a climate-change-integrated planning of future city development as well as for the development of evacuation plans.

  4. Methodological Framework for Analysing Cascading Effects from Flood Events: The Case of Sukhumvit Area, Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Geofrey Hilly

    2018-01-01

    Full Text Available Impacts from floods in urban areas can be diverse and wide ranging. These can include the loss of human life, infrastructure and property damages, as well as other kinds of nuisance and inconvenience to urban life. Hence, the ability to identify and quantify wider ranging effects from floods is of the utmost importance to urban flood managers and infrastructure operators. The present work provides a contribution in this direction and describes a methodological framework for analysing cascading effects from floods that has been applied for the Sukhumvit area in Bangkok (Thailand. It demonstrates that the effects from floods can be much broader in their reach and magnitude than the sole impacts incurred from direct and immediate losses. In Sukhumvit, these include loss of critical services, assets and goods, traffic congestion and delays in transportation, loss of business and income, disturbances and discomfort to the residents, and all these can be traced with the careful analysis of cascading effects. The present work explored the use of different visualization options to present the findings. These include a casual loop diagram, a HAZUR resilience map, a tree diagram and GIS maps.

  5. Assemblage of drosophilids (Diptera, Drosophilidae inhabiting flooded and nonflooded areas in the extreme South of Brazil

    Directory of Open Access Journals (Sweden)

    L.B. Duarte

    Full Text Available ABSTRACT Several studies on the potential use of drosophilid assemblages as bioindicator systems have been carried out in the last years. Nevertheless, the successful application of these organisms in these systems requires adequate filling of several knowledge gaps. In this sense, little is known about drosophilid assemblages in wetlands and flooded areas. The present study provides the first survey of drosophilid species inhabiting such environments in the extreme South of Brazil and compares general beta-diversity patterns between assemblages of flooded versus nonflooded areas. The specimens were collected with banana-baited traps, and the assemblages recovered in eight wetlands of the southernmost coast of Brazil were compared to those recovered from seven nonflooded areas of the Pampa and Atlantic Forest biomes. A total of 5028 and 2571 individuals encompassing 27 and 37 species were collected in the flooded and nonflooded areas, respectively. The differential species composition patterns presented between these areas was statistically supported, which seems to be related to the lower beta-diversity presented by swamps, especially in regard to dominance patterns. So, the open and climatically harsher environment provided by wetlands possibly constitutes a hostile environment for the entry and, mainly, for the persistence of several native Drosophilidae species, in contrast to some exotic and more plastic species (as Drosophila simulans and Zaprionus indianus. Since the diversity gradient of flooded areas does not seem to be related to the conservation status of the swamp, our results question the use of Drosophilidae species as bioindicators of environmental disturbance and antropic influence in wetlands.

  6. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    Science.gov (United States)

    Kochilakis, Giorgos; Poursanidis, Dimitris; Chrysoulakis, Nektarios; Varella, Vassiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas; Papathanasiou, Chrysoula; Karavokyros, George; Aivazoglou, Maria; Makropoulos, Christos; Mimikou, Maria

    2016-01-01

    A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement "what-if" scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of "what-if" scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its robust architecture and its

  7. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    Directory of Open Access Journals (Sweden)

    Kochilakis Giorgos

    2016-01-01

    Full Text Available A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement “what-if” scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of “what-if” scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its

  8. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    Science.gov (United States)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model

  9. How Confident can we be in Flood Risk Assessments?

    Science.gov (United States)

    Merz, B.

    2017-12-01

    Flood risk management should be based on risk analyses quantifying the risk and its reduction for different risk reduction strategies. However, validating risk estimates by comparing model simulations with past observations is hardly possible, since the assessment typically encompasses extreme events and their impacts that have not been observed before. Hence, risk analyses are strongly based on assumptions and expert judgement. This situation opens the door for cognitive biases, such as `illusion of certainty', `overconfidence' or `recency bias'. Such biases operate specifically in complex situations with many factors involved, when uncertainty is high and events are probabilistic, or when close learning feedback loops are missing - aspects that all apply to risk analyses. This contribution discusses how confident we can be in flood risk assessments, and reflects about more rigorous approaches towards their validation.

  10. Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2016-09-01

    Full Text Available This study focused on producing flash flood hazard susceptibility maps (FFHSM using frequency ratio (FR and statistical index (SI models in the Xiqu Gully (XQG of Beijing, China. First, a total of 85 flash flood hazard locations (n = 85 were surveyed in the field and plotted using geographic information system (GIS software. Based on the flash flood hazard locations, a flood hazard inventory map was built. Seventy percent (n = 60 of the flooding hazard locations were randomly selected for building the models. The remaining 30% (n = 25 of the flooded hazard locations were used for validation. Considering that the XQG used to be a coal mining area, coalmine caves and subsidence caused by coal mining exist in this catchment, as well as many ground fissures. Thus, this study took the subsidence risk level into consideration for FFHSM. The ten conditioning parameters were elevation, slope, curvature, land use, geology, soil texture, subsidence risk area, stream power index (SPI, topographic wetness index (TWI, and short-term heavy rain. This study also tested different classification schemes for the values for each conditional parameter and checked their impacts on the results. The accuracy of the FFHSM was validated using area under the curve (AUC analysis. Classification accuracies were 86.61%, 83.35%, and 78.52% using frequency ratio (FR-natural breaks, statistical index (SI-natural breaks and FR-manual classification schemes, respectively. Associated prediction accuracies were 83.69%, 81.22%, and 74.23%, respectively. It was found that FR modeling using a natural breaks classification method was more appropriate for generating FFHSM for the Xiqu Gully.

  11. Quantification of flood risk mitigation benefits: A building-scale damage assessment through the RASOR platform.

    Science.gov (United States)

    Arrighi, Chiara; Rossi, Lauro; Trasforini, Eva; Rudari, Roberto; Ferraris, Luca; Brugioni, Marcello; Franceschini, Serena; Castelli, Fabio

    2018-02-01

    Flood risk mitigation usually requires a significant investment of public resources and cost-effectiveness should be ensured. The assessment of the benefits of hydraulic works requires the quantification of (i) flood risk in absence of measures, (ii) risk in presence of mitigation works, (iii) investments to achieve acceptable residual risk. In this work a building-scale is adopted to estimate direct tangible flood losses to several building classes (e.g. residential, industrial, commercial, etc.) and respective contents, exploiting various sources of public open data in a GIS environment. The impact simulations for assigned flood hazard scenarios are computed through the RASOR platform which allows for an extensive characterization of the properties and their vulnerability through libraries of stage-damage curves. Recovery and replacement costs are estimated based on insurance data, market values and socio-economic proxies. The methodology is applied to the case study of Florence (Italy) where a system of retention basins upstream of the city is under construction to reduce flood risk. Current flood risk in the study area (70 km 2 ) is about 170 Mio euros per year without accounting for people, infrastructures, cultural heritage and vehicles at risk. The monetary investment in the retention basins is paid off in about 5 years. However, the results show that although hydraulic works are cost-effective, a significant residual risk has to be managed and the achievement of the desired level of acceptable risk would require about 1 billion euros of investments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The development of flood map in Malaysia

    Science.gov (United States)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto

    2017-11-01

    In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to

  13. Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR

    Directory of Open Access Journals (Sweden)

    Flavia Macina

    2008-07-01

    Full Text Available A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM. The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated.

  14. Protecting Coastal Areas from Flooding by Injecting Solids into the Subsurface

    Science.gov (United States)

    Germanovich, L. N.; Murdoch, L.

    2008-12-01

    Subsidence and sea level rise conspire to increase the risk of flooding in coastal cities throughout the world, and these processes were key contributors to the devastation of New Orleans by hurricane Katrina. Constructing levees and placing fill to raise ground elevations are currently the main options for reducing flooding risks in coastal areas, and both of these options have drawbacks. We suggest that hydromechanical injection of solid compounds suspended in liquid can be used to lift the ground surface and thereby expand the options for protecting such coastal cities as New Orleans, Venice, and Shanghai from flooding. These techniques are broadly related to hydraulic fracturing and compensation grouting, where solid compounds are injected as slurries and cause upward displacements at the ground surface. The equipment and logistics required for hydromechanical solid injection and ground lifting are readily available from current geotechnical and petroleum operations. Hydraulic fractures are routinely created in the upper tens of meters of sediments, where they are filled with a wide range of different proppants for environmental applications. At shallow depths, many of these fractures are sub-parallel to the ground surface and lift their overburden by a few mm to cm, although lifting is not the objective of these fractures. Much larger, vertical displacements, of the order of several meters, could be created in low-cohesion sediments over areas as large as square kilometers. This would be achieved as a result of multiple injections. Injecting solid particulates provides the benefits of a permanent displacement supported by the solids. We have demonstrated that hydraulic fractures will lift the ground surface at shallow depths in Texas near the Sabine River, where the geological setting is generally similar to that of New Orleans (and where, incidentally, hurricane Rita landed in 2005). In these regions, the soft surficial sediments are underlain by relatively

  15. Geomorphic Assessment of Floods within the Urban Environment of ...

    African Journals Online (AJOL)

    This study examined urban geomorphic conditions that lead to flooding in urban areas of ... the elimination of vegetation cover as well as deficient drainage networks ... Department of Geography & Resource Development, University of Ghana, Legon, .... A number of case studies from different parts of the world dealing.

  16. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    Science.gov (United States)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  17. Damage assessment of bridge infrastructure subjected to flood-related hazards

    Science.gov (United States)

    Michalis, Panagiotis; Cahill, Paul; Bekić, Damir; Kerin, Igor; Pakrashi, Vikram; Lapthorne, John; Morais, João Gonçalo Martins Paulo; McKeogh, Eamon

    2017-04-01

    Transportation assets represent a critical component of society's infrastructure systems. Flood-related hazards are considered one of the main climate change impacts on highway and railway infrastructure, threatening the security and functionality of transportation systems. Of such hazards, flood-induced scour is a primarily cause of bridge collapses worldwide and one of the most complex and challenging water flow and erosion phenomena, leading to structural instability and ultimately catastrophic failures. Evaluation of scour risk under severe flood events is a particularly challenging issue considering that depth of foundations is very difficult to evaluate in water environment. The continual inspection, assessment and maintenance of bridges and other hydraulic structures under extreme flood events requires a multidisciplinary approach, including knowledge and expertise of hydraulics, hydrology, structural engineering, geotechnics and infrastructure management. The large number of bridges under a single management unit also highlights the need for efficient management, information sharing and self-informing systems to provide reliable, cost-effective flood and scour risk management. The "Intelligent Bridge Assessment Maintenance and Management System" (BRIDGE SMS) is an EU/FP7 funded project which aims to couple state-of-the art scientific expertise in multidisciplinary engineering sectors with industrial knowledge in infrastructure management. This involves the application of integrated low-cost structural health monitoring systems to provide real-time information towards the development of an intelligent decision support tool and a web-based platform to assess and efficiently manage bridge assets. This study documents the technological experience and presents results obtained from the application of sensing systems focusing on the damage assessment of water-hazards at bridges over watercourses in Ireland. The applied instrumentation is interfaced with an open

  18. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    DEFF Research Database (Denmark)

    Skovgård Olsen, Anders; Zhou, Qianqian; Linde, Jens Jørgen

    2015-01-01

    Estimating the expected annual damage (EAD) due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change...... adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost...... of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift...

  19. Flood susceptibility assessment in a highly urbanized alluvial fan: the case study of Sala Consilina (southern Italy

    Directory of Open Access Journals (Sweden)

    N. Santangelo

    2011-10-01

    Full Text Available This paper deals with the risk assessment to alluvial fan flooding at the piedmont zone of carbonate massifs of the southern Apennines chain (southern Italy. These areas are prime spots for urban development and are generally considered to be safer than the valley floors. As a result, villages and towns have been built on alluvial fans which, during intense storms, may be affected by flooding and/or debris flow processes.

    The study area is located at the foothills of the Maddalena mountains, an elongated NW-SE trending ridge which bounds to the east the wide intermontane basin of Vallo di Diano. The area comprises a wide detrital talus (bajada made up by coalescent alluvial fans, ranging in age from the Middle Pleistocene to the Holocene. Historical analysis was carried out to ascertain the state of activity of the fans and to identify and map the zones most hit by past flooding. According to the information gathered, the Sala Consilina fans would appear prone to debris flows; in the past these processes have produced extensive damage and loss of life in the urban area. The watershed basins feeding the fans have very low response times and may produce debris flow events with high magnitudes. Taking into account the historical damage, the fan surface morphology, and the present urban development (street orientation and hydraulic network, the piedmont area was zoned and various susceptibility classes were detected. These results may represent a useful tool for studies aiming at territorial hazard mapping and civil protection interventions.

  20. Multi-hazard assessment using GIS in the urban areas: Case study - Banja Luka municipality, B&H

    Directory of Open Access Journals (Sweden)

    Tošić Radislav

    2013-01-01

    Full Text Available The research presents a techniques for natural hazard assessment using GIS and cartographic approaches with multi-hazard mapping in urban communities, because natural hazards are a multi-dimensional phenomena which have a spatial component. Therefore the use of Remote Sensing and GIS has an important function and become essential in urban multi-hazard assessment. The first aim of this research was to determine the geographical distributions of the major types of natural hazards in the study area. Seismic hazards, landslides, rockfalls, floods, torrential floods, and excessive erosion are the most significant natural hazards within the territory of Banja Luka Municipality. Areas vulnerable to some of these natural hazards were singled out using analytical maps. Based on these analyses, an integral map of the natural hazards of the study area was created using multi-hazard assessment and the total vulnerability was determined by overlapping the results. The detailed analysis, through the focused research within the most vulnerable areas in the study area will highlight the administrative units (urban centres and communes that are vulnerable to various types of natural hazard. The results presented in this article are the first multi-hazard assessment and the first version of the integral map of natural hazards in the Republic of Srpska.

  1. Participatory flood vulnerability assessment: a multi-criteria approach

    Directory of Open Access Journals (Sweden)

    M. M. de Brito

    2018-01-01

    Full Text Available This paper presents a participatory multi-criteria decision-making (MCDM approach for flood vulnerability assessment while considering the relationships between vulnerability criteria. The applicability of the proposed framework is demonstrated in the municipalities of Lajeado and Estrela, Brazil. The model was co-constructed by 101 experts from governmental organizations, universities, research institutes, NGOs, and private companies. Participatory methods such as the Delphi survey, focus groups, and workshops were applied. A participatory problem structuration, in which the modellers work closely with end users, was used to establish the structure of the vulnerability index. The preferences of each participant regarding the criteria importance were spatially modelled through the analytical hierarchy process (AHP and analytical network process (ANP multi-criteria methods. Experts were also involved at the end of the modelling exercise for validation. The final product is a set of individual and group flood vulnerability maps. Both AHP and ANP proved to be effective for flood vulnerability assessment; however, ANP is preferred as it considers the dependences among criteria. The participatory approach enabled experts to learn from each other and acknowledge different perspectives towards social learning. The findings highlight that to enhance the credibility and deployment of model results, multiple viewpoints should be integrated without forcing consensus.

  2. Two-dimensional simulation of the June 11, 2010, flood of the Little Missouri River at Albert Pike Recreational Area, Ouachita National Forest, Arkansas

    Science.gov (United States)

    Wagner, Daniel M.

    2013-01-01

    In the early morning hours of June 11, 2010, substantial flooding occurred at Albert Pike Recreation Area in the Ouachita National Forest of west-central Arkansas, killing 20 campers. The U.S. Forest Service needed information concerning the extent and depth of flood inundation, the water velocity, and flow paths throughout Albert Pike Recreation Area for the flood and for streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The two-dimensional flow model Fst2DH, part of the Federal Highway Administration’s Finite Element Surface-water Modeling System, and the graphical user interface Surface-water Modeling System (SMS) were used to perform a steady-state simulation of the flood in a 1.5-mile reach of the Little Missouri River at Albert Pike Recreation Area. Peak streamflows of the Little Missouri River and tributary Brier Creek served as inputs to the simulation, which was calibrated to the surveyed elevations of high-water marks left by the flood and then used to predict flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The simulated extent of the June 11, 2010, flood matched the observed extent of flooding at Albert Pike Recreation Area. The mean depth of inundation in the camp areas was 8.5 feet in Area D, 7.4 feet in Area C, 3.8 feet in Areas A, B, and the Day Use Area, and 12.5 feet in Lowry’s Camp Albert Pike. The mean water velocity was 7.2 feet per second in Area D, 7.6 feet per second in Area C, 7.2 feet per second in Areas A, B, and the Day Use Area, and 7.6 feet per second in Lowry’s Camp Albert Pike. A sensitivity analysis indicated that varying the streamflow of the Little Missouri River had the greatest effect on simulated water-surface elevation, while varying the streamflow of tributary Brier Creek had the least effect. Simulated water-surface elevations were lower than those modeled by the U.S. Forest Service using the standard-step method, but the

  3. The determination of risk areas for muddy floods based on a worst-case erosion modelling

    Science.gov (United States)

    Saathoff, Ulfert; Schindewolf, Marcus; Annika Arévalo, Sarah

    2013-04-01

    Soil erosion and muddy floods are a frequently occurring hazard in the German state of Saxony, because of the topography and the high relief energy together with the high proportion of arable land. Still, the events are rather heterogeneously distributed and we do not know where damage is likely to occur. The goal of this study is to locate hot spots for the risk of muddy floods, with the objective to prevent high economic damage in future. We applied a soil erosion and deposition map of Saxony, calculated with the process based soil erosion model EROSION 3D. This map shows the potential soil erosion and transported sediment for worst case soil conditions and a 10 year rain storm event. Furthermore, a map of the current landuse in the state is used. From the landuse map, we extracted those areas that are especially vulnerable to muddy floods, like residential and industrial areas, infrastructural facilities (e.g. power plants, hospitals) and highways. In combination with the output of the soil erosion model, the amount of sediment, that enters each single landuse entity, is calculated. Based on this data, a state-wide map with classified risks is created. The results are furthermore used to identify the risk of muddy floods for each single municipality in Saxony. The results are evaluated with data of real occurred muddy flood events with documented locations during the period between 2000 and 2010. Additionally, plausibility tests are performed for selected areas (examination of landuse, topography and soil). The results prove to be plausible and most of the documented events can be explained by the modelled risk map. The created map can be used by different institutions like city and traffic planners, to estimate the risk of muddy flood occurrence at specific locations. Furthermore, the risk map can serve insurance companies to evaluate the insurance risk of a building. To make them easily accessible, the risk map will be published online via a web GIS

  4. Flash flood hazard assessment through modelling in small semi-arid watersheds. The example of the Beni Mellal watershed in Morocco

    Science.gov (United States)

    Werren, G.; Balin, D.; Reynard, E.; Lane, S. N.

    2012-04-01

    Flood modelling is essential for flood hazard assessment. Modelling becomes a challenge in small, ungauged watersheds prone to flash floods, like the ones draining the town of Beni Mellal (Morocco). Four temporary streams meet in the urban area of Beni Mellal, producing every year sheet floods, harmful to infrastructure and to people. Here, statistical analysis may not give realistic results, but the study of these repeated real flash flood events may provide a better understanding of watershed specific hydrology. This study integrates a larger cooperation project between Switzerland and Morroco, aimed at knowledge transfer in disaster risk reduction, especially through hazard mapping and land-use planning, related to implementation of hazard maps. Hydrologic and hydraulic modelling was carried out to obtain hazard maps. An important point was to find open source data and methods that could still produce a realistic model for the area concerned, in order to provide easy-to-use, cost-effective tools for risk management in developing countries like Morocco, where routine data collection is largely lacking. The data used for modelling is the Web available TRMM 3-Hour 0.25 degree rainfall data provided by the Tropical Rainfall Measurement Mission Project (TRMM). Hydrologic modelling for discharge estimation was undertaken using methods available in the HEC-HMS software provided by the US Army Corps of Engineers® (USACE). Several transfer models were used, so as to choose the best-suited method available. As no model calibration was possible for no measured flow data was available, a one-at-the-time sensitivity analysis was performed on the parameters chosen, in order to detect their influence on the results. But the most important verification method remained field observation, through post-flood field campaigns aimed at mapping water surfaces and depths in the flooded areas, as well as river section monitoring, where rough discharge estimates could be obtained using

  5. Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe River

    NARCIS (Netherlands)

    de Kok, Jean-Luc; Grossmann, M.

    2010-01-01

    The downstream effects of flood risk mitigation measures and the necessity to develop flood risk management strategies that are effective on a basin scale call for a flood risk assessment methodology that can be applied at the scale of a large river. We present an example of a rapid flood risk

  6. Vehicles instability criteria for flood risk assessment of a street network

    Directory of Open Access Journals (Sweden)

    C. Arrighi

    2016-05-01

    Full Text Available The mutual interaction between floods and human activity is a process, which has been evolving over history and has shaped flood risk pathways. In developed countries, many events have illustrated that the majority of the fatalities during a flood occurs in a vehicle, which is considered as a safe shelter but it may turn into a trap for several combinations of water depth and velocity. Thus, driving a car in floodwaters is recognized as the most crucial aggravating factor for people safety. On the other hand, the entrainment of vehicles may locally cause obstructions to the flow and induce the collapse of infrastructures. Flood risk to vehicles can be defined as the combination of the probability of a vehicle of being swept away (i.e. the hazard and the actual traffic/parking density, i.e. the vulnerability. Hazard for vehicles can be assessed through the spatial identification and mapping of the critical conditions for vehicles incipient motion. This analysis requires a flood map with information on water depth and velocity and consistent instability criteria accounting for flood and vehicles characteristics. Vulnerability is evaluated thanks to the road network and traffic data. Therefore, vehicles flood risk mapping can support people's education and management practices in order to reduce the casualties. In this work, a flood hazard classification for vehicles is introduced and an application to a real case study is presented and discussed.

  7. Vehicles instability criteria for flood risk assessment of a street network

    Science.gov (United States)

    Arrighi, Chiara; Huybrechts, Nicolas; Ouahsine, Abdellatif; Chassé, Patrick; Oumeraci, Hocine; Castelli, Fabio

    2016-05-01

    The mutual interaction between floods and human activity is a process, which has been evolving over history and has shaped flood risk pathways. In developed countries, many events have illustrated that the majority of the fatalities during a flood occurs in a vehicle, which is considered as a safe shelter but it may turn into a trap for several combinations of water depth and velocity. Thus, driving a car in floodwaters is recognized as the most crucial aggravating factor for people safety. On the other hand, the entrainment of vehicles may locally cause obstructions to the flow and induce the collapse of infrastructures. Flood risk to vehicles can be defined as the combination of the probability of a vehicle of being swept away (i.e. the hazard) and the actual traffic/parking density, i.e. the vulnerability. Hazard for vehicles can be assessed through the spatial identification and mapping of the critical conditions for vehicles incipient motion. This analysis requires a flood map with information on water depth and velocity and consistent instability criteria accounting for flood and vehicles characteristics. Vulnerability is evaluated thanks to the road network and traffic data. Therefore, vehicles flood risk mapping can support people's education and management practices in order to reduce the casualties. In this work, a flood hazard classification for vehicles is introduced and an application to a real case study is presented and discussed.

  8. Hydrological change: Towards a consistent approach to assess changes on both floods and droughts

    Science.gov (United States)

    Quesada-Montano, Beatriz; Di Baldassarre, Giuliano; Rangecroft, Sally; Van Loon, Anne F.

    2018-01-01

    Several studies have found that the frequency, magnitude and spatio-temporal distribution of droughts and floods have significantly increased in many regions of the world. Yet, most of the methods used in detecting trends in hydrological extremes 1) focus on either floods or droughts, and/or 2) base their assessment on characteristics that, even though useful for trend identification, cannot be directly used in decision making, e.g. integrated water resources management and disaster risk reduction. In this paper, we first discuss the need for a consistent approach to assess changes on both floods and droughts, and then propose a method based on the theory of runs and threshold levels. Flood and drought changes were assessed in terms of frequency, length and surplus/deficit volumes. This paper also presents an example application using streamflow data from two hydrometric stations along the Po River basin (Italy), Piacenza and Pontelagoscuro, and then discuss opportunities and challenges of the proposed method.

  9. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    Directory of Open Access Journals (Sweden)

    Anders Skovgård Olsen

    2015-01-01

    Full Text Available Estimating the expected annual damage (EAD due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift in the damage costs as a function of the return period. The shift occurs approximately at the 10 year return period and can perhaps be related to the design criteria for sewer systems. Further, it was tested if the EAD estimation could be simplified by assuming a single unit cost per flooded area. The results indicate that within each catchment this may be a feasible approach. However the unit costs varies substantially between different case study areas. Hence it is not feasible to develop unit costs that can be used to calculate EAD, most likely because the urban landscape is too heterogeneous.

  10. Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models.

    Science.gov (United States)

    Álvarez-Gómez, J. A.; Aniel-Quiroga, Í.; Gutiérrez-Gutiérrez, O. Q.; Larreynaga, J.; González, M.; Castro, M.; Gavidia, F.; Aguirre-Ayerbe, I.; González-Riancho, P.; Carreño, E.

    2013-11-01

    El Salvador is the smallest and most densely populated country in Central America; its coast has an approximate length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there were 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and resulting in hundreds of victims. Hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached through both probabilistic and deterministic methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold: on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high-resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps, and from the elevation in the near shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific Basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences-finite volumes numerical model in this work, based on the linear and non-linear shallow water equations, to simulate a total of 24 earthquake-generated tsunami scenarios. Our results show that at the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results

  11. 78 FR 75370 - Draft Supplemental Environmental Assessment and Finding of No Significant Impact for Flood...

    Science.gov (United States)

    2013-12-11

    ... Environmental Assessment and Finding of No Significant Impact for Flood Control Improvements to the Rio Grande... Supplemental Environmental Assessment (SEA) and Finding of No Significant Impact (FONSI). SUMMARY: Pursuant to... Significant Impact for Flood Control Improvements to the Rio Grande Canalization Project in Vado, New Mexico...

  12. Forecast-based Integrated Flood Detection System for Emergency Response and Disaster Risk Reduction (Flood-FINDER)

    Science.gov (United States)

    Arcorace, Mauro; Silvestro, Francesco; Rudari, Roberto; Boni, Giorgio; Dell'Oro, Luca; Bjorgo, Einar

    2016-04-01

    Most flood prone areas in the globe are mainly located in developing countries where making communities more flood resilient is a priority. Despite different flood forecasting initiatives are now available from academia and research centers, what is often missing is the connection between the timely hazard detection and the community response to warnings. In order to bridge the gap between science and decision makers, UN agencies play a key role on the dissemination of information in the field and on capacity-building to local governments. In this context, having a reliable global early warning system in the UN would concretely improve existing in house capacities for Humanitarian Response and the Disaster Risk Reduction. For those reasons, UNITAR-UNOSAT has developed together with USGS and CIMA Foundation a Global Flood EWS called "Flood-FINDER". The Flood-FINDER system is a modelling chain which includes meteorological, hydrological and hydraulic models that are accurately linked to enable the production of warnings and forecast inundation scenarios up to three weeks in advance. The system is forced with global satellite derived precipitation products and Numerical Weather Prediction outputs. The modelling chain is based on the "Continuum" hydrological model and risk assessments produced for GAR2015. In combination with existing hydraulically reconditioned SRTM data and 1D hydraulic models, flood scenarios are derived at multiple scales and resolutions. Climate and flood data are shared through a Web GIS integrated platform. First validation of the modelling chain has been conducted through a flood hindcasting test case, over the Chao Phraya river basin in Thailand, using multi temporal satellite-based analysis derived for the exceptional flood event of 2011. In terms of humanitarian relief operations, the EO-based services of flood mapping in rush mode generally suffer from delays caused by the time required for their activation, programming, acquisitions and

  13. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    Science.gov (United States)

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  14. Research on Multi Hydrological Models Applicability and Modelling Data Uncertainty Analysis for Flash Flood Simulation in Hilly Area

    Science.gov (United States)

    Ye, L.; Wu, J.; Wang, L.; Song, T.; Ji, R.

    2017-12-01

    Flooding in small-scale watershed in hilly area is characterized by short time periods and rapid rise and recession due to the complex underlying surfaces, various climate type and strong effect of human activities. It is almost impossible for a single hydrological model to describe the variation of flooding in both time and space accurately for all the catchments in hilly area because the hydrological characteristics can vary significantly among different catchments. In this study, we compare the performance of 5 hydrological models with varying degrees of complexity for simulation of flash flood for 14 small-scale watershed in China in order to find the relationship between the applicability of the hydrological models and the catchments characteristics. Meanwhile, given the fact that the hydrological data is sparse in hilly area, the effect of precipitation data, DEM resolution and their interference on the uncertainty of flood simulation is also illustrated. In general, the results showed that the distributed hydrological model (HEC-HMS in this study) performed better than the lumped hydrological models. Xinajiang and API models had good simulation for the humid catchments when long-term and continuous rainfall data is provided. Dahuofang model can simulate the flood peak well while the runoff generation module is relatively poor. In addition, the effect of diverse modelling data on the simulations is not simply superposed, and there is a complex interaction effect among different modelling data. Overall, both the catchment hydrological characteristics and modelling data situation should be taken into consideration in order to choose the suitable hydrological model for flood simulation for small-scale catchment in hilly area.

  15. Composite Flood Risk for Virgin Island

    Science.gov (United States)

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  16. Economic Assessment of Flood Control Facilities under Climate Uncertainty: A Case of Nakdong River, South Korea

    Directory of Open Access Journals (Sweden)

    Kyeongseok Kim

    2018-01-01

    Full Text Available Climate change contributes to enhanced flood damage that has been increasing for the last several decades. Understanding climate uncertainties improves adaptation strategies used for investment in flood control facilities. This paper proposes an investment decision framework for one flood zone to cope with future severe climate impacts. This framework can help policy-makers investigate the cost of future damage and conduct an economic assessment using real options under future climate change scenarios. The proposed methodology provides local municipalities with an adaptation strategy for flood control facilities in a flood zone. Using the proposed framework, the flood prevention facilities in the Nakdong River Basin of South Korea was selected as a case study site to analyze the economic assessment of the investments for flood control facilities. Using representative concentration pathway (RCP climate scenarios, the cost of future flood damage to 23 local municipalities was calculated, and investment strategies for adaptation were analyzed. The project option value was determined by executing an option to invest in an expansion that would adapt to floods under climate change. The results of the case study showed that the proposed flood facilities are economically feasible under both scenarios used. The framework is anticipated to present guidance for establishing investment strategies for flood control facilities of a flood zone in multiple municipalities’ settings.

  17. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Mikkelsen, Peter Steen; Halsnæs, Kirsten

    2012-01-01

    Climate change is likely to affect the water cycle by influencing the precipitation patterns. It is important to integrate the anticipated changes into the design of urban drainage in response to the increased risk level in cities. This paper presents a pluvial flood risk assessment framework...... to identify and assess adaptation options in the urban context. An integrated approach is adopted by incorporating climate change impact assessment, flood inundation modeling, economic tool, and risk assessment, hereby developing a step-by-step process for cost-benefit assessment of climate change adaptation...

  18. Flash floods along the Italian coastal areas: examples from Pozzuoli city, Campania, Italy

    Science.gov (United States)

    Esposito, Giuseppe; Grimaldi, Giuseppe; Matano, Fabio; Mazzola, Salvatore; Sacchi, Marco

    2014-05-01

    The Italian western coastal areas are the most exposed in the country to low-pressure systems coming from the central-western Mediterranean Sea and Atlantic Ocean. In the last years, many Italian coastal villages were struck by floods and flow processes triggered by high-intensity and short-duration rainfall, typical of flash flood events. In the Campania region (SW Italy) a series of events has caused several fatalities and heavy damages in the last decades, i.e. the flash floods of Casamicciola - Ischia Island (10/11/2009 - 1 fatality) and Atrani (9/9/2010 - 1 fatality). In this work we describe the rainfall properties and the ground effects of the 2009, 2010 and 2011 flash floods which involved the city of Pozzuoli, along the Campi Flegrei coast, where a catastrophic flood event (13 fatalities) is reported in 1918 in the AVI Project database. Rainfall data were measured at a sampling rate of 10 minutes by a regional Civil Protection rain gauge located in the city of Pozzuoli near the areas struck by the flash flood effects. In order to analyze the extreme features of the rainstorms and compare them, we have considered the 1-hour maximum rainfall amount and the 10-min peak storm intensity value for each event. The first rainstorm occurred on 14 September 2009; it was characterized by a 1-hour maximum rainfall amount of 34.4 mm and a 10-min peak storm intensity of 57.6 mm/h. The second rainstorm occurred on 30 July 2010; it was characterized by a 1-hour maximum rainfall amount of 40.6 mm and a 10-min peak storm intensity of 126 mm/h. The third rainstorm occurred on 06 November 2011; it was characterized by a 1-hour maximum rainfall amount of 44.2 mm and a 10-min peak storm intensity of 67.2 mm/h. The three described rainstorms all triggered erosional processes and shallow landslides in the upper part of the Pozzuoli drainage basin that supplied sheet flows and hyperconcentrated flows downstream, with severe damage to the human structures built near or inside the

  19. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal

    Directory of Open Access Journals (Sweden)

    Paulo Fernandez

    2016-07-01

    Full Text Available Over the last decade, flood disasters have affected millions of people and caused massive economic losses. Social vulnerability assessment uses a combination of several factors to represent a population's differential access to resources and its ability to cope with and respond to hazards. In this paper, social vulnerability assessment to flood risk was applied to the third most populous Portuguese municipality. The study was developed at the neighbourhood level, allowing for social vulnerability analysis at inter civil parish, intra civil parish, and municipality scales. A geographic information system-based multicriteria decision analysis (GIS-MCDA was applied to social vulnerability and allows for an increased understanding and improved monitoring of social vulnerability over space, identifying ‘hot spots’ that require adaptation policies. Mafamude, Oliveira do Douro, Vila Nova de Gaia, and Avintes civil parishes display the greatest vulnerability to flooding. According to the most pessimistic scenario 57%–68% of the area of these civil parishes is classed at a high or very high level of social vulnerability. The GIS-MCDA helps to assess what and who is at risk, and where targeted impact-reduction strategies should be implemented. The results demonstrate the importance of an urban-scale approach instead of a river basin scale to urban flood risk management plans.

  20. Potentialities of ensemble strategies for flood forecasting over the Milano urban area

    Science.gov (United States)

    Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Homar, Víctor; Romero, Romu; Lombardi, Gabriele; Mancini, Marco

    2016-08-01

    Analysis of ensemble forecasting strategies, which can provide a tangible backing for flood early warning procedures and mitigation measures over the Mediterranean region, is one of the fundamental motivations of the international HyMeX programme. Here, we examine two severe hydrometeorological episodes that affected the Milano urban area and for which the complex flood protection system of the city did not completely succeed. Indeed, flood damage have exponentially increased during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. First, we examine how land-use changes due to urban development have altered the hydrological response to intense rainfalls. Second, we test a flood forecasting system which comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models. Accurate forecasts of deep moist convection and extreme precipitation are difficult to be predicted due to uncertainties arising from the numeric weather prediction (NWP) physical parameterizations and high sensitivity to misrepresentation of the atmospheric state; however, two hydrological ensemble prediction systems (HEPS) have been designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. No substantial differences in skill have been found between both ensemble strategies when considering an enhanced diversity of IC/LBCs for the perturbed initial conditions ensemble. Furthermore, no additional benefits have been found by considering more frequent LBCs in a mixed physics ensemble, as ensemble spread seems to be reduced. These findings could help to design the most appropriate ensemble strategies before these hydrometeorological extremes, given the computational

  1. Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai.

    Science.gov (United States)

    Wang, Jun; Yi, Si; Li, Mengya; Wang, Lei; Song, Chengcheng

    2018-04-15

    We compared the effects of three key environmental factors of coastal flooding: sea level rise (SLR), land subsidence (LS) and bathymetric change (BC) in the coastal areas of Shanghai. We use the hydrological simulation model MIKE 21 to simulate flood magnitudes under multiple scenarios created from combinations of the key environmental factors projected to year 2030 and 2050. Historical typhoons (TC9711, TC8114, TC0012, TC0205 and TC1109), which caused extremely high surges and considerable losses, were selected as reference tracks to generate potential typhoon events that would make landfalls in Shanghai (SHLD), in the north of Zhejiang (ZNLD) and moving northwards in the offshore area of Shanghai (MNS) under those scenarios. The model results provided assessment of impact of single and compound effects of the three factors (SLR, LS and BC) on coastal flooding in Shanghai for the next few decades. Model simulation showed that by the year 2030, the magnitude of storm flooding will increase due to the environmental changes defined by SLR, LS, and BC. Particularly, the compound scenario of the three factors will generate coastal floods that are 3.1, 2.7, and 1.9 times greater than the single factor change scenarios by, respectively, SLR, LS, and BC. Even more drastically, in 2050, the compound impact of the three factors would be 8.5, 7.5, and 23.4 times of the single factors. It indicates that the impact of environmental changes is not simple addition of the effects from individual factors, but rather multiple times greater of that when the projection time is longer. We also found for short-term scenarios, the bathymetry change is the most important factor for the changes in coastal flooding; and for long-term scenarios, sea level rise and land subsidence are the major factors that coastal flood prevention and management should address. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Urban flash flood vulnerability : spatial assessment and adaptation : a case study in Istanbul, Turkey

    NARCIS (Netherlands)

    Reyes-Acevedo, Martin Alejandro; Flacke, J.; Brussel, M.J.G.

    2011-01-01

    The Ayamama River basin in Istanbul is a densely populated urban area that is frequently impacted by flash floods causing damage to people and infrastructure. The IPCC expects that under climate change conditions, more intense precipitation will occur, leading to a higher risk of flash floods.

  3. Coastal flooding impact evaluation using an INtegrated DisRuption Assessment (INDRA) model for Varna region, Western Black Sea

    Science.gov (United States)

    Andreeva, Nataliya; Eftimova, Petya; Valchev, Nikolay; Prodanov, Bogdan

    2017-04-01

    The study presents evaluation and comparative analysis of storm induced flooding impacts on different coastal receptors at a scale of Varna region using INtegrated DisRuption Assessment (INDRA) model. The model was developed within the FP7 RISC-KIT project, as a part of Coastal Risk Assessment Framework (CRAF) consisting of two phases. CRAF Phase 1 is a screening process that evaluates coastal risk at a regional scale by means of coastal indices approach, which helps to identify potentially vulnerable coastal sectors: hot spots (HS). CRAF Phase 2 has the objective to assess and rank identified hotspots by detailed risk analysis done by jointly performing a hazard assessment and an impact evaluation on different categories (population, businesses, ecosystems, transport and utilities) using INDRA model at a regional level. Basically, the model assess the shock of events by estimating the impact on directly exposed to flooding hazard receptors of different vulnerability, as well as the potential ripple effects during an event in order to assess the "indirect" impacts, which occur outside the hazard area and/or continue after the event for all considered categories. The potential impacts are expressed in terms of uniform "Impact Indicators", which independently score the indirect impacts of these categories assessing disruption and recovery of the receptors. The ultimate hotspot ranking is obtained through the use of a Multi Criteria analysis (MCA) incorporated in the model, considering preferences of stakeholders. The case study area - Varna regional coast - is located on the western Black Sea, Bulgaria. The coastline, with a length of about 70 km, stretches from cape Ekrene to cape St. Atanas and includes Varna Bay. After application of CRAF Phase 1 three hotspots were selected for further analysis: Kabakum beach (HS1), Varna Central beach plus Port wall (HS2) and Artificial Island (HS3). For first two hotspots beaches and associated infrastructure are the assets

  4. Flood protection structure detection with Lidar: examples on French Mediterranean rivers and coastal areas

    Directory of Open Access Journals (Sweden)

    Trmal Céline

    2016-01-01

    Full Text Available This paper aims at presenting different topographic analysis conducted with GIS software in order to detect flood protection structures, natural or artificial, in river floodplains but also in coastal zones. Those computations are relevant because of the availability of high-resolution lidar digital terrain model (DTM. An automatic detection permits to map the footprint of those structures. Then detailed mapping of structure crest is achieved by implementing a least cost path analysis on DTM but also on other terrain aspects such as the curvature. On coastal zones, the analysis is going further by identifying flood protected areas and the level of protection regarding sea level. This article is illustrated by examples on French Mediterranean rivers and coastal areas.

  5. The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study from River Evros

    Science.gov (United States)

    Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias

    2017-02-01

    Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.

  6. Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data

    Science.gov (United States)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2013-04-01

    Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and meteorological disasters such as floods are the main contributors to this pattern. In recent years flood management has shifted from protection against floods to managing the risks of floods (the European Flood risk directive). In order to enable operational flood monitoring and assessment of flood risk, it is required to provide an infrastructure with standardized interfaces and services. Grid and Sensor Web can meet these requirements. In this paper we present a general approach to flood monitoring and risk assessment based on heterogeneous geospatial data acquired from multiple sources. To enable operational flood risk assessment integration of Grid and Sensor Web approaches is proposed [1]. Grid represents a distributed environment that integrates heterogeneous computing and storage resources administrated by multiple organizations. SensorWeb is an emerging paradigm for integrating heterogeneous satellite and in situ sensors and data systems into a common informational infrastructure that produces products on demand. The basic Sensor Web functionality includes sensor discovery, triggering events by observed or predicted conditions, remote data access and processing capabilities to generate and deliver data products. Sensor Web is governed by the set of standards, called Sensor Web Enablement (SWE), developed by the Open Geospatial Consortium (OGC). Different practical issues regarding integration of Sensor Web with Grids are discussed in the study. We show how the Sensor Web can benefit from using Grids and vice versa. For example, Sensor Web services such as SOS, SPS and SAS can benefit from the integration with the Grid platform like Globus Toolkit. The proposed approach is implemented within the Sensor Web framework for flood monitoring and risk assessment, and a case-study of exploiting this framework, namely the Namibia SensorWeb Pilot Project, is

  7. Ensuring safety of people in case of severe floods: feasibility and relevance of vertical evacuation strategies in high population density areas

    Directory of Open Access Journals (Sweden)

    Pannier Rodolphe

    2016-01-01

    Full Text Available When a major flooding event is expected the authorities in charge of the crisis management often consider bringing people to safety by making them leaving temporarily the threatened area before the onset of the flood. This strategy is called “horizontal evacuation”. It has to be distinguished from “vertical evacuation”, which means that people reach a shelter above the wtaer level within the flood area. Vertical evacuation is often the spontaneousbehaviourof people who are surprised by the flood and are trying to reach a tree, a floor upstairs, a roof of a building etc. in order to get away from the rising water. But vertical evacuation could also be consideredas an alternative strategy to horizontal evacuation when moving outside the flood area is neither a faisible nor a relevant option, for example in high-population density areas. In order to be a credible alternative to horizontal evacuation, vertical evacuation has to be carefully planned. This paper aims to explain why horizontal evacuation is not always a suitable option in case of major flood and to explore under what conditions vertical evacuation can be a relevantalternative solution to horizontal evacuation. It also adresses some general recommendations about how to prepare a vertical evacuation strategy..

  8. SLR-induced changes on storm flooding in coastal areas: the role of accommodation space

    Science.gov (United States)

    Jiménez, Jose A.; Dockx, Stijn; Monbaliu, Jaak

    2015-04-01

    Most of existing predictions of climate-induce changes in coastal storminess in the Mediterranean indicate the absence of any significant increasing trend in neither wave height nor surge. However, this does not mean that magnitude and/or frequency of storm-induced coastal hazards will not be affected by climate change. Thus, sea level rise will induce a series of long-term changes in coastal areas that although not directly affecting storminess will interact with storm-induced processes and, thus, changing coastal storm risks. A typical approach to account SLR-induced effects on coastal inundation by storms is to modify present water level extreme climate by adding expected MWL increase. This implies to consider the coast as a static and passive system to SLR maintaining its configuration from actual to projected (rised) sea level and, as a result of this, the frequency of flood events should increase and, the magnitude of flooding associated to a probability of occurrence will also increase. This will only be realistic for really passive or rigid coasts. However, sandy coastlines will response to SLR and, thus, this approach should undervalue coastal resilience. Within this context, the main aim of this work is to propose a method to assess the effects of SLR on the magnitude of storm-induced coastal flooding on sandy coastlines taking into account their capacity of response. It combines the use of a inundation model (LISFLOOD-FP) for delineating the flood-prone area for given storm conditions and, a coastal module to account for SLR-induced changes in the coastal fringe. The method assumes an equilibrium-type coastal response to SLR which, ideally, implies that the beach profile will be reconstructed under the new higher water level, in such a way that the relative beach configuration will be the same. However, this should only be possible provided there is enough accommodation space in the hinterland. In most of developed coasts, the existence of human built

  9. Analysing the Effects of Flood-Resilience Technologies in Urban Areas Using a Synthetic Model Approach

    Directory of Open Access Journals (Sweden)

    Reinhard Schinke

    2016-11-01

    Full Text Available Flood protection systems with their spatial effects play an important role in managing and reducing flood risks. The planning and decision process as well as the technical implementation are well organized and often exercised. However, building-related flood-resilience technologies (FReT are often neglected due to the absence of suitable approaches to analyse and to integrate such measures in large-scale flood damage mitigation concepts. Against this backdrop, a synthetic model-approach was extended by few complementary methodical steps in order to calculate flood damage to buildings considering the effects of building-related FReT and to analyse the area-related reduction of flood risks by geo-information systems (GIS with high spatial resolution. It includes a civil engineering based investigation of characteristic properties with its building construction including a selection and combination of appropriate FReT as a basis for derivation of synthetic depth-damage functions. Depending on the real exposition and the implementation level of FReT, the functions can be used and allocated in spatial damage and risk analyses. The application of the extended approach is shown at a case study in Valencia (Spain. In this way, the overall research findings improve the integration of FReT in flood risk management. They provide also some useful information for advising of individuals at risk supporting the selection and implementation of FReT.

  10. Assessing the impact of uncertainty on flood risk estimates with reliability analysis using 1-D and 2-D hydraulic models

    Directory of Open Access Journals (Sweden)

    L. Altarejos-García

    2012-07-01

    Full Text Available This paper addresses the use of reliability techniques such as Rosenblueth's Point-Estimate Method (PEM as a practical alternative to more precise Monte Carlo approaches to get estimates of the mean and variance of uncertain flood parameters water depth and velocity. These parameters define the flood severity, which is a concept used for decision-making in the context of flood risk assessment. The method proposed is particularly useful when the degree of complexity of the hydraulic models makes Monte Carlo inapplicable in terms of computing time, but when a measure of the variability of these parameters is still needed. The capacity of PEM, which is a special case of numerical quadrature based on orthogonal polynomials, to evaluate the first two moments of performance functions such as the water depth and velocity is demonstrated in the case of a single river reach using a 1-D HEC-RAS model. It is shown that in some cases, using a simple variable transformation, statistical distributions of both water depth and velocity approximate the lognormal. As this distribution is fully defined by its mean and variance, PEM can be used to define the full probability distribution function of these flood parameters and so allowing for probability estimations of flood severity. Then, an application of the method to the same river reach using a 2-D Shallow Water Equations (SWE model is performed. Flood maps of mean and standard deviation of water depth and velocity are obtained, and uncertainty in the extension of flooded areas with different severity levels is assessed. It is recognized, though, that whenever application of Monte Carlo method is practically feasible, it is a preferred approach.

  11. Palaeoflood hydrology in Europe: towards a better understanding of extreme floods

    Science.gov (United States)

    Benito, G.; Thorndycraft, V. R.; Rico, M.; Sheffer, N.; Enzel, Y.

    2003-04-01

    Floods are the most common natural disasters in Europe and, in terms of economic damage, costs are increasing spectacularly with time. Flood risk assessment associated with extreme floods is difficult due to the scarcity of hydrological measurements, that rarely go beyond 1000 years, which is clearly not sufficient for flood management in urban and industrial areas. Besides the use of conventional hydrologic data, the pre-instrumental record can be completed from palaeoflood hydrology or from documentary flood information, or through the combined use of both these tools. Recent developments of palaeoflood hydrology in Europe provide (1) major improvements in flood risk assessment, and (2) a better understanding of long-term flood-climate relationships. Palaeoflood hydrology has been successfully applied in large, medium rivers as well as small ungauged mountain drainage basins. Long-term palaeoflood records from Spain and France show that recent extraordinary flooding (causing huge economic damages) are not the largest ones, but that similar or even greater floods occurred several times in the past. In addition, clusters of floods coinciding in time at several European rivers point out to climatic factors as responsible mechanisms, although in recent time flood magnitude can be magnified by increasing human activity.

  12. Geographic Information and Remotely Sensed Data For The Assessment and Monitoring of The Flood Hazard In Romania

    Science.gov (United States)

    Predescu, C.; Stancalie, G.; Savin, E.

    Floodings represent an important risk in many areas around the globe and especially in Romania. In the latest years floodings occurred quite frequently in Romania, some of which isolated, others were affecting wide areas of the countrySs territory. The paper assumes a modern approach for the flooding risk indices, associated to the physic- geographical, morpho-hydrographical and vulnerability characteristics of a region, in view to establish a methodology which should further allow to determine the flooding risk, using representatives indices at a scale compatible with a synthetic representa- tion of the territory. There are stressed the facilities supplied by the Geographic Infor- mation System (GIS) and the remotely sensed data to manage flooding during their characteristic phases: before, during and after flooding. Accent is laid on the pre and post-crisis phases. An important research topic was the study of the parameters that can be extracted from satellite images in view of organising a hierarchy of the geo- graphical space versus the flooding risk. Information obtained from satellite images proved to be useful for the determination of certain parameters necessary to monitor flooding: hydrographic network, water accumulation, size of floodable surface, land impermeability degree, water absorption capacity over the basin surface, resilience to in-soil water infiltration. The study encompassed both the risk degree levels related with various parameters, which condition and determine floodings, and the one, which takes into consideration the human presence in the sensitive areas. It was planned to design and build a database, which will help to elaborate the flooding hydrological risk indices. The application was developed for the Arges hydrographic basin in Romania, a critical area, keeping in mind that it withholds many localities, including the capital and also important economic centres. The database allows obtaining synthetic repre- sentations of the

  13. Analysis of area events as part of probabilistic safety assessment for Romanian TRIGA SSR 14 MW reactor

    International Nuclear Information System (INIS)

    Mladin, D.; Stefan, I.

    2005-01-01

    The international experience has shown that the external events could be an important contributor to plant/ reactor risk. For this reason such events have to be included in the PSA studies. In the context of PSA for nuclear facilities, external events are defined as events originating from outside the plant, but with the potential to create an initiating event at the plant. To support plant safety assessment, PSA can be used to find methods for identification of vulnerable features of the plant and to suggest modifications in order to mitigate the impact of external events or the producing of initiating events. For that purpose, probabilistic assessment of area events concerning fire and flooding risk and impact is necessary. Due to the relatively large power level amongst research reactors, the approach to safety analysis of Romanian 14 MW TRIGA benefits from an ongoing PSA project. In this context, treatment of external events should be considered. The specific tasks proposed for the complete evaluation of area event analysis are: identify the rooms important for facility safety, determine a relative area event risk index for these rooms and a relative area event impact index if the event occurs, evaluate the rooms specific area event frequency, determine the rooms contribution to reactor hazard state frequencies, analyze power supply and room dependencies of safety components (as pumps, motor operated valves). The fire risk analysis methodology is based on Berry's method [1]. This approach provides a systematic procedure to carry out a relative index of different rooms. The factors, which affect the fire probability, are: personal presence in the room, number and type of ignition sources, type and area of combustibles, fuel available in the room, fuel location, and ventilation. The flooding risk analysis is based on the amount of piping in the room. For accuracy of the information regarding piping a facility walk-about is necessary. In case of flooding risk

  14. Characterization of peak streamflows and flood inundation at selected areas in North Carolina following Hurricane Matthew, October 2016

    Science.gov (United States)

    Musser, Jonathan W.; Watson, Kara M.; Gotvald, Anthony J.

    2017-05-05

    The passage of Hurricane Matthew through central and eastern North Carolina during October 7–9, 2016, brought heavy rainfall, which resulted in major flooding. More than 15 inches of rain was recorded in some areas. More than 600 roads were closed, including Interstates 95 and 40, and nearly 99,000 structures were affected by floodwaters. Immediately following the flooding, the U.S. Geological Survey documented 267 high-water marks, of which 254 were surveyed. North Carolina Emergency Management documented and surveyed 353 high-water marks. Using a subset of these highwater marks, six flood-inundation maps were created for hard-hit communities. Digital datasets of the inundation areas, study reach boundary, and water-depth rasters are available for download. In addition, peak gage-height data, peak streamflow data, and annual exceedance probabilities (in percent) were determined for 24 U.S. Geological Survey streamgages located near the heavily flooded communities.

  15. Rapid Global River Flood Risk Assessment under Climate and Socioeconomic Scenarios: An Extreme Case of Eurasian region

    Science.gov (United States)

    Kwak, Young-joo; Magome, Jun; Hasegawa, Akira; Iwami, Yoichi

    2017-04-01

    Causing widespread devastation with massive economic damage and loss of human lives, flood disasters hamper economic growth and accelerate poverty particularly in developing countries. Globally, this trend will likely continue due to increase in flood magnitude and lack of preparedness for extreme events. In line with risk reduction efforts since the early 21st century, the monitors and governors of global river floods should pay attention to international scientific and policy communities for support to facilitate evidence-based policy making with a special interest in long-term changes due to climate change and socio-economic effects. Although advanced hydrological inundation models and risk models have been developed to reveal flood risk, hazard, exposure, and vulnerability at a river basin, it is obviously hard to identify the distribution and locations of continent-level flood risk based on national-level data. Therefore, we propose a methodological possibility for rapid global flood risk assessment with the results from its application to the two periods, i.e., Present (from 1980 to 2004) and Future (from 2075 to 2099). The method is particularly designed to effectively simplify complexities of a hazard area by calculating the differential inundation depth using GFID2M (global flood inundation depth 2-dimension model), despite low data availability. In this research, we addressed the question of which parts in the Eurasian region (8E to 180E, 0N to 60N) can be found as high-risk areas in terms of exposed population and economy in case of a 50-year return period flood. Economic losses were estimated according to the Shared Socioeconomic Pathways (SSP) scenario, and the flood scale was defined using the annual maximum daily river discharge under the extreme conditions of climate change simulated with MRI-AGCM3.2S based on the Representative Concentration Pathways (RCP8.5) emissions scenario. As a preliminary result, the total potential economic loss in the

  16. Flood Risk Assessment on Selected Critical Infrastructure in Kota Marudu Town, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Ayog Janice Lynn

    2017-01-01

    Full Text Available This study investigates the risk of flood on selected critical infrastructure in a flood-prone catchment in Sabah, Malaysia. Kota Marudu, located in the Bandau floodplain, one of the Sabah’s northern water catchments, was selected as the study site due to its frequent flood occurrence and large floodplain coverage. Two of its largest rivers, namely Sungai Bongon and Sungai Bandau, tends to flood during rainy season and cause temporary displacements of thousands of people living in the floodplain. A total of 362 respondents participated in the questionnaire survey in order to gather information on historical flood occurrence. Three flood depth groups were determined, which are 1 less than 0.3 meter, 2 0.3 – 0.6 meter and 3 more than 0.6 meter, while three categories of critical infrastructure were defined, namely transportation system, communication system and buildings. It is found that the transportation system encounters the most severe impact as flood inundation increases, where 92% of the respondents believe that the transportation access should be abandoned when flood depth is more than 0.6m. The findings of this study will be used for detailed risk assessment, specifically on the vulnerability of the critical infrastructures to flood in this floodplain.

  17. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    Löwe, Roland; Urich, Christian; Sto Domingo, Nina

    Flood risk in cities is strongly affected by the development of the city itself. Many studies focus on changes in the flood hazard as a result of, for example, changed degrees of sealing in the catchment or climatic changes. However, urban developments in flood prone areas can affect the exposure...... to the hazard and thus have large impacts on flood risk. Different urban socio-economic development scenarios, rainfall inputs and options for the mitigation of flood risk, quickly lead to a large number of scenarios that need to be considered in the planning of the development of a city. This calls...... for automated analyses that allow the planner to quickly identify if, when and how infrastructure should be modified. Such analysis, which accounts for the two-way interactions between city development and flood risk, is possible only to a limited extent in existing tools. We have developed a software framework...

  18. Applying the Flood Vulnerability Index as a Knowledge base for flood risk assessment

    NARCIS (Netherlands)

    Balica, S-F.

    2012-01-01

    Floods are one of the most common and widely distributed natural risks to life and property worldwide. An important part of modern flood risk management is to evaluate vulnerability to floods. This evaluation can be done only by using a parametric approach. Worldwide there is a need to enhance our

  19. Assessment of the health impacts of the 2011 summer floods in Brisbane.

    Science.gov (United States)

    Alderman, Katarzyna; Turner, Lyle R; Tong, Shilu

    2013-08-01

    To assess the effects of the 2011 floods in Brisbane, Australia, on residents' physical and mental health. Residents who had been affected by the floods completed a community-based survey that examined the direct impact of flooding on households and their perceived physical and mental health. Outcome variables included overall and respiratory health and mental health outcomes related to psychological distress, sleep quality, and posttraumatic stress disorder (PTSD). Multivariable logistic regression was used to examine the association between flooding and perceived health outcome variables, adjusted for current health status and sociodemographic factors. Residents whose households were directly affected by flooding were more likely to report poor overall (Odds Ratio [OR] 5.3; 95% CI, 2.8-10.1) and respiratory (OR 2.3; 95% CI, 1.1-4.6) health, psychological distress (OR 1.9; 95% CI, 1.1-3.5), poor sleep quality (OR 2.3; 95% CI, 1.2-4.4), and probable PTSD (OR 2.3; 95% CI, 1.2-4.5). The 2011 Brisbane floods had significant impact on the physical and psychosocial health of residents. Improved support strategies may need to be integrated into existing disaster management programs to reduce flood-related health impacts, particularly those related to mental health.

  20. Optimal investment and location decisions of a firm in a flood risk area using Impulse Control Theory

    Science.gov (United States)

    Grames, Johanna; Grass, Dieter; Kort, Peter; Prskawetz, Alexia

    2017-04-01

    Flooding events can affect businesses close to rivers, lakes or coasts. This paper provides a partial equilibrium model which helps to understand the optimal location choice for a firm in flood risk areas and its investment strategies. How often, when and how much are firms willing to invest in flood risk protection measures? We apply Impulse Control Theory to solve the model analytically and develop a continuation algorithm to solve the model numerically. Firms always invest in flood defense. The investment increases the higher the flood risk and the more firms also value the future, i.e. the more sustainable they plan. Investments in production capital follow a similar path. Hence, planning in a sustainable way leads to economic growth. Sociohydrological feedbacks are crucial for the location choice of the firm, whereas different economic situations have an impact on investment strategies. If flood defense is already present, e.g. built up by the government, firms move closer to the water and invest less in flood defense, which allows firms to accrue higher expected profits. Firms with a large initial production capital surprisingly try not to keep their market advantage, but rather reduce flood risk by reducing exposed production capital.

  1. Urban micro-scale flood risk estimation with parsimonious hydraulic modelling and census data

    Directory of Open Access Journals (Sweden)

    C. Arrighi

    2013-05-01

    Full Text Available The adoption of 2007/60/EC Directive requires European countries to implement flood hazard and flood risk maps by the end of 2013. Flood risk is the product of flood hazard, vulnerability and exposure, all three to be estimated with comparable level of accuracy. The route to flood risk assessment is consequently much more than hydraulic modelling of inundation, that is hazard mapping. While hazard maps have already been implemented in many countries, quantitative damage and risk maps are still at a preliminary level. A parsimonious quasi-2-D hydraulic model is here adopted, having many advantages in terms of easy set-up. It is here evaluated as being accurate in flood depth estimation in urban areas with a high-resolution and up-to-date Digital Surface Model (DSM. The accuracy, estimated by comparison with marble-plate records of a historic flood in the city of Florence, is characterized in the downtown's most flooded area by a bias of a very few centimetres and a determination coefficient of 0.73. The average risk is found to be about 14 € m−2 yr−1, corresponding to about 8.3% of residents' income. The spatial distribution of estimated risk highlights a complex interaction between the flood pattern and the building characteristics. As a final example application, the estimated risk values have been used to compare different retrofitting measures. Proceeding through the risk estimation steps, a new micro-scale potential damage assessment method is proposed. This is based on the georeferenced census system as the optimal compromise between spatial detail and open availability of socio-economic data. The results of flood risk assessment at the census section scale resolve most of the risk spatial variability, and they can be easily aggregated to whatever upper scale is needed given that they are geographically defined as contiguous polygons. Damage is calculated through stage–damage curves, starting from census data on building type and

  2. New challenges on uncertainty propagation assessment of flood risk analysis

    Science.gov (United States)

    Martins, Luciano; Aroca-Jiménez, Estefanía; Bodoque, José M.; Díez-Herrero, Andrés

    2016-04-01

    Natural hazards, such as floods, cause considerable damage to the human life, material and functional assets every year and around the World. Risk assessment procedures has associated a set of uncertainties, mainly of two types: natural, derived from stochastic character inherent in the flood process dynamics; and epistemic, that are associated with lack of knowledge or the bad procedures employed in the study of these processes. There are abundant scientific and technical literature on uncertainties estimation in each step of flood risk analysis (e.g. rainfall estimates, hydraulic modelling variables); but very few experience on the propagation of the uncertainties along the flood risk assessment. Therefore, epistemic uncertainties are the main goal of this work, in particular,understand the extension of the propagation of uncertainties throughout the process, starting with inundability studies until risk analysis, and how far does vary a proper analysis of the risk of flooding. These methodologies, such as Polynomial Chaos Theory (PCT), Method of Moments or Monte Carlo, are used to evaluate different sources of error, such as data records (precipitation gauges, flow gauges...), hydrologic and hydraulic modelling (inundation estimation), socio-demographic data (damage estimation) to evaluate the uncertainties propagation (UP) considered in design flood risk estimation both, in numerical and cartographic expression. In order to consider the total uncertainty and understand what factors are contributed most to the final uncertainty, we used the method of Polynomial Chaos Theory (PCT). It represents an interesting way to handle to inclusion of uncertainty in the modelling and simulation process. PCT allows for the development of a probabilistic model of the system in a deterministic setting. This is done by using random variables and polynomials to handle the effects of uncertainty. Method application results have a better robustness than traditional analysis

  3. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  4. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.

    2015-01-01

    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  5. A Multimethod Approach towards Assessing Urban Flood Patterns and Its Associated Vulnerabilities in Singapore

    Directory of Open Access Journals (Sweden)

    Winston T. L. Chow

    2016-01-01

    Full Text Available We investigated flooding patterns in the urbanised city-state of Singapore through a multimethod approach combining station precipitation data with archival newspaper and governmental records; changes in flash floods frequencies or reported impacts of floods towards Singapore society were documented. We subsequently discussed potential flooding impacts in the context of urban vulnerability, based on future urbanisation and forecasted precipitation projections for Singapore. We find that, despite effective flood management, (i significant increases in reported flash flood frequency occurred in contemporary (post-2000 relative to preceding (1984–1999 periods, (ii these flash floods coincide with more localised, “patchy” storm events, (iii storms in recent years are also more intense and frequent, and (iv floods result in low human casualties but have high economic costs via insurance damage claims. We assess that Singapore presently has low vulnerability to floods vis-à-vis other regional cities largely due to holistic flood management via consistent and successful infrastructural development, widespread flood monitoring, and effective advisory platforms. We conclude, however, that future vulnerabilities may increase from stresses arising from physical exposure to climate change and from demographic sensitivity via rapid population growth. Anticipating these changes is potentially useful in maintaining the high resilience of Singapore towards this hydrometeorological hazard.

  6. Multi-model ensembles for assessment of flood losses and associated uncertainty

    Science.gov (United States)

    Figueiredo, Rui; Schröter, Kai; Weiss-Motz, Alexander; Martina, Mario L. V.; Kreibich, Heidi

    2018-05-01

    Flood loss modelling is a crucial part of risk assessments. However, it is subject to large uncertainty that is often neglected. Most models available in the literature are deterministic, providing only single point estimates of flood loss, and large disparities tend to exist among them. Adopting any one such model in a risk assessment context is likely to lead to inaccurate loss estimates and sub-optimal decision-making. In this paper, we propose the use of multi-model ensembles to address these issues. This approach, which has been applied successfully in other scientific fields, is based on the combination of different model outputs with the aim of improving the skill and usefulness of predictions. We first propose a model rating framework to support ensemble construction, based on a probability tree of model properties, which establishes relative degrees of belief between candidate models. Using 20 flood loss models in two test cases, we then construct numerous multi-model ensembles, based both on the rating framework and on a stochastic method, differing in terms of participating members, ensemble size and model weights. We evaluate the performance of ensemble means, as well as their probabilistic skill and reliability. Our results demonstrate that well-designed multi-model ensembles represent a pragmatic approach to consistently obtain more accurate flood loss estimates and reliable probability distributions of model uncertainty.

  7. Collaborative multi-stakeholder approach to drafting flood risk management plans in Wallonia, Belgium

    Science.gov (United States)

    Maroy, Edith; Javaux, Mathieu; Vandermosten, Pierre; Englebert, Benjamin

    2015-04-01

    The Flood Directive 2007/60/CE establishes a common framework within the European Union for assessing and reducing risks posed by floods on human health, the environment, economic activity and cultural heritage. For that purpose, Member States had to establish flood areas and flood risk maps, and subsequently, flood risk management plans (due December 2015). According to the Directive, special attention is to be paid to international coordination for transboundary water courses, integrated management approaches at the catchment scale, cost-effectiveness of measures and public involvement. Management measures must focus on reducing the probability of flooding and the potential consequences of flooding. They must cover prevention, protection and preparedness and must take into account relevant aspects, such as water management, soil management, spatial planning, land use and nature conservation. Floods in Wallonia mostly originate from overflowing of both little sloped rivers and highly reactive rivers but also, from concentrated runoff in the intensely cultivated and erosion-prone region north of the Sambre-Meuse axis. Consequently, walloon flood area maps not only show flood areas based on hydraulic modelling and observations but also runoff concentration axis in agricultural areas. Now released to the public, this information can be used to assess the risk of damage for land planning and erosion control strategies. Incidentally, some 166 km2 were mapped as flood hazard area with a return period of 25 years, 28.8 of which are urbanized or destined to urbanisation and counting of number of approximatively 39.000 people living in those areas. Flood area and flood risk maps should be the starting point of elaborating flood risk management plans. In order to involve the diversity of water managers and stakeholders in the drafting of a management plan for hydrographic districts in Wallonia, responsible authorities decided to mandate scientists and engineers to organize

  8. A global flash flood forecasting system

    Science.gov (United States)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  9. Development of a Probabilistic Flood Hazard Assessment (PFHA) for the nuclear safety

    Science.gov (United States)

    Ben Daoued, Amine; Guimier, Laurent; Hamdi, Yasser; Duluc, Claire-Marie; Rebour, Vincent

    2016-04-01

    The purpose of this study is to lay the basis for a probabilistic evaluation of flood hazard (PFHA). Probabilistic assessment of external floods has become a current topic of interest to the nuclear scientific community. Probabilistic approaches complement deterministic approaches by exploring a set of scenarios and associating a probability to each of them. These approaches aim to identify all possible failure scenarios, combining their probability, in order to cover all possible sources of risk. They are based on the distributions of initiators and/or the variables caracterizing these initiators. The PFHA can characterize the water level for example at defined point of interest in the nuclear site. This probabilistic flood hazard characterization takes into account all the phenomena that can contribute to the flooding of the site. The main steps of the PFHA are: i) identification of flooding phenomena (rains, sea water level, etc.) and screening of relevant phenomena to the nuclear site, ii) identification and probabilization of parameters associated to selected flooding phenomena, iii) spreading of the probabilized parameters from the source to the point of interest in the site, v) obtaining hazard curves and aggregation of flooding phenomena contributions at the point of interest taking into account the uncertainties. Within this framework, the methodology of the PFHA has been developed for several flooding phenomena (rain and/or sea water level, etc.) and then implemented and tested with a simplified case study. In the same logic, our study is still in progress to take into account other flooding phenomena and to carry out more case studies.

  10. A national framework for flood forecasting model assessment for use in operations and investment planning over England and Wales

    Science.gov (United States)

    Moore, Robert J.; Wells, Steven C.; Cole, Steven J.

    2016-04-01

    It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area

  11. Developing a national programme of flood risk management measures: Moldova

    Directory of Open Access Journals (Sweden)

    Ramsbottom David

    2016-01-01

    Full Text Available A Technical Assistance project funded by the European Investment Bank has been undertaken to develop a programme of flood risk management measures for Moldova that will address the main shortcomings in the present flood management system, and provide the basis for long-term improvement. Areas of significant flood risk were identified using national hydraulic and flood risk modelling, and flood hazard and flood risk maps were then prepared for these high risk areas. The flood risk was calculated using 12 indicators representing social, economic and environmental impacts of flooding. Indicator values were combined to provide overall estimates of flood risk. Strategic approaches to flood risk management were identified for each river basin using a multi-criteria analysis. Measures were then identified to achieve the strategic approaches. A programme of measures covering a 20-year period was developed together with a more detailed Short-Term Investment Plan covering the first seven years of the programme. Arrangements are now being made to implement the programme. The technical achievements of the project included national hydrological and hydraulic modelling covering 12,000 km of river, the development of 2-dimensional channel and floodplain hydraulic models from a range of topographic and bathymetric data, and an integrated flood risk assessment that takes account of both economic and non-monetary impacts.

  12. An experimental system for flood risk forecasting at global scale

    Science.gov (United States)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  13. Uncertainty and Sensitivity of Direct Economic Flood Damages: the FloodRisk Free and Open-Source Software

    Science.gov (United States)

    Albano, R.; Sole, A.; Mancusi, L.; Cantisani, A.; Perrone, A.

    2017-12-01

    The considerable increase of flood damages in the the past decades has shifted in Europe the attention from protection against floods to managing flood risks. In this context, the expected damages assessment represents a crucial information within the overall flood risk management process. The present paper proposes an open source software, called FloodRisk, that is able to operatively support stakeholders in the decision making processes with a what-if approach by carrying out the rapid assessment of the flood consequences, in terms of direct economic damage and loss of human lives. The evaluation of the damage scenarios, trough the use of the GIS software proposed here, is essential for cost-benefit or multi-criteria analysis of risk mitigation alternatives. However, considering that quantitative assessment of flood damages scenarios is characterized by intrinsic uncertainty, a scheme has been developed to identify and quantify the role of the input parameters in the total uncertainty of flood loss model application in urban areas with mild terrain and complex topography. By the concept of parallel models, the contribution of different module and input parameters to the total uncertainty is quantified. The results of the present case study have exhibited a high epistemic uncertainty on the damage estimation module and, in particular, on the type and form of the utilized damage functions, which have been adapted and transferred from different geographic and socio-economic contexts because there aren't depth-damage functions that are specifically developed for Italy. Considering that uncertainty and sensitivity depend considerably on local characteristics, the epistemic uncertainty associated with the risk estimate is reduced by introducing additional information into the risk analysis. In the light of the obtained results, it is evident the need to produce and disseminate (open) data to develop micro-scale vulnerability curves. Moreover, the urgent need to push

  14. Flood hazard assessment using 1D and 2D approaches

    Science.gov (United States)

    Petaccia, Gabriella; Costabile, Pierfranco; Macchione, Francesco; Natale, Luigi

    2013-04-01

    The EU flood risk Directive (Directive 2007/60/EC) prescribes risk assessment and mapping to develop flood risk management plans. Flood hazard mapping may be carried out with mathematical models able to determine flood-prone areas once realistic conditions (in terms of discharge or water levels) are imposed at the boundaries of the case study. The deterministic models are mainly based on shallow water equations expressed in their 1D or 2D formulation. The 1D approach is widely used, especially in technical studies, due to its relative simplicity, its computational efficiency and also because it requires topographical data not as expensive as the ones needed by 2D models. Even if in a great number of practical situations, such as modeling in-channel flows and not too wide floodplains, the 1D approach may provide results close to the prediction of a more sophisticated 2D model, it must be pointed out that the correct use of a 1D model in practical situations is more complex than it may seem. The main issues to be correctly modeled in a 1D approach are the definition of hydraulic structures such as bridges and buildings interacting with the flow and the treatment of the tributaries. Clearly all these aspects have to be taken into account also in the 2D modeling, but with fewer difficulties. The purpose of this paper is to show how the above cited issues can be described using a 1D or 2D unsteady flow modeling. In particular the Authors will show the devices that have to be implemented in 1D modeling to get reliable predictions of water levels and discharges comparable to the ones obtained using a 2D model. Attention will be focused on an actual river (Crati river) located in the South of Italy. This case study is quite complicated since it deals with the simulation of channeled flows, overbank flows, interactions with buildings, bridges and tributaries. Accurate techniques, intentionally developed by the Authors to take into account all these peculiarities in 1D and 2

  15. Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.

    Science.gov (United States)

    Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E

    2017-09-11

    Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

  16. Assessment of Remote Sensing Products and Hydrologic Simulation of the 2016 Louisiana Flood in the Amite River Basin

    Science.gov (United States)

    Gao, S.; Bilskie, M. V.; Hagen, S. C.; Braud, D.

    2017-12-01

    Riverine and coastal flooding are one of the most common environmental hazards that affect millions of people around the world. For example, in August 2016, a slow-moving upper level low-pressure system with a high amount of atmospheric moisture brought heavy rains from August 11 to August 13. The torrential downpours led to widespread flash flooding and river flooding across multiple parishes in Southeast Louisiana and Southwest Mississippi (NWS, 2016; Watson et al., 2017). Precipitation totals as high as 26 inches were recorded during the two-day event. A Louisiana Economic Development report documented that the state of Louisiana suffered more than eight billion dollars in damage from the catastrophic flooding (LED, 2016). According to the National Weather Service (NWS) in New Orleans, the rainfall caused the Amite River, Comite River, Tangipahoa River and Tickfaw River to rise to record-setting levels. Some of the most serious flooding occurred along the Amite River, which runs between Baton Rouge and the nearby city of Denham Springs, and has its headwaters in southwestern Mississippi and drains into Lake Maurepas (Mossa et al., 1997). To develop an understanding of the driving mechanisms that caused the catastrophic flooding a campaign was initiated to collect and rigorously examine all possible remote sensing products in order to derive the flooding extent and depth within the Amite River basin. In addition, a Soil and Water Assessment Tool (SWAT) has been developed for the Amite River watershed to simulate runoff from the 2016 Louisiana flood event. The developed and assimilated remote sensing and modeling products will enhance understanding of the hydrological processes within the Amite River basin. This will provide further insight into conceptualization of flood risk across river deltas that are vulnerable to both riverine and coastal flooding. Reference:LED. (2016). The economic impact of the august 2016 floods on the state of Louisiana. Mossa, J., & Mc

  17. Holistic flood risk assessment using agent-based modelling: the case of Sint Maarten Island

    Science.gov (United States)

    Abayneh Abebe, Yared; Vojinovic, Zoran; Nikolic, Igor; Hammond, Michael; Sanchez, Arlex; Pelling, Mark

    2015-04-01

    Floods in coastal regions are regarded as one of the most dangerous and harmful disasters. Though commonly referred to as natural disasters, coastal floods are also attributable to various social, economic, historical and political issues. Rapid urbanisation in coastal areas combined with climate change and poor governance can lead to a significant increase in the risk of pluvial flooding coinciding with fluvial and coastal flooding posing a greater risk of devastation in coastal communities. Disasters that can be triggered by hydro-meteorological events are interconnected and interrelated with both human activities and natural processes. They, therefore, require holistic approaches to help understand their complexity in order to design and develop adaptive risk management approaches that minimise social and economic losses and environmental impacts, and increase resilience to such events. Being located in the North Atlantic Ocean, Sint Maarten is frequently subjected to hurricanes. In addition, the stormwater catchments and streams on Sint Maarten have several unique characteristics that contribute to the severity of flood-related impacts. Urban environments are usually situated in low-lying areas, with little consideration for stormwater drainage, and as such are subject to flash flooding. Hence, Sint Maarten authorities drafted policies to minimise the risk of flood-related disasters on the island. In this study, an agent-based model is designed and applied to understand the implications of introduced policies and regulations, and to understand how different actors' behaviours influence the formation, propagation and accumulation of flood risk. The agent-based model built for this study is based on the MAIA meta-model, which helps to decompose, structure and conceptualize socio-technical systems with an agent-oriented perspective, and is developed using the NetLogo simulation environment. The agents described in this model are households and businesses, and

  18. Spatial Analytic Hierarchy Process Model for Flood Forecasting: An Integrated Approach

    International Nuclear Information System (INIS)

    Matori, Abd Nasir; Yusof, Khamaruzaman Wan; Hashim, Mustafa Ahmad; Lawal, Dano Umar; Balogun, Abdul-Lateef

    2014-01-01

    Various flood influencing factors such as rainfall, geology, slope gradient, land use, soil type, drainage density, temperature etc. are generally considered for flood hazard assessment. However, lack of appropriate handling/integration of data from different sources is a challenge that can make any spatial forecasting difficult and inaccurate. Availability of accurate flood maps and thorough understanding of the subsurface conditions can adequately enhance flood disasters management. This study presents an approach that attempts to provide a solution to this drawback by combining Geographic Information System (GIS)-based Analytic Hierarchy Process (AHP) model as spatial forecasting tools. In achieving the set objectives, spatial forecasting of flood susceptible zones in the study area was made. A total number of five set of criteria/factors believed to be influencing flood generation in the study area were selected. Priority weights were assigned to each criterion/factor based on Saaty's nine point scale of preference and weights were further normalized through the AHP. The model was integrated into a GIS system in order to produce a flood forecasting map

  19. Flood Impacts on People: from Hazard to Risk Maps

    Science.gov (United States)

    Arrighi, C.; Castelli, F.

    2017-12-01

    The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.

  20. Emergency preparedness hazards assessment for selected 100 Area Bechtel Hanford, Inc. facilities

    International Nuclear Information System (INIS)

    1997-07-01

    The emergency preparedness hazards assessment for Bechtel Hanford Inc. (BHI) facilities in the 100 Areas of the Hanford Site. The purpose of a hazards assessment is to identify the hazardous material at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. The hazards assessment is the technical basis for the facility emergency plans and procedures. There are many other buildings and past- practice burial grounds, trenches, cribs, etc., in the 100 Areas that may contain hazardous materials. Undisturbed buried waste sites that are not near the Columbia River are outside the scope of emergency preparedness hazards assessments because there is no mechanism for acute release to the air or ground water. The sites near the Columbia River are considered in a separate flood hazards assessment. This hazards assessment includes only the near-term soil remediation projects that involve intrusive activities

  1. Flood frequency analysis and generation of flood hazard indicator maps in a semi-arid environment, case of Ourika watershed (western High Atlas, Morocco)

    Science.gov (United States)

    El Alaoui El Fels, Abdelhafid; Alaa, Noureddine; Bachnou, Ali; Rachidi, Said

    2018-05-01

    The development of the statistical models and flood risk modeling approaches have seen remarkable improvements in their productivities. Their application in arid and semi-arid regions, particularly in developing countries, can be extremely useful for better assessment and planning of flood risk in order to reduce the catastrophic impacts of this phenomenon. This study focuses on the Setti Fadma region (Ourika basin, Morocco) which is potentially threatened by floods and is subject to climatic and anthropogenic forcing. The study is based on two main axes: (i) the extreme flow frequency analysis, using 12 probability laws adjusted by Maximum Likelihood method and (ii) the generation of the flood risk indicator maps are based on the solution proposed by the Nays2DFlood solver of the Hydrodynamic model of two-dimensional Saint-Venant equations. The study is used as a spatial high-resolution digital model (Lidar) in order to get the nearest hydrological simulation of the reality. The results showed that the GEV is the most appropriate law of the extreme flows estimation for different return periods. Taking into consideration the mapping of 100-year flood area, the study revealed that the fluvial overflows extent towards the banks of Ourika and consequently, affects some living areas, cultivated fields and the roads that connects the valley to the city of Marrakech. The aim of this study is to propose new technics of the flood risk management allowing a better planning of the flooded areas.

  2. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment

    Science.gov (United States)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira

    2015-04-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  3. Accessibility assessment of Houston's roadway network during Harvey through integration of observed flood impacts and hydrologic modeling

    Science.gov (United States)

    Gidaris, I.; Gori, A.; Panakkal, P.; Padgett, J.; Bedient, P. B.

    2017-12-01

    The record-breaking rainfall produced over the Houston region by Hurricane Harvey resulted in catastrophic and unprecedented impacts on the region's infrastructure. Notably, Houston's transportation network was crippled, with almost every major highway flooded during the five-day event. Entire neighborhoods and subdivisions were inundated, rendering them completely inaccessible to rescue crews and emergency services. Harvey has tragically highlighted the vulnerability of major thoroughfares, as well as neighborhood roads, to severe inundation during extreme precipitation events. Furthermore, it has emphasized the need for detailed accessibility characterization of road networks under extreme event scenarios in order to determine which areas of the city are most vulnerable. This analysis assesses and tracks the accessibility of Houston's major highways during Harvey's evolution by utilizing road flood/closure data from the Texas DOT. In the absence of flooded/closure data for local roads, a hybrid approach is adopted that utilizes a physics-based hydrologic model to produce high-resolution inundation estimates for selected urban watersheds in the Houston area. In particular, hydrologic output in the form of inundation depths is used to estimate the operability of local roads. Ultimately, integration of hydrologic-based estimation of road conditions with observed data from DOT supports a network accessibility analysis of selected urban neighborhoods. This accessibility analysis can identify operable routes for emergency response (rescue crews, medical services, etc.) during the storm event.

  4. Effect of catchment properties and flood generation regime on copula selection for bivariate flood frequency analysis

    Science.gov (United States)

    Filipova, Valeriya; Lawrence, Deborah; Klempe, Harald

    2018-02-01

    Applying copula-based bivariate flood frequency analysis is advantageous because the results provide information on both the flood peak and volume. More data are, however, required for such an analysis, and it is often the case that only data series with a limited record length are available. To overcome this issue of limited record length, data regarding climatic and geomorphological properties can be used to complement statistical methods. In this paper, we present a study of 27 catchments located throughout Norway, in which we assess whether catchment properties, flood generation processes and flood regime have an effect on the correlation between flood peak and volume and, in turn, on the selection of copulas. To achieve this, the annual maximum flood events were first classified into events generated primarily by rainfall, snowmelt or a combination of these. The catchments were then classified into flood regime, depending on the predominant flood generation process producing the annual maximum flood events. A contingency table and Fisher's exact test were used to determine the factors that affect the selection of copulas in the study area. The results show that the two-parameter copulas BB1 and BB7 are more commonly selected in catchments with high steepness, high mean annual runoff and rainfall flood regime. These findings suggest that in these types of catchments, the dependence structure between flood peak and volume is more complex and cannot be modeled effectively using a one-parameter copula. The results illustrate that by relating copula types to flood regime and catchment properties, additional information can be supplied for selecting copulas in catchments with limited data.

  5. Developing a Malaysia flood model

    Science.gov (United States)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina

    2014-05-01

    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  6. Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment

    Science.gov (United States)

    Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia

    2015-04-01

    Floods are the most frequent weather disasters in the world and probably the most costly in terms of social and economic losses. They may have a strong impact on infrastructures and health because the range of possible damages includes casualties, loss of housing and destruction of crops. Presently, the most common approach for remotely sensing floods is the use of synthetic aperture radar (SAR) images. Key features of SAR data for inundation mapping are the synoptic view, the capability to operate even in cloudy conditions and during both day and night time and the sensitivity of the microwave radiation to water. The launch of a new generation of instruments, such as TerraSAR-X and COSMO-SkyMed (CSK) allows producing near real time flood maps having a spatial resolution in the order of 1-5 m. Moreover, the present (CSK) and upcoming (Sentinel-1) constellations permit the acquisition of radar data characterized by a short revisit time (in the order of some hours for CSK), so that the production of frequent inundation maps can be envisaged. Nonetheless, gaps might be present in the SAR-derived flood maps because of the limited area imaged by SAR; moreover, the detection of floodwater may be complicated by the presence of very dense vegetation or urban settlements. Hence the need to complement SAR-derived flood maps with the outputs of physical models. Physical models allow delivering to end users very useful information for a complete flood damage assessment, such as data on water depths and flow directions, which cannot be directly derived from satellite remote sensing images. In addition, the flood extent predictions of hydraulic models can be compared to SAR-derived inundation maps to calibrate the models, or to fill the aforementioned gaps that can be present in the SAR-derived maps. Finally, physical models enable the construction of risk scenarios useful for emergency managers to take their decisions and for programming additional SAR acquisitions in order to

  7. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    Science.gov (United States)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability

  8. Floods and human health: a systematic review.

    Science.gov (United States)

    Alderman, Katarzyna; Turner, Lyle R; Tong, Shilu

    2012-10-15

    Floods are the most common type of disaster globally, responsible for almost 53,000 deaths in the last decade alone (23:1 low- versus high-income countries). This review assessed recent epidemiological evidence on the impacts of floods on human health. Published articles (2004-2011) on the quantitative relationship between floods and health were systematically reviewed. 35 relevant epidemiological studies were identified. Health outcomes were categorized into short- and long-term and were found to depend on the flood characteristics and people's vulnerability. It was found that long-term health effects are currently not well understood. Mortality rates were found to increase by up to 50% in the first year post-flood. After floods, it was found there is an increased risk of disease outbreaks such as hepatitis E, gastrointestinal disease and leptospirosis, particularly in areas with poor hygiene and displaced populations. Psychological distress in survivors (prevalence 8.6% to 53% two years post-flood) can also exacerbate their physical illness. There is a need for effective policies to reduce and prevent flood-related morbidity and mortality. Such steps are contingent upon the improved understanding of potential health impacts of floods. Global trends in urbanization, burden of disease, malnutrition and maternal and child health must be better reflected in flood preparedness and mitigation programs. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  9. The Aqueduct Global Flood Analyzer

    Science.gov (United States)

    Iceland, Charles

    2015-04-01

    As population growth and economic growth take place, and as climate change accelerates, many regions across the globe are finding themselves increasingly vulnerable to flooding. A recent OECD study of the exposure of the world's large port cities to coastal flooding found that 40 million people were exposed to a 1 in 100 year coastal flood event in 2005, and the total value of exposed assets was about US 3,000 billion, or 5% of global GDP. By the 2070s, those numbers were estimated to increase to 150 million people and US 35,000 billion, or roughly 9% of projected global GDP. Impoverished people in developing countries are particularly at risk because they often live in flood-prone areas and lack the resources to respond. WRI and its Dutch partners - Deltares, IVM-VU University Amsterdam, Utrecht University, and PBL Netherlands Environmental Assessment Agency - are in the initial stages of developing a robust set of river flood and coastal storm surge risk measures that show the extent of flooding under a variety of scenarios (both current and future), together with the projected human and economic impacts of these flood scenarios. These flood risk data and information will be accessible via an online, easy-to-use Aqueduct Global Flood Analyzer. We will also investigate the viability, benefits, and costs of a wide array of flood risk reduction measures that could be implemented in a variety of geographic and socio-economic settings. Together, the activities we propose have the potential for saving hundreds of thousands of lives and strengthening the resiliency and security of many millions more, especially those who are most vulnerable. Mr. Iceland will present Version 1.0 of the Aqueduct Global Flood Analyzer and provide a preview of additional elements of the Analyzer to be released in the coming years.

  10. Environmental impact assessment using a utility-based recursive evidential reasoning approach for structural flood mitigation measures in Metro Manila, Philippines.

    Science.gov (United States)

    Gilbuena, Romeo; Kawamura, Akira; Medina, Reynaldo; Nakagawa, Naoko; Amaguchi, Hideo

    2013-12-15

    In recent years, the practice of environmental impact assessment (EIA) has created significant awareness on the role of environmentally sound projects in sustainable development. In view of the recent studies on the effects of climate change, the Philippine government has given high priority to the construction of flood control structures to alleviate the destructive effects of unmitigated floods, especially in highly urbanized areas like Metro Manila. EIA thus, should be carefully and effectively carried out to maximize or optimize the potential benefits that can be derived from structural flood mitigation measures (SFMMs). A utility-based environmental assessment approach may significantly aid flood managers and decision-makers in planning for effective and environmentally sound SFMM projects. This study proposes a utility-based assessment approach using the rapid impact assessment matrix (RIAM) technique, coupled with the evidential reasoning approach, to rationally and systematically evaluate the ecological and socio-economic impacts of 4 planned SFMM projects (i.e. 2 river channel improvements and 2 new open channels) in Metro Manila. Results show that the overall environmental effects of each of the planned SFMM projects are positive, which indicate that the utility of the positive impacts would generally outweigh the negative impacts. The results also imply that the planned river channel improvements will yield higher environmental benefits over the planned open channels. This study was able to present a clear and rational approach in the examination of overall environmental effects of SFMMs, which provides valuable insights that can be used by decision-makers and policy makers to improve the EIA practice and evaluation of projects in the Philippines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ac and dc motor flooding times

    International Nuclear Information System (INIS)

    Crowley, D.A.; Hinton, J.H.

    1988-01-01

    Reactor safety studies, such as the emergency cooling system (ECS) limits analyses and the probabilistic risk assessment, require that the flood-out times be calculated for the ac and dc motors at the -40 foot level. New calculations are needed because dams of an improved design have been installed between the pump room and motor room, and because updated leak rate calculations have shown that the maximum possible leak rate is larger than that which had been previously calculated. The methodology for calculating the motor flood-out times has also been improved. A computer program has been written to calculate flood-out times for various leak rates and sump pump operabilities. For ECS limits analyses, the worst case dc motor flood-out times are 161 and 297 seconds in LKC and P-areas, respectively. These times are for a 135,468 gpm leak that first flows to the motor room and all of the sump pumps are off

  12. Simultaneous Observation Data of GB-SAR/PiSAR to Detect Flooding in an Urban Area

    Directory of Open Access Journals (Sweden)

    Manabu Watanabe

    2010-01-01

    Full Text Available We analyzed simultaneous observation data with ground-based synthetic aperture radar (GB-SAR and airborne SAR (PiSAR over a flood test site at which a simple house was constructed in a field. The PiSAR σ∘ under flood condition was 0.9 to 3.4 dB higher than that under nonflood condition. GB-SAR gives high spatial resolution as we could identify a single scattering component and a double bounce component from the house. GB-SAR showed that the σ∘ difference between the flooding and nonflooding conditions came from the double bounce scattering. We also confirm that the entropy is a sensitive parameter in the eigenvalue decomposition parameters, if the scattering process is dominated by the double bounce scattering. We conclude that σ∘ and entropy are a good parameter to be used to detect flooding, not only in agricultural and forest regions, but also in urban areas. We also conclude that GB-SAR is a powerful tool to supplement satellite and airborne observation, which has a relatively low spatial resolution.

  13. Simultaneous Observation Data of GB-SAR/PiSAR to Detect Flooding in an Urban Area

    Directory of Open Access Journals (Sweden)

    Shimada Masanobu

    2010-01-01

    Full Text Available Abstract We analyzed simultaneous observation data with ground-based synthetic aperture radar (GB-SAR and airborne SAR (PiSAR over a flood test site at which a simple house was constructed in a field. The PiSAR under flood condition was 0.9 to 3.4 dB higher than that under nonflood condition. GB-SAR gives high spatial resolution as we could identify a single scattering component and a double bounce component from the house. GB-SAR showed that the difference between the flooding and nonflooding conditions came from the double bounce scattering. We also confirm that the entropy is a sensitive parameter in the eigenvalue decomposition parameters, if the scattering process is dominated by the double bounce scattering. We conclude that and entropy are a good parameter to be used to detect flooding, not only in agricultural and forest regions, but also in urban areas. We also conclude that GB-SAR is a powerful tool to supplement satellite and airborne observation, which has a relatively low spatial resolution.

  14. A Flood Risk Assessment Model for Companies and Criteria for Governmental Decision-Making to Minimize Hazards

    Directory of Open Access Journals (Sweden)

    Jieun Ryu

    2017-11-01

    Full Text Available Flood risks in the industrial sector and economic damages are increasing because of climate change. In addition to changes in precipitation patterns due to climate change; factors that increase flood damage include infrastructure deterioration and lack of storage facilities. Therefore; it is necessary for companies and the government to actively establish flood management policies. However; no evaluation method is currently available to determine which items should be invested in first by small and medium-sized enterprises that have limited finances. Because the government should make comprehensive and fair decisions; the purpose of this study is to propose priority investment risk items and an assessment method to decide which companies should be invested in first in flood risk management due to climate change. The multispatial scale of the method takes both the location and characteristics of the company into account. Future climate change scenarios were used to evaluate the changing patterns of flood risks. We developed the relative Flood Risk Assessment for Company (FRAC model methodology to support the government’s policymaking. This method was applied to four companies belonging to four different industries and three risk items were derived that are likely to harm the company owing to flooding.

  15. GIS Support for Flood Rescue

    DEFF Research Database (Denmark)

    Liang, Gengsheng; Mioc, Darka; Anton, François

    2007-01-01

    Under flood events, the ground traffic is blocked in and around the flooded area due to damages to roads and bridges. The traditional transportation network may not always help people to make a right decision for evacuation. In order to provide dynamic road information needed for flood rescue, we...... to retrieve the shortest and safest route in Fredericton road network during flood event. It enables users to make a timely decision for flood rescue. We are using Oracle Spatial to deal with emergency situations that can be applied to other constrained network applications as well....... developed an adaptive web-based transportation network application using Oracle technology. Moreover, the geographic relationships between the road network and flood areas are taken into account. The overlay between the road network and flood polygons is computed on the fly. This application allows users...

  16. A new approach to flood vulnerability assessment for historic buildings in England

    Science.gov (United States)

    Stephenson, V.; D'Ayala, D.

    2014-05-01

    The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is presented here that studies the nature of the vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. Key findings of the work include determining the applicability of these indicators to fragility analysis, and the determination of the relative vulnerability of the three case study sites.

  17. Future trends in flood risk in Indonesia - A probabilistic approach

    Science.gov (United States)

    Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip

    2014-05-01

    decrease future risks. Preliminary results show that the urban extent in Indonesia is projected to increase within 211 to 351% over the period 2000-2030 (5 and 95 percentile). Mainly driven by this rapid urbanization, potential flood losses in Indonesia increase rapidly and are primarily concentrated on the island of Java. The results reveal the large risk-reducing potential of adaptation measures. Since much of the urban development between 2000 and 2030 takes place in flood-prone areas, strategic urban planning (i.e. building in safe areas) may significantly reduce the urban population and infrastructure exposed to flooding. We conclude that a probabilistic risk approach in future flood risk assessment is vital; the drivers behind risk trends (exposure, hazard, vulnerability) should be understood to develop robust and efficient adaptation pathways.

  18. A metric-based assessment of flood risk and vulnerability of rural communities in the Lower Shire Valley, Malawi

    Science.gov (United States)

    Adeloye, A. J.; Mwale, F. D.; Dulanya, Z.

    2015-06-01

    In response to the increasing frequency and economic damages of natural disasters globally, disaster risk management has evolved to incorporate risk assessments that are multi-dimensional, integrated and metric-based. This is to support knowledge-based decision making and hence sustainable risk reduction. In Malawi and most of Sub-Saharan Africa (SSA), however, flood risk studies remain focussed on understanding causation, impacts, perceptions and coping and adaptation measures. Using the IPCC Framework, this study has quantified and profiled risk to flooding of rural, subsistent communities in the Lower Shire Valley, Malawi. Flood risk was obtained by integrating hazard and vulnerability. Flood hazard was characterised in terms of flood depth and inundation area obtained through hydraulic modelling in the valley with Lisflood-FP, while the vulnerability was indexed through analysis of exposure, susceptibility and capacity that were linked to social, economic, environmental and physical perspectives. Data on these were collected through structured interviews of the communities. The implementation of the entire analysis within GIS enabled the visualisation of spatial variability in flood risk in the valley. The results show predominantly medium levels in hazardousness, vulnerability and risk. The vulnerability is dominated by a high to very high susceptibility. Economic and physical capacities tend to be predominantly low but social capacity is significantly high, resulting in overall medium levels of capacity-induced vulnerability. Exposure manifests as medium. The vulnerability and risk showed marginal spatial variability. The paper concludes with recommendations on how these outcomes could inform policy interventions in the Valley.

  19. An analysis of the public perception of flood risk on the Belgian coast.

    Science.gov (United States)

    Kellens, Wim; Zaalberg, Ruud; Neutens, Tijs; Vanneuville, Wouter; De Maeyer, Philippe

    2011-07-01

    In recent years, perception of flood risks has become an important topic to policy makers concerned with risk management and safety issues. Knowledge of the public risk perception is considered a crucial aspect in modern flood risk management as it steers the development of effective and efficient flood mitigation strategies. This study aimed at gaining insight into the perception of flood risks along the Belgian coast. Given the importance of the tourism industry on the Belgian coast, the survey considered both inhabitants and residential tourists. Based on actual expert's risk assessments, a high and a low risk area were selected for the study. Risk perception was assessed on the basis of scaled items regarding storm surges and coastal flood risks. In addition, various personal and residence characteristics were measured. Using multiple regression analysis, risk perception was found to be primarily influenced by actual flood risk estimates, age, gender, and experience with previous flood hazards. © 2011 Society for Risk Analysis.

  20. Public perception of flood risks, flood forecasting and mitigation

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2005-01-01

    Full Text Available A multidisciplinary and integrated approach to the flood mitigation decision making process should provide the best response of society in a flood hazard situation including preparation works and post hazard mitigation. In Slovenia, there is a great lack of data on social aspects and public response to flood mitigation measures and information management. In this paper, two studies of flood perception in the Slovenian town Celje are represented. During its history, Celje was often exposed to floods, the most recent serious floods being in 1990 and in 1998, with a hundred and fifty return period and more than ten year return period, respectively. Two surveys were conducted in 1997 and 2003, with 157 participants from different areas of the town in the first, and 208 in the second study, aiming at finding the general attitude toward the floods. The surveys revealed that floods present a serious threat in the eyes of the inhabitants, and that the perception of threat depends, to a certain degree, on the place of residence. The surveys also highlighted, among the other measures, solidarity and the importance of insurance against floods.

  1. Increasing resilience through participative flood risk map design

    Science.gov (United States)

    Fuchs, Sven; Spira, Yvonne; Stickler, Therese

    2013-04-01

    regarding participation was not the methods used for participation but the involvement of concerned lay persons not only in the design of the hazard and risk maps or the risk assessments itself but the cooperative elaboration of the risk assessment approach especially for the harbour area. Following these principles, flood risk maps were created in the underlying EU-project DANUBE FLOODRISK. In this ETC SEE project "DANUBE FLOODRISK - Stakeholder Oriented Assessment of the Danube Floodplains" (2009-2012), hazard and risk maps harmonized across borders for the Danube main stream were produced. This way the overall DANUBE FLOODRISK project contributed to Article 6 of the EU Floods Directive, the hazard and risk maps for international river basins, and provides with the involvement of the national and regional stakeholders the first step to the implementation of Article 7, the Flood Risk Management Plans. By testing the involvement of the broad public and local stakeholders, first exemplary steps were taken for local flood risk management planning. A first set of maps was created for an underlying hazard scenario of a 1-in-100 year flood affecting the city of Krems assuming a failure of the temporal flood protection due to the impact of a ship in the area of the pier. Moreover, both, hazard scenarios with and without a second line of defence were visualised. The set of maps includes (a) an evaluative risk map showing the risk qualitatively aggregated for each building exposed and the number of affected citizens, (b) an evaluative risk map showing the risk qualitatively aggregated per square footage for each building exposed and the number of affected citizens, (c) an evaluative risk map showing the risk quantitatively in monetary units per square footage for each building exposed and the number of affected citizens, and (d) as well as (e) risk maps according to (a) and (b) without the second line of defence in order to communicate the effectiveness of temporal flood protection

  2. Intercomparison of DEM-based approaches for the identification of flood-prone areas in different geomorphologic and climatic conditions

    Science.gov (United States)

    Samela, Caterina; Nardi, Fernando; Grimaldi, Salvatore; De Paola, Francesco; Sole, Aurelia; Manfreda, Salvatore

    2014-05-01

    Floods represent the most critical natural hazard for many countries and their frequency appears to be increasing in recent times. The legal constraints of public administrators and the growing interest of private companies (e.g., insurance companies) in identifying the areas exposed to the flood risk, is determining the necessity of developing new tools for the risk classification over large areas. Nowadays, among the numerous hydrologic and hydraulic methods regularly used for practical applications, 2-D hydraulic modeling represents the most accurate approach for deriving detailed inundation maps. Nevertheless, data requirement for these modeling approaches is certainly onerous, limiting their applicability over large areas. On this issue, the terrain morphology may provide an extraordinary amount of information useful to detect areas that are particularly prone to serious flooding. In the present work, we compare the reliability of different DEM-derived quantitative morphologic descriptors in characterizing the relationships between geomorphic attributes and flood exposure. The tests are carried out using techniques of pattern classification, such as linear binary classifiers (Degiorgis et al., 2012), whose ability is evaluated through performance measures. Simple and composed morphologic features are taken into account. The morphological features are: the upslope contributing area (A), the local slope (S), the length of the path that hydrologically connects the location under exam to the nearest element of the drainage network (D), the difference in elevation between the cell under exam and the final point of the same path (H), the curvature (downtriangle2H). In addition to the mentioned features, the study takes into consideration a number of composed indices, such as: the modified topographic index (Manfreda et al., 2011), the downslope index (DI) proposed by Hjerdt et al. (2004), the ratio between the elevation difference H and the distance to the network D

  3. Flood hazard mapping of Palembang City by using 2D model

    Science.gov (United States)

    Farid, Mohammad; Marlina, Ayu; Kusuma, Muhammad Syahril Badri

    2017-11-01

    Palembang as the capital city of South Sumatera Province is one of the metropolitan cities in Indonesia that flooded almost every year. Flood in the city is highly related to Musi River Basin. Based on Indonesia National Agency of Disaster Management (BNPB), the level of flood hazard is high. Many natural factors caused flood in the city such as high intensity of rainfall, inadequate drainage capacity, and also backwater flow due to spring tide. Furthermore, anthropogenic factors such as population increase, land cover/use change, and garbage problem make flood problem become worse. The objective of this study is to develop flood hazard map of Palembang City by using two dimensional model. HEC-RAS 5.0 is used as modelling tool which is verified with field observation data. There are 21 sub catchments of Musi River Basin in the flood simulation. The level of flood hazard refers to Head Regulation of BNPB number 2 in 2012 regarding general guideline of disaster risk assessment. The result for 25 year return per iod of flood shows that with 112.47 km2 area of inundation, 14 sub catchments are categorized in high hazard level. It is expected that the hazard map can be used for risk assessment.

  4. Information support systems for cultural heritage protection against flooding

    Directory of Open Access Journals (Sweden)

    K. Nedvedova

    2015-08-01

    Full Text Available The goal of this paper is to present use of different kind of software applications to create complex support system for protection of cultural heritage against flooding. The project is very complex and it tries to cover the whole area of the problem from prevention to liquidation of aftermath effects. We used GIS for mapping the risk areas, ontology systems for vulnerability assessment application and the BORM method (Business Object Relation Modelling for flood protection system planning guide. Those modern technologies helped us to gather a lot of information in one place and provide the knowledge to the broad audience.

  5. Improving Flood Predictions in Data-Scarce Basins

    Science.gov (United States)

    Vimal, Solomon; Zanardo, Stefano; Rafique, Farhat; Hilberts, Arno

    2017-04-01

    Flood modeling methodology at Risk Management Solutions Ltd. has evolved over several years with the development of continental scale flood risk models spanning most of Europe, the United States and Japan. Pluvial (rain fed) and fluvial (river fed) flood maps represent the basis for the assessment of regional flood risk. These maps are derived by solving the 1D energy balance equation for river routing and 2D shallow water equation (SWE) for overland flow. The models are run with high performance computing and GPU based solvers as the time taken for simulation is large in such continental scale modeling. These results are validated with data from authorities and business partners, and have been used in the insurance industry for many years. While this methodology has been proven extremely effective in regions where the quality and availability of data are high, its application is very challenging in other regions where data are scarce. This is generally the case for low and middle income countries, where simpler approaches are needed for flood risk modeling and assessment. In this study we explore new methods to make use of modeling results obtained in data-rich contexts to improve predictive ability in data-scarce contexts. As an example, based on our modeled flood maps in data-rich countries, we identify statistical relationships between flood characteristics and topographic and climatic indicators, and test their generalization across physical domains. Moreover, we apply the Height Above Nearest Drainage (HAND)approach to estimate "probable" saturated areas for different return period flood events as functions of basin characteristics. This work falls into the well-established research field of Predictions in Ungauged Basins.

  6. Floods characterization: from impact data to quantitative assessment

    Science.gov (United States)

    Llasat, Maria-Carmen; Gilabert, Joan; Llasat-Botija, Montserrat; Marcos, Raül; Quintana-Seguí, Pere; Turco, Marco

    2015-04-01

    This study is based on the following flood databases from Catalonia: INUNGAMA (1900-2010) which considers 372 floods (Llasat et al, 2014), PRESSGAMA (1981-2010) and HISTOGAMA (from XIV Century on) - built as part of SPHERE project and recently updated. These databases store information about flood impacts (among others) and classify them by their severity (catastrophic, extraordinary and ordinary) by means of an indicators matrix based on other studies (i.e. Petrucci et al, 2013; Llasat et al, 2013). On this research we present a comparison between flood impacts, flow data and rainfall data on a Catalan scale and particularly for the basins of Segre, Muga, Ter and Llobregat (Western Mediterranean). From a bottom-up approach, a statistical methodology has been built (trend analysis, measures of position, cumulative distribution functions and geostatistics) in order to identify quantitative thresholds that will make possible to classify the floods. The purpose of this study is to establish generic thresholds for the whole Catalan region, for this we have selected rainfall maximums of flooding episodes stored at INUNGAMA and they have been related to flood categories by boxplot diagrams. Regarding the stream flow, we have established a relation between impacts and return periods at the day when the flow is maximum. The aim is to homogenize and compare the different drainage basins and to obtain general thresholds. It is also presented detailed analyses of relations between flooding episodes, flood classification and weather typing schemes - based in Jenkinson and Collison classification (applied to the Iberian Peninsula by Spellmann, 2000). In this way it could be analyzed whether patterns for the different types of floods exist or not. Finally, this work has pointed out the need of defining a new category for the most severe episodes.

  7. 76 FR 68107 - Final Flood Elevation Determinations

    Science.gov (United States)

    2011-11-03

    ... environmental impact assessment has not been prepared. Regulatory Flexibility Act. As flood elevation..., Illinois, and Incorporated Areas Docket No.: FEMA-B-1134 Beaver Creek Approximately 1.58 miles +366... of Main Street extended (River Mile 887). Unnamed Tributary to Beaver Creek Approximately 1,500 feet...

  8. August, 2002 - floods events, affected areas revitalisation and prevention for the future in the central Bohemian region, Czech Republic

    Science.gov (United States)

    Bina, L.; Vacha, F.; Vodova, J.

    2003-04-01

    Central Bohemian Region is located in a shape of a ring surrounding the capitol of Prague. Its total territorial area is 11.014 sq.km and population of 1 130.000 inhabitants. According to EU nomenclature of regional statistical units, the Central Bohemian Region is classified as an independent NUTS II. Bohemia's biggest rivers, Vltava and Labe form the region's backbone dividing it along a north-south line, besides that there are Sazava and Berounka, the two big headwaters of Vltava, which flow through the region and there also are some cascade man made lakes and 2 important big dams - Orlik and Slapy on the Vltava River in the area of the region. Overflowing of these rivers and their feeders including cracking of high-water dams during the floods in August 2002 caused total or partial destruction or damage of more than 200 towns and villages and total losses to the extend of 450 mil. EUR. The worst impact was on damaged or destroyed human dwellings, social infrastructure (schools, kindergartens, humanitarian facilities) and technical infrastructure (roads, waterworks, power distribution). Also businesses were considerably damaged including transport terminals in the area of river ports. Flowage of Spolana Neratovice chemical works caused critical environmental havoc. Regional crisis staff with regional Governor in the lead worked continuously during the floods and a regional integrated rescue system was subordinated to it. Due to the huge extent of the floods the crisis staff coordinated its work with central bodies of state including the Government and single "power" resorts (army, interior, transport). Immediately after floods a regional - controlled management was set up including an executive body for regional revitalisation which is connected to state coordinating resort - Ministry for Local Development, EU sources and humanitarian aid. In addition to a program of regional revitalisation additional preventive flood control programs are being developed

  9. Rural livelihoods and household adaptation to extreme flooding in the Okavango Delta, Botswana

    Science.gov (United States)

    Motsholapheko, M. R.; Kgathi, D. L.; Vanderpost, C.

    Adaptation to flooding is now widely adopted as an appropriate policy option since flood mitigation measures largely exceed the capability of most developing countries. In wetlands, such as the Okavango Delta, adaptation is more appropriate as these systems serve as natural flood control mechanisms. The Okavango Delta system is subject to annual variability in flooding with extreme floods resulting in adverse impacts on rural livelihoods. This study therefore seeks to improve the general understanding of rural household livelihood adaptation to extreme flooding in the Okavango Delta. Specific objectives are: (1) to assess household access to forms of capital necessary for enhanced capacity to adapt, (2) to assess the impacts of extreme flooding on household livelihoods, and (3) to identify and assess household livelihood responses to extreme flooding. The study uses the sustainable livelihood and the socio-ecological frameworks to analyse the livelihood patterns and resilience to extreme flooding. Results from a survey of 623 households in five villages, key informant interviews, focus group discussions and review of literature, indicate that access to natural capital was generally high, but low for financial, physical, human and social capital. Households mainly relied on farm-based livelihood activities, some non-farm activities, limited rural trade and public transfers. In 2004 and 2009, extreme flooding resulted in livelihood disruptions in the study areas. The main impacts included crop damage, household displacement, destruction of household property, livestock drowning and mud-trapping, the destruction of public infrastructure and disruption of services. The main household coping strategies were labour switching to other livelihood activities, temporary relocation to less affected areas, use of canoes for early harvesting or evacuation and government assistance, particularly for the most vulnerable households. Household adaptive strategies included

  10. Interconnected ponds operation for flood hazard distribution

    Science.gov (United States)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  11. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    International Nuclear Information System (INIS)

    Head, J.W.

    1982-01-01

    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  12. Self-Reported and FEMA Flood Exposure Assessment after Hurricane Sandy: Association with Mental Health Outcomes.

    Directory of Open Access Journals (Sweden)

    Wil Lieberman-Cribbin

    Full Text Available Hurricane Sandy caused extensive physical and economic damage; the long-term mental health consequences are unknown. Flooding is a central component of hurricane exposure, influencing mental health through multiple pathways that unfold over months after flooding recedes. Here we assess the concordance in self-reported and Federal Emergency Management (FEMA flood exposure after Hurricane Sandy and determine the associations between flooding and anxiety, depression, and post-traumatic stress disorder (PTSD. Self-reported flood data and mental health symptoms were obtained through validated questionnaires from New York City and Long Island residents (N = 1231 following Sandy. Self-reported flood data was compared to FEMA data obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. Multivariable logistic regressions were performed to determine the relationship between flooding exposure and mental health outcomes. There were significant discrepancies between self-reported and FEMA flood exposure data. Self-reported dichotomous flooding was positively associated with anxiety (ORadj: 1.5 [95% CI: 1.1-1.9], depression (ORadj: 1.7 [1.3-2.2], and PTSD (ORadj: 2.5 [1.8-3.4], while self-reported continuous flooding was associated with depression (ORadj: 1.1 [1.01-1.12] and PTSD (ORadj: 1.2 [1.1-1.2]. Models with FEMA dichotomous flooding (ORadj: 2.1 [1.5-2.8] or FEMA continuous flooding (ORadj: 1.1 [1.1-1.2] were only significantly associated with PTSD. Associations between mental health and flooding vary according to type of flood exposure measure utilized. Future hurricane preparedness and recovery efforts must integrate micro and macro-level flood exposures in order to accurately determine flood exposure risk during storms and realize the long-term importance of flooding on these three mental health symptoms.

  13. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the north

    Science.gov (United States)

    A.C. Guy; T.M. DeSutter; F.X.M. Casey; R. Kolka; H. Hakk

    2012-01-01

    Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements,...

  14. Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches

    Directory of Open Access Journals (Sweden)

    Daniel Asare-Kyei

    2015-07-01

    Full Text Available Robust risk assessment requires accurate flood intensity area mapping to allow for the identification of populations and elements at risk. However, available flood maps in West Africa lack spatial variability while global datasets have resolutions too coarse to be relevant for local scale risk assessment. Consequently, local disaster managers are forced to use traditional methods such as watermarks on buildings and media reports to identify flood hazard areas. In this study, remote sensing and Geographic Information System (GIS techniques were combined with hydrological and statistical models to delineate the spatial limits of flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The approach involves estimating peak runoff concentrations at different elevations and then applying statistical methods to develop a Flood Hazard Index (FHI. Results show that about half of the study areas fall into high intensity flood zones. Empirical validation using statistical confusion matrix and the principles of Participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77% to 81%. This was supported with local expert knowledge which accurately classified 79% of communities deemed to be highly susceptible to flood hazard. The results will assist disaster managers to reduce the risk to flood disasters at the community level where risk outcomes are first materialized.

  15. Flood Risk Analysis in Lower Part of Markham River Based on Multi-Criteria Decision Approach (MCDA

    Directory of Open Access Journals (Sweden)

    Sailesh Samanta

    2016-08-01

    Full Text Available Papua New Guinea is blessed with a plethora of enviable natural resources, but at the same time it is also cursed by quite a few natural disasters like volcanic eruptions, earthquakes, landslide, floods, droughts etc. Floods happen to be a natural process of maintaining the health of the rivers and depth of its thalweg; it saves the river from becoming morbid while toning up the fertility of the riverine landscape. At the same time, from human perspective, all these ecological goodies are nullified when flood is construed overwhelmingly as one of the most devastating events in respect to social and economic consequences. The present investigation was tailored to assess the use of multi-criteria decision approach (MCDA in inland flood risk analysis. Categorization of possible flood risk zones was accomplished using geospatial data sets, like elevation, slope, distance to river, and land use/land cover, which were derived from digital elevation model (DEM and satellite image, respectively. A pilot study area was selected in the lower part of Markham River in Morobe Province, Papua New Guinea. The study area is bounded by 146°31′ to 146°58′ east and 6°33′ to 6°46′ south; covers an area of 758.30 km2. The validation of a flood hazard risk map was carried out using past flood records in the study area. This result suggests that MCDA within GIS techniques is very useful in accurate and reliable flood risk analysis and mapping. This approach is convenient for the assessment of flood in any region, specifically in no-data regions, and can be useful for researchers and planners in flood mitigation strategies.

  16. Assessing public flood risk perception for understanding the level of risk preparedness - Evidence from a community-based survey (the Bend Subcarpathians, Romania)

    Science.gov (United States)

    Balteanu, Dan; Micu, Dana; Dumitrascu, Monica; Chendes, Viorel; Dragota, Carmen; Kucsicsa, Gheorghita; Grigorescu, Ines; Persu, Mihaela; Costache, Andra

    2016-04-01

    Floods (slow-onset and rapid) are among the costliest hydro-meteorological hazards in Romania, with strong societal and economic impacts, especially in small rural settlements, with a limited adaptive capacity to their adverse effects induced by the regional socio-economic context (e.g. aging population, low economic power). The study-area is located in the Bend Subcarpathians (Romania), a region with high tectonic mobility (the Seismic Vrancea Region), active slope processes (e.g. shallow and deep-seated landslides, mud flow, gully erosion) and increasing frequency of flash floods associated to heavy rainfalls. The study was conducted in the framework of the project "Vulnerability of the environment and human settlements to floods in the context of Global Environmental Change - VULMIN" (PN-II-PT-PCCA-2011-3.1-1587), funded by the Ministry of National Education over the 2012-2016 period (http://www.igar-vulmin.ro). Prior research derived valuable insights into the local population vulnerability to extreme hydro-meteorological events, revealing an increased individual experience to past hydrological events, a high level of worry associated to flood recurrence, a low rate of the perceived trustworthiness in national institutions and authorities, as well as evident differences between the perception of community members and local authorities in terms of risk preparedness. In the present study, an attempt has been made for developing an advanced understanding of the current level of flood risk preparedness within some communities strongly affected by the floods of 1970-1975, 2005 and 2010. The recent events had a significant impact on local communities and infrastructure in terms of the financial losses, causing a visible stress and even psychological trauma on some residents of the most affected households. The selected communities are located in areas affected by recurrent hydro-meteorological hazards (floods and flash floods), with return periods below 10 years. A

  17. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR, because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the

  18. The 100-year flood seems to be changing. Can we really tell?

    Science.gov (United States)

    Ceres, R. L., Jr.; Forest, C. E.; Keller, K.

    2017-12-01

    Widespread flooding from Hurricane Harvey greatly exceeded the Federal Emergency Management Agency's 100-year flood levels. In the US, this flood level is often used as an important line of demarcation where areas above this level are considered safe, while areas below the line are at risk and require additional flood risk mitigation. In the wake of Harvey's damage, the US media has highlighted at least two important questions. First, has the 100-year flood level changed? Second, is the 100-year flood level a good metric for determining flood risk? To address the first question, we use an Observation System Simulation Experiment of storm surge flood levels and find that gradual changes to the 100-year storm surge level may not be reliably detected over the long lifespans expected of major flood risk mitigation strategies. Additionally, we find that common extreme value analysis models lead to biased results and additional uncertainty when incorrect assumptions are used for the underlying statistical model. These incorrect assumptions can lead to examples of negative learning. Addressing the second question, these findings further challenge the validity of using simple return levels such as the 100-year flood as a decision tool for assessing flood risk. These results indicate risk management strategies must account for such uncertainties to build resilient and robust planning tools that stakeholders desperately need.

  19. Flood Hazard Assessment along the Western Regions of Saudi Arabia using GIS-based Morphometry and Remote Sensing Techniques

    KAUST Repository

    Shi, Qianwen

    2014-12-01

    Flash flooding, as a result of excessive rainfall in a short period, is considered as one of the worst environmental hazards in arid regions. Areas located in the western provinces of Saudi Arabia have experienced catastrophic floods. Geomorphologic evaluation of hydrographic basins provides necessary information to define basins with flood hazard potential in arid regions, especially where long-term field observations are scarce and limited. Six large basins (from North to South: Yanbu, Rabigh, Khulais, El-Qunfza, Baish and Jizan) were selected for this study because they have large surface areas and they encompass high capacity dams at their downstream areas. Geographic Information System (GIS) and remote sensing techniques were applied to conduct detailed morphometric analysis of these basins. The six basins were further divided into 203 sub-basins based on their drainage density. The morphometric parameters of the six basins and their associated 203 sub-basins were calculated to estimate the degree of flood hazard by combining normalized values of these parameters. Thus, potential flood hazard maps were produced from the estimated hazard degree. Furthermore, peak runoff discharge of the six basins and sub-basins were estimated using the Snyder Unit Hydrograph and three empirical models (Nouh’s model, Farquharson’s model and Al-Subai’s model) developed for Saudi Arabia. Additionally, recommendations for flood mitigation plans and water management schemes along these basins were further discussed.

  20. A free and open source QGIS plugin for flood risk analysis: FloodRisk

    Science.gov (United States)

    Albano, Raffaele; Sole, Aurelia; Mancusi, Leonardo

    2016-04-01

    An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to increase the resilience of European economies and societies, the improvement of risk assessment and management has been pursued in the last years. This results in a wide range of flood analysis models of different complexities with substantial differences in underlying components needed for its implementation, as geographical, hydrological and social differences demand specific approaches in the different countries. At present, it is emerging the need of promote the creation of open, transparent, reliable and extensible tools for a comprehensive, context-specific and applicable flood risk analysis. In this context, the free and open-source Quantum GIS (QGIS) plugin "FloodRisk" is a good starting point to address this objective. The vision of the developers of this free and open source software (FOSS) is to combine the main features of state-of-the-art science, collaboration, transparency and interoperability in an initiative to assess and communicate flood risk worldwide and to assist authorities to facilitate the quality and fairness of flood risk management at multiple scales. Among the scientific community, this type of activity can be labelled as "participatory research", intended as adopting a set of techniques that "are interactive and collaborative" and reproducible, "providing a meaningful research experience that both promotes learning and generates knowledge and research data through a process of guided discovery"' (Albano et al., 2015). Moreover, this FOSS geospatial approach can lowering the financial barriers to understanding risks at national and sub-national levels through a spatio-temporal domain and can provide better and more complete

  1. Hurricane Harvey Riverine Flooding: Part 2: Integration of Heterogeneous Earth Observation Data for Comparative Analysis with High-Resolution Inundation Boundaries Reconstructed from Flood2D-GPU Model

    Science.gov (United States)

    Jackson, C.; Sava, E.; Cervone, G.

    2017-12-01

    Hurricane Harvey has been noted as the wettest cyclone on record for the US as well as the most destructive (so far) for the 2017 hurricane season. An entire year worth of rainfall occurred over the course of a few days. The city of Houston was greatly impacted as the storm lingered over the city for five days, causing a record-breaking 50+ inches of rain as well as severe damage from flooding. Flood model simulations were performed to reconstruct the event in order to better understand, assess, and predict flooding dynamics for the future. Additionally, number of remote sensing platforms, and on ground instruments that provide near real-time data have also been used for flood identification, monitoring, and damage assessment. Although both flood models and remote sensing techniques are able to identify inundated areas, rapid and accurate flood prediction at a high spatio-temporal resolution remains a challenge. Thus a methodological approach which fuses the two techniques can help to better validate what is being modeled and observed. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. In this work the use of multiple sources of contributed data, coupled with remotely sensed and open source geospatial datasets is demonstrated to generate an understanding of potential damage assessment for the floods after Hurricane Harvey in Harris County, Texas. The feasibility of integrating multiple sources at different temporal and spatial resolutions into hydrodynamic models for flood inundation simulations is assessed. Furthermore the contributed datasets are compared against a reconstructed flood extent generated from the Flood2D-GPU model.

  2. Analysis of Hydrological Sensitivity for Flood Risk Assessment

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Sharma

    2018-02-01

    Full Text Available In order for the Indian government to maximize Integrated Water Resource Management (IWRM, the Brahmaputra River has played an important role in the undertaking of the Pilot Basin Study (PBS due to the Brahmaputra River’s annual regional flooding. The selected Kulsi River—a part of Brahmaputra sub-basin—experienced severe floods in 2007 and 2008. In this study, the Rainfall-Runoff-Inundation (RRI hydrological model was used to simulate the recent historical flood in order to understand and improve the integrated flood risk management plan. The ultimate objective was to evaluate the sensitivity of hydrologic simulation using different Digital Elevation Model (DEM resources, coupled with DEM smoothing techniques, with a particular focus on the comparison of river discharge and flood inundation extent. As a result, the sensitivity analysis showed that, among the input parameters, the RRI model is highly sensitive to Manning’s roughness coefficient values for flood plains, followed by the source of the DEM, and then soil depth. After optimizing its parameters, the simulated inundation extent showed that the smoothing filter was more influential than its simulated discharge at the outlet. Finally, the calibrated and validated RRI model simulations agreed well with the observed discharge and the Moderate Imaging Spectroradiometer (MODIS-detected flood extents.

  3. Study and proposals related to extensive flooding in the Siret River area during the summer of 2008 in Romania

    Science.gov (United States)

    Stefanescu, Victor; Stefan, Sabina; Irimescu, Anisoara

    2010-05-01

    Extensive flooding due to overflowing of the Siret River and associated runoff in smaller rivers in northeastern Romania at the end of July 2008 are discussed, taking into account the meteorological and hydrological contexts. The flooding events in Romania claimed human deaths and population displacement, large-scale destruction of housing and infrastructure. Although the Siret river is quite shallow, and several dams and reservoirs restrict and control its flow, the area along the river remains prone to periodic flooding, mainly in spring and summer. Several observations are made on the viability of settlements close to Siret riverbed in Romania, related to the repeatability of situations such as that during the summer of 2008. Generally, the relative shallowness of the river Siret may cause flash floods, when its level increases rapidly due to abundant precipitation. As such, the horizontal extent of the flooding due to runoff is a factor seemingly more important than the short-lived increases in depth, combined with the speed of the flow. As a direct result of the flooding, crops and buildings were damaged. The probability that similar meteorological contexts can cause flooding with the extent of that in 2008 will be discussed. Also, some possible means to improve the reaction of authorities and delivery of relief by them to the affected population will be proposed. Regarding the meteorological context, a presentation of the cyclonic system that has brought heavy and/or continuous rain in northern and northeastern Romania will be made. As proposal for improving the delivery of resources toward the affected area and population, a software system designed to shorten the process of conveying relevant information to decisional factors, and to increase the speed of information between interesed parties will be discussed. The possible outcome of this specific case study will be the improvement of the decisional flux required in times of natural disasters, flooding

  4. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment - case study: Bâsca Chiojdului River catchment (Romania)

    Science.gov (United States)

    Costache, Romulus; Zaharia, Liliana

    2017-06-01

    Given the significant worldwide human and economic losses caused due to floods annually, reducing the negative consequences of these hazards is a major concern in development strategies at different spatial scales. A basic step in flood risk management is identifying areas susceptible to flood occurrences. This paper proposes a methodology allowing the identification of areas with high potential of accelerated surface run-off and consequently, of flash-flood occurrences. The methodology involves assessment and mapping in GIS environment of flash flood potential index (FFPI), by integrating two statistical methods: frequency ratio and weights-of-evidence. The methodology was applied for Bâsca Chiojdului River catchment (340 km2), located in the Carpathians Curvature region (Romania). Firstly, the areas with torrential phenomena were identified and the main factors controlling the surface run-off were selected (in this study nine geographical factors were considered). Based on the features of the considered factors, many classes were set for each of them. In the next step, the weights of each class/category of the considered factors were determined, by identifying their spatial relationships with the presence or absence of torrential phenomena. Finally, the weights for each class/category of geographical factors were summarized in GIS, resulting the FFPI values for each of the two statistical methods. These values were divided into five classes of intensity and were mapped. The final results were used to estimate the flash-flood potential and also to identify the most susceptible areas to this phenomenon. Thus, the high and very high values of FFPI characterize more than one-third of the study catchment. The result validation was performed by (i) quantifying the rate of the number of pixels corresponding to the torrential phenomena considered for the study (training area) and for the results' testing (validating area) and (ii) plotting the ROC (receiver operating

  5. Identification of flooded area from satellite images using Hybrid Kohonen Fuzzy C-Means sigma classifier

    Directory of Open Access Journals (Sweden)

    Krishna Kant Singh

    2017-06-01

    Full Text Available A novel neuro fuzzy classifier Hybrid Kohonen Fuzzy C-Means-σ (HKFCM-σ is proposed in this paper. The proposed classifier is a hybridization of Kohonen Clustering Network (KCN with FCM-σ clustering algorithm. The network architecture of HKFCM-σ is similar to simple KCN network having only two layers, i.e., input and output layer. However, the selection of winner neuron is done based on FCM-σ algorithm. Thus, embedding the features of both, a neural network and a fuzzy clustering algorithm in the classifier. This hybridization results in a more efficient, less complex and faster classifier for classifying satellite images. HKFCM-σ is used to identify the flooding that occurred in Kashmir area in September 2014. The HKFCM-σ classifier is applied on pre and post flooding Landsat 8 OLI images of Kashmir to detect the areas that were flooded due to the heavy rainfalls of September, 2014. The classifier is trained using the mean values of the various spectral indices like NDVI, NDWI, NDBI and first component of Principal Component Analysis. The error matrix was computed to test the performance of the method. The method yields high producer’s accuracy, consumer’s accuracy and kappa coefficient value indicating that the proposed classifier is highly effective and efficient.

  6. Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions

    Science.gov (United States)

    Papathanasiou, C.; Makropoulos, C.; Mimikou, M.

    2015-10-01

    Floods and forest fires are two of the most devastating natural hazards with severe socioeconomic, environmental as well as aesthetic impacts on the affected areas. Traditionally, these hazards are examined from different perspectives and are thus investigated through different, independent systems, overlooking the fact that they are tightly interrelated phenomena. In fact, the same flood event is more severe, i.e. associated with increased runoff discharge and peak flow and decreased time to peak, if it occurs over a burnt area than that occurring over a land not affected by fire. Mediterranean periurban areas, where forests covered with flammable vegetation coexist with agricultural land and urban zones, are typical areas particularly prone to the combined impact of floods and forest fires. Hence, the accurate assessment and effective management of post-fire flood risk becomes an issue of priority. The research presented in this paper aims to develop a robust methodological framework, using state of art tools and modern technologies to support the estimation of the change in time of five representative hydrological parameters for post-fire conditions. The proposed methodology considers both longer- and short-term initial conditions in order to assess the dynamic evolution of the selected parameters. The research focuses on typical Mediterranean periurban areas that are subjected to both hazards and concludes with a set of equations that associate post-fire and pre-fire conditions for five Fire Severity (FS) classes and three soil moisture states. The methodology has been tested for several flood events on the Rafina catchment, a periurban catchment in Eastern Attica (Greece). In order to validate the methodology, simulated hydrographs were produced and compared against available observed data. Results indicate a close convergence of observed and simulated flows. The proposed methodology is particularly flexible and thus easily adaptable to catchments with similar

  7. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling

    Directory of Open Access Journals (Sweden)

    Jingxuan Zhu

    2018-05-01

    Full Text Available In many countries, industrialization has led to rapid urbanization. Increased frequency of urban flooding is one consequence of the expansion of urban areas which can seriously affect the productivity and livelihoods of urban residents. Therefore, it is of vital importance to study the effects of rainfall and urban flooding on traffic congestion and driver behavior. In this study, a comprehensive method to analyze the influence of urban flooding on traffic congestion was developed. First, a flood simulation was conducted to predict the spatiotemporal distribution of flooding based on Storm Water Management Model (SWMM and TELAMAC-2D. Second, an agent-based model (ABM was used to simulate driver behavior during a period of urban flooding, and a car-following model was established. Finally, in order to study the mechanisms behind how urban flooding affects traffic congestion, the impact of flooding on urban traffic was investigated based on a case study of the urban area of Lishui, China, covering an area of 4.4 km2. It was found that for most events, two-hour rainfall has a certain impact on traffic congestion over a five-hour period, with the greatest impact during the hour following the cessation of the rain. Furthermore, the effects of rainfall with 10- and 20-year return periods were found to be similar and small, whereas the effects with a 50-year return period were obvious. Based on a combined analysis of hydrology and transportation, the proposed methods and conclusions could help to reduce traffic congestion during flood seasons, to facilitate early warning and risk management of urban flooding, and to assist users in making informed decisions regarding travel.

  8. Numerical simulation of flood barriers

    Science.gov (United States)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  9. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    Science.gov (United States)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system

  10. Frequency of posttraumatic stress disorder (ptsd) among flood affected individuals

    International Nuclear Information System (INIS)

    Aslam, N.; Kamal, A.

    2014-01-01

    Objectives: To investigate the relationship of exposure to a traumatic event and the subsequent onset of Posttraumatic Stress Disorder (PTSD) in the population exposed to floods in Pakistan. Study Design: Cross sectional study. Place and duration of study: Individuals exposed to the 2010 flood in district Shadadkot, Sindh from April 2012 to September 2012. Methodology: Sample of the study comprised of 101 individuals from the flood affected areas in Pakistan. Age range of the participants was 15 to 50 years (M=27.73, SD = 7.19), with participation of both males and females. PTSD was assessed by using the self report measure, impact of Event Scale (IES) and the subjective and objective experience to flood was assessed through Flood Related Exposure Scale (FRES) devised by the authors. Results: The prevalence rate of PTSD among the flood affected population was 35.5%. Trauma had significant positive relation with objective flood exposure and subjective flood exposure (r=.27 and r =.38) respectively. Inverse relation appeared between age and PTSD (r=-.20). PTSD was higher among females as compared to males. Conclusion: Understanding the prevalence of PTSD helps the mental health professionals in devising intervention strategies. A longitudinal study design is recommended that may be developed for better understanding of trajectories of trauma response across time span. Our findings may help identify populations at risk for treatment research. (author)

  11. Increased risk of flooding on the coast of Alicante (Region of Valencia, Spain

    Directory of Open Access Journals (Sweden)

    J. Olcina Cantos

    2010-11-01

    Full Text Available In the past two decades, episodes of flooding on the coast of Alicante (Spain have led to substantial losses in human life in economic terms. With increased exposure to these phenomena comes also increased vulnerability. Given the various effects of flooding in areas of similar exposure, differences in vulnerability across regions at risk need to be analysed also in terms of the socioeconomic factors of the groups of society that may be affected, and of their perception of risk. This paper studies the increased risk of flooding in three locations on the Alicante coast as a result of urban occupation of areas subject to this hazard. The consequences of the most recent episodes in this area are analysed and a risk assessment, using survey-based research in the affected areas, is performed.

  12. The Use of Sentinel-1 Time-Series Data to Improve Flood Monitoring in Arid Areas

    Directory of Open Access Journals (Sweden)

    Sandro Martinis

    2018-04-01

    Full Text Available Due to the similarity of the radar backscatter over open water and over sand surfaces a reliable near real-time flood mapping based on satellite radar sensors is usually not possible in arid areas. Within this study, an approach is presented to enhance the results of an automatic Sentinel-1 flood processing chain by removing overestimations of the water extent related to low-backscattering sand surfaces using a Sand Exclusion Layer (SEL derived from time-series statistics of Sentinel-1 data sets. The methodology was tested and validated on a flood event in May 2016 at Webi Shabelle River, Somalia and Ethiopia, which has been covered by a time-series of 202 Sentinel-1 scenes within the period June 2014 to May 2017. The approach proved capable of significantly improving the classification accuracy of the Sentinel-1 flood service within this study site. The Overall Accuracy increased by ~5% to a value of 98.5% and the User’s Accuracy increased by 25.2% to a value of 96.0%. Experimental results have shown that the classification accuracy is influenced by several parameters such as the lengths of the time-series used for generating the SEL.

  13. Assessment of vulnerability to storm induced flood hazard along diverse coastline settings

    Directory of Open Access Journals (Sweden)

    Valchev Nikolay

    2016-01-01

    Full Text Available European coasts suffer notably from hazards caused by low-probability and high-impact hydrometeorological events. The aim of the study is to assess in probabilistic terms the magnitude of storm‐induced flooding hazard along Varna regional coast (Bulgaria, western Black Sea and to identify susceptible coastal sectors (hotspots. The study is performed employing the Coastal Risk Assessment Framework (CRAF developed within EU FP7 RISC-KIT project. It constitutes a screening process that allows estimation of relevant hazard intensities, extents and potential receptors’ exposure vulnerability within predefined sectors. Total water level was the chief property considered for calculation of coastal flooding hazard. It was estimated using Holman model (for sandy beaches and EurOtop formulation (for artificial or rocky slopes. Resulting values were subjected to Extreme Value Analysis to establish that the best fitting distribution corresponds to Generalized Extreme Value distribution. Furthermore, hazard extents were modelled by means of bathtubbing or overwash estimation in order to form the flooding hazard indicator. Land use, social vulnerability, transport systems, utilities and business settings were considered as exposure indicators. Finally, potential risk was assessed by coastal indices following an index-based methodology, which combines hazard and exposure indicators into a single index, thereby providing base for comparison of coastal sectors’ vulnerability. The study found that the concentration of hotspots is highest in Varna Bay.

  14. Smoky River coal flood risk mapping study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Canada-Alberta Flood Damage Reduction Program (FDRP) is designed to reduce flood damage by identifying areas susceptible to flooding and by encouraging application of suitable land use planning, zoning, and flood preparedness and proofing. The purpose of this study is to define flood risk and floodway limits along the Smoky River near the former Smoky River Coal (SRC) plant. Alberta Energy has been responsible for the site since the mine and plant closed in 2000. The study describes flooding history, available data, features of the river and valley, calculation of flood levels, and floodway determination, and includes flood risk maps. The HEC-RAS program is used for the calculations. The flood risk area was calculated using the 1:100 year return period flood as the hydrological event. 7 refs., 11 figs., 7 tabs., 3 apps.

  15. Accumulation risk assessment for the flooding hazard

    Science.gov (United States)

    Roth, Giorgio; Ghizzoni, Tatiana; Rudari, Roberto

    2010-05-01

    One of the main consequences of the demographic and economic development and of markets and trades globalization is represented by risks cumulus. In most cases, the cumulus of risks intuitively arises from the geographic concentration of a number of vulnerable elements in a single place. For natural events, risks cumulus can be associated, in addition to intensity, also to event's extension. In this case, the magnitude can be such that large areas, that may include many regions or even large portions of different countries, are stroked by single, catastrophic, events. Among natural risks, the impact of the flooding hazard cannot be understated. To cope with, a variety of mitigation actions can be put in place: from the improvement of monitoring and alert systems to the development of hydraulic structures, throughout land use restrictions, civil protection, financial and insurance plans. All of those viable options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - flood risk scenarios. It is therefore necessary to identify proper statistical methodologies, able to describe the multivariate aspects of the involved physical processes and their spatial dependence. In hydrology and meteorology, but also in finance and insurance practice, it has early been recognized that classical statistical theory distributions (e.g., the normal and gamma families) are of restricted use for modeling multivariate spatial data. Recent research efforts have been therefore directed towards developing statistical models capable of describing the forms of asymmetry manifest in data sets. This, in particular, for the quite frequent case of phenomena whose empirical outcome behaves in a non-normal fashion, but still maintains some broad similarity with the multivariate normal distribution. Fruitful approaches were recognized in the use of flexible models, which include the normal

  16. A software tool for rapid flood inundation mapping

    Science.gov (United States)

    Verdin, James; Verdin, Kristine; Mathis, Melissa L.; Magadzire, Tamuka; Kabuchanga, Eric; Woodbury, Mark; Gadain, Hussein

    2016-06-02

    The GIS Flood Tool (GFT) was developed by the U.S. Geological Survey with support from the U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance to provide a means for production of reconnaissance-level flood inundation mapping for data-sparse and resource-limited areas of the world. The GFT has also attracted interest as a tool for rapid assessment flood inundation mapping for the Flood Inundation Mapping Program of the U.S. Geological Survey. The GFT can fill an important gap for communities that lack flood inundation mapping by providing a first-estimate of inundation zones, pending availability of resources to complete an engineering study. The tool can also help identify priority areas for application of scarce flood inundation mapping resources. The technical basis of the GFT is an application of the Manning equation for steady flow in an open channel, operating on specially processed digital elevation data. The GFT is implemented as a software extension in ArcGIS. Output maps from the GFT were validated at 11 sites with inundation maps produced previously by the Flood Inundation Mapping Program using standard one-dimensional hydraulic modeling techniques. In 80 percent of the cases, the GFT inundation patterns matched 75 percent or more of the one-dimensional hydraulic model inundation patterns. Lower rates of pattern agreement were seen at sites with low relief and subtle surface water divides. Although the GFT is simple to use, it should be applied with the oversight or review of a qualified hydraulic engineer who understands the simplifying assumptions of the approach.

  17. Two-dimensional Model of Ciliwung River Flood in DKI Jakarta for Development of the Regional Flood Index Map

    Directory of Open Access Journals (Sweden)

    Adam Formánek

    2013-12-01

    Full Text Available The objective of this study was to present a sophisticated method of developing supporting material for flood control implementation in DKI Jakarta. High flow rates in the Ciliwung River flowing through Jakarta regularly causes extensive flooding in the rainy season. The affected area comprises highly densely populated villages. For developing an efficient early warning system in view of decreasing the vulnerability of the locations a flood index map has to be available. This study analyses the development of a flood risk map of the inundation area based on a two-dimensional modeling using FESWMS. The reference event used for the model was the most recent significant flood in 2007. The resulting solution represents flood characteristics such as inundation area, inundation depth and flow velocity. Model verification was performed by confrontation of the results with survey data. The model solution was overlaid with a street map of Jakarta. Finally, alternatives for flood mitigation measures are discussed.

  18. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  19. Cyber Surveillance for Flood Disasters

    Directory of Open Access Journals (Sweden)

    Shi-Wei Lo

    2015-01-01

    Full Text Available Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective.

  20. Combining Landform Thematic Layer and Object-Oriented Image Analysis to Map the Surface Features of Mountainous Flood Plain Areas

    Science.gov (United States)

    Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.

    2012-04-01

    The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster

  1. The flash flood of October 2011 in the Magra River basin (Italy): rainstorm characterisation and flood response analysis

    Science.gov (United States)

    Marchi, Lorenzo; Boni, Giorgio; Cavalli, Marco; Comiti, Francesco; Crema, Stefano; Lucía, Ana; Marra, Francesco; Zoccatelli, Davide

    2013-04-01

    On 25 October 2011, the Magra River, a stream of northwest Italy outflowing into the Ligurian Sea, was affected by a flash flood, which caused severe economic damage and loss of lives. The catchment covers an area of 1717 km2, of which 605 km2 are drained by the Vara River, the major tributary of the Magra River. The flood was caused by an intense rainstorm which lasted approximately 20 hours. The most intense phase lasted about 8 hours, with rainfall amounts up to around 500 mm. The largest rainfall depths (greater than 300 mm) occurred in a narrow southwest - northeast oriented belt covering an area of approximately 400 km2. This flash flood was studied by analysing rainstorm characteristics, runoff response and geomorphic effects. The rainfall fields used in the analysis are based on data from the Settepani weather radar antenna (located at around 100 km from the study basin) and the local rain gauge network. Radar observations and raingauge data were merged to obtain rainfall estimates at 30 min with a resolution of 1 km2. River stage and discharge rating curves are available for few cross-sections on the main channels. Post-flood documentation includes the reconstruction of peak discharge by means of topographic surveys and application of the slope-conveyance method in 34 cross-sections, observations on the geomorphic effects of the event - both in the channel network and on the hillslopes - and the assessment of the timing of the flood based on interviews to eyewitnesses. Regional authorities and local administrations contributed to the documentation of the flood by providing hydrometeorological data, civil protection volunteers accounts, photos and videos recorded during and immediately after the flood. A spatially distributed rainfall-runoff model, fed with rainfall estimates obtained by the radar-derived observations, was used to check the consistency of field-derived peak discharges and to derive the time evolution of the flood. The assessment of unit

  2. Flood-inundation and flood-mitigation modeling of the West Branch Wapsinonoc Creek Watershed in West Branch, Iowa

    Science.gov (United States)

    Cigrand, Charles V.

    2018-03-26

    The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the

  3. Remote sensing analysis for flood risk management in urban sprawl contexts

    Directory of Open Access Journals (Sweden)

    Francesca Franci

    2015-07-01

    Full Text Available Remote sensing can play a key role in risk assessment and management, especially when several concurrent factors coexist, such as a predisposition to natural disasters and the urban sprawl, spreading over highly vulnerable areas. In this context, multitemporal analysis can provide decision-makers with tools and information to reduce the impacts of disasters (e.g. flooding and to encourage a sustainable development. The present work focuses on the employment of multispectral satellite imagery to produce multitemporal land use/cover maps for the city of Dhaka, which is subject to frequent flooding events. In particular, the evaluation of the urban growth, the analysis of the annual dynamics of flooding and the study of the 2004 catastrophic event were performed. For the change-detection procedure, Landsat images were used. These images allow the quantification of the very rapid growth of the metropolis, with an increase in built-up areas from 75 to 111 km2. The image of 2009 showed that an ordinary flood affects about 115 km2 (on a studied area of 591 km2. On the other hand, the analysis of the 2004 extreme flooding event, performed on a wider area, showed that the affected lands added up to 750 km2 (on about 3845 km2.

  4. Assessment of Flood Disaster Impacts in Cambodia: Implications for Rapid Disaster Response

    Science.gov (United States)

    Ahamed, Aakash; Bolten, John; Doyle, Colin

    2016-04-01

    Disaster monitoring systems can provide near real time estimates of population and infrastructure affected by sudden onset natural hazards. This information is useful to decision makers allocating lifesaving resources following disaster events. Floods are the world's most common and devastating disasters (UN, 2004; Doocy et al., 2013), and are particularly frequent and severe in the developing countries of Southeast Asia (Long and Trong, 2001; Jonkman, 2005; Kahn, 2005; Stromberg, 2007; Kirsch et al., 2012). Climate change, a strong regional monsoon, and widespread hydropower construction contribute to a complex and unpredictable regional hydrodynamic regime. As such, there is a critical need for novel techniques to assess flood impacts to population and infrastructure with haste during and following flood events in order to enable governments and agencies to optimize response efforts following disasters. Here, we build on methods to determine regional flood extent in near real time and develop systems that automatically quantify the socioeconomic impacts of flooding in Cambodia. Software developed on cloud based, distributed processing Geographic Information Systems (GIS) is used to demonstrate spatial and numerical estimates of population, households, roadways, schools, hospitals, airports, agriculture and fish catch affected by severe monsoon flooding occurring in the Cambodian portion of Lower Mekong River Basin in 2011. Results show modest agreement with government and agency estimates. Maps and statistics generated from the system are intended to complement on the ground efforts and bridge information gaps to decision makers. The system is open source, flexible, and can be applied to other disasters (e.g. earthquakes, droughts, landslides) in various geographic regions.

  5. Flood Risk Management in Remote and Impoverished Areas—A Case Study of Onaville, Haiti

    Directory of Open Access Journals (Sweden)

    Valentin Heimhuber

    2015-07-01

    Full Text Available In this study, geographic information system (GIS-based hydrologic and hydraulic modeling was used to perform a flood risk assessment for Onaville, which is a fairly new, rapidly growing informal settlement that is exposed to dangerous flash-flood events. Since records of historic floods did not exist for the study area, design storms with a variety of significant average return intervals (ARIs were derived from intensity-duration-frequency (IDF curves and transformed into design floods via rainfall-runoff modeling in hydrologic engineering center’s hydrologic modeling system (HEC-HMS. The hydraulic modeling software hydrologic engineering center’s river analysis system (HEC-RAS was used to perform one-dimensional, unsteady-flow simulations of the design floods in the Ravine Lan Couline, which is the major drainage channel of the area. Topographic data comprised a 12 m spatial resolution TanDEM-X digital elevation model (DEM and a 30 cm spatial resolution DEM created with mapping drones. The flow simulations revealed that large areas of the settlement are currently exposed to flood hazard. The results of the hydrologic and hydraulic modeling were incorporated into a flood hazard map which formed the basis for flood risk management. We present a grassroots approach for preventive flood risk management on a community level, which comprises the elaboration of a neighborhood contingency plan and a flood risk awareness campaign together with representatives of the local community of Onaville.

  6. Assessing urban potential flooding risk and identifying effective risk-reduction measures.

    Science.gov (United States)

    Cherqui, Frédéric; Belmeziti, Ali; Granger, Damien; Sourdril, Antoine; Le Gauffre, Pascal

    2015-05-01

    Flood protection is one of the traditional functions of any drainage system, and it remains a major issue in many cities because of economic and health impact. Heavy rain flooding has been well studied and existing simulation software can be used to predict and improve level of protection. However, simulating minor flooding remains highly complex, due to the numerous possible causes related to operational deficiencies or negligent behaviour. According to the literature, causes of blockages vary widely from one case to another: it is impossible to provide utility managers with effective recommendations on how to improve the level of protection. It is therefore vital to analyse each context in order to define an appropriate strategy. Here we propose a method to represent and assess the flooding risk, using GIS and data gathered during operation and maintenance. Our method also identifies potential management responses. The approach proposed aims to provide decision makers with clear and comprehensible information. Our method has been successfully applied to the Urban Community of Bordeaux (France) on 4895 interventions related to flooding recorded during the 2009-2011 period. Results have shown the relative importance of different issues, such as human behaviour (grease, etc.) or operational deficiencies (roots, etc.), and lead to identify corrective and proactive. This study also confirms that blockages are not always directly due to the network itself and its deterioration. Many causes depend on environmental and operating conditions on the network and often require collaboration between municipal departments in charge of roads, green spaces, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Real-time Monitoring and Simulating of Urban Flood, a Case Study in Guangzhou

    Science.gov (United States)

    Huang, H.; Wang, X.; Zhang, S.; Liu, Y.

    2014-12-01

    In recent years urban flood frequently occurred and seriously impacted city's normal operation, particular on transportation. The increase of urban flood could be attributed to many factors, such as the increase of impervious land surface and extreme precipitation, the decrease of surface storage capacity, poor maintenance of drainage utilities, and so on. In order to provide accurate and leading prediction on urban flooding, this study acquires precise urban topographic data via air-borne Lidar system, collects detailed underground drainage pipes, and installs in-situ monitoring networks on precipitation, water level, video record and traffic speed in the downtown area of Panyu District, Guangzhou, China. Based on the above data acquired, a urban flood model with EPA SWMM5 is established to simulate the flooding and inundation processes in the study area of 20 km2. The model is driven by the real-time precipitation data and calibrated by the water level data, which are converted to flooding volume with precise topographic data. After calibration, the model could be employed to conduct sensitivity analysis for investigating primary factors of urban flooding, and to simulate the flooding processes in different scenarios, which are beneficial to assessment of flooding risk and drainage capacity. This model is expected to provide real-time forecasting in emergency management.

  8. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.

    Science.gov (United States)

    Wu, You; Kharge, Angana Banerjee; Perlman, Carrie E

    2014-10-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  9. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    Directory of Open Access Journals (Sweden)

    H. L. Chen

    2015-11-01

    Full Text Available Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  10. Impacts of 21st century sea-level rise on a Danish major city - an assessment based on fine-resolution digital topography and a new flooding algorithm

    DEFF Research Database (Denmark)

    Moeslund, Jesper Erenskjold; Bøcher, Peter Klith; Svenning, J.-C.

    2009-01-01

    by future sea-level rise to Aarhus. Under the A2 and A1FI (IPCC) climate scenarios we show that relatively large residential areas in the northern part of the city as well as areas around the river running through the city are likely to become flooded in the event of extreme, but realistic weather events......This study examines the potential impact of 21st century sea-level rise on Aarhus, the second largest city in Denmark, emphasizing the economic risk to the city's real estate. Furthermore, it assesses which possible adaptation measures that can be taken to prevent flooding in areas particularly...... to those produced in this study will become an important tool for a climate-change-integrated planning of future city development as well as for the development of evacuation plans....

  11. Application of RUNTA code in flood analyses

    International Nuclear Information System (INIS)

    Perez Martin, F.; Benitez Fonzalez, F.

    1994-01-01

    Flood probability analyses carried out to date indicate the need to evaluate a large number of flood scenarios. This necessity is due to a variety of reasons, the most important of which include: - Large number of potential flood sources - Wide variety of characteristics of flood sources - Large possibility of flood-affected areas becoming inter linked, depending on the location of the potential flood sources - Diversity of flood flows from one flood source, depending on the size of the rupture and mode of operation - Isolation times applicable - Uncertainties in respect of the structural resistance of doors, penetration seals and floors - Applicable degrees of obstruction of floor drainage system Consequently, a tool which carries out the large number of calculations usually required in flood analyses, with speed and flexibility, is considered necessary. The RUNTA Code enables the range of possible scenarios to be calculated numerically, in accordance with all those parameters which, as a result of previous flood analyses, it is necessary to take into account in order to cover all the possible floods associated with each flood area

  12. Are we safe? A tool to improve the knowledge of the risk areas: high-resolution floods database (MEDIFLOOD) for Spanish Mediterranean coast (1960 -2014)

    Science.gov (United States)

    Gil-Guirado, Salvador; Perez-Morales, Alfredo; Lopez-Martinez, Francisco; Barriendos-Vallve, Mariano

    2016-04-01

    The Mediterranean coast of the Iberian Peninsula concentrates an important part of the population and economic activities in Spain. Intensive agriculture, industry in the major urban centers, trade and tourism make this region the main center of economic dynamism and one of the highest rates of population and economic growth of southern Europe. This process accelerated after Franco regime started to be more open to the outside in the early sixties of the last century. The main responsible factor for this process is the climate because of warmer temperatures and a large number of sunny days, which has become in the economic slogan of the area. However, this growth process has happened without proper planning to reduce the impact of other climatic feature of the area, floods. Floods are the natural hazard that generates greater impacts in the area.One of the factors that facilitate the lack of strategic planning is the absence of a correct chronology of flood episodes. In this situation, land use plans, are based on inadequate chronologies that do not report the real risk of the population of this area. To reduce this deficit and contribute to a more efficient zoning of the Mediterranean coast according to their floods risk, we have prepared a high-resolution floods database (MEDIFLOOD) for all the municipalities of the Spanish Mediterranean coast since 1960 until 2013. The methodology consists on exploring the newspaper archives of all newspapers with a presence in the area. The searches have been made by typing the name of each of the 180 municipalities of the Spanish coast followed by 5 key terms. Each identified flood has been classified by dates and according to their level of intensity and type of damage. Additionally, we have consulted the specific bibliography to rule out any data gaps. The results are surprising and worrying. We have identified more than 3,600 cases where a municipality has been affected by floods. These cases are grouped into more than 700

  13. Assessing flash flood vulnerability using a multi-vulnerability approach

    Directory of Open Access Journals (Sweden)

    Karagiorgos Konstantinos

    2016-01-01

    Full Text Available In the framework of flood risk assessment, while the understanding of hazard and exposure has significantly improved over the last years, knowledge on vulnerability remains one of the challenges. Current approaches in vulnerability research are characterised by a division between social scientists and natural scientists. In order to close this gap, we present an approach that combines information on physical and social vulnerability in order to merge information on the susceptibility of elements at risk and society. With respect to physical vulnerability, the study is based on local-scale vulnerability models using nonlinear regression approaches. Modified Weibull distributions were fit to the data in order to represent the relationship between process magnitude and degree of loss. With respect to social vulnerability we conducted a door-to-door survey which resulted in particular insights on flood risk awareness and resilience strategies of exposed communities. In general, both physical and social vulnerability were low in comparison with other European studies, which may result from (a specific building regulations in the four Mediterranean test sites as well as general design principles leading to low structural susceptibility of elements at risk, and (b relatively low social vulnerability of citizens exposed. As a result it is shown that a combination of different perspectives of vulnerability will lead to a better understanding of exposure and capacities in flood risk management.

  14. Modeling of Flood Risk for the Continental United States

    Science.gov (United States)

    Lohmann, D.; Li, S.; Katz, B.; Goteti, G.; Kaheil, Y. H.; Vojjala, R.

    2011-12-01

    The science of catastrophic risk modeling helps people to understand the physical and financial implications of natural catastrophes (hurricanes, flood, earthquakes, etc.), terrorism, and the risks associated with changes in life expectancy. As such it depends on simulation techniques that integrate multiple disciplines such as meteorology, hydrology, structural engineering, statistics, computer science, financial engineering, actuarial science, and more in virtually every field of technology. In this talk we will explain the techniques and underlying assumptions of building the RMS US flood risk model. We especially will pay attention to correlation (spatial and temporal), simulation and uncertainty in each of the various components in the development process. Recent extreme floods (e.g. US Midwest flood 2008, US Northeast flood, 2010) have increased the concern of flood risk. Consequently, there are growing needs to adequately assess the flood risk. The RMS flood hazard model is mainly comprised of three major components. (1) Stochastic precipitation simulation module based on a Monte-Carlo analogue technique, which is capable of producing correlated rainfall events for the continental US. (2) Rainfall-runoff and routing module. A semi-distributed rainfall-runoff model was developed to properly assess the antecedent conditions, determine the saturation area and runoff. The runoff is further routed downstream along the rivers by a routing model. Combined with the precipitation model, it allows us to correlate the streamflow and hence flooding from different rivers, as well as low and high return-periods across the continental US. (3) Flood inundation module. It transforms the discharge (output from the flow routing) into water level, which is further combined with a two-dimensional off-floodplain inundation model to produce comprehensive flood hazard map. The performance of the model is demonstrated by comparing to the observation and published data. Output from

  15. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  16. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  17. A participatory approach of flood vulnerability assessment in the Banat Plain, Romania

    Science.gov (United States)

    Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines

    2014-05-01

    The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as

  18. NATURAL HAZARD ASSESSMENT OF SW MYANMAR - A CONTRIBUTION OF REMOTE SENSING AND GIS METHODS TO THE DETECTION OF AREAS VULNERABLE TO EARTHQUAKES AND TSUNAMI / CYCLONE FLOODING

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2009-01-01

    Full Text Available Myanmar, formerly Burma, is vulnerable to several natural hazards, such as earthquakes, cyclones, floods, tsunamis and landslides. The present study focuses on geomorphologic and geologic investigations of the south-western region of the country, based on satellite data (Shuttle Radar Topography Mission-SRTM, MODIS and LANDSAT. The main objective is to detect areas vulnerable to inundation by tsunami waves and cyclone surges. Since the region is also vulnerable to earthquake hazards, it is also important to identify seismotectonic patterns, the location of major active faults, and local site conditions that may enhance ground motions and earthquake intensities. As illustrated by this study, linear, topographic features related to subsurface tectonic features become clearly visible on SRTM-derived morphometric maps and on LANDSAT imagery. The GIS integrated evaluation of LANDSAT and SRTM data helps identify areas most susceptible to flooding and inundation by tsunamis and storm surges. Additionally, land elevation maps help identify sites greater than 10 m in elevation height, that would be suitable for the building of protective tsunami/cyclone shelters.

  19. Living with floods - Household perception and satellite observations in the Barotse floodplain, Zambia

    Science.gov (United States)

    Cai, Xueliang; Haile, Alemseged Tamiru; Magidi, James; Mapedza, Everisto; Nhamo, Luxon

    2017-08-01

    The Barotse Floodplain, a designated Ramsar site, is home to thousands of indigenous people along with an extensive wetland ecosystem and food production system. Increasingly it is also a popular tourist destination with its annual Kuomboka festival which celebrates the relocation of the king and the Lozi people to higher ground before the onset of the flood season. This paper presents an integrated approach which cross validates and combines the floodplain residents' perceptions about recent floods with information on flood inundation levels derived from satellite observations. Local residents' surveys were conducted to assess farmers' perception on the flooding patterns and the impact on their livelihoods. Further, a series of flood inundation maps from 1989 to 2014 generated from remotely sensed Landsat imagery were used to assess the recent patterns of floods. Results show that the floodplain has a population of 33 thousand living in 10,849 small permeant or temporary buildings with a total cropland area of 4976 ha. The floodplain hydrology and flooding patterns have changed, confirmed by both surveys and satellite image analysis, due to catchment development and changing climate. The average annual inundated areas have increased from about 316 thousand ha in 1989-1998 to 488 thousand ha in 2005-2014. As a result the inundated cropland and houses increased from 9% to 6% in 1989 to 73% and 47% in 2014, respectively. The timing of the floods has also changed with both delaying and early onset happening more frequently. These changes cause increasing difficulties in flood forecast and preparation using indigenous knowledge, therefore creating greater damages to crops, livestock, and houses. Current floodplain management system is inadequate and new interventions are needed to help manage the floods at a systematic manner.

  20. Slope-Area Computation Program Graphical User Interface 1.0—A Preprocessing and Postprocessing Tool for Estimating Peak Flood Discharge Using the Slope-Area Method

    Science.gov (United States)

    Bradley, D. Nathan

    2012-01-01

    The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data

  1. Factors that affect riverines territorial behavior on fishing environments in flooding areas, Low Solimões, Central Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Jorge Iván Sánchez-Botero

    2010-12-01

    Full Text Available Flooding areas present high biological productivity and are inhabited by populations that practice agriculture-fishing activities, based on the multiple use of resources. The economicity of the system leads the riverines to territorial appropriation and the common dependence of the resources leads to the establishment of internal agreements, defining criteria of access and intensity of extraction. This study, through 244 interviews with fishermen and meetings at 16 communities of Low Solimões River, identified factors that influence on the magnitude and purpose of the fisheries, especially at common use fishing spots, describing appropriation mechanisms and conflicts. The studied area comprehends two systems of terra firme and one of flooding lakes. For subsistence and commercial fisheries was estimated the area, extension, and frequency of use for period of the year (dry/flood. Each community explored the fishing environments depending on the proximity and/or accessibility, revealing uses inside its territorial delimitations, with superposing on that explored for subsistence and commercial means. There are conflicts with commercial and sporting fisheries, fishermen out from the region and farmers. Prohibitions or access control don't exist to the igapós systems, but informal rules regulating the use. Three sceneries are proposed for the integrated management of the systems in the area, due to the diversity of environments and interests of the involved groups.

  2. Geomorphic effects and impacts of severe flooding : photographic examples from the Saguenay area, Quebec : Geological Survey of Canada miscellaneous report 62

    International Nuclear Information System (INIS)

    Brooks, G.R.; Lawrence, D.E.

    1998-01-01

    In July, 1996 the Saguenay-Lac-Saint-Jean area in southern Quebec fell victim to a disastrous flood resulting from heavy rain. In the same year, major flooding occurred along several rivers in British Columbia, Alberta, Saskatchewan and Manitoba. This photographic review of these natural disasters is intended to increase public awareness of the effects of severe flooding, thereby contributing to flood disaster reduction. The photographs show how the flooding caused a wide range of geomorphic changes and impacts which varied from river to river and from one reach to another along the same river. The photos are arranged in order of increasing severity, depicting scenes of the aux Sables, Chicoutimi, du Moulin, a Mars and the Ha Ha rivers. 18 refs., 24 figs

  3. Integrating Global Open Geo-Information for Major Disaster Assessment: A Case Study of the Myanmar Flood

    Directory of Open Access Journals (Sweden)

    Suju Li

    2017-07-01

    Full Text Available Major disasters typically impact large areas, cause considerable damages, and result in significant human and economic losses. The timely and accurate estimation of impacts and damages is essential to better understand disaster conditions and to support emergency response operations. Geo-information drawn from various sources at multi spatial-temporal scales can be used for disaster assessments through a synthesis of hazard, exposure, and post disaster information based on pertinent approaches. Along with the increased availability of open sourced data and cooperation initiatives, more global scale geo-information, including global land cover datasets, has been produced and can be integrated with other information for disaster dynamic damage assessment (e.g., impact estimation immediately after a disaster occurs, physical damage assessment during the emergency response stage, and comprehensive assessment following an emergency response. Residential areas and arable lands affected by the flood disaster occurring from July to August 2015 in Myanmar were assessed based on satellite images, GlobeLand30 data, and other global open sourced information as a study case. The results show that integrating global open geo-information could serve as a practical and efficient means of assessing damage resulting from major disasters worldwide, especially at the early emergency response stage.

  4. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  5. Identification and classification of Serbia's historic floods

    Directory of Open Access Journals (Sweden)

    Prohaska Stevan

    2009-01-01

    Full Text Available River flooding in Serbia is a natural phenomenon which largely exceeds the scope of water management and hydraulic engineering, and has considerable impact on the development of Serbian society. Today, the importance and value of areas threatened by floods are among the key considerations of sustainable development. As a result, flood protection techniques and procedures need to be continually refined and updated, following innovations in the fields of science and technology. Knowledge of high flows is key for sizing hydraulic structures and for gauging the cost-effectiveness and safety of the component structures of flood protection systems. However, sizing of hydraulic structures based on computed high flows does not ensure absolute safety; there is a residual flood risk and a risk of structural failure, if a flood exceeds computed levels. In hydrological practice, such floods are often referred to as historic/loads. The goal of this paper is to present a calculation procedure for the objective identification of historic floods, using long, multiple-year series of data on high flows of natural watercourses in Serbia. At its current stage of development, the calculation procedure is based on maximum annual discharges recorded at key monitoring stations of the Hydro-Meteorological Service of Serbia (HMS Serbia. When applied, the procedure results in the identification of specific historic maximum stages/floods (if any at all gauge sites included in the analysis. The probabilistic theory is then applied to assess the statistical significance of each identified historic flood and to classify the historic flood, as appropriate. At the end of the paper, the results of the applied methodology are shown in tabular and graphic form for various Serbian rivers. All identified historic floods are ranked based on their probability of occurrence (i.e., return period.

  6. Re-thinking urban flood management

    DEFF Research Database (Denmark)

    Sörensen, Johanna; Persson, Andreas; Sternudd, Catharina

    2016-01-01

    -term flood risk and harm the riverine ecosystems in urban as well as rural areas. In the present paper, we depart from resilience theory and suggest a concept to improve urban flood resilience. We identify areas where contemporary challenges call for improved collaborative urban flood management. The concept...... emphasizes resiliency and achieved synergy between increased capacity to handle stormwater runoff and improved experiential and functional quality of the urban environments. We identify research needs as well as experiments for improved sustainable and resilient stormwater management namely, flexibility...

  7. Flood Stress as a Technique to Assess Preventive Insecticide and Fungicide Treatments for Protecting Trees against Ambrosia Beetles

    Directory of Open Access Journals (Sweden)

    Christopher M. Ranger

    2016-08-01

    Full Text Available Ambrosia beetles tunnel into the heartwood of trees where they cultivate and feed upon a symbiotic fungus. We assessed the effectiveness of flood stress for making Cercis canadensis L. and Cornus florida L. trees attractive to attack as part of insecticide and fungicide efficacy trials conducted in Ohio and Virginia. Since female ambrosia beetles will not begin ovipositing until their symbiotic fungus is established within the host, we also assessed pre-treatment of trees with permethrin, azoxystrobin, and potassium phosphite on fungal establishment and beetle colonization success. Permethrin reduced attacks on flooded trees, yet no attacks occurred on any of the non-flooded trees. Fewer galleries created within flooded trees pre-treated with permethrin, azoxystrobin, and potassium phosphite contained the purported symbiotic fungus; foundress’ eggs were only detected in flooded but untreated trees. While pre-treatment with permethrin, azoxystrobin, and potassium phosphite can disrupt colonization success, maintaining tree health continues to be the most effective and sustainable management strategy.

  8. Preparation of a flood-risk environmental index: case study of eight townships in Changhua County, Taiwan.

    Science.gov (United States)

    Peng, Szu-Hsien

    2018-02-26

    To evaluate flood-prone areas, correlation analysis of flooding factors for the quantitative evaluation of hazard degree was determined to assist in further disaster prevention management. This study used flood-prone areas in 35 villages over eight townships (Changhua, Huatan, Yuanlin, Xiushui, Puyan, Hemei, Dacun, and Erlin) in Changhua County as research samples. Linear combination was used to evaluate flood-prone environmental indices, and an expert questionnaire was designed by using the analytic hierarchy process and the Delphi method to determine the weights of factors. These factors were then used to calculate the eigenvector of a pairwise comparison matrix to obtain the weights for the risk assessment criteria. Through collection of disaster cases, with particular focus on specifically protected areas where flooding has occurred or is likely to occur, public adaptation and response capabilities were evaluated by using an interview questionnaire that contains the items of perceived disaster risk, resource acquisition capability, adaptation capability, and environment understanding and disaster prevention education. Overlays in a geographic information system were used to analyze the flood-risk degree in villages and to construct a distribution map that contains flood-prone environment indices. The results can assist local governments in understanding the risk degree of various administrative areas to aid them in developing effective mitigation plans.

  9. Pluvial, urban flood mechanisms and characteristics - Assessment based on insurance claims

    Science.gov (United States)

    Sörensen, Johanna; Mobini, Shifteh

    2017-12-01

    Pluvial flooding is a problem in many cities and for city planning purpose the mechanisms behind pluvial flooding are of interest. Previous studies seldom use insurance claim data to analyse city scale characteristics that lead to flooding. In the present study, two long time series (∼20 years) of flood claims from property owners have been collected and analysed in detail to investigate the mechanisms and characteristics leading to urban flooding. The flood claim data come from the municipal water utility company and property owners with insurance that covers property loss from overland flooding, groundwater intrusion through basement walls and flooding from the drainage system. These data are used as a proxy for flood severity for several events in the Swedish city of Malmö. It is discussed which rainfall characteristics give most flooding and why some rainfall events do not lead to severe flooding, how city scale topography and sewerage system type influence spatial distribution of flood claims, and which impact high sea level has on flooding in Malmö. Three severe flood events are described in detail and compared with a number of smaller flood events. It was found that the main mechanisms and characteristics of flood extent and its spatial distribution in Malmö are intensity and spatial distribution of rainfall, distance to the main sewer system as well as overland flow paths, and type of drainage system, while high sea level has little impact on the flood extent. Finally, measures that could be taken to lower the flood risk in Malmö, and other cities with similar characteristics, are discussed.

  10. Flood Simulation based on ArcGIS in the Ungauged Area from Fugu to Wubao of the middle Yellow River

    Science.gov (United States)

    Jin, Shuangyan; Yan, Yiqi; Jiang, Xinhui

    2017-12-01

    The Qingliangsigou and Jialuhe in the middle Yellow River are selected as the typical tributaries, history flood data in 1980-2013 and Horton infiltration capacity curve are used to calculate the stable infiltration rate and establish the model of runoff yield and concentration, the parameters are calibrated and applied in the ungauged area from Fugu to Wubao. The study area is divided into 20 units based on ArcGIS, Muskingum method parameters in each unit are calibrated, and typical floods of ungauged area from Fugu to Wubao are simulated. The results show that the simulation effects are good: the average error of peak time is about -0.4h, the error of peak discharge is in the forecasting allowable range, and the deterministic coefficient is 0.66.

  11. USING GIS TO IDENTIFY POTENTIAL AREAS SUSCEPTIBLE TO FLOOD. CASE STUDY: SOLONEŢ RIVER

    Directory of Open Access Journals (Sweden)

    V. TIPLEA

    2011-03-01

    Full Text Available Using GIS to Identify Potential Areas Susceptible to Flood. Case Study: Soloneţ River. In this study, we aim to analyze the impact of different peak flows in territory and also a better understanding of the dynamic of a river flow. The methodology used for flood zone delimitation is based on a quantitative analysis model which requires the use of mathematical, physical and statistical operations in order to emphasize the relations between the different variables that were implied (discharges, grain size, terrain morphology, soil saturation, vegetation etc.. The results cannot be expected to be completely accurate but can provide a good representation of the process. Validation of results will inevitably be difficult and should be measured in the field. The information resulting from this study could be useful for raising awareness about both hazards and possible mitigation measure, a key component of disaster risk reduction planning.

  12. Multidisciplinary approach to evaluate flood damage for residential buildings: first results in Northern Italy

    Science.gov (United States)

    Luino, Fabio

    2015-04-01

    Flooding is the most common natural instability process in Italy. Flood damage are the results of land-use planning policies which, starting chiefly from the late 1950s and early 1960s, did not take into account the geomorphologic-hydraulic characteristics of an area or the its historical data on past flood events. Historically, compared to other areas, riverside property has always been less valuable. Unfortunately, year after year, even areas of high recreational and environmental value were intensely urbanized despite their being exposed to the threat of flooding. As the number of residential dwellings, infrastructure and industrial buildings increased, what was originally a hazard became a risk. For each flood event, the damage depends on the specific land-use of the area and subsequently on the elements at risk in the area involved and its vulnerability, expressed as a percentage of the element that has actually been lost during the event. This is why a comprehensive knowledge of the area it is so important for conducting a detailed survey of an area's structures and infrastructure and to evaluate the degree of vulnerability. This paper presents first results in Italy of the European Project called DAMAGE, the first attempt by the civil protection agencies of several European Union member states to devise a common methodology for the assessment of damage caused by natural or anthropic disasters. The main objective was to create an initial tool for practical and immediate application by civil protection agencies and local governments, to assess damage in a multidimensional perspective that takes into account infrastructure, the economy, the environment and social problems. Within the framework of a broad-based project for the evaluation and collection of reports on damage caused by floods, the CNR-IRPI of Turin and Regione Lombardia have directed attention to the town of Cittiglio (province of Varese), which was struck by severe flash flood in May 2002. One of

  13. Structural evaluation of multifunctional flood defenses

    NARCIS (Netherlands)

    Voorendt, M.Z.; Kothuis, Baukje; Kok, Matthijs

    2017-01-01

    Flood risk reduction aims to minimize losses in low-lying areas. One of the ways to reduce flood risks is to protect land by means of flood defenses. The Netherlands has a long tradition of flood protection and, therefore, a wide variety of technical reports written

  14. The use of a flood index to characterise flooding in the north-eastern region of Bangladesh

    Directory of Open Access Journals (Sweden)

    Bhattacharya B.

    2016-01-01

    Full Text Available Flooding in the Haor region in the north-east of Bangladesh is presented in this paper. A haor is a saucershaped depression, which is used during the dry period (Dec to mid-May for agriculture and as a fishery during the wet period (Jun-Nov. Pre-monsoon flooding till mid-May causes agricultural loss. The area is bordering India, and is fed by some flashy Indian catchments. The area is drained mainly by the Surma-Kushiyara river system. The terrain generally is flat and the flashy characteristics die out within a short distance from the border. Limited studies on the region, particularly with the help of numerical models, have been carried out in the past. Therefore, an objective of the current research was to set up numerical models capable of reasonably emulating the physical system. Such models could, for example, associate different gauges to the spatio-temporal variation of hydrodynamic variables and help in carrying out a systemic study on the flood propagation. A 1D2D model, with one-dimensional model for the rivers (based on MIKE 11 from DHI and a two-dimensional model for the haors (based on MIKE 21 from DHI were developed. In order to characterize flooding in the large area a flood index is proposed, which is computed based on the hydrograph characteristics such as the rising curve gradient, flood magnitude ratio and time to peak. The index was used in characterising flooding in the Haor region. In general, two groups of rivers were identified. The study enabled identifying the hot-spots in the study area with risks from flooding.

  15. Mapping flood hazards under uncertainty through probabilistic flood inundation maps

    Science.gov (United States)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.

    2017-12-01

    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  16. 44 CFR 60.22 - Planning considerations for flood-prone areas.

    Science.gov (United States)

    2010-10-01

    ... vehicular access and escape routes when normal routes are blocked or destroyed by flooding; (8... drainage to control increased runoff that might increase the danger of flooding to other properties; (10... of any alteration or relocation of a watercourse, except as part of an overall drainage basin plan...

  17. Assessing floods and droughts in the Mékrou River basin (West Africa): a combined household survey and climatic trends analysis approach

    Science.gov (United States)

    Markantonis, Vasileios; Farinosi, Fabio; Dondeynaz, Celine; Ameztoy, Iban; Pastori, Marco; Marletta, Luca; Ali, Abdou; Carmona Moreno, Cesar

    2018-05-01

    The assessment of natural hazards such as floods and droughts is a complex issue that demands integrated approaches and high-quality data. Especially in African developing countries, where information is limited, the assessment of floods and droughts, though an overarching issue that influences economic and social development, is even more challenging. This paper presents an integrated approach to assessing crucial aspects of floods and droughts in the transboundary Mékrou River basin (a portion of the Niger River basin in West Africa), combining climatic trends analysis and the findings of a household survey. The multivariable trend analysis estimates, at the biophysical level, the climate variability and the occurrence of floods and droughts. These results are coupled with an analysis of household survey data that reveals the behaviour and opinions of local residents regarding the observed climate variability and occurrence of flood and drought events, household mitigation measures, and the impacts of floods and droughts. Based on survey data analysis, the paper provides a per-household cost estimation of floods and droughts that occurred over a 2-year period (2014-2015). Furthermore, two econometric models are set up to identify the factors that influence the costs of floods and droughts to impacted households.

  18. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  19. Testing an innovative framework for flood forecasting, monitoring and mapping in Europe

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Between May and June 2016, France was hit by severe floods, particularly in the Loire and Seine river basins. In this work, we use this case study to test an innovative framework for flood forecasting, mapping and monitoring. More in detail, the system integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. We explore in detail the performance of each component of the system, demonstrating the improvements in respect to stand-alone flood forecasting and monitoring systems. We show how the performances of the forecasting component can be refined using the real-time feedback from social media monitoring to identify which areas were flooded, to evaluate the flood intensity, and therefore to correct impact estimations. Moreover, we show how the integration with impact forecast and social media monitoring can improve the timeliness and efficiency of satellite based emergency mapping, and reduce the chances of missing areas where flooding is already happening. These results illustrate how the new integrated approach leads to a better and earlier decision making and a timely evaluation of impacts.

  20. Flood of April 1975 at Williamston, Michigan

    Science.gov (United States)

    Knutilla, R.L.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  1. Regional models for distributed flash-flood nowcasting: towards an estimation of potential impacts and damages

    Directory of Open Access Journals (Sweden)

    Le Bihan Guillaume

    2016-01-01

    Full Text Available Flash floods monitoring systems developed up to now generally enable a real-time assessment of the potential flash-floods magnitudes based on highly distributed hydrological models and weather radar records. The approach presented here aims to go one step ahead by offering a direct assessment of the potential impacts of flash floods on inhabited areas. This approach is based on an a priori analysis of the considered area in order (1 to evaluate based on a semi-automatic hydraulic approach (Cartino method the potentially flooded areas for different discharge levels, and (2 to identify the associated buildings and/or population at risk based on geographic databases. This preliminary analysis enables to build a simplified impact model (discharge-impact curve for each river reach, which can be used to directly estimate the importance of potentially affected assets based on the outputs of a distributed rainfall-runoff model. This article presents a first case study conducted in the Gard region (south eastern France. The first validation results are presented in terms of (1 accuracy of the delineation of the flooded areas estimated based on the Cartino method and using a high resolution DTM, and (2 relevance and usefulness of the impact model obtained. The impacts estimated at the event scale will now be evaluated in a near future based on insurance claim data provided by CCR (Caisse Centrale de Réassurrance.

  2. Surface water flood risk and management strategies for London: An Agent-Based Model approach

    Directory of Open Access Journals (Sweden)

    Jenkins Katie

    2016-01-01

    Full Text Available Flooding is recognised as one of the most common and costliest natural disasters in England. Flooding in urban areas during heavy rainfall is known as ‘surface water flooding’, considered to be the most likely cause of flood events and one of the greatest short-term climate risks for London. In this paper we present results from a novel Agent-Based Model designed to assess the interplay between different adaptation options, different agents, and the role of flood insurance and the flood insurance pool, Flood Re, in the context of climate change. The model illustrates how investment in adaptation options could reduce London’s surface water flood risk, today and in the future. However, benefits can be outweighed by continued development in high risk areas and the effects of climate change. Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, it offers no additional benefits in terms of overall risk reduction, and will face increasing pressure due to rising surface water flood risk in the future. The modelling approach and findings are highly relevant for reviewing the proposed Flood Re scheme, as well as for wider discussions on the potential of insurance schemes, and broader multi-sectoral partnerships, to incentivise flood risk management in the UK and internationally.

  3. Safety case methodology for decommissioning of research reactors. Assessment of the long term impact of a flooding scenario

    International Nuclear Information System (INIS)

    Vladescu, G.; Banciu, O.

    1999-01-01

    The paper contains the assessment methodology of a Safety Case fuel decommissioning of research reactors, taking into account the international approach principles. The paper also includes the assessment of a flooding scenario for a decommissioned research reactor (stage 1 of decommissioning). The scenario presents the flooding of reactor basement, radionuclide migration through environment and long term radiological impact for public. (authors)

  4. RURAL FLASH-FLOOD BEHAVIOR IN GOUYAVE WATERSHED, GRENADA, CARIBBEAN ISLAND

    Directory of Open Access Journals (Sweden)

    Rahmat Aris Pratomo

    2016-10-01

    Full Text Available Flash-flood is considered as one of the most common natural disasters in Grenada, a tropical small state island in Caribbean Island. Grenada has several areas which are susceptible to flooding. One of them is Gouyave town which is located in the north-west of Grenada. Its land-use types are highly dominated by green areas, especially in the upper-part of the region. The built-up areas can only be found in the lower-part of Gouyave watershed, near the coastal area. However, there were many land conversions from natural land-use types into built-up areas in the upper-part region. They affected the decrease of water infiltration and the increase of potential run-off, making these areas susceptible to flash-flood. In addition, it is also influenced by the phenomenon of climate change. Changes in extreme temperature increase higher potential of hurricanes or wind-storm, directly related to the potential escalation of flash-flood. To develop effective mitigation strategies, understanding the behavior of flash-flood is required. The purpose of this paper was to observe the behavior of flash-flood in Gouyave watershed in various return periods using OpenLISEM software. It was used to develop and analyse the flash-flood characteristics. The result showed that the climatic condition (rainfall intensity and land-use are influential to the flash-flood event. Flash-flood occurs in 35 and 100 years return period. Flash-flood inundates Gouyave’s area in long duration, with below 1 m flood depth. The flood propagation time is slow. This condition is also influenced by the narrower and longer of Gouyave basin shape. To develop flash-flood reduction strategies, the overall understanding of flash-flood behavior is important. If the mitigation strategy is adapted to their behavior, the implementation will be more optimum.

  5. Challenges in estimating the health impact of Hurricane Sandy using macro-level flood data.

    Science.gov (United States)

    Lieberman-Cribbin, W.; Liu, B.; Schneider, S.; Schwartz, R.; Taioli, E.

    2016-12-01

    Background: Hurricane Sandy caused extensive physical and economic damage but the long-term health impacts are unknown. Flooding is a central component of hurricane exposure, influencing health through multiple pathways that unfold over months after flooding recedes. This study assesses concordance in Federal Emergency Management (FEMA) and self-reported flood exposure after Hurricane Sandy to elucidate discrepancies in flood exposure assessments. Methods: Three meter resolution New York State flood data was obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. FEMA data was compared to self-reported flood data obtained through validated questionnaires from New York City and Long Island residents following Sandy. Flooding was defined as both dichotomous and continuous variables and analyses were performed in SAS v9.4 and ArcGIS 10.3.1. Results: There was a moderate agreement between FEMA and self-reported flooding (Kappa statistic 0.46) and continuous (Spearman's correlation coefficient 0.50) measures of flood exposure. Flooding was self-reported and recorded by FEMA in 23.6% of cases, while agreement between the two measures on no flooding was 51.1%. Flooding was self-reported but not recorded by FEMA in 8.5% of cases, while flooding was not self-reported but indicated by FEMA in 16.8% of cases. In this last instance, 84% of people (173/207; 83.6%) resided in an apartment (no flooding reported). Spatially, the most concordance resided in the interior of New York City / Long Island, while the greatest areas of discordance were concentrated in the Rockaway Peninsula and Long Beach, especially among those living in apartments. Conclusions: There were significant discrepancies between FEMA and self-reported flood data. While macro-level FEMA flood data is a relatively less expensive and faster way to provide exposure estimates spanning larger geographic areas affected by Hurricane Sandy than micro-level estimates from cohort studies, macro

  6. Crowdsourcing detailed flood data

    Science.gov (United States)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  7. Beyond design basis external flooding. Generic design assessment and lessons learned from the Fukushima Dai-ichi accident

    International Nuclear Information System (INIS)

    MacLeod, Tanya; Smith, Leslie; Allmark, Tim; Ford, Peter

    2017-01-01

    New reactors intended for construction in GB undergo the Office for Nuclear Regulation's (ONR's) Generic Design Assessment (GDA). GDA is a pre-licensing process that provides requesting parties with the opportunity to demonstrate at an early stage that the design is capable of meeting the legal requirements of Great Britain. During GDA, the intended reactor site may not yet be known. Therefore, requesting parties usually define a 'Generic Site' with characteristics typical for Great Britain. These characteristics should, as far as possible, bound the characteristics of known potential sites so that reactors of the proposed type could potentially be built at various suitable locations. This paper critically reviews ONR's approach to ensuring that external flooding is appropriately addressed at the GDA stage and covers: An overview of ONR's approach to post-Fukushima assessment. Changes to ONR's SAPs (Safety Assessment Principles) related to External Flooding. Two examples of post-Fukushima GDA approaches to External Flooding. Uncertainty and the provision of adequate safety measures. The paper concludes that the identification of potential vulnerabilities in the design to external flooding combined with a consideration of post-Fukushima resilience enhancements has led to increased regulatory confidence in the robustness of new reactor designs in GB against external flooding. (author)

  8. A new flood type classification method for use in climate change impact studies

    Directory of Open Access Journals (Sweden)

    Thea Turkington

    2016-12-01

    Full Text Available Flood type classification is an optimal tool to cluster floods with similar meteorological triggering conditions. Under climate change these flood types may change differently as well as new flood types develop. This paper presents a new methodology to classify flood types, particularly for use in climate change impact studies. A weather generator is coupled with a conceptual rainfall-runoff model to create long synthetic records of discharge to efficiently build an inventory with high number of flood events. Significant discharge days are classified into causal types using k-means clustering of temperature and precipitation indicators capturing differences in rainfall amount, antecedent rainfall and snow-cover and day of year. From climate projections of bias-corrected temperature and precipitation, future discharge and associated change in flood types are assessed. The approach is applied to two different Alpine catchments: the Ubaye region, a small catchment in France, dominated by rain-on-snow flood events during spring, and the larger Salzach catchment in Austria, affected more by rainfall summer/autumn flood events. The results show that the approach is able to reproduce the observed flood types in both catchments. Under future climate scenarios, the methodology identifies changes in the distribution of flood types and characteristics of the flood types in both study areas. The developed methodology has potential to be used flood impact assessment and disaster risk management as future changes in flood types will have implications for both the local social and ecological systems in the future.

  9. Flood loss reduction of private households due to building precautionary measures -- lessons learned from the Elbe flood in August 2002

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2005-01-01

    Full Text Available Building houses in inundation areas is always a risk, since absolute flood protection is impossible. Where settlements already exist, flood damage must be kept as small as possible. Suitable means are precautionary measures such as elevated building configuration or flood adapted use. However, data about the effects of such measures are rare, and consequently, the efficiency of different precautionary measures is unclear. To improve the knowledge about efficient precautionary measures, approximately 1200 private households, which were affected by the 2002 flood at the river Elbe and its tributaries, were interviewed about the flood damage of their buildings and contents as well as about their precautionary measures. The affected households had little flood experience, i.e. only 15% had experienced a flood before. 59% of the households stated that they did not know, that they live in a flood prone area. Thus, people were not well prepared, e.g. just 11% had used and furnished their house in a flood adapted way and only 6% had a flood adapted building structure. Building precautionary measures are mainly effective in areas with frequent small floods. But also during the extreme flood event in 2002 building measures reduced the flood loss. From the six different building precautionary measures under study, flood adapted use and adapted interior fitting were the most effective ones. They reduced the damage ratio for buildings by 46% and 53%, respectively. The damage ratio for contents was reduced by 48% due to flood adapted use and by 53% due to flood adapted interior fitting. The 2002 flood motivated a relatively large number of people to implement private precautionary measures, but still much more could be done. Hence, to further reduce flood losses, people's motivation to invest in precaution should be improved. More information campaigns and financial incentives should be issued to encourage precautionary measures.

  10. Assessing uncertainties in flood forecasts for decision making: prototype of an operational flood management system integrating ensemble predictions

    Directory of Open Access Journals (Sweden)

    J. Dietrich

    2009-08-01

    Full Text Available Ensemble forecasts aim at framing the uncertainties of the potential future development of the hydro-meteorological situation. A probabilistic evaluation can be used to communicate forecast uncertainty to decision makers. Here an operational system for ensemble based flood forecasting is presented, which combines forecasts from the European COSMO-LEPS, SRNWP-PEPS and COSMO-DE prediction systems. A multi-model lagged average super-ensemble is generated by recombining members from different runs of these meteorological forecast systems. A subset of the super-ensemble is selected based on a priori model weights, which are obtained from ensemble calibration. Flood forecasts are simulated by the conceptual rainfall-runoff-model ArcEGMO. Parameter uncertainty of the model is represented by a parameter ensemble, which is a priori generated from a comprehensive uncertainty analysis during model calibration. The use of a computationally efficient hydrological model within a flood management system allows us to compute the hydro-meteorological model chain for all members of the sub-ensemble. The model chain is not re-computed before new ensemble forecasts are available, but the probabilistic assessment of the output is updated when new information from deterministic short range forecasts or from assimilation of measured data becomes available. For hydraulic modelling, with the desired result of a probabilistic inundation map with high spatial resolution, a replacement model can help to overcome computational limitations. A prototype of the developed framework has been applied for a case study in the Mulde river basin. However these techniques, in particular the probabilistic assessment and the derivation of decision rules are still in their infancy. Further research is necessary and promising.

  11. Rethinking the relationship between flood risk perception and flood management.

    Science.gov (United States)

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. RAPID Assessment of Extreme Reservoir Sedimentation Resulting from the September 2013 Flood, North St. Vrain Creek, CO

    Science.gov (United States)

    Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.

    2014-12-01

    During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about

  13. Urban flooding and Resilience: concepts and needs

    Science.gov (United States)

    Gourbesville, Ph.

    2012-04-01

    During the recent years, a growing interest for resilience has been expressed in the natural disaster mitigation area and especially in the flood related events. The European Union, under the Seventh Framework Programme (FP7), has initiated several research initiatives in order to explore this concept especially for the urban environments. Under urban resilience is underlined the ability of system potentially exposed to hazard to resist, respond, recover and reflect up to stage which is enough to preserve level of functioning and structure. Urban system can be resilient to lot of different hazards. Urban resilience is defined as the degree to which cities are able to tolerate some disturbance before reorganizing around a new set of structures and processes (Holling 1973, De Bruijn 2005). The United Nation's International strategy for Disaster Reductions has defined resilience as "the capacity of a system, community or society potentially exposed to hazards to adapt, by resisting or changing in order to reach and maintain an acceptable level of functioning and structure. This is determined by the degree to which the social system is capable of organizing itself to increase this capacity for learning from past disasters for better future protection and to improve risk reduction measures."(UN/ISDR 2004). According to that, system should be able to accept the hazard and be able to recover up to condition that provides acceptable operational level of city structure and population during and after hazard event. Main elements of urban system are built environment and population. Physical characteristic of built environment and social characteristic of population have to be examined in order to evaluate resilience. Therefore presenting methodology for assessing flood resilience in urban areas has to be one of the focal points for the exposed cities. Strategies under flood management planning related to resilience of urban systems are usually regarding controlling runoff

  14. The Irma-sponge Project Frhymap: Flood Risk and Hydrological Mapping

    Science.gov (United States)

    Hoffmann, L.; Pfister, L.

    In the context of both increasing socio-economic developments in floodplains and the recent heavy floodings that have occurred in the Rhine and Meuse basins, the need for reliable hydro-climatological data, easily transposable hydrological and hydraulic models, as well as risk management tools has increased crucially. In the FRHYMAP project, some of these issues were addressed within a common mesoscale experimen- tal basin: the Alzette river basin, located in the Grand-duchy of Luxembourg. The various aspects concerning flooding events, reaching from the hydro-climatological analysis of field data to the risk assessment of socio-economic impacts, taking into account past and future climate and landuse changes were analysed by the six partici- pating research institutes (CREBS, L; CEREG, F; DLR, D; EPFL, CH; UB, D; VUB, B). Hydro-climatological data analysis over the past five decades has shown that in the study area, the increase in westerly and south-westerly atmospheric circulation patterns induced higher winter rainfall totals, leading to more frequent groundwater resurgences and ultimately also to higher daily maximum streamflow of the Alzette. The thus increased flood hazard has nonetheless a certain spatial variability, closely linked to the rainfall distribution patterns, which are strongly depending on the topo- graphical characteristics of the study area. Although the overall regime of the Alzette is more dependent on climate fluctuations, land use changes (mining activities, urbani- sation) had a marked effect on the rainfall-runoff relationship in some sub-basins over the last decades. By linking model parameters to physiographical basin characteris- tics, regionalised and thus easily transposable hydrological models were developed. Within a study area with very little long-term observation series, this technique, com- bined with the use of hydraulic models, allowed to define hydrological hazard pro- ducing and hydrological risk exposed areas. The

  15. Analysis of the flood extent extraction model and the natural flood influencing factors: A GIS-based and remote sensing analysis

    International Nuclear Information System (INIS)

    Lawal, D U; Matori, A N; Yusuf, K W; Hashim, A M; Balogun, A L

    2014-01-01

    Serious floods have hit the State of Perlis in 2005, 2010, as well as 2011. Perlis is situated in the northern part of Peninsula Malaysia. The floods caused great damage to properties and human lives. There are various methods used in an attempt to provide the most reliable ways to reduce the flood risk and damage to the optimum level by identifying the flood vulnerable zones. The purpose of this paper is to develop a flood extent extraction model based on Minimum Distance Algorithm and to overlay with the natural flood influencing factors considered herein in order to examine the effect of each factor in flood generation. GIS spatial database was created from a geological map, SPOT satellite image, and the topographical map. An attribute database was equally created from field investigations and historical flood areas reports of the study area. The results show a great correlation between the flood extent extraction model and the flood factors

  16. The use of Natural Flood Management to mitigate local flooding in the rural landscape

    Science.gov (United States)

    Wilkinson, Mark; Quinn, Paul; Ghimire, Sohan; Nicholson, Alex; Addy, Steve

    2014-05-01

    conditions, by providing base flows during drought conditions. Ongoing research using hydrological datasets aims to assess how these features function during low flow conditions and how storage ponds could be used as irrigation ponds in arable areas. To allow for effective implementation and upkeep of NFM measures on the ground, demonstration sites have been developed through a process of iterative stakeholder engagement. Coupled with the use of novel visualisation techniques, results are currently being communicated to a wider community of local landowners and catchment managers. The approach of using networks of interception bunds and offline storage areas in the rural landscape could potentially provide a cost effective means to reduce flood risk in small responsive catchments across Europe. As such it could provide an alternative or addition to traditional engineering techniques, while also effectively managing catchments to achieve multiple environmental objectives.

  17. Flood mapping with multitemporal MODIS data

    Science.gov (United States)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  18. Flood Simulation Using WMS Model in Small Watershed after Strong Earthquake -A Case Study of Longxihe Watershed, Sichuan province, China

    Science.gov (United States)

    Guo, B.

    2017-12-01

    Mountain watershed in Western China is prone to flash floods. The Wenchuan earthquake on May 12, 2008 led to the destruction of surface, and frequent landslides and debris flow, which further exacerbated the flash flood hazards. Two giant torrent and debris flows occurred due to heavy rainfall after the earthquake, one was on August 13 2010, and the other on August 18 2010. Flash floods reduction and risk assessment are the key issues in post-disaster reconstruction. Hydrological prediction models are important and cost-efficient mitigation tools being widely applied. In this paper, hydrological observations and simulation using remote sensing data and the WMS model are carried out in the typical flood-hit area, Longxihe watershed, Dujiangyan City, Sichuan Province, China. The hydrological response of rainfall runoff is discussed. The results show that: the WMS HEC-1 model can well simulate the runoff process of small watershed in mountainous area. This methodology can be used in other earthquake-affected areas for risk assessment and to predict the magnitude of flash floods. Key Words: Rainfall-runoff modeling. Remote Sensing. Earthquake. WMS.

  19. Microbial Risk Assessment of Tidal-Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam).

    Science.gov (United States)

    Nguyen, Hong Quan; Huynh, Thi Thao Nguyen; Pathirana, Assela; Van der Steen, Peter

    2017-11-30

    Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., "living with floods", in the Mekong Delta should also consider health risk issues.

  20. DamaGIS: a multisource geodatabase for collection of flood-related damage data

    Science.gov (United States)

    Saint-Martin, Clotilde; Javelle, Pierre; Vinet, Freddy

    2018-06-01

    Every year in France, recurring flood events result in several million euros of damage, and reducing the heavy consequences of floods has become a high priority. However, actions to reduce the impact of floods are often hindered by the lack of damage data on past flood events. The present paper introduces a new database for collection and assessment of flood-related damage. The DamaGIS database offers an innovative bottom-up approach to gather and identify damage data from multiple sources, including new media. The study area has been defined as the south of France considering the high frequency of floods over the past years. This paper presents the structure and contents of the database. It also presents operating instructions in order to keep collecting damage data within the database. This paper also describes an easily reproducible method to assess the severity of flood damage regardless of the location or date of occurrence. A first analysis of the damage contents is also provided in order to assess data quality and the relevance of the database. According to this analysis, despite its lack of comprehensiveness, the DamaGIS database presents many advantages. Indeed, DamaGIS provides a high accuracy of data as well as simplicity of use. It also has the additional benefit of being accessible in multiple formats and is open access. The DamaGIS database is available at https://doi.org/10.5281/zenodo.1241089" target="_blank">https://doi.org/10.5281/zenodo.1241089.