WorldWideScience

Sample records for flocculent sludge sbr

  1. Gravitational sedimentation of flocculated waste activated sludge.

    Science.gov (United States)

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  2. Microwave enhanced digestion of aerobic SBR sludge | Kennedy ...

    African Journals Online (AJOL)

    MWs) for improving characteristics of aerobic sequencing batch reactor (SBR) sludge to enhance mesophilic anaerobic digestion. Effects of pretreatment temperature, MW irradiation intensity and solids concentration on sludge characterisation ...

  3. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration.

    Science.gov (United States)

    Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua

    2015-10-01

    Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given.

  4. SBR

    African Journals Online (AJOL)

    Yomi

    2012-03-15

    Mar 15, 2012 ... Sequencing batch reactor (SBR) and granular activated sludge-SBR ...... chromium (III) from tannery wastewater using activated carbon from sugar industrial ... Nutrient removal performance of a sequencing batch reactor as a ...

  5. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge

    NARCIS (Netherlands)

    Lin, Y. M.; Sharma, P. K.; van Loosdrecht, M. C. M.

    2013-01-01

    This study aimed to investigate differences in the gel matrix of aerobic granular sludge and normal aerobic flocculent sludge. From both types of sludge that fed with the same municipal sewage, the functional gel-forming exopolysaccharides, alginate-like exopolysaccharides, were isolated. These two

  6. Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process.

    Science.gov (United States)

    Lu, Yong-Ze; Wang, Hou-Feng; Kotsopoulos, Thomas A; Zeng, Raymond J

    2016-05-01

    In this study, a novel process for phosphorus (P) recovery without excess sludge production from granular sludge in simultaneous nitrification-denitrification and P removal (SNDPR) system is presented. Aerobic microbial granules were successfully cultivated in an alternating aerobic-anaerobic sequencing batch reactor (SBR) for removing P and nitrogen (N). Dense and stable granular sludge was created, and the SBR system showed good performance in terms of P and N removal. The removal efficiency was approximately 65.22 % for N, and P was completely removed under stable operating conditions. Afterward, new operating conditions were applied in order to enhance P recovering without excess sludge production. The initial SBR system was equipped with a batch reactor and a non-woven cloth filter, and 1.37 g of CH3COONa·3H2O was added to the batch reactor after mixing it with 1 L of sludge derived from the SBR reactor to enhance P release in the liquid fraction, this comprises the new system configuration. Under the new operating conditions, 93.19 % of the P contained in wastewater was released in the liquid fraction as concentrated orthophosphate from part of granular sludge. This amount of P could be efficiently recovered in the form of struvite. Meanwhile, a deterioration of the denitrification efficiency was observed and the granules were disintegrated into smaller particles. The biomass concentration in the system increased firstly and then maintained at 4.0 ± 0.15 gVSS/L afterward. These results indicate that this P recovery operating (PRO) mode is a promising method to recover P in a SNDPR system with granular sludge. In addition, new insights into the granule transformation when confronted with high chemical oxygen demand (COD) load were provided.

  7. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon–aluminum–iron–starch flocculant

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qintie, E-mail: qintlin@163.com; Peng, Huanlong; Zhong, Songxiong; Xiang, Jiangxin

    2015-03-21

    Highlights: • Silicon, aluminum, and iron were grafted onto starch chains to synthesize CSiAFS. • The sludge dewatering performance of CSiAFS was superior to PAC, PAM, and FeCl{sub 3}. • CSiAFS exhibited a good dewatering efficiency over a wide range of pH (3.0–11.0). • CSiAFS had a discontinuous surface with channels which helped to sludge dewatering. - Abstract: Flocculation is one of the most widely used cost-effective pretreatment method for sludge dewatering, and a novel environmentally friendly and efficient flocculant is highly desired in the sludge dewatering field. In this study, a novel combined silicon–aluminum–ferric–starch was synthesized by grafting silicon, aluminum, and iron onto a starch backbone. The synthesized starch flocculant was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy, X-ray powder diffraction, and thermogravimetric analysis. The dewatering performance of secondary sludge was evaluated according to the capillary suction time, settling volume percentage, and specific resistance to filtration. The results indicated that the copolymer exhibited: (1) a good dewatering efficiency over a wide pH range of 3.0–11.0, (2) superior sludge dewatering performance compared to those of polyaluminum chloride (PACl), polyacrylamide (PAM), ferric chloride, and (3) a discontinuous surface with many channels or voids that helps to mobilize the impermeable thin layer of secondary sludge during filter pressing. Such a novel copolymer is a promising green flocculant for secondary sludge dewatering applications.

  8. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    Science.gov (United States)

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  9. SBR

    African Journals Online (AJOL)

    user

    2006-12-04

    . ... LSD, least significant difference; MLSS, mixed liquor suspend- ded solids; SBR, sequencing batch reactor; .... of influent and effluent, mixed liquor suspended solids (MLSS), and sludge volume index (SVI) of the system ...

  10. Organics removal from landfill leachate and activated sludge production in SBR reactors

    International Nuclear Information System (INIS)

    Klimiuk, Ewa; Kulikowska, Dorota

    2006-01-01

    This study is aimed at estimating organic compounds removal and sludge production in SBR during treatment of landfill leachate. Four series were performed. At each series, experiments were carried out at the hydraulic retention time (HRT) of 12, 6, 3 and 2 d. The series varied in SBR filling strategies, duration of the mixing and aeration phases, and the sludge age. In series 1 and 2 (a short filling period, mixing and aeration phases in the operating cycle), the relationship between organics concentration (COD) in the leachate treated and HRT was pseudo-first-order kinetics. In series 3 (with mixing and aeration phases) and series 4 (only aeration phase) with leachate supplied by means of a peristaltic pump for 4 h of the cycle (filling during reaction period) - this relationship was zero-order kinetics. Activated sludge production expressed as the observed coefficient of biomass production (Y obs ) decreased correspondingly with increasing HRT. The smallest differences between reactors were observed in series 3 in which Y obs was almost stable (0.55-0.6 mg VSS/mg COD). The elimination of the mixing phase in the cycle (series 4) caused the Y obs to decrease significantly from 0.32 mg VSS/mg COD at HRT 2 d to 0.04 mg VSS/mg COD at HRT 12 d. The theoretical yield coefficient Y accounted for 0.534 mg VSS/mg COD (series 1) and 0.583 mg VSS/mg COD (series 2). In series 3 and 4, it was almost stable (0.628 mg VSS/mg COD and 0.616 mg VSS/mg COD, respectively). After the elimination of the mixing phase in the operating cycle, the specific biomass decay rate increased from 0.006 d -1 (series 3) to 0.032 d -1 (series 4). The operating conditions employing mixing/aeration or only aeration phases enable regulation of the sludge production. The SBRs operated under aerobic conditions are more favourable at a short hydraulic retention time. At long hydraulic retention time, it can lead to a decrease in biomass concentration in the SBR as a result of cell decay. On the contrary

  11. A novel acrylamide-free flocculant and its application for sludge dewatering.

    Science.gov (United States)

    Lu, Lianghua; Pan, Zhida; Hao, Nan; Peng, Wenqing

    2014-06-15

    In the present research, copolymers of methyl acrylate (MA) with anionic or cationic monomers were synthesized via emulsion polymerization, and used as sludge dewatering aids in wastewater treatment. The copolymerization of different stoichiometry of two monomers afforded a variety of water soluble copolymers with charge densities ranging from 40% to 80%, which align with the charge density of current flocculant products. These copolymers resemble current commercial products, but provide a greener solution by eliminating acrylamide monomer, which is a suspected carcinogen. High molecular weight copolymers were achieved by applying powder-like synthesis process with intrinsic viscosity of final products as high as 12.98 dl/g for anionic flocculant and 10.74 dl/g for cationic flocculant. The copolymers of methyl acrylate and [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) with 55% charge density exhibited comparable performance in clay settling test, real water jar test, and sludge dewatering, when compared to AM-based commercial product in the real wastewater treatment application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge

    International Nuclear Information System (INIS)

    Tan Phong Nguyen; Hankins, Nicholas P.; Hilal, Nidal

    2007-01-01

    This study investigates the effect of calcium, alginate, fibrous cellulose, and pH on the flocculation dynamics and final properties of synthetic activated sludges. A laboratory-scale batch reactor, fed with standard synthetic sludges was used. The effects of varying calcium concentration (5-25 mM), alginate concentration (25-125 mg/L), fibrous cellulose concentration (0.2-0.8 g/L) and pH (3-9) on the sludge characteristics were studied by varying one parameter whilst keeping the others constant. The results from experiments indicated that the calcium, alginate, fibrous cellulose, and pH had the critical effect on the aggregation rate, flocs size, and made the improvement of the final properties of sludge. Dynamic measurements have established the optimum conditions for floc formation and can accurately reflect the state of formation of the synthetic activated sludge flocs. These correlate well with measurements of settleability and turbidity of the synthetic activated sludge. The results of this study support the bonding theory and indicate that formation of cations-polymer complexes and polymer gelation are important means of flocculation. The development of synthetic activated sludges is suggested also to be a possible surrogate for studying the final properties of activated sludge

  13. Intermittent Ozonation to Reduce Excess Biological Sludge in SBR

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2009-09-01

    Full Text Available A combination of ozonation and an aerobic biological process such as the activated sludge has been recently developed as an alternative solution for sludge reduction with the objective of minimizing the excess biological sludge production. In this study, two SBR reactors each with a capacity of 20 liters and controlled by an on-line system are used. Once the steady state conditions were set in the reactors, sampling and testing of such parameters as COD, MLSS, MLVSS, DO, SOUR, SVI, residual ozone, and Y coefficient were performed over the 8 months of research. Results showed that during the solid retention time of 10 days, the kinetic coefficients of Y and Kd were 0.58 mg biomass/mg COD and 0.058 1/day, respectively. In the next stage of the study, different concentrations of ozone in the reactor were intermittently used to reduce the excess biological sludge production. The results showed that 22 mg of ozone per 1 gram of MLSS in the reactor was able to reduce the yield coefficient Y from 0.58 to 0.23 mg Biomass/mg COD. In other words, the excess biological sludge reduced by 60% but the soluble COD increased slightly in the effluent and the removal percentage decreased from 92 in the blank reactor to 76 in the test reactor. While the amount of SVI and SOUR for this level of ozone concentration reached 6 mgO2/h.gVSS and 27 ml/g, respectively. No excess sludge was observed in the reactor for an ozone concentration of 27 mg per 1 gram of MLSS.

  14. Comparison between MBR and SBR on Anammox start-up process from the conventional activated sludge.

    Science.gov (United States)

    Wang, Tao; Zhang, Hanmin; Gao, Dawen; Yang, Fenglin; Zhang, Guangyi

    2012-10-01

    Anammox start-up performances from the conventional activated sludge were compared between a MBR and SBR. Both the reactors successfully started up Anammox process. The start-up period in the MBR (59 days) was notably shorter than that in the SBR (101 days), and the max nitrogen (NH(4)(+)+NO(2)(-)) removal capacity of 345.2 mg N L(-1) d(-1) in the MBR was also higher than that of 292.0 mg N L(-1) d(-1) in the SBR. FISH analysis showed that Anammox bacteria predominated in both reactors. Phylogenetic analysis further disclosed that the MBR had the better biodiversity of Anammox bacteria and gained a higher ecological stability. Generally, the results showed that MBR exhibited a more excellent performance for Anammox start-up. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  16. Sludge dewatering in a decanter centrifuge aided by cationic flocculant Praestol 855BS and essential oil of waste orange peels

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-03-01

    Full Text Available In the study the comparative analysis of test results of drainage of municipal wastewater sludge was conducted with the use of flocculant Praestol 855BS and the mixture of flocculant Praestol 855BS 50% + orange essential oil 50%, as the reagents supporting this process. It was also attempted to reduce unpleasant smells exuding from the drained sludge.

  17. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  18. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR

    International Nuclear Information System (INIS)

    Vazquez-Padin, J.R.; Pozo, M.J.; Jarpa, M.; Figueroa, M.; Franco, A.; Mosquera-Corral, A.; Campos, J.L.; Mendez, R.

    2009-01-01

    The CANON (Completely Autotrophic Nitrogen removal Over Nitrite) process was successfully developed in an air pulsing reactor type SBR fed with the supernatant from an anaerobic sludge digester and operated at moderately low temperatures (18-24 o C). The SBR was started up as a nitrifying reactor, lowering progressively the dissolved oxygen concentration until reaching partial nitrification. Afterwards, an inoculation with sludge containing Anammox biomass was carried out. Nitrogen volumetric removal rates of 0.25 g N L -1 d -1 due to Anammox activity were measured 35 d after inoculation even though the inoculum constituted only 8% (w/w) of the biomass present in the reactor and it was poorly enriched in Anammox bacteria. The maximal nitrogen removal rate was of 0.45 g N L -1 d -1 . By working at a dissolved oxygen concentration of 0.5 mg L -1 in the bulk liquid, nitrogen removal percentages up to 85% were achieved. The reactor presented good biomass retention capacity allowing the accumulation of 4.5 g VSS L -1 . The biomass was composed by ammonia oxidizing bacteria (AOB) forming fluffy structures and granules with an average diameter of 1.6 mm. These granules were composed by Anammox bacteria located in internal anoxic layers surrounded by an external aerobic layer where AOB were placed.

  19. Impact of Coagulant and Flocculant Addition to an Anaerobic Dynamic Membrane Bioreactor (AnDMBR) Treating Waste-Activated Sludge.

    Science.gov (United States)

    Kooijman, Guido; Lopes, Wilton; Zhou, Zhongbo; Guo, Hongxiao; de Kreuk, Merle; Spanjers, Henri; van Lier, Jules

    2017-03-23

    In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl₃ was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.

  20. Modeling Aspects Of Activated Sludge Processes Part I: Process Modeling Of Activated Sludge Facilitation And Sedimentation

    International Nuclear Information System (INIS)

    Ibrahim, H. I.; EI-Ahwany, A.H.; Ibrahim, G.

    2004-01-01

    Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles

  1. Performance of a continuously operated flocculent sludge UASB reactor with slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; Zeeuw, W. de

    1988-01-01

    This investigation was carried out to assess the performance of a continuously operated, one-stage, flocculent sludge upflow anaerobic sludge blanket (UASB) reactor treating slaughterhouse wastewater at a process temperature of 30/sup 0/C. The results indicate that the type of substrate ingredients, coarse suspended solids, colloidal and soluble compounds in the wastewater, affect the performance of the reactor because of different mechanisms involved in their removal and their subsequent conversion into methane. Two different mechanisms are distinguished. An entrapment mechanism prevails for the elimination of coarse suspended solids while an adsorption mechanism is involved in the removal of the colloidal and soluble fractions of the wastewater. The results obtained lead to the conclusion that the system can satisfactorily handle organic space loads up to 5 kg COD m/sup -3/ day/sup -1/ at 30/sup 0/C. The data indicate, however, that continuing heavy accumulation of substrate components in the reactor is detrimental to the stability of the anaerobic treatment process as the accumulation can lead to sludge flotation and consequently to a complete loss of the active biomass from the reactor.

  2. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    Science.gov (United States)

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  3. Impact of coagulant and flocculant addition to an anaerobic dynamic membrane bioreactor (AnDMBR) treating waste-activated sludge

    NARCIS (Netherlands)

    Kooijman, G.; Lopes, Wilton; Zhou, Z.; Guo, H.; de Kreuk, M.K.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35°C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1–86), the reactor was operated as a

  4. Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies

    Directory of Open Access Journals (Sweden)

    S. Sathian

    2014-06-01

    Full Text Available In this work, sequential batch reactor (SBR was employed for the treatment of textile dye wastewater. The performance of four white rot fungi (WRF viz. Coriolus versicolor, Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was evaluated in pure and mixed combinations in terms of decolorization. From the results it was found that the combination of Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was best and they were used in the SBR. The process parameters like air flow rate, sludge retention time (SRT and cycle period were optimized using response surface methodology (RSM. At these optimized conditions, treatment of textile dye wastewater was carried out at various initial dye wastewater concentration and hydraulic retention time. The performance of SBR was analyzed in terms of decolorization, COD reduction and sludge volume index (SVI. From the results it was found that a maximum decolorization and COD reduction of 71.3% and 79.4%, respectively, was achieved in the SBR at an organic loading rate of 0.165 KgCOD/m3 d. The sludge volume index (SVI was found to be low in the range of 90–103 mL/g. The kinetic study was carried out using a first order based model and the degradation follows the first order system.

  5. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors.

    Science.gov (United States)

    Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H

    2007-01-01

    Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.

  6. Sequencing Batch Reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater

    International Nuclear Information System (INIS)

    Malakahmad, Amirhossein; Hasani, Amirhesam; Eisakhani, Mahdieh; Isa, Mohamed Hasnain

    2011-01-01

    Highlights: → We assessed SBR performances to treat synthetic wastewater containing Hg 2+ and Cd 2+ . → SBR was able to remove 76-90% of Hg 2+ and 96-98% of Cd 2+ . → COD removal efficiency and MLVSS was affected by Hg 2+ and Cd 2+ concentrations. → Removal was not only biological process but also by biosorption process of sludge. - Abstract: Petrochemical factories which manufacture vinyl chloride monomer and poly vinyl chloride (PVC) are among the largest industries which produce wastewater contains mercury and cadmium. The objective of this research is to evaluate the performance of a lab-scale Sequencing Batch Reactor (SBR) to treat a synthetic petrochemical wastewater containing mercury and cadmium. After acclimatization of the system which lasted 60 days, the SBR was introduced to mercury and cadmium in low concentrations which then was increased gradually to 9.03 ± 0.02 mg/L Hg and 15.52 ± 0.02 mg/L Cd until day 110. The SBR performance was assessed by measuring Chemical Oxygen Demand, Total and Volatile Suspended Solids as well as Sludge Volume Index. At maximum concentrations of the heavy metals, the SBR was able to remove 76-90% of Hg 2+ and 96-98% of Cd 2+ . The COD removal efficiency and MLVSS (microorganism population) in the SBR was affected by mercury and cadmium concentrations in influent. Different species of microorganisms such as Rhodospirilium-like bacteria, Gomphonema-like algae, and sulfate reducing-like bacteria were identified in the system. While COD removal efficiency and MLVSS concentration declined during addition of heavy metals, the appreciable performance of SBR in removal of Hg 2+ and Cd 2+ implies that the removal in SBR was not only a biological process, but also by the biosorption process of the sludge.

  7. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR with 50,000 m3 d−1 for treating a town’s wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O reactor and an oxidation ditch (OD being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS. X-ray fluorescence (XRF analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  8. Start-Up and Aeration Strategies for a Completely Autotrophic Nitrogen Removal Process in an SBR

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2017-01-01

    Full Text Available The start-up and performance of the completely autotrophic nitrogen removal via nitrite (CANON process were examined in a sequencing batch reactor (SBR with intermittent aeration. Initially, partial nitrification was established, and then the DO concentration was lowered further, surplus water in the SBR with high nitrite was replaced with tap water, and continuous aeration mode was turned into intermittent aeration mode, while the removal of total nitrogen was still weak. However, the total nitrogen (TN removal efficiency and nitrogen removal loading reached 83.07% and 0.422 kgN/(m3·d, respectively, 14 days after inoculating 0.15 g of CANON biofilm biomass into the SBR. The aggregates formed in SBR were the mixture of activated sludge and granular sludge; the volume ratio of floc and granular sludge was 7 : 3. DNA analysis showed that Planctomycetes-like anammox bacteria and Nitrosomonas-like aerobic ammonium oxidization bacteria were dominant bacteria in the reactor. The influence of aeration strategies on CANON process was investigated using batch tests. The result showed that the strategy of alternating aeration (1 h and nonaeration (1 h was optimum, which can obtain almost the same TN removal efficiency as continuous aeration while reducing the energy consumption, inhibiting the activity of NOB, and enhancing the activity of AAOB.

  9. Sequencing Batch Reactor (SBR) for the removal of Hg{sup 2+} and Cd{sup 2+} from synthetic petrochemical factory wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Malakahmad, Amirhossein, E-mail: amirhossein@petronas.com.my [Faculty of Energy and Environmental Studies, Islamic Azad University, Science and Research branch, Hesarak, Tehran (Iran, Islamic Republic of); Civil Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Hasani, Amirhesam [Faculty of Energy and Environmental Studies, Islamic Azad University, Science and Research branch, Hesarak, Tehran (Iran, Islamic Republic of); Eisakhani, Mahdieh [School of Social, Development and the Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Isa, Mohamed Hasnain [Civil Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia)

    2011-07-15

    Highlights: {yields} We assessed SBR performances to treat synthetic wastewater containing Hg{sup 2+} and Cd{sup 2+}. {yields} SBR was able to remove 76-90% of Hg{sup 2+} and 96-98% of Cd{sup 2+}. {yields} COD removal efficiency and MLVSS was affected by Hg{sup 2+} and Cd{sup 2+} concentrations. {yields} Removal was not only biological process but also by biosorption process of sludge. - Abstract: Petrochemical factories which manufacture vinyl chloride monomer and poly vinyl chloride (PVC) are among the largest industries which produce wastewater contains mercury and cadmium. The objective of this research is to evaluate the performance of a lab-scale Sequencing Batch Reactor (SBR) to treat a synthetic petrochemical wastewater containing mercury and cadmium. After acclimatization of the system which lasted 60 days, the SBR was introduced to mercury and cadmium in low concentrations which then was increased gradually to 9.03 {+-} 0.02 mg/L Hg and 15.52 {+-} 0.02 mg/L Cd until day 110. The SBR performance was assessed by measuring Chemical Oxygen Demand, Total and Volatile Suspended Solids as well as Sludge Volume Index. At maximum concentrations of the heavy metals, the SBR was able to remove 76-90% of Hg{sup 2+} and 96-98% of Cd{sup 2+}. The COD removal efficiency and MLVSS (microorganism population) in the SBR was affected by mercury and cadmium concentrations in influent. Different species of microorganisms such as Rhodospirilium-like bacteria, Gomphonema-like algae, and sulfate reducing-like bacteria were identified in the system. While COD removal efficiency and MLVSS concentration declined during addition of heavy metals, the appreciable performance of SBR in removal of Hg{sup 2+} and Cd{sup 2+} implies that the removal in SBR was not only a biological process, but also by the biosorption process of the sludge.

  10. Effects of nickel(II) addition on the activity of activated sludge microorganisms and activated sludge process

    International Nuclear Information System (INIS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2004-01-01

    The effects of Ni(II) in a synthetic wastewater on the activity of activated sludge microorganisms and sequencing batch reactor (SBR) treatment process were investigated. Two parallel lab-scale SBR systems were operated. One was used as a control unit, while the other received Ni(II) concentrations equal to 5 and 10 mg/l. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE modes in the time ratio of 0.5:3.5:1.0:0.75:0.25 for a cycle time of 6 h. The addition of Ni(II) into SBR system caused drastically dropped in TOC removal rate (k) and specific oxygen uptake rate (SOUR) by activated sludge microorganisms due to the inhibitory effects of Ni(II) on the bioactivity of microorganisms. The addition of 5 mg/l Ni(II) caused a slight reduction in TOC removal efficiency, whereas 10 mg/l Ni(II) addition significantly affected the SBR performance in terms of suspended solids and TOC removal efficiency. Termination of Ni(II) addition led to almost full recovery of the bioactivity in microorganisms as shown in the increase of specific oxygen uptake rate (SOUR) and SBR treatment performance

  11. Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.

    Science.gov (United States)

    Maeng, Min Ho; Cha, Daniel K

    2018-02-01

      Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.

  12. Production of extracellular polymeric substances (EPS) by Serratia sp.1 using wastewater sludge as raw material and flocculation activity of the EPS produced.

    Science.gov (United States)

    Bezawada, J; Hoang, N V; More, T T; Yan, S; Tyagi, N; Tyagi, R D; Surampalli, R Y

    2013-10-15

    Growth profile and extracellular polymeric substances (EPS) production of Serratia sp.1 was studied in shake flask fermentation for 72 h using wastewater sludge as raw material. Maximum cell concentration of 6.7 × 10(9) cfu/mL was obtained at 48 h fermentation time. EPS dry weight, flocculation activity and dewaterability of different EPS (tightly bound or TB-EPS, loosely bound or LB-EPS and broth-EPS or B-EPS) were also measured. The highest concentration of LB-EPS (2.45 g/L) and TB-EPS (0.99 g/L) were attained at 48 h of fermentation. Maximum flocculation activity and dewaterability (ΔCST) of TB-EPS (76.4%, 14.5s and 76.5%, 15.5s), LB-EPS (67.8%, 8.1s and 64.7%, 7.6s) and broth EPS (61%, 6.1s and 70.4%, 6.8s) were obtained at 36 and 48 h of growth. Higher flocculation activity and dewaterability were achieved with TB-EPS than with the two other EPS. Characterization of TB-EPS and LB-EPS was done in terms of their protein and carbohydrate content. Protein content was much higher in TB-EPS where as carbohydrate content was only slightly higher in TB-EPS than LB-EPS. Morphology of the Serratia strain after fermentation in sludge and TSB was observed under a scanning electron microscope and the cell size was found to be bigger in the sludge medium than the TSB medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Polymeric polyelectrolytes obtained from renewable sources for biodiesel wastewater treatment by dual-flocculation

    Directory of Open Access Journals (Sweden)

    E. A. M. Ribeiro

    2017-06-01

    Full Text Available Biodiesel wastewater generally contains high levels of oils, soaps and glycerol residues. This needs wastewater treatment. In this study, the biodiesel wastewater treatment was tested (industrial wastewater (EFID and laboratory wastewater (EFLB from biodiesel by performing flocculation and dual-flocculation with renewable polymers. Tannin and cationic hemicellulose (CH were used as cationic flocculant, and cellulose acetate sulfate (CAS was used as an anionic flocculant. Polyacrylamide (PAM was used as a reference anionic flocculant for result efficiencies analysis obtained with CAS (renewable source flocculant. The treatment efficacy in wastewater was evaluated by: turbidity removal, sludge volume formed, chemical oxygen demand (COD and total suspended solids (TSS. The obtained sludge was studied using thermogravimetric analysis (TG. The dual-flocculation application condition of the 25% proportion of tannin (T and 75% proportion of cationic hemicelluloses (i.e., T25/CH75 showed EFLB turbidity removal of 89.1% and 89.5% for CAS and PAM additions respectively, and for EFID of 67% and 41% for CAS and PAM additions respectively. The dual-flocculation performance suggested that the polyelectrolytes obtained from renewable sources can be used for treating biodiesel wastewater.

  14. UV-initiated template copolymerization of AM and MAPTAC: Microblock structure, copolymerization mechanism, and flocculation performance.

    Science.gov (United States)

    Li, Xiang; Zheng, Huaili; Gao, Baoyu; Sun, Yongjun; Liu, Bingzhi; Zhao, Chuanliang

    2017-01-01

    Flocculation as the core technology of sludge pretreatment can improve the dewatering performance of sludge that enables to reduce the cost of sludge transportation and the subsequent disposal costs. Therefore, synthesis of high-efficiency and economic flocculant is remarkably desired in this field. This study presents a cationic polyacrylamide (CPAM) flocculant with microblock structure synthesized through ultraviolet (UV)-initiated template copolymerization by using acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as monomers, sodium polyacrylate (PAAS) as template, and 2,2'-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (VA-044) as photoinitiator. The microblock structure of the CPAM was observed through nuclear magnetic resonance ( 1 H NMR and 13 C NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analyses. Furthermore, thermogravimetric/differential scanning calorimetry (TG/DSC) analysis was used to evaluate its thermal decomposition property. The copolymerization mechanism was investigated through the determination of the binding constant M K and study on polymerization kinetics. Results showed that the copolymerization was conducted in accordance with the I (ZIP) template polymerization mechanism, and revealed the coexistence of bimolecular termination free-radical reaction and mono-radical termination in the polymerization process. Results of sludge dewatering tests indicated the superior flocculation performance of microblock flocculant than random distributed CPAM. The residual turbidity, filter cake moisture content, and specific resistance to filtration reached 9.37 NTU, 68.01%, and 6.24 (10 12  m kg -1 ), respectively, at 40 mg L -1 of template poly(AM-MAPTAC) and pH 6.0. Furthermore, all flocculant except commercial CPAM showed a wide scope of pH application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A direct comparison amongst different technologies (aerobic granular sludge, SBR and MBR) for the treatment of wastewater contaminated by 4-chlorophenol

    International Nuclear Information System (INIS)

    Carucci, Alessandra; Milia, Stefano; Cappai, Giovanna; Muntoni, Aldo

    2010-01-01

    Environmental concern on chlorinated phenols is rising due to their extreme toxicity even at low concentrations and their persistency in water and soils. Since the high amount of published data often lacks in terms of uniformity, direct comparisons amongst different treatment technologies are very difficult, or even impossible. In this study, granular sludge developed in an acetate-fed Granular sludge Sequencing Batch Reactor (GSBR) was used for the aerobic degradation of low chlorinated 4-chlorophenol (4CP), with readily biodegradable sodium acetate (NaAc) as growth substrate. A conventional Sequencing Batch Reactor (SBR) and a Membrane BioReactor (MBR) were operated in parallel under the same 4CP influent concentrations and/or 4CP volumetric organic loading rates as the GSBR, in order to carry out a direct comparison in terms of 4CP removal efficiencies and specific removal rates, effluent quality, waste sludge production, system simplicity, land area requirement, start-up times, NaAc dosage as growth substrate and maximum applied 4CP volumetric organic loading rate. A decision matrix was built to define the best technology to suit different scenarios: the GSBR was proved to be the most suitable technology when system simplicity, low land area requirement and short start-up times were considered as critical parameters for decision making.

  16. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    Science.gov (United States)

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Nitrogen removal kinetics in the treatment of landfill leachate by SBR systems

    International Nuclear Information System (INIS)

    Andreottola, G.; Foladori, P.; Ragazzi, M.

    1998-01-01

    In this study, laboratory-scale experiments were conducted applying the SBR activated sludge process to leachate from an old MSW landfill operating for 7 years. Due to the fact that old leachate is characterized with a high concentration of ammonia (approximately 1500 mgN/1) and low availability of readily biodegradable organic matter (BOD 5 /COD,06), the aim was to examine the nitrogen removal process and to compare the efficiency of one-stage and two stage systems operating at temperature of 20 C and 12 C. The second alternative SBR configuration is based on the coupling of two SBR reactors: the first one specialized in nitrification and the second one in post-denitrification, with external carbon source addition. By the efficient removal of nitrogen, an on-site pretreatment of leachate allows to comply with the limits required for discharging into sewers or into municipal wastewater treatment plant [it

  18. Illumina MiSeq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process.

    Science.gov (United States)

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-05-01

    A combined process including a partial nitritation SBR (PN-SBR) followed by a simultaneous sludge fermentation, denitrification and anammox reactor (SFDA) was established to treat low C/N domestic wastewater in this study. An average nitrite accumulation rate of 97.8% and total nitrogen of 9.4mg/L in the effluent was achieved during 140days' operation. The underlying mechanisms were investigated by using Illumina MiSeq sequencing to analyze the microbial community structures in the PN-SBR and SFDA. Results showed that the predominant bacterial phylum was Proteobacteria in the external waste activated sludge (WAS, added to the SFDA) and SFDA while Bacteroidetes in the PN-SBR. Further study indicated that in the PN-SBR, the dominant nitrobacteria, Nitrosomonas genus, facilitated nitritation and little nitrate was generated in the PN-SBR effluent. In the SFDA, the co-existence of functional microorganisms Thauera, Candidatus Anammoximicrobium and Pseudomonas were found to contribute to simultaneous sludge fermentation, denitrification and anammox. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.

    Science.gov (United States)

    Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta

    2007-10-01

    Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.

  20. Environmentally safe management of radioactive and toxic sludges

    International Nuclear Information System (INIS)

    Shingarev, N.E.; Mukhin, I.V.; Polyakov, A.S.; Raginsky, L.S.; Semenov, B.A.

    2000-01-01

    Toxic industrial wastes constitute a significant part of Russian natural environment. The most reliable route to provide the long-term ecologic safety involves removal of toxicants or radioactive substances from polluted sites. With a view of processing toxic and radioactive sludges available in reservoirs, a process flowsheet is suggested that comprises the operations of sludge concentration, dehydration and granulation.Flocculation is an operation required to concentrate a solid phase. Polyacrylamide (PAA) and hydrolyzed PAA (HPAA) are standard flocculating agents used in the processing of sludges coming from storage facilities of radioactive wastes. HPAA is less efficient and it is shown that the optimized concentration of PAA is 4 mg/g solid. Flotation agents are used to extract the solid phase of sludges, it is shown that the process of extraction has to be carried out in 2 stages, the first flotation cycle with a Ph value between 7.5 and 9.5 and the second with a Ph adjustment to 3.5-6.0.The cake resulting from the sludge filtration has poor technological properties, it is advisable to produce a granular material. Hydro-granulation using hydrophobic flocculating agents may be implemented immediately after sludge concentration. The other granulation technique involves the sol-gel process used to incorporate sludge into a ceramic (aluminium oxide) matrix

  1. APPLICATION OF ESSENTIAL OILS EXTRACTED FROM PEELS OF ORANGES AS A PARTIAL SUBSTITUTE OF FLOCCULANT

    Directory of Open Access Journals (Sweden)

    Anna Kowalczyk

    2016-05-01

    Full Text Available The study attempts to determine the optimum conditions of the process of mechanical dewatering of municipal sewage sludge and reduction of odours emitted during this process. The process of dewatering of municipal sewage sludge was carried out using laboratory sedimentation centrifuge of MPW-350 type. Municipal sewage sludge stabilized during anaerobic digestion, taken from Wastewater Treatment Plant Jamno. The dewatering process was aided by cationic flocculant Praestol 855BS of real solution concentration 0.3% and essential oil from orange, which was extracted from orange peels in the process of steam distillation. Constant parameters of dewatering process were: pH, temperature, colour, texture, smell, water content and dry matter content. Independent variables of dewatering process were: centrifugation time (in the range 1–10 min, centrifugation speed (in the range 1000–3000 rotations/min and dose of mixture of flocculant Praestol 855BS (79% + essential oil of orange (21% in the range 0–48 ml/dm3. Water content in the sludge after the process, dry matter content in the effluent and the duration of the smell of oil in the sediment were determined. Studies showed that the essential oil from orange may be used as a partial substitute of flocculant Praestol 855BS in the process of centrifugal sedimentation. Essential oil of orange significantly reduces unpleasant odours which are emitted from sludge during mechanical dewatering. Simultaneous application of both reagents, ie. flocculant Praestol 855BS 79%, and essential oil of orange 21% of volume is recommended.

  2. Impact of reactor configuration on anammox process start-up: MBR versus SBR.

    Science.gov (United States)

    Tao, Yu; Gao, Da-Wen; Fu, Yuan; Wu, Wei-Min; Ren, Nan-Qi

    2012-01-01

    Anaerobic ammonium oxidation (anammox) is an energy saving biological nitrogen removal process which was limited to slow growth rate of anammox bacteria during start-up period. This study investigated the start-up of anammox process by a laboratory sequential batch reactor (SBR) for 218 days and subsequently modified the reactor as a membrane bioreactor (MBR) for 178 days. Modification of a SBR as MBR with installation of an external membrane module resulted in acceleration of specific anammox activity by 19 times. The acceleration of specific anammox activity with MBR was further confirmed by starting-up another MBR for a 242 day period. Molecular microbial analyses showed that Candidatus "Brocadia anammoxidans" and Candidatus "Kuenenia stuttgartiensis" were the dominant species in the inocula and biomass developed in the reactor. The start-up with MBR appeared to be more effective than SBR for the enrichment of anammox bacteria due to high sludge retention property of MBR configuration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Upgrading secondary wastewater plant effluent by modified coagulation and flocculation, for water reuse in irrigation

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ghaneian

    2017-09-01

    Full Text Available In this study, the feasibility of using coagulation, flocculation, and sedimentation (CF-S for advanced treatment of secondary effluent released from the Yazd Intermittent Cycle Extended Aeration System was investigated. Four coagulants including ferric chloride (FeCl3, polyaluminum chloride (PAC, ferrous sulfate (FeSo4, and potassium ferrate (K2FeSo4 along with Gflog C-150 as flocculant polymer were used. In this study, returned chemical sludge was considered as a modification. Preliminary CF-S processes showed that FeSO4 and K2FeO4 had low removal efficiencies. Thus, these two coagulants were abandoned and CF-S processes were continued only with PAC and FeCl3 coagulants which had higher efficiencies in the removal of biological oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, and turbidity. Removal efficiency was higher when half of the chemical producing sludge was returned as compared with using both coagulants simultaneously along with 2 mg L−1 of C-150 as flocculant. In the optimum dosage, when half of PAC and FeCl3 sludge were returned, the volume of produced sludge was reduced by 40% and 28%, respectively, as compared without returned sludge. For the PAC coagulant in the optimum dosage with half of the sludge returned, all 2012 EPA standards of irrigation were met for both ‘processed and non-processed type’ agricultural crops.

  4. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    International Nuclear Information System (INIS)

    Wang Guanghua; Sui Jun; Shen Huishan; Liang Shukun; He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun; Hu Yongyou

    2011-01-01

    In this study, chlorine dioxide (ClO 2 ) instead of chlorine (Cl 2 ) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO 2 was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO 2 doses of 10 mg ClO 2 /g dry sludge which was much lower than that obtained using Cl 2 based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO 2 /g dry sludge for 40 min. ClO 2 oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO 2 oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  5. Multi-step process for concentrating magnetic particles in waste sludges

    Science.gov (United States)

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  6. Decontamination technology of contaminated water with flocculating and settling technology

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Adachi, Toshihiro; Watanabe, Noriyuki; Hosobuchi, Shigeki

    2012-01-01

    In the joint research and development of treatment systems of cooling water for cutting asphalt pavement surface with our authors' group, the liquid-solid separation technology by flocculating and settling technology, and the flocculants for the use of systems were developed. In this paper, the developed flocculating and settling technology and the flocculants are discussed first. Next, the demonstration tests of decontamination technology on the contaminated water in swimming pools in an elementary school located at Motomiya City, Fukushima Prefecture had been conducted by use of the stationary purification system of contaminated water and the flocculants compounding with or without iron ferrocianide developed by the preliminary test. It was clarified from the results that ionized cesium (Cs) rarely exists in the stagnant water in pools, ponds, lakes and so on at the time when nine months have passed since Fukushima Dai-ichi nuclear power plant accidents. Further, it is necessary to use the flocculants compounding iron ferrocianide in the case where ionized Cs exists in water. From the above-mentioned results, the following problems were pointed out: One problem was cyanide dissolution in the purified water and the other one was the dissolution from the dehydration sludge. Finally, the high-performance mobile purification units of contaminated water which is capable for carrying with trucks have been developed, and the demonstration test was performed in Minami-soma City, Fukushima Prefecture to purify the contaminated water in a pond and generated by the high-pressure water washing in a Public Hall. From the test results, it was made clear that the dehydration sludge separated by liquid-solid settling of the contaminated water of around 1,000Bq/l became a high radiation dose of about 185,000Bq/l. (author)

  7. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  8. Effect of heavy metals on nitrification performance in different activated sludge processes

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Tsai, Yung-Pin; Huang, Ru-Yi

    2009-01-01

    To understand the toxic effect of heavy metals on the nitrification mechanisms of activated sludge, this study identified the specific ammonia utilization rate (SAUR) inhibited by Pb, Ni and/or Cd shock loadings. Seven different heavy metal combinations (Pb, Ni, Cd, Pb + Ni, Ni + Cd, Pb + Cd, and Pb + Ni + Cd) with seven different heavy metal concentrations (0, 2, 5, 10, 15, 25, and 40 ppm, respectively) were examined by batch experiments, where the activated sludge was taken from either sequencing batch reactor (SBR) or anaerobic-anoxic-oxic (A 2 O) processes. The experimental results showed the SAUR inhibition rate was Ni > Cd > Pb. No significant inhibition in the nitrification reaction of the activated sludge was observed even when as much as 40 ppm Pb was added. In addition, no synergistic effect was found when different heavy metals were simultaneously added in different concentrations, and the overall inhibition effect depended on the heavy metal with the highest toxicity. Further, first order kinetic reaction could model the behavior of SAUR inhibition on activated sludge when adding heavy metals, and the SAUR inhibition formula was derived as SAUR=(SAUR max -SAUR min )xe -r i c +SAUR min . On the other hand, the heavy metal adsorption ability in both the activated sludge system was Pb = Cd > Ni. The specific adsorption capacity of activated sludge on heavy metal increased as the heavy metal concentration increased or the mixed liquid volatile suspended solid (MLVSS) decreased. The batch experiments also showed the heavy metal adsorption capacity of the SBR sludge was larger than the A 2 O sludge. Finally, the most predominant bacteria in the phylogenetic trees of SBR and A 2 O activated sludges were proteobacteria, which contributed to 42.1% and 42.8% of the total clones.

  9. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guanghua [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Sui Jun [Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Shen Huishan; Liang Shukun [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun [Nanhai Limited Liability Development Company, Foshan, 528200 (China); Hu Yongyou, E-mail: ppyyhu@scut.edu.cn [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China) and State Key Lab of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology; Guangzhou, 510640 (China)

    2011-08-15

    In this study, chlorine dioxide (ClO{sub 2}) instead of chlorine (Cl{sub 2}) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO{sub 2} was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO{sub 2} doses of 10 mg ClO{sub 2}/g dry sludge which was much lower than that obtained using Cl{sub 2} based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO{sub 2}/g dry sludge for 40 min. ClO{sub 2} oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO{sub 2} oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  10. Optimization aspects of the biological nitrogen removal process in a full-scale twin sequencing batch reactor (SBR) system in series treating landfill leachate.

    Science.gov (United States)

    Remmas, Nikolaos; Ntougias, Spyridon; Chatzopoulou, Marianna; Melidis, Paraschos

    2018-03-29

    Despite the fact that biological nitrogen removal (BNR) process has been studied in detail in laboratory- and pilot-scale sequencing batch reactor (SBR) systems treating landfill leachate, a limited number of research works have been performed in full-scale SBR plants regarding nitrification and denitrification. In the current study, a full-scale twin SBR system in series of 700 m 3 (350 m 3 each) treating medium-age landfill leachate was evaluated in terms of its carbon and nitrogen removal efficiency in the absence and presence of external carbon source, i.e., glycerol from biodiesel production. Both biodegradable organic carbon and ammonia were highly oxidized [biochemical oxygen demand (BOD 5 ) and total Kjehldahl nitrogen (TKN) removal efficiencies above 90%], whereas chemical oxygen demand (COD) removal efficiency was slightly above 40%, which is within the range reported in the literature for pilot-scale SBRs. As the consequence of the high recalcitrant organic fraction of the landfill leachate, dissimilatory nitrate reduction was restricted in the absence of crude glycerol, although denitrification was improved by electron donor addition, resulting in TN removal efficiencies above 70%. Experimental data revealed that the second SBR negligibly contributed to BNR process, since carbon and ammonia oxidation completion was achieved in the first SBR. On the other hand, the low VSS/SS ratio, due to the lack of primary sedimentation, highly improved sludge settleability, resulting in sludge volume indices (SVI) below 30 mL g -1 .

  11. Treatment of spent nuclear fuel L-basin sludge

    International Nuclear Information System (INIS)

    Westover, B.L.; Oji, L.N.; Martin, H.L.; Nichols, D.M.

    1997-01-01

    Each production reactor at the DOE Savannah River Site (SRS) has a disassembly basin whose primary purpose is to cool irradiated production fuel and target. The disassembly basins also provide a shielded environment for personnel. Material has historically resided in the basins for 6 to 12 months. Increases in basin storage time have occurred, and have caused the buildup of a sludge layer on the basin floors to be greater than historical levels. The sludge is composed primarily of inorganic oxide and hydroxide corrosion products. The sludge layer has increased the turbidity and conductivity of the basin water, contributed to fuel corrosion, and has impacted fuel handling operations. Initial characterization of the sludge indicates that it is a low-level radioactive aqueous waste. This evaluation looked at methods to separate the sludge into its liquid and solid phases. The experimental data obtained during this evaluation clearly shows that a filtration-based approach to dewatering using an Oberlin pressure filtration unit at SRS is possible. This research task was to identify and optimize filtration and settling parameters pursuant sludge processing. The research specifically addressed: choice of filter aid, filter aid to sludge ratio, choice and dosage of polymer flocculation and settling agents, and the determination of Kynch curve settling parameters. Two commercial perlite filter-aids were identified as the most suitable. Of 11 water soluble flocculating polymers evaluated, 3 cationic commercial types formed stable flocs in the screening tests. In low doses, the flocculating polymers also enhanced sludge particle settling and decreased filtrate turbidity. The filtration cake from the sludge can be solidified to meet waste acceptance and storage criteria. However, the conductivity of the remaining filtrate does not meet Reactor Area Return Water criteria and may require a secondary filtration process. 2 refs., 14 figs., 5 tabs

  12. Coagulation and flocculation in the preparation of drinking water in a pilot plant

    Directory of Open Access Journals (Sweden)

    Iličić Gordana

    2005-01-01

    Full Text Available The objective of the practical part in this article was to explore the influence of different parameters on coagulation and flocculation processes as well as the influence of this stage on other stages in water purification. Analysis of the water samples was conducted in the chemical laboratory of Banja Luka Municipal Waterworks using standard methods for analyzing drinking water. The results are presented as diagrams that show the dependence of different parameters as a function of the residual turbidity and the content of natural organic matters in water. The following conclusions were drawn It is necessary to conduct the chemical treatment of raw water with the aim to satisfy chemical and bacteriological standards for drinking water. The best results were achieved with Al2(SO4s as coagulant,. Counterrecoil sludge in an amount of 2-3% in relation with the total quantity of water has a positive impacts on coagulation-flocculation processes. 4. For effective purification, all the conditions for coagulation-flocculation must be adjusted for the filter to have a longer useful life. One of example is correction of the pH to pH=7, coagulant dose 20 mg/L Al2(SO4s, flocculant dose 0.1 mg/L PE, counterrecoil sludge dose 90 L/h PM.

  13. Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management.

    Science.gov (United States)

    Godvin Sharmila, V; Kavitha, S; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2015-12-01

    This investigation explores the influence of titanium dioxide (TiO2) in deflocculating (removal of extracellular polymeric substance - EPS) the sludge and subsequent biomass disintegration by bacterial pretreatment. The EPS removed at an optimized TiO2 dosage of 0.03g/g of SS of TiO2 and a solar radiation exposure time of 15min to enhance the subsequent bacterial disintegration. The outcomes of the bacterial pretreatment reveal SS reduction and COD solubilization for the deflocculated (EPS removed and bacterially pretreated) sludge was observed to be 22.8% and 22.9% which was comparatively greater than flocculated (raw sludge inoculated with bacteria) and control (raw) sludge. The higher methane production potential of about 0.43(gCOD/gVSS) was obtained in deflocculated sludge than the flocculated (0.20gCOD/gVSS) and control (0.073gCOD/gVSS). Economic assessment of this study provides a net profit of about 131.9USD/Ton in deflocculated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Method for Measuring Sludge Settling Characteristics in Turbulent Flows

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Larsen, Torben

    1996-01-01

    A method for the determination of the settlilng velocity for sludge as a funktion of turbulence intensity and sludge concentration has been developed. The principle of the method is to continuously feed the top of a settling column with sludge so that a steady state and uniform concentration...... distribution occurs in the middle of the column. This eliminates time scale effects such as flocculation from the measurements, as the resulting settling velocity only can be found at steady state and uniform conditions. The method assumes that flocculated sludge settles faster than disintegratedsludge to make...... a mass balance involving concentration at the top and the middle of the column as well as the inlet sludge flow. The resulting mass balance is used to calculate a lokal settling velocity. The turbulence is introduced by an oscillating grid in the whole depth of the settling column. Settling velocities...

  15. [Effect of polymeric aluminum-iron on EPS and bio-flocculation in A2/O system].

    Science.gov (United States)

    Wen, Qin-Xue; Liu, Ai-Cui; Chen, Zhi-Qiang; Shi, Han-Chang; Lü, Bing-Nan

    2012-04-01

    Polymeric aluminum-iron (PAFC) was added at the end of aeration tank to enhance phosphorus removal, so that the phosphorus concentration in the effluent could meet the calss A standard in municipal sewage treatment plant pollutant discharge standard (GB 18918-2002). The characteristics of extracellular polymer substances (EPS) and bio-flocculation for the activated sludge in the A2/O system were analyzed in the experiment. The results showed that, the gross of EPS varied little with the increase in PAFC dosage, while, the ratio of albumen to polysaccharide declined from 3.30 to 2.30. When the PAFC dosage increased, the concentration of Al3+ in EPS increased during the whole anaerobic-anoxic-aerobic cycle. The flocs of activated sludge became larger after PAFC addition, Zeta potential of the effluent dropped significantly from - 15.83 mV to -21.20 mV and sludge yield increased. Therefore, bio-flocculation of the activated sludge in the A2/O system improved when a proper amount of PAFC was added, subsequently improve the water quality of the effluent.

  16. Sumi-sludge system; Sumisurajji system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    The subject facilities, delivered to Kakegawa City, Shizuoka Prefecture, in December, 1999, are the first machine by the heavy load denitrification processing system adaptive to purifying tank sludge 'Sumi-sludge system'. It enhanced the capacity of 84 kl/day by about 30% to 109 kl/day through the remodeling of the existing facilities. Its major specifications are capacity: 109 kl/day (human wastes 18 kl/day, purifying tank sludge 91 kl/day) and final effluent quality: pH 5.8-8.6, BOD 10 mg/l or less, COD 20 mg/l or less, SS 10 mg/l or less, T-N 10 mg/l or less, T-P 1 mg/l or less, chromaticity 30 degrees or less, coliform group quantity 3,000 pieces/ml or less. It has the following features. (1) Bio-treatment load is reduced by dehydrating human wastes and purifying tank sludge in the prestage of the bio-treatment. (2) Bio-treatment and flocculation separating treatment are integrated. (3) A high-speed flocculation sedimentation tank 'Sumi-thickner' is employed in the solid-liquid separator, enabling stable solid-liquid separation. (translated by NEDO)

  17. Substrate utilization and VSS relations in activated sludge processes

    Energy Technology Data Exchange (ETDEWEB)

    Droste, R L; Fernandes, L; Sun, X [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1994-12-31

    A new empirical substrate removal model for activated sludge in continuous flow stirred tank reactor (CFSTR) and sequencing batch reactor (SBR) was developed in this study. This model includes an exponential function of volatile suspended solids to express the active biomass which is actually involved in substrate utilization. Results indicate that the proposed exponential models predict more accurately effluent COD in CFSTR and SBR systems than the first or zero order models. (author). 7 refs., 1 fig., 4 tabs.

  18. Substrate utilization and VSS relations in activated sludge processes

    Energy Technology Data Exchange (ETDEWEB)

    Droste, R.L.; Fernandes, L.; Sun, X. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    A new empirical substrate removal model for activated sludge in continuous flow stirred tank reactor (CFSTR) and sequencing batch reactor (SBR) was developed in this study. This model includes an exponential function of volatile suspended solids to express the active biomass which is actually involved in substrate utilization. Results indicate that the proposed exponential models predict more accurately effluent COD in CFSTR and SBR systems than the first or zero order models. (author). 7 refs., 1 fig., 4 tabs.

  19. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    OpenAIRE

    Tang Thi Chinh; Phung Duc Hieu; Bui Van Cuong; Nguyen Nhat Linh; Nguyen Ngoc Lan; Nguyen Sy Nguyen; Nguyen Quang Hung; Le Thi Thu Hien

    2018-01-01

    The sequencing batch reactor (SBR) has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater ...

  20. Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.

    Science.gov (United States)

    Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan

    2017-01-01

    Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1  NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1  N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1  N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1  NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.

  1. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis.

    Science.gov (United States)

    Yang, Xiaoyi; Xue, Yu; Wang, Wenna

    2009-01-01

    Enhanced activated sludge by interior microelectrolysis (EAIM) was studied to treat textile wastewater, kinetics, mechanism and application of which were also discussed in comparison with traditional activated sludge and interior microelectrolysis, respectively. The results of kinetics study indicated three different processes all followed first-order kinetics well. In EAIM, three impact factors take effects on COD removal, which are flocculation, activated sludge and electrophoresis and redox. In terms of assumption of no interaction among three COD removal mechanisms, 49.6% of the total COD removal is ascribed to flocculation, 30.1% to activated sludge and 20.3% to electrophoresis and redox. EAIM showed its advantages in COD removal efficiency, extensive adaptability to complex composition and wide range of pH. EAIM-aerobic process provided an efficient and economic performance for dealing with textile wastewater.

  2. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    International Nuclear Information System (INIS)

    Santos, Sílvia C.R.; Boaventura, Rui A.R.

    2015-01-01

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD 5 removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD 5 removals above 91% and average color removals of 60–69%

  3. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  4. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS, play vital roles in the normal operation of wastewater treatment plants (WWTPs. The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm, but different observation were made at higher CuNPs concentrations (30 and 50 ppm. At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  5. Aerobic storage under dynamic conditions in activated sludge processes

    DEFF Research Database (Denmark)

    Majone, M.; Dircks, K.

    1999-01-01

    In activated sludge processes, several plant configurations (like plug-flow configuration of the aeration tanks, systems with selectors, contact-stabilization processes or SBR processes) impose a concentration gradient of the carbon sources to the biomass. As a consequence, the biomass grows unde...

  6. Organic loading rate effect on the acidogenesis of cheese whey: a comparison between UASB and SBR reactors.

    Science.gov (United States)

    Calero, R; Iglesias-Iglesias, R; Kennes, C; Veiga, M C

    2017-09-16

    Volatile fatty acids (VFA) production and degree of acidification (DA) were investigated in the anaerobic treatment of cheese whey by comparison of two processes: a continuous process using a laboratory upflow anaerobic sludge blanket (UASB) reactor and a discontinuous process using a sequencing batch reactor (SBR). The main purpose of this work was to study the organic loading rate (OLR) effect on the yield of VFA in two kinds of reactors. The predominant products in the acidogenic process in both reactors were: acetate, propionate, butyrate and valerate. The maximum DA obtained was 98% in an SBR at OLR of 2.7 g COD L -1 d -1 , and 97% in the UASB at OLR at 15.1 g COD L -1 d -1 . The results revealed that the UASB reactor was more efficient at a medium OLR with a higher VFA yield, while with the SBR reactor, the maximum acidification was obtained at a lower OLR with changes in the VFA profile at different OLRs applied.

  7. Measurements and thermodynamics of hydrotreater product sludge stability

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I. [Technical Univ. of Denmark, Lyngby (Denmark)

    2003-07-01

    Sludge is a by-product of the hydrotreating process of asphaltene during feedstock conversions. The stability of the asphaltenes in the system is related to the produced sludge. The remaining asphaltenes are unstable due to chemical changes in the mixture even though a large conversion of heptane asphaltene occurs. The flocculation titration technique was applied to several feedstocks and catalysts to understand changes in stability and to develop conversion schemes that avoid sludge formation. The effect of temperature conversion was studied in detail. Results obtained by flocculation titration were in agreement with size exclusion chromatography, elemental analysis, infrared spectroscopy and other methods. The authors also examined the chemical changes in product and in product asphaltenes. It was concluded that high hydrotreatment temperature leads to the formation of unstable products as cracking occurs. It was shown that molecular weight of asphaltenes decreases during the hydroprocessing, and the transition temperature is related to the feed. tabs., figs.

  8. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    Science.gov (United States)

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  9. Effects of Blend Ratio and SBR Type on Properties of Carbon Black-Filled and Silica-Filled SBR/BR Tire Tread Compounds

    Directory of Open Access Journals (Sweden)

    Pongdhorn Sae-oui

    2017-01-01

    Full Text Available This work aimed at investigating the effects of blend ratio between styrene butadiene rubber (SBR and butadiene rubber (BR and SBR type (E-SBR and S-SBR on properties of SBR/BR tire tread compounds. Influences of these parameters on properties of the tread compounds reinforced by 80 parts per hundred rubber (phr of carbon black (CB and silica were also compared. Results reveal that hardness, strengths, and wet grip efficiency were impaired whereas rolling resistance was improved with increasing BR proportion. Surprisingly, the presence of BR imparted poorer abrasion resistance in most systems, except for the CB-filled E-SBR system in which an enhanced abrasion resistance was observed. Obviously, S-SBR gave superior properties (tire performance compared to E-SBR, particularly obvious in the silica-filled system. Compared with CB, silica gave comparable strengths, better wet grip efficiency, and lower rolling resistance. Carbon black, however, offered greater abrasion resistance than silica.

  10. Cake creep during filtration of flocculated manure

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    is filtered. Hence, it is not possible to scale up the experiments, and it is therefore difficult to optimize the flocculation and estimate the needed filter media area. Similar problems have been observed when sewage sludge and synthetic core-shell colloids are filtered, and it has been suggested......, and the mixing procedure affect the result, and lab-scale experiments are often used to study how these pre-treatments influence the filtration process. However, the existing mathematical filtration models are based on filtration of inorganic particles and cannot simulate the filtration data obtained when manure...

  11. Effect of different flocculants on the flocculation performance of ...

    African Journals Online (AJOL)

    Effect of different flocculants on the flocculation performance of flocculation performance of microalgae, Chaetoceros calcitrans, cells. ZT Harith, FM Yusoff, MS Mohamed, M Shariff, M Din, AB Ariff ...

  12. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature.

    Science.gov (United States)

    Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun

    2017-08-01

    In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.

  13. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Impact of influent COD/N ratio on disintegration of aerobic granular sludge.

    Science.gov (United States)

    Luo, Jinghai; Hao, Tianwei; Wei, Li; Mackey, Hamish R; Lin, Ziqiao; Chen, Guang-Hao

    2014-10-01

    Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. On-site treatment of a motorway service area wastewater using a package sequencing batch reactor (SBR).

    Science.gov (United States)

    Del Solar, J; Hudson, S; Stephenson, T

    2005-01-01

    A sequencing batch reactor (SBR) treating the effluent of a motorway service station in the south of England situated on a major tourist route was investigated. Wastewater from the kitchens, toilets and washrooms facilities was collected from the areas on each side of the motorway for treatment on-site. The SBR was designed for a population equivalent (p.e.) of 500, assuming an average flow of 100 m3/d, influent biochemical oxygen demand (BOD) of 300 mg/l, and influent suspended solids (SS) of 300 mg/l. Influent monitoring over 8 weeks revealed that the average flow was only 65 m3/d and the average influent BOD and SS were 480 mg/l and 473 mg/l respectively. This corresponded to a high sludge loading rate (F:M) of 0.42 d(-1) which accounted for poor performance. Therefore the cycle times were extended from 6 h to 7 h and effluent BOD improved from 79 to 27 mg/l.

  16. Production, Characterization, and Flocculation Mechanism of Cation Independent, pH Tolerant, and Thermally Stable Bioflocculant from Enterobacter sp. ETH-2

    Science.gov (United States)

    Tang, Wei; Song, Liyan; Li, Dou; Qiao, Jing; Zhao, Tiantao; Zhao, Heping

    2014-01-01

    Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2), produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa) and multi-functional groups (hydroxyl, amide and carboxyl) that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1∶2.9∶9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application. PMID:25485629

  17. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2.

    Directory of Open Access Journals (Sweden)

    Wei Tang

    Full Text Available Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2, produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa and multi-functional groups (hydroxyl, amide and carboxyl that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1:2.9:9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application.

  18. Availability of uranium present in the sludge generated at two stations of potable water treatment

    International Nuclear Information System (INIS)

    Munoz-Serrano, A.; Baeza, A.; Salas, A.; Guillen, J.

    2013-01-01

    During the treatment is carried out in a Station Potable Water Treatment Plant sludge enriched are produced in components that have been removed from the water. The concentration and availability of radionuclides accumulated in a sludge during coagulation-flocculation will condition possible later use, so it is essential to carry out the characterization of sludge and its chemical speciation. (Author)

  19. Bacterial composition of activated sludge - importance for floc and sludge properties

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Thomsen, Trine R.; Nielsen, Jeppe L.

    2003-07-01

    Activated sludge flocs consist of numerous constituents which, together with other factors, are responsible for floc structure and floc properties. These properties largely determine the sludge properties such as flocculation, settling and dewaterability. In this paper we briefly review the present knowledge about the role of bacteria in relation to floc and sludge properties, and we present a new approach to investigate the identity and function of the bacteria in the activated sludge flocs. The approach includes identification of the important bacteria and a characterization of their physiological and functional properties. It is carried out by use of culture-independent molecular biological methods linked with other methods to study the physiology and function maintaining a single cell resolution. Using this approach it was found that floc-forming properties differed among the various bacterial groups, e.g. that different microcolony-forming bacteria had very different sensitivities to shear and that some of them deflocculated under anaerobic conditions. in our opinion, the approach to combine identity with functional analysis of the dominant bacteria in activated sludge by in situ methods is a very promising way to investigate correlations between presence of specific bacteria, and floc and sludge properties that are of interest. (author)

  20. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    Science.gov (United States)

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  1. Kinetic rates and mass balance of COD, TKN, and TP using SBR treating domestic and industrial wastewater.

    Science.gov (United States)

    Warodomrungsimun, Chaowalit; Fongsatitkul, Prayoon

    2009-12-01

    To assess the performance of SBR to treat three different types of wastewater from domestic, hospital, slaughterhouse and investigate the kinetic rates of active biomass. Mass balance calculation of COD, TKN and TP was further performed to explain the mechanisms of the biological nutrient removals processed in the SBR system. The measured kinetic rates were in turn used to evaluate the process performances under different types of wastewater. Experimental research involving 3 similar SBR lab-scales were installed and operated at the Sanitary Engineering Laboratory. The reactors were seeded with sludge biomass obtained from the Sri-Phraya Domestic Wastewater Treatment Plant in Bangkok. The slaughterhouse, hospital and domestic wastewaters were treated by SBR system for biological organic carbon (COD), nitrogen (TKN) and phosphorus removals. Biological methods for kinetic rates evaluation were conducted in five replicated batch tests. The removal efficiencies of COD and TKN were greater than 90% for all three types of wastewater while the biological phosphorus removal for domestic and hospital wastewaters were less than 60% and phosphorus removal for slaughterhouse exceeded 95%. The kinetic rates of nitrification and denitrification of hospital wastewater was lower than those the domestic and slaughterhouse wastewaters. Phosphorus release and uptake rates of slaughterhouse wastewater were high but domestic and hospital wastewaters were very low. The result of system removal efficiency and batch test for kinetic rates confirmed that the domestic and hospital wastewaters were in deficiency of organic carbon with respect to its ability to support successful biological phosphorus removal.

  2. Predicting the degradability of waste activated sludge.

    Science.gov (United States)

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  3. Optimization of an Sbr process for nitrogen removal from concentrated wastewater via nitrite

    International Nuclear Information System (INIS)

    Longhi, L.; Basilico, D.; Meloni, A.; Canziani, R.

    2009-01-01

    The results of an experimentation carried out on a pilot-scale Sbr for nitrogen removal via nitridation-denitration are reported. The experimentation was carried out in the period July October 2007 and was aimed at achieving design data for the upgrade of a full scale wastewater treatment plant (WWTP), following the new regulations issued by Lombardy Regional Authority for the discharge of effluents into sensitive areas. One aspect that has been considered in the upgrade is nitrogen removal from the supernatant coming from anaerobic sludge digestion. The experimental results provided sound design data based on real biological activity measurements and operational process parameters such as oxygen and organic carbon requirements. [it

  4. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    Directory of Open Access Journals (Sweden)

    Chunyan Chai

    2015-03-01

    Full Text Available With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O, Sequencing Batch Reactor (SBR and Oxygen Ditch, considering four different sludge treatment alternatives for small-to-medium-sized WWTPs. Following the life cycle approach, process design data and emission factors were used by the model to calculate the carbon footprint. Results found that direct emissions of CO2 and N2O, and indirect emissions of electricity use, are significant contributors to the carbon footprint. Although sludge anaerobic digestion and biogas recovery could significantly contribute to emission reduction, it was less beneficial for Oxygen Ditch than the other two treatment technologies due to its low sludge production. The influence of choosing “high risk” or “low risk” N2O emission factors on the carbon footprint was also investigated in this study. Oxygen Ditch was assessed as “low risk” of N2O emissions while SBR was “high risk”. The carbon footprint of A–A–O with sludge anaerobic digestion and energy recovery was more resilient to changes of N2O emission factors and control of N2O emissions, though process design parameters (i.e., effluent total nitrogen (TN concentration, mixed-liquor recycle (MLR rates and solids retention time (SRT and operation conditions (i.e., nitrite concentration are critical for reducing carbon footprint of SBR. Analyses of carbon footprints suggested that aerobic treatment of sludge not only favors the generation of large amounts of CO2, but also the emissions of N2O, so the rationale of reducing aerobic treatment and

  5. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaodong; Chen, Yan [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Zhang, Xin [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Suzhou Institute of Architectural Design Co., Ltd, Suzhou 215021, Jiangsu Province (China); Jiang, Xinbai; Wu, Shijing [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Shen, Jinyou, E-mail: shenjinyou@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Sun, Xiuyun; Li, Jiansheng; Lu, Lude [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China)

    2015-09-15

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g{sup −1} and settling velocity of 37.2 ± 2.7 m h{sup −1}, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V{sub max}) varied between 1164.5 mg L{sup −1} h{sup −1} and 1867.4 mg L{sup −1} h{sup −1}. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule.

  6. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    International Nuclear Information System (INIS)

    Liu, Xiaodong; Chen, Yan; Zhang, Xin; Jiang, Xinbai; Wu, Shijing; Shen, Jinyou; Sun, Xiuyun; Li, Jiansheng; Lu, Lude; Wang, Lianjun

    2015-01-01

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g −1 and settling velocity of 37.2 ± 2.7 m h −1 , were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V max ) varied between 1164.5 mg L −1 h −1 and 1867.4 mg L −1 h −1 . High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule

  7. Evaluation of Flocculation and Filtration Procedures Applied to WSRC Sludge: A Report from B. Yarar, Colorado School of Mines

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.R.

    2001-06-04

    This report, addresses fundamentals of flocculation processes shedding light on why WSRC researchers have not been able to report the discovery of a successful flocculant and acceptable filtration rates. It also underscores the importance of applying an optimized flocculation-testing regime, which has not been adopted by these researchers. The final part of the report proposes a research scheme which should lead to a successful choice of flocculants, filtration aids (surfactants) and a filtration regime, as well recommendations for work that should be carried out to make up for the deficiencies of the limited WSRC work where a better performance should be the outcome.

  8. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Tang Thi Chinh

    2018-03-01

    Full Text Available The sequencing batch reactor (SBR has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater treatment were examined using Illumina Miseq sequencing to amplify the V3-V4 regions of the 16S rRNA gene. A high diversity of bacteria was observed in the activated sludge, with more than 400 bacterial genera and 700 species. The predominant genus was Lactococcus (21.35% mainly containing Lactococcus chungangensis species. Predicted functional analysis showed a high representation of genes involved in membrane transport (12.217%, amino acid metabolism (10.067%, and carbohydrate metabolism (9.597%. Genes responsible for starch and sucrose metabolism accounted for 0.57% of the total reads and the composition of starch hydrolytic enzymes including α-amylase, starch phosphorylase, glucoamylase, pullulanase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, and 1,4-α-glucan branching enzyme. The presence of these enzymes in the SBR system may improve the removal of starch pollutants in wastewater.

  9. Aerobic granular sludge : Scaling up a new technology

    NARCIS (Netherlands)

    De Kreuk, M.K.

    2006-01-01

    Most conventional wastewater treatment plants need a large surface area for the treatment of their sewage. This is due to the open structure of the biomass used to convert the polluting components in wastewater. Because of the flocculated growth, sludge concentrations in reaction tanks are low and

  10. Fundamental studies on dynamic wear behavior of SBR rubber compounds modified by SBR rubber powder

    OpenAIRE

    Euchler, Eric; Heinrich, Gert; Michael, Hannes; Gehde, Michael; Stocek, Radek; Kratina, Ondrej; Kipscholl, Reinhold; Bunzel, Jörg-Michael; Saal, Wolfgang

    2016-01-01

    The aim of this study is focused on the experimental investigation of dynamic wear behavior of carbon black filled rubber compounds comprising pristine styrene butadiene rubber (SBR) together with incorporated SBR ground rubber (rubber powder). We also analyzed and described quantitatively the service conditions of some dynamically loaded rubber products, which are liable to wear (e.g. conveyor belts, tires). Beside the well-known standard test method to characterize wear resistance at steady...

  11. Sludge settling processes in SBR-related sewage treatment plants according to the Biocos method.

    Science.gov (United States)

    Meusel, S; Englert, R

    2004-01-01

    This paper describes the investigations in a sedimentation and circulation reactor (SU-reactor) of a three-phase Biocos plant. The aim of these investigations was the determination of the temporal and depth-dependent distribution of suspended solid contents, as well as describing the sludge sedimentation curves. The calculated results reveal peculiarities of the Biocos method with regard to sedimentation processes. In the hydraulically uninterrupted (pre-)settling phase, a sludge level depth was observed, which remained constant over the reactor surface and increased linearly according to the sludge volume. The settling and the thickening processes of this phase corresponded to a large extent to the well-known settling test in a one-litre measuring cylinder. During the discharge phase, the investigated settling rate was overlaid by the surface loading rate and the sludge level changed depending on the difference between those two parameters. The solid distribution of the A-phase indicated a formation of functional zones, which were influenced by the surface loading. The formation was comparable to the formation of layers in secondary settling tanks with vertical flow. The concentration equalisation between the biological reactor and the SU-reactor proved to be problematic during the circulation phase, because a type of internal sludge circulation occurred in the SU-reactor. A permanent sludge recirculation seems to be highly recommendable.

  12. The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge.

    Science.gov (United States)

    Liu, Changli; Liu, Di; Qi, Yingjie; Zhang, Ying; Liu, Xi; Zhao, Min

    2016-07-01

    The main objective of this work was to investigate the influence of different oxygen supply patterns on poly-β-hydroxybutyrate (PHB) yield and bacterial community diversity. The anaerobic-aerobic (A/O) sequencing batch reactors (SBR1) and feast-famine (F/F) SBR2 were used to cultivate activated sludge to produce PHB. The mixed microbial communities were collected and analyzed after 3 months cultivation. The PHB maximum yield was 64 wt% in SBR1 and 53 wt% in SBR2. Pyrosequencing analysis 16S rRNA gene of two microbial communities indicated there were nine and four bacterial phyla in SBR1 and SBR2, respectively. Specifically, Proteobacteria (36.4 % of the total bacterial community), Actinobacteria (19.7 %), Acidobacteria (14.1 %), Firmicutes (4.4 %), Bacteroidetes (1.7 %), Cyanobacteria/Chloroplast (1.5 %), TM7 (0.8 %), Gemmatimonadetes (0.2 %), and Nitrospirae (0.1 %) were present in SBR1. Proteobacteria (94.2 %), Bacteroidetes (2.9 %), Firmicutes (1.9 %), and Actinobacteria (0.7 %) were present in SBR2. Our results indicated the SBR1 fermentation system was more stable than that of SBR2 for PHB accumulation.

  13. Laboratory testing in-tank sludge washing, summary letter report

    International Nuclear Information System (INIS)

    Norton, M.V.; Torres-Ayala, F.

    1994-09-01

    In-tank washing is being considered as a means of pretreating high-level radioactive waste sludges, such as neutralized current acid waste (NCAW) sludge. For this process, the contents of the tank will be allowed to settle, and the supernatant solution will be decanted and removed. A dilute sodium hydroxide/sodium nitrite wash solution will be added to the settled sludge and the tank contents will be mixed with a mixer pump system to facilitate washing of the sludge. After thorough mixing, the mixer pumps will be shut off and the solids will be allowed to re-settle. After settling, the supernatant solution will be withdrawn from the tank, and the wash cycle will be repeated several times with fresh wash solution. Core sample data of double shell tank 241-AZ-101 indicate that settling of NCAW solids may be very slow. A complicating factor is that strong thermal currents are expected to be generated from heat produced by radionuclides in the sludge layer at the bottom of the tank. Additionally, there are concerns that during the settling period (i.e., while mixing pumps and air-lift re-circulators are shut off), the radionuclides may heat the residual interstitial water in the sludge to the extent that violent steam discharges (steam bumping) could occur. Finally, there are concerns that during the washing steps sludge settling may be hindered as a result of the reduced ionic strength of the wash solution. To overcome the postulated reduced settling rates during the second and third washing steps, the use of flocculants is being considered. To address the above concerns and uncertainties associated with in-tank washing, PNL has conducted laboratory testing with simulant tank waste to investigate settling rates, steam bump potential, and the need for and use of flocculating agents

  14. Microbial Flocculant for Nature Soda

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Peiyong; Zhang, Tong; Chen, Cuixian

    2004-03-31

    Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculant was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.

  15. Caracterização de lodo gerado em estações de tratamento de água: perspectivas de aplicação agrícola Characterization of sludge generated in water treatment plants: prospects for agricultural application

    Directory of Open Access Journals (Sweden)

    Wander Gustavo Botero

    2009-01-01

    Full Text Available The work reported here involved the characterization of sludges produced at water treatment plants in Jaboticabal-SP using FeCl3 as flocculant, and in Taquaritinga-SP and Manaus-AM using Al2(SO43 as flocculant. An evaluation was also made of the interaction of organic matter extracted from the sludges with different metal species. The results indicated that all the sludges produced at water treatment plants have an important agricultural potential and that their use depends on the characteristics of the raw water and the type of flocculant employed in conventional treatment. The humic substances extracted from the sludges showed different affinities for metal species, favoring eventual exchanges between potentially toxic metals and macro- and micronutrients. An alternative for the use of sludge in agriculture is to pretreat it to remove potentially toxic metals and enrich it with micro- and macronutrients that can be released to the plant.

  16. Accelerating the sludge disintegration potential of a novel bacterial strain Planococcus jake 01 by CaCl2 induced deflocculation.

    Science.gov (United States)

    Kavitha, S; Saranya, T; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-01-01

    The present study investigates the impacts of phase separated disintegration through CaCl2 (calcium chloride) mediated biosurfactant producing bacterial pretreatment. In the initial phase of the study, the flocs were disintegrated (deflocculation) with 0.06g/gSS of CaCl2. In the subsequent phase, the sludge biomass was disintegrated (cell disintegration) through potent biosurfactant producing new novel bacteria, Planococcus jake 01. The pretreatment showed that suspended solids reduction and chemical oxygen demand solubilization for deflocculated - bacterially pretreated sludge was found to be 17.14% and 14.14% which were comparatively higher than flocculated sludge (treated with bacteria alone). The biogas yield potential of deflocculated - bacterially pretreated, flocculated, and control sludges were observed to be 0.322(L/gVS), 0.225(L/gVS) and 0.145(L/gVS) respectively. To our knowledge, this is the first study to present the thorough knowledge of biogas production potential through a novel phase separated biosurfactant bacterial pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Method of Dehydration of Sewage Sludge Using Elements of GEOTUBE Technology at Bortnichy’s Aeration Station

    Directory of Open Access Journals (Sweden)

    Kashkovsky, V.I.

    2014-01-01

    Full Text Available The work is dedicated to major environmental and social problem — dehydration of sewage sludge with the help of GeoTube technology elements. The process of dehydration dynamics for different sludge origin has developed. The pilot installation has worked out — filter module placed in the tank of Bortnichy’s sewage treatment plant, where the aerobically-stabilized sludge processed with flocculant Praestol 859 BS and water from filtration fields are delivered to. Installation can be used to reduce the workload on sludge fields, for purification of undersludge returning water and de hydration of accumulated sludge.

  18. Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process

    Institute of Scientific and Technical Information of China (English)

    Xiao-feng Sima; Bing-bing Li; Hong Jiang

    2017-01-01

    Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used.Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process.In this work,we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge.Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g.,flocculating ability,zeta-potential,hydrophobicity,and extracellular polymeric substances constituents).Moreover,the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.

  19. Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. [Upflow Anaerobic Sludge Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; de Zeeuw, W.; Lettinga, G.

    1984-01-01

    This study was carried out to assess the feasibility of using the upflow anaerobic sludge blanket (UASB) process for the one-step anaerobic treatment of slaughterhouse waste, which contains approximately 50% insoluble suspended COD. Batch experiments, as well as continuous experiments, were conducted. The continuous experiments were carried out in a 30 cubic m UASB pilot-plant with digested sewage sludge from the municipal sewage treatment plant of Ede, The Netherlands (Ede-2 sludge), used as seed. Initially the UASB pilot-plant was operated at a temperature of 30 degrees C, but, 20 weeks after the start-up, the temperature was reduced to 20 degrees C, because application of the process at this lower temperature might be quite attractive for economic reasons. The process can be started up at an organic space load of 1 kg COD/m/sup 3/ day (sludge load, 0.11 kg/COD kg VSSday) and at a liquid detention time of 35 h at a process temperature of 30 degrees C. Once started up, the system can satisfactorily handle organic space loads up to 3.5 kg COD/m/sup 3/ day at a liquid detention time of 8 hours at temperatures as low as 20 degrees C. A treatment efficiency up to 70% on a COD tot basis, 90% on a COD sol basis and 95% on a BOD5 sol basis was smoothly approached. Temporary shock loads up to 7 kg COD/m/sup 3/ day during the daytime at a liquid detention time of 5 h can well be accommodated provided such a shock load is followed by a period of underloading, e.g. at night. The methane yield amounted to 0.28 NM/sup 3/ per kilogram of COD removed: the methane content of the biogas from the wastewater varied between 65 and 75%. 19 references.

  20. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2011-01-01

    Highlights: · The work focused on hazardous wastewater (antibiotic wastewater) treatment. · Complete degradation of the antibiotics achieved by the treatment process. · The SBR performance was found to be very sensitive to BOD 5 /COD ratio below 0.40. · Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio). The SBR performance was found to be very sensitive to BOD 5 /COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe 2+ dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H 2 O 2 /COD molar ratio 2, H 2 O 2 /Fe 2+ molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  1. Flocculation and consolidation of cohesive sediments under the influence of coagulant and flocculant

    NARCIS (Netherlands)

    Ibanez Sanz, M.E.

    2018-01-01

    This thesis focuses on the coagulation and flocculation processes of cohesive sediments under the influence of polyelectrolyte. For this study clay particles and anionic and cationic flocculants were used. The influence of the shear stresses on the flocculation demonstrated that the shear stress is

  2. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  3. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Guo, Suo-Lian; Zhao, Xin-Qing; Huang, Zih-You; Yang, Yu-Liang; Chang, Jo-Shu; Bai, Feng-Wu

    2014-07-01

    High cost of biomass recovery is one of the bottlenecks for developing cost-effective processes with microalgae, particularly for the production of biofuels and bio-based chemicals through biorefinery, and microalgal biomass recovery through cell flocculation is a promising strategy. Some microalgae are naturally flocculated whose cells can be harvested by simple sedimentation. However, studies on the flocculating agents synthesized by microalgae cells are still very limited. In this work, the cell flocculation of a spontaneously flocculating microalga Chlorella vulgaris JSC-7 was studied, and the flocculating agent was identified to be cell wall polysaccharides whose crude extract supplemented at low dosage of 0.5 mg/L initiated the more than 80% flocculating rate of freely suspended microalgae C. vulgaris CNW11 and Scenedesmus obliquus FSP. Fourier transform infrared (FTIR) analysis revealed a characteristic absorption band at 1238 cm(-1), which might arise from PO asymmetric stretching vibration of [Formula: see text] phosphodiester. The unique cell wall-associated polysaccharide with molecular weight of 9.86×10(3) g/mol, and the monomers consist of glucose, mannose and galactose with a molecular ratio of 5:5:2. This is the first time to our knowledge that the flocculating agent from C. vulgaris has been characterized, which could provide basis for understanding the cell flocculation of microalgae and breeding of novel flocculating microalgae for cost-effective biomass harvest. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Characterization and constructive utilization of sludge produced in clari-flocculation unit of water treatment plant

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2018-03-01

    All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.

  5. Separation of SRP waste sludge and supernate

    International Nuclear Information System (INIS)

    Stone, J.A.

    1976-01-01

    Sludges and supernates were separated from Savannah River Plant waste slurries by centrifugation and sand filtration. This separation, a portion of a conceptual process for solidification and long-term storage of high-level radioactive wastes, was tested in shielded cells with small-scale process equipment. Procedures for the separation were developed in tests with nonradioactive materials. Then, in 13 tests with actual sludges and supernates, solids removal ranged from 90 to 99.2 vol percent and averaged 96.4 vol percent after two passes through a basket-type centrifuge. Concentrates from the tests, containing 0.05 to 0.2 vol percent solids, were clarified by sand filter columns to produce solutions of the soluble salts with less than 0.01 vol percent solids. About 700 liters of salt solution and 8 kilograms of washed, dried sludges were separated in the tests. Effects of sludge type, flocculant, flow rates, and batch size were evaluated. Washing and drying of centrifuged sludges were studied, and two types of dryers were tested. Ruthenium volatility during drying was negligible. Washing efficiency was determined by analyses of wash solutions and sludge products

  6. The disc method. A new method for selecting facilitations in flocculating sludge to be dewatered in centrifuges; Metodo de disco. Un nuevo metodo para la seleccion de floculantes en la floculacion de lodos a deshidratar en centrifugas

    Energy Technology Data Exchange (ETDEWEB)

    Canga Rodriguez, J.; Gutierrez Lavin, A.

    2002-07-01

    An experimental protocol was designed at a laboratory scale, in view of achieving the selection with different poly electrolytes related to the chemical conditioning (flocculation) of sewage sludge before dewatering it in a drying centrifuge. The method is based on a new parameter of quality of the formed floc, which measures its compaction when is submitted to a fix external strength. Some experimental tests have been introduced, whose results are numbers, avoiding all subjective aspects related to direct observation of flocs. (Author) 8 refs.

  7. One-step green synthesis of non-hazardous dicarboxyl cellulose flocculant and its flocculation activity evaluation

    International Nuclear Information System (INIS)

    Zhu, Hangcheng; Zhang, Yong; Yang, Xiaogang; Liu, Hongyi; Shao, Lan; Zhang, Xiumei; Yao, Juming

    2015-01-01

    The waste management of used flocculants is a thorny issue in the field of wastewater treatment. To natural cellulose based flocculants, utilization of hazardous cellulose solvent and simplification of synthetic procedure are the two urgent problems needing to be further improved. In this work, a series of natural dicarboxyl cellulose flocculants (DCCs) were one-step synthesized via Schiff-base route. The cellulose solvent (NaOH/Urea solution) was utilized during the synthesis process. The full-biodegradable flocculants avoid causing secondary pollution to environment. The chemical structure and solution property of the DCC products were characterized by FT-IR, 1 H NMR, 13 C NMR, TGA, FESEM, charge density and ζ-potential. Kaolin suspension and effluent from paper mill were selected to evaluate the flocculation activity of the DCCs. Their flocculation performance was compared with that of commercial cationic polyacrylamide and poly aluminium chloride flocculants. The positive results showed that the NaOH/Urea solvent effectively promoted the dialdehyde cellulose (DAC) conversion to DCC in the one-step synthesis reaction. The DCCs with the carboxylate content more than 1 mmol/g exhibited steady flocculation performance to kaolin suspension in the broad pH range from 4 to 10. Its flocculation capacity to the effluent from paper mill also showed excellent

  8. Efficiency of SBR Process with a Six Sequence Aerobic-Anaerobic Cycle for Phosphorus and Organic Material Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Nadiya Shahandeh

    2018-02-01

    Full Text Available Background: Various chemical, physical and biologic treatment methods are being used to remove nitrogen and phosphorus from wastewater. Sequencing batch reactor (SBR is a modified activated sludge process that removes phosphorus and organic material from sanitary wastewater, biologically. Methods: This study was conducted in 2016.The performance of an aerobic-anaerobic SBR pilot device, located at Ahwaz West Wastewater Treatment Plant, Ahwaz, southern Iran in phosphorus and organic material removal was evaluated to determine the effect of the aerobic-anaerobic step time on the efficiency of nitrogen and phosphorus removal, the effect of changing the sequence of steps and the effect of time ratio on phosphorus removal efficiency. A reactor of 8 L was used. Influent contained 397 and 10.7 mg/l COD and phosphorus, respectively. The pilot plant started with a 24 h cycle including four cycles of 6 h, as follows: 1- Loading (15 min, 2-Anaerobic (2 h-Aerobic (2 h, 3- Settling (1 h, Idleness (30 min and 5- decant (15 min. Results: After reaching steady conditions (6 months, Removal percentages of phosphorus, BOD5, COD, and TSS in The SBR over a period of 6 months was 79%, 86%, 89% and 83%, respectively. Conclusion: Result of this study can be used for designing and optimum operation of sequencing batch reactors.

  9. Bioflocculation production from lower-molecular fatty acids as a novel strategy for utilization of sludge digestion liquor.

    Science.gov (United States)

    Fujita, M; Ike, M; Jang, J H; Kim, S M; Hirao, T

    2001-01-01

    We propose the bioproduction of a bioflocculant from lower-molecular fatty acids as an innovative strategy for utilizing waste sludge digestion liquor. Fundamental studies on the production, characterization and application of a novel bioflocculant were performed. Citrobactersp. TKF04 was screened out of 1,564 natural isolates as a bacterial strain capable of a bioflocculant from acetic and propionic acids. TKF04 produced the bioflocculant during the logarithmic growth in the batch cultivation, and it could be recovered from the culture supernatant by ethanol precipitation. The fed-batch cultivation with feeding of acetic acid: ammonium 10;1 (mole) to maintain pH 8.5 led to the hyper-production of the bioflocculant. The bioflocculant was found to be effective for flocculating a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (3-95 degrees C), while the addition of cations was not required. It could flocculate a variety of inorganic and organic suspended particles including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. These indicated that the bioflocculant possesses flocculating activity comparable or superior to that of synthetic flocculants. The bioflocculation was identified as a chitosan-like biopolymer.

  10. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  11. Adesivos poliméricos à base de SBR: influência de diferentes tipos de agentes promotores de adesão SBR-based polymeric adhesives: influence of different types of adhesion promoting agents

    Directory of Open Access Journals (Sweden)

    Mauro E. C. B. Pinto

    2011-01-01

    Full Text Available Neste trabalho, foi desenvolvido um novo adesivo não estrutural à base de copolímero de SBR com alto teor em estireno (SBR-53. O objetivo deste novo produto é avaliar a possibilidade de sua utilização no segmento moveleiro, em substituição ao adesivo de policloropreno (CR-M, cujo polímero-base é importado. Diferentes formulações de adesivos foram desenvolvidas, específicas para a indústria moveleira, e o desempenho do elastômero SBR-53 foi comparado ao dos elastômeros SBR-23 comercial (SBR tradicional - baixo teor de estireno e CR-M, quanto à estabilidade em solução, viscosidade e propriedades mecânicas.In this work a new non-structural adhesive based on a high styrene content SBR copolymer (SBR-53 was developed. This new product is intended to be used in the furniture segment, to replace the chloroprene rubber (CR-M adhesive, whose base polymer is imported. Different adhesive formulations were developed specifically for the furniture industry, and the performance of the elastomer SBR-53 was compared to that of commercial elastomers SBR-23 (low-styrene traditional SBR and CR-M, as for solution stability, viscosity and mechanical properties.

  12. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    Science.gov (United States)

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  13. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.

    Science.gov (United States)

    Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine

    2015-05-01

    Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.

  14. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater.

    Science.gov (United States)

    Capodici, Marco; Corsino, Santo Fabio; Torregrossa, Michele; Viviani, Gaspare

    2018-02-15

    Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L -1 ), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal in saline wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Extraction of bioflocculants from activated sludge and their application to wastewater treatment

    Directory of Open Access Journals (Sweden)

    Vasilieva Zh. V.

    2018-03-01

    Full Text Available Extracellular polymeric substances (EPS – biopolymers produced by the microorganisms – are effective flocculants of wastewater pollution and lack the shortcomings of traditional coagulants and flocculants, which can pose direct threat to health and human life, as well as to the sustainable existence of aquatic and terrestrial ecosystems. EPS do not form secondary contamination of their degradation intermediates, are biodegradable and eco-friendly. Industrial production of bacterial EPS is associated with high cost of growing specific microbial biomass and the functioning of technologies for the synthesis of microbial products. At the same time, there is an underused resource of excess activated sludge, which can be used as cheap substrate for producing bioflocculants and a possible measure to reduce costs. The conducted researches have shown the prospects of extracting EPS from excess activated sludge for their subsequent use as wastewater treatment bioflocculants. EPS extraction has been conducted using three methods: combination of centrifugation processes, extraction using the aqueous solution of disodium ethylenediaminetetraacetic acid, and precipitation with isopropyl alcohol (the EDTA method; combination of centrifugation, extraction with (NH22CO, precipitation and ethanol reprecipitation (the (NH22CO method; combination of activated sludge ultrasonic treatment, centrifugation, extraction with glacial acetic acid, and precipitation with acetone (the CH3COOH method. The research has shown that the extraction method affects not only the efficiency of EPS extraction, but also the possibility of EPS application for the purification of certain types of sewage. The (NH22CO method has shown the best extraction efficiency, but at the same time EPSs produced have not be able to perform fish processing wastewater treatment. The EDTA and CH3COOH methods are more preferable for producing efficient bioflocculants for fish processing wastewater

  16. AN EXPERIMENTAL STUDY ON THE RHEOLOGICAL PROPERTIES OF CONDITIONED MUNICIPAL ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2017-01-01

    Full Text Available This research work was focused on the rheological characteristics of conditioned fresh activated sludge using TA rheometer HR-2. The effect of cationic polyelectrolyte conditioner has been investigated for floc size, surface properties and yield stress at different pH values in a comparative fashion. Our approach was to reveal the effect of polymer on the municipal activated sludge with high organic contents up to 80%. The results indicated an improvement of 50% in settling properties by addition polyelectrolyte up to 4 mg/g solid/l. Rheological data analysis showed that responses of shear stress - shear rate were found to be closest to Bingham model and gave almost similar and smaller k values of average 6.2×10-3. The results of shear creep indicated that all sludge samples have less rigid structures with no reconstruction behavior. The optical analyses of the samples indicated that the floc sizes were increased with successive addition of polyelectrolyte. The increase of floc sizes caused large stresses especially for solution with pH=9. As the flocculation accorded despite the negative zeta potential, this phenomenon can be referred to that interparticles hydrogen bridging was governing flocculation rather than charge neutralization. Also, during the experiment, bacterial growth showed an adaption despite the conditioning with polyelectrolyte.

  17. Effects of CeO2 nanoparticles on sludge aggregation and the role of extracellular polymeric substances – Explanation based on extended DLVO

    International Nuclear Information System (INIS)

    You, Guoxiang; Hou, Jun; Wang, Peifang; Xu, Yi; Wang, Chao; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang; Luo, Hao

    2016-01-01

    The extended DLVO (XDLVO) theory was applied to elucidate the potential effects of CeO 2 nanoparticles (CeO 2 NPs) on sludge aggregation and the role of extracellular polymeric substances (EPS). In this study, seven different concentrations of CeO 2 NPs were added to activated sludge cultured in sequencing batch reactors (SBRs) and compared with a control test that received no CeO 2 NPs. After exposure to 50 mg/L CeO 2 NPs, a negligible change (p>0.1) occurred in the sludge volume index (SVI), whereas the flocculability and aggregation of the sludge decreased by 18.8% and 11.2%, respectively, resulting in a high effluent turbidity. The XDLVO theory demonstrated that the adverse effects of the CeO 2 NPs on sludge aggregation were due to an enhanced barrier energy. Compared to the van der Waals energies (W A ) and the electric double layer (W R ), the acid-base interaction (W AB ) markedly changed for the various concentrations of CeO 2 NPs. The EPS played a decisive role in the sludge surface characteristics, as the removal of EPS equals to the negative effects induced by 5–10 mg/L CeO 2 NPs on the sludge flocculability and aggregation. The presence of CeO 2 NPs induced negative contributions to the tight boundary EPS (TB-EPS) and core bacteria while positive contributions to the total interaction energy of the loose boundary EPS (LB-EPS). - Highlights: • CeO 2 NPs adversely affected the flocculability and aggregation of the sludge. • The presence of CeO 2 NPs increased the energy barrier and led to a stable suspension. • The removal of EPS equals to the negative effects induced by 5–10 mg/L CeO 2 NPs. • The acid-base interaction was dominate and markedly changed for the CeO 2 NPs. • CeO 2 NPs induced negative contributions to the TB-EPS while positive to the LB-EPS.

  18. Smectite flocculation structure modified by Al13 macro-molecules--as revealed by the transmission X-ray microscopy (TXM).

    Science.gov (United States)

    Zbik, Marek S; Martens, Wayde N; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2010-05-01

    The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, transmission X-ray microscopy (TXM), which makes it possible to investigate the internal structure and 3D tomographic reconstruction of the smectite clay aggregates modified by Al(13) Keggin macro-molecule [Al(13)(O)(4)(OH)(24)(H(2)O)(12)](7+). Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation. In case of smectite sample prepared in Methods 1 and 3 particles fall into the primary minimum where Van der Waals forces act between FF oriented smectite flakes and aggregates become approach irreversible flocculation. In case of sample prepared using Method 2, particles contacting by edges (EE) and edge to face (EF) orientation fell into secondary minimum and weak flocculation resulted in severe gelation and formation of the micelle-like texture in fringe superstructure, which was first time observed in smectite based gel. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Anaerobic biodegradability essays from brewery wastewater using granular and flocculent sludges

    Directory of Open Access Journals (Sweden)

    C J Collazos Chávez

    2003-01-01

    Full Text Available At the beginning of nineties the colombian beer industry begun the application of anaerobic technology for the treatment of their wastewater efluents throught different regions of the country. These treatment plants have not been working appropriately due to different factors, and are creating concern among the industrial sector and the water pollution control agencies. This work constitutes the second phase of a research project designed to establish a selection and improvement criteria of the sludges used in the systems. It also looks to analyze other associated factors such as: waste, characteristics, operation conditions and design parameters. The investigation was conducted in two phases using granular and floculent sludges. This method was used for determining the anaerobic biodegradability of wastewater from two industrial plants.

  20. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  1. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks--full-scale operational results.

    Science.gov (United States)

    Vestner, R J; Günthert, F Wolfgang

    2004-01-01

    Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.

  2. Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.

    Science.gov (United States)

    Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2011-01-01

    To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.

  3. Best Practice for the Devulcanization of Sulfur-cured SBR Rubber

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Blume, Anke

    2015-01-01

    In the present paper, special attention will be devoted to thermo-chemical devulcanization of sulfur-cured styrene butadiene rubber (SBR) using diphenyldisulfide (DPDS) as devulcanization aid. SBR is the main component in whole passenger car tire rubber and, at the same time, the most critical one

  4. Effect of HRT on SBR Performance for Treatability of Combined Domestic and Textile Wastewaters

    International Nuclear Information System (INIS)

    Nawaz, M.S.; Khan, S.J.; Khan, S.J.

    2013-01-01

    Textile wastewater contains organics and color dyes which need to be treated before discharging into receiving water bodies. Sequencing batch reactor (SBR) is proved promising against textile wastewater due to its high organic and nutrient removal efficiencies. In this study the influence of variable hydraulic retention time (HRT) on the performance of SBR in treating combined textile and domestic wastewater was evaluated. Six SBRs were operated in parallel at 12 and 8 hrs HRTs respectively, three for synthetic and three for real textile plus domestic wastewater. SBRs were operated at constant temperature 25 +- 1 degree C and pH 7 +- 1 to avoid seasonal effects. The biological oxygen demand (BOD) removal efficiency was consistent at 73% while, total suspended solids (TSS) removal efficiency increased from 52 to 63% in SBRs with decrease in HRT from 12 to 8 hrs. The organic loading rate (OLR) increased from 0.45 to 0.68 Kg/m3/d, SVI decreased from 94 to 84 mL/g and chemical oxygen demand (COD) removal efficiency increased in real waste water (RWW) SBRs from 59 to 63% with decrease in HRT from 12 to 8 hrs. Low COD removal at 12 hr HRT can be attributed to poor settling characteristics of sludge due to possible filamentous growth at low F/M (0.03) and greater SRT (28 days) as compared to 8 hr HRT condition, where F/M was 0.05 and SRT of 20 days. (author)

  5. Treatment of textiles industrial wastewater by electron beam and biological treatment (sbr)

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Khairul Zaman Mohd Dahlan; Zulkafli Ghazali; Ting Teo Ming

    2008-08-01

    Study of treating textiles industrial wastewater with combined of electron beam and Tower Style Biological Treatment (TSB) was investigated in Korea. In this project, textiles wastewater was also treated with electron beam, but hybrid with Sequencing Batch Reactor (SBR). The purpose of this research is to develop combined electron beam treatment with existing biological treatment facility (SBR), of textile industries in Malaysia. The objectives of this project are to determine the effective irradiation parameter for treatment and to identify effective total retention time in SBR system. To achieve the objective, samples fill in polypropyle tray were irradiated at 1 MeV, 20 mA and 1 MeV ,5 mA at doses 11, 20, 30, 40 and 50 kGy respectively. Raw effluent and two series of irradiated effluent at 1 MeV 20 mA (11, 20, 30, 40 and 50 kGy) and 1 MeV 5 mA (11, 20, 30, 40 and 50 kGy) were then treated in SBR system. Samples were analysed at 6, 14 and 20 hrs after aeration in the SBR. The results show that, average reduction in BOD was about 2-11% after irradiated at 5 mA, and the percentage increased to 21-73% after treatment in SBR system. At 20 mA, BOD reduced to 7-29% during irradiation and the value increased to 57-87% after treatment in SBR system. (Author)

  6. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    Science.gov (United States)

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION).

    Science.gov (United States)

    Hwang, Jeong-Ha; Han, Dong-Woo

    2015-01-01

    Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.

  8. Effect of deflocculation on the efficiency of disperser induced dairy waste activated sludge disintegration and treatment cost.

    Science.gov (United States)

    Devi, T Poornima; Ebenezer, A Vimala; Kumar, S Adish; Kaliappan, S; Banu, J Rajesh

    2014-09-01

    Excess sludge disintegration by energy intensive processes like mechanical pretreatment is considered to be high in cost. In this study, an attempt has been made to disintegrate excess sludge by disperser in a cost effective manner by deflocculating the sludge using sodium dodecyl sulphate (SDS) at a concentration of 0.04 g/g SS. The disperser pretreatment was effective at a specific energy input of 5013 kJ/kg TS where deflocculated sludge showed higher chemical oxygen demand solubilisation and suspended solids reduction of 26% and 22.9% than flocculated sludge and was found to be 18.8% and 18.6% for former and latter respectively. Higher accumulation of volatile fatty acid (700 mg/L) in deflocculated sludge indicates better hydrolysis of sludge by proposed method. The anaerobic biodegradability resulted in higher biogas production potential of 0.522 L/(g VS) for deflocculated sludge. Cost analysis of the study showed 43% net energy saving in deflocculated sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Changes in the ammonia-oxidizing bacteria community in response to operational parameters during the treatment of anaerobic sludge digester supernatant.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena; Bernat, Katarzyna; Kulikowska, Dorota; Wojnowska-Baryła, Irena

    2012-07-01

    The understanding of the relationship between ammoniaoxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/ mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg O2/l) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged 2.48 +/- 0.17, while at 4 h/ 5.5 h it was 2.35 +/- 0.16. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.

  10. Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: Flocculation behavior and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Razali, M.A.A.; Ariffin, A., E-mail: srazlan@usm.my

    2015-10-01

    Graphical abstract: - Highlights: • Flocculation performance of cassava grafted polyDADMAC was studied. • Turbidity and TSS removal increased with increasing grafting percentage. • The grafted polymer showed good removal in acidic and neutral region. • Zeta potential results pointed to the charge neutralization mechanism. • Flocs increased with increasing grafting percentage and molecular weight. - Abstract: In this work, flocculation properties of cassava starch grafted polydiallyldimethylammonium chloride (polyDADMAC) with different grafting percentages were investigated. Flocculation performance was evaluated in simulated kaolin suspension. The grafting percentages used were 1.76 %, 14.84 %, and 21.98 %. The effectiveness of the flocculation was measured based on the reduction of the turbidity and total suspended solids (TSSs), zeta potential measurements, particle size, and atomic force microscopy imaging. Grafted polymers improved the removal rate of turbidity and TSS compared with gelatinized starch, and the removal rate increased with increasing grafting percentage and dosage.

  11. Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: Flocculation behavior and mechanism

    International Nuclear Information System (INIS)

    Razali, M.A.A.; Ariffin, A.

    2015-01-01

    Graphical abstract: - Highlights: • Flocculation performance of cassava grafted polyDADMAC was studied. • Turbidity and TSS removal increased with increasing grafting percentage. • The grafted polymer showed good removal in acidic and neutral region. • Zeta potential results pointed to the charge neutralization mechanism. • Flocs increased with increasing grafting percentage and molecular weight. - Abstract: In this work, flocculation properties of cassava starch grafted polydiallyldimethylammonium chloride (polyDADMAC) with different grafting percentages were investigated. Flocculation performance was evaluated in simulated kaolin suspension. The grafting percentages used were 1.76 %, 14.84 %, and 21.98 %. The effectiveness of the flocculation was measured based on the reduction of the turbidity and total suspended solids (TSSs), zeta potential measurements, particle size, and atomic force microscopy imaging. Grafted polymers improved the removal rate of turbidity and TSS compared with gelatinized starch, and the removal rate increased with increasing grafting percentage and dosage

  12. Effect of organo clay on curing, mechanical and dielectric properties of NR/SBR blends

    Science.gov (United States)

    Ravikumar, K.; Joseph, Reji; Ravichandran, K.

    2018-04-01

    Natural rubber (NR) and styrene butadiene rubber (SBR) based elastomeric blends reinforced with organically modified Sodium bentonite clay were prepared by two roll mills. Vulcanization parameters such as minimum and maximum torque values scorch and cure times are measured by Oscillating Disc Rheometer. Mechanical properties such as Tensile strength, modulus at 100%, 200% and 300% elongation and elongation at break and Hardness were measured by Universal testing machine and Durometer Shore A hardness meter respectively. Dielectric properties such as dielectric constant (ε’), dissipation factor (tanδ) and volume resistivity (ρv) were measured at room temperature. The curing studies show that torque values are increasing in NR/SBR blends by increase NR content. The scorch and optimum cure time in NR/SBR blends reinforced organo modified clay was found through increase in the SBR content. This may be due to better processing safety of the NR/SBR blends reinforced with organo modified clay. Mechanical properties show that addition of SBR in blends, tensile strength, elongation modulus increases, but 100% modulus slightly increases and no change was observed in Hardness. Dielectric studies show that dielectric constant of NR and SBR rubbers are almost same, it may due to their non-polar nature. But addition of SBR in NR/SBR blend, dielectric constant gradually increases and maximum value observed at 50/50 ratio. But no considerable change was observed in dissipation factor. Frequency dependant resistivity shows that volume resistivity was not changed with respect to frequency up to 3.5 kHz and beyond that the frequency dependence resistivity was found.

  13. Enrichment of coal pulps by selective flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Z

    1977-01-01

    The results are presented of selective flocculation of coal pulps using different reagents. In some tests the coal particles were flocculated, and in others the coal remained in suspension and the dirt was flocculated. Selective flocculation makes it possible to obtain coal concentrates with a very low ash content from slurries with a high ash content. (In Polish)

  14. Enrichment of coal pulps by selective flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Z

    1977-01-01

    The results are presented of selective flocculation of coal pulps using different reagents. In some tests the coal particles were flocculated, and in others the coal remained in suspension and the dirt was flocculated. Selective flocculation makes it possible to obtain coal concentrates with a very low ash content from slurries with a high ash content.

  15. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.

    Science.gov (United States)

    Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo

    2017-07-01

    The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.

  16. Contribution To The Study Of Flocculation Of Digestate

    Directory of Open Access Journals (Sweden)

    Heviánková Silvie

    2015-09-01

    Full Text Available The paper deals with the intensification of separating the solid phase of digestate using flocculants only. The separated solid phase should subsequently be used in agriculture for fertilising. Flocculants (polyacrylamides are difficult to biodegrade. In this respect, they should not deteriorate the properties of the solid phase and the flocculant dose must be as low as possible. The research aimed to identify the optimal cationic flocculant and its application procedure which would enable a dosage that would be both economically and ecologically acceptable. We tested 21 cationic flocculants of different charge density and molecular weight and 1 mixture of two selected flocculants (Sokoflok 53 and Sokoflok 54 with the aim to discover the lowest possible dose of flocculating agent to achieve the effective aggregation of digestate particles. The lowest flocculant doses were obtained using the mixture of flocculants labelled Sokoflok 53 and Sokoflok 54 in 4:1 proportion, both of a low charge density and medium molecular weight, namely 14.54 g/kg of total solids for a digestate from the biogas plant Stonava and namely 11.80 g/kg of total solids for a digestate from the biogas plant Vrahovice. The findings also reveal that flocculation is most effective during two-stage flocculant dosing at different mixing time and intensity.

  17. Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.

    Science.gov (United States)

    Ma, Xiaochen; Zheng, Hongli; Zhou, Wenguang; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-10-01

    In this study, a novel flocculation strategy for harvesting Chlorella vulgaris with combined flocculants, poly (γ-glutamic acid) (γ-PGA) and calcium oxide (CaO), has been developed. The effect of flocculant dosage, the order of flocculant addition, mixing speed, and growth stage on the harvesting efficiency was evaluated. Results showed that the flocculation using combined flocculants significantly decreases the flocculant dosage and settling time compared with control. It was also found that CaO and γ-PGA influenced microalgal flocculation by changing the zeta potential of cells and pH of microalgal suspension. The most suitable order of flocculant addition was CaO first and then γ-PGA. The optimal mixing speed was 200 rpm for 0.5 min, followed by 50 rpm for another 4.5 min for CaO and γ-PGA with the highest flocculation efficiency of 95 % and a concentration factor of 35.5. The biomass concentration and lipid yield of the culture reusing the flocculated medium were similar to those when a fresh medium was used. Overall, the proposed method requires low energy input, alleviates biomass and water contamination, and reduces utilization of water resources and is feasible for harvesting C. vulgaris for biofuel and other bio-based chemical production.

  18. Availability of uranium present in the sludge generated at two stations of potable water treatment; Disponibilidad del uranio presente en el fango generado en dos estaciones de tratamiento de agua potable

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Serrano, A.; Baeza, A.; Salas, A.; Guillen, J.

    2013-07-01

    During the treatment is carried out in a Station Potable Water Treatment Plant sludge enriched are produced in components that have been removed from the water. The concentration and availability of radionuclides accumulated in a sludge during coagulation-flocculation will condition possible later use, so it is essential to carry out the characterization of sludge and its chemical speciation. (Author)

  19. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    Science.gov (United States)

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of CeO{sub 2} nanoparticles on sludge aggregation and the role of extracellular polymeric substances – Explanation based on extended DLVO

    Energy Technology Data Exchange (ETDEWEB)

    You, Guoxiang [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Hou, Jun, E-mail: hhuhjyhj@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Peifang, E-mail: pfwang2005@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Xu, Yi; Wang, Chao; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang; Luo, Hao [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2016-11-15

    The extended DLVO (XDLVO) theory was applied to elucidate the potential effects of CeO{sub 2} nanoparticles (CeO{sub 2} NPs) on sludge aggregation and the role of extracellular polymeric substances (EPS). In this study, seven different concentrations of CeO{sub 2} NPs were added to activated sludge cultured in sequencing batch reactors (SBRs) and compared with a control test that received no CeO{sub 2} NPs. After exposure to 50 mg/L CeO{sub 2} NPs, a negligible change (p>0.1) occurred in the sludge volume index (SVI), whereas the flocculability and aggregation of the sludge decreased by 18.8% and 11.2%, respectively, resulting in a high effluent turbidity. The XDLVO theory demonstrated that the adverse effects of the CeO{sub 2} NPs on sludge aggregation were due to an enhanced barrier energy. Compared to the van der Waals energies (W{sub A}) and the electric double layer (W{sub R}), the acid-base interaction (W{sub AB}) markedly changed for the various concentrations of CeO{sub 2} NPs. The EPS played a decisive role in the sludge surface characteristics, as the removal of EPS equals to the negative effects induced by 5–10 mg/L CeO{sub 2} NPs on the sludge flocculability and aggregation. The presence of CeO{sub 2} NPs induced negative contributions to the tight boundary EPS (TB-EPS) and core bacteria while positive contributions to the total interaction energy of the loose boundary EPS (LB-EPS). - Highlights: • CeO{sub 2} NPs adversely affected the flocculability and aggregation of the sludge. • The presence of CeO{sub 2} NPs increased the energy barrier and led to a stable suspension. • The removal of EPS equals to the negative effects induced by 5–10 mg/L CeO{sub 2} NPs. • The acid-base interaction was dominate and markedly changed for the CeO{sub 2} NPs. • CeO{sub 2} NPs induced negative contributions to the TB-EPS while positive to the LB-EPS.

  1. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    Science.gov (United States)

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes

    International Nuclear Information System (INIS)

    Sirianuntapiboon, Suntud; Sansak, Jutarat

    2008-01-01

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO 3 - was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD 5 TKN and dye removal efficiencies of only 64.7 ± 4.9% and 50.2 ± 6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD 5 ). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW + glucose) or Thai rice noodle wastewater (TWW + TRNWW), respectively. SRT of the systems were 28 ± 1 days and 31 ± 2 days with TWW + glucose and TWW + TRNWW, respectively

  3. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes

    Energy Technology Data Exchange (ETDEWEB)

    Sirianuntapiboon, Suntud [Department of Environmental Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology, Thonburi, Bangmod, Thung-kru, Bangkok 10140 (Thailand)], E-mail: suntud.sir@kmutt.ac.th; Sansak, Jutarat [Department of Environmental Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology, Thonburi, Bangmod, Thung-kru, Bangkok 10140 (Thailand)

    2008-11-30

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO{sub 3}{sup -} was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD{sub 5} TKN and dye removal efficiencies of only 64.7 {+-} 4.9% and 50.2 {+-} 6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD{sub 5}). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW + glucose) or Thai rice noodle wastewater (TWW + TRNWW), respectively. SRT of the systems were 28 {+-} 1 days and 31 {+-} 2 days with TWW + glucose and TWW + TRNWW, respectively.

  4. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes.

    Science.gov (United States)

    Sirianuntapiboon, Suntud; Sansak, Jutarat

    2008-11-30

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3,000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO(3)(-) was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD(5) TKN and dye removal efficiencies of only 64.7+/-4.9% and 50.2+/-6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD(5)). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW+glucose) or Thai rice noodle wastewater (TWW+TRNWW), respectively. SRT of the systems were 28+/-1 days and 31+/-2 days with TWW+glucose and TWW+TRNWW, respectively.

  5. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Effect of trace amounts of polyacrylamide (PAM) on long-term performance of activated sludge

    International Nuclear Information System (INIS)

    Luo, Yuan-ling; Yang, Zhao-hui; Xu, Zheng-yong; Zhou, Ling-jun; Zeng, Guang-ming; Huang, Jing; Xiao, Yong; Wang, Li-ke

    2011-01-01

    This study aims at evaluating the impacts of PAM addition on activated sludge performance. Four lab-scale sequencing batch reactors (SBRs), each with a working volume of 3 L, were investigated with different PAM concentrations. Experiments were conducted with varying organic loading rate and the sludge volume index (SVI), particle size, zeta potential, specific oxygen uptake rate (SOUR), mixed liquor suspended solids (MLSS), COD and ammonium removal efficiency were monitored over a 105-day period. The results showed that all of the PAM addition not only improved the removal efficiencies of COD and ammonium, but also exhibited some advantages on sludge performance. It was found that the sludge performance of settling property, flocculation and microbial activity increased with increasing concentration of PAM. However, high level of PAM (1 mg/L) led to the formation of large amounts of loose-structure flocs, which eliminated dissolved oxygen transfer and caused the sludge disintegration, resulting in bad settleability and lower microbial activity. In this way, when the dosage of PAM was 0.1 mg/L, the sludge had the best settling property and activity.

  7. Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant.

    Science.gov (United States)

    Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N

    2009-01-01

    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.

  8. Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: An efficient and eco-friendly flocculant.

    Science.gov (United States)

    Liu, Hongyi; Yang, Xiaogang; Zhang, Yong; Zhu, Hangcheng; Yao, Juming

    2014-08-01

    This work presents a synthesis process and flocculation characteristics of an eco-friendly flocculant based on bamboo pulp cellulose (BPC) from Phyllostachys heterocycla. Ployacrylamide (PAM) was grafted onto the BPC by free-radical graft copolymerization in homogeneous aqueous solution. The optimal synthesis conditions of the bamboo pulp cellulose-graft-ployacrylamide flocculant (BPC-g-PAM) and its performance on wastewater treatments were investigated. A UV-based method was used to rapidly determine the degree of substitution (DS) of BPC. The results showed that, under the optimal synthesis conditions, the obtained BPC-g-PAM held a grafting ratio of 43.8% and DS of 1.31. Turbidity removal of the product reached 98.0% accompanying with the significant flocculation and sedimentation in target suspensions. The flocculation mechanism was explored by means of zeta potential method. For negatively charged contaminants, like kaolin clay particles, the BPC-g-PAM could remove the contaminants efficiently via bridging and charge neutralization in acidic or neutral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge.

    Science.gov (United States)

    Pestana, Carlos J; Reeve, Petra J; Sawade, Emma; Voldoire, Camille F; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Modified calibration protocol evaluated in a model-based testing of SBR flexibility

    DEFF Research Database (Denmark)

    Corominas, Lluís; Sin, Gürkan; Puig, Sebastià

    2011-01-01

    The purpose of this paper is to refine the BIOMATH calibration protocol for SBR systems, in particular to develop a pragmatic calibration protocol that takes advantage of SBR information-rich data, defines a simulation strategy to obtain proper initial conditions for model calibration and provide...

  11. Nanocellulose size regulates microalgal flocculation and lipid metabolism

    Science.gov (United States)

    Yu, Sun Il; Min, Seul Ki; Shin, Hwa Sung

    2016-01-01

    Harvesting of microalgae is a cost-consuming step for biodiesel production. Cellulose has recently been studied as a biocompatible and inexpensive flocculant for harvesting microalgae via surface modifications such as cation-modifications. In this study, we demonstrated that cellulose nanofibrils (CNF) played a role as a microalgal flocculant via its network geometry without cation modification. Sulfur acid-treated tunicate CNF flocculated microalgae, but cellulose nanocrystals (CNC) did not. In addition, desulfurization did not significantly influence the flocculation efficiency of CNF. This mechanism is likely related to encapsulation of microalgae by nanofibrous structure formation, which is derived from nanofibrils entanglement and intra-hydrogen bonding. Moreover, flocculated microalgae were subject to mechanical stress resulting in changes in metabolism induced by calcium ion influx, leading to upregulated lipid synthesis. CNF do not require surface modifications such as cation modified CNC and flocculation is derived from network geometry related to nanocellulose size; accordingly, CNF is one of the least expensive cellulose-based flocculants ever identified. If this flocculant is applied to the biodiesel process, it could decrease the cost of harvest, which is one of the most expensive steps, while increasing lipid production. PMID:27796311

  12. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    International Nuclear Information System (INIS)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma; Voldoire, Camille F.; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-01-01

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers

  13. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Voldoire, Camille F. [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Newton, Kelly; Praptiwi, Radisti [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Collingnon, Lea [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Dreyfus, Jennifer [Allwater, Adelaide Services Alliance, Wakefield St, Adelaide, SA 5001 (Australia); Hobson, Peter [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Gaget, Virginie [University of Adelaide, Ecology and Environmental Sciences, School of Biological Sciences, Adelaide, SA 5005 (Australia); Newcombe, Gayle, E-mail: gayle.newcombe@sawater.com.au [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia)

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers.

  14. Evaluation of coagulation sludge from raw water treated with Moringa oleifera for agricultural use

    Directory of Open Access Journals (Sweden)

    Jhon Jairo Feria

    2016-05-01

    Full Text Available Coagulation-flocculation is a physical-chemical process responsible for producing the largest amount of sludge in the purification of natural raw water. Conventionally, aluminum sulfate or alum has been used as a coagulant. However, disposal of the sludge produced has been problematic for the environment due to excess aluminum. Currently, the convenience of using natural coagulants such as seed extracts from Moringa oleifera (MO is being studied, although, the properties of sewage sludge produced and its possible reuse are unknown. In this paper the physical-chemical, nutritional and dangerous characteristics from MO sludge were evaluated by using standard methods to verify its potential use in agricultural soils. Results indicated that pH, electrical conductivity, ion exchange capacity, organic matter and micronutrients from sludge were suitable for application to soils with agricultural potential; but deficiency of macronutrients and presence of fecal coliforms limits it to be used as soil improver and not as fertilizer. Sludge stabilization with hydrated lime at doses greater than or equal to 3 % was effective to ensure the elimination of pathogenic microorganisms and to obtain a Class A sludge, unrestricted for agricultural use and suitable for acid soils.

  15. Pathway for high-quality reclaim by thermal treatment of sulfur-vulcanized SBR

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2011-01-01

    De-vulcanization of SBR (Styrene Butadiene Rubber) is a challenge, as the broken polymer chains tend to re-arrange. This influences the properties of the reclaimed and re-vulcanized rubber, and reduces the quality of the recycled material. Within this study, the breakdown of sulfur-cured SBR in a

  16. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process.

    Science.gov (United States)

    Kim, Sungpyo; Eichhorn, Peter; Jensen, James N; Weber, A Scott; Aga, Diana S

    2005-08-01

    A study was conducted to examine the influence of hydraulic retention time (HRT) and solid retention time (SRT) on the removal of tetracycline in the activated sludge processes. Two lab-scale sequencing batch reactors (SBRs) were operated to simulate the activated sludge process. One SBR was spiked with 250 microg/L tetracycline, while the other SBR was evaluated at tetracycline concentrations found in the influent of the wastewater treatment plant (WWTP) where the activated sludge was obtained. The concentrations of tetracyclines in the influent of the WWTP ranged from 0.1 to 0.6 microg/L. Three different operating conditions were applied during the study (phase 1-HRT: 24 h and SRT: 10 days; phase 2-HRT: 7.4 h and SRT: 10 days; and phase 3-HRT: 7.4 h and SRT: 3 days). The removal efficiency of tetracycline in phase 3 (78.4 +/- 7.1%) was significantly lower than that observed in phase 1 (86.4 +/- 8.7%) and phase 2 (85.1 +/- 5.4%) at the 95% confidence level. The reduction of SRT in phase 3 while maintaining a constant HRT decreased tetracycline removal efficiency. Sorption kinetics reached equilibrium within 24 h. Batch equilibrium experiments yielded an adsorption coefficient (Kads) of 8400 +/- 500 mL/g and a desorption coefficient (Kdes) of 22 600 +/- 2200 mL/g. No evidence of biodegradation for tetracycline was observed during the biodegradability test, and sorption was found to be the principal removal mechanism of tetracycline in activated sludge.

  17. Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability.

    Science.gov (United States)

    Liu, Changgeng; Zhang, Panyue; Zeng, Chenghua; Zeng, Guangming; Xu, Guoyin; Huang, Yi

    2015-02-01

    A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45×10(10) to 2.07×10(10) s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43×10(8) s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water. Copyright © 2014. Published by Elsevier B.V.

  18. Impact of flocculation on flotation tailing's hydro-cycloning properties

    Directory of Open Access Journals (Sweden)

    Knežević Dinko N.

    2014-01-01

    Full Text Available Research results of hydro-cycloning of flocculated and non-flocculated flotation tailing from the lead and zinc open pit mine 'Suplja stijena', Sula - Montenegro have been shown in this paper. Reason for this research was finding conditions in order to separate fraction that is suitable for embankment erection. Flotation tailings has been tested in the very state that it goes out from the flotation process and tailings which is flocculated by anionic flocculant. The object was to determine the impact of flocculation on properties of hydro-cycloning products and disposal process. In hydro-cycloning process greater underflow mass is being separated with non-flocculated tailing. Values of geomechanical parameters are significantly different, especially hydro-cyclone's underflow. All geomechanical parameters of hydro-cyclone's underflow are suitable for erecting embankment which shall be made from non-flocculated tailing. Underflow drainage of non-flocculated tailing is faster while overflow drainage is slower and problematic with both tailings.

  19. Imaging c-PAM-induced flocculation of paper fibers.

    Science.gov (United States)

    Hartley, William H; Banerjee, Sujit

    2008-04-01

    The flocculation of paper fibers by cationic polyacrylamides (c-PAM) was studied by imaging the fibers that remain free during flocculation. Studies with fibers of different lengths showed that the degree of flocculation increases with fiber length, with the best flocs being formed with mixtures of short and long fibers. Short fibers did not flocculate by themselves but were captured by flocs formed with longer fibers. The short fibers strengthen the floc and give it shear resistance. Shear had the expected effect of promoting flocculation at low Reynolds number but disrupting it at higher values. For a given polymer the maximum floc size for a mixture of fibers is dictated by the length distribution of the fibers. The polymer dose governs the rate of flocculation. The technique is especially useful in following the tail end of the flocculation process. At this stage a floc is almost fully grown and a small increase in its size would be very difficult to measure by conventional techniques. In contrast, the number of free fibers measured by single fiber imaging decreases rapidly at this point.

  20. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    Science.gov (United States)

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  1. Evaluation of the modified nanoclay effect on the vulcanization of SBR through rheometric curve and DSC;Avaliacao do efeito de nanoargila modificada na vulcanizacao de SBR atraves da curva reometrica e DSC

    Energy Technology Data Exchange (ETDEWEB)

    Forte, Maria Madalena C.; Brito, Karin J.S., E-mail: mmcforte@ufrgs.b [Universidade Federal do Rio Grande do Sul (PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Gheller Junior, Jordao [SENAI, Sao Leopoldo, RS (Brazil). Centro Tecnologico de Polimeros

    2009-07-01

    Rubber nanocomposites with nanoclays organically modified by quaternary ammonium salts may have the curing features modified significantly, since the salts may act on the rubber cure system. The aim of this work is to evaluate the influences of an organically modified montmorillonite (OMMT) on the curing reaction of an SBR (styrene butadiene rubber) with sulfur. The SBR/OMMT nanocomposites were prepared by co-coagulating SBR latex and Cloisite{sup R} 20A aqueous suspension at different nanoclay concentrations. The OMMT effect on the sulfur curing reaction was evaluated by the rheometric curve using a rheometer type RPA (Rubber Process Analyzer) and the heat of vulcanization (DELTAH{sub v}) using Differential Scanning Calorimetry (DSC). The evaluation of the clay nanolayers dispersion in the SBR matrix was accomplished by x-ray diffraction (XRD) analysis. (author)

  2. Performance optimization of coagulant/flocculant in the treatment of wastewater from a beverage industry.

    Science.gov (United States)

    Amuda, O S; Amoo, I A; Ajayi, O O

    2006-02-28

    This study investigated the effect of coagulation/flocculation treatment process on wastewater of Fumman Beverage Industry, Ibadan, Nigeria. The study also compared different dosages of coagulant, polyelectrolyte (non-ionic polyacrylamide) and different pH values of the coagulation processes. The effect of different dosages of polyelectrolyte in combination with coagulant was also studied. The results reveal that low pH values (3-8), enhance removal efficiency of the contaminants. Percentage removal of 78, 74 and 75 of COD, TSS and TP, respectively, were achieved by the addition of 500 mg/L Fe2(SO4)3.3H2O and 93, 94 and 96% removal of COD, TSS and TP, respectively, were achieved with the addition of 25 mg/L polyelectrolyte to the coagulation process. The volume of sludge produced, when coagulant was used solely, was higher compared to the use of polyelectrolyte combined with Fe2(SO4)3.3H2O. This may be as a result of non-ionic nature of the polyelectrolyte; hence, it does not chemically react with solids of the wastewater. Coagulation/flocculation may be useful as a pre-treatment process for beverage industrial wastewater prior to biological treatment.

  3. Harvesting of microalgae by bio-flocculation

    NARCIS (Netherlands)

    Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H.

    2011-01-01

    The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the

  4. Contaminants in Sludge: Implications for Management Policies and Land Application

    Energy Technology Data Exchange (ETDEWEB)

    Dentel, Steven K.

    2003-07-01

    Policies on sludge (or biosolids) management vary widely, particularly when decisions must be made on what to do with the final product. This paper examines the two principal rationales with which such decisions are made, and through which scientific knowledge is included in the process. These rationales are risk analysis (risk assessment and management), and the criterion of sustainability. Both are found to be potentially arbitrary due to the difficulty in defining the individual constituents necessary to relate environmental phenomena to environmental policy. To place the difficulties in a practical context, this paper presents research results from three recent projects concerned with contaminants in sludge (phosphorus, flocculant polymers, and polymer-surfactant aggregates), and uses the findings to exemplify the dilemma encountered in policy making. A path forward is proposed. (author)

  5. Effect of trace amounts of polyacrylamide (PAM) on long-term performance of activated sludge.

    Science.gov (United States)

    Luo, Yuan-ling; Yang, Zhao-hui; Xu, Zheng-yong; Zhou, Ling-jun; Zeng, Guang-ming; Huang, Jing; Xiao, Yong; Wang, Li-ke

    2011-05-15

    This study aims at evaluating the impacts of PAM addition on activated sludge performance. Four lab-scale sequencing batch reactors (SBRs), each with a working volume of 3L, were investigated with different PAM concentrations. Experiments were conducted with varying organic loading rate and the sludge volume index (SVI), particle size, zeta potential, specific oxygen uptake rate (SOUR), mixed liquor suspended solids (MLSS), COD and ammonium removal efficiency were monitored over a 105-day period. The results showed that all of the PAM addition not only improved the removal efficiencies of COD and ammonium, but also exhibited some advantages on sludge performance. It was found that the sludge performance of settling property, flocculation and microbial activity increased with increasing concentration of PAM. However, high level of PAM (1mg/L) led to the formation of large amounts of loose-structure flocs, which eliminated dissolved oxygen transfer and caused the sludge disintegration, resulting in bad settleability and lower microbial activity. In this way, when the dosage of PAM was 0.1mg/L, the sludge had the best settling property and activity. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  6. Flocculation of kaolin and lignin by bovine blood and hemoglobin

    Science.gov (United States)

    Polymeric flocculants are used extensively for water purification, inhibition of soil erosion, and reduction in water leakage from unlined canals. Production of highly active, renewable polymeric flocculants to replace synthetic flocculants is a priority. Using suspensions of kaolin, flocculation ...

  7. Combined Pre-Precipitation, Biological Sludge Hydrolysis and Nitrogen Reduction - A Pilot Demonstration of Integrated Nutrient Removal

    DEFF Research Database (Denmark)

    Kristensen, G. H.; Jørgensen, P. E.; Strube, R.

    1992-01-01

    solubilization was 10-13% of the suspended COD. The liquid phase of the hydrolyzed sludge, the hydrolysate, was separated from the suspended fraction by centrifugation and added to the biological nitrogen removal stage to support denitrification. The hydrolysate COD consisted mainly of volatile fatty acids......A pilot study was performed to investigate advanced wastewater treatment by pre-precipitation in combination with biological nitrogen removal supported by biological sludge hydrolysis. The influent wastewater was pretreated by addition of a pre-polymerized aluminum salt, followed by flocculation......, resulting in high denitrification rates. Nitrogen reduction was performed based on the Bio-Denitro principle in an activated sludge system. Nitrogen was reduced from 45 mg/l to 9 mg/l and phosphorus was reduced from 11 mg/l to 0.5 mg/l. The sludge yield was low, approx. 0.3-0.4 gCOD/gCOD removed...

  8. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    Science.gov (United States)

    Jafarinejad, Shahryar

    2017-09-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  9. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    International Nuclear Information System (INIS)

    Rahimi, Yousef; Torabian, Ali; Mehrdadi, Naser; Shahmoradi, Behzad

    2011-01-01

    Research highlights: → Sludge production in FSBR reactor is 20-30% less than SBR reactor. → FSBR reactor showed more nutrient removal rate than SBR reactor. → FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y obs ) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  10. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  11. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant

    Science.gov (United States)

    Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun

    2018-02-01

    In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.

  12. Revisiting Coiled Flocculator Performance for Particle Aggregation.

    Science.gov (United States)

    2017-09-08

    This work summarizes recent studies evaluating the torsion and curvature parameters in the flocculation efficiency using a hydraulic plug-flow flocculator named as Flocs Generator Reactor (FGR). Colloidal Fe(OH)3 and coal particles were used as suspension models and a cationic polyacrylamide was used for the flocculation. The effectiveness of the aggregation process (in the distinct curvature and torsion parameters and hydrodynamic conditions) was evaluated by the settling rate of the Fe(OH)3 flocs and flocs size by photographic analysis. Due to curvature, a secondary flow is induced and the profiles of the flow quantities differ from those for a straight pipe. Results showed that the difference in the flocculator design influences the Fe(OH)3 flocs size and settling rates, reaching values about 13 and 4 mh-1, for the coiled and straight pipes respectively. Coal flocs generation also showed to be dependent on the flocculator design and shear rate. Results showed that turbulent kinetic energy increases due to curvature when the torsion parameter is kept constant (pitch close to zero) enhancing the flocs formation.

  13. Eco-technological process of glass-ceramic production from galvanic sludge and aluminium slag

    Directory of Open Access Journals (Sweden)

    Stanisavljević M.

    2010-01-01

    Full Text Available Methods of purification of waste water which are most commonly used in the Republic of Serbia belong to the type of conventional systems for purification such as chemical oxidation and reduction, neutralization, sedimentation, coagulation, and flocculation. Consequently, these methods generate waste sludge which, unless adequately stabilized, represents hazardous matter. The aluminium slag generated by melting or diecasting aluminium and its alloys is also hazardous matter. In this sense, this paper establishes ecological risk of galvanic waste sludge and aluminium slag and then describes the process of stabilization of these waste materials by means of transformation into a glass-ceramic structure through sintering. The obtained product was analyzed with Fourier Transform Infrared Spectroscopy (FT-IR and X-ray diffraction (XRD. The object of the paper is the eco-technological process of producing glass-ceramics from galvanic sludge and aluminium slag. The aim of the paper is to incorporate toxic metals from galvanic sludge and aluminium slag into the glass-ceramic product, in the form of solid solutions.

  14. Development of compatibilized SBR and EPR nanocomposites containing dual filler system

    International Nuclear Information System (INIS)

    Rajasekar, R.; Nayak, G.C.; Malas, A.; Das, C.K.

    2012-01-01

    Highlights: ► Nanoclay is dispersed in non-polar rubbers by utilizing a polar compatibilizer. ► Effect of dual fillers [nanoclay and carbon black] on the rubber properties. ► Comparison of the results of single and dual filler containing rubber compounds. -- Abstract: The study described in this paper is an analysis of the role of a compatibilizer for dispersing organically modified nanoclay in styrene butadiene rubber (SBR) and ethylene propylene rubber (EPR) matrices. The normal mixing of non-polar rubbers and organically modified nanoclay may not lead to improved distribution of the nanofiller in the rubbery matrix. Hence, a polar rubber such as epoxidized natural rubber (ENR) can be used as a compatibilizer for dispersing nanoclay in the non-polar rubber matrices. ENR–organically modified nanoclay composites (EC) were prepared by solution mixing. The nanoclay used in this study is Cloisite 20A. The obtained ENR–nanoclay composites were incorporated in SBR and EPR matrices along with carbon black. The morphological studies proved the intercalation of nanoclay platelets in ENR and further incorporation of EC in SBR and EPR matrices leads to partial exfoliation of nanoclay platelets. A curing study demonstrated faster scorch time, cure time and increased maximum torque for the compatibilized SBR and EPR nanocomposites containing a dual filler system compared to the control. Dynamic mechanical thermal analysis showed increase in storage modulus for the SBR and EPR compounds containing dual fillers compared to rubber compounds containing pure and single filler. The same compounds show substantial improvement in mechanical properties. The tensile fractured surface of the rubber compounds containing single and dual filler observed by scanning electron microscopy, (SEM) showed highly rough and irregular fracture paths, which proved the physical interaction between filler and rubber.

  15. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation

    International Nuclear Information System (INIS)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-01-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5 /COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3 . Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3 . Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  16. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bural, Cavit B.; Demirer, Goksel N. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Kantoglu, Omer [Turkish Atomic Energy Authority, Saraykoy Nuclear Research and Training Center, 06982, Kazan, Ankara (Turkey); Dilek, Filiz B., E-mail: fdilek@metu.edu.t [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)

    2010-04-15

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD{sub 5}/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm{sup -3}. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm{sup -3}. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  17. Preparation of lightweight concretes with sewage sludge ash and their properties

    International Nuclear Information System (INIS)

    Lee, Hwa Young

    2010-01-01

    Sewage sludge results from the accumulation of solids from the unit processes of chemical coagulation, flocculation and sedimentation during wastewater treatment. Rapid urbanization in many areas of the world has resulted in a drastic increase of sewage sludge. More than two million tons of sewage sludge resulted from the treatment of urban sewage is produced annually in Korea. The majority of sewage sludge is disposed of conventionally by the landfill or ocean disposal method, both of which create severe environmental pollution. However, increasingly stringent environmental regulations and scarcity of landfill sites have posed disposal problems of sludge. Incineration is a viable alternative providing a means of sludge stabilization resulting in a reduced volume of sterile, odorless and practically inert residue. Accordingly, the development of environment friendly treatment technique of SSA (sewage sludge ash) inevitably produced during incineration of sewage sludge may be urgently required. For this aim, an attempt to manufacture the lightweight concrete has been made using sewage sludge ash and the physical properties have been determined in terms of specific gravity, compressive strength and thermal conductivity. As a result, the density of specimen prepared with SSA was ranged from 0.6 to 1.4g/ cm 3 and the compressive strength was ranged from 20 to 40kg/ cm 2 . As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to 0.6 W/ mK depending on material composition which was far less than that of concrete. It was concluded that the lightweight concretes prepared with SSA could be applicable to building or construction materials such as insulation board and sound absorption material. (author)

  18. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    Science.gov (United States)

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Flocculation of suspended matter in a crude wet phosphoric acid (Algeria)

    International Nuclear Information System (INIS)

    Brikci Nigassa, M.; Bensebaa, A.

    1994-11-01

    Prior to the recovery of uranium, a pre-treatment of the phosphoric acid is necessary to remove soluble impurities of different origins. In this work, synthetic flocculants have been used. the influence of operating conditions on flocculation and filtration, such as, type of flocculants, polymer concentration, temperature, mixing and time of agitation, has been studied for both aged and fresh phosphoric acid. It has been shown that synthetic flocculants can be used for flocculation ins a phosphoric acid medium and that flocculation and filtration processes are strongly linked

  20. Complete genome sequence of Paenibacillus riograndensis SBR5(T), a Gram-positive diazotrophic rhizobacterium.

    Science.gov (United States)

    Brito, Luciana Fernandes; Bach, Evelise; Kalinowski, Jörn; Rückert, Christian; Wibberg, Daniel; Passaglia, Luciane M; Wendisch, Volker F

    2015-08-10

    Paenibacillus riograndensis is a Gram-positive rhizobacterium which exhibits plant growth promoting activities. It was isolated from the rhizosphere of wheat grown in the state of Rio Grande do Sul, Brazil. Here we announce the complete genome sequence of P. riograndensis strain SBR5(T). The genome of P. riograndensis SBR5(T) consists of a circular chromosome of 7,893,056bps. The genome was finished and fully annotated, containing 6705 protein coding genes, 87 tRNAs and 27 rRNAs. The knowledge of the complete genome helped to explain why P. riograndensis SBR5(T) can grow with the carbon sources arabinose and mannitol, but not myo-inositol, and to explain physiological features such as biotin auxotrophy and antibiotic resistances. The genome sequence will be valuable for functional genomics and ecological studies as well as for application of P. riograndensis SBR5(T) as plant growth-promoting rhizobacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water.

    Science.gov (United States)

    Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun

    2017-05-15

    In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    Science.gov (United States)

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  3. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    Science.gov (United States)

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Polyacrylamide grafted cellulose as an eco-friendly flocculant: Key factors optimization of flocculation to surfactant effluent.

    Science.gov (United States)

    Zhu, Hangcheng; Zhang, Yong; Yang, Xiaogang; Shao, Lan; Zhang, Xiumei; Yao, Juming

    2016-01-01

    The discharge of effluents from surfactant manufacturers is giving rise to increasingly serious environmental problems. In order to develop the eco-friendly flocculation materials to achieve effective removal of pollutants from the surfactant effluents, the bamboo pulp cellulose from Phyllostachys heterocycla is employed as the skeleton material to synthesize an eco-friendly bamboo pulp cellulose-g-polyacrylamide (BPC-g-PAM) for flocculation. The BPC-g-PAM is used with the metal ions as the coagulant to treat the effluent from a surfactant manufacturer. The response surface methodology coupled with Box-behnken design is employed to optimize the key factors of coagulation-flocculation. The results show that the combination of Fe(3+) with BPC-g-PAM achieves the best coagulation-flocculation performance like, the fast treatment time, minimum coagulant and BPC-g-PAM dosages compared with the other two combinations of Al(3+) with BPC-g-PAM and Ca(2+) with BPC-g-PAM. Therefore, the combination of Fe(3+) with BPC-g-PAM is expected to promote its application for the pollution control in the surfactant manufacturers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Biopolymer Production Kinetics of Mixed Culture Using Wastewater Sludge as a Raw Material and the Effect of Different Cations on Biopolymer Applications in Water and Wastewater Treatment.

    Science.gov (United States)

    More, T T; Yan, S; Tyagi, R D; Surampalli, R Y

    2016-05-01

    Thirteen extracellular polymeric substances (EPS) producing bacterial strains were cultivated (as mixed culture) in the sterilized sludge (suspended solids of 25 g/L) and the batch fermentation was carried out. Mixed culture revealed a high specific growth rate of 0.35/hr. The EPS production rate was higher up to 24 hours, which gradually decreased with further incubation. The kinetic estimates demonstrated growth-associated EPS production. Broth EPS revealed higher flocculation activity when combined with different cations (Ca(2+), Mg(2+), Fe(3+), and Al(3+)) in river water (≥90%), municipal wastewater (≥90%), and brewery wastewater (≥80%), respectively. A low dose (5 to 40 mg/L) of trivalent cations was required to achieve higher flocculation compared to the divalent cations (50 to 250 mg/L). Flocculation performance of EPS was comparable to Magnafloc-155 (chemical polymer) and, hence, it could be used as a flocculant.

  6. Digital Imaging and Piezo-dispenser Actuator in Automatic Flocculation Control

    Directory of Open Access Journals (Sweden)

    Jani TOMPERI

    2012-01-01

    Full Text Available This study presents an image-based on-line control system for a coiled pipe flocculator. A digital imaging technique developed previously is utilized to measure the characteristic floc size and a high-pressure piezo-dispenser is introduced for accurate dosing and rapid mixing of the flocculant. The controller is a conventional PI controller. Step change experiments on feed water quality, flow rate and desired floc size have been carried out for controller tuning and testing. The paper shows that the piezo-dispenser provides better flocculation results than a conventional dosing pump, and the flocculation result can be automatically controlled even when the feed water quality rapidly changes. The proposed flocculator is a simple, inexpensive and practical system for long-term laboratory tests to investigate the functionality of flocculants on varying feed waters.

  7. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    Science.gov (United States)

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Efficient de-vulcanization of sulfur-vulcanized SBR

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; Dierkes, Wilma K.; Noordermeer, Jacques W.M.

    Enabling recycling loops for used passenger car tires is a challenge and an opportunity: The challenge lies in the presence of SBR as the main elastomer in this type of tires, which makes this material difficult to reclaim due to the tendency of the elastomer chain fragments to re-combine. The

  9. SBR treatment of olive mill wastewaters: dilution or pre-treatment?

    Science.gov (United States)

    Farabegoli, G; Chiavola, A; Rolle, E

    2012-01-01

    The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.

  10. Induced flocculation of Pachysolen tannophilus using the tower fermentor

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, K.F.; Clark, T.A.

    1985-12-01

    This article reports the induction of flocculation with Pachysolen tannophilus by the use of controlled aeration in a tower fermentor. The observed environmental and physiological conditions for flocculent growth are described. Although most studies with P. tannophilus have used oxylose as substrate, a synthetic glucose medium was chosen for this study as the faster growth rate of the organism on glucose was considered to favor more rapid selection of a flocculent strain. Due to flocculation, the concentration of yeast cells retained in the tower was up to 16 times greater than in the overflow. Ethanol yields approaching theoretical were achieved at low specific oxygen uptake rates, conditions which also favored maximum flocculation. Future work will involve continuous tower fermentation of sugar mixtures representative of the composition of wood hydrolysates.

  11. A Study of Parameters Affecting the Solvent Extraction-Flocculation Process of Used Lubricating Oil

    Directory of Open Access Journals (Sweden)

    Hussein Qasim Hussein

    2017-06-01

    Full Text Available The aim of this study was to investigate the effect of operating variables on, the percentage of removed sludge (PSR obtained during re-refining of 15W-40 Al-Durra spent lubricant by solvent extraction-flocculation treatment method. Binary solvents were used such as, Heavy Naphtha (H.N.: MEK (N:MEK, H.N. : n-Butanol (N:n-But, and H.N. : Iso-Butanol (N:Iso:But. The studied variables were mixing speed (300-900, rpm, mixing time (15-60, min, and operating temperature (2540, oC. This study showed that the studied operating variables have effects where, increasing the mixing time up to 45 min for H.N.: MEK, H.N.: n-Butanol and 30 min for H.N.: Iso-Butanol increased the PSR, after that percentage was decreased; increasing the mixing speed for all the studied solvents up to 700 rpm increased the PSR, after that the percentage was decreased, while increasing the operating temperature decreased the PSR for all the solvents. This study has resulted in reasonably accurate multivariate process correlation that relates the removed sludge percentage to the process variables. The determination coefficients (

  12. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    Science.gov (United States)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  13. Cationic flocculants carrying hydrophobic functionalities: applications for solid/liquid separation.

    Science.gov (United States)

    Schwarz, S; Jaeger, W; Paulke, B-R; Bratskaya, S; Smolka, N; Bohrisch, J

    2007-07-26

    The flocculation behaviors of three series of polycations with narrow molecular weight distributions carrying hydrophobic substituents on their backbones [poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride), poly(N-vinylbenzyl-N,N-dimethyl-N-butylammonium chloride), and poly(N-vinylbenzylpyridinium chloride)] were investigated in dispersions of monodisperse polystyrene latexes and kaolin. Apparently, the charge density of the polycations decreases with increasing substituent hydrophobicity and increasing molecular weight of the polyelectrolytes. The necessary amount of flocculant for phase separation in dispersions with high substrate surface charge densities increases with increasing hydrophobicity of the polyelectrolyte. Nevertheless, the introduction of hydrophobic functionalities is beneficial, resulting in a substantial broadening of the range between the minimum and maximum amounts of flocculant necessary for efficient flocculation (flocculation window). An increase in ionic strength supports this effect. When the substrate has a low charge density, the hydrophobic interactions play a much more significant role in the flocculation process. Here, the minimum efficient doses remained the same for all three polyelectrolytes investigated, but the width of the flocculation window increased as the polycation hydrophobicity and the molecular weight increased. The necessary amount of flocculant increased with an increase in particle size at constant solid content of the dispersion, as well as with a decreasing number of particles at a constant particle size.

  14. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2017-09-01

    In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Electrokinetics and flocculation studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, N. [Punjab Engineering College, Chandigarh (India). Dept. of Metallurgical Engineering

    2008-07-01

    Coal from India contains 25-35 per cent ash content. This leads to high slag volume, lower calorific value and inferior coke. In order to remove ash content, coal is washed, however, it retains some water that makes it difficult to process. Mechanical dewatering is performed in which a large portion of solids is removed while the remainder remains in centrifuge. There is therefore a need to recover solids and water. This paper discussed the use of flocculation and electrokinetic studies such as the determination of the point of zero charge. The experimental studies considered factors such as turbidity, faster settling, and compactness. Flocculation is brought about by the action of high molecular weight materials such as polyelectrolytes, where the material physically forms a bridge between two or more particles, uniting the sold particles into a random, three-dimensional structure, which is loose and porous. This paper also described the materials and methods of the electrokinetic studies on coal samples. Materials that were described included nephelometer, zeta meter, and a flocculator. It was concluded that in selecting the best flocculant, the preference order should be turbidity; settling rate; dosage; and moisture content. 3 refs., 2 tabs., 8 figs.

  17. Flocculation kinetics of kaolinite : role of aqueous phase species

    Energy Technology Data Exchange (ETDEWEB)

    House, P.; Wang, C.; Dhadli, N. [Shell Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    Flocculation kinetics were used to study the rate-based processes that lead to aggregate growth and breakage of kaolinite in oil sands tailings. The role of aqueous phase species on aggregate growth, breakage and flocculant de-activation was studied. Collision efficiency and deactivation parameters were presented. The study showed that collisions can be efficient when the adsorption of the polymer is thermodynamically favorable. Up to 94 percent of adsorption takes place at the kaolinite edge. Studies have shown that hydrogen bonding sites on the kaolinite disappear with increases in pH values. The impact of molecular level interactions on flocculation kinetics were assessed in order to determine collision efficiencies and aggregate breakage rates. A focused beam reflectance model was used to monitor flocculation kinetics in situ. The period over which reflectance was observed was coupled with the laser velocity to determine the chord length of the particle. The kinetics of flocculation were observed for a 10 minute period. The effects of pH, calcium additions, and EDTA chelating agent additions were investigated. The study showed that calcium additions accelerate the rate of flocculant growth dramatically, and provide a much higher collision efficiency. Flocculants formed in the presence of calcium were weaker. The presence of salts promoted polymer adsorption by non-specific Van der Waals forces. tabs., figs.

  18. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    Directory of Open Access Journals (Sweden)

    Zhiping Wang

    Full Text Available Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  19. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  20. Flocculation of chromite ore fines suspension using polysaccharide ...

    Indian Academy of Sciences (India)

    Unknown

    liquid separation. Keywords. Flocculation; graft copolymer; mineral industry effluent; chromite ore fines; ... work well as flocculating agent on coal washery effluent, copper and iron ore fines etc (Karmakar et al 1998, 1999;. Tripathy et al 2001).

  1. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  2. Enveloped virus flocculation and removal in osmolyte solutions.

    Science.gov (United States)

    Gencoglu, Maria F; Heldt, Caryn L

    2015-07-20

    Our ability to reduce infectious disease burden throughout the world has been greatly improved by the creation of vaccines. However, worldwide immunization rates are low. The two most likely reasons are the lack of sufficient distribution in underdeveloped countries and the high cost of vaccine products. The high costs are due to the difficulties of manufacturing individual vaccine products with specialized purification trains. In this study, we propose to use virus flocculation in osmolytes, followed by microfiltration, as an alternative vaccine purification operation. In our previous work, we demonstrated that osmolytes preferentially flocculate a non-enveloped virus, porcine parvovirus (PPV). In this work we show that osmolytes flocculate the enveloped virus, Sindbis virus heat resistant strain (SVHR), and demonstrate a >80% removal with a 0.2 μm microfilter membrane while leaving proteins in solution. The best osmolytes were tested for their ability to flocculate SVHR at different concentrations, pH and ionic strengths. Our best removal was 98% of SVHR in 0.3M mannitol at a pH of 5. We propose that osmolytes are able to flocculate hydrophobic non-enveloped and enveloped virus particles by the reduction of the hydration layer around the particles, which stimulates virus aggregation. Now that we have demonstrated that protecting osmolytes flocculate viruses, this method has the potential to be a future platform purification process for vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  4. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound

    Science.gov (United States)

    Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.

    2017-07-01

    This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.

  5. Production of Flocculants, Adsorbents, and Dispersants from Lignin.

    Science.gov (United States)

    Chen, Jiachuan; Eraghi Kazzaz, Armin; AlipoorMazandarani, Niloofar; Hosseinpour Feizi, Zahra; Fatehi, Pedram

    2018-04-10

    Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  6. Determination of Crosslink Concentration by Mooney-Rivlin Equation for Vulcanized NR/ SBR Blend and its Influence on Mechanical Properties

    International Nuclear Information System (INIS)

    Azreen Izzati Dzulkifli; Che Mohd Som Said; Han, C.C.

    2015-01-01

    Crosslink concentration is an important property affecting the major characteristic of cured rubber. The crosslink concentration was determined using Mooney-Rivlin equation due to its simple and reliable method. Cured natural rubber and styrene butadiene rubber blend (NR/SBR) with different crosslink concentrations were obtained with different blend ratios of 100/0, 80/20, 70/30, 60/40, 50/50, 40/60 and 0/100. The crosslink concentrations were determined using Mooney-Rivlin Equation and its influence on International Rubber Hardness Tester (IRHD), tensile strength and rebound resilience of NR/ SBR blend vulcanizates was investigated. The results showed different blend ratios had an influence on the crosslink concentration of the NR/ SBR blend vulcanizates. Obtained data showed that high NR content in NR/ SBR blend increased the crosslink concentration. The highest crosslink concentration recorded was for 100/0 blend ratio which was 0.0498 mol kg"-"1 RH while the lowest was 0.0295 mol kg"-"1 RH for 0/100 blend ratio. The study on the influence of crosslink concentration on IRHD, tensile strength and rebound resilience of NR/ SBR blend vulcanizates showed that the mechanical properties increased linearly with the crosslink concentration. High NR content in NR/ SBR blends resulted in higher crosslink concentration which improved the performance of mechanical properties for NR/ SBR blend. (author)

  7. CHEMICAL INTERACTIONS TO CLEANUP HIGHLY POLLUTED AUTOMOBILE SERVICE STATION WASTEWATER BY BIOADSORPTION-COAGULATION-FLOCCULATION

    Directory of Open Access Journals (Sweden)

    Carlos Banchon

    2017-01-01

    Full Text Available The present study addresses an ecofriendly solution to treat automobile service stations effluents with high concentrations of oily substances, surfactants, organic matter and heavy metals. Bioadsorption using sawdust from pine trees, sugar cane bagasse and coconut coir without any chemical modification removed colloidal contamination up to 70%. Polyaluminium chloride, ferric chloride and polyacrylamide were applied to remove dissolved and colloidal pollutants under saline conditions without change of initial pH. Both bioadsorption and coagulation-flocculation removed up to 97.8% of BOD, COD, surfactants and heavy metals at a saline concentration of 1.5% NaCl. The increase of ionic strength promoted a high sludge index and a representative cost saving in chemicals consumption of almost 70%. High levels of pollution removal with the minimal use of chemicals is herein presented.

  8. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric; Depraetere, Orily; Noppe, Wim; Dutta, Abhishek; Foubert, Imogen; Laurens, Lieve; Muylaert, Koenraad

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and this fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L-1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.

  9. Production of Flocculants, Adsorbents, and Dispersants from Lignin

    Directory of Open Access Journals (Sweden)

    Jiachuan Chen

    2018-04-01

    Full Text Available Currently, lignin is mainly produced in pulping processes, but it is considered as an under-utilized chemical since it is being mainly used as a fuel source. Lignin contains many hydroxyl groups that can participate in chemical reactions to produce value-added products. Flocculants, adsorbents, and dispersants have a wide range of applications in industry, but they are mainly oil-based chemicals and expensive. This paper reviews the pathways to produce water soluble lignin-based flocculants, adsorbents, and dispersants. It provides information on the recent progress in the possible use of these lignin-based flocculants, adsorbents, and dispersants. It also critically discusses the advantages and disadvantages of various approaches to produce such products. The challenges present in the production of lignin-based flocculants, adsorbents, and dispersants and possible scenarios to overcome these challenges for commercial use of these products in industry are discussed.

  10. The treatment of waste waters from pig abattoirs using Sequencing Batch Reactor technology; Depuracion de las aguas residuales generadas en los mataderos de porcino mediante tecnologia Sequencing Batch Reactor, SBR

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Guiteras, J.

    2008-07-01

    A description is provided of a pig abattoir with a provision of 200-250 l/pig, a COD load of between 10,000 and 6,000 mg/l and a BOD of between 4,000 and 2,500 mg/l and 750-500 mg-NKT/l. The pretreatment line includes a system for separating coarse and fine components, flotation and a homogenisation tank/lung. the treatment line consists of a an SBR in which the organic matter is metabolised sequentially, the nitrogen eliminated and the remainder decanted. The clarified water with 98% less organic content and 99% less nitrogen is then disposed of. The sludge is thickened and dehydrated. (Author)

  11. U.S. Department of Energy (DOE)--Surface Biogeochemical Research (SBR) 6th Annual PI Meeting: Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Hazen Ed., T.C.

    2011-04-11

    On behalf of the Subsurface Biogeochemical Research (SBR) program managers in the Climate and Environmental Sciences Division (CESD), Office of Biological and Environmental Research (BER), welcome to the 2011 SBR Principal Investigators meeting. Thank you in advance for your attendance and your presentations at this year's meeting. As the events in Japan continue to unfold, we are all reminded that the research we perform on radionuclide behavior in the environment has implications beyond legacy waste cleanup and in fact has its place in the discussion on the expanded use of nuclear power. As in the past, there are three broad objectives to the Principal Investigators meeting: (1) to provide opportunities to share research results and promote interactions among the SBR scientists and other invited guests; (2) to evaluate the progress of each project within the program; and (3) to showcase the scientific expertise and research progress over the past year to senior managers within the DOE Office of Science, the technology offices within DOE, and other invited attendees from other Federal Agencies. This past year has seen a few significant changes within BER and within the SBR program. In November, our Associate Director for BER, Anna Palmisano, retired from Federal service. Just this month, Dr. Sharlene Weatherwax (Division Director for Biological Systems Sciences) has been named as the new Associate Director for BER. In August, BER welcomed Dr. Gary Geernaert as the new Division Director for CESD. Gary joins the division from Los Alamos National Laboratory with a background in atmospheric science. Within the SBR program, a new Strategic Plan was completed last June (currently posted on the SBR and the Office of Science website). The new strategic plan is intended to foster integration within the Environmental Systems Science portion of the BER budget that includes both SBR and Terrestrial Ecosystem Sciences (TES). Both these programs share a goal of advancing a

  12. Protein corona between nanoparticles and bacterial proteins in activated sludge: Characterization and effect on nanoparticle aggregation.

    Science.gov (United States)

    Zhang, Peng; Xu, Xiao-Yan; Chen, You-Peng; Xiao, Meng-Qian; Feng, Bo; Tian, Kai-Xun; Chen, Yue-Hui; Dai, You-Zhi

    2018-02-01

    In this work, the protein coronas of activated sludge proteins on TiO 2 nanoparticles (TNPs) and ZnO nanoparticles (ZNPs) were characterized. The proteins with high affinity to TNPs and ZNPs were identified by shotgun proteomics, and their effects of on the distributions of TNPs and ZNPs in activated sludge were concluded. In addition, the effects of protein coronas on the aggregations of TNPs and ZNPs were evaluated. Thirty and nine proteins with high affinities to TNPs and ZNPs were identified, respectively. The proteomics and adsorption isotherms demonstrated that activated sludge had a higher affinity to TNPs than to ZNPs. The aggregation percentages of ZNPs at 35, 53, and 106 mg/L of proteins were 13%, 14%, and 18%, respectively, whereas those of TNPs were 21%, 30%, 41%, respectively. The proteins contributed to ZNPs aggregation by dissolved Zn ion-bridging, whereas the increasing protein concentrations enhanced the TNPs aggregation through macromolecule bridging flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.

    Science.gov (United States)

    Tofalo, R; Perpetuini, G; Di Gianvito, P; Arfelli, G; Schirone, M; Corsetti, A; Suzzi, G

    2016-06-01

    Flocculent wine yeasts were characterized for the expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes, growth kinetics and physicochemical properties of the cell surface during a 6-month sparkling wine fermentation period. The expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes was determined by RT-qPCR. The physicochemical characterization of yeast surface properties was evaluated by the microbial adhesion to solvents method. FLO5 gene was the most expressed one and a linear correlation with the flocculent degree was found. Flocculent strains were more hydrophobic than the commercial wine strain EC1118. Gene expressions and the ability to face secondary wine fermentation conditions were strain dependent. The importance of FLO5 gene in developing the high flocculent characteristic of wine yeasts was highlighted. Cell surface properties depended on the time of fermentation. Better knowledge about the expression of some genes encoding the flocculent phenotype which could be useful to select suitable starter cultures to improve sparkling wine technology was achieved. A step forward in understanding the complexity and strain-specific nature of flocculation phenotype was done. © 2016 The Society for Applied Microbiology.

  14. A comparative examination of MBR and SBR performance for the treatment of high-strength landfill leachate.

    Science.gov (United States)

    El-Fadel, M; Hashisho, J

    2014-09-01

    The management of landfill leachate is challenging, with relatively limited work targeting high-strength leachate. In this study, the performance of the membrane bioreactor (MBR) and sequencing batch reactor (SBR) technologies are compared in treating high-strength landfill leachate. The MBR exhibited a superior performance with removal efficiencies exceeding 95% for BOD5, TN, and NH3 and an improvement on SBR efficiencies ranging between 21 and 34%. The coupled experimental results contribute in filling a gap toward improving the management of high-strength landfill leachate and providing comparative guidelines or selection criteria and limitations for MBR and SBR applications. Implications: While the sequencing batch reactor (SBR) technology offers some flexibility in terms of cycle time and sequence, its performance is constrained when considering landfill leachate associated with significant variations in quality and quantity. Combining membrane separation and biodegradation processes or the membrane bioreactor (MBR) technology improved removal efficiencies significantly. In the context of leachate management using the MBR technology, more efforts have targeted low-strength leachate with limited attempts at moderate to high strength leachate. In this study, the SBR and MBR technologies were tested under different operating conditions to compare and evaluate their feasibility for the management of high-strength leachate from a full-scale operating landfill. Such a comparison has not been reported for high-strength leachate.

  15. Impact of partial nitritation degree and C/N ratio on simultaneous Sludge Fermentation, Denitrification and Anammox process.

    Science.gov (United States)

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Yuan, Yue; Zhao, Mengyue; Wang, Shuying

    2016-11-01

    This study presents a novel process (i.e. PN/SFDA) to remove nitrogen from low C/N domestic wastewater. The process mainly involves two reactors, a pre-Sequencing Batch Reactor for partial nitritation (termed as PN-SBR) and an anoxic reactor for integrated Denitrification and Anammox with carbon sources produced from Sludge Fermentation (termed as SFDA). During long-term Runs, NO2(-)/NH4(+) ratio (i.e. NO2(-)-N/NH4(+)-N calculated by mole) in the PN-SBR effluent was gradually increased from 0.2 to 37 by extending aerobic duration, meaning that partial nitritation turning to full nitritation could be achieved. Impact of partial nitritation degree on SFDA process was investigated and the result showed that, NO2(-)/NH4(+) ratios between 2 and 10 were appropriate for the co-existence of denitrification and anammox together in the SFDA reactor, and denitrification instead of anammox contributed greater for nitrogen removal. Further batch tests indicated that anammox collaborated well with denitrification at low C/N (1.0 in this study). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sludge characterization and treatment of produced water(PW using Tympanotonos Fuscatus coagulant (TFC

    Directory of Open Access Journals (Sweden)

    Matthew C. Menkiti

    2015-03-01

    Full Text Available This study investigated coag-flocculation (using TFC of PW and characterization of the post treatment settled sludge (PTSS. Effects of dosage, pH and settling time on treatment efficiency were evaluated. TFC and PTSS were subjected to Fourier transform infrared (FTIR, X–ray diffraction (XRD, Thermogravimetric/Differential scanning calorimetric and Scanning electron microscopic (SEM/Elemental analyses. Optimal treatment efficiency of 91.5% was obtained at 1 g/L and pH 2. It could be concluded that TFC was thermally stable and has potential for application as an effective bio-coagulant.

  17. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  18. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A review on paint sludge from automotive industries: Generation, characteristics and management.

    Science.gov (United States)

    Salihoglu, Guray; Salihoglu, Nezih Kamil

    2016-03-15

    The automotive manufacturing process results in the consumption of several natural sources and the generation of various types of wastes. The primary source of hazardous wastes at an automotive manufacturing plant is the painting process, and the major waste fraction is paint sludge, which is classified with EU waste code of 080113* implying hazardous characteristics. The amount of the paint sludge generated increases every year with the worldwide increase in the car production. The characteristics of the paint sludge, which mainly designate the management route, are mainly determined by the type of the paint used, application technique employed, and the chemicals applied such as flocculants, detackifiers, pH boosters, antifoam agents, and biocides as well as the dewatering techniques preferred. Major routes for the disposal of the paint sludges are incineration as hazardous waste or combustion at cement kilns. Because of high dissolved organic carbon content of the paint, the paint sludge cannot be accepted by landfills according to European Union Legislations. More investigations are needed in the field of paint sludge recycling such as recycling it as a new paint or as other formulations, or making use of the sludge for the production of construction materials. Research on the applicability of the paint sludge in composting and biogasification can also be useful. Ongoing research is currently being conducted on new application techniques to increase the effectiveness of paint transfer, which helps to prevent the generation of paint sludge. Advancements in paint and coating chemistry such as the reduction in the coating layers with its thickness also help to decrease the level of paint sludge generation. Investigations on the effects of the chemicals on the recycling potential of paint sludges and consideration of these effects by the chemical manufacturer companies would be extremely important. This review presents the formation of paint sludge, the factors

  20. [Preparation and structural analysis of diatomite-supported SPFS flocculant].

    Science.gov (United States)

    Zheng, Huai-li; Fang, Hui-li; Jiang, Shao-jie; Yang, Chun; Ma, Jiang-ya; Zhang, Zhao-qing

    2011-07-01

    In the presetn study, polymerized ferric sulphate (PFS) flocculant was prepared and tested. In the preparation of PFS flocculant, industrial by-product ferrous sulfate heptahydrate (FeSO4.7H2O) was reused as the main material. By composition with diatomite and drying up at certain temperature in vacuum drying oven, solid PFS flocculant was produced. Structural characteristics of the new flocculant product were examined through infrared spectroscopy and scanning electron microscopy (SEM), which showed that by compositing with diatomite, new group bridging emerged in the structure of PFS, which made the bond of groups stronger. In addition, part of the metalic contents in diatomite was polymerized with PFS, the product of which was polymerized ferric complex. Furthermore, the absorbing and agglomerating capacity of the diatomite carrier was significant. Considering the factors listed above, the new solid polymerized ferric sulphate (SPFS) flocculant was characterized with a larger molecule structure and enhanced absorbing, bridging and rolling sweep capacities. Through orthogonal experiment, optimum conditions of synthesis were as follows: the ratio of FeSO4.7H2O/diatomite in weight was 43/1, the reaction time is 1 h and the reaction temperature is 55 degrees C. By wastewater treatment experiment, it was found that the synthetic products showed good flocculation performance in the treatment of domestic sewage, the removal of COD was 80.00% and the removal of turbidity was 99.98%.

  1. A simple shear limited, single size, time dependent flocculation model

    Science.gov (United States)

    Kuprenas, R.; Tran, D. A.; Strom, K.

    2017-12-01

    This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.

  2. Prediction of parametric numbers in filterbed flocculation | Odira ...

    African Journals Online (AJOL)

    ... quality, turbidity breakthrough, etc) are due to insufficient flocculation in the filter bed. Such setbacks are probably due to the limited pore volume in the filter bed that would necessitate the settlement of flocculated water to reduce the sediment load applied to the filter. (Journal of Civil Engineering, JKUAT: 2002 7: 117-132) ...

  3. Red mud flocculation process in alumina production

    Science.gov (United States)

    Fedorova, E. R.; Firsov, A. Yu

    2018-05-01

    The process of thickening and washing red mud is a gooseneck of alumina production. The existing automated systems of the thickening process control involve stabilizing the parameters of the primary technological circuits of the thickener. The actual direction of scientific research is the creation and improvement of models and systems of the thickening process control by model. But the known models do not fully consider the presence of perturbing effects, in particular the particle size distribution in the feed process, distribution of floccules by size after the aggregation process in the feed barrel. The article is devoted to the basic concepts and terms used in writing the population balance algorithm. The population balance model is implemented in the MatLab environment. The result of the simulation is the particle size distribution after the flocculation process. This model allows one to foreseen the distribution range of floccules after the process of aggregation of red mud in the feed barrel. The mud of Jamaican bauxite was acting as an industrial sample of red mud; Cytec Industries of HX-3000 series with a concentration of 0.5% was acting as a flocculant. When simulating, model constants obtained in a tubular tank in the laboratories of CSIRO (Australia) were used.

  4. Development of SBR-Nano clay Composites with Epoxidized Natural Rubber as Compatibilizer

    International Nuclear Information System (INIS)

    Rajasekar, R.; Das, Ch.K.; Gert Heinrich, G.; Das, A.

    2009-01-01

    The significant factor that determines the improvement of properties in rubber by the incorporation of nano clay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nano clay will not contribute for the good dispersion of nano filler in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nano clay in the matrix polymer. Epoxidized natural rubber and organically modified nano clay composites (EC) were prepared by solution mixing. The nano clay employed in this study is Cloisite 20A. The obtained nano composites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nano clay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nano clay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.

  5. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  6. Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas.

    Science.gov (United States)

    Sowmya Packyam, G; Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In this study, ultrasonication was used for sludge deflocculation, followed by cell disintegration using ozone. The effect of this phase separated sono-ozone pretreatment is evaluated based on extra polymeric substances release, deoxyribonucleic acid (DNA) in the medium, solubilization of intra cellular components and suspended solids (SS) reduction. Ultrasonically induced deflocculation was optimized at an energy dosage of 76.4(log 1.88)kJ/kg TS. During cell disintegration (ozone dosage 0.0011 mgO3/mgSS), chemical oxygen demand solubilization (COD) and SS reduction of sonic mediated ozone pretreated sludge were 25.4% and 17.8% comparatively higher than ozone pretreated sludge, respectively. Further, biogas production potential of control (raw), flocculated (ozone pretreated), and deflocculated (sonic mediated ozone pretreated) sludges were observed to be 0.202, 0.535 and 0.637 L/(gVS), respectively. Thus, the phase separated pretreatment at lower ultrasonic specific energy and low dose ozone proved to enhance the anaerobic biodegradability efficiently. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of flocculating agent dosages on the performance of red mud flocculation under shear conditions

    International Nuclear Information System (INIS)

    Gagnon, M.J.; Simard, G.; Leclerc, A.; Peloquin, G.

    2002-01-01

    The performance of different polymers used to flocculate red mud particulate materials in the Bayer process can be evaluated on the basis of their efficiency to achieve adequate settling velocities and turbidity levels. In this study, three commercially available flocculants are evaluated under typical conditions found in the last washer of a Bayer plant. The different shear levels are produced by using a modified Couette flow system. Great differences are noticed in the performance of the polymers when they are compared at different dosages and at different shear rate levels. The data collected also suggests that conventional cylinder settling tests may not be adequate to measure the performance of certain types of polymers. (author)

  8. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    Science.gov (United States)

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  9. Energy-producing electro-flocculation for harvest of Dunaliella salina.

    Science.gov (United States)

    Liu, Qing; Zhang, Meng; Lv, Tao; Chen, Hongjun; Chika, Anthony Okonkwo; Xiang, Changli; Guo, Minxue; Wu, Minghui; Li, Jianjun; Jia, Lishan

    2017-10-01

    In this study, an efficient electro-flocculation process for Dunaliella salina with energy production by aluminum-air battery has been successfully applied. The formed aluminum hydroxide hydrates during discharging of battery were positively charged, which have a great potential for microalgae flocculation. The precipitation of aluminum hydroxide hydrates by algae also could improve the performance of aluminum-air battery. The harvesting efficiency could reach 97% in 20mins with energy production of 0.11kWh/kg. This discharging electro-flocculation (DEF) technology provides a new energy producing process to effectively harvest microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pengaruh sulfur terhadap sifat fisika campuran pale crepe dan SBR untuk karet tahan panas

    Directory of Open Access Journals (Sweden)

    Arum Yuniari

    2013-12-01

    Full Text Available Sulfur plays an important role in the rubber vulcanization process especially in the formation of crosslinks. Heat resistant rubber made from mixing pale crepe and SBR requires the right amount of sulfur as crosslinking agent. The purpose of the study was to determine the effect of the addition of sulfur on the changes in physical properties before and after aging. Heat resistant rubber was made with variation of pale crepe/SBR: 80/20; 70/30; 60/40; 50/50 phr and sulfur variation of 1; 1.5 phr. The results showed that sulfur was influential in the crosslinks formation. The addition of 1 phr sulfur gave higher physical properties of the vulcanized with 1.5 phr sulfur. The changes of physical properties after aging process of the vulcanized with sulfur 1 phr was lower than the vulcanized with sulfur 1.5 phr. Vulcanized pale crepe/SBR (70/30 with 1 phr sulfur could be applied as heat-resistant rubber products.

  11. Influence of Silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhaohan [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No 43, Songfa Street, Daoli District, Harbin 150001 (China); Gao, Peng, E-mail: hitzzh@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Li, Moqing; Cheng, Jiaqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China); Liu, Wei [Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No 43, Songfa Street, Daoli District, Harbin 150001 (China); Feng, Yujie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090 (China)

    2016-11-01

    The widespread utilization of silver nanoparticles (AgNPs) in industrial and commercial products inevitably raises the release into wastewater that might cause potential negative impacts on sewage treatment system. In this paper, long-term exposure experiments at four levels were conducted to determine whether AgNPs caused adverse impacts on nutrient removals in sequencing batch reactors (SBRs) and changes of microbial community structure. Compared with the control reactor (without AgNPs), carbon, nitrogen and phosphorus removal in presence of 0.1 mg/L AgNPs was no difference. However, presence of 1.0 and 10 mg/L AgNPs decreased the average removal efficiencies of COD from 95.4% to 85.2% and 68.3%, ammonia nitrogen from 98.8% to 71.2% and 49%, SOP from 97.6% to 75.5% and 54.1%, respectively. It was found that AgNPs could accumulate in sludge with the distribution coefficients of 39.2–114 L/g, inhibit the protein and polysaccharide production in EPS, reduce the SOUR of sludge, and greatly increase LDH release from microbial cells. The illumina high-throughput sequencing results indicated that AgNPs concentration changed the structures of bacterial communities, associating with the effects of AgNPs on reactor performance. Sequence analyses showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla. It was notable that AgNPs addition reduced the contents of several nitrifying bacteria at genera level in sludge, leading to the lower removal of nitrogen. - Highlights: • More than 1.0 mg/L AgNPs evidently reduce COD, NH{sub 4}{sup +}-N and SOP removal in SBR process. • AgNPs decrease the protein and polysaccharide contents of EPS. • AgNPs increase LDH release for 1.46–2.41 times. • AgNPs are apt to accumulate on surface and even into microbial cells. • AgNPs levels affect microbial community structure and composition.

  12. Influence of Silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure

    International Nuclear Information System (INIS)

    Zhang, Zhaohan; Gao, Peng; Li, Moqing; Cheng, Jiaqi; Liu, Wei; Feng, Yujie

    2016-01-01

    The widespread utilization of silver nanoparticles (AgNPs) in industrial and commercial products inevitably raises the release into wastewater that might cause potential negative impacts on sewage treatment system. In this paper, long-term exposure experiments at four levels were conducted to determine whether AgNPs caused adverse impacts on nutrient removals in sequencing batch reactors (SBRs) and changes of microbial community structure. Compared with the control reactor (without AgNPs), carbon, nitrogen and phosphorus removal in presence of 0.1 mg/L AgNPs was no difference. However, presence of 1.0 and 10 mg/L AgNPs decreased the average removal efficiencies of COD from 95.4% to 85.2% and 68.3%, ammonia nitrogen from 98.8% to 71.2% and 49%, SOP from 97.6% to 75.5% and 54.1%, respectively. It was found that AgNPs could accumulate in sludge with the distribution coefficients of 39.2–114 L/g, inhibit the protein and polysaccharide production in EPS, reduce the SOUR of sludge, and greatly increase LDH release from microbial cells. The illumina high-throughput sequencing results indicated that AgNPs concentration changed the structures of bacterial communities, associating with the effects of AgNPs on reactor performance. Sequence analyses showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla. It was notable that AgNPs addition reduced the contents of several nitrifying bacteria at genera level in sludge, leading to the lower removal of nitrogen. - Highlights: • More than 1.0 mg/L AgNPs evidently reduce COD, NH_4"+-N and SOP removal in SBR process. • AgNPs decrease the protein and polysaccharide contents of EPS. • AgNPs increase LDH release for 1.46–2.41 times. • AgNPs are apt to accumulate on surface and even into microbial cells. • AgNPs levels affect microbial community structure and composition.

  13. SODIUM TITANATE NANOBELT AS A MICROPARTICLE TO INDUCE CLAY FLOCCULATION WITH CPAM

    Directory of Open Access Journals (Sweden)

    Wenxia Liu

    2010-07-01

    Full Text Available Sodium titanate nanobelt was synthesized by treating titanium dioxide hydrothermally in concentrated sodium hydroxide solution. The product was characterized by SEM analysis and zeta potential measurement. It served as a microparticle to constitute a microparticle retention system with cationic polyacrylamide (CPAM, while the microparticle system was employed to induce the flocculation of kaolin clay. The flocculation behavior of kaolin clay in such a system was investigated by using a photometric dispersion analyzer connected with a dynamic drainage jar. It was found that the sodium titanate nanobelt carried negative charges and had a lower zeta potential at higher pH. It gave a large synergistic flocculation effect with CPAM at a very low dosage, and showed higher flocculation effect with CPAM under neutral and weak alkaline conditions. A suitably high shear level was helpful for the re-flocculation of clay by sodium titanate nanobelt. The clay flocculation induced by CPAM/titanate nanobelt system demonstrated high shear resistance and also generated dense flocs.

  14. Extraction of flocculants from a strain of Bacillus thuringiensis and analysis of their properties

    Directory of Open Access Journals (Sweden)

    Jingrong Wu

    2017-07-01

    Full Text Available In a preliminary screening study, our laboratory isolated from the biofloc in aquaculture waters a strain of Bacillus thuringiensis, which produced highly efficient bio-flocculants. In the present study, we extracted the crude flocculants from this strain and analyzed their properties. Distribution analysis indicated that the flocculants were mainly distributed in the supernatant of the fermentation liquid. The flocculants were extracted using an ethanol extraction method, and the chemical compositions and morphology of the crude flocculants were analyzed using the Molish reaction, Fehling reaction, ninhydrin reaction, biuret reaction, phenol-sulfuric acid assay, Coomassie brilliant blue staining, ultraviolet scanning, infrared scanning and scanning electron microscopy. The carbohydrate composition of the polysaccharides in the flocculants was analyzed with thin layer chromatography. The results indicated that flocculants were solid substances with an ivory white color and their texture was loose and soft. Visualization under scanning electron microscopy revealed that their ultra-morphology consisted of small, long and fiber-like shapes. Chemical and physical analyses indicated that polysaccharides accounted for 34.5% of the components in the crude flocculants. The monosaccharides present in crude flocculants included mainly glucose, galactose and mannitose.

  15. Investigation of the electronic structure of the BiSBr and BiSeBr clusters by density functional method

    International Nuclear Information System (INIS)

    Audzijonis, A.; Gaigalas, G.; Zigas, L.; Pauliukas, A.; Zaltauskas, R.; Kvedaravicius, A.; Cerskus, A.

    2008-01-01

    The energy levels of valence bands (VB) of the BiSBr and BiSeBr crystals have been calculated for investigation of the photoelectron emission spectra of BiSBr, BiSeBr and BiSI crystals. The molecular model of this crystal has been used for the calculation of VB by the Density Functional Theory (DFT) method. The molecular cluster, consisting of 20 molecules of BiSBr, BiSeBr, has been used for calculations of averaged total density of states, including atom vibrations. The spectra of the averaged total density of states from VB of BiSBr and BiSeBr clusters have been compared with the experimental photoelectron emission spectra from VB of BiSI crystals. The results clarify that the atomic vibrations in A 5 B 6 C 7 type crystals with chain structure create a smoother appearance of the averaged total density of state spectrum and the experimental X-ray photoemission spectra (XPS)

  16. Friction and wear study of NR/SBR blends with Si3N4Filler

    Science.gov (United States)

    GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.

    2018-04-01

    The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.

  17. Marine microalgae flocculation using plant: the case of Nannochloropsis oculata and Moringa oleifera

    International Nuclear Information System (INIS)

    Baharuddin, N.; Aziz, N. S.; Sohif, H. N.; Basiran, M. N.

    2016-01-01

    Marine microalgae have been commercially used as live feed for aquaculture and nutritional supplements. However, harvesting of marine microalgae is a major obstacle for industrial scale and one of the promising harvesting techniques is bio-flocculation. Nannochloropsis oculata from the culture broth was investigated. The potential of Moringa oleifera as a flocculant has been evaluated using jar test experiments. Moringa oleifera after oil extraction (MOAE) and with non-extracted Moringa oleifera (MOWE) have been studied and compared to chemical flocculant, aluminium sulphate. Three parameters involved: pH, settling time and flocculant dosage. When MOAE and MOWE were used as flocculants, the highest flocculation efficiency of Nannochloropsis oculata was observed at 93.77 percent (pH 7, 150 minutes, 5000 mg/L) and 70.56 percent (pH 7, 90 minutes, 4000 mg/L) respectively. Harvesting efficiency of 99.98 percent with short settling time, 30 minutes and 2000 mg/L of flocculant dosage at pH 6 was achieved using aluminium sulphate. The concentrated of Nannochloropsis oculata was then fed to the Brachionus plicatilis (rotifers) to observe the growth characteristics in 12 days period. Concentrates of MOWE gave better growth of Brachionus plicatilis than growth in concentrates of MOAE and live Nannochloropsis oculata. In contrast, growth of Brachionus plicatilis in aluminium sulphate was tremendously decline. In Conclusion, bio-flocculation using Moringa oleifera was rapid, inexpensive and eco-friendly technology as no addition of chemical flocculants was required. (author)

  18. EFFECT OF DEXTRAN-graft-POLYACRYLAMIDE INTERNAL STRUCTURE ON FLOCCULATION PROCESS PARAMETERS

    International Nuclear Information System (INIS)

    Bezugla, T.; Kutsevol, N.; Shyichuk, A.; Ziolkowska, D.

    2008-01-01

    Dextran-graft-Polyacrylamide copolymers (D-g-PAA) of brush-like architecture were tested as flocculation aids in the model kaolin suspensions. Due to expanded conformation the D-g-PAA copolymers are more effective flocculants than individual PAA with close molecular mass. The internal structure of D-g-PAA copolymers which is determined by number and length of grafted PAA chains, the distance between grafts, etc., has the significant influence on flocculation behavior of such polymers

  19. Operating Conditions of Coagulation-Flocculation Process for High Turbidity Ceramic Wastewater

    Directory of Open Access Journals (Sweden)

    Sameer Al-Asheh

    2017-04-01

    Full Text Available This work attempted to determine the optimum conditions required for the coagulation and flocculation process as an essential stage of the ceramic wastewater treatment. Coagulation and flocculation is a very necessary step in industries as it lessens turbidity, color, and odor of wastewater. The experimental work was performed in several runs. The volume of wastewater used in each run was 200 mL and was kept at this value throughout. In certain runs, the speed of the mixer was varied while keeping the quantity of coagulant and flocculant constant in order to determine the optimum speed that resulted in the least turbidity. A speed of 5% was chosen as the ideal process speed according to the results obtained. Next, experiments were operated at this optimum speed while changing the dosage of coagulant and flocculant in order to decide the optimum dosage. Coagulant and flocculent amounts of 0.4 g (without booster and 0.2 g (with booster selected after the readings were taken. For all the readings, a turbidity meter was used providing results in Nephelometric Turbidity Units (NTU. Lowest turbidity was achieved when using 5% speed with 0.4 grams of coagulant and 0.4 grams of flocculant, or 5% speed with 0.2 grams of coagulant, 0.2 grams of flocculant and 0.25 g/L of booster coagulant. According to factorial design analysis, such as parameters as impeller speed and dosage have an influential impact on the turbidity; while the booster has insignificant influence and other interactions between parameters are important.

  20. Influence of different curing systems on the physico-mechanical properties and stability of SBR and NR rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Basfar, A.A. E-mail: abasfar@kacst.edu.sa; Abdel-Aziz, M.M.; Mofti, S

    2002-01-01

    The physical properties of radiation, sulfur and peroxide-cured styrene-butadiene rubber (SBR) and natural rubber (NR) were compared. The dependence of the mechanical properties of the radiation-vulcanized SBR and NR on the coagent concentration and radiation dose was studied. The effect of thermal aging on the mechanical properties of the different rubber formulations was discussed. The radiation-cured formulations of SBR have superior mechanical properties and thermal stability compared with those of the chemically vulcanized compounds. Whereas, the radiation-cured formulations of NR have similar mechanical properties but superior thermal stability (based on the % change in E after thermal aging), when compared with those of the sulfur-vulcanized compounds and slightly better than those of the peroxide-vulcanized compounds.

  1. A study of aeration treatment of uranium-contained wastewater by saccharomyces cerevisiae-activated sludge

    International Nuclear Information System (INIS)

    Xia Liangshu; Chen Zhongqing

    2006-01-01

    Experiments of the aeration treatment of uranium-contained wastewater by saccharomyces cerevisiae-activated sludge were carried out. The experimental results indicate that, saccharomyces cerevisiae (S.C) can accumulate UO 2 2+ effectively from aqueous solution: the removal ratio of 100 mg·L -1 UO 2 2+ is 78.2% when S.C dosage is 10 g·L -1 , while with 8 g·L -1 activated sludge (A.S.) added in the solution the ratio has increased to 96.3%; then, 5-10 min effluent settling is clarified as a result of sludge flocculation; the optimum conditions of biosorption of U from wastewater by S.C.-A.S. are at pH 5, A.S concentration=8 g·L -1 , added dry weight of S.C.=10 g·L -1 , granularity of S.C=100-120 mesh; the quantity of U increases with the enhanced initial concentration of UO 2 2+ in the process of biosorption by S.C.-A.S., but the removal ratio decreases. The uptake of U could be described by the Freundlich and the Langmuir adsorption isotherms, which demonstrated that the adsorption was regarded as a physical adsorption. (authors)

  2. Effective flocculation of fine mineral suspensions using Moringa oleifera seeds

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, T.M. [Bureau of Mines, Reno, NV (United States)

    1995-12-31

    The purpose of this research was to investigate the feasibility of using Moringa oleifera seeds, or the active components of the seeds, in the clarification of waters containing suspended mineral fines. In comparative testing using a hematite suspension, the flocculating activity of Moringa oleifera seeds was better than alum. Twenty milligrams of seed powder was sufficient to clarify the hematite to near zero turbidity, while the same amount of alum had a minimal effect on turbidity. Extracts were prepared from the seeds in an attempt to separate the proteins. A crude protein extract was enriched by lowering the pH to 6.0. Only 0.08 mg/L of the enriched extract was required to flocculate a minusil suspension. Environmentally friendly protein flocculants could theoretically be produced and enhanced with recombinant DNA techniques as an alternative to chemical flocculants currently used in water treatment.

  3. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  4. Synthesis, characterization and flocculation activity of novel Fe(OH)3-polyacrylamide hybrid polymer

    International Nuclear Information System (INIS)

    Wang Huilong; Cui Jinyan; Jiang Wenfeng

    2011-01-01

    Highlights: → The preparation of a novel Fe(OH) 3 -PAM hybrid polymer flocculant is achieved via free radical solution polymerization. → Flocculation of kaolin suspensions using this novel Fe(OH) 3 -PAM hybrid polymer flocculant is revealed in this study. → The statistical model was first applied for calculating the thermodynamic parameters for the kaolin flocculating process. - Abstract: A novel Fe(OH) 3 -polyacrylamide inorganic-organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH 4 ) 2 S 2 O 8 -NaHSO 3 ) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 deg. C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH) 3 colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L -1 kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L -1 at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.

  5. Innovative Mesoporous Nanosilicas: SBR Nanocomposite for Low Environmental Impact Tread Tyre.

    Science.gov (United States)

    Castellano, Maila; Turturro, Antonio; Finocchio, Elisabetta; Busca, Guido; Legami, Rossella Di; Vicini, Silvia

    2018-02-01

    Silica nanoparticles with different aspect ratios (A.R.) were tested as reinforcing fillers of styrenebutadiene copolymer (s-SBR) for "green tyres," i.e., tires with lower rolling resistance. A commercial nanosilica with A.R. = 1 (Aerosil® 200) was compared with two nanosilica samples with A.R. = 2 and 4, synthesized by means of an innovative process, to ascertain if the filler shape was significant to improve the composite properties. In addition, bis-triethoxysilylpropyltetrasulfide was grafted onto the particles surface, in order to obtain more hydrophobic materials and to enhance their dispersion in the elastomeric composites: pristine and modified silicas were then compared. Grafting extent was evaluated by thermogravimetric analysis. The surface properties of silicas were investigated by Fourier transform infrared spectroscopy and inverse gas chromatography. s-SBR/silica nanocomposites were then prepared and characterized assessing their dynamic-mechanical properties and carrying out morphological observations by transmission electron microscopy.

  6. Effect of grafting cellulose acetate and methylmethacrylate as compatibilizer onto NBR/SBR blends

    International Nuclear Information System (INIS)

    Khalf, A.I.; Nashar, D.E.El.; Maziad, N.A.

    2010-01-01

    Compatibilizer is used for improving of processability, interfacial interaction and mechanical properties of polymer blends. In this study acrylonitrile butadiene rubber (NBR) and styrene-butadiene rubber (SBR) blends were compatibilized by a graft copolymer of acrylonitrile butadiene rubber (NBR) grafted with cellulose acetate (CA) i.e. (NBR-g-CA) and acrylonitrile butadiene rubber (NBR) grafted with methylmethacrylate i.e. (NBR-g-MMA). Compatibilizers were prepared by gamma radiation induced grafting of NBR with cellulose acetate (CA) and methylmethacrylate (MMA) were added with different ratios to NBR/SBR (50/50) blend. The compatibilized blends were evaluated by rheometric characteristics, physico-mechanical properties, swelling behavior, scanning electron microscope (SEM) and thermal analysis. The results showed that, the blends with graft copolymer effect greatly on the rheological characteristics [optimum cure time (Tc 90 ), scorch time (Ts 2 ), and the cure rate index (CRI)]. The physico-mechanical properties of the investigated blends were enhanced by the incorporation of these graft copolymers, while the resistance to swelling in toluene became higher. SEM photographs confirm that, these compatibilizers improve the interfacial adhesion between NBR/SBR (50/50) blend which induce compatibilization in the immiscible blends. The efficiency of the compatibilizer was also evaluated by studying the thermogravimetric analysis.

  7. Flocculation - Formation and structure of aggregates composed of polyelectrolyte chains and clay colloidal particles

    OpenAIRE

    Sakhawoth , Yasine

    2017-01-01

    Flocculation is a key process in numerous environmental and industrial technologies such as purification of waste-water or paper making. It is necessary to understand the formation and structure of the aggregates to control and optimize such a process. Most of the studies on flocculation involve spherical particles, but there is a clear need to understand the flocculation of anisotropic particles such as clay colloids, which are platelets. I studied the flocculation of montmorillonite clay su...

  8. Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement

    Science.gov (United States)

    Low, Y. J.; Lau, S. W.

    2017-06-01

    Microalgae are considered as one promising source of third-generation biofuels due to their fast growth rates, potentially higher yield rates and wide ranges of growth conditions. However, the extremely low biomass concentration in microalgae cultures presents a great challenge to the harvesting of microalgae because a large volume of water needs to be removed to obtain dry microalgal cells for the subsequent oil extraction process. In this study, the fresh water microalgae Chlorella vulgaris (C. vulgaris) was effectively harvested using both low molecular weight (MW) and high MW chitosan flocculants. The flocculation efficiency was evaluated by physical appearance, supernatant absorbance, zeta potential and solids content after centrifugal dewatering. High flocculation efficiency of 98.0-99.0% was achieved at the optimal dosage of 30-40 mg/g with formation of large microalgae flocs. This study suggests that the polymer bridging mechanism was governing the flocculation behaviour of C. vulgaris using high MW chitosan. Besides, charge patch neutralisation mechanism prevailed at low MW chitosan where lower dosage was sufficient to reach near-zero zeta potential compared with the high MW chitosan. The amount of chitosan polymer present in the culture may also affect the mechanism of flocculation.

  9. Effect of deflocculation on photo induced thin layer titanium dioxide disintegration of dairy waste activated sludge for cost and energy efficient methane production.

    Science.gov (United States)

    Sharmila, V Godvin; Dhanalakshmi, P; Rajesh Banu, J; Kavitha, S; Gunasekaran, M

    2017-11-01

    In the present study, the deflocculated sludge was disintegrated through thin layer immobilized titanium dioxide (TiO 2 ) as photocatalyst under solar irradiation. The deflocculation of sludge was carried out by 0.05g/g SS of sodium citrate aiming to facilitate more surface area for subsequent TiO 2 mediated disintegration. The proposed mode of disintegration was investigated by varying TiO 2 dosage, pH and time. The maximum COD solubilization of 18.4% was obtained in the optimum 0.4g/L of TiO 2 dosage with 5.5 pH and exposure time of 40min. Anaerobic assay of disintegrated samples confirms the role of deflocculation as methane yield was found to be higher in deflocculated (235.6mL/gVS) than the flocculated sludge (146.8mL/gVS). Moreover, the proposed method (Net cost for control - Net cost for deflocculation) saves sludge management cost of about $132 with 53.8% of suspended solids (SS) reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi

    2018-03-01

    Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. COD fractions changes in the SBR-type reactor treating municipal wastewater with controlled percentage of dairy sewage

    Directory of Open Access Journals (Sweden)

    Struk-Sokołowska Joanna

    2017-01-01

    Full Text Available The aim of study was to investigate the influence of percentage of dairy wastewater in the municipal wastewater on the changes of COD fractions during the cycle of SBR-type reactor. The scope of the research included physicochemical analyses of municipal wastewater without dairy wastewater, dairy wastewater, mixture of municipal and dairy wastewater as well as treated sewage. Both the concentrations and the proportions between COD fractions changed in the SBR cycle. In raw municipal and dairy wastewater - XS, insoluble hardly bio-degradable fraction of COD dominated (49.6 and 64.5% respectively. In treated wastewater SI, COD for dissolved compounds that are not biologically decomposed (inert (from 62.1 to 74.6% dominated, while XS fraction was from 19.1 to 24.4%. The consumption rate of organic compounds depended on the type of COD fraction, SBR cycle phase and the percentage of dairy wastewater. The highest rates of organic compounds consumption were noted in the phase of mixing. In the case of fraction SI, no differences in concentration in the SBR cycle time, were found. Concentration of COD in treated wastewater was from 34.8 to 58.9 mgO2·L-1 (efficiency wastewater treatment from 96.0 to 98.6%.

  12. Evaluation of the flocculating properties of Malvaviscus arboreus, Heliocarpus popayanensis and Hylocereus undatus for water clarification

    Directory of Open Access Journals (Sweden)

    Lina Marcela Ramírez Estrada

    2011-10-01

    Full Text Available The Malvaviscus arboreus, Heliocarpus popayanensis and Hylocereus undatus have been reported by river residents as natural flocculants. Waters were investigated in La Salada creek (in the municipality of Caldas, Colombia to see if the effects are modified by the flocculant species (Malvaviscus arboreus, Heliocarpus popayanensis and Hylocereus undatus, the type of vegetal material (dry or fresh and the concentration of organic flocculant (10, 20, 30, 40, 50 and 60 ml. JAR methodology was used, following the standard ASTM No. D2035-80. It was found that Heliocarpus popayanensis and Hylocereus undatus presented a flocculation power (P value: 0.017, that increasing the concentration of flocculent it increased the flocculation (P value: 0.08 and the storage did not alter the effects of species over the process of flocculation (P value: 0.7813.

  13. Coagulation-flocculation studies of wastewaters

    NARCIS (Netherlands)

    Leentvaar, J.

    1982-01-01

    Although coagulation-flocculation processes have been practiced world-wide for almost a century in water treatment, several problems both in the theoretical and in the applied field have not been resolved yet. Especially interpretation of practical results with respect to governing

  14. Isolation and Characterization of Polyacrylamide-Degrading Bacteria from Dewatered Sludge

    Directory of Open Access Journals (Sweden)

    Feng Yu

    2015-04-01

    Full Text Available Polyacrylamide (PAM is a water-soluble polymer that is widely used as a flocculant in sewage treatment. The accumulation of PAM affects the formation of dewatered sludge and potentially produces hazardous monomers. In the present study, the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum culture condition (pH 7.2, 39 °C and 100 rpm. The addition of yeast extract and glucose improved the bacterial growth and PAM degradation. The degraded PAM samples were analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance liquid chromatography. The results showed that high-molecular-weight PAM was partly cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had been converted to carboxyl groups. The biodegradation did not accumulate acrylamide monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family.

  15. Depletion - flocculation in oil-in-water emulsions using fibrillar protein assemblies

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Veerman, C.; Linden, van der E.

    2004-01-01

    This paper shows that low concentrations of -lactoglobulin fibrils can induce depletion-flocculation in -lactoglobulin-stabilized oil-in-water emulsions. The minimum required fibril concentration for flocculation was determined experimentally for fibril lengths of about 3 and 0.1 m. The minimum

  16. Flocculation Dynamics of cohesive sediment

    NARCIS (Netherlands)

    Maggi, F.

    2005-01-01

    Cohesive sediment suspended in natural waters is subject not only to transport and deposition processes but also to reactions of flocculation, \\textit{i.e.} aggregation of fine particles, and breakup of aggregates. Although aggregation and breakup occur at small and very small length scales compared

  17. First-principles flocculation as the key to low energy algal biofuels processing.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Wyatt, Nicholas B.; Pierce, Flint; Brady, Patrick Vane; Dwyer, Brian P.; Grillet, Anne; Hankins, Matthew G; Hughes, Lindsey Gloe; Lechman, Jeremy B.; Mondy, Lisa Ann; Murton, Jaclyn K.; O' Hern, Timothy J; Parchert, Kylea Joy; Pohl, Phillip Isabio; Williams, Cecelia Victoria; Zhang, Xuezhi; Hu, Qiang; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton

    2012-09-01

    This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

  18. Misturas BR/SBR: propriedades mecânicas em função do modo de preparo BR/SBR blends: mechanical properties as a function of the preparation mode

    Directory of Open Access Journals (Sweden)

    Adriana F. de Alcantara

    2004-01-01

    Full Text Available Misturas com borracha são freqüentemente usadas para se conseguir o balanço das propriedades desejadas e também, em alguns casos, a redução de custos. As misturas elastoméricas são normalmente sistemas multifásicos e a distribuição dos aditivos entre as fases não é necessariamente uniforme. Neste trabalho, o polibutadieno (BR foi misturado ao elastômero de butadieno-estireno (SBR na proporção 1:1 em peso. As composições foram preparadas utilizando um misturador de rolos, segundo a norma ASTM D3182, sendo que a incorporação dos aditivos foi realizada de quatro formas diferentes. Após a avaliação das propriedades reométricas e a vulcanização, foram estudadas as propriedades mecânicas para cada composição, avaliadas de acordo com as normas ASTM específicas para cada ensaio. Os resultados mostram que os diferentes modos de preparo de uma mesma formulação podem provocar mudança significativa nas propriedades mecânicas de misturas envolvendo essas duas borrachas. No caso das misturas BR/SBR estudadas, as propriedades apresentaram valores intermediários aos das borrachas isoladas.Rubber blends are frequently prepared to give a balance of the desired properties and, in some cases, reduction of cost as well. Elastomeric mixtures are usually multiphase systems and the dispersion of the additives may not be uniform throughout the phases. In this work, polybutadiene rubber (BR was mixed with polybutadiene-styrene rubber (SBR in a 50:50 w/w ratio. The compositions were prepared in a two-roll mill, according to ASTM D3182, and the incorporation of the ingredients was carried out according to four different modes. After the determination of the rheometric properties and the vulcanization of the compounds, mechanical properties were evaluated according to specific ASTM procedures. The results show that the mechanical properties may be altered by changing the procedure to prepare a given formulation. In the case of BR/SBR

  19. Effect of sepiolite on the flocculation of suspensions of fibre-reinforced cement

    International Nuclear Information System (INIS)

    Jarabo, Rocio; Fuente, Elena; Moral, Ana; Blanco, Angeles; Izquierdo, Laura; Negro, Carlos

    2010-01-01

    Sepiolite is used to increase thixotropy of cement slurries for easier processing, to prevent sagging and to provide a better final quality in the manufacture of fibre-reinforced cement products. However, the effect of sepiolite on flocculation and its interactions with the components of fibre cement are yet unknown. The aim of this research is to study the effects of sepiolite on the flocculation of different fibre-reinforced cement slurries induced by anionic polyacrylamides (A-PAMs). Flocculation and floc properties were studied by monitoring the chord size distribution in real time employing a focused beam reflectance measurement (FBRM) probe. The results show that sepiolite increases floc size and floc stability in fibre-cement suspensions. Sepiolite competes with fibres and clay for A-PAMs adsorption and its interaction with A-PAM improves flocculation of mineral particles.

  20. Synthesis, characterization and flocculation activity of novel Fe(OH){sub 3}-polyacrylamide hybrid polymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huilong; Cui Jinyan [Department of Chemistry, Dalian University of Technology, Dalian 116023 (China); Jiang Wenfeng, E-mail: dlutjiangwf@yahoo.com.cn [Department of Chemistry, Dalian University of Technology, Dalian 116023 (China)

    2011-11-01

    Highlights: {yields} The preparation of a novel Fe(OH){sub 3}-PAM hybrid polymer flocculant is achieved via free radical solution polymerization. {yields} Flocculation of kaolin suspensions using this novel Fe(OH){sub 3}-PAM hybrid polymer flocculant is revealed in this study. {yields} The statistical model was first applied for calculating the thermodynamic parameters for the kaolin flocculating process. - Abstract: A novel Fe(OH){sub 3}-polyacrylamide inorganic-organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}-NaHSO{sub 3}) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 deg. C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH){sub 3} colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L{sup -1} kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L{sup -1} at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.

  1. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Liu, Lei; Jiang, Xiaobing; Zhang, Kun; Zheng, Tianling; Wang, Hailei

    2016-10-01

    Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal

    Science.gov (United States)

    Sun, Pengfei; Hui, Cai; Bai, Naling; Yang, Shengmao; Wan, Li; Zhang, Qichun; Zhao, Yuhua

    2015-12-01

    In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the EPS-1. Moreover, the flocculating activity of these protein components was estimated to be no less than 33.93%. Additionally, polysaccharides that occupied 57.12% of the total EPS-1 content consisted of four monosaccharides: maltose, D-xylose, mannose, and D-fructose. In addition, carbonyl, amino, and hydroxyl groups were identified as the main functional groups. Three main elements, namely C1s, N1s, and O1s, were present in EPS-1 with relative atomic percentages of 62.63%, 24.91%, and 10.5%, respectively. Zeta potential analysis indicated that charge neutralization contributed to kaolin flocculation, but was not involved in M. aeruginosa flocculation. The flocculation conditions of EPS-1 were optimized, and the maximum flocculating efficiencies were 93.34% within 2 min for kaolin suspension and 87.98% within 10 min for M. aeruginosa. These results suggest that EPS-1 could be an alternative to chemical flocculants for treating wastewaters and cyanobacterium-polluted freshwater.

  3. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    Science.gov (United States)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  4. Chitosan as flocculant agent for clarification of stevia extract

    Directory of Open Access Journals (Sweden)

    Silvia P. D. de Oliveira

    2012-01-01

    Full Text Available Stevia is used as a sweetener due to its low calorific value and its taste, which is very similar to that of sucrose. After extraction from dried leaves, stevia extract is dark in colour, and therefore needs to be whitened to increase acceptance by consumers. In this study we tested chitosan, a cationic polyelectrolyte, as flocculant agent for the whitening of the Stevia extract. Positive charges of chitosan can interact electrostatically with a counter-ion, sodium tripolyphosphate (TPP, and then chitosan precipitates. A factorial design was used to study the whitening process, in which Glycosides Removal, Colour Removal, Turbidity Removal and Soluble Solids Removal were evaluated. The studied factors were Chitosan Mass and pH of the TPP solution. The results showed that chitosan is a good flocculant agent, being able to flocculate both the glycosides and the pigments that make the extract coloured.

  5. OPTIMIZATION OF FLOCCULATION PROCESS BY MICROBIAL COAGULANT IN RIVER WATER

    Directory of Open Access Journals (Sweden)

    Fatin Nabilah Murad

    2017-12-01

    Full Text Available The existing process of coagulation and flocculation are using chemicals that known as cationic coagulant such as alum, ferric sulfate, calcium oxide, and organic polymers.  Thus, this study concentrates on optimizing of flocculation process by microbial coagulant in river water. Turbidity and suspended solids are the main constraints of river water quality in Malaysia. Hence, a study is proposed to produce microbial coagulants isolated locally for river water treatment. The chosen microbe used as the bioflocculant producer is Aspergillus niger. The parameters to optimization in the flocculation process were pH, bioflocculant dosage and effluent concentration. The research was done in the jar test process and the process parameters for maximum turbidity removal was validated. The highest flocculating activity was obtained on day seven of cultivation in the supernatant. The optimum pH and bioflocculant dosage for an optimize sedimentation process were between 4-5 and 2-3 mL for 0.3 g/L of effluent concentration respectively. The model was validated by using a river water sample from Sg. Pusu and the result showed that the model was acceptable to evaluate the bioflocculation process.

  6. Photoinitiated Polymerization of Cationic Acrylamide in Aqueous Solution: Synthesis, Characterization, and Sludge Dewatering Performance

    Directory of Open Access Journals (Sweden)

    Huaili Zheng

    2014-01-01

    Full Text Available A copolymer of acrylamide (AM with acryloyloxyethyl trimethyl ammonium chloride (DAC as the cationic monomer was synthesized under the irradiation of high-pressure mercury lamp with 2,2-azobis(2-amidinopropane dihydrochloride (V-50 as the photoinitiator. The compositions of the photoinduced copolymer were characterized by Fourier transform infrared spectra (FTIR, ultraviolet spectra (UV, and scanning electron microscope (SEM. The effects of 6 important factors, that is, photo-initiators concentration, monomers concentration, CO(NH22 (urea concentrations, pH value, mass ratio of AM to DAC, and irradiation time on the molecular weight and dissolving time, were investigated. The optimal reaction conditions were that the photo-initiators concentration was 0.3%, monomers concentration was 30 wt.%, irradiation time was 60 min, urea concentration was 0.4%, pH value was 5.0, and mass ratio of AM to DAC was 6 : 4. Its flocculation properties were evaluated with activated sludge using jar test. The zeta potential of supernatant at different cationic monomer contents was simultaneously measured. The results demonstrated the superiority of the copolymer over the commercial polyacrylamide as a flocculant.

  7. Serum separation and structure of depletion- and bridging-flocculated emulsions: a comparison

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Winden, van A.J.M.; Vliet, van T.; Aken, van G.A.

    2004-01-01

    Stability against demixing, rheology and microstructure of emulsions that were flocculated by depletion or bridging were compared. Flocculation by depletion and bridging was induced by addition of the polysaccharide carboxy-methylcellulose (CMC) to emulsions that were stabilised by ß-lactoglobulin

  8. The use of dielectric spectroscopy for the characterization of polymer-induced flocculation of polystyrene particles

    DEFF Research Database (Denmark)

    Christensen, Peter Vittrup; Keiding, Kristian

    2008-01-01

    in dilute suspensions. Thus, techniques usable for flocculation characterization in high-solids suspensions are desirable. This study investigates the use of dielectric spectroscopy to monitor the flocculation of polystyrene particles with a cationic polymer. The frequency-dependent permittivity is modeled......The flocculation of colloidal suspensions is an important unit operation in many industries, as it greatly improves the performance of solid separation processes. The number of available techniques for evaluating flocculation processes on line is limited, and most of these are only functional...... as a decrease in the magnitude of the dielectric dispersion. The use of dielectric spectroscopy is found to be valuable for assessing flocculation processes in high-solids suspensions, as changes in parameters Such as floc size and charge can be detected....

  9. Impact of dynamic distribution of floc particles on flocculation effect

    Institute of Scientific and Technical Information of China (English)

    NAN Jun; HE Weipeng; Song Xinin; LI Guibai

    2009-01-01

    Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrement of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.

  10. Impact of dynamic distribution of floc particles on flocculation effect.

    Science.gov (United States)

    Nan, Jun; He, Weipeng; Song, Xinin; Li, Guibai

    2009-01-01

    Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrease of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.

  11. Better flocculants by radiation induced polymerization

    International Nuclear Information System (INIS)

    Laizier, J.; Gaussens, G.

    1978-01-01

    The use of radiation induced polymerization should theoritically allow to prepare better flocculants. The testings of several products prepared by such a process shows that better properties are indeed obtained: better efficiencies, lower amounts needed, better overall properties [fr

  12. Development of Graft Copolymer Flocculant Based on Acrylamide and Acrylic Acid for the dewatering of coal

    International Nuclear Information System (INIS)

    Mahmoud, G.A.; Abdel Khalek, M.A

    2012-01-01

    Most coal preparation processes were carried out in water medium. The water content of coal product has a negative impact on handling and specific energy value. The moisture content may be attributed to the proportion of fine coal, which presents the greatest dewatering problem. A novel polymeric flocculant has been developed by graft copolymerization of acrylamide (AAm) with acrylic acid (AAc) using gamma irradiation technique. The grafted copol621621ymer P(AAm/AAc) was characterized by Fourier-transform infrared spectroscopy (FTIR), and thermo-gravimetric analysis (TGA). The effects of reaction parameters, such as total absorbed dose, and monomer concentration on grafting yield were investigated. The flocculation performance of the graft copolymer P(AAm/AAc) was investigated in coal suspension. It was observed that the grafting ratio was one of the key factors for the flocculating effects. The copolymers with various grafting ratios showed different flocculating properties. It was found that as the grafting ratio increased, the flocculating effect also increased. The flocculation performance of the grafted copolymer was better than that of the commercial flocculant, poly-acrylamide (Magnafloc 1011).

  13. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    Science.gov (United States)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  14. Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR Ceramifiable Composites

    Directory of Open Access Journals (Sweden)

    Rafał Anyszka

    2016-07-01

    Full Text Available Ceramifiable styrene-butadiene (SBR-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite.

  15. Chitosan-magnesium aluminum silicate composite dispersions: characterization of rheology, flocculate size and zeta potential.

    Science.gov (United States)

    Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

    2008-03-03

    Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.

  16. Development and Optimization of a Flocculation Procedure for Improved Solid-Liquid Separation of Digested Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Caroline; Lischeske, James J.; Sievers, David A.

    2015-11-03

    One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspended particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.

  17. Flocculation of Chlamydomonas reinhardtii with Different Phenotypic Traits by Metal Cations and High pH

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    2017-11-01

    Full Text Available Concentrating algal cells by flocculation as a prelude to centrifugation could significantly reduce the energy and cost of harvesting the algae. However, how variation in phenotypic traits such as cell surface features, cell size and motility alter the efficiency of metal cation and pH-induced flocculation is not well understood. Our results demonstrate that both wild-type and cell wall-deficient strains of the green unicellular alga Chlamydomonas reinhardtii efficiently flocculate (>90% at an elevated pH of the medium (pH 11 upon the addition of divalent cations such as calcium and magnesium (>5 mM. The trivalent ferric cation (at 10 mM proved to be essential for promoting flocculation under weak alkaline conditions (pH ∼8.5, with a maximum efficiency that exceeded 95 and 85% for wild-type CC1690 and the cell wall-deficient sta6 mutant, respectively. Near complete flocculation could be achieved using a combination of 5 mM calcium and a pH >11, while the medium recovered following cell removal could be re-cycled without affecting algal growth rates. Moreover, the absence of starch in the cell had little overall impact on flocculation efficiency. These findings contribute to our understanding of flocculation in different Chlamydomonas strains and have implications with respect to inexpensive methods for harvesting algae with different phenotypic traits. Additional research on the conditions (e.g., pH and metal ions used for efficient flocculation of diverse algal groups with diverse characteristics, at both small and large scale, will help establish inexpensive procedures for harvesting cell biomass.

  18. The relationship between extent of hemoglobin purification and the performance characteristics of a blood-based flocculant

    Science.gov (United States)

    Whole blood is a highly complex substance. Hemoglobin, the most abundant blood protein, can function as a flocculant of colloidal clay; most of the other blood components exhibit poor flocculant activity. For the purpose of processing raw whole blood into a flocculant product, the practical value of...

  19. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate.

    Science.gov (United States)

    Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu

    2009-12-01

    In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.

  20. Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine

    Energy Technology Data Exchange (ETDEWEB)

    De Falco, A. [Universidad de Buenos Aires, FCEyN, Depto. de Fisica, LPyMC, Pabellon I, Buenos Aires 1428 (Argentina); Lamanna, M. [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina); Goyanes, S. [Universidad de Buenos Aires, FCEyN, Depto. de Fisica, LPyMC, Pabellon I, Buenos Aires 1428 (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); D' Accorso, N.B. [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Fascio, M.L., E-mail: mfascio@qo.fcen.uba.ar [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina)

    2012-08-15

    The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.

  1. Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine

    International Nuclear Information System (INIS)

    De Falco, A.; Lamanna, M.; Goyanes, S.; D'Accorso, N.B.; Fascio, M.L.

    2012-01-01

    The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.

  2. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing: Interactions among coagulant and flocculant concentrations and pH value.

    Science.gov (United States)

    Torres, Luis G; Belloc, Claudia; Vaca, Mabel; Iturbe, Rosario; Bandala, Erick R

    2009-11-01

    Wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. The wastewater contained petroleum hydrocarbons, a surfactant, i.e., sodium dodecyl sulfate (SDS) as well as salts, brownish organic matter and other constituents that were lixiviated from the soil during the washing process. The main goal of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and also be disposed at the end of the process properly. A second objective was to study the relationship among the coagulant and flocculant doses and the pH at which the CF process is developed, for systems where methylene blue active substances (MBAS) as well as oil and greases were present. The results for the selection of the right coagulant and flocculant type and dose, the optimum pH value for the CF process and the interactions among the three parameters are detailed along this work. The best coagulant and flocculant were FeCl(3) and Tecnifloc 998 at doses of 4,000 and 1 mg/L, correspondingly at pH of 5. These conditions gave color, turbidity, chemical oxygen demand (COD) and conductivity removals of 99.8, 99.6, 97.1 and 35%, respectively. It was concluded that it is feasible to treat the wastewaters generated in the contaminated soil washing process through CF process, and therefore, wastewaters could be recycled to the washing process or disposed to drainage.

  3. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp.

    Science.gov (United States)

    Okaiyeto, Kunle; Nwodo, Uchechukwu U; Mabinya, Leonard V; Okoli, Arinze S; Okoh, Anthony I

    2016-01-01

    This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.

  4. The Properties of Polymer-Modified Asphalt Drived from Vacuum Bottom and Wastes of PE and SBR Plants

    Directory of Open Access Journals (Sweden)

    A. Yousefi

    2008-12-01

    Full Text Available The polymeric and non-polymeric petrochemical wastes are environmentally unfavorable materials. We have to found a way to reuse these wastes in a safe manner. In styrene-butadiene rubber (SBR production plant two major wastes are produced one is a fine rubber powder and the other is recycled N-methyl pyrrolidone (NMP. In high-density polyethylene (HDPE production plant also a low molecular weight polymer waste is produced which does not degrade in environment easily. On the other hand, bitumen is usually blended with thermoplastics, rubbers and an oil to produce polymermodified bitumens. Effect of SBR, PE and NMP wastes on vacuum bottom residue of crude oil distillation was investigated. The results of penetration, softening point and Frass tests revealed the advantages of SBR and PE wastes at high temperatures and suggest NMP waste as a good bitumen extender. The results of the Marshal test on the prepared polymer-modified hot-mix asphalt of the optimum formulation highlight the superiority of its strength and its lower flow as compared with those of standard 60/70 penetration grade bitumen.

  5. Rheological online determination of the organic dry substance concentration of sewage sludge; Rheologische online Bestimmung des oTS-Gehalts von Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, P.; Boehm, A.; Fessler, J.; Liebelt, U. [BASF AG, Ludwigshafen am Rhein (Germany); Traegner, U. [Fachhochschule fuer Technik, Mannheim (Germany)

    1999-07-01

    In order to adjust the filter cake to a certain calorific value and to enhance the dehydratability of sludge, ash, carbon and flocculation agents are added to the latter prior to filtration. Dosage of the additives depends on the sludge's content of organic solids, determined in the form of the so-called organic dry substance concentration. In bench-scale and technical-scale experiments on the rheological properties of sewage sludge, a correlation between organic dry substance concentration and rheological properties, especially the liquid limit of sewage sludge, was established. This knowledge was used to develop a measuring technique for online determination of organic dry substance concentration by means of rheology. (orig.) [German] Zur Einstellung eines bestimmten Heizwertes des Filterkuchens und zur Verbesserung der Entwaesserbarkeit werden dem Schlamm vor der Filtration Asche, Kohle und Flockungsmittel zugegeben. Die Dosierung der Zuschlagsstoffe erfolgt in Abhaengigkeit vom Gehalt des Schlamms an organischem Feststoff, bestimmt in Form der sog. oTS-Konzentration. In Labor- und Betriebsversuchen zum rheologischen Verhalten von Klaerschlamm konnte eine Korrelation zwischen der oTS-Konzentration und den Fliesseigenschaften, insbesondere der Fliessgrenze von Klaerschlamm ermittelt werden. Diese Erkenntnis wurde in ein Messverfahren zur online-Bestimmung der oTS-Konzentration mittels Rheologie umgesetzt. (orig.)

  6. Some aspects related to stability, critical concentrations and kinetics of flocculation of the calcium phytate colloid

    International Nuclear Information System (INIS)

    Lucas, F.J.M.; Alvarez, J.G.; Sanchis, S.E.; Munoz, B.C.

    1986-01-01

    As sup(99m)Tc-Ca phytate is an important radiopharmaceutical and its colloidal nature presents problems, we investigated some of them. This work describes the study of the colloidal behaviour of the calcium phytate colloid in terms of its formation, stability and kinetics of flocculation. The study of spontaneous, and centrifugation-induced flocculation allows the determination of two critical concentrations of sol flocculation. The titrations of calcium phytate colloid at different concentrations provide information on the colloidal formation conditions. Moreover, a study on flocculation kinetics was made by turbidity measurements. (author)

  7. Synthesis of optimal digital controller of flocculant dosing

    Directory of Open Access Journals (Sweden)

    A.V. Pismenskiy

    2013-06-01

    Full Text Available Purpose. The task of automatic process control of the slime water thickening and flotation tailings clarification is the stabilization of thicken product density within the given range and keeping up the solids content in the overflow not above the permissible level with minimum use of the flocculants. In existing systems for automatic control the flocculant dosing is carried out according to the solids content in the device input (the principle of open-loop control. This leads to the excess consumption of the flocculants and increase the dispersion density of the overflow. To perform the synthesis of the optimal digital controller in order to minimize the deviations from the master control and ensure the specified quality of the transition process. Over controlling value should not exceed 5 %. To perform the system operation modeling in order to determine the quality of transient processes. Methodology. Synthesis of the optimal digital controller is based on the method of dynamic programming. Findings. A mathematical model of the object control is represented in the normal form of Cauchy and further in the form of differential equations. The optimum period of quantization as the function from specified error of control and the output coordinate change is calculated. The differential equation of Bellman is obtained and the condition for minimization of the quality functional. Bellman function is represented as a quadratic form from the variables of the system condition. In order to limit possible control, the weight coefficients of the functional are calculated based on maximum permitted values of the system condition variables and the control actions during the transient process. Practical value. Using the modeling of ACS of the flocculant dosing it was established that the over controlling amount is 3.5%, the transient process life 5.6 sec, the transient process is aperiodical, non-static control, which meets the requirements imposed on the

  8. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus removal.

    Science.gov (United States)

    Kim, Jeong Myeong; Lee, Hyo Jung; Lee, Dae Sung; Jeon, Che Ok

    2013-03-01

    To characterize the denitrifying phosphorus (P) uptake properties of "Candidatus Accumulibacter phosphatis," a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of "Ca. Accumulibacter" and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized "Ca. Accumulibacter" subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and "Candidatus Competibacter phosphatis" [from 16.4% to 20.0%]), while the overall "Ca. Accumulibacter" abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the "Ca. Accumulibacter" clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all "Ca. Accumulibacter" clades successfully took up phosphorus in the presence of nitrate. However, the "Ca. Accumulibacter" clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by "Ca. Accumulibacter" clades occurred when nitrite was added. These results suggest that the "Ca. Accumulibacter" cells lack nitrate reduction capabilities and that P uptake by "Ca. Accumulibacter" is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and "Ca. Competibacter."

  9. Porcine parvovirus flocculation and removal in the presence of osmolytes.

    Science.gov (United States)

    Gencoglu, Maria F; Pearson, Eric; Heldt, Caryn L

    2014-09-30

    Viruses can be modified into viral vaccines or gene therapy vectors in order to treat acquired or genetic diseases. To satisfy the current market demand, an improvement in current vaccine manufacturing is needed. Chromatography and nanofiltration are not suitable for all types of viruses. In this study, we propose to use virus flocculation with osmolytes, followed by microfiltration, as a potential virus purification process. We hypothesize that osmolytes strongly bind to water, thus leading to the formation of a hydration layer around the virus particles and stimulation of aggregation. We have discovered that osmolytes, including sugars, sugar alcohols and amino acids, preferentially flocculate porcine parvovirus (PPV), and demonstrate a >80% removal with a 0.2 μm filter while leaving model proteins in solution. This large pore size filter increases the flux and decreases the transmembrane pressure of typical virus filters. The best flocculants were tested for their ability to aggregate PPV at different concentrations, shear stress, pH and ionic strength. We were able to remove 96% of PPV in 3.0M glycine at a pH of 5. Glycine is also an excipient, and therefore may not require removal later in the process. Virus flocculation using osmolytes, followed by microfiltration could be used as an integrated process for virus purification. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity.

    Science.gov (United States)

    Holle, Ann Van; Machado, Manuela D; Soares, Eduardo V

    2012-02-01

    Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.

  11. Flocculation of Clay Colloids Induced by Model Polyelectrolytes: Effects of Relative Charge Density and Size.

    Science.gov (United States)

    Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie

    2017-10-06

    Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Flocculation kinetics and aggregate structure of kaolinite mixtures in laminar tube flow.

    Science.gov (United States)

    Vaezi G, Farid; Sanders, R Sean; Masliyah, Jacob H

    2011-03-01

    Flocculation is commonly used in various solid-liquid separation processes in chemical and mineral industries to separate desired products or to treat waste streams. This paper presents an experimental technique to study flocculation processes in laminar tube flow. This approach allows for more realistic estimation of the shear rate to which an aggregate is exposed, as compared to more complicated shear fields (e.g. stirred tanks). A direct sampling method is used to minimize the effect of sampling on the aggregate structure. A combination of aggregate settling velocity and image analysis was used to quantify the structure of the aggregate. Aggregate size, density, and fractal dimension were found to be the most important aggregate structural parameters. The two methods used to determine aggregate fractal dimension were in good agreement. The effects of advective flow through an aggregate's porous structure and transition-regime drag coefficient on the evaluation of aggregate density were considered. The technique was applied to investigate the flocculation kinetics and the evolution of the aggregate structure of kaolin particles with an anionic flocculant under conditions similar to those of oil sands fine tailings. Aggregates were formed using a well controlled two-stage aggregation process. Detailed statistical analysis was performed to investigate the establishment of dynamic equilibrium condition in terms of aggregate size and density evolution. An equilibrium steady state condition was obtained within 90 s of the start of flocculation; after which no further change in aggregate structure was observed. Although longer flocculation times inside the shear field could conceivably cause aggregate structure conformation, statistical analysis indicated that this did not occur for the studied conditions. The results show that the technique and experimental conditions employed here produce aggregates having a well-defined, reproducible structure. Copyright © 2011

  13. Biodegradable flocculants based on polyacrylamide and poly(N,N-dimethylacrylamide) grafted amylopectin.

    Science.gov (United States)

    Kolya, Haradhan; Tripathy, Tridib

    2014-09-01

    Synthesis of amylopectin grafted polyacrylamide (AP-g-PAM) and poly(N,N-dimethylacrylamide) (AP-g-PDMA) was carried out by Ce4+ in water medium. The reaction conditions for maximum grafting was optimized by varying the reaction variables, including the concentration of monomers, ceric ammonium nitrate (CAN), amylopectin, reaction time and temperature. The graft copolymers were characterized by FTIR spectroscopy, NMR (both 1H and 13C) spectroscopy, molecular weight determination and molecular weight distribution by using size exclusion chromatography (SEC), thermal analysis (TGA), SEM studies. Biodegradation of the graft copolymers was carried out by enzyme hydrolysis. Flocculation performances of the graft copolymers were evaluated in 1.0 wt% coal and 1.0 wt% silica suspensions. A comparative study of the flocculation performances of AP-g-PDMA and AP-g-PAM was also made. It shows that the flocculation performance of AP-g-PDMA was better than that of AP-g-PAM. AP-g-PDMA performed best when compared with other commercial flocculants in the same suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    Science.gov (United States)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  15. Efeito da adição de lodo de estação de tratamento de água (ETA nas propriedades de material cerâmico estrutural Effect of the addition of sludge from water treatment plants on the properties of structural ceramic material

    Directory of Open Access Journals (Sweden)

    S. R. Teixeira

    2006-09-01

    Full Text Available O resíduo (lodo gerado nos decantadores das Estações de Tratamento de Água (ETA possui composição variada, de acordo com a região onde ela está localizada, com o mês de coleta e com o coagulante usado. Neste trabalho foram feitas caracterizações, física, química e mineralógica, deste lodo e ensaios tecnológicos em corpos de prova, com a finalidade de avaliar a possibilidade de incorporação deste resíduo em massa cerâmica para produção de tijolos. Retração linear, absorção de água, porosidade e massa específica aparente e ensaios de resistência à flexão em corpos-de-prova, com diferentes concentrações de lodo, foram avaliadas. Também, foi avaliado o efeito do tipo de floculante usado na ETA, sobre as propriedades dos corpos-de-prova. A análise mineralógica mostrou que estes lodos apresentaram composição parecida com as das argilas usadas pelas cerâmicas. Em geral, a adição destes materiais à massa cerâmica piorou suas propriedades, entretanto, os valores obtidos para as propriedades tecnológicas ainda permaneceram dentro dos valores limites aceitáveis para a produção de tijolos, dependendo da temperatura de queima e da concentração na mistura. O lodo obtido com floculante à base de alumínio, em geral, prejudicou mais as propriedades cerâmicas do que aqueles à base de ferro. Os resultados indicaram que o lodo de ETA pode ser incorporado à massa cerâmica para produzir material cerâmico.The residue (sludge produced in the decantation ponds of Water Treatment Plants (WTP has variable composition according to the regional WTP localization, the month of collection and the chemical used to flocculation. In this work the sludge was submitted to physical, chemical and mineralogical characterization. Also, technological trials were realized on ceramic probes to evaluate the possibility of sludge incorporation in ceramic mass used to produce bricks. Linear shrinkage, water absorption, mechanical

  16. Nanosized TiN-SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Kumagai, Masanobu; Myung, Seung-Taek; Asaishi, Ryo; Sun, Yang-Kook; Yashiro, Hitoshi

    2008-01-01

    In attempt to improve interfacial electrical conductivity of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells, TiN nanoparticles were electrophoretically deposited on the surface of stainless steel with elastic styrene butadiene rubber (SBR) particles. From transmission electron microscopic observation, it was found that the TiN nanoparticles (ca. 50 nm) surrounded the spherical SBR particles (ca. 300-600 nm), forming agglomerates. They were well adhered on the surface of the type 310S stainless steel. With help of elasticity of SBR, the agglomerates were well fitted into the interfacial gap between gas diffusion layer (GDL) and stainless steel bipolar plate, and the interfacial contact resistance (ICR), simultaneously, was successfully reduced. A single cell using the TiN nanoparticles-coated bipolar plates, consequently, showed comparable cell performance with the graphite employing cell at a current density of 0.5 A cm -2 (12.5 A). Inexpensive TiN nanoparticle-coated type 310S stainless steel bipolar plates would become a possible alternate for the expensive graphite bipolar plates as use in fuel cell applications

  17. Integration of ozonation and an anaerobic sequencing batch reactor (AnSBR) for the treatment of cherry stillage.

    Science.gov (United States)

    Alvarez, Pedro M; Beltrán, Fernando J; Rodríguez, Eva M

    2005-01-01

    Cherry stillage is a high strength organic wastewater arising from the manufacture of alcoholic products by distillation of fermented cherries. It is made up of biorefractory polyphenols in addition to readily biodegradable organic matter. An anaerobic sequencing batch reactor (AnSBR) was used to treat cherry stillage at influent COD ranging from 5 to 50 g/L. Different cycle times were selected to test biomass organic loading rates (OLR(B)), from 0.3 to 1.2 g COD/g VSS.d. COD and TOC efficiency removals higher than 80% were achieved at influent COD up to 28.5 g/L but minimum OLR(B) tested. However, as a result of the temporary inhibition of acetogens and methanogens, volatile fatty acids (VFA) noticeably accumulated and methane production came to a transient standstill when operating at influent COD higher than 10 g/L. At these conditions, the AnSBR showed signs of instability and could not operate efficiently at OLR(B) higher than 0.3 g COD/g VSS.d. A feasible explanation for this inhibition is the presence of toxic polyphenols in cherry stillage. Thus, an ozonation step prior to the AnSBR was observed to be useful, since more than 75% of polyphenols could be removed by ozone. The integrated process was shown to be a suitable treatment technology as the following advantages compared to the single AnSBR treatment were observed: greater polyphenols and color removals, higher COD and TOC removal rates thus enabling the process to effectively operate at higher OLR, higher degree of biomethanation, and good stability with less risk of acidification.

  18. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation.

    Science.gov (United States)

    Jang, Min; Lee, Hyun-Ju; Shim, Yonsik

    2010-04-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 microm, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L(-1) FL-2949 (coagulant) and 12 mg L(-1) A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  19. Front-face fluorescence spectroscopy study of globular proteins in emulsions: influence of droplet flocculation.

    Science.gov (United States)

    Rampon, V; Genot, C; Riaublanc, A; Anton, M; Axelos, M A V; McClements, D J

    2003-04-23

    Measurement of the intensity (I(MAX)) and/or wavelength (lambda(MAX)) of the maximum in the tryptophan (TRP) emission spectrum using front-face fluorescence spectroscopy (FFFS) can be used to provide information about the molecular environment of proteins in nondiluted emulsions. Many protein-stabilized emulsions in the food industry are flocculated, and therefore, we examined the influence of droplet flocculation on FFFS. Stock oil-in-water emulsions stabilized by bovine serum albumin were prepared by high-pressure valve homogenization (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7). These emulsions were used to create model systems with different degrees of droplet flocculation, either by changing the pH, adding surfactant, or adding xanthan. Emulsions (21 wt % n-hexadecane, 0.22 wt % BSA) with different pH (5 and 7) and molar ratios of Tween 20 to BSA (R = 0-131) were prepared by dilution of the stock emulsion. As the surfactant concentration was increased, the protein was displaced from the droplet surfaces, which caused an increase in both I(MAX) and lambda(MAX), because of the change in TRP environment. The dependence of I(MAX) and lambda(MAX) on surfactant concentration followed a similar pattern in emulsions that were initially flocculated (pH 5) and nonflocculated (pH 7). Relatively small changes in FFFS emission spectra were observed in emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7) with different levels of depletion flocculation induced by adding xanthan. These results suggested that droplet flocculation did not have a major impact on FFFS. This study shows that FFFS is a powerful technique for nondestructively providing information about the molecular environment of proteins in concentrated and flocculated protein-stabilized emulsions. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.

  20. Methylation of hemoglobin to enhance flocculant performance

    Science.gov (United States)

    An inexpensive bioflocculant, bovine hemoglobin (Hb), has been covalently modified through methylation of the side chain carboxyl groups of aspartic and glutamic acid residues to improve its flocculation activity. Potentiometric titration of the recovered products showed approximately 28% degree of ...

  1. Value-Added Products Derived from Waste Activated Sludge: A Biorefinery Perspective

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-04-01

    Full Text Available Substantial research has been carried out on sustainable waste activated sludge (WAS management in the last decade. In addition to the traditional approach to reduce its production volume, considering WAS as a feedstock to produce bio-products such as amino acids, proteins, short chain fatty acids, enzymes, bio-pesticides, bio-plastics, bio-flocculants and bio-surfactants represents a key component in the transformation of wastewater treatment plants into biorefineries. The quality of these bio-products is a key factor with respect to the feasibility of non-conventional WAS-based production processes. This review provides a critical assessment of the production process routes of a wide range of value-added products from WAS, their current limitations, and recommendations for future research to help promote more sustainable management of this under-utilised and ever-growing waste stream.

  2. Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems.

    Directory of Open Access Journals (Sweden)

    Debra Rossouw

    Full Text Available Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational

  3. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration

    Energy Technology Data Exchange (ETDEWEB)

    Abood, Alkhafaji R. [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Thi Qar University, Nasiriyah (Iraq); Bao, Jianguo, E-mail: bjianguo888@126.com [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Du, Jiangkun; Zheng, Dan; Luo, Ye [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China)

    2014-02-15

    Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup −1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup −1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup −1}, 22.8 mg L{sup −1}, 24.2 mg L{sup −1}, 18.4 mg L{sup −1} and 50.8 mg L{sup −1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated

  4. Removal of Anabaena flos-aquae in water treatment process using Moringa oleifera and assessment of fatty acid profile of generated sludge.

    Science.gov (United States)

    Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela

    2016-01-01

    This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.

  5. Advantage of SBR/carbon black masterbatch for tire tread application

    Energy Technology Data Exchange (ETDEWEB)

    Sone, K.; Ishiguro, M.; Akimoto, H.; Ishida, M.

    1992-04-01

    The performance required of tire tread is becoming more severe and more various year by year, as social demands on tires have been changing. To improve wear resistance, driving safety and good drive feeling, new HP tires (high performance passenger car tires) are developed intensively. In addition, good fuel efficiency is required to satisfy the CAFE rule, which was proposed for a better global environment. To support this movement of the tire industry, material suppliers are making an effort to supply better materials. Mitsubishi Kasei has been improving the quality and production process of WMB, a SBR/carbon black master-batch produced by co-coagulation of SBR latex, carbon black and extender oil under the wet dispersion process. Compared to the tire tread made from dry-mixing compounds, that made from the WMB shows the following characteristics: (1) the abrasion resistance and the durability are higher; (2) from the viscoelastic properties, skid performance and driving stability are expected to be improved. These characteristics are remarkable when WMB is compounded in the recipes for HP and racing tires using fine carbon black. In this article, these features of WMB are studied from the view point of carbon black dispersion and polymer-carbon black interaction. Furthermore, the changes of carbon black structure during abrasion and fatigue process are analyzed and the mechanisms of these processes are discussed.

  6. Effect of flocculation on performance of arming yeast in direct ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Khaw Teik Seong; Katakura, Yoshio; Ninomiya, Kazuaki; Shioya, Suteaki [Osaka Univ. (Japan). Dept. of Biotechnology; Bito, Yohei; Katahira, Satoshi; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2006-11-15

    In the direct ethanol fermentation of raw starch by arming yeast with {alpha}-amylase and glucoamylase, it is preferable to use a flocculent yeast because it can be recovered without centrifugation. Three types of arming yeast system, I (nonflocculent), II (mildly flocculent), and III (heavily flocculent), were constructed and their fermentation performances were compared. With an increase in the degree of flocculation, specific ethanol production rate for soluble starch decreased (0.19, 0.17, and 0.12 g g-dry-cell{sup -1} h{sup -1} for systems I, II, and III, respectively), but that for raw starch did not decrease as much as expected (0.06, 0.06, and 0.04 g g-dry-cell{sup -1} h{sup -1} for systems I, II and III, respectively). Microscopic observation revealed that many starch granules were captured in the yeast flocs in system III during the direct ethanol fermentation of raw starch. It was suggested that the capture of starch granules increases apparent substrate concentration for amylolytic enzymes in arming yeast cell flocs; thus, the specific ethanol production rate of system III was kept at a level comparable to those of the other systems. (orig.)

  7. DMC-grafted cellulose as green-based flocculants for agglomerating fine kaolin particles

    Directory of Open Access Journals (Sweden)

    Meng Li

    2018-04-01

    Full Text Available Novel cellulose based flocculants C-g-P (DMC with various chain architectures are synthesized through a situ graft copolymerization. The cationic ammonium chloride group (DMC is grafted onto cellulose by two separate inverse emulsion polymerization with γ-methacryloxypropyl trimethoxy silane (KH-570 and double bond addition reactions, which is a new and simple method to employ KH-570 as a bridge for the connection of cellulose matrix and DMC group. The effects of pH, flocculant dose, standing time on turbidity of kaolin suspensions and particle sizes have been studied systematically. In addition, the response surface methodology (RSM study confirms that PAC and C-g-P (DMC have synergy in turbidity removal with a higher removal efficiency of 98.32%. Moreover, C-g-P (DMC 1 has higher removal efficiency with 96.5% at a low dosage of 0.6 mg L−1 and better floc properties than C-g-P (DMC 2 and C-g-P (DMC 3, suggesting that the length and quantity of cationic branch chains play a crucial role in Kaolin flocculation due to their dramatically enhanced bridging effects. Keywords: Cellulose, Cationic flocculant, Inverse emulsion polymerization, Kaolin suspension

  8. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.

    Science.gov (United States)

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.

  9. Flocculation-coagulation behaviour study of tailings of a fluorspar mineral processing plant

    International Nuclear Information System (INIS)

    Dzioba, B. R.; Diaz, A. A.; Menendez-Aguado, J. M.

    2004-01-01

    The objective of this work is to carry out a selection study of the most adequate flocculation-coagulation reagents to reduce the solids content in the overflow from the settling lagoons of a fluorspar processing plant. This overflow has 1/ solids content, clarified from a feed of 25% solids in the settling lagoons, and is pilled into a river. The importance of this work is enhanced by the fact that the plant is located in a low water resources area, and that eventually the water from the river is used for agriculture or even human consumption. It is relevant to find a working methodology which allow to improve the efficiency of the clarifying process and minimize the environmental impact. Regarding the research methodology, a series of trials were made at natural pH and 25 degree centigree to evaluate the action of those reagents which previously probed to be more efficient in this case: as flocculants were tried BOZEFLOC C 65, SEPARAN AP 273 P. SEPARAN MG 200, and as coagulant aluminium sulfate. The possible interaction of flocculation-coagulation processes was also studied, to obtain optimum result. As analysis criterium the total flocculation time was used, and as all essays were made in 100 ml probes, it corresponds with flocculation rate. As result of this study it can be concluded that the most efficient floculant was SEPARAN MG 200, at 4 g/T. with the observation that an excess of aluminium sulfate gets down the efficiency. (Author) 6 refs

  10. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M.; Lee, H.J.; Shim, Y. [Korean Mine Reclamation Corporation MIRECO, Seoul (Republic of Korea)

    2010-07-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 {mu} m, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L{sup -1} FL-2949 (coagulant) and 12 mg L{sup -1} A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  11. Demonstration test on decontamination of contaminated pool water using liquid-solid settling technology with flocculants

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Adachi, Toshihiro; Watanabe, Noriyuki; Tagawa, Akihiro; Hosobuchi, Shigeki; Takanashi, Junko

    2013-01-01

    For the purpose of supplying agricultural water, a stationary purification system for contaminated water had been developed on the basis of the liquid-solid settling technology using flocculants. Two kinds of flocculants had been developed on the basis of preliminary tests: one that compounds iron ferrocyanide and the other that does not. With the use of this system and flocculants, a demonstration test was conducted to apply the decontamination technology on contaminated water in two swimming pools in an elementary school located at Motomiya City, Fukushima Prefecture, Japan. It is proved from the results that both the developed purification system and the flocculants can be established as a practicable decontamination technology for contaminated water: the treatment rate was 10 m 3 /hour and the elimination factor of radioactive materials was higher than 99%. (author)

  12. Treatment of dairy wastewater in UASB reactors inoculated with ...

    African Journals Online (AJOL)

    Treatment of dairy wastewater in UASB reactors inoculated with flocculent biomass. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... of using flocculent sludge in UASB reactors applied to the treatment of dairy ...

  13. Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC

    International Nuclear Information System (INIS)

    Singare, P.U.

    2015-01-01

    Radio isotopic tracer technique as one of the versatile nondestructive technique is employed to evaluate the performance of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC. The evaluation was made on the basis of ion-isotopic exchange reaction kinetics by using 131 I and 82 Br radioactive tracer isotopes. It was observed that for both the resins, the values of specific reaction rate (min -1 ), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) were calculated to be lower for bromide ion-isotopic exchange reaction than that for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction under identical experimental conditions of 30.0 C, 1.000 g of ion exchange resins and 0.001 mol/L labeled iodide ion solution, the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were calculated as 0.377, 0.212, 0.080 and 15.5 respectively for Dowex SBR LC resin, which was higher than 0.215, 0.144, 0.031 and 14.1 respectively as that obtained for Tulsion A23 resins. Also at a constant temperature of 30.0 C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 84.75 % to 90.20 % for Dowex SBR LC resins which was higher than increases from 57.66 % to 62.38 % obtained for Tulsion A23 resins. The identical trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate superior performance of Dowex SBR LC over Tulsion A23 resins under identical experimental conditions.

  14. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  15. Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure.

    Science.gov (United States)

    Labille, J; Thomas, F; Milas, M; Vanhaverbeke, C

    2005-04-01

    The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.

  16. Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions

    Directory of Open Access Journals (Sweden)

    Liu Chen-Guang

    2012-08-01

    Full Text Available Abstract Background Very high gravity (VHG fermentation using medium in excess of 250 g/L sugars for more than 15% (v ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. Results Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 ± 3.1, 252 ± 2.9 and 298 ± 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at −100 mV, ethanol fermentation with the high gravity (HG media containing glucose of 201 ± 3.1 and 252 ± 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 ± 1.3 and 120.0 ± 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 ± 0.4 and 17.0 ± 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 ± 1.8 g/L ethanol was produced at 72 h when ORP was controlled at −150 mV for the VHG fermentation with medium containing 298 ± 3.8 g/L glucose, since yeast cell viability was improved more significantly. Conclusions No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at −150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG

  17. Scaling Behavior of Delayed Demixing, Rheology, and Microstructure of Emulsions Flocculated by Depletion and Bridging

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Linden, van der E.; Vliet, van T.; Aken, van G.A.

    2004-01-01

    Abstract: This paper describes an experimental comparison of microstructure, rheology, and demixing of bridging- and depletion-flocculated oil-in-water emulsions. Confocal scanning laser microscopy imaging showed that bridging-flocculated emulsions were heterogeneous over larger length scales than

  18. Polyacrylamide-based inorganic hybrid flocculants with self-degradable property

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinfang [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Tao, Junshi; Li, Mingzhi; Zhu, Bishan; Li, Xuan; Ma, Zhiyu; Zhao, Tingjie; Wang, Bingzhu; Suo, Biao [Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Wang, Haiwang, E-mail: whwdbdx@126.com [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Yang, Jun, E-mail: jyang@ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Ye, Li, E-mail: yeli@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190 (China); Qi, Xiwei, E-mail: qxw@mail.neuq.edu.cn [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2017-05-01

    Polyacrylamide (PAM)-based inorganic hybrid materials are of great potential as flocculants in soil-liquid separation. Herein, we reported the design of inorganic soil-TiO{sub 2}-PAM hybrid materials using a unique process, which involved coating of titanium dioxide (TiO{sub 2}) nanoparticles on the surface of inorganic soils and subsequent polymerization of acrylamide (AM) on these nanoparticles under visible light. Inorganic soils including kaolin, bentonite, montmorillonite and diatomaceous earth were used to control the volume and to reduce the cost, and the TiO{sub 2} nanoparticles accelerated PAM degradation. The nanoparticles initiated AM polymerization directly under visible light, thus providing a facile strategy for the synthesis of new organic-inorganic hybrid flocculants. The obtained hybrid materials were characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. The degradation of PAM initiated by UV irradiation exceeded 24% in 2 h, depending on its initial concentration. - Highlights: • A new polyacrylamide (PAM)-based inorganic hybrid flocculants with self-degradable property was developed. • TiO{sub 2} nanoparticles show a unique surface-initiated property under the condition of visible light. • We designed a facile strategy for the synthesis of inorganic soil@TiO{sub 2}@PAM hybrid materials.

  19. Optimal Water Recovery with Emphasis on Flocculant Consumption Rate in the Thickener

    Directory of Open Access Journals (Sweden)

    Marzieh Hosseininasab

    2017-11-01

    Full Text Available Water plays a vital role in mineral processing as evidenced by the approximately 2 to 3 tons of water used for the treatment of one ton of ore. A major portion of this water may be recovered in thickeners. This study aimed to control the wet tailings output of the Hematite Gol-e-Gohar plant by changing  flocculant dosage and type and solid percentage in the feed in order to enhance effluent clarity and reduce water consumption. Materials and A series of settling experiments were performed using different combinations of the flocculants (A25, A26 Yazd, A26 Esfahan, A27, and A28, flocculant doses (20, 25, 30, 35, and 40 gr/ton, and solid loads in the feed (5, 7, 9, 10, and 11% to the thickener. The L25 Taguchi design method was chosen to handle the five different levels of the three factors. Adopting a 95% confidence interval, the results of analysis of variance (ANOVA revealed that flocculant consumption rate had a high effect on settling velocity (p = 0.006 while flocculant type and solid percentage in the feed had no significant effects. Moreover, it was found that A26 (Akhtar-chemistry Company, Yazd used at a rate of 40 g/ton improved the settling performance to yield an optimal water clarity. Using the findings of this study in process planning at the plant led to a considerable reduction (from the original 0.86 to 0.49 m3 in average water consumption per ton of input material so that the solid content of the thickener underflow rose from 7 to 45%.

  20. Environmental impact of a flocculant used to enhance solids transport during well bore clean-up operations

    International Nuclear Information System (INIS)

    Yunus, M.N.M.; Procyk, A.D.; Malbrel, C.A.; Ling, K.L.C.

    1995-01-01

    This paper investigates particle flocculation as a mechanism to remove residual contaminants in well bores during completion operations. Laboratory tests and field trials were conducted demonstrating the ability of flocculating polymer sweeps to improve well bore cleaning efficiency. This process reduces the volume of fluid accumulated in the well bore that is discharged to the environment and minimizes the risk of formation damage by residuals left in the well bore. In addition, a comprehensive environmental impact study was performed on the flocculating polymers which included 72 hrs-EC50, 48 hrs-LC50, 10 day- LC50 tests on a variety of marine organisms, and bioaccumulation and biodegradability tests. In all cases, the flocculating polymers were shown to be environmentally safe at the recommended concentrations

  1. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    Science.gov (United States)

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).

  2. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge.

    Directory of Open Access Journals (Sweden)

    Reti Hai

    Full Text Available BACKGROUND: The increasing use of multiwalled carbon nanotubes (MWCNTs will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. AIMS: To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge. METHODS: Three triplicate sequencing batch reactors (SBR were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs. RESULTS: Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day impact on nutrient removal from wastewater. After long-term (180 days exposure to 1 mg/L MWCNTs, the average total nitrogen (TN removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs was increased after long-term exposure to 1 mg/L MWCNTs. CONCLUSION: MWCNTs have adverse effects on

  3. Solid separation and sbr biological process for pig slurry treatment; Depuracion de purines por separacion de solidos y tratamiento biologico en SBR

    Energy Technology Data Exchange (ETDEWEB)

    Lekuona, A.; Alberdi, M.; Lekue, I.; Lasuen, M.

    2009-07-01

    Egiluze treatment plant in Renteria (Gipuzkoa, spain), has treated around 45 m{sup 3}/day of pig slurry since 2006. During this two years, the plant has been running in order to get a suitable effluent, which fulfills the corresponding parameters to be discharged to municipal drain. The treatment process consists basically of a first solid separation and subsequent nitrification-de-nitrificacion biological process using a Sequencing Batch Reactor (SBR). The technical and economic results showed in this article, prove that the process used in Egiluze treatment plant is an effective solution which allows the treatment of pig slurry in an economical and automated way. (Author)

  4. Nitrifying aerobic granular sludge fermentation for releases of carbon source and phosphorus: The role of fermentation pH.

    Science.gov (United States)

    Zou, Jinte; Pan, Jiyang; He, Hangtian; Wu, Shuyun; Xiao, Naidong; Ni, Yongjiong; Li, Jun

    2018-07-01

    The effect of fermentation pH (uncontrolled, 4 and 10) on the releases of carbon source and phosphorus from nitrifying aerobic granular sludge (N-AGS) was investigated. Meanwhile, metal ion concentration and microbial community characterization were explored during N-AGS fermentation. The results indicated that N-AGS fermentation at pH 10 significantly promoted the releases of soluble chemical oxygen demand (SCOD) and total volatile fatty acids (TVFAs). However, SCOD and TVFA released from N-AGS were inhibited at pH 4. Moreover, acidic condition promoted phosphorus release (mainly apatite) from N-AGS during anaerobic fermentation. Nevertheless, alkaline condition failed to increase phosphorus concentration due to the formation of chemical-phosphate precipitates. Compared with the previously reported flocculent sludge fermentation, N-AGS fermentation released more SCOD and TVFAs, possibly due to the greater extracellular polymeric substances content and some hydrolytic-acidogenic bacteria in N-AGS. Therefore, N-AGS alkaline fermentation facilitated the carbon source recovery, while N-AGS acidic fermentation benefited the phosphorus recovery. Copyright © 2018. Published by Elsevier Ltd.

  5. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  6. Use of natural pH variation to increase the flocculation of the marine microalgae Nannochloropsis oculata.

    Science.gov (United States)

    Sales, Rafael; Abreu, Paulo Cesar

    2015-02-01

    Microalgae is largely used in aquaculture as feed. More recently, these microorganisms have been considered as an important feedstock for biodiesel production. However, the concentration of produced biomass represents a large parcel of production costs. In this study, we have evaluated the influence of natural pH variation of culture medium, caused by photosynthetic activity, on the flocculation of the marine microalgae Nannochloropsis oculata. Experiments were conducted with the same culture with different pH values (8.5 and 9.6), obtained after exposing the cells to different light conditions. For each pH value, different treatments were composed by adding 0, 5, 10, and 30 mM of NaOH and the flocculant Flopam® (FO4800 SH) at concentrations of 0, 0.5, 1, and 5 ppm. Higher flocculation efficiencies were obtained for the culture with pH 9.6 in comparison to 8.5 for the same NaOH and Flopam concentrations. Lower concentrations of base and flocculant were needed for flocculating the culture in higher pH, representing an economy of 20 % in the costs of crop harvesting.

  7. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration.

    Science.gov (United States)

    Abood, Alkhafaji R; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye

    2014-02-01

    This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s(-1) within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L(-1) at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic-aerobic-anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L(-1), 22.8 mg L(-1), 24.2 mg L(-1), 18.4 mg L(-1) and 50.8 mg L(-1) respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A feasibility study of in-line rheological characterisation of a ...

    African Journals Online (AJOL)

    The rheological characteristics of sludge affect transportation, treatment and the disposal processes involved in sludge system design and management operations such as dewatering, including flocculation and filtration. The concentration of solid matter in the sludge has an effect on rheological parameters such as yield ...

  9. Los Alamos National Laboratory simulated sludge vitrification demonstration

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology (BDAT) for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. This project plans to demonstrate vitrification of simulated wastes that are considered representatives of wastes found throughout the DOE complex. For the most part, the primary constituent of the wastes is flocculation aids, such as Fe(OH) 3 , and natural filter aids, such as diatomaceous earth and perlite. The filter aids consist mostly of silica, which serves as an excellent glass former; hence, the reason why vitrification is such a viable option. LANL is currently operating a liquid waste processing plant which produces an inorganic sludge similar to other waste water treatment streams. Since this waste has characteristics that make it suitable for vitrification and the likelihood of success is high, it shall be tested at CU. The objective of this task is to characterize the process behavior and glass product formed upon vitrification of simulated LANL sludge. The off-gases generated from the production runs will also be characterized to help further develop vitrification processes for mixed and low level wastes

  10. Assessment of the shelf-life of Nannochloropsis oculata flocculates stored at different temperatures

    Directory of Open Access Journals (Sweden)

    Constanza Low

    2015-05-01

    Full Text Available The cell and culture viability of concentrates of the microalga Nannochloropsis oculata were assessed after storage for a period of 16 weeks at -18, 0 and 5°C. The concentrates were obtained from the crop of N. oculata, which was harvested at the start of the seasonal growth period using a process of flocculation. Flocotac Plus was used as the flocculation agent, achieving flocculation of 90% of the suspended microalgae. It was observed that the chemical process did not affect the number of live cells. The concentrate stored at -18°C presented slow freezing, which deteriorated the cells and therefore reduced cell viability after five weeks (75%. The concentrates stored at 0 and 5°C showed cell viability over 97% after the 16 weeks. Culture viability was only seen in the concentrates stored at 0 and 5°C, which showed specific growth rates similar to those of the control culture. It may be concluded that it is possible to use flocculates stored at 0 and 5°C after 16 weeks as inoculum for mass crops of N. oculata for food, green water and other uses.

  11. Recovery of Bacillus sphaericus spores by flocculation/sedimentation and flotation

    Directory of Open Access Journals (Sweden)

    Christine Lamenha Luna

    2005-06-01

    Full Text Available The aim of this work was use flocculation/sedimentation and flotation for recovery of spores of the Bacillus sphaericus. Microorganism was produced batchwise using culture medium based skimmed milk, corn steep liquor and mineral salts. The best results of flocculation were obtained using CaCl2.2H2O, FeCl3.6H2O, Al2(SO43 and tannin as flocculating agents, with optimal flocculation concentrations of 1,500, 3,000, 2,000 and 1,700ppm, respectively. Flocculent suspensions were characterized based on floc diameter and density. Settling tests were performed in batch at different concentrations of the cellular suspensions and revealed high recovery of the solids in suspension in all cases. Flotation tests were accomplished using a mechanical agitated flotation cell and the process was favoured by the increase of the system agitation and for the presence of a cationic collector.O trabalho aborda a recuperação de esporos da bactéria Bacillus sphaericus por floculação/sedimentação e flotação. O microrganismo foi produzido em batelada, utilizando-se meio de cultivo à base de leite desnatado, milhocina e sais minerais. Os melhores resultados de floculação foram obtidos com os floculantes CaCl2.2H2O, FeCl3.6H2O, Al2(SO43 e tanino, com concentrações ótimas de 1.500, 3.000, 2.000 e 1.700ppm, respectivamente. Os sistemas floculentos foram caracterizados através da determinação da densidade e do diâmetro médio dos flocos. Testes de sedimentação em batelada a diferentes concentrações das suspensões celulares revelaram elevados índices de recuperação dos sólidos em suspensão em todos os casos. Os ensaios de flotação foram realizados em célula de flotação mecânica, e o processo foi favorecido pelo aumento da agitação do sistema e pela presença de um coletor catiônico.

  12. Thermodynamic Study of Tl6SBr4 Compound and Some Regularities in Thermodynamic Properties of Thallium Chalcohalides

    Directory of Open Access Journals (Sweden)

    Dunya Mahammad Babanly

    2017-01-01

    Full Text Available The solid-phase diagram of the Tl-TlBr-S system was clarified and the fundamental thermodynamic properties of Tl6SBr4 compound were studied on the basis of electromotive force (EMF measurements of concentration cells relative to a thallium electrode. The EMF results were used to calculate the relative partial thermodynamic functions of thallium in alloys and the standard integral thermodynamic functions (-ΔfG0, -ΔfH0, and S0298 of Tl6SBr4 compound. All data regarding thermodynamic properties of thallium chalcogen-halides are generalized and comparatively analyzed. Consequently, certain regularities between thermodynamic functions of thallium chalcogen-halides and their binary constituents as well as degree of ionization (DI of chemical bonding were revealed.

  13. The use of laminar tube flow in the study of hydrodynamic and chemical influences on polymer flocculation of Escherichia coli.

    Science.gov (United States)

    Whittington, P N; George, N

    1992-08-05

    The optimization of microbial flocculation for subsequent biomass separation must relate the floc properties to separation process criteria. The effects of flocculant type, dose, and hydrodynamic conditions on floc formation in laminar tube flow were determined for an Escherichia coli system. Combined with an on-line aggregation sensor, this technique allows the flocculation process to be rapidly optimized. This is important, because interbatch variation in fermentation broth has consequences for flocculation control and subsequent downstream processing. Changing tube diameter and length while maintaining a constant flow rate allowed independent study of the effects of shear and time on the flocculation rate and floc characteristics. Tube flow at higher shear rates increased the rate and completeness of flocculation, but reduced the maximum floc size attained. The mechanism for this size limitation does not appear to be fracture or erosion of existing flocs. Rearrangement of particles within the flocs appears to be most likely. The Camp number predicted the extent of flocculation obtained in terms of the reduction in primary particle number, but not in terms of floc size.

  14. [Long-Term Inhibition of FNA on Aerobic Phosphate Uptake and Variation of Phosphorus Uptake Properties of the Sludge].

    Science.gov (United States)

    Ma, Juan; Li, Lu; Yu, Xiao-jun; Sun, Lei-jun; Sun, Hong-wei; Chen, Yong-zhi

    2015-10-01

    An alternating anaerobic/oxic ( An/O) sequencing batch reactor (SBR) was employed to investigate the long-term inhibitory effect of free nitrous acid (FNA) on aerobic phosphorus uptake performance and variation of phosphorus uptake properties of the sludge by adding nitrite. The reactor was started up under the condition of 21-23 degrees C. The results showed that FNA had no impact on phosphate release and uptake capacities of the sludge. However, the specific phosphate release/uptake rates was found to be higher. As FNA concentration (measure by HNO2-N) was lower than 0.53 x 10(-3) mg x L(-1), phosphorus removal efficiency of the system was higher than 96.9%. When the FNA concentration was increased to 0.99 x 10(-3) mg x L(-1), 1.46 x 10(-3) mg x L(-1) and 1.94 x 10(-3) mg x L(-1), the phosphorus removal performance deteriorated rapidly. The phosphorus removal efficiency was recovered to 64.42%, 67.33% and 44.14% after 50, 12 and 30 days, respectively, which implied the deterioration of phosphorus removal performance caused by FNA inhibition could be recovered and long-term acclimation could shorten the recovery process. Notably, increasing nitrite consumption appeared during aerobic phase with the concentration of FNA below 1.46 x 10(-3) mg x L(-1). It was also observed that the phosphorus uptake properties of the sludge varied after long-term inhibition. Nitrate and nitrite type anoxic phosphorus uptake capacity was increased by 3.35 and 3.86 times, respectively, suggesting long-term dosing FNA may facilitate the denitrifying of polyphosphate in organisms utilizing nitrite as electron acceptor. Moreover, long-term acclimation favored sludge settling.

  15. Modeling of microalgal shear-induced flocculation and sedimentation using a coupled CFD-population balance approach.

    Science.gov (United States)

    Golzarijalal, Mohammad; Zokaee Ashtiani, Farzin; Dabir, Bahram

    2018-01-01

    In this study, shear-induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler-Euler two fluid models were coupled via Ansys-CFX-15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s -1 is a promising method of pre-concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160-174, 2018. © 2017 American Institute of Chemical Engineers.

  16. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  17. Optimization of Alkaline Flocculation for Harvesting of Scenedesmus quadricauda #507 and Chaetoceros muelleri #862

    Directory of Open Access Journals (Sweden)

    Shuhao Huo

    2014-09-01

    Full Text Available A response surface methodology (RSM was used to evaluate the effects of pH and microalgal biomass concentration (BC on alkaline flocculating activity for harvesting one freshwater green algae Scenedesmus quadricauda #507 and one marine diatom Chaetoceros muelleri #862. The pH value and BC were in range of 9.0–12.0 and 0.20–2.30 g/L, respectively. Very high regression coefficient between the variables and the response indicates excellent evaluation of experimental data by second-order regressions. Optimum conditions for flocculating activity were estimated as follows: (i pH 11.6, BC 0.54 g/L for strain #507 and (ii pH 11.5, BC 0.42 g/L for strain #862. The maximum flocculating activity was around 94.7% and 100%, respectively. Furthermore, the addition of synthetic ocean water (SOW to the freshwater #507 culture can increase the flocculating activity from 82.13%–88.79% in low algae concentration (0.52 g/L and 82.92%–95.60% in high concentration (2.66 g/L.

  18. Development of biological treatment known as SBR process for supporting radiation treatment of industrial wastewater using electron beam

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Siti Aishah Hashim; Zulkafli Ghazali; Khairul Zaman Dahlan; Ismail Yaziz

    2005-01-01

    Electron beam irradiation of wastewater is capable of degrading stable non-biodegradable compound. However it requires high dose and in turn increase the cost of operation. A combination of irradiation and biological treatment is expected to overcome this problem. In this study, the treatment system will use a biological process known as Sequencing Batch Reactor (SBR). The SBR will be developed in a series and each series consist of reaction tank and clarifier tank. Filling and reaction step will occur in reaction tank while settling, decanting and idling step will ensue in the clarifier tank. The process is designed as such to enable rapid and simultaneous analysis on treated sample in order to achieve reliable results. (Author)

  19. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid

    International Nuclear Information System (INIS)

    Quan Xiangchun; Tang Hua; Xiong Weicong; Yang Zhifeng

    2010-01-01

    Aerobic sludge granules pre-grown on glucose were bioaugmented with a plasmid pJP4 carrying strain Pseudomonas putida SM1443 in a fed-batch microcosm system and a lab-scale sequencing batch reactor (SBR) to enhance their degradation capacity to 2,4-dichlorophenoxyacetic acid (2,4-D). The fed-batch test results showed that the bioaugmented aerobic granule system gained 2,4-D degradation ability faster and maintained a more stable microbial community than the control in the presence of 2,4-D. 2,4-D at the initial concentration of about 160 mg/L was nearly completely removed by the bioaugmented granule system within 62 h, while the control system only removed 26% within 66 h. In the bioaugmented SBR which had been operated for 90 days, the seeded aerobic granules pre-grown on glucose successfully turned into 2,4-D degrading granules through bioaugmentation and stepwise increase of 2,4-D concentration from 8 to 385 mg/L. The granules showed a compact structure and good settling ability with the mean diameter of about 450 μm. The degradation kinetics of 2,4-D by the aerobic granules can be described with the Haldane kinetics model with V max = 31.1 mg 2,4-D/gVSS h, K i = 597.9 mg/L and K s = 257.3 mg/L, respectively. This study shows that plasmid mediated bioaugmentation is a feasible strategy to cultivate aerobic granules degrading recalcitrant pollutants.

  20. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation.

    Science.gov (United States)

    Yong, Zi Jun; Bashir, Mohammed J K; Ng, Choon Aun; Sethupathi, Sumathi; Lim, Jun-Wei

    2018-01-01

    The increase in landfill leachate generation is due to the increase of municipal solid waste (MSW) as global development continues. Landfill leachate has constantly been the most challenging issue in MSW management as it contains high amount of organic and inorganic compounds that might cause pollution to water resources. Biologically treated landfill leachate often fails to fulfill the regulatory discharge standards. Thus, to prevent environmental pollution, many landfill leachate treatment plants involve multiple stages treatment process. The Papan Landfill in Perak, Malaysia currently has no proper leachate treatment system. In the current study, sequential treatment via sequencing batch reactor (SBR) followed by coagulation was used to treat chemical oxygen demand (COD), ammoniacal nitrogen (NH 3 -N), total suspended solids (TSS), and colour from raw landfill leachate. SBR optimum aeration rate, L/min, optimal pH and dosage (g/L) of Alum for coagulation as a post-treatment were determined. The two-step sequential treatment by SBR followed by coagulation (Alum) achieved a removal efficiency of 84.89%, 94.25%, 91.82% and 85.81% for COD, NH 3 -N, TSS and colour, respectively. Moreover, the two-stage treatment process achieved 95.0% 95.0%, 95.3%, 100.0%, 87.2%, 62.9%, 50.0%, 41.3%, 41.2, 34.8, and 22.9 removals of Cadmium, Lead, Copper, Selenium, Barium, Iron, Silver, Nickel, Zinc, Arsenic, and Manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A highly efficient flocculant for graphene oxide recycling and its applications

    Science.gov (United States)

    Luan, Ruiying; Pan, Hui; Ma, Yuning; Mao, Lin; Li, Yao; Wang, Dawei; Zhang, Di; Zhu, Shenmin

    2018-01-01

    In this study, we found a novel and efficient way of recycling graphene oxide (GO) by adding ZnO colloid into the GO solution. GO flocculates immediately when mixed with ZnO colloids. Interestingly, the flocculation would disappear and disperse homogeneously in solution if a certain amount of HCl is added. The study offers a solution to recover and reuse GO throughout its production procedures. More importantly, in the obtained reduced GO/ZnO (rGO/ZnO) flocculant, ZnO nanorods are observed self-assembled into an ordered structure in between the rGO sheets. This prevents the rGO sheets from re-stacking and facilitates the movement of the electrolyte into ZnO if the prepared rGO/ZnO is used as an electrode for supercapacitor. Electrochemical measurements have proved that the rGO/ZnO composite with a weight ratio of 1:1 exhibits a gravimetric specific capacitance of 175 F g-1 and the rGO/ZnO electrode maintains 89.6% of the initial capacitance after 5000 cycles of uses.

  2. Polyelectrolyte flocculation of grain stillage for improved clarification and water recovery within bioethanol production facilities.

    Science.gov (United States)

    Menkhaus, Todd J; Anderson, Jason; Lane, Samuel; Waddell, Evan

    2010-04-01

    Polyelectrolytes were investigated for flocculation of a corn whole stillage stream to improve solid-liquid clarification operations and reduce downstream utility requirements for evaporation and drying within a bioethanol process. Despite a negative zeta potential for the stillage solids, an anionic polyelectrolyte was found to provide the best flocculation. At the optimal dosage of 1.1mg polymer/g dry suspended solids, an anionic flocculant provided a clarified stream with only 0.15% w/w suspended solids (equivalent to a total dissolved solid to total suspended solid ratio greater than 40, and a viscosity reduction of 39% compared to an unflocculated "clarified" stream). The resulting solids cake had greater than 40% w/w solids, and more than 80% water recovery was found in the clarified stream. Addition of flocculant improved filtration flux by six fold and/or would allow for up to a 4-times higher flow rate if using a decanting centrifuge for clarification of corn stillage. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  4. Escherichia coli O157:H7 Acid Sensitivity Correlates with Flocculation Phenotype during Nutrient Limitation

    Directory of Open Access Journals (Sweden)

    Kathryn L. Kay

    2017-07-01

    Full Text Available Shiga toxin producing Escherichia coli (STEC strains vary in acid resistance; however, little is known about the underlying mechanisms that result in strain specific differences. Among 25 STEC O157:H7 strains tested, 7 strains flocculated when grown statically for 18 h in minimal salts medium at 37°C, while 18 strains did not. Interestingly, the flocculation phenotype (cells came out of suspension was found to correlate with degree of acid sensitivity in an assay with 400 mM acetic acid solution at pH 3.3 targeting acidified foods. Strains exhibiting flocculation were more acid sensitive and were designated FAS, for flocculation acid sensitive, while the acid resistant strain designated PAR for planktonic acid resistant. Flocculation was not observed for any strains during growth in complex medium (Luria Bertani broth. STEC strains B201 and B241 were chosen as representative FAS (2.4 log reduction and PAR (0.15 log reduction strains, respectively, due to differences in acid resistance and flocculation phenotype. Results from electron microscopy showed evidence of fimbriae production in B201, whereas fimbriae were not observed in B241.Curli fimbriae production was identified through plating on Congo red differential medium, and all FAS strains showed curli fimbriae production. Surprisingly, 5 PAR strains also had evidence of curli production. Transcriptomic and targeted gene expression data for B201 and B241indicated that csg and hde (curli and acid induced chaperone genes, respectively expression positively correlated with the phenotypic differences observed for these strains. These data suggest that FAS strains grown in minimal medium express curli, resulting in a flocculation phenotype. This may be regulated by GcvB, which positively regulates curli fimbriae production and represses acid chaperone proteins. RpoS and other regulatory mechanisms may impact curli fimbriae production, as well. These findings may help elucidate mechanisms

  5. Flocculation alters the distribution and flux of melt-water supplied sediments and nutrients in the Arctic

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Andersen, Thorbjørn Joest; Ernstsen, Verner Brandbyge

    In the Arctic, thawing permafrost and increased melting of glaciers are important drivers for changes in fine-grained sediment supply and biogeochemical fluxes from land to sea. Flocculation of particles is a controlling factor for the magnitude of fluxes and deposition rates in the marine...... environment but comparatively little is known about the flocculation processes in the Arctic. We investigated flocculation dynamics from a melt-water river in the inner Disko Fjord, West Greenland. A novel, laser-illuminated camera system significantly improved the particle size measurement capabilities...... and settling tubes were sampled to enable sub-sampling of different floc size fractions. Flocculation was observed during periods with low turbulent shear and also at the front of the fresh water plume resulting in significant volumes of large sized flocs at depth below the plume. The floc sizes and volumes...

  6. Effect of pH on Separation of Solid Content from Paint Contained Wastewater by a Coagulant-flocculant Compound

    Directory of Open Access Journals (Sweden)

    Mojtaba Semnani Rahbar

    2014-05-01

    Full Text Available Chemical wastewater treatment is one of the attracting and common methods for wastewater treatment among the currently employed chemical unit processes. The use of coagulant-flocculant compound is one of the efficient methods for separating of paint and recovery of water. In this research, it was introduced and the effect of pH on removal of solid content from solution was studied experimentally. For this purpose, sludge and suspended solid content of the solution were determined in a jar test by measurement of UV absorption of treated solution and solid separation percentage. The results showed that in pH range 9.5-10.5, maximum efficiency of solid content removal was up to 95%. Consequently, maximum paint removal was obtained in this range of pH. The separation of solid content of the solution was due to formation of aluminum hydroxide. As shown by the results, the reduction of potassium hydroxide as pH adjuster caused decrease of pH and consequently decreases of aluminum hydroxide and solid content removal.  

  7. Advanced treatment of sodium dithionite wastewater using the combination of coagulation, catalytic ozonation, and SBR.

    Science.gov (United States)

    Zou, Xiao-Ling

    2017-10-01

    A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.

  8. Enhancing the auto-flocculation of photosynthetic bacteria to realize biomass recovery in brewery wastewater treatment.

    Science.gov (United States)

    Lu, Haifeng; Dong, Shan; Zhang, Guangming; Han, Ting; Zhang, Yuanhui; Li, Baoming

    2018-02-15

    Photosynthetic bacteria (PSB) wastewater treatment technology can simultaneously realize wastewater purification and biomass production. The produced biomass contains high value-added products, which can be used in medical and agricultural industry. However, because of the small size and high electronegativity, PSB are hard to be collected from wastewater, which hampers the commercialization of PSB-based industrial processes. Auto-flocculation is a low cost, energy saving, non-toxic biomass collection method for microbiology. In this work, the influence factors with their optimal levels and mechanism for enhancing the auto-flocculation of PSB were investigated in pure cultivation medium. Then PSB auto-flocculation performance in real brewery wastewater was probed. Results showed that Na + concentration, pH and light intensity were three crucial factors except the initial inoculum sizes and temperature. In the pure medium cultivation system, the optimal condition for PSB auto-flocculation was as follows: pH was 9.5, inoculum size was 420 mg l -1 , Na + concentration was 0.067 mol l -1 , light intensity was 5000 lux, temperature was 30°C. Under the optimal condition, the auto-flocculation ratio and biomass recovery reached 85.0% and 1488 mg l -1 , which improved by 1.67-fold and 2.14-fold compared with the PSB enrichment cultivation conditions, respectively. Mechanism analysis showed that the protein/polysaccharides ratio and absolute Zeta potential value had a liner relationship. For the brewery wastewater treatment, under the above optimal condition, the chemical oxygen demand removal reached 94.3% with the auto-flocculation ratio and biomass recovery of 89.6% and 1510 mg l -1 , which increased 2.75-fold and 2.77-fold, respectively.

  9. Engineering and Design: Precipitation/Coagulation/Flocculation

    Science.gov (United States)

    2001-11-15

    Flocculation 7-3 7-3 Jar Test Analysis 10-1 10-3 Alternating Flow Diversion Equalization System 11-1 11-1 Intermittent Flow Diversion System...EM 1110-1-4012 15 NOV 01 (2) Polyaluminum chloride (PAC), another aluminum derivative, is a partially hydrolyzed aluminum chloride solution...derived from natural products include starch, starch derivatives, proteins, and tannins (EPA, 1987). Of these, starch is the most widely used. The

  10. Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene-butadiene rubber (SBR) blend

    Energy Technology Data Exchange (ETDEWEB)

    Manshaie, R. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nouri Khorasani, S., E-mail: saied@cc.iut.ac.i [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jahanbani Veshare, S. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Rezaei Abadchi, M. [Department of Polymer Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this study, physico-mechanical properties of NR/SBR blends cured by electron beam irradiation and sulfur were compared. The NR/SBR blends were prepared using a two-roll mill. Electron beam irradiations of 100-400 kGy were applied to cure the blends and changes in physico-mechanical properties were studied as a function of irradiation. Also, oil resistance and the effect of thermal ageing on mechanical properties of the blends were investigated. The results show that the irradiated blends have better mechanical properties than those cured by sulfur system. The irradiation cured samples also exhibited better heat stability than the sulfur cured samples. The blend cured by the highest dose shows the lowest swelling and high oil resistance compared with the other samples cured by irradiation.

  11. Batch Sedimentation Studies for Freshwater Green Alga Scenedesmus abundans Using Combination of Flocculants

    Directory of Open Access Journals (Sweden)

    Raghu K. Moorthy

    2017-06-01

    Full Text Available Microalga is the only feedstock that has the theoretical potential to completely replace the energy requirements derived from fossil fuels. However, commercialization of this potential source for fuel applications is hampered due to many technical challenges with harvesting of biomass being the most energy intensive process among them. The fresh water microalgal species, Scenedesmus abundans, has been widely recognized as a potential feedstock for production of biodiesel (Mandotra et al., 2014. The present work deals with sedimentation of algal biomass using extracted chitosan and natural bentonite clay powder as flocculant. The effect of flocculant combination and different factors such as temperature, pH, and concentration of algal biomass on sedimentation rates has been analyzed. A high flocculation efficiency of 76.22 ± 7.81% was obtained at an algal biomass concentration of 1 ± 0.05 g/L for a settling time of 1 h at 50 ± 5°C with a settling velocity of 103.2 ± 0.6 cm/h and a maximum surface conductivity of 2,260 ± 2 μS/cm using an optimal design in response surface methodology (RSM. Biopolymer flocculant such as chitosan exhibited better adsorption property along with bentonite clay powder that reduced the settling time significantly.

  12. An evaluation of soluble cations and anions on the conductivity and rate of flocculation of kaolins

    Science.gov (United States)

    Fulton, Deborah Lee

    1998-10-01

    The focus of this project was to learn how ionic concentrations and their contributions to electric conductivity influence the flocculation behavior of kaolin/water suspensions. Sodium silicate, calcium chloride, and magnesium sulfate were used as chemical additives. The specific surface areas, particle size distributions, and methylene blue indices for two kaolins were measured. The SSA and MBI for these kaolins indicated that they possessed inherent differences in SSA and flocculation behaviors. Rheological studies were also performed. Testing included simultaneous gelation, deflocculation, and pH tests. Viscosity, pH, temperature, and chemical additive concentrations were monitored at each point. Testing was performed at 45/55 wt% solids. Effects of additions of various levels of deflocculant and flocculant to each of the kaolin/water suspensions were studied by making several suspensions from each kaolin. The concentrations of dispersant, and flocculant levels and types were varied to produce suspensions with different chemical additive "histories," but all with similar final apparent viscosities. Slurry filtrates were analyzed for conductivity, pH, temperature, and ion concentrations of (Al3+, Fe2+,3+, Ca 2+, Mg+, Na+, SO4 2--, and Cl--). Plastic properties were calculated to determine how variations in suspension histories affected conductivities, pH, and detectable ion contents of the suspensions. These analyses were performed on starting slurries which were under-, completely-, and over-deflocculated before further additions of flocculants and deflocculant were added to tune the slurries to the final, constant, target viscosity. Results showed that rates of flocculation and conductivities increased as concentrations of ions increased. By increasing conductivity correlations with increases in flocculation occurs, which yields higher rates of buildup, or RBU [1]. This is the single most important slip control property in the whitewares industry. Shear

  13. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim T M; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-09-01

    The present work investigates the potential of coagulation-flocculation and ozonation to pretreat biologically stabilized landfill leachate before granular activated carbon (GAC) adsorption. Both iron (III) chloride (FeCl3) and polyaluminium chloride (PACl) are investigated as coagulants. Better organic matter removal is observed when leachate was treated with FeCl3. At a dose of 1mg FeCl3/mg CODo (CODo: initial COD content), the COD and α254 removal was 66% and 88%, respectively. Dosing 1mg PACl/mg CODo resulted in 44% COD and 72% α254 removal. The settle-ability of sludge generated by PACl leveled off at 252mL/g, while a better settle-ability of 154mL/g was obtained for FeCl3 after dosing 1mg coagulant/mg CODo. For ozonation, the percentage of COD and α254 removal increased as the initial COD concentration decreased. Respectively 44% COD and 77% α254 removal was observed at 112mg COD/L compared to 5% COD and 26% α254 removal at 1846mg COD/L. Subsequent activated carbon adsorption of ozonated, coagulated and untreated leachate resulted in 77%, 53% and 8% total COD removal after treatment of 6 bed volumes. Clearly showing the benefit of treating the leachate before GAC adsorption. Mathematical modeling of the experimental GAC adsorption data with Thomas and Yoon-Nelson models show that ozonation increases the adsorption capacity and breakthrough time of GAC by a factor of 2.5 compared to coagulation-flocculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate.

    Science.gov (United States)

    Gabarró, J; Hernández-Del Amo, E; Gich, F; Ruscalleda, M; Balaguer, M D; Colprim, J

    2013-12-01

    This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Recovery of kaolinite from tailings of Zonouz kaolin-washing plant by flotation-flocculation method

    Directory of Open Access Journals (Sweden)

    Kianoush Barani

    2018-04-01

    Full Text Available The traditional processing of kaolin is achieved by dispersion of the mined ore and classification by multistage hydrocyclone plants. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back into the quarry. In this research, recovery of kaolinite from tailings of Zonouz kaolin washing plant, which is located in Iran was investigated by flotation and flotation- flocculation. Flotation experiments show that the flotation of kaolinite from the tailings is better in an acidic than in an alkaline medium containing cationic collectors. Flotation under acidic condition causes problems such as equipment corrosion at industrial scale. As a result, the cationic flotation of kaolinite is enhanced by addition of polyacrylamide as a flocculant. The results showed flocculation by polyacrylamide improved flotation of kaolinite within a range of pH. With 300 g/t dodecylamine, 500 g/t aluminum chloride, 50 g/t pine oil (frother, 15 g/t polyacrylamide, at pH = 7 and without de-slimming a product has 37.19% Al2O3, 54.19% SiO2 and 34.43% mass recovery was archived. Keywords: Kaolinite, Flotation, Flocculation, Cetylpyridinium chloride, Dodecylamine, Aluminum chloride, Polyacrylamide

  16. Synthesis of a Cationic Polyacrylamide under UV Initiation and Its Flocculation in Estrone Removal

    Directory of Open Access Journals (Sweden)

    Jiaoxia Sun

    2018-01-01

    Full Text Available A ternary cationic polyacrylamide (CPAM with the hydrophobic characteristic was prepared through ultraviolet- (UV- initiated polymerization technique for the estrone (E1 environmental estrogen separation and removal. The monomers of acrylamide (AM, acryloyloxyethyl-trimethyl ammonium chloride (DAC, and acryloyloxyethyl dimethylbenzyl ammonium chloride (AODBAC were used to synthesize the ternary copolymer (PADA. Fourier transform infrared spectroscopy (FT-IR, 1H nuclear magnetic resonance spectroscopy (1H NMR, thermogravimetry/differential scanning calorimetry (TG/DSC, and scanning electron microscopy (SEM were employed to characterize the structure, thermal decomposition property, and morphology of the polymers, respectively. FT-IR and 1H NMR results indicated the successful formation of the polymers. Besides, with the introduction of hydrophobic groups (phenyl group, an irregular and porous surface morphology and a favorable thermal stability of the PADA were observed by SEM and TG/DSC analyses, respectively. At the optimal condition (pH = 7, flocculant dosage = 4.0 mg/L and E1 concentration = 0.75 mg/L, an excellent E1 flocculation performance (E1 removal rate: 90.1%, floc size: 18.3 μm, and flocculation kinetics: 22.69×10-4 s−1 was acquired by using the efficient flocculant PADA-3 (cationic degree = 40%, and intrinsic viscosity = 6.30 dL·g−1. The zeta potential and floc size analyses were used to analyze the possible flocculation mechanism for the E1 removal. Results indicated that the charge neutralization, adsorption, and birding effects were dominant in the E1 removal progress.

  17. Effect of COD/N ratio on N2O production during nitrogen removal by aerobic granular sludge.

    Science.gov (United States)

    Velho, V F; Magnus, B S; Daudt, G C; Xavier, J A; Guimarães, L B; Costa, R H R

    2017-12-01

    N 2 O-production was investigated during nitrogen removal using aerobic granular sludge (AGS) technology. A pilot sequencing batch reactor (SBR) with AGS achieved an effluent in accordance with national discharge limits, although presented a nitrite accumulation rate of 95.79% with no simultaneous nitrification-denitrification. N 2 O production was 2.06 mg L -1 during the anoxic phase, with N 2 O emission during air pulses and the aeration phase of 1.6% of the nitrogen loading rate. Batch tests with AGS from the pilot reactor verified that at the greatest COD/N ratio (1.55), the N 2 O production (1.08 mgN 2 O-N L -1 ) and consumption (up to 0.05 mgN 2 O-N L -1 ), resulted in the lowest remaining dissolved N 2 O (0.03 mgN 2 O-N L -1 ), stripping the minimum N 2 O gas (0.018 mgN 2 O-N L -1 ). Conversely, the carbon supply shortage, under low C/N ratios, increased N 2 O emission (0.040 mgN 2 O-N L -1 ), due to incomplete denitrification. High abundance of ammonia-oxidizing and low abundance of nitrite-oxidizing bacteria were found, corroborating the fact of partial nitrification. A denitrifying heterotrophic community, represented mainly by Pseudoxanthomonas, was predominant in the AGS. Overall, the AGS showed stable partial nitrification ability representing capital and operating cost savings. The SBR operation flexibility could be advantageous for controlling N 2 O emissions, and extending the anoxic phase would benefit complete denitrification in cases of low C/N influents.

  18. Study on Treatment of Landfill Leachate by Electrochemical, Flocculation and Photocatalysis

    Science.gov (United States)

    Yang, Yue; Jin, Xiuping; Pan, Yunbo; Zuo, Xiaoran

    2018-01-01

    In this study, the landfill leachate of different seasons in Liaoyang City is as the research object, and COD removal rate is as the main indicator. The electrochemical section’s results show that the optimal treatment conditions for the water of 2016 summer are as follows: voltage is 7.0V, current density is 40.21 A/m2, pH is equal to the raw water, electrolysis time is 1h, and the COD removal rate is 80.41%. The optimal treatment conditions for the 2017 fall’s water are: electrolysis voltage is 7.0 V, current density is 45.06 A/m2, electrolysis time is 4 hours, and COD removal rate is 28.03%. The flow rate of continuous electrolysis is 6.4 L/h using the water of 2016 fall, and the COD removal rate is 10.28%. The results of the flocculation process show that the optimal treatment conditions are as follows: pH is equal to the raw water; the optimal flocculant species is Fe-Al composite flocculant, wherein the optimal ratio of Fe-Al is n (Fe):n (Al)=0.5:1; the best dosage of flocculant is 2.0 g/L and COD removal rate is of 21.11%. The results of photocatalytic show that the optimal conditions are: pH is 4.5, Al2(SO4)3 is 1.0 g/L, FeSO4.7H2O is 700mg/L, H2O2(30%) is 4 mL/L, stirring and standing UV lamp light irradiation 3 hours, and adjusting pH to 6.0 or so, COD removal rate is 36.15%. +

  19. Particle-level simulations of flocculation in a fiber suspension flowing through a diffuser

    Directory of Open Access Journals (Sweden)

    Andrić Jelena S.

    2017-01-01

    Full Text Available We investigate flocculation in dilute suspensions of rigid, straight fibers in a decelerating flow field of a diffuser. We carry out numerical studies using a particle-level simulation technique that takes into account the fiber inertia and the non-creeping fiber-flow interactions. The fluid flow is governed by the Reynolds-averaged Navier-Stokes equations with the standard k-omega eddy-viscosity turbulence model. A one-way coupling between the fibers and the flow is considered with a stochastic model for the fiber dispersion due to turbulence. The fibers interact through short-range attractive forces that cause them to aggregate into flocs when fiber-fiber collisions occur. We show that ballistic deflection of fibers greatly increases the flocculation in the diffuser. The inlet fiber kinematics and the fiber inertia are the main parameters that affect fiber flocculation in the prediffuser region.

  20. Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments

    Directory of Open Access Journals (Sweden)

    T. Jilbert

    2018-03-01

    Full Text Available Iron (Fe plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II, including both acid-volatile sulfur (AVS-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II throughout the sediment column suggests Fe (II-OM complexes derived from reduction of flocculated Fe (III-OM, while other Fe (II phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II accumulation (AVS-Fe + unsulfidized Fe (II + pyrite for the period 1970–2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas

  1. Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments

    Science.gov (United States)

    Jilbert, Tom; Asmala, Eero; Schröder, Christian; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Virtasalo, Joonas J.; Kotilainen, Aarno; Peltola, Pasi; Ekholm, Päivi; Hietanen, Susanna

    2018-03-01

    Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mössbauer 57Fe

  2. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  3. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Heating value characteristics of sewage sludge: a comparative study of different sludge types

    International Nuclear Information System (INIS)

    Kim, Young-JU.; Kang, Hae-Ok.; Qureshi, T.I.

    2005-01-01

    Heating value characteristics of three different types of sludge, i.e. domestic sewage sludge, industrial sludge, and industrial + domestic sewage sludge were investigated. Industrial + domestic sewage sludge (thickened) showed the highest heating value (5040 kcal/kg) than other sludge types. This may be due to increased amount of organic matter presents in thickened sludge than de-watered sludge. A gradual increase in organic matter of the sludge was observed with the increase of the moisture contents. Heating value of the sludge having 60% moisture contents was found in the range between 924-1656 kcal/kg and this amount was higher than the minimum heating value (800 kcal/kg) required sustaining auto thermal combustion in sludge incineration process. Energy consumption requirement for pre drying sludge operations revealed that industrial sludge (de-watered) required the minimum cost (13 $/ton of sludge) to make it a sludge of fuel grade (60% W), while mixed sludge cost the highest amount for its pre-drying operations. (author)

  5. Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B.

    Science.gov (United States)

    Zaki, Sahar A; Elkady, Marwa F; Farag, Soha; Abd-El-Haleem, Desouky

    2013-01-01

    In this study, a bioflocculant with a high flocculation activity (> 98%) produced by strain 40B, which was isolated from a brackish water was investigated By 16S rDNA sequence analysis, strain 40B was identified as Bacillus velezensis. Chemical analysis of the bioflocculant 40B indicated that it contained 2% protein and 98% carbohydrates. FTIR analysis showed the presence of carboxyl, hydroxyl and amino groups, which were preferred for the flocculation process. The optimal concentration for the flocculation activity was 3.5 mg (-1). This polysaccharide could also flocculate kaolin suspension over a wide range of pH (1-10) and temperature (5-85 degrees C) in the presence of CaCl2. The stability of the bioflocculant 40B under various conditions suggests its possible use in the industries and environmental applications. However, no previous report exists on the isolation and characterization of a bioflocculant from the Bacillus velezensis.

  6. Application of SBR technology for domestic waste water treatment; Aplicacion de la tecnologia SBR para el tratamiento de aguas residuales domesticas

    Energy Technology Data Exchange (ETDEWEB)

    Mace, S.; Mata-Alvarez, J.

    2001-07-01

    The objective of the present study is to give an overall vision of SBR (Sequencing Batch Reactors) technology as an alternative way for treating domestic and municipal wastewaters. This technology has been gaining popularity through years, mainly due to its single-tank design and the ease of its automation. There are a lot of cases in literature dealing with the treatment of this kind of effluents with this technology, whether a lab-scale, pilot scale or industrial scale. Thus, this paper includes relevant experiments found in literature concerning domestic wastewater treatment. There is also a special attention given to an application that has been studied recently: the use of this technology in wastewater treatment plants, concretely for the treatment of the reject water found after anaerobic digesters, which contains high concentrations of ammoniacal nitrogen. (Author)

  7. New sizing agents and flocculants derived from chitosan

    International Nuclear Information System (INIS)

    Hebeish, A.; Higay, A.; El-Shafei, A.

    2005-01-01

    Novel approaches for development of new textile sizing agents and flocculants were undertaken. One of these approaches is based on acid hydrolysis of chitosan and the other involves its carboxy methylation. Characterization of the hydrolyzed chitosan was performed through monitoring nitrogen content and apparent viscosity, while carboxymethyl chitosan was analyzed for degree of substitution (DS) along with apparent viscosity. Factors affecting both hydrolysis and carboxy methylation were investigated. The nitrogen content and apparent viscosity of chitosan decrease variably by increasing HCl concentration as well as time and temperature of hydrolysis. On the other hand, the DS of carboxymethyl chitosan increases by increasing the concentration of both sodium hydroxide and monochloroacetic acid and similarly increases by prolonging the duration and raising the temperature of carboxy methylation; in contrast with apparent viscosity which is inversely related to these parameters. Aqueous solutions of hydrolyzed chitosan or carboxymethyl chitosan were applied to light cotton fabric with a view to envision the technical feasibility of such water soluble chitosan for textile sizing. The size add-on on the light fabric is directly related to the concentration of the hydrolyzed or carboxymethyl chitosan in the sizing solution and so does the apparent viscosity of the latter. Hundred percent size removals could be achieved with the hydrolyzed chitosan irrespective or the size solution concentration provided that the latter is not less than 8%. Different situation is encountered with carboxymethyl chitosan where the percent size removal increase from 81% to 95% by increasing its concentration in the sizing solution from 5 % to 15%. Drying the sized fabric at 80 degree C for 5 minutes or 120 degree C for 3 minutes has practically no effect on percent size removal. The same holds true for heat treatment of the sized fabric at higher temperatures (up to 160 degree C) for longer

  8. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes.

    Science.gov (United States)

    Amor, Carlos; De Torres-Socías, Estefanía; Peres, José A; Maldonado, Manuel I; Oller, Isabel; Malato, Sixto; Lucas, Marco S

    2015-04-09

    This work reports the treatment of a mature landfill leachate through the application of chemical-based treatment processes in order to achieve the discharge legal limits into natural water courses. Firstly, the effect of coagulation/flocculation with different chemicals was studied, evaluating the role of different initial pH and chemicals concentration. Afterwards, the efficiency of two different advanced oxidation processes for leachate remediation was assessed. Fenton and solar photo-Fenton processes were applied alone and in combination with a coagulation/flocculation pre-treatment. This physicochemical conditioning step, with 2 g L(-1) of FeCl3 · 6H2O at pH 5, allowed removing 63% of COD, 80% of turbidity and 74% of total polyphenols. Combining the coagulation/flocculation pre-treatment with Fenton reagent, it was possible to reach 89% of COD removal in 96 h. Moreover, coagulation/flocculation combined with solar photo-Fenton revealed higher DOC (75%) reductions than single solar photo-Fenton (54%). In the combined treatment (coagulation/flocculation and solar photo-Fenton), it was reached a DOC reduction of 50% after the chemical oxidation, with 110 kJ L(-1) of accumulated UV energy and a H2O2 consumption of 116 mM. Toxicity and biodegradability assays were performed to evaluate possible variations along the oxidation processes. After the combined treatment, the leachate under study presented non-toxicity but biodegradability increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  10. Thermo-chemical de-vulcanization of suphur-vulcanized SBR assisted by de-vulcanization aids and oxidation stabilizers

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2013-01-01

    Ground tire rubber (GTR) from whole passenger car tires is composed of several types of rubbers and fillers, making de-vulcanization of this material rather complicated. The most critical component in this material is SBR, as it tends to degrade and recombine during the commonly used reclaiming

  11. Utilization of Paper Sludge Wastes for Treatment of Wastewater from Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Tohru Suzuki

    2012-12-01

    Full Text Available The food processing industries usually produced large amount of wastewater containing fine and small particles. It takes long time for complete settlement of the fine and small particles in the wastewater. The coagulation method appears to become one of the useful treatments. New inorganic coagulant named “Agoclean‒P” has been developed from paper sludge ash. The treatment by coagulation and flocculation were carried out for the wastewater from three different food processing industries namely soup, tofu, and natto. “Hi‒Biah‒System”, which is an in‒situ solidification system, was used for the continuous treatment of wastewater. The parameters for the water quality were pH, five‒day biochemical oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, total nitrogen (TN and total phosphorus (TP. These parameters after the treatment became much lower values relative to those obtained before the treatment.

  12. Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii

    International Nuclear Information System (INIS)

    Borges, Lucelia; Moron-Villarreyes, Joaquin A.; D'Oca, Marcelo G. Montes; Abreu, Paulo Cesar

    2011-01-01

    The aim of this study was to investigate the possible interference of anionic and cationic flocculants in the lipid extraction and fatty acid profiles of two species of marine microalgae: Nannochloropsis oculata and Thalassiosira weissflogii. Cells were grown in batch cultures (f/2 medium, salinity of 28, temperature of 20 o C, light intensity of 40 μmol photons m -2 s -1 and 12/12 h L/D photoperiod) and concentrated using sodium hydroxide (control), sodium hydroxide and the anionic polyacrylamide flocculant Magnafloc ® LT-25 (APF treatment) and sodium hydroxide plus the cationic polyacrylamide flocculant Flopam ® (CPF treatment). There were no statistically significant differences among treatments with respect to lipid extraction for both species. However, N. oculata which presented higher percentages of C16:0, C16:1 and C20:5 fatty acids showed an increase of C14:0 and a decrease of C20:5 with the use of anionic flocculant. Additionally, T. weissflogii which had high percentages of C16:0, C16:1, C16:3 and C20:5, showed a decrease of C18:0 and C18:1n9c when both flocculants were used and a small decrease of C16:0 in the APF treatment. The results indicate that the choice of flocculant should be based on the level of saturation desirable, i.e., if the goal is to produce more stable biodiesel, with low percentage unsaturated fatty acids, then anionic flocculants should be used. On the other hand, if the aim is to produce unsaturated fatty acids for commercial uses in the pharmacy or food industries, then anionic polymers should be avoided. -- Highlights: → Interference of flocculants on biochemical of two marine microalgae. → Lipids extraction and fatty acids profile from Nannochloropsis oculata and Thalassiosira weissflogii. → No differences in the lipids but some differences on fatty acids profile.

  13. Effect of mineral nutrients on cell growth and self-flocculation of Tolypothrix tenuis for the production of a biofertilizer.

    Science.gov (United States)

    Silva, P G; Silva, H J

    2007-02-01

    The influence of mineral nutrients on the growth and self-flocculation of Tolypothrix tenuis was studied. The identification of possible limiting nutrients in the culture medium was performed by the biomass elemental composition approach. A factorial experimental design was used in order to estimate the contribution of macronutrients and micronutrients, as well as their interactions. Iron was identified to be limiting in the culture medium. The micronutrients influenced mainly cellular growth without effects on self-flocculation. Conversely, the self-flocculation capacity of the biomass increased at higher concentrations of macronutrients. The optimization of mineral nutrition of T. tenuis allowed a 73% increase in the final biomass level and 3.5 times higher flocculation rates.

  14. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  15. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E.; Souza Junior, F.G.

    2013-01-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  16. Reduction of Acid-Fast and Non-Acid-Fast Bacteria by Point of Use Coagulation-Flocculation-Disinfection

    Directory of Open Access Journals (Sweden)

    Lisa M. Casanova

    2015-11-01

    Full Text Available Point of use (POU household water treatment is increasingly being adopted as a solution for access to safe water. Non-tuberculous Mycobacteria (NTM are found in water, but there is little research on whether NTM survive POU treatment. Mycobacteria may be removed by multi-barrier treatment systems that combine processes such as coagulation, settling and disinfection. This work evaluated removal of a non-tuberculous Mycobacterium (Mycobaterium terrae and a Gram-negative non-acid-fast environmental bacterium (Aeromonas hydrophila by combined coagulation-flocculation disinfection POU treatment. Aeromonas hydrophila showed 7.7 log10 reduction in demand free buffer, 6.8 log10 in natural surface water, and 4 log10 reduction in fecally contaminated surface water. Turbidity after treatment was <1 NTU. There was almost no reduction in levels of viable M. terrae by coagulant-flocculant-disinfectant in natural water after 30 minutes. The lack of Mycobacteria reduction was similar for both combined coagulant-flocculant-disinfectant and hypochlorite alone. A POU coagulant-flocculant-disinfectant treatment effectively reduced A. hydrophila from natural surface waters but not Mycobacteria. These results reinforce previous findings that POU coagulation-flocculation-disinfection is effective against gram-negative enteric bacteria. POU treatment and safe storage interventions may need to take into account risks from viable NTM in treated stored water and consider alternative treatment processes to achieve NTM reductions.

  17. Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined

  18. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor

    International Nuclear Information System (INIS)

    Yuan Xiangjuan; Gao Dawen

    2010-01-01

    A sequencing batch reactor (SBR) with aerobic granular sludge was operated to determine the effect of different DO concentrations on biological nitrogen removal process and to investigate the spatial profiles of DO, ORP and pH as online control parameters in such systems. The results showed that DO concentration had a significant effect on nitrification efficiencies and the profiles of DO, ORP and pH. The specific nitrification rate was decreased from 0.0595 mgNH 4 + -N/(gMLSS min) to 0.0251 mgNH 4 + -N/(gMLSS min) after DO concentration was dropped off from 4.5 mg/L to 1.0 mg/L. High DO concentration improved the nitrification and increased the volumetric NH 4 + -N removal. Low DO concentration enhanced TIN removal, while prolonged the nitrification duration. Also there existed a good correlation between online control parameters (ORP, pH) and nutrient (COD, NH 4 + -N, NO 2 - -N, NO 3 - -N) variations in aerobic granular sludge reactor when DO was 2.5 mg/L, 3.5 mg/L and 4.5 mg/L. However it was difficult to identify the end of nitrification and denitrification when DO was 1.0 mg/L, due to no apparent bending points on ORP and pH curves. In conclusion, the optimal DO concentration was suggested at 2.5 mg/L as it not only achieved high nitrogen removal efficiency and decreased the reaction duration, but also saved operation cost by aeration and mixing.

  19. Biodiversity of autolytic ability in flocculent Saccharomyces cerevisiae strains suitable for traditional sparkling wine fermentation.

    Science.gov (United States)

    Perpetuini, Giorgia; Di Gianvito, Paola; Arfelli, Giuseppe; Schirone, Maria; Corsetti, Aldo; Tofalo, Rosanna; Suzzi, Giovanna

    2016-07-01

    Yeasts involved in secondary fermentation of traditional sparkling wines should show specific characteristics, such as flocculation capacity and autolysis. Recently it has been postulated that autophagy may contribute to the outcome of autolysis. In this study, 28 flocculent wine Saccahromyces cerevisiae strains characterized by different flocculation degrees were studied for their autolytic and autophagic activities. Autolysis was monitored in synthetic medium through the determination of amino acid nitrogen and total proteins released. At the same time, novel primer sets were developed to determine the expression of the genes ATG1, ATG17 and ATG29. Twelve strains were selected on the basis of their autolytic rate and ATG gene expressions in synthetic medium and were inoculated in a base wine. After 30, 60 and 180 days the autolytic process and ATG gene expressions were evaluated. The obtained data showed that autolysis and ATG gene expressions differed among strains and were independent of the degree of flocculation. This biodiversity could be exploited to select new starter stains to improve sparkling wine production. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto López-Maldonado

    2014-01-01

    Full Text Available Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration through zeta potential measurements. Under this scenario the zeta potential, ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a key factor for assessing the efficiency of coagulation-flocculation processes based on the optimum dosages and windows for polyelectrolytes coagulation-flocculation effectiveness. In this paper, strategic pH variations allowed the prediction of the dosage of polyelectrolyte on wastewater from real electroplating baths, including the isoelectric point (IEP of the dispersions of water and commercial polyelectrolytes used in typical semiconductor industries. The results showed that there is a difference between polyelectrolyte demand required for the removal of suspended solids, turbidity, and organic matter from wastewater (23.4 mg/L and 67 mg/L, resp.. It was also concluded that the dose of polyelectrolytes and coagulation-flocculation window to achieve compliance with national and international regulations as EPA in USA and SEMARNAT in Mexico is influenced by the physicochemical characteristics of the dispersions and treatment conditions (pH and polyelectrolyte dosing strategy.

  1. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    Science.gov (United States)

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  2. The role of electrostatics in saliva-induced emulsion flocculation

    NARCIS (Netherlands)

    Silletti, Erika; Vingerhoeds, Monique H.; Norde, Willem; Van Aken, George A.

    Upon consumption food emulsions undergo different processes, including mixing with saliva. It has been shown that whole saliva induces emulsion flocculation [van Aken, G. A., Vingerhoeds, M. H., & de Hoog, E. H. A. (2005). Colloidal behaviour of food emulsions under oral conditions. In E. Dickinson

  3. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kang, Hyun-Woo; Kim, Yule [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea)

    2010-08-15

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v{sup -1}) total sugar in a 5 l lab scale jar fermenter at 32 C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 {+-} 0.13 g l{sup -1}, a volumetric ethanol productivity of 1.38 {+-} 0.13 g l{sup -1} h{sup -1}, and a theoretical yield of 94.2 {+-} 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes. (author)

  4. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    International Nuclear Information System (INIS)

    Choi, Gi-Wook; Um, Hyun-Ju; Kang, Hyun-Woo; Kim, Yule; Kim, Mina; Kim, Yang-Hoon

    2010-01-01

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 o C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v -1 ) total sugar in a 5 l lab scale jar fermenter at 32 o C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 ± 0.13 g l -1 , a volumetric ethanol productivity of 1.38 ± 0.13 g l -1 h -1 , and a theoretical yield of 94.2 ± 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes.

  5. Removal of Organic Micropollutants by Aerobic Activated Sludge

    KAUST Repository

    Wang, Nan

    2013-06-01

    The study examined the removal mechanism of non-acclimated and acclimated aerobic activated sludge for 29 target organic micropollutants (OMPs) at low concentration. The selection of the target OMPs represents a wide range of physical-chemical properties such as hydrophobicity, charge state as well as a diverse range of classes, including pharmaceuticals, personal care products and household chemicals. The removal mechanisms of OMPs include adsorption, biodegradation, hydrolysis, and vaporization. Adsorption and biodegradation were found to be the main routes for OMPs removal for all target OMPs. Target OMPs responded to the two dominant removal routes in different ways: (1) complete adsorption, (2) strong biodegradation and weak adsorption, (3) medium biodegradation and adsorption, and (4) weak sorption and weak biodegradatio. Kinetic study showed that adsorption of atenolol, mathylparaben and propylparaben well followed first-order model (R2: 0.939 to 0.999) with the rate constants ranging from 0.519-7.092 h-1. For biodegradation kinetics, it was found that benzafibrate, bisphenol A, diclofenac, gemfibrozil, ibuprofen, caffeine and DEET followed zero-order model (K0:1.15E-4 to 0.0142 μg/Lh-1, R2: 0.991 to 0.999), while TCEP, naproxen, dipehydramine, oxybenzone and sulfamethoxazole followed first-order model (K1:1.96E-4 to 0.101 h-1, R2: 0.912 to 0.996). 4 Inhibition by sodium azide (NaN3)and high temperature sterilization was compared, and it was found that high temperature sterilization will damage cells and change the sludge charge state. For the OMPs adaptation removal study, it was found that some of OMPs effluent concentration decreased, which may be due to the slow adaptation of the sludge or the increase of certain bacteria culture; some increased due to chromic toxicity of the chemicals; most of the OMPs had stable effluent concentration trend, it was explained that some of the OMPs were too difficutl to remove while other showed strong quick adaptation

  6. Oily Sludge Biodetoxification

    Science.gov (United States)

    2011-05-01

    are usually transient and systems rapidly recover when normal conditions are restored . Also, some organic pollutants (e.g., polychlorinated 9...surplus components (tanks, concrete pad and berm, microfiltration unit, and biofilters) that were available at the site, so it is not necessarily...commercial components and disposal of Biofilters Microfiltration SBR Oily Waste Receiving Blowers Controls 11 the residual solids that

  7. Synthesis of carboxyl superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles by a novel flocculation-redispersion process

    International Nuclear Information System (INIS)

    Cheng Changming; Kou Geng; Wang Xiaoliang; Wang Shuhui; Gu Hongchen; Guo Yajun

    2009-01-01

    We report a novel flocculation-redispersion method to synthesize and purify the biocompatible superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles coated with carboxyl dextran derivative. First, USPIO nanoparticles were synthesized and flocculated to form the large clusters through bridging effect of polyvinyl alcohol (PVA) during coprecipitation process. Then the flocculated USPIO was separated and purified from the solution conveniently through magnetic sedimentation. Finally, USPIO in the clusters were released again and well dispersed through electrostatic repelling effect of citric acid with the aid of ultrasonic. The dispersed carboxyl-functionalized USPIO was conjugated with the monoclonal antibodies. And it has been proved that the antibodies anchored on USPIO still retained their bioactivity after the conjugation. These results implied that the USPIO synthesized have good potential as active targeting molecular probe in biomedical application.

  8. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment.

    Science.gov (United States)

    Agunbiade, Mayowa Oladele; Van Heerden, Esta; Pohl, Carolina H; Ashafa, Anofi Tom

    2017-06-12

    The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.

  9. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  10. [Isolation of an excellent bio-flocculant-producing strain and its application in the treatment of cold-rolling waste oily water].

    Science.gov (United States)

    Lei, Guo-Yuan; Ding, Cui-Ping; Yang, Jia-Xuan

    2011-09-01

    An excellent strain (designated as T-3) which produces bio-flocculants was isolated from soil samples, and identified as Klebsiella sp. species based on the analysis of morphology, physiology and biochemistry and 16S rDNA sequences measurement. The effects of culture conditions such as pH values, temperature, carbon sources and nitrogen sources on bio-flocculants production by T-3 strain were studied. The experiment results show that T-3 strain has better adaptability to carbon sources and nitrogen sources, and higher capacity of bio-flocculants was obtained when the initial pH value of culture and temperature were 9 and 25 degrees C respectively. Based on the colorimetric reactions of proteins and polysaccharide substance, ultraviolet scanning analysis and Fourier Transform Infrared Spectroscopy analysis, it is found that the bio-flocculants produced by T-3 strain contains -OH and -COO(-) groups and belongs to anionic type flocculant. Moreover, the main component is polysaccharides. The treatment of oily cold-rolling wastewater by the bio-flocculant was investigated and the better result was obtained. When the dosages of CaCl2, bio-flocculants and poly aluminium chloride were 4 g x L(-1), 10% (volume fraction) and 1 g x L(-1) respectively, and the pH value was 7.0, the oil concentration, COD and turbidity were decreased to 10 mg x L(-1), 218.4 mg x L(-1) and 1.36 from 4 819 mg x L(-1), 28 456.8 mg x L(-1) and 3 950 with the removal efficiencies of 99.79%, 92.32% and 99.97% respectively. The interaction between flocculant and oily droplets is achieved by the interaction of Van der Waals force, hydrogen bond and the bridged coordination of Ca2+, in which the bridged coordination of Ca2+ is the dominant.

  11. Long-term dynamic and pseudo-state modeling of complete partial nitrification process at high nitrogen loading rates in a sequential batch reactor (SBR).

    Science.gov (United States)

    Soliman, Moomen; Eldyasti, Ahmed

    2017-06-01

    Recently, partial nitrification has been adopted widely either for the nitrite shunt process or intermediate nitrite generation step for the Anammox process. However, partial nitrification has been hindered by the complexity of maintaining stable nitrite accumulation at high nitrogen loading rates (NLR) which affect the feasibility of the process for high nitrogen content wastewater. Thus, the operational data of a lab scale SBR performing complete partial nitrification as a first step of nitrite shunt process at NLRs of 0.3-1.2kg/(m 3 d) have been used to calibrate and validate a process model developed using BioWin® in order to describe the long-term dynamic behavior of the SBR. Moreover, an identifiability analysis step has been introduced to the calibration protocol to eliminate the needs of the respirometric analysis for SBR models. The calibrated model was able to predict accurately the daily effluent ammonia, nitrate, nitrite, alkalinity concentrations and pH during all different operational conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  13. Flocculation and floc break-up related to tidally induced turbulent shear in a low-turbidity, microtidal estuary

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Andersen, Thorbjørn Joest

    2014-01-01

    flocculation and floc break-up dynamics in the lower part of the water column in the period around slack water. These dynamics were confirmed in the Eulerian deployments and were reoccurring in every tidal cycle. The dynamics were mostly governed by changes in turbulent shear. Strong microflocs with a lower...... mean threshold diameter of 50–60 μm present at high turbulent shear flocculated to form fragile macroflocs with sizes of several hundred microns and mean diameters above 80 μm around slack water periods. A hysteresis in floc break-up and flocculation was found at high water slack (HWS), as flocs formed...

  14. Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater

    Institute of Scientific and Technical Information of China (English)

    Yuanfang Wang; Baoyu Gao; Qinyan Yue; Yah Wang

    2011-01-01

    A coagulation/flocculation process using the composite floceulant polyaluminum chloride-epichlorohydrin dimethylamine (PAC-EPI-DMA) was employed for the treatment of an anionic azo dye (Reactive Brilliant Red K-2BP dye).The effect of viscosity (η),basicity (B =[OH]/[Al]) and organic content (Wp) on the flocculation performance as well as the mechanism of PAC-EPI-DMA flocculant were investigated.The η was the key factor affecting the dye removal efficiency of PAC-EPI-DMA.PAC-EPI-DMA with an intermediate η (2400 mPa-sec) gave higher decolorization efficiency by adsorption bridging and charge neutralization due to the co-effect of PAC and EPI-DMA polymers.The Wp of the composite flocculant was a minor important factor for the flocculation.The adsorption bridging of PAC-EPI-DMA with η of 300 or 4300 mPa.sec played an important role with the increase of Wp,whereasthe charge neutralization of them was weaker with the increase of Wp.There was interaction between Wp and B on the removal of reactive dye.The composite flocculant with intermediate viscosity and organic content was effective for the treatment of reactive dyeing wastewater,which could achieve high reactive dye removal efficiency with low organic dosage.

  15. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  16. Estudo da modificação química de polidienos do tipo SBR e BR Study of chemical modification of SBR and BR polydiene

    Directory of Open Access Journals (Sweden)

    Tatiana L. A. C. Rocha

    2004-12-01

    Full Text Available A utilização de modificações químicas de polidienos comerciais tem sido estudada como um meio alternativo à síntese de novos polímeros, para otimização das propriedades finais destes materiais através da introdução de diferentes grupamentos reativos na cadeia polimérica. A modificação química pode ser feita através de diferentes métodos, os quais podem ser realizados tanto em solução como em massa, onde podem ser destacadas as reações de epoxidação, sulfonação, maleinização, carboxilação, etc. Neste trabalho foi estudado o método de epoxidação de borrachas do tipo SBR e BR. Foi possível observar que mesmo pequenos graus de modificação química causam mudanças marcantes nas propriedades finais dos polímeros, como determinado para a temperatura de transição vítrea.Chemical modification of polydiene has been studied as an alternative route to obtain modified polymers with improved final properties. This improvement is due to the introduction of different kinds of reactive groups into a polymer chain, and it can be done in solution as well as in bulk. The chemical modification can be carried out by different methods such as epoxidation, maleination, carboxylation, sulfonation etc. In this work we show that in the epoxidation of SBR and BR even a small degree of modification can change the final properties of the polymer, as it occurred for the glass transition temperature.

  17. Influence of flocculating agents and structural vehicles on the physical stability and rheological behavior of nitrofurantoin suspension.

    Science.gov (United States)

    Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh

    2014-05-01

    Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation.

  18. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.

  19. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    Science.gov (United States)

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  20. Radiation disinfection of sewage sludge and composting of the irradiated sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Kawakami, Waichiro

    1985-01-01

    In the radiation disinfected sewage sludge, its stabilization is necessary with the composting. In this disinfected sludge, there is no need of keeping it at high temperature at the cost of fermentation velocity. The fermentation velocity can thus be set to obtain its maximum value. In sewage sludge utilization of farm land, to prevent the contamination with pathogenic bacteria and the secondary pollution, the radiation disinfection of dehydrated sludge and the composting of the disinfected sludge have been studied. The disinfection effect when an electron accelerator is used for the radiation source is described. Then, the composting of the disinfected sludge is described in chemical kinetics of the microorganisms. (Mori, K.)

  1. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process

    International Nuclear Information System (INIS)

    Guo Jinsong; Abbas, Abdulhussain A.; Chen Youpeng; Liu Zhiping; Fang Fang; Chen Peng

    2010-01-01

    The leachate from Changshengqiao landfill (Chongqing, China) was characterized and submitted to a combined process of air stripping, Fenton, sequencing batch reactor (SBR), and coagulation. Optimum operating conditions for each process were identified. The performance of the treatment was assessed by monitoring the removal of organic matter (COD and BOD 5 ) and ammonia nitrogen (NH 3 -N). It has been confirmed that air stripping (at pH 11.0 and aeration time 18 h) effectively removed 96.6% of the ammonia. The Fenton process was investigated under optimum conditions (pH 3.0, FeSO 4 .7H 2 O of 20 g l -1 and H 2 O 2 of 20 ml l -1 ), COD removal of up to 60.8% was achieved. Biodegradability (BOD 5 /COD ratio) increased from 0.18 to 0.38. Thereafter the Fenton effluent was mixed with sewage at dilutions to a ratio of 1:3 before it was subjected to the SBR reactor; under the optimum aeration time of 20 h, up to 82.8% BOD 5 removal and 83.1% COD removal were achieved. The optimum coagulant (Fe 2 (SO 4 ) 3 ) was a dosage of 800 mg l -1 at pH of 5.0, which reduced COD to an amount of 280 mg l -1 . These combined processes were successfully employed and very effectively decreased pollutant loading.

  2. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  3. Study of the hibiscus esculentus mucilage coagulation–flocculation ...

    African Journals Online (AJOL)

    The flocculent activity of Hibiscus esculentus (gombo) mucilage traditionally used for a local beer (Tchapalo) clarification in Côte d\\'Ivoire was studied using the method of the experimental designs. Of the three factors selected that are the volume of mucilage (X1), the temperature (X2) and the pH (X3), sole X1 and X3 ...

  4. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    Sludge recovery machine comprising a hollow centrifuge, a vertical pipe for feeding in a liquid containing sludge and a sliding rake pressing against the internal wall of the centrifuge to dislodge and move the sludge, a power drive for spinning the centrifuge at high speed and a rotating drying table to take the sludge and dry it [fr

  5. Excess sludge reduction in activated sludge processes by integrating ultrasound treatment

    International Nuclear Information System (INIS)

    Perez-Elvira, S.; Fdz-Polanco, M.; Plaza, F. I.; Garralon, G.; Fdz-Polanco, F.

    2009-01-01

    Biological sludge produced in the activated sludge process can be minimised modifying the water line, the sludge line or the final disposal strategy. Selecting the water line the general idea is to reduce the sludge producing the yield coefficient by means of the called lysis cryptic growth process. The main techniques referenced in literature are onization, chlorination and chemical and heat treatment. Ultrasounds are widely used to increase anaerobic biodegradability but are not reported as system to control excess sludge production. (Author)

  6. Diseño de un SBR a escala piloto combinado con un sistema de ozonización para eliminar fangos en exceso

    OpenAIRE

    CROS MARTÍNEZ, MARTA

    2018-01-01

    Actualmente, los sistemas más comunes utilizados para el fango en exceso que se produce en un tratamiento biológico es espesamiento, estabilización (química, física o biológica) y deshidratación. En este trabajo se plantea un estudio de ozonizacion del fango en exceso y la evolución de los parámetros de salida del reactor biológico, en este caso un SBR, además del diseño de una planta piloto del sistema de tratamiento de fangos. Cros Martínez, M. (2017). Diseño de un SBR a escala piloto co...

  7. Effect of Aromatic Oil on Phase Dynamics of S-SBR/BR Blends fro Passenger Car Tire Treads

    NARCIS (Netherlands)

    Rathi, Akansha; Hernández, M.; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Bergmann, C.; Trimbach, J.; Blume, Anke

    2015-01-01

    Even though S-SBR/BR blends are commonly used for passenger car tire treads, little is known about the phase dynamics arising from the local morphological heterogeneities. The present study aims at developing the understanding of: (i) the influence of aromatic oil on the dynamics of the individual

  8. Physicochemical properties of cross-linked poly-gamma-glutamic acid and its flocculating activity against kaolin suspension

    International Nuclear Information System (INIS)

    Taniguchi, M.; Kato, K.; Shimauchi, A.; Ping, X.; Fujita, K.; Tanaka, T.; Tarui, Y.; Hirasawa, E.

    2005-01-01

    Cross-linked poly-Gamma-glutamic acid (C-L Gamma-PGA) was prepared with Gamma-PGA irradiated with Gamma-PGA at various kGy values. The physicochemical properties including viscosity and water absorption capacity were compared between C-L Gamma-PGA and several typical flocculating agents. The viscosity of C-L Gamma-PGA increased with the dose of Gamma-lrradiatio, although the water absorption capacity of C-L Gamma-PGA did not, which showed a maximum of 1005.6 ml/g at 20 kGy. Flocculating activity against kaolin suspension was not observed for any of the test compounds when used singly. However, the activity of C-L Gamma-PGA markedly increased following the addition of polyaluminum chloride. The activity increased with temperature up to 80deg C and remained at 80 deg C of heat pretreatment for 1 h, but did not at more than 50 deg C of beat pretreatment for 24 h. The activity was also observed within a pH range of 4.5-10.0. Roth the water absorption capacity and flocculating activity of C-L Gamma-PGA decreased in parallel with increasing NaCl concentration, suggesting that the hocculating activity of C-L Gamma-PGA was associated with its water absorption capacity, rather than viscosity. An investigation of the effects of various cations on the flocculating activity of C-L Gamma-PGA showed that only trivalent catlons had a synergistic effect. The mechanism of C-L Gamma-PGA flocculating activity is discussed based on the results of preliminary experiments

  9. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    Science.gov (United States)

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  10. A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones.

    Science.gov (United States)

    Ginige, Maneesha P; Bowyer, Jocelyn C; Foley, Leah; Keller, Jürg; Yuan, Zhiguo

    2009-04-01

    A comparative study on the use of methanol as a supplementary carbon source to enhance denitrification in primary and secondary anoxic zones is reported. Three lab-scale sequencing batch reactors (SBR) were operated to achieve nitrogen and carbon removal from domestic wastewater. Methanol was added to the primary anoxic period of the first SBR, and to the secondary anoxic period of the second SBR. No methanol was added to the third SBR, which served as a control. The extent of improvement on the denitrification performance was found to be dependent on the reactor configuration. Addition to the secondary anoxic period is more effective when very low effluent nitrate levels are to be achieved and hence requires a relatively large amount of methanol. Adding a small amount of methanol to the secondary anoxic period may cause nitrite accumulation, which does not improve overall nitrogen removal. In the latter case, methanol should be added to the primary anoxic period. The addition of methanol can also improve biological phosphorus removal by creating anaerobic conditions and increasing the availability of organic carbon in wastewater for polyphosphate accumulating organisms. This potentially provides a cost-effective approach to phosphorus removal from wastewater with a low carbon content. New fluorescence in situ hybridisation (FISH) probes targeting methanol-utilising denitrifiers were designed using stable isotope probing. Microbial structure analysis of the sludges using the new and existing FISH probes clearly showed that the addition of methanol stimulated the growth of specific methanol-utilizing denitrifiers, which improved the capability of sludge to use methanol and ethanol for denitrification, but reduced its capability to use wastewater COD for denitrification. Unlike acetate, long-term application of methanol has no negative impact on the settling properties of the sludge.

  11. Investigation of Self-Assembly Processes for Chitosan-Based Coagulant-Flocculant Systems: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Savi Bhalkaran

    2016-09-01

    Full Text Available The presence of contaminants in wastewater poses significant challenges to water treatment processes and environmental remediation. The use of coagulation-flocculation represents a facile and efficient way of removing charged particles from water. The formation of stable colloidal flocs is necessary for floc aggregation and, hence, their subsequent removal. Aggregation occurs when these flocs form extended networks through the self-assembly of polyelectrolytes, such as the amine-based polysaccharide (chitosan, which form polymer “bridges” in a floc network. The aim of this overview is to evaluate how the self-assembly process of chitosan and its derivatives is influenced by factors related to the morphology of chitosan (flocculant and the role of the solution conditions in the flocculation properties of chitosan and its modified forms. Chitosan has been used alone or in conjunction with a salt, such as aluminum sulphate, as an aid for the removal of various waterborne contaminants. Modified chitosan relates to grafted anionic or cationic groups onto the C-6 hydroxyl group or the amine group at C-2 on the glucosamine monomer of chitosan. By varying the parameters, such as molecular weight and the degree of deacetylation of chitosan, pH, reaction and settling time, dosage and temperature, self-assembly can be further investigated. This mini-review places an emphasis on the molecular-level details of the flocculation and the self-assembly processes for the marine-based biopolymer, chitosan.

  12. Flocculation of wheat straw soda lignin by hemoglobin and chicken blood: Effects of cationic polymer or calcium chloride

    Science.gov (United States)

    Flocculation can be used to separate non-sulfonated lignin from base hydrolyzed biomass. In the industrial process, the lignin is isolated by filtration and washed with water. Some of the lignin is lost in the wash water, and flocculation can be used to recover this lignin. Several ways of enhanc...

  13. Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu

    2015-05-30

    Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Flocculent killer yeast for ethanol fermentation of beet molasses

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kazuhito; Shimoii, Hitoshi; Sato, Shun' ichi; Saito, Kazuo; Tadenuma, Makoto

    1987-09-25

    When ethanol is produced using beet molasses, the concentration of ethanol is lower than that obtained using suger cane molasses. Yeast strain improvement was conducted to enhance ethanol production from beet molasses. The procedures and the results are as follows: (1) After giving ethanol tolerance to the flocculent yeast, strain 180 and the killer yeast, strain 909-1, strain 180-A-7, and strain 909-1-A-4 were isolated. These ethanol tolerant strains had better alcoholic fermentation capability and had more surviving cells in mash in the later process of fermentation than the parental strains. (2) Strain H-1 was bred by spore to cell mating between these two ethanol tolerant strains. Strain H-1 is both flocculent and killer and has better alcoholic fermentation capability than the parental strains. (3) In the fermentation test of beet molasses, strain H-1 showed 12.8% of alcoholic fermentation capability. It is equal to that of sugar cane molasses. Fermentation with reused cells were also successful. (5 figs, 21 refs)

  15. Processing of miscellaneous radioactive effluents by continous flocculation decantation

    International Nuclear Information System (INIS)

    Lundy, D.; Matton, P.; Petteau, J.L.; Roofthooft, R.

    1985-01-01

    In the nuclear power plant of Chooz an installation for flocculation and chemical precipitation has been built to treat miscellaneous radioactive effluents continuously. It is an industrial prototype of 5 m 3 /h resulting of several years of research, first on lab scale in a discontinous system and finally in a continuous pilot plant of small size (500 l/h). The process is based on the adsorption of radioactivity on a floc of copper-ferrocyanide precipitated by ferric chloride. The water is then filtered. After a series of preliminary tests and modifications, it has been possible to develop a technique which satisfies the specified decontamination conditions and to reduce the discharges of radioactivity to the Meuse to only 5 - 10% of the authorized limits. The process aims principally at the treatment of laundry waste, but other effluents such as drains from the rocks, pool water and used decontamination solutions (of the primary pumps) have been treated. A technico-economic evaluation of the process in comparison with evaporation is clearly in favour of the flocculation. 31 figs, 40 tables, 12 refs

  16. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    Science.gov (United States)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  17. Algae separation from urban landscape water using a high density microbubble layer enhanced by micro-flocculation.

    Science.gov (United States)

    Chen, Shuwen; Xu, Jingcheng; Liu, Jia; Wei, Qiaoling; Li, Guangming; Huang, Xiangfeng

    2014-01-01

    Eutrophication of raw water results in outbreaks of algae, which hinders conventional water treatment. In this study, high density microbubble layers combined with micro-flocculation was adopted to remove algae from urban landscape water, and the effects of pressure, hydraulic loading, microbubble layer height and flocculation dosage on the removal efficiency for algae were studied. The greatest removal efficiency for algae, chemical oxygen demand, nitrogen and phosphorus was obtained at 0.42 MPa with hydraulic loading at 5 m/h and a flocculation dosage of 4 mg/L using a microbubble layer with a height of 130 cm. Moreover, the size, clearance distance and concentration of microbubbles were found to be affected by pressure and the height of the microbubble layer. Based on the study, this method was an alternative for algae separation from urban landscape water and water purification.

  18. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process

    Energy Technology Data Exchange (ETDEWEB)

    Guo Jinsong, E-mail: guo0768@cqu.edu.cn [Faculty of Urban Construction and Environmental Engineering, Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Chongqing University, Chongqing 400045 (China); Abbas, Abdulhussain A. [Faculty of Urban Construction and Environmental Engineering, Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Chongqing University, Chongqing 400045 (China); Faculty of Engineering, Basrah University, Basrah (Iraq); Chen Youpeng; Liu Zhiping; Fang Fang; Chen Peng [Faculty of Urban Construction and Environmental Engineering, Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Chongqing University, Chongqing 400045 (China)

    2010-06-15

    The leachate from Changshengqiao landfill (Chongqing, China) was characterized and submitted to a combined process of air stripping, Fenton, sequencing batch reactor (SBR), and coagulation. Optimum operating conditions for each process were identified. The performance of the treatment was assessed by monitoring the removal of organic matter (COD and BOD{sub 5}) and ammonia nitrogen (NH{sub 3}-N). It has been confirmed that air stripping (at pH 11.0 and aeration time 18 h) effectively removed 96.6% of the ammonia. The Fenton process was investigated under optimum conditions (pH 3.0, FeSO{sub 4}.7H{sub 2}O of 20 g l{sup -1} and H{sub 2}O{sub 2} of 20 ml l{sup -1}), COD removal of up to 60.8% was achieved. Biodegradability (BOD{sub 5}/COD ratio) increased from 0.18 to 0.38. Thereafter the Fenton effluent was mixed with sewage at dilutions to a ratio of 1:3 before it was subjected to the SBR reactor; under the optimum aeration time of 20 h, up to 82.8% BOD{sub 5} removal and 83.1% COD removal were achieved. The optimum coagulant (Fe{sub 2}(SO{sub 4}){sub 3}) was a dosage of 800 mg l{sup -1} at pH of 5.0, which reduced COD to an amount of 280 mg l{sup -1}. These combined processes were successfully employed and very effectively decreased pollutant loading.

  19. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  20. Compositional thermodynamic model of asphaltenes flocculation out of crudes; Modelisation thermodynamique compositionnelle de la floculation des bruts asphalteniques

    Energy Technology Data Exchange (ETDEWEB)

    Szewczyk, V

    1997-12-02

    The aim of this work is to propose to the oil industry a compositional thermodynamic model able to predict the operating conditions which induce asphaltenes flocculation out of crudes. In this study, various analytical methods (calorimetry, elemental analysis, {sup 13}C nuclear magnetic resonance, neutron diffusion,...) have been used in order to get a better description of the asphaltene fraction to infer its flocculation mechanism. The proposed model describes this flocculation as a thermodynamic transition inducing the formation of a new liquid phase with a high asphaltene content and formed by all the components initially in the crude: the asphaltene deposit. Asphaltenes are represented as a pseudo-component essentially made of carbon and hydrogen. The analytical modelling of the F11-F20 light fraction is the one proposed by Jaubert (1993). The F20+ heavy fraction is represented by four pseudo-components, their physical properties are calculated using the group contribution methods of Avaullee (1995) and of Rogalski and Neau (1990). The Peng-Robinson equation of state (1976) combined with the Abdoul and Peneloux group contribution mixing rules (1989) is used in order to restitute the gas-liquid-asphaltene deposit phase equilibria. This model not being able to compute flocculation conditions on a predictive manner, the method consists in fitting some physical properties of the pseudo-components introduced in the analytical representation of the asphaltene crudes. he obtained results show results show that the proposed flocculation model is then well adapted to the description of the thermodynamic properties (saturation pressures, relative volumes, flocculation curves) of asphaltene crudes within a relatively large range of temperature (30-150 deg C) and pressure (0.1-50 MPa), covering the majority of conditions met in oil production. (author) 109 refs.

  1. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1995-01-01

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  2. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  3. Study and simulation of the resistance of floccules to shear breakage in a centrifuge

    International Nuclear Information System (INIS)

    Touron, E.

    1995-01-01

    In France, spent fuels are in most cases reprocessed. The aim of the reprocessing is to separate the recyclable fissile materials (uranium, plutonium for instance) of radioactive wastes. The industrial process used until now is the Purex (Plutonium Uranium Refining by EXtraction) process. The two main first steps of this process are nowadays industrially completely controlled. Nevertheless, it exists several secondary operations which can interfere with the good unfolding of this process main steps as for instance, the clarification of the dissolution liquors. The aim of this work is then to improve particularly the separation efficiency between small particles and the associated dissolution liquors. The experimental study of the flow inside the rotor shows complex hydrodynamics arising from turbulence and secondary flows. This turbulent flow is likely to be capable of re-suspending small and flow density particles. The use of flocculants is a way of improving separation efficiencies. In gravity sedimentation, flocculants are frequently used to improve settling of fine particles, by causing them to aggregate behaving as if they were larger. Under slight turbulence, the flocs, which may be fragile, remain intact. In centrifugal sedimentation, shear rates are high and may result in complete floc breakup. Choice of the correct flocculant, proper dosage and right conditioning time result in strong, compact flocs so that flocculants can be used successfully. A diminution of the centrifugal shield from nominal conditions results in a diminution of shear breakage (in the feed zone) so that a total recover of solids may be obtained.(author). 122 refs., 95 figs., 28 tabs

  4. Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

    OpenAIRE

    López-Maldonado, Eduardo Alberto; Oropeza-Guzmán, Mercedes Teresita; Ochoa-Terán, Adrián

    2014-01-01

    Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration) through zeta potential measurements. Under this scenario the zeta potential, ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a k...

  5. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  7. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  8. New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organic contaminants in drinking water treatment sludge.

    Science.gov (United States)

    Cerqueira, Maristela B R; Caldas, Sergiane S; Primel, Ednei G

    2014-04-04

    Recent studies have shown a decrease in the concentration of pesticides, pharmaceuticals and personal care products (PCPs) in water after treatment. A possible explanation for this phenomenon is that these compounds may adhere to the sludge; however, investigation of these compounds in drinking water treatment sludge has been scarce. The sludge generated by drinking water treatment plants during flocculation and decantation steps should get some special attention not only because it has been classified as non-inert waste but also because it is a very complex matrix, consisting essentially of inorganic (sand, argil and silt) and organic (humic substances) compounds. In the first step of this study, three QuEChERS methods were used, and then compared, for the extraction of pesticides (atrazine, simazine, clomazone and tebuconazole), pharmaceuticals (amitriptyline, caffeine, diclofenac and ibuprofen) and PCPs (methylparaben, propylparaben, triclocarban and bisphenol A) from drinking water treatment sludge. Afterwards, the study of different sorbents in the dispersive solid phase extraction (d-SPE) step was evaluated. Finally, a new QuEChERS method employing chitin, obtained from shrimp shell waste, was performed in the d-SPE step. After having been optimized, the method showed limits of quantification (LOQ) between 1 and 50 μg kg(-1) and the analytical curves showed r values higher than 0.98, when liquid chromatography tandem mass spectrometry was employed. Recoveries ranged between 50 and 120% with RSD≤15%. The matrix effect was evaluated and compensated with matrix-matched calibration. The method was applied to drinking water treatment sludge samples and methylparaben and tebuconazole were found in concentration

  9. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  10. Effects of antibiotic resistance genes on the performance and stability of different microbial aggregates in a granular sequencing batch reactor

    International Nuclear Information System (INIS)

    Zou, Wenci; Xue, Bin; Zhi, Weijia; Zhao, Tianyu; Yang, Dong; Qiu, Zhigang; Shen, Zhiqiang; Li, Junwen; Zhang, Bin; Wang, Jingfeng

    2016-01-01

    Highlights: • The inoculation of donor strain undermined treatment efficiencies of bioreactor. • The presence of RP4 plasmid affected the activity of ammonia-oxidizing bacteria. • Granular sludge shortened the residence time of RP4 in sludge. • Granular sludge system could reduce the ecological risk from ARGs. - Abstract: Antibiotic resistance genes (ARGs) have emerged as key factors in wastewater environmental contaminants and continue to pose a challenge for wastewater treatment processes. With the aim of investigating the performance of granular sludge system when treating wastewater containing a considerable amount of ARGs, a lab-scale granular sequencing batch reactor (GSBR) where flocculent and granular sludge coexisted was designed. The results showed that after inoculation of donor strain NH 4 + -N purification efficiency diminished from 94.7% to 32.8% and recovered to 95.2% after 10 days. Meanwhile, RP4 plasmid had varying effects on different forms of microbial aggregates. As the size of aggregates increased, the abundance of RP4 in sludge decreased. The residence time of RP4 in granules with particle size exceeding 0.9 mm (14 days) was far shorter than that in flocculent sludge (26 days). Therefore, our studies conclude that with increasing number of ARGs being detected in wastewater, the use of granular sludge system in wastewater treatment processes will allow the reduction of ARGs transmissions and lessen potential ecological threats.

  11. Effects of antibiotic resistance genes on the performance and stability of different microbial aggregates in a granular sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Wenci; Xue, Bin; Zhi, Weijia; Zhao, Tianyu; Yang, Dong; Qiu, Zhigang; Shen, Zhiqiang; Li, Junwen; Zhang, Bin, E-mail: tjzhangbin@sohu.com; Wang, Jingfeng, E-mail: jingfengwang@hotmail.com

    2016-03-05

    Highlights: • The inoculation of donor strain undermined treatment efficiencies of bioreactor. • The presence of RP4 plasmid affected the activity of ammonia-oxidizing bacteria. • Granular sludge shortened the residence time of RP4 in sludge. • Granular sludge system could reduce the ecological risk from ARGs. - Abstract: Antibiotic resistance genes (ARGs) have emerged as key factors in wastewater environmental contaminants and continue to pose a challenge for wastewater treatment processes. With the aim of investigating the performance of granular sludge system when treating wastewater containing a considerable amount of ARGs, a lab-scale granular sequencing batch reactor (GSBR) where flocculent and granular sludge coexisted was designed. The results showed that after inoculation of donor strain NH{sub 4}{sup +}-N purification efficiency diminished from 94.7% to 32.8% and recovered to 95.2% after 10 days. Meanwhile, RP4 plasmid had varying effects on different forms of microbial aggregates. As the size of aggregates increased, the abundance of RP4 in sludge decreased. The residence time of RP4 in granules with particle size exceeding 0.9 mm (14 days) was far shorter than that in flocculent sludge (26 days). Therefore, our studies conclude that with increasing number of ARGs being detected in wastewater, the use of granular sludge system in wastewater treatment processes will allow the reduction of ARGs transmissions and lessen potential ecological threats.

  12. Flocculation and dispersion behaviour of two kaolinitic soil clays as ...

    African Journals Online (AJOL)

    This showed that crystalline Fe oxides were important in stabilizing the structure of the soils studied. The amorphous Fe oxides, however, did not play a stabilizing role. The clays whose crystalline Fe oxides, amorphous Fe oxides and organic matter were successively removed were the most flocculated and therefore had ...

  13. Flocculation of retention pond water

    International Nuclear Information System (INIS)

    Hart, B.T.; McGregor, R.J.

    1982-05-01

    An integral part of the water management strategy proposed by Ranger Uranium Mining Pty. Ltd. involves the collection of runoff water in a series of retention ponds. This water will subsequently be used in the uranium milling plant or released to Magela Creek. Runoff water collected during the wet season caused a section of Magela Creek to become turbid when it was released. The eroded material causing the turbidity was very highly dispersed and showed little tendency to sediment out in the retention ponds. Results of a preliminary study to determine the feasibility of clarifying retention pond water by flocculation with alum are presented. A concentration of 30 Mg/L alum reduced turbidity from an initial 340 NTU to less than 30 NTU in four hours

  14. Variations of floc morphology and extracellular organic matters (EOM) in relation to floc filterability under algae flocculation harvesting using polymeric titanium coagulants (PTCs).

    Science.gov (United States)

    Zhang, Weijun; Song, Rongna; Cao, Bingdi; Yang, Xiaofang; Wang, Dongsheng; Fu, Xingmin; Song, Yao

    2018-05-01

    The work evaluated the algae cells removal efficiency using titanium salt coagulants with different degree of polymerization (PTCs), and the algae cells aggregates and extracellular organic matter (EOM) under chemical flocculation were investigated. The results indicated that PTCs performed well in algae cells flocculation and separation. The main mechanism using PTCs of low alkalisation degree for algae flocculation was associated with charge neutralization, while adsorption bridging and sweep flocculation was mainly responsible for algae removal by PTCs of high alkalisation degree treatment. In addition, the flocs formed by PTC 1.0 showed the best filtration property, and EOM reached the minimum at this time, indicating the flocs formed by PTC 1.0 were more compact than other PTCs, which can be confirmed by SEM analysis. Three-dimensional excitation emission matrix fluorescence (3D-EEM) and high performance size exclusion chromatography (HPSEC) revealed that the EOMs were removed under PTCs flocculation, which improved floc filterability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A Treatment of Dyestuff Wastewater by Internal Electrolysis-Coagulate-SBR-Biocharcoal%内电解-混凝-SBR-生物炭组合工艺处理染料废水

    Institute of Scientific and Technical Information of China (English)

    于文敦; 刘晓东; 孙秀云; 王连军

    2002-01-01

    详述用内电解-混凝-SBR-生物炭组合工艺处理染料废水的过程.通过对各工艺段的调试,确定了各工艺段的最佳控制条件.结果表明:当染料废水COD平均值为5100mg/L,色度为6 000倍时,去除率达95%以上,出水水质达到国家污水综合排放二级标准.

  16. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  17. Effects of Sludge-amendment on Mineralization of Pyrene and Microorganisms in Sludge and Soil

    DEFF Research Database (Denmark)

    Klinge, C; Gejlsbjerg, B; Ekelund, Flemming

    2001-01-01

    . Sludge-amendment enhanced the mineralization of pyrene in the soil compared to soil without sludge, and the most extensive mineralization was observed when the sludge was kept in a lump. The number of protozoa, heterotrophic bacteria and pyrene-mineralizing bacteria was much higher in the sludge compared...... to the soil. The amendment of sludge did not affect the number of protozoa and bacteria in the surrounding soil, which indicated that organic contaminants in the sludge had a little effect on the number of protozoa and bacteria in the surrounding soil...

  18. Performance and N2O Formation of the Deammonification Process by Suspended Sludge and Biofilm Systems—A Pilot-Scale Study

    Directory of Open Access Journals (Sweden)

    Carmen Leix

    2016-12-01

    Full Text Available A two-stage deammonification pilot plant with two different second-stage reactors, namely a sequencing batch reactor (SBR with suspended sludge and a moving bed biofilm reactor (MBBR with biofilm carriers, was investigated over a 1.5-year period to compare reactor performances. Additionally, dissolved nitrous oxide (N2O was measured to determine the reactors’ N2O formation potential. Although the nitritation performance was moderate (NO2-N/NH4-N effluent ratio of 0.32 ± 0.15 in combination with SBR and 0.25 ± 0.14 with MBBR, nitrogen turnover and degradation rates exceeding 500 g N/(m3∙day and 80%, respectively, were achieved in both second stages, yet requiring additional aeration. The SBR’s average nitrogen removal was 19% higher than the MBBR’s; however, the SBR’s nitrite influent concentration was comparably elevated. Concerning N2O formation, the nitritation reactor exhibited the lowest N2O concentrations, while the buffer tank, interconnecting the first and second stages, exhibited the highest N2O concentrations of all reactors. Given these high concentrations, a transfer of N2O into the second stage was observed, where anoxic phases enabled N2O reduction. Frequent biomass removal and a decreased hydraulic retention time in the buffer tank would likely minimize N2O formation. For the second stage, enabling anoxic periods in the intermittent aeration cycles right after feeding to support N2O reduction and thus minimize the stripping effects or the implementation of a complete anoxic ammonium oxidation will mitigate N2O emissions.

  19. Systematic model development for partial nitrification of landfill leachate in a SBR

    DEFF Research Database (Denmark)

    Ganigue, R.; Volcke, E.I.P.; Puig, S.

    2010-01-01

    ), confirmed by statistical tests. Good model fits were also obtained for pH, despite a slight bias in pH prediction, probably caused by the high salinity of the leachate. Future work will be addressed to the model-based evaluation of the interaction of different factors (aeration, stripping, pH, inhibitions....... Following a systematic procedure, the model was successfully constructed, calibrated and validated using data from short-term (one cycle) operation of the PN-SBR. The evaluation of the model revealed a good fit to the main physical-chemical measurements (ammonium, nitrite, nitrate and inorganic carbon......, among others) and their impact on the process performance....

  20. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.

    Science.gov (United States)

    Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie

    2010-01-01

    Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.

  1. Amino acids in cell wall of Gram-positive bacterium Micrococcus sp. hsn08 with flocculation activity on Chlorella vulgaris biomass.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2018-02-01

    The aim of this work was to investigate the flocculation mechanism by Gram-positive bacterium, Micrococcus sp. hsn08 as a means for harvesting Chlorella vulgaris biomass. Bacterial cells of Micrococcus sp. hsn08 were added into algal culture to harvest algal cells through direct contacting with algae to form flocs. Viability dependence test confirmed that flocculation activity does not depend on live bacteria, but on part of the peptidoglycan. The further investigation has determined that amino acids in cell wall play an important role to flocculate algal cells. Positively charged calcium can combine bacterial and algal cells together, and form a bridge between them, thereby forming the flocs, suggesting that ions bridging is the main flocculation mechanism. These results suggest that bacterial cells of Micrococcus sp. hsn08 can be applied to harvest microalgae biomass with the help of amino acids in cell wall. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Improvement of the coagulation/flocculation process using a combination of Moringa oleifera lam with anionic polymer in water treatment.

    Science.gov (United States)

    Bongiovani, Milene Carvalho; Camacho, Franciele Pereira; Nishi, Letícia; Coldebella, Priscila Ferri; Valverde, Karina Cardoso; Vieira, Angélica Marquetotti Salcedo; Bergamasco, Rosângela

    2014-01-01

    The objective of this study is to investigate the impacts of anionic polymer as a flocculant aid on the coagulation/flocculation performance with a saline solution of Moringa oleifera as a coagulant to provide larger flocs and decrease the time sedimentation. For the tests, raw water was used from Pirapó River Basin (Maringá, Paraná, Brazil). Optimization of coagulation/flocculation tests was initially performed in a jar-test with a dosage of M. oleifera Lam (crude extract--MO, oil-extracted with ethanol--MO (et) and hexane--MO (hex) 1% m/v) as the coagulant that ranged from 10 to 60 mg L(-1) and of the anionic polymer 0.1% as a flocculant aid with a dosage that ranged from 0 to 0.4 mg L(-1). The parameters analysed were colour, turbidity and compounds with absorption in UV254nm. In view of the statistical analysis results, MO (hex) with a dosage of 30 mg L(-1) was chosen as a coagulant for the next tests of coagulation/flocculation. When anionic polymer was used alone (0.0 mg L(-1) of MO (hex)), parameters were not removed and there was no generation of heavy flocs as compared with the combination of MO (hex) with the anionic polymer. Statistical analysis showed that MO (hex) obtained the highest removals of the parameters analysed in lower dosages and no significant increase in parameters removal was observed when the polymer dosage was increased. The efficacy of the coagulant +/- anionic polymer was optimal when 30mg L(-1) of MO (hex) was used as a coagulant and 0.1 mg L(-1) of the anionic polymer was used as a flocculant aid, decreasing the time sedimentation from 1 h to 15 min.

  3. Misturas NR/SBR: influência da composição e do modo de preparação sobre propriedades mecânicas e reométricas NR/SBR mixtures: influence of composition and preparation mode on the mechanical and rheological properties

    Directory of Open Access Journals (Sweden)

    Hérlon M. B. Abreu Junior

    2010-01-01

    Full Text Available Aplicações de produtos à base de borracha diversas vezes requerem um conjunto de propriedades as quais, geralmente, não são fornecidas por um único elastômero. Dessa forma, um dos recursos utilizados é a mistura de dois ou mais polímeros para obtenção de novas propriedades. Neste caso, os demais ingredientes que são adicionados, normalmente distribuem-se de forma irregular, dependendo de sua afinidade com cada uma das borrachas. O grau de dispersão de cada um desses ingredientes em cada fase elastomérica irá então influenciar a velocidade de cura e o grau de vulcanização e, certamente, terá conseqüências nas propriedades do produto final. Neste trabalho, a borracha natural (NR foi misturada ao elastômero de butadieno-estireno (SBR nas proporções de 75:25 e 50:50, em massa. As composições foram preparadas empregando-se quatro maneiras distintas para a incorporação dos aditivos. Os resultados das propriedades mecânicas mostraram que, apesar da utilização de uma mesma formulação, o modo de preparo tem grande influência sobre as propriedades. No caso da mistura NR/SBR as melhores propriedades são obtidas quando é favorecida a vulcanização da borracha que, isoladamente, apresenta propriedades inferiores.Frequently a set of properties required for a given application cannot be accomplished by one elastomer only and, thus, mixtures of two or more polymers must be employed. In these cases, the other ingredients added are normally dispersed in a non homogeneous way, depending on their affinity to each polymer. The degree of dispersion each additive experiences in each elastomeric phase will influence the rate and the degree of vulcanization and will certainly have consequences on the properties of the final product. In this work, natural rubber (NR was mixed with styrene-butadiene elastomer (SBR in 75:25 and 50:50 w/w ratios. The compositions were prepared in a two-roll mill, by introducing the additives according to

  4. EVALUATION OF THE FLOCCULATION EFFICIENCY OF Chlorella vulgaris MEDIATED BY Moringa oleifera SEED UNDER DIFFERENT FORMS: FLOUR, SEED CAKE AND EXTRACTS OF FLOUR AND CAKE

    Directory of Open Access Journals (Sweden)

    C. M. L. Lapa Teixeira

    Full Text Available Abstract Flocculation as a pre-separation method can help make production of biodiesel from microalgae economically feasible. In a previous study, Moringa oleifera seed flour (1 g.L-1 was shown to be a very efficient flocculant for Chlorella vulgaris, a microalga with high potential for biodiesel production. In this study, several aspects of C vulgaris flocculation mediated by Moringa were investigated in order to optimize the separation of this biomass. Flocculation efficiency was the same with seeds from different origins and lots. The stationary growth stage was best for harvesting C vulgaris cells to carry out flocculation efficiently (93%. The use of flour extracts and cake extracts generated the best cost-benefit ratio (flocculation efficiency from 78 to 97% with a saving in mass of seed of 75%. The highest efficiency was reached with extracts prepared with seawater and NaCl solutions which have high salt concentration. Reasonable stability of the extract allows its use for up to two weeks, provided it is kept at low temperature (4 ºC.

  5. Enhancement of biogas production from sewage sludge by addition of grease trap sludge

    International Nuclear Information System (INIS)

    Grosser, A.; Neczaj, E.

    2016-01-01

    Highlights: • Addition of grease trap sludge is interesting option for sewage sludge digestion. • Co-digestion of grease trap sludge and sewage sludge improved efficiency of process. • The anaerobic digestion can be carried out at short hydraulic retention time. • Long chain fatty acids concentration was below the ranges for inhibition of anaerobic digestion. - Abstract: Despite having many benefits, a low degree of volatile solids removal as well as long retention time are the main factors limiting the performance of the anaerobic digestion. Co-digestion of sewage sludge with other organic waste (for example fat rich materials) is one of the few potential ways to enhance the performance of the anaerobic digestion. In this article, the effects of adding fatty rich materials on the performance and stability of semi-continuous anaerobic digestion of sewage sludge were investigated on a 6 l laboratory-scale reactor (working volume equal to 5.5 l). The reactor was operated in a semi-continuous mode with a hydraulic retention time of 10 days. The data presented in this paper relate to the period in which the grease trap sludge accounted for 10, 12, 14, 16 and 18% of the mixture on the volatile solids basis. The results clearly indicate that the addition of fat rich materials like grease trap sludge can lead to a satisfactory increase in biogas yield in digester treating sewage sludge. The results showed that co-digestion can enhance the biogas yield by 28–82% compared to anaerobic digestion of sewage sludge alone (control sample). Moreover, the addition of grease trap sludge to digesters resulted in increased volatile solids removal from 44.38% (control sample) to 57.77% (feedstock with 14% addition of grease trap sludge). It was found that the increase of grease trap sludge in the feedstock had a direct impact on the biogas production and methane yield. This proposal has also been confirmed by statistical analysis such as Pearson correlation coefficients and

  6. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  7. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    Science.gov (United States)

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Wasting Away: To Sludge or Not to Sludge?

    Directory of Open Access Journals (Sweden)

    L Nicolle

    2001-01-01

    Full Text Available Following a century of high standards of sanitation, food and water safety in North America are often taken for granted. Recent outbreaks of illness attributed to food and water contamination, however, have challenged this complacency. Now, sludge is added to the list of concerns. Sewage sludge is the muddy substance that remains after the treatment of municipal sewage. This material includes not only human waste, but also household and industrial toxic wastes disposed of in local sewers. Federal and provincial Canadian regulations support the use of this material as fertilizer, within acceptable guidelines, as does the Environmental Protection Agency in the United States. The safety of sludge, however, is questioned by some individuals and groups. Specifically, the risk of infectious agents and toxins to workers or other exposed individuals, and the potential for heavy metals and organic chemicals to be transferred from sludge-treated fields into crops are concerns.

  9. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  10. Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies.

    Science.gov (United States)

    Mittal, H; Mishra, Shivani B; Mishra, A K; Kaith, B S; Jindal, R; Kalia, S

    2013-10-15

    Biodegradation studies of Gum ghatti (Gg) and acrylamide-co-acrylic acid based flocculants [Gg-cl-poly(AAm-co-AA)] have been reported using the soil composting method. Gg-cl-poly(AAm-co-AA) was found to degrade 89.76% within 60 days. The progress of biodegradation at each stage was monitored through FT-IR and SEM. Polymer was synthesized under pressure using potassium persulphate-ascorbic acid as a redox initiator and N,N'-methylene-bis-acrylamide as a crosslinker. Synthesized polymer was found to show pH, temperature and ionic strength of the cations dependent swelling behavior. Gg-cl-poly(AAm-co-AA) was utilized for the selective absorption of saline from different petroleum fraction-saline emulsions. The flocculation efficiency of the polymer was studied as a function of polymer dose, temperature and pH of the solution. Gg-cl-poly(AAm-co-AA) showed maximum flocculation efficiency with 20 mol L(-1) polymer dose in acidic medium at 50 °C. Copyright © 2013. Published by Elsevier Ltd.

  11. [The toxic and hygienic characteristics of the new synthetic organic flocculants AES-5, AES-7 and AES-10].

    Science.gov (United States)

    Prokopov, V A; Nekrasova, L S; Mudryĭ, I V

    2000-03-01

    A toxicological and hygienic characterization is submitted of novel synthetic organic flocculant AEC-5, AEC-7, AEC-10 which are low-toxicity substances and are classified under the fourth class of hazards. They have no skin-resorptive, locally irritative action and are endowed with a weak cumulative activity of functional character. The AEC-5 flocculant exerts a moderately manifest sensitizing effect in the dermal route of entry.

  12. Ecotoxicological assessment of flocculant modified soil for lake restoration using an integrated biotic toxicity index.

    Science.gov (United States)

    Wang, Zhibin; Zhang, Honggang; Pan, Gang

    2016-06-15

    Flocculant modified soils/clays are being increasingly studied as geo-engineering materials for lake restoration and harmful algal bloom control. However, the potential impacts of adding these materials in aquatic ecological systems remain unclear. This study investigated the potential effects of chitosan, cationic starch, chitosan modified soils (MS-C) and cationic starch modified soils (MS-S) on the aquatic organisms by using a bioassay battery. The toxicity potential of these four flocculants was quantitatively assessed using an integrated biotic toxicity index (BTI). The test system includes four aquatic species, namely Chlorella vulgaris, Daphnia magna, Cyprinus carpio and Limnodrilus hoffmeisteri, which represent four trophic levels in the freshwater ecosystem. Results showed that median effect concentrations (EC50) of the MS-C and MS-S were 31-124 times higher than chitosan and cationic starch, respectively. D. magna was the most sensitive species to the four flocculants. Histological examination of C. carpio showed that significant pathological changes were found in gills. Different from chitosan and cationic starch, MS-C and MS-S significantly alleviated the acute toxicities of chitosan and cationic starch. The toxicity order of the four flocculants based on BTI were cationic starch > chitosan > MS-S > MS-C. The results suggested that BTI can be used as a quantitative and comparable indicator to assess biotic toxicity for aquatic geo-engineering materials. Chitosan or cationic starch modified soil/clay materials can be used at their optimal dosage without causing substantial adverse effects to the bioassay battery in aquatic ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    Science.gov (United States)

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  15. Impulsive control of a continuous-culture and flocculation harvest chemostat model

    Science.gov (United States)

    Zhang, Tongqian; Ma, Wanbiao; Meng, Xinzhu

    2017-12-01

    In this paper, a new mathematical model describing the process of continuous culture and harvest of microalgaes is proposed. By inputting medium and flocculant at two different fixed moments periodically, continuous culture and harvest of microalgaes is implemented. The mathematical analysis is conducted and the whole dynamics of model is investigated by using theory of impulsive differential equations. We find that the model has a microalgaes-extinction periodic solution and it is globally asymptotically stable when some certain threshold value is less than the unit. And the model is permanent when some certain threshold value is larger than the unit. Then, according to the threshold, the control strategies of continuous culture and harvest of microalgaes are discussed. The results show that continuous culture and harvest of microalgaes can be archived by adjusting suitable input time, input amount of medium or flocculant. Finally, some numerical simulations are carried out to verify the control strategy.

  16. Landfill leachate treatment by coagulation/flocculation combined with microelectrolysis-Fenton processes.

    Science.gov (United States)

    Luo, Kun; Pang, Ya; Li, Xue; Chen, Fei; Liao, Xingsheng; Lei, Min; Song, Yong

    2018-02-07

    Landfill leachate was pretreated by chemical flocculation with polyaluminum chloride (PAC) as a flocculant, and subsequently purified by the microelectrolysis-Fenton (MEF) process. Response surface methodology was employed to optimize the MEF process, and the optimal conditions were initial pH 3.20, H 2 O 2 concentration 3.57 g/L, and Fe-C dosage 104.52 g/L. The PAC coagulation combined with MEF processes obtained a superior decontamination performance, and the predicted chemical oxygen demand (COD) and humic acids (HA) removal were respectively 90.27% and 93.79%. The strong fluorescence peak at 425 nm and the trapping experiment showed that [Formula: see text] was generated during MEF, which had a strong oxidation ability to degrade organic recalcitrant pollutants. The ultraviolet-visible spectra and three-dimensional excitation-emission matrices spectra (3D-EEMs) indicated that PAC coagulation could preferentially remove protein-like substances, while the MEF process was effective in destructing organic recalcitrant pollutants, especially humic-like and fulvic-like substances.

  17. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  18. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  19. Rheological behavior and stability of ciprofloxacin suspension: Impact of structural vehicles and flocculating agent

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2013-01-01

    Full Text Available Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC, hydroxypropylmethylcellulose (HPMC and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v and sodium chloride (0.05% w/v as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v, Veegum (0.1% w/v and NaCl (0.05% w/v. Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v, Veegum (0.1% w/v and NaCl (0.05% w/v was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved.

  20. Rheological behavior and stability of ciprofloxacin suspension: Impact of structural vehicles and flocculating agent.

    Science.gov (United States)

    Moghimipour, Eskandar; Rezaee, Saeed; Salimi, Anayatollah; Asadi, Elham; Handali, Somayeh

    2013-07-01

    Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC), hydroxypropylmethylcellulose (HPMC) and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v) and sodium chloride (0.05% w/v) as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v). Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v) was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved.

  1. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  2. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  3. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  4. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  5. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  6. Misturas NR/SBR: modos de preparação e propriedades

    Directory of Open Access Journals (Sweden)

    Visconte Leila L. Y.

    2001-01-01

    Full Text Available Aplicações de artefatos de borracha muitas vezes requerem um conjunto de propriedades que não podem ser fornecidas por um único elastômero sendo, então necessário, que misturas de dois ou mais polímeros sejam empregadas. Nesses casos, os demais ingredientes que normalmente são adicionados, distribuem-se de modo diferente dependendo de sua afinidade com cada uma das borrachas. O grau de dispersão de cada um desses ingredientes em cada fase elastomérica irá influenciar a velocidade e o grau de vulcanização e, certamente, terá conseqüências sobre o desempenho do composto final. Neste trabalho, a borracha natural (NR foi misturada ao elastômero de butadieno-estireno (SBR na proporção de 1:1 em peso. As composições foram preparadas em misturador de cilindros, segundo a norma ASTM D 3182, empregando-se quatro maneiras distintas para a incorporação dos aditivos. Após a vulcanização foram estudadas propriedades mecânicas, como resistências à tração e ao rasgamento e dureza, propriedades termo-dinâmico-mecânicas e a morfologia de cada uma das composições. As propriedades mecânicas foram avaliadas de acordo com as normas ASTM específicas para cada ensaio. Os resultados mostram que, apesar de se usar a mesma formulação, o modo de preparo tem grande influência sobre as propriedades, o que é detectável pelas propriedades mecânicas e pela análise morfológica, e evidenciado através de testes sensíveis, como o dinâmico-mecânico. No caso da mistura NR/SBR as melhores propriedades são obtidas quando é favorecida a vulcanização da borracha que, isoladamente, apresenta propriedades inferiores.

  7. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  8. Efficiency of a pilot-scale integrated sludge thickening and digestion reactor in treating low-organic excess sludge.

    Science.gov (United States)

    He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri

    2012-06-01

    The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.

  9. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    Science.gov (United States)

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  10. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    Energy Technology Data Exchange (ETDEWEB)

    Degreif, Daniel [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Technical Univ. of Darmstadt (Germany); de Rond, Tristan [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Bertl, Adam [Technical Univ. of Darmstadt (Germany); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Budin, Itay [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States)

    2017-03-18

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. In this paper, we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 – encoding a cell wall polysaccharide binding protein – independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmental trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Finally, our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology.

  11. Radiation hygienization of raw sewage sludge

    International Nuclear Information System (INIS)

    Shah, M.R.; Lavale, D.S.; Rawat, P.; Benny, P.G.; Sharma, A.K.; Dey, G.R.; Bhave, V.

    2001-01-01

    'Radiation treatment of municipal sewage sludge can achieve resource conservation and recovery objectives. The liquid sludge irradiator of Sludge Hygienization Research Irradiator at Baroda (India) was operated for generating data on treatment of raw sludge containing 3-4 % solids. The plant system was modified for irradiating raw sludge without affecting basic irradiator initially designed to treat digested sludge. Hourly samples were analysed for estimation of disinfection dose requirement. Sand separated from the sludge was used as in-situ dosimeter by making use of its thermoluminescence property. Investigations are being carried out for regrowth of Total Coliforms in the sludge samples from this irradiator. Possibility of inadequate treatment due to geometric configuration of irradiator is being checked. (author)

  12. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  13. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    Science.gov (United States)

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Chemical treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Pottier, P.E.

    1968-01-01

    This is the third manual of three commissioned by the IAEA on the three principal techniques used in concentrating radioactive liquid wastes, namely chemical precipitation, evaporation and ion exchange. The present manual deals with chemical precipitation by coagulation-flocculation and sedimentation, commonly called ''chemical treatment'' of low-activity wastes. Topics discussed in the manual are: (i) principles of coagulation on flocculation and sedimentation and associated processes; (ii) process and equipment; (iii) conditioning and disposal of flocculation sludge; (iv) sampling and the equipment required for experiments; and (v) factors governing the selection of processes. 99 refs, 17 figs, 4 tabs

  15. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    Science.gov (United States)

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  16. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Lixiang; Zhou, Jun; Song, Xingwei; Wang, Dianzhan

    2012-06-30

    Bio-acidification caused by bio-oxidation of energy substances during bioleaching is widely known to play an important role in improving sludge-borne metals removal. Here we report that bioleaching also drastically enhances sludge dewaterability in a suitable pH level. To obtain the optimum initial concentrations of energy substances and pH values for sludge dewaterability during bioleaching, bio-oxidation of Fe(2+) and S(0) under co-inoculation with Acidithiobacillus thiooxidans TS6 and Acidothiobacillus ferrooxidans LX5 and their effects on sludge dewaterability and metals removal during sludge bioleaching were investigated. Results indicated that the dosage of energy substances with 2g/L S(0) and 2g/L Fe(2+) could obtain bio-oxidation efficiencies of up to 100% for Fe(2+) and 50% for S(0) and were the optimal dosages for sludge bioleaching. The removal efficiencies of sludge-borne Cu and Cr could reach above 85% and 40%, respectively, and capillary suction time (CST) of bioleached sludge decreased to as low as ∼10s from initial 48.9s for fresh sludge when sludge pH declined to ∼2.4 through bioleaching. These results confirm the potential of bioleaching as a novel method for improving sludge dewaterability as well as removal of metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge

    KAUST Repository

    Wang, Zhongwei; van Loosdrecht, Mark C.M.; Saikaly, Pascal

    2017-01-01

    Salinity can affect the performance of biological wastewater treatment in terms of nutrient removal. The effect of salt on aerobic granular sludge (AGS) process in terms of granulation and nutrient removal was examined in this study. Experiments were conducted to evaluate the effect of salt (15 g/L NaCl) on granule formation and nutrient removal in AGS system started with flocculent sludge and operated at DO of 2.5 mg/L (phase I). In addition, experiments were conducted to evaluate the effect of gradually increasing the salt concentration (2.5 g/L to 15 g/L NaCl) or increasing the DO level (2.5 mg/L to 8 mg/L) on nutrient removal in AGS system started with granular sludge (phase II) taken from an AGS reactor performing well in terms of N and P removal. Although the addition of salt in phase I did not affect the granulation process, it significantly affected nutrient removal due to inhibition of ammonia oxidizing bacteria (AOB) and phosphate accumulating organisms (PAOs). Increasing the DO to 8 mg/L or adapting granules by gradually increasing the salt concentration minimized the adverse effect of salt on nitrification (phase II). However, these strategies were not successful for mitigating the effect of salt on biological phosphorus removal. No nitrite accumulation occurred in all the reactors suggesting that inhibition of biological phosphorus removal was not due to the accumulation of nitrite as previously reported. Also, glycogen accumulating organisms were shown to be more tolerant to salt than PAO II, which was the dominant PAO clade detected in this study. Future studies comparing the salinity tolerance of different PAO clades are needed to further elucidate the effect of salt on PAOs.

  18. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge

    KAUST Repository

    Wang, Zhongwei

    2017-08-13

    Salinity can affect the performance of biological wastewater treatment in terms of nutrient removal. The effect of salt on aerobic granular sludge (AGS) process in terms of granulation and nutrient removal was examined in this study. Experiments were conducted to evaluate the effect of salt (15 g/L NaCl) on granule formation and nutrient removal in AGS system started with flocculent sludge and operated at DO of 2.5 mg/L (phase I). In addition, experiments were conducted to evaluate the effect of gradually increasing the salt concentration (2.5 g/L to 15 g/L NaCl) or increasing the DO level (2.5 mg/L to 8 mg/L) on nutrient removal in AGS system started with granular sludge (phase II) taken from an AGS reactor performing well in terms of N and P removal. Although the addition of salt in phase I did not affect the granulation process, it significantly affected nutrient removal due to inhibition of ammonia oxidizing bacteria (AOB) and phosphate accumulating organisms (PAOs). Increasing the DO to 8 mg/L or adapting granules by gradually increasing the salt concentration minimized the adverse effect of salt on nitrification (phase II). However, these strategies were not successful for mitigating the effect of salt on biological phosphorus removal. No nitrite accumulation occurred in all the reactors suggesting that inhibition of biological phosphorus removal was not due to the accumulation of nitrite as previously reported. Also, glycogen accumulating organisms were shown to be more tolerant to salt than PAO II, which was the dominant PAO clade detected in this study. Future studies comparing the salinity tolerance of different PAO clades are needed to further elucidate the effect of salt on PAOs.

  19. Cost and effectiveness comparisons of various types of sludge irradiation and sludge pasteurization treatments

    International Nuclear Information System (INIS)

    Morris, M.E.

    1976-01-01

    The radiation from 137 Cs, a major constituent of nuclear fuel reprocessing waste, can be used to sterilize sewage sludge. This paper compares the effectiveness and cost of heat pasteurization, irradiation, and thermoradiation (simultaneous heating/irradiation), three competing methods of sludge disinfection. The cost of irradiation and thermoradiation is slightly higher than heat pasteurization costs for liquid sludges, although minor changes in oil availability or prices could change this. If the viral destruction could be done easily by other means, a 500-kilorad irradiation dose would be effective and less costly. For dry sewage sludges, irradiation is as effective and much less costly than any of the liquid sludge disinfection processes. Irradiation of compost appears to be cheaper and more practical than any heat pasteurization process for the dry sludge (the insulating property of the compost makes heating difficult). 6 tables, 2 fig

  20. F-Canyon Sludge Physical Properties

    International Nuclear Information System (INIS)

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-01-01

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, DandD requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution

  1. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  2. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  3. Computer Simulation Elucidates Yeast Flocculation and Sedimentation for Efficient Industrial Fermentation.

    Science.gov (United States)

    Liu, Chen-Guang; Li, Zhi-Yang; Hao, Yue; Xia, Juan; Bai, Feng-Wu; Mehmood, Muhammad Aamer

    2018-05-01

    Flocculation plays an important role in the immobilized fermentation of biofuels and biochemicals. It is essential to understand the flocculation phenomenon at physical and molecular scale; however, flocs cannot be studied directly due to fragile nature. Hence, the present study is focused on the morphological specificities of yeast flocs formation and sedimentation via the computer simulation by a single floc growth model, based on Diffusion-Limited Aggregation (DLA) model. The impact of shear force, adsorption, and cell propagation on porosity and floc size is systematically illustrated. Strong shear force and weak adsorption reduced floc size but have little impact on porosity. Besides, cell propagation concreted the compactness of flocs enabling them to gain a larger size. Later, a multiple flocs growth model is developed to explain sedimentation at various initial floc sizes. Both models exhibited qualitative agreements with available experimental data. By regulating the operation constraints during fermentation, the present study will lead to finding optimal conditions to control the floc size distribution for efficient fermentation and harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  5. Removal of sodium lauryl sulphate by coagulation/flocculation with Moringa oleifera seed extract.

    Science.gov (United States)

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-30

    Among other natural flocculant/coagulant agents, Moringa oleifera seed extract ability to remove an anionic surfactant has been evaluated and it has been found to be very interesting. Sodium lauryl sulphate was removed from aqueous solutions up to 80% through coagulation/flocculation process. pH and temperature were found to be not very important factors in removal efficiency. Freundlich (F), Frumkin-Fowler-Guggenheim (FFG) and Gu-Zhu (GZ) models were used to adjust experimental data in a solid-liquid adsorption hypothesis. Last one resulted to be the most accurate one. Several data fit parameters were determined, as Freundlich order, which was found to be 1.66, Flory-Huggins interaction parameter from FFG model, which was found to be 4.87; and limiting Moringa surfactant adsorption capacity from GZ model, which was found to be 2.13 x 10(-3)mol/g.

  6. REMOVAL OF PHENOL AND SURFACTANT FROM LANDFILL LEACHATE BY COAGULATION-FLOCCULATION PROCESS

    Directory of Open Access Journals (Sweden)

    H. BAKRAOUY

    2016-02-01

    Full Text Available Following the action of rainfall and natural fermentation, the stored waste produces a liquid fraction called leachate. This leachate is rich in organic matter (biodegradable but also refractory and trace elements. There are many techniques of treating the leachate, in particular, biological, physicochemical, membrane processes. The choice of a technique instead of another depends on several parameters including: the age of the leachate, composition... In this work we applied a coagulation-flocculation process to treat intermediate landfill leachate of Rabat city with a combined ferric chloride coagulant and a polymer flocculant. We were inspired by full factorial design, including twenty five experiments, to determine optimal dosages of coagulant and flocculant. We operate at pH 8.4, the best removal efficiencies obtained were 88 % for Turbidity, 98 % for Phenol and 82 % for surfactant. The optimum dosages values determined by this study were 13.2 g∙L-1 of coagulant, 62 mL∙L-1 of flocculant.

  7. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics.

    Science.gov (United States)

    Kriipsalu, Mait; Marques, Marcia; Nammari, Diauddin R; Hogland, William

    2007-09-30

    The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.

  9. Efficiency of Worm Reactors in Reducing Sludge Volume in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Azam Naderi

    2017-01-01

    Full Text Available The activated sludge process is the most widely used on a global scale for the biological treatment of both domestic and industrial effluents. One problem associated with the process, however, is the high volume of sludge produced. Excess sludge treatment and disposal account for up to 60% of the total operating costs of urban wastewater treatment plants due to the stringent environmental regulations on excess sludge disposal. These strict requirements have encouraged a growing interest over the last few years in reducing sludge volumes produced at biological treatment plants and a number of physical, chemical, and mechanical methods have been accordingly developed for this purpose. The proposed methods are disadvantaged due to their rather high investment and operation costs. An alternative technology that avoids many of these limitations is the worm reactor. In this study, the characteristics of this technology are investigated while the related literature is reviewed to derive the optimal conditions for the operation of this process in different situations.

  10. Winnowing and Flocculation in Bio-physical Cohesive Substrate: A Flume Experimental and Estuarine Study

    Science.gov (United States)

    Ye, L.; Parsons, D. R.; Manning, A. J.

    2016-12-01

    Cohesive sediment, or mud, is ubiquitously found in most aqueous environments, such as coasts and estuaries. The study of cohesive sediment behaviors requires the synchronous description of mutual interactions of grains (e.g., winnowing and flocculation), their physical properties (e.g., grain size) and also the ambient water. Herein, a series of flume experiments (14 runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substrates: secreted by aquatic microorganisms) are combined with an estuarine field survey (Dee estuary, NW England) to investigate the behavior of suspensions over bio-physical cohesive substrates. The experimental results indicate that winnowing and flocculation occur pervasively in bio-physical cohesive flow systems. Importantly however, the evolution of the bed and bedform dynamics and hence turbulence production can be lower when cohesivity is high. The estuarine survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed, that pervasively exists in many natural estuarine systems, plays a significant role in controlling the interactions between bed substrate and sediment suspension and deposition, including controlling processes such as sediment winnowing, flocculation and re-deposition. Full understanding of these processes are essential in advancing sediment transport modelling and prediction studies across natural estuarine systems and the work will report on an improved conceptual model for sediment sorting deposition in bio-physical cohesive substrates.

  11. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    International Nuclear Information System (INIS)

    Garcia-Montano, Julia; Torrades, Francesc; Garcia-Hortal, Jose A.; Domenech, Xavier; Peral, Jose

    2006-01-01

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l -1 ) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD 5 /COD), as well as the toxicity (EC 50 ), DOC, colour (Abs 543.5 ) and H 2 O 2 evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l -1 Fe(II) and 125 mg l -1 H 2 O 2 photo-Fenton pre-treatment and 1 day HRT in SBR

  12. Taxonomy and Physiology of un-wanted bacterial flora in activated sludge process. Study in a pilot plant; Taxonomia y fisiologia de la flora bacteriana indeseable en el proceso de fangos activados. Estudio de una plant piloto

    Energy Technology Data Exchange (ETDEWEB)

    Berrocal Escobar, M.; Lopez Fernandez, C. L.; Arias Fernandez, M. E.; Perez Leblic, M. I.; Zapatero Martin, I.; Leton Garcia, P.; Garcia Calvo, E. [Universidad de Alcala de Henares. Madrid (Spain); Aznar Munoz, R.; Rodriguez Medina, P. [Departamento Tecnico y de Calidad de Seragua, S.A. Madrid (Spain)

    1998-12-31

    The activated sludge used in the wastewater depuration in treatment plants could be considered as an artificial microbial ecosystem in balance. In this community which is constituted by free and flocculated bacteria, protozoa, rotifers, nematodes and a few other invertebrates, the stability of the system is maintained by the continuous food competition. The breakdown of this stability due to a high proliferation of filametous bacteria drive to the phenomenon called bulking. Nowadays, to avoid bulking is one of the main objectives in research because is the main cause of the malfunction of wastewater depuration interfering with compaction, settling, thickening and, concentration of activated sludge. In the present work, a taxonomical and physiological study of the microbial community which carries out the cleaning of wastewater in an activated sludge system has been performed by using an airlift bioreactor working in continuous. Activated sludge coming from a conventional wastewater plant was used as inoculum (starter culture). The nutritional conditions and bioreactor system parameters in which the filamentous bacteria grow in excess have been established. Several of filamentous bacteria responsible for bulking have been identified: Sphaerotilus natans, type 021N, Nocardia spp., Microthrix parvicella, Thiotrix I, Thiotrix II, type 0803, type 0581, Nostocoida limicola I and III and, type 1863. In addition, protozoa of groups involved in the depuration process (free-swimming ciliates, attached ciliates, crawling ciliates, carnivorous ciliates, flagellates and amoebae) were observed as well as rotifer and nematode populations. (Author) 13 refs.

  13. Assessing the effectiveness and environmental impacts of using natural flocculants to manage turbidity.

    Science.gov (United States)

    2005-08-01

    The objective of this research was to determine the feasibility of using chitosan as a natural flocculant to control : turbidity during in-stream construction work. A series of field tests in Oak Creek, Corvallis, OR were conducted in : order to test...

  14. Eficiência do reator seqüencial em batelada (RSB na remoção de nitrogênio no tratamento de esgoto doméstico com DQO baixa The sequencing batch reactor (SBR efficiency in the removal of nitrogen on the treatment of domestic sewage with low COD

    Directory of Open Access Journals (Sweden)

    Luiz Fernando de Abreu Cybis

    2004-09-01

    Full Text Available Este trabalho tem como objetivo avaliar a eficiência e a estabilidade do RSB na remoção de nitrogênio no tratamento de esgoto doméstico com DQO baixa. O reator utilizado no experimento possui volume de trabalho de 600 L e trata 1200 L/d de esgoto bruto em três bateladas de oito horas. A partir dos dados obtidos na pesquisa, observou-se que o reator seqüencial em batelada possibilitou a remoção média de nitrogênio total igual a 88 % no tratamento de esgoto doméstico com DQO média de 257 mg/L. A remoção de DQO foi de 90 %, a média da alcalinidade total no efluente foi 72 mgCaCO3/L e o índice volumétrico de lodo médio ficou em 86 mL/g. Estes resultados indicam que é possível utilizar RSB para o tratamento de esgoto doméstico com matéria orgânica reduzida sem comprometer a qualidade do efluente, a remoção de nitrogênio e a estabilidade operacional do sistema.This work had the objective of evaluating the SBR efficiency and stability in the removal of nitrogen on the treatment of domestic sewage with low COD. The reactor used in the experiment has a working volume of 600 L, and treats 1200 L/d of raw sewage in three 8-hour cycles. From the data gathered during the research, it was realized that the SBR fostered an average removal of total nitrogen equal to 88% in the treatment of a domestic sewage with an average COD of 257 mg/L. The COD removal was 90%, the final effluent total alkalinity was 72 mgCaCO3/L, and the sludge volumetric index was 86 mL/g. The results indicate that is possible to use SBR for the treatment of domestic sewage with low organic matter without compromising the final effluent quality, the nitrogen removal ability, and the stability of the system.

  15. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    Science.gov (United States)

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  16. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  17. Removal of Cr(VI) from aqueous solution by flocculant with the capacity of reduction and chelation

    International Nuclear Information System (INIS)

    Wang, Gang; Chang, Qing; Han, Xiaoting; Zhang, Mingyue

    2013-01-01

    Highlights: ► We report a novel flocculant with the properties of reduction and chelation for Cr. ► The removal of Cr(VI) by the flocculant depends highly on pH value. ► Some coexisting ions inhibit Cr (VI) removal, but promote total Cr removal. ► Cr and turbidity can be removed simultaneously in the treated wastewater. ► The interaction mechanism is investigated by FTIR and SEM. -- Abstract: A novel agent polyethyleneimine-sodium xanthogenate (PEX) with the multifunction of reduction, chelation, flocculation and precipitation was synthesized by using polyethyleneimine (PEI), carbon disulfide (CS 2 ), and sodium hydroxide (NaOH). The effects of different important parameters, such as pH value, initial Cr(VI) concentration, coexisting ions and turbidity etc., on the removal of chromium from aqueous solution by PEX were investigated in flocculation experiments. The experiments results demonstrated that PEX could efficiently remove Cr(VI) and total Cr (Cr(VI) + Cr(III)) in strongly acidic media. It was proved that the presence of coexisting ions (Na + , Ca 2+ , F − , Cl − , and SO 4 2− ) in the solution had a little influence on the removal of chromium. Furthermore, it was conformed that Cr(VI) ions and turbidity could be simultaneously removed when water samples contained both Cr(VI) ions and turbidity. Finally, the mechanism of interaction between chromium and PEX was further confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results reveal that dithiocarboxylic acid groups on PEX macromolecule play a major role in Cr(VI) reduction and Cr(III) chelation, and the flocs formation is attributed to the interparticle bridging mechanism of PEX

  18. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  19. Stabilization/solidification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Panagiota; Katsioti, Margarita; Tsakiridis, Petros; Katsiri, Alexandra

    2003-07-01

    The main objective of this work is to investigate a viable alternative for the final disposal of sewage sludge from urban wastewater treatment plants by its use as an additive in developing new construction materials. For this purpose, several mixtures of sludge- cement and sludge-cement and jarosite/alunite precipitate were prepared. Jarosite/alunite precipitate is a waste product of a new hydrometallurgical process. Two kinds of sludge were used: primary sludge from Psyttalia Wastewater Treatment Plant, which receives a considerable amount of industrial waste, and biological sludge from Metamorphosi Wastewater Treatment Plant. Various percentages of these sludges were stabilized/solidified with Portland cement and Portland cement with jarosite/alunite. The specimens were tested by determination of compressive strength according to the methods described by European Standard EN 196. X-Ray Diffraction (XRD) analysis as well as Thermogravimetry-Differential Thermal Analysis (TG-DTA) were used to determine the hydration products in 28 days. Furthermore, Toxicity Characteristic Leaching Procedure test for heavy metals (TCLP), were carried out in order to investigate the environmental compatibility of these new materials. (author)

  20. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel