WorldWideScience

Sample records for flight test results

  1. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  2. Airborne Turbulence Detection and Warning ACLAIM Flight Test Results

    Science.gov (United States)

    Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack

    1999-01-01

    The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.

  3. HIFiRE-5 Flight Test Preliminary Results (Postprint)

    Science.gov (United States)

    2013-11-01

    CFD . 15. SUBJECT TERMS Boundary layer transition, hypersonic , flight test 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18...consistent with prior CFD 33,34 and wind tunnel measurements 28,29 at hypersonic conditions that indicated that the centerline is more unstable... Hypersonic Sciences Branch High Speed Systems Division NOVEMBER 2013 Approved for public release; distribution unlimited

  4. Flight Test Results for the F-16XL With a Digital Flight Control System

    Science.gov (United States)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  5. Aerodynamic and Acoustic Flight Test Results and Results for the Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Cumming, Stephen B.; Smith, Mark S.; Cliatt, Larry J.; Frederick, Michael A.

    2014-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy program, a 747SP airplane was modified to carry a 2.5-m telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the operating envelope of the airplane for astronomical observations, planned to be performed between the altitudes of 35,000 ft and 45,000 ft. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight-test results in the areas of cavity acoustics, stability and control, and air data.

  6. Preliminary flight test results of a fly-by-throttle emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.

  7. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    Science.gov (United States)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  8. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    Science.gov (United States)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  9. Mode S data link transponder flight test results

    Science.gov (United States)

    1997-02-01

    The Federal Aviation Administration (FAA) William J. Hughes Technical Center is : in the unique position of having the facilities designed to test Mode S radars : and transponders. A vendor supplied an early production model of a Mode S : transponder...

  10. The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results

    Science.gov (United States)

    Bahm, Catherine; Baumann, Ethan; Martin, John; Bose, David; Beck, Roger E.; Strovers, Brian

    2005-01-01

    The objective of the Hyper-X program was to flight demonstrate an airframe-integrated hypersonic vehicle. On March 27, 2004, the Hyper-X program team successfully conducted flight 2 and achieved all of the research objectives. The Hyper-X research vehicle successfully separated from the Hyper-X launch vehicle and achieved the desired engine test conditions before the experiment began. The research vehicle rejected the disturbances caused by the cowl door opening and the fuel turning on and off and maintained the engine test conditions throughout the experiment. After the engine test was complete, the vehicle recovered and descended along a trajectory while performing research maneuvers. The last data acquired showed that the vehicle maintained control to the water. This report will provide an overview of the research vehicle guidance and control systems and the performance of the vehicle during the separation event and engine test. The research maneuvers were performed to collect data for aerodynamics and flight controls research. This report also will provide an overview of the flight controls related research and results.

  11. Development, test and flight results of the rf systems for the yes2 tether experiment

    NARCIS (Netherlands)

    Cucarella, Guillermina Castillejo; Cichocki, Andrzej; Burla, M.

    2008-01-01

    This paper highlights design, realization, testing and flight results of the Radio Frequency developments (RF) for ESA's second Young Engineers' Satellite (YES2), that included GPS systems, an intersatellite UHF link and a re-entry capsule telemetry and recovery system. The YES2 piggybacked on the

  12. Aerodynamic and Acoustic Flight Test Results for the Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.

    2013-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.

  13. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    Science.gov (United States)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  14. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    Science.gov (United States)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  15. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    Science.gov (United States)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, anairplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  16. Flight test results for the Daedalus and Light Eagle human powered aircraft

    Science.gov (United States)

    Sullivan, R. Bryan; Zerweckh, Siegfried H.

    1988-01-01

    The results of the flight test program of the Daedalus and Light Eagle human powered aircraft in the winter of 1987/88 are given. The results from experiments exploring the Light Eagle's rigid body and structural dynamics are presented. The interactions of these dynamics with the autopilot design are investigated. Estimates of the power required to fly the Daedalus aircraft are detailed. The system of sensors, signal conditioning boards, and data acquisition equipment used to record the flight data is also described. In order to investigate the dynamics of the aircraft, flight test maneuvers were developed to yield maximum data quality from the point of view of estimating lateral and longitudinal stability derivatives. From this data, structural flexibility and unsteady aerodynamics have been modeled in an ad hoc manner and are used to augment the equations of motion with flexibility effects. Results of maneuvers that were flown are compared with the predictions from the flexibility model. To extend the ad hoc flexibility model, a fully flexible aeroelastic model has been developed. The model is unusual in the approximate equality of many structural natural frequencies and the importance of unsteady aerodynamic effects. the Gossamer Albatross. It is hypothesized that this inverse ground effect is caused by turbulence in the Earth's boundary layer. The diameters of the largest boundary layer eddies (which represent most of the turbulent kinetic energy) are proportional to altitude; thus, closer to the ground, the energy in the boundary layer becomes concentrated in eddies of smaller and smaller diameter. Eventually the eddies become sufficiently small (approximately 0.5 cm) that they trip the laminar boundary layer on the wing. As a result, a greater percentage of the wing area is covered with turbulent flow. Consequently the aircraft's drag and the pow er required both increase as the aircraft flies closer to the ground. The results of the flight test program are

  17. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time

    Science.gov (United States)

    Knox, C. E.; Cannon, D. G.

    1979-01-01

    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  18. ATON (Autonomous Terrain-based Optical Navigation) for exploration missions: recent flight test results

    Science.gov (United States)

    Theil, S.; Ammann, N.; Andert, F.; Franz, T.; Krüger, H.; Lehner, H.; Lingenauber, M.; Lüdtke, D.; Maass, B.; Paproth, C.; Wohlfeil, J.

    2018-03-01

    Since 2010 the German Aerospace Center is working on the project Autonomous Terrain-based Optical Navigation (ATON). Its objective is the development of technologies which allow autonomous navigation of spacecraft in orbit around and during landing on celestial bodies like the Moon, planets, asteroids and comets. The project developed different image processing techniques and optical navigation methods as well as sensor data fusion. The setup—which is applicable to many exploration missions—consists of an inertial measurement unit, a laser altimeter, a star tracker and one or multiple navigation cameras. In the past years, several milestones have been achieved. It started with the setup of a simulation environment including the detailed simulation of camera images. This was continued by hardware-in-the-loop tests in the Testbed for Robotic Optical Navigation (TRON) where images were generated by real cameras in a simulated downscaled lunar landing scene. Data were recorded in helicopter flight tests and post-processed in real-time to increase maturity of the algorithms and to optimize the software. Recently, two more milestones have been achieved. In late 2016, the whole navigation system setup was flying on an unmanned helicopter while processing all sensor information onboard in real time. For the latest milestone the navigation system was tested in closed-loop on the unmanned helicopter. For that purpose the ATON navigation system provided the navigation state for the guidance and control of the unmanned helicopter replacing the GPS-based standard navigation system. The paper will give an introduction to the ATON project and its concept. The methods and algorithms of ATON are briefly described. The flight test results of the latest two milestones are presented and discussed.

  19. Results from the First Two Flights of the Static Computer Memory Integrity Testing Experiment

    Science.gov (United States)

    Hancock, Thomas M., III

    1999-01-01

    This paper details the scientific objectives, experiment design, data collection method, and post flight analysis following the first two flights of the Static Computer Memory Integrity Testing (SCMIT) experiment. SCMIT is designed to detect soft-event upsets in passive magnetic memory. A soft-event upset is a change in the logic state of active or passive forms of magnetic memory, commonly referred to as a "Bitflip". In its mildest form a soft-event upset can cause software exceptions, unexpected events, start spacecraft safeing (ending data collection) or corrupted fault protection and error recovery capabilities. In it's most severe form loss of mission or spacecraft can occur. Analysis after the first flight (in 1991 during STS-40) identified possible soft-event upsets to 25% of the experiment detectors. Post flight analysis after the second flight (in 1997 on STS-87) failed to find any evidence of soft-event upsets. The SCMIT experiment is currently scheduled for a third flight in December 1999 on STS-101.

  20. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    Science.gov (United States)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  1. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  2. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    Science.gov (United States)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  3. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  4. Optimization of the design of X-Calibur for a long-duration balloon flight and results from a one-day test flight

    Science.gov (United States)

    Kislat, Fabian; Abarr, Quin; Beheshtipour, Banafsheh; De Geronimo, Gianluigi; Dowkontt, Paul; Tang, Jason; Krawczynski, Henric

    2018-01-01

    X-ray polarimetry promises exciting insights into the physics of compact astrophysical objects by providing two observables: the polarization fraction and angle as function of energy. X-Calibur is a balloon-borne hard x-ray scattering polarimeter for the 15- to 60-keV energy range. After the successful test flight in September 2016, the instrument is now being prepared for a long-duration balloon (LDB) flight in December 2018 through January 2019. During the LDB flight, X-Calibur will make detailed measurements of the polarization of Vela X-1 and constrain the polarization of a sample of between 4 and 9 additional sources. We describe the upgraded polarimeter design, including the use of a beryllium scattering element, lower-noise front-end electronics, and an improved fully active CsI(Na) anticoincidence shield, which will significantly increase the instrument sensitivity. We present estimates of the improved polarimeter performance based on simulations and laboratory measurements. We present some of the results from the 2016 flight and show that we solved several problems, which led to a reduced sensitivity during the 2016 flight. We end with a description of the planned Vela X-1 observations, including a Swift/BAT-guided observation strategy.

  5. A flight management algorithm and guidance for fuel-conservative descents in a time-based metered air traffic environment: Development and flight test results

    Science.gov (United States)

    Knox, C. E.

    1984-01-01

    A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.

  6. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    Science.gov (United States)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  7. ALOFT Flight Test Report

    Science.gov (United States)

    1977-10-01

    wmmmmmmmmmmmm i ifmu.immM\\]i\\ ßinimm^mmmmviwmmiwui »vimtm twfjmmmmmmi c-f—rmSmn NWC TP 5954 ALOFT Flight Test Report by James D. Ross anrJ I.. M...responsible i"- u conducting the ALOFT Flight Test Program and made contributions to this report: J. Basden , R. ".estbrook, L. Thompson, J. Willians...REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM 7. AUTMORC«; <oss James D./Xo L. M.y&ohnson IZATION NAME AND ADDRESS Naval

  8. Weather and Flight Testing

    Science.gov (United States)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  9. Guidance and Control of an Autonomous Soaring Vehicle with Flight Test Results

    Science.gov (United States)

    Allen, Michael J.

    2007-01-01

    A guidance and control method was developed to detect and exploit thermals for energy gain. Latency in energy rate estimation degraded performance. The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology. Many UAVs have similar mission constraints to birds and sailplanes. a) Surveillance; b) Point to point flight with minimal energy; and c) Increased ground speed.

  10. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  11. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    Science.gov (United States)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  12. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  13. Guidance, Navigation and Control (GN and C) Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    Science.gov (United States)

    Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.

  14. Design and flight test results of high speed optical bidirectional link between stratospheric platforms for aerospace applications

    Science.gov (United States)

    Briatore, S.; Akhtyamov, R.; Golkar, A.

    2017-08-01

    As small and nanosatellites become increasingly relevant in the aerospace industry1, 2, the need of efficient, lightweight and cost-effective networking solutions drives the need for the development of lightweight and low cost networking and communication terminals. In this paper we propose the design and prototype results of a hybrid optical and radio communication architecture developed to fit the coarse pointing capabilities of nanosatellites, tested through a proxy flight experiment on stratospheric balloons. This system takes advantage of the higher data-rate offered by optical communication channels while relying on the more mature and stable technology of conventional radio systems for link negotiation and low-speed data exchange. Such architecture allows the user to overcome the licensing requirements and scarce availability of high data-rate radio frequency channels in the commonly used bands. Outlined are the architecture, development and test of the mentioned terminal, with focus on the communication part and supporting technologies, including the navigation algorithm, the developed fail-safe approach, and the evolution of the pointing system continuing previous work done in 3. The system has been built with commercial-off-the-shelf components and demonstrated on a stratospheric balloon launch campaign. The paper outlines the results of an in-flight demonstration, where the two platforms successfully established an optical link at stratospheric altitudes. The results are then analyzed and contextualized in plans of future work for nanosatellite implementations.

  15. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Science.gov (United States)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  16. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  17. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    Science.gov (United States)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    tests will be achieved from July to November 2015. The results of the Engineering Model and Flight Models tests will be presented.

  18. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Science.gov (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  19. Flight Test Results of a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization for a Light Twin-Engine Airplane

    Science.gov (United States)

    Martos, Borja; Kiszely, Paul; Foster, John V.

    2011-01-01

    As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.

  20. Results from an Interval Management (IM) Flight Test and Its Potential Benefit to Air Traffic Management Operations

    Science.gov (United States)

    Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.

  1. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    Energy Technology Data Exchange (ETDEWEB)

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    1985-05-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  2. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  3. Development and test results of a flight management algorithm for fuel conservative descents in a time-based metered traffic environment

    Science.gov (United States)

    Knox, C. E.; Cannon, D. G.

    1980-01-01

    A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.

  4. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  5. Aviation Flight Test

    Data.gov (United States)

    Federal Laboratory Consortium — Redstone Test Center provides an expert workforce and technologically advanced test equipment to conduct the rigorous testing necessary for U.S. Army acquisition and...

  6. Flight Test Techniques

    Science.gov (United States)

    1989-01-01

    the airframe for col1A 300 jauges pour un essal d𔄀preuve a ground "proof test" with a 0.8 charge, au sol A charge 0,8 recalant ce modile ; to update...the model. 200 among these 200 de ces jauges ont 6t6 cibl~es bonnes gauges had been wired to be "airworthy", de vol mats le domaine de vol a 4t6 but

  7. Writing executable assertions to test flight software

    Science.gov (United States)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  8. Radiation Test Results on COTS and non-COTS Electronic Devices for NASA-JSC Space Flight Projects

    Science.gov (United States)

    Allums, Kimberly K.; O'Neill, P. M.; Reddell, B. D.; Nguyen, K. V.; Bailey, C. R.

    2012-01-01

    This presentation reports the results of recent proton and heavy ion Single Event Effect (SEE) testing on a variety of COTS and non-COTs electronic devices and assemblies tested for the Space Shuttle, International Space Station (ISS) and Multi-Purpose Crew Vehicle (MPCV).

  9. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    Science.gov (United States)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  10. Rotationally Adaptive Flight Test Surface

    Science.gov (United States)

    Barrett, Ron

    1999-01-01

    Research on a new design of flutter exciter vane using adaptive materials was conducted. This novel design is based on all-moving aerodynamic surface technology and consists of a structurally stiff main spar, a series of piezoelectric actuator elements and an aerodynamic shell which is pivoted around the main spar. The work was built upon the current missile-type all-moving surface designs and change them so they are better suited for flutter excitation through the transonic flight regime. The first portion of research will be centered on aerodynamic and structural modeling of the system. USAF DatCom and vortex lattice codes was used to capture the fundamental aerodynamics of the vane. Finite element codes and laminated plate theory and virtual work analyses will be used to structurally model the aerodynamic vane and wing tip. Following the basic modeling, a flutter test vane was designed. Each component within the structure was designed to meet the design loads. After the design loads are met, then the deflections will be maximized and the internal structure will be laid out. In addition to the structure, a basic electrical control network will be designed which will be capable of driving a scaled exciter vane. The third and final stage of main investigation involved the fabrication of a 1/4 scale vane. This scaled vane was used to verify kinematics and structural mechanics theories on all-moving actuation. Following assembly, a series of bench tests was conducted to determine frequency response, electrical characteristics, mechanical and kinematic properties. Test results indicate peak-to-peak deflections of 1.1 deg with a corner frequency of just over 130 Hz.

  11. Preliminary Results Obtained from Flight Test of a Rocket Model Having the Tail Only of the Grumman XF10F Airplane Configuration, TED No. NACA DE 354

    Science.gov (United States)

    Gardner, William N.; Edmondson, James L.

    1950-01-01

    A flight test was made to determine the servoplane effectiveness and stability characteristics of the free-floating horizontal stabilizer to be used on the XF10F airplane. The results of this test indicate that servoplane effectiveness is practically constant through the speed range up to a Mach number of 1.15, and the stabilizer static stability is satisfactory. A loss of damping occurs over a narrow Mach number range near M = 1.0, resulting in dynamic instability of the stabilizer in this narrow range. Above M = 1.0 there is a gradual positive trim change of the stabilizer.

  12. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  13. Flight test trajectory control analysis

    Science.gov (United States)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  14. Flight Test Results for the Motions and Aerodynamics of a Cargo Container and a Cylindrical Slung Load

    Science.gov (United States)

    2010-04-01

    cylinders is suspected to account for the lateral offset. A simple model of the Magnus effect (ref. 23) indicates that it generates force per...The spin also produced a small but measurable Magnus effect . An extreme cg offset produced stability around small end into the wind. The engine...expected. If we assume the flight data for cable angles are accurate to a fraction of a degree, then a Magnus effect similar to that found for spinning

  15. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  16. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  17. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  18. Small-scale fixed wing airplane software verification flight test

    Science.gov (United States)

    Miller, Natasha R.

    The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.

  19. Development flight tests of JetStar LFC leading-edge flight test experiment

    Science.gov (United States)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  20. FT 3 Flight Test Cards for Export

    Science.gov (United States)

    Marston, Michael L.

    2015-01-01

    These flight test cards will be made available to stakeholders who participated in FT3. NASA entered into the relationship with our stakeholders, including the FAA, to develop requirements that will lead to routine flights of unmanned aircraft systems flying in the national airspace system.

  1. UAS-NAS Flight Test Series 3: Test Environment Report

    Science.gov (United States)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    complexity of the previous tests and technical simulations, resulting in research findings that support the development of regulations governing the access of UAS into the NAS. The integrated events started with two initial flight test used to develop and test early integrations and components of the test environment. Test subjects and a relevant test environment were brought in for the integrated HITL (or IHITL) conducted in 2014. The IHITL collected data to evaluate the effectiveness of DAA Well Clear (DWC) algorithms and the acceptability of UAS concepts integrated into the NAS. The first integrated flight test (and the subject of this report) followed the IHITL by replacing the simulation components with live aircraft. The project finishes the integrated events with a final flight test to be conducted in 2016 that provides the researchers with an opportunity to collect DWC and Collision Avoidance (CA) interoperability data during flight encounters.

  2. Ares I-X Flight Test Philosophy

    Science.gov (United States)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  3. Laser Obstacle Detection System Flight Testing

    National Research Council Canada - National Science Library

    Davis, Timothy

    2003-01-01

    ...). The Aviation Applied Technology Directorate (AATD) was contracted to mount the HELLAS sensor on the nose of a UH-60L Blackhawk helicopter and to conduct flight tests to evaluate the HELLAS obstacle detection sensor...

  4. Astronaut Gordon Cooper during flight tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, relaxes while waiting for weight and balance tests to begin (03974); Cooper prior to entering the Mercury Spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance (03975); Cooper undergoing suit pressurization tests (03976).

  5. Remotely Piloted Vehicles for Experimental Flight Control Testing

    Science.gov (United States)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  6. Flight testing of a luminescent surface pressure sensor

    Science.gov (United States)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  7. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  8. Development of a flight software testing methodology

    Science.gov (United States)

    Mccluskey, E. J.; Andrews, D. M.

    1985-01-01

    The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada.

  9. Low Earth orbit thermal control coatings exposure flight tests: A comparison of U.S. and Russian results. Report, 8 November-12 August 1993

    International Nuclear Information System (INIS)

    Tribble, A.C.; Lukins, R.; Watts, E.; Naumov, S.F.; Sergeev, V.K.

    1995-03-01

    Both the United States (US) and Russia have conducted a variety of space environment effects on materials (SEEM) flight experiments in recent years. A prime US example was the Long Duration Exposure Facility (LDEF), which spent 5 years and 9 months in low Earth orbit (LEO) from April 1984 to January 1990. A key Russian experiment was the Removable Cassette Container experiment, (RCC-1), flown on the Mir Orbital Station from 11 January 1990 to 26 April 1991. This paper evaluates the thermal control coating materials data generated by these two missions by comparing: environmental exposure conditions, functionality and chemistry of thermal control coating materials, and pre- and post-flight analysis of absorptance, emittance, and mass loss due to atomic oxygen erosion. It will be seen that there are noticeable differences in the US and Russian space environment measurements and models, which complicates comparisons of environments. The results of both flight experiments confirm that zinc oxide and zinc oxide orthotitanate white thermal control paints in metasilicate binders (Z93, YB71, TP-co-2, TP-co-11, and TP-co-12), are the most stable upon exposure to the space environment. It is also seen that Russian flight materials experience broadens to the use of silicone and acrylic resin binders while the US relies more heavily on polyurethane

  10. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    Science.gov (United States)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  11. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  12. Fused Reality for Enhanced Flight Test Capabilities

    Science.gov (United States)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  13. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  14. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    Science.gov (United States)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  15. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    Science.gov (United States)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  16. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  17. Fuel Subsystems Flight Test Handbook

    Science.gov (United States)

    1981-12-01

    detailed, accessible .-ltand complete test records for his own protection and for the benefit of his successor in case of promotion, transfer or...and pilot display of fuel quantity, low level warning and a " Bingo " fudl warning. 3.0 TEST OBJECT1VES: ACTION Orriclc. On POUTION•’PHONWE [ DATE PCR...TIS No. 46, paragraph 3.11 3.6 To demonstrate that the low level and bingo warning system are consistent L •and meet the requirements of paragraph

  18. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    Science.gov (United States)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  19. Flight test of the X-29A at high angle of attack: Flight dynamics and controls

    Science.gov (United States)

    Bauer, Jeffrey E.; Clarke, Robert; Burken, John J.

    1995-01-01

    The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.

  20. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  1. Design and flight testing of a nullable compressor face rake

    Science.gov (United States)

    Holzman, J. K.; Payne, G. A.

    1973-01-01

    A compressor face rake with an internal valve arrangement to permit nulling was designed, constructed, and tested in the laboratory and in flight at the NASA Flight Research Center. When actuated by the pilot in flight, the nullable rake allowed the transducer zero shifts to be determined and then subsequently removed during data reduction. Design details, the fabrication technique, the principle of operation, brief descriptions of associated digital zero-correction programs and the qualification tests, and test results are included. Sample flight data show that the zero shifts were large and unpredictable but could be measured in flight with the rake. The rake functioned reliably and as expected during 25 hours of operation under flight environmental conditions and temperatures from 230 K (-46 F) to greater than 430 K (314 F). The rake was nulled approximately 1000 times. The in-flight zero-shift measurement technique, as well as the rake design, was successful and should be useful in future applications, particularly where accurate measurements of both steady-state and dynamic pressures are required under adverse environmental conditions.

  2. MITG test procedure and results

    International Nuclear Information System (INIS)

    Eck, M.E.; Mukunda, M.

    1983-01-01

    Elements and modules for Radioisotope Thermoelectric Generator have been performance tested since the inception of the RTG program. These test articles seldom resembled flight hardware and often lacked adequate diagnostic instrumentation. Because of this, performance problems were not identified in the early stage of program development. The lack of test data in an unexpected area often hampered the development of a problem solution. A procedure for conducting the MITG Test was developed in an effort to obtain data in a systematic, unambiguous manner. This procedure required the development of extensive data acquisition software and test automation. The development of a facility to implement the test procedure, the facility hardware and software requirements, and the results of the MITG testing are the subject of this paper

  3. Flight Test Results From the Ultra High Resolution, Electro-Optical Framing Camera Containing a 9216 by 9216 Pixel, Wafer Scale, Focal Plane Array

    National Research Council Canada - National Science Library

    Mathews, Bruce; Zwicker, Theodore

    1999-01-01

    The details of the fabrication and results of laboratory testing of the Ultra High Resolution Framing Camera containing onchip forward image motion compensation were presented to the SPIE at Airborne...

  4. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  5. Integrated Test and Evaluation (ITE) Flight Test Series 4

    Science.gov (United States)

    Marston, Michael

    2016-01-01

    The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.

  6. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  7. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  8. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    Science.gov (United States)

    Larrabee, Trenton Jameson

    sensing data using UAVs in formation flight. This has been achieved and well documented before in manned aircraft but very little work has been done on UAV wake sensing especially during flight testing. This document describes the development and flight testing of small unmanned aerial system (UAS) for wind and wake sensing purpose including a Ground Control Station (GCS) and UAVs. This research can be stated in four major components. Firstly, formation flight was obtained by integrating a formation flight controller on the WVU Phastball Research UAV aircraft platform from the Flight Control Systems Laboratory (FCSL) at West Virginia University (WVU). Second, a new approach to wind estimation using an Unscented Kalman filter (UKF) is discussed along with results from flight data. Third, wake modeling within a simulator and wake sensing during formation flight is shown. Finally, experimental results are used to discuss the "sweet spot" for energy harvesting in formation flight, a novel approach to cooperative wind estimation, and gust suppression control for a follower aircraft in formation flight.

  9. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  10. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    Science.gov (United States)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  11. 14 CFR 21.37 - Flight test pilot.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight test pilot. 21.37 Section 21.37... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.37 Flight test pilot. Each applicant for a normal... holding an appropriate pilot certificate to make the flight tests required by this part. [Doc. No. 5085...

  12. Automation of Flight Software Regression Testing

    Science.gov (United States)

    Tashakkor, Scott B.

    2016-01-01

    NASA is developing the Space Launch System (SLS) to be a heavy lift launch vehicle supporting human and scientific exploration beyond earth orbit. SLS will have a common core stage, an upper stage, and different permutations of boosters and fairings to perform various crewed or cargo missions. Marshall Space Flight Center (MSFC) is writing the Flight Software (FSW) that will operate the SLS launch vehicle. The FSW is developed in an incremental manner based on "Agile" software techniques. As the FSW is incrementally developed, testing the functionality of the code needs to be performed continually to ensure that the integrity of the software is maintained. Manually testing the functionality on an ever-growing set of requirements and features is not an efficient solution and therefore needs to be done automatically to ensure testing is comprehensive. To support test automation, a framework for a regression test harness has been developed and used on SLS FSW. The test harness provides a modular design approach that can compile or read in the required information specified by the developer of the test. The modularity provides independence between groups of tests and the ability to add and remove tests without disturbing others. This provides the SLS FSW team a time saving feature that is essential to meeting SLS Program technical and programmatic requirements. During development of SLS FSW, this technique has proved to be a useful tool to ensure all requirements have been tested, and that desired functionality is maintained, as changes occur. It also provides a mechanism for developers to check functionality of the code that they have developed. With this system, automation of regression testing is accomplished through a scheduling tool and/or commit hooks. Key advantages of this test harness capability includes execution support for multiple independent test cases, the ability for developers to specify precisely what they are testing and how, the ability to add

  13. Optimization models for flight test scheduling

    Science.gov (United States)

    Holian, Derreck

    with restriction removal is based on heuristic approaches to support the reality of flight test in both solution space and computational time. Exact methods for yielding an optimized solution will be discussed however they are not directly applicable to the flight test problem and therefore have not been included in the system.

  14. Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting

    Science.gov (United States)

    Ivanov, Mark

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed

  15. Imaging Sensor Flight and Test Equipment Software

    Science.gov (United States)

    Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa

    2007-01-01

    The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes

  16. Fused Reality for Enhanced Flight Test Capabilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — While modern ground-based flight simulators continue to improve in fidelity and effectiveness, there remains no substitute for flight test evaluations. In addition...

  17. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  18. Mars Science Laboratory Flight Software Internal Testing

    Science.gov (United States)

    Jones, Justin D.; Lam, Danny

    2011-01-01

    The Mars Science Laboratory (MSL) team is sending the rover, Curiosity, to Mars, and therefore is physically and technically complex. During my stay, I have assisted the MSL Flight Software (FSW) team in implementing functional test scripts to ensure that the FSW performs to the best of its abilities. There are a large number of FSW requirements that have been written up for implementation; however I have only been assigned a few sections of these requirements. There are many stages within testing; one of the early stages is FSW Internal Testing (FIT). The FIT team can accomplish this with simulation software and the MSL Test Automation Kit (MTAK). MTAK has the ability to integrate with the Software Simulation Equipment (SSE) and the Mission Processing and Control System (MPCS) software which makes it a powerful tool within the MSL FSW development process. The MSL team must ensure that the rover accomplishes all stages of the mission successfully. Due to the natural complexity of this project there is a strong emphasis on testing, as failure is not an option. The entire mission could be jeopardized if something is overlooked.

  19. Flight Results of the NF-15B Intelligent Flight Control System (IFCS) Aircraft with Adaptation to a Longitudinally Destabilized Plant

    Science.gov (United States)

    Bosworth, John T.

    2008-01-01

    Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.

  20. Noncoherent Doppler tracking: first flight results

    Science.gov (United States)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  1. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  2. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  3. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    Science.gov (United States)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  4. Deployment Testing of the De-Orbit Sail Flight Hardware

    OpenAIRE

    Hillebrandt, Martin; Meyer, Sebastian; Zander, Martin; Hühne, Christian

    2015-01-01

    The paper describes the results of the deployment testing of the De-Orbit Sail flight hardware, a drag sail for de-orbiting applications, performed by DLR. It addresses in particular the deployment tests of the fullscale sail subsystem and deployment force tests performed on the boom deployment module. For the fullscale sail testing a gravity compensation device is used which is described in detail. It allows observations of the in-plane interaction of the booms with the sail membrane and the...

  5. Environmental Tests of the Flight GLAST LAT Tracker Towers

    Energy Technology Data Exchange (ETDEWEB)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  6. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  7. Climax granite test results

    Energy Technology Data Exchange (ETDEWEB)

    Ramspott, L.D.

    1980-01-15

    The Lawrence Livermore Laboratory (LLL), as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) program, is carrying out in situ rock mechanics testing in the Climax granitic stock at the Nevada Test Site (NTS). This summary addresses only those field data taken to date that address thermomechanical modeling for a hard-rock repository. The results to be discussed include thermal measurements in a heater test that was conducted from October 1977 through July 1978, and stress and displacement measurements made during and after excavation of the canister storage drift for the Spent Fuel Test (SFT) in the Climax granite. Associated laboratory and field measurements are summarized. The rock temperature for a given applied heat load at a point in time and space can be adequately modeled with simple analytic calculations involving superposition and integration of numerous point source solutions. The input, for locations beyond about a meter from the source, can be a constant thermal conductivity and diffusivity. The value of thermal conductivity required to match the field data is as much as 25% different from laboratory-measured values. Therefore, unless we come to understand the mechanisms for this difference, a simple in situ test will be required to obtain a value for final repository design. Some sensitivity calculations have shown that the temperature field is about ten times more sensitive to conductivity than to diffusivity under the test conditions. The orthogonal array was designed to detect anisotropy. After considering all error sources, anisotropic efforts in the thermal field were less than 5 to 10%.

  8. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2015-02-01

    Full Text Available In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  9. Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…

  10. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    Science.gov (United States)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  11. Cassini's Test Methodology for Flight Software Verification and Operations

    Science.gov (United States)

    Wang, Eric; Brown, Jay

    2007-01-01

    The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).

  12. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  13. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    Science.gov (United States)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  14. Small UAS Test Area at NASA's Dryden Flight Research Center

    Science.gov (United States)

    Bauer, Jeffrey T.

    2008-01-01

    This viewgraph presentation reviews the areas that Dryden Flight Research Center has set up for testing small Unmanned Aerial Systems (UAS). It also reviews the requirements and process to use an area for UAS test.

  15. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    Science.gov (United States)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  16. Numerical CFD Simulation and Test Correlation in a Flight Project Environment

    Science.gov (United States)

    Gupta, K. K.; Lung, S. F.; Ibrahim, A. H.

    2015-01-01

    This paper presents detailed description of a novel CFD procedure and comparison of its solution results to that obtained by other available CFD codes as well as actual flight and wind tunnel test data pertaining to the GIII aircraft, currently undergoing flight testing at AFRC.

  17. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  18. Flight Test and Handling Qualities Analysis of a Longitudinal Flight Control System Using Multiobjective Techniques

    National Research Council Canada - National Science Library

    Anderson, John

    1998-01-01

    ...) and AFIT MXTOOLS toolboxes were used to produce the optimal, multiobjective designs. These designs were implemented for flight test on the Calspan VSS I Learjet, simulating the unstable longitudinal dynamics of an F-16 type aircraft...

  19. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    Science.gov (United States)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  20. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  1. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    Science.gov (United States)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  2. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  3. The Max Launch Abort System - Concept, Flight Test, and Evolution

    Science.gov (United States)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  4. Development and flight testing of UV optimized Photon Counting CCDs

    Science.gov (United States)

    Hamden, Erika T.

    2018-06-01

    I will discuss the latest results from the Hamden UV/Vis Detector Lab and our ongoing work using a UV optimized EMCCD in flight. Our lab is currently testing efficiency and performance of delta-doped, anti-reflection coated EMCCDs, in collaboration with JPL. The lab has been set-up to test quantum efficiency, dark current, clock-induced-charge, and read noise. I will describe our improvements to our circuit boards for lower noise, updates from a new, more flexible NUVU controller, and the integration of an EMCCD in the FIREBall-2 UV spectrograph. I will also briefly describe future plans to conduct radiation testing on delta-doped EMCCDs (both warm, unbiased and cold, biased configurations) thus summer and longer term plans for testing newer photon counting CCDs as I move the HUVD Lab to the University of Arizona in the Fall of 2018.

  5. NASA/FAA Tailplane Icing Program: Flight Test Report

    Science.gov (United States)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex

    2000-01-01

    This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.

  6. A new method for flight test determination of propulsive efficiency and drag coefficient

    Science.gov (United States)

    Bull, G.; Bridges, P. D.

    1983-01-01

    A flight test method is described from which propulsive efficiency as well as parasite and induced drag coefficients can be directly determined using relatively simple instrumentation and analysis techniques. The method uses information contained in the transient response in airspeed for a small power change in level flight in addition to the usual measurement of power required for level flight. Measurements of pitch angle and longitudinal and normal acceleration are eliminated. The theoretical basis for the method, the analytical techniques used, and the results of application of the method to flight test data are presented.

  7. Fused Reality for Enhanced Flight Test Capabilities, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests even when considering the fidelity and effectiveness of modern...

  8. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  9. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  10. Description and Flight Performance Results of the WASP Sounding Rocket

    Science.gov (United States)

    De Pauw, J. F.; Steffens, L. E.; Yuska, J. A.

    1968-01-01

    A general description of the design and construction of the WASP sounding rocket and of the performance of its first flight are presented. The purpose of the flight test was to place the 862-pound (391-kg) spacecraft above 250 000 feet (76.25 km) on free-fall trajectory for at least 6 minutes in order to study the effect of "weightlessness" on a slosh dynamics experiment. The WASP sounding rocket fulfilled its intended mission requirements. The sounding rocket approximately followed a nominal trajectory. The payload was in free fall above 250 000 feet (76.25 km) for 6.5 minutes and reached an apogee altitude of 134 nautical miles (248 km). Flight data including velocity, altitude, acceleration, roll rate, and angle of attack are discussed and compared to nominal performance calculations. The effect of residual burning of the second stage motor is analyzed. The flight vibration environment is presented and analyzed, including root mean square (RMS) and power spectral density analysis.

  11. Tests and calibration of NIF neutron time of flight detectors.

    Science.gov (United States)

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  12. Flight test guidelines for homebuilt and experimental aircraft

    CSIR Research Space (South Africa)

    White, WJ

    2013-04-01

    Full Text Available experience totalling approximately 7,000 flying hours on forty-five different variants of military aircraft, nearly all in the flight-test environment. He holds a Commercial Pilot’s Licence with a Class I test pilot rating. During his twenty-eight years... of military flight-testing, he was involved in the fixed wing fighter programmes and weapons development testing and amongst others, he was the project test pilot on the Cheetah C, the Mirage IIIRZ/Atar 09K50 engine integration and the Mirage F1 fitted...

  13. Pressure locking test results

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  14. Pressure locking test results

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-01-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, open-quotes Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.close quotes Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; we will publish the results of our thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions

  15. Flight tests of a supersonic natural laminar flow airfoil

    International Nuclear Information System (INIS)

    Frederick, M A; Banks, D W; Garzon, G A; Matisheck, J R

    2015-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings. (paper)

  16. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    Science.gov (United States)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  17. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    Science.gov (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  18. Acoustic flight test of the Piper Lance

    Science.gov (United States)

    1986-12-01

    Research is being conducted to refine current noise regulation of propeller-driven small airplanes. Studies are examining the prospect of a substituting a takeoff procedure of equal stringency for the level flyover certification test presently requir...

  19. Artificial intelligence and expert systems in-flight software testing

    Science.gov (United States)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  20. Overheating Anomalies during Flight Test Due to the Base Bleeding

    Science.gov (United States)

    Luchinsky, Dmitry; Hafiychuck, Halyna; Osipov, Slava; Ponizhovskaya, Ekaterina; Smelyanskiy, Vadim; Dagostino, Mark; Canabal, Francisco; Mobley, Brandon L.

    2012-01-01

    In this paper we present the results of the analytical and numerical studies of the plume interaction with the base flow in the presence of base out-gassing. The physics-based analysis and CFD modeling of the base heating for single solid rocket motor performed in this research addressed the following questions: what are the key factors making base flow so different from that in the Shuttle [1]; why CFD analysis of this problem reveals small plume recirculation; what major factors influence base temperature; and why overheating was initiated at a given time in the flight. To answer these questions topological analysis of the base flow was performed and Korst theory was used to estimate relative contributions of radiation, plume recirculation, and chemically reactive out-gassing to the base heating. It was shown that base bleeding and small base volume are the key factors contributing to the overheating, while plume recirculation is effectively suppressed by asymmetric configuration of the flow formed earlier in the flight. These findings are further verified using CFD simulations that include multi-species gas environment both in the plume and in the base. Solid particles in the exhaust plume (Al2O3) and char particles in the base bleeding were also included into the simulations and their relative contributions into the base temperature rise were estimated. The results of simulations are in good agreement with the temperature and pressure in the base measured during the test.

  1. In-flight and ground testing of single event upset sensitivity in static RAMs

    International Nuclear Information System (INIS)

    Johansson, K.; Dyreklev, P.; Granbom, B.; Calvet, C.; Fourtine, S.; Feuillatre, O.

    1998-01-01

    This paper presents the results from in-flight measurements of single event upsets (SEU) in static random access memories (SRAM) caused by the atmospheric radiation environment at aircraft altitudes. The memory devices were carried on commercial airlines at high altitude and mainly high latitudes. The SEUs were monitored by a Component Upset Test Equipment (CUTE), designed for this experiment. The in flight results are compared to ground based testing with neutrons from three different sources

  2. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    Science.gov (United States)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  3. CCTF CORE I test results

    International Nuclear Information System (INIS)

    Murao, Yoshio; Sudoh, Takashi; Akimoto, Hajime; Iguchi, Tadashi; Sugimoto, Jun; Fujiki, Kazuo; Hirano, Kenmei

    1982-07-01

    This report presents the results of the following CCTF CORE I tests conducted in FY. 1980. (1) Multi-dimensional effect test, (2) Evaluation model test, (3) FLECHT coupling test. On the first test, one-dimensional treatment of the core thermohydrodynamics was discussed. On the second and third tests, the test results were compared with the results calculated by the evaluation model codes and the results of the corresponding FLECHT-SET test (Run 2714B), respectively. The work was performed under contracts with the Atomic Energy Bureau of Science and Technology Agency of Japan. (author)

  4. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  5. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  6. Helicopter Acoustic Flight Test with Altitude Variation and Maneuvers

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Sim, Ben; Stephenson, James; Smith, Charles D.

    2016-01-01

    A cooperative flight test campaign between NASA and the U.S. Army was performed from September 2014 to February 2015. The purposes of the testing were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. This test was performed at three test sites (0, 4000, and 7000 feet above mean sea level) with two aircraft (AS350 SD1 and EH-60L) tested at each site. This report provides an overview of the test, documents the data acquired and describes the formats of the stored data.

  7. Results of the 1990 NASA/JPL balloon flight solar cell calibration program

    Science.gov (United States)

    Anspaugh, Bruce E.; Weiss, Robert S.

    1990-01-01

    The 1990 solar cell calibration balloon flight consisted of two flights, one on July 20, 1990 and the other on September 6, 1990. A malfunction occurred during the first flight, which resulted in a complete loss of data and a free fall of the payload from 120,000 ft. After the tracker was rebuilt, and several solar cell modules were replaced, the payload was reflown. The September flight was successful and met all the objectives of the program. Forty-six modules were carried to an altitude of 118,000 ft (36.0 km). Data telemetered from the modules was corrected to 28 C and to 1 a.u. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  8. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  9. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  10. Flight test of a resident backup software system

    Science.gov (United States)

    Deets, Dwain A.; Lock, Wilton P.; Megna, Vincent A.

    1987-01-01

    A new fault-tolerant system software concept employing the primary digital computers as host for the backup software portion has been implemented and flight tested in the F-8 digital fly-by-wire airplane. The system was implemented in such a way that essentially no transients occurred in transferring from primary to backup software. This was accomplished without a significant increase in the complexity of the backup software. The primary digital system was frame synchronized, which provided several advantages in implementing the resident backup software system. Since the time of the flight tests, two other flight vehicle programs have made a commitment to incorporate resident backup software similar in nature to the system described here.

  11. Flight Test of Advanced Digital Control Concepts.

    Science.gov (United States)

    1982-03-01

    34 equations, and this result is then compared against the "model" equations. OPTION :::CREATrE ,CIEY, COFPY, MAT ,AMAT, COIP-YUMAT, BMAT , 74 COPFY, CMAT...BMATY .-COPY, NMAT, AMAT ,72 ,COPY, GMAT, RMA, COP:Y, (MAT, BMA’TCOFY, MA T ,AMAT >74, COPY, CMA’TsmA, PCOPY, RMAT, BmAT , pCOPYVMiAT , AMAo.T 72...COP’Y, MAT, AMAT, >75, COPY , MAtT, BMAT , COPY, ZMAT, AMAT, 74 ,COP’Y, MAT, TMAT, COPY, VMAT, AMAT, .:COPY ,RMAiT, MAT,73,COPW GMAT, E4MAT, COP-"YTMAT

  12. Preliminary Results Obtained from Flight Test of a 1/7-Scale Rocket-Powered Model of the Grumman XF10F Airplane Configuration in the Swept-Wing Condition, TED No. NACA DE 354

    Science.gov (United States)

    Gardner, William N.

    1951-01-01

    A flight investigation of a 1/7-scale rocket-powered model of the XF10F Grumman XFl0F airplane in the swept-wing configuration has been made. The purpose of this test was to determine the static longitudinal stability, damping in pitch, and longitudinal control effectiveness of the airplane with the center of gravity at 20 percent of the wing mean aerodynamic chord. Only a small amount of data was obtained from the test because, immediately after booster separation at a Mach number of 0.88, the configuration was directionally unstable and diverged in sideslip. Simultaneous with the sideslip divergence, the model became longitudinally unstable at 3 degree angle of attack and -6 degree sideslip and diverged in pitch to a high angle of attack. During the pitch-up the free-floating horizontal tail became unstable at 5 degree angle of attack and the tail drifted against its positive deflection limit.

  13. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  14. Design of a quadrotor flight test stand for system identification

    CSIR Research Space (South Africa)

    Beharie, MM

    2015-01-01

    Full Text Available This paper presents the design, development and construction of a flight test stand for a quadrotor UAV. As opposed to alternate forms of UAV, the power plant in the case of the quadrotor serves a dual purpose of control and propulsion. Since...

  15. Railgun bore material test results

    International Nuclear Information System (INIS)

    Wang, S.Y.; Burton, R.L.; Witherspoon, F.D.; Bloomberg, H.W.; Goldstein, S.A.; Tidman, D.A.; Winsor, N.K.

    1987-01-01

    GT-Devices, Inc. has constructed a material test facility (MTF) to study the fundamental heat transfer problem of both railgun and electrothermal guns, and to test candidate gun materials under real plasma conditions. The MTF electrothermally produces gigawatt-level plasmas with pulse lengths of 10-30 microseconds. Circular bore and non-circular bore test barrels have been successfully operated under a wide range of simulated heating environments for EM launchers. Diagnostics include piezoelectric MHz pressure probes, time-of-flight probes, and current and voltage probes. Ablation measurements are accomplished by weighing and optical inspection, including borescope, optical microscope, and scanning electron microscope (SEM). From these measurements the ablation threshold for both the rail and insulator materials can be determined as a function of plasma heating. The MTF diagnostics are supported by an unsteady 1-D model of MTF which uses the flux-corrected transport (FCT) algorithm to calculate the fluid equations in conservative form. A major advantage of the FCT algorithm is that it can model gas dynamic shock behaviour without the requirement of numerical diffusion. The principle use of the code is to predict the material surface temperature ΔT/α from the unsteady heat transfer q(t)

  16. Torque Tension Testing of Fasteners used for NASA Flight Hardware Applications

    Science.gov (United States)

    Hemminger, Edgar G.; Posey, Alan J.; Dube, Michael J.

    2014-01-01

    The effect of various lubricants and other compounds on fastener torque-tension relationships is evaluated. Testing was performed using a unique test apparatus developed by Posey at the NASA Goddard Space Flight Center. A description of the test methodology, including associated data collection and analysis will be presented. Test results for 300 series CRES and A286 heat resistant fasteners, torqued into various types of inserts will be presented. The primary objective of this testing was to obtain torque-tension data for use on NASA flight projects.

  17. Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    Science.gov (United States)

    Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel

    2012-01-01

    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.

  18. PhoneSat In-flight Experience Results

    Science.gov (United States)

    Salas, Alberto Guillen; Attai, Watson; Oyadomari, Ken Y.; Priscal, Cedric; Schimmin, Rogan S.; Gazulla, Oriol Tintore; Wolfe, Jasper L.

    2014-01-01

    Over the last decade, consumer technology has vastly improved its performances, become more affordable and reduced its size. Modern day smartphones offer capabilities that enable us to figure out where we are, which way we are pointing, observe the world around us, and store and transmit this information to wherever we want. These capabilities are remarkably similar to those required for multi-million dollar satellites. The PhoneSat project at NASA Ames Research Center is building a series of CubeSat-size spacecrafts using an off-the-shelf smartphone as its on-board computer with the goal of showing just how simple and cheap space can be. Since the PhoneSat project started, different suborbital and orbital flight activities have proven the viability of this revolutionary approach. In early 2013, the PhoneSat project launched the first triage of PhoneSats into LEO. In the five day orbital life time, the nano-satellites flew the first functioning smartphone-based satellites (using the Nexus One and Nexus S phones), the cheapest satellite (a total parts cost below $3,500) and one of the fastest on-board processors (CPU speed of 1GHz). In this paper, an overview of the PhoneSat project as well as a summary of the in-flight experimental results is presented.

  19. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  20. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    Science.gov (United States)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  1. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    Science.gov (United States)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  2. Shuttle Rudder/Speed Brake Power Drive Unit (PDU) Gear Scuffing Tests With Flight Gears

    Science.gov (United States)

    Proctor, Margaret P.; Oswald, Fred B.; Krants, Timothy L.

    2005-01-01

    Scuffing-like damage has been found on the tooth surfaces of gears 5 and 6 of the NASA space shuttle rudder/speed brake power drive unit (PDU) number 2 after the occurrence of a transient back-driving event in flight. Tests were conducted using a pair of unused spare flight gears in a bench test at operating conditions up to 2866 rpm and 1144 in.-lb at the input ring gear and 14,000 rpm and 234 in.-lb at the output pinion gear, corresponding to a power level of 52 hp. This test condition exceeds the maximum estimated conditions expected in a backdriving event thought to produce the scuffing damage. Some wear marks were produced, but they were much less severe than the scuffing damaged produced during shuttle flight. Failure to produce scuff damage like that found on the shuttle may be due to geometrical variations between the scuffed gears and the gears tested herein, more severe operating conditions during the flight that produced the scuff than estimated, the order of the test procedures, the use of new hydraulic oil, differences between the dynamic response of the flight gearbox and the bench-test gearbox, or a combination of these. This report documents the test gears, apparatus, and procedures, summarizes the test results, and includes a discussion of the findings, conclusions, and recommendations.

  3. Model Based Analysis and Test Generation for Flight Software

    Science.gov (United States)

    Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep

    2009-01-01

    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.

  4. Control and Non-Payload Communications (CNPC) Prototype Radio Validation Flight Test Report

    Science.gov (United States)

    Shalkhauser, Kurt A.; Ishac, Joseph A.; Iannicca, Dennis C.; Bretmersky, Steven C.; Smith, Albert E.

    2017-01-01

    This report provides an overview and results from the unmanned aircraft (UA) Control and Non-Payload Communications (CNPC) Generation 5 prototype radio validation flight test campaign. The radios used in the test campaign were developed under cooperative agreement NNC11AA01A between the NASA Glenn Research Center and Rockwell Collins, Inc., of Cedar Rapids, Iowa. Measurement results are presented for flight tests over hilly terrain, open water, and urban landscape, utilizing radio sets installed into a NASA aircraft and ground stations. Signal strength and frame loss measurement data are analyzed relative to time and aircraft position, specifically addressing the impact of line-of-sight terrain obstructions on CNPC data flow. Both the radio and flight test system are described.

  5. Pre-flight physical simulation test of HIMES reentry test vehicle

    Science.gov (United States)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hosokawa, Shigeru

    ISAS is now developing a small reentry test vehicle, which is 2m long with a 1.5m wing span and weighs about 170 kg, for the purpose of exploring high angle-of-attack aerodynamic attitude control issue in supersonic and hypersonic speed. The flight test, employing 'Rockoon' launch system, is planned as a preliminary design verification for a fully reusable winged rocket named HIMES (Highly Maneuverable Experimental Space) vehicle. This paper describes the results of preflight ground test using a motion table system. This ground system test is called 'physical simulation' aimed at: (1) functional verification of side-jet system, aerodynamic surface actuators, battery and onboard avionics; and (2) guidance and control law evaluation, in total hardware-in-the-loop system. The pressure of side-jet nozzles was measured to provide exact thrust characteristics of reaction control. The dynamics of vehicle motion was calculated in real-time by the ground simulation computer.

  6. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    Science.gov (United States)

    Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  7. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    Science.gov (United States)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  8. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    Science.gov (United States)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  9. Management Process of a Frequency Response Flight Test for Rotorcraft Flying Qualities Evaluation

    Directory of Open Access Journals (Sweden)

    João Otávio Falcão Arantes Filho

    2016-07-01

    Full Text Available This paper applies the frequency response methodology to characterize and analyze the flying qualities of longitudinal and lateral axes of a rotary-wing aircraft, AS355-F2. Using the results, it is possible to check the suitability of the aircraft in accordance with ADS-33E-PRF standard, whose flying qualities specifications criteria are based on parameters in the frequency domain. The key steps addressed in the study involve getting, by means of flight test data, the closed-loop dynamic responses including the design of the instrumentation and specification of the sensors to be used in the flight test campaign, the definition of the appropriate maneuvers characteristics for excitation of the aircraft, the planning and execution of the flight test to collect the data, and the proper data treatment, processing and analysis after the flight. After treatment of the collected data, single input-single output spectral analysis is performed. The results permit the analysis of the flying qualities characteristics, anticipation of the demands to which the pilot will be subjected during closed-loop evaluations and check of compliance with the aforementioned standard, within the range of consistent excitation frequencies for flight tests, setting the agility level of the test aircraft.

  10. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  11. Multimodal Displays for Target Localization in a Flight Test

    National Research Council Canada - National Science Library

    Tannen, Robert

    2001-01-01

    ... Synthesized Immersion Research Environment (SIRE) facility. Twelve pilots with a mean of 2652 flight hours performed a simulated flight task in which they were instructed to maintain a prescribed flight path, air speed, and altitude...

  12. The International Telecommunications Satellite (INTELSAT) Solar Array Coupon (ISAC) atomic oxgyen flight experiment: Techniques, results and summary

    Science.gov (United States)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1993-01-01

    Techniques and results of the ISAC flight experiment are presented, and comparisons between flight tests results and ground based testing are made. The ISAC flight experiment, one component of a larger INTELSAT 6 rescue program, tested solar array configurations and individual silver connects in ground based facilities and during STS-41 (Space Shuttle Discovery). In addition to the INTELSAT specimens, several materials, for which little or no flight data exist, were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, polymeric materials, and inorganic materials were exposed to an oxygen atom fluence of 1.2 x 10(exp 20) atoms. Many of the samples were selected to support Space Station Freedom design and decision-making.

  13. Early Results and Spaceflight Implications of the SWAB Flight Experiment

    Science.gov (United States)

    Ott, C. Mark; Pierson, Duane L.

    2007-01-01

    Microbial monitoring of spacecraft environments provides key information in the assessment of infectious disease risk to the crew. Monitoring aboard the Mir space station and International Space Station (ISS) has provided a tremendous informational baseline to aid in determining the types and concentrations of microorganisms during a mission. Still, current microbial monitoring hardware utilizes culture-based methodology which may not detect many medically significant organisms, such as Legionella pneumophila. We hypothesize that evaluation of the ISS environment using non-culture-based technologies would reveal microorganisms not previously reported in spacecraft, allowing for a more complete health assessment. To achieve this goal, a spaceflight experiment, operationally designated as SWAB, was designed to evaluate the DNA from environmental samples collected from ISS and vehicles destined for ISS. Results from initial samples indicate that the sample collection and return procedures were successful. Analysis of these samples using denaturing gradient gel electrophoresis and targeted PCR primers for fungal contaminants is underway. The current results of SWAB and their implication for in-flight molecular analysis of environmental samples will be discussed.

  14. LISA and its in-flight test precursor SMART-2

    International Nuclear Information System (INIS)

    Vitale, S.; Bender, P.; Brillet, A.; Buchman, S.; Cavalleri, A.; Cerdonio, M.; Cruise, M.; Cutler, C.; Danzmann, K.; Dolesi, R.; Folkner, W.; Gianolio, A.; Jafry, Y.; Hasinger, G.; Heinzel, G.; Hogan, C.; Hueller, M.; Hough, J.; Phinney, S.; Prince, T.; Richstone, D.; Robertson, D.; Rodrigues, M.; Ruediger, A.; Sandford, M.; Schilling, R.; Shoemaker, D.; Schutz, B.; Stebbins, R.; Stubbs, C.; Sumner, T.; Thorne, K.; Tinto, M.; Touboul, P.; Ward, H.; Weber, W.; Winkler, W.

    2002-01-01

    LISA will be the first space-home gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz/1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive black-holes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA endeavour to be launched in 2010-11. The principle of operation of LISA is based on laser ranging of test-masses under pure geodesic motion. Achieving pure geodesic motion at the level requested for LISA, 3x10 -15 ms -2 /√Hz at 0.1 mHz, is considered a challenging technological objective. To reduce the risk, both ESA and NASA are pursuing an in-flight test of the relevant technology. The goal of the test is to demonstrate geodetic motion within one order of magnitude from the LISA performance. ESA has given this test as the primary goal of its technology dedicated mission SMART-2 with a launch in 2006. This paper describes the basics of LISA, its key technologies, and its in-flight precursor test on SMART-2

  15. Engineering model cryocooler test results

    International Nuclear Information System (INIS)

    Skimko, M.A.; Stacy, W.D.; McCormick, J.A.

    1992-01-01

    This paper reports that recent testing of diaphragm-defined, Stirling-cycle machines and components has demonstrated cooling performance potential, validated the design code, and confirmed several critical operating characteristics. A breadboard cryocooler was rebuilt and tested from cryogenic to near-ambient cold end temperatures. There was a significant increase in capacity at cryogenic temperatures and the performance results compared will with code predictions at all temperatures. Further testing on a breadboard diaphragm compressor validated the calculated requirement for a minimum axial clearance between diaphragms and mating heads

  16. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  17. Summary of CCTF test results

    International Nuclear Information System (INIS)

    Iguchi, T.; Murao, Y.; Sugimoto, J.; Akimoto, H.; Okubo, T.; Hojo, T.

    1987-01-01

    Conservatism of current safety analysis was assessed by comparing the predicted result with cylindrical core test facility (CCTF) test result performed at Japan Atomic Energy Research Institute. WREM code was selected for the assessment. The overall conservatism of the WREM code on the peak clad temperature prediction was confirmed against CCTF evaluation model (EM) test which simulated the typical initial and boundary conditions in the safety evaluation analysis. WREM code predicted the reasonable core boundary conditions and the conservatism of the code came mainly from core calculation. The conservatism of the WREM code against CCTF data could be attributed to the following three points: (1) no horizontal mixing assumption between subchannels at each elevation; (2) no modeling on heat transfer enhancement caused by the radial core power profile; and (3) conservative heat transfer correlations in the code

  18. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  19. A summary of results from solar monitoring rocket flights

    Science.gov (United States)

    Duncan, C. H.

    1981-01-01

    Three rocket flights to measure the solar constant and provide calibration data for sensors aboard Nimbus 6, 7, and Solar Maximum Mission (SMM) spacecraft were accomplished. The values obtained by the rocket instruments for the solar constant in SI units are: 1367 w/sq m on 29 June 1976; 1372 w/sq m on 16 November 1978; and 1374 w/sq m on 22 May 1980. The uncertainty of the rocket measurements is + or - 0.5%. The values obtained by the Hickey-Frieden sensor on Nimbus 7 during the second and third flights was 1376 w/sq m. The value obtained by the Active Cavity Radiometer Model IV (ACR IV) on SMM during the flight was 1368 w/sq m.

  20. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  1. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    Science.gov (United States)

    1998-01-01

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous

  2. Lateral control required for satisfactory flying qualities based on flight tests of numerous airplanes

    Science.gov (United States)

    Gilruth, R R; Turner, W N

    1941-01-01

    Report presents the results of an analysis made of the aileron control characteristics of numerous airplanes tested in flight by the National Advisory Committee for Aeronautics. By the use of previously developed theory, the observed values of pb/2v for the various wing-aileron arrangements were examined to determine the effective section characteristics of the various aileron types.

  3. Pre-Flight Ground Testing of the Full-Scale HIFiRE-1 at Fully Duplicated Flight Conditions

    National Research Council Canada - National Science Library

    Wadhams, Tim P; MacLean, Matthew G; Holden, Michael S; Mundy, Erik

    2008-01-01

    As part of an experimental study to obtain detailed heating and pressure data over the full-scale HIFiRE-1 flight geometry, CUBRC has completed a 30-run matrix of ground tests, sponsored by the AFOSR...

  4. Evaluating the RELM Test Results

    Directory of Open Access Journals (Sweden)

    Michael K. Sachs

    2012-01-01

    Full Text Available We consider implications of the Regional Earthquake Likelihood Models (RELM test results with regard to earthquake forecasting. Prospective forecasts were solicited for M≥4.95 earthquakes in California during the period 2006–2010. During this period 31 earthquakes occurred in the test region with M≥4.95. We consider five forecasts that were submitted for the test. We compare the forecasts utilizing forecast verification methodology developed in the atmospheric sciences, specifically for tornadoes. We utilize a “skill score” based on the forecast scores λfi of occurrence of the test earthquakes. A perfect forecast would have λfi=1, and a random (no skill forecast would have λfi=2.86×10-3. The best forecasts (largest value of λfi for the 31 earthquakes had values of λfi=1.24×10-1 to λfi=5.49×10-3. The best mean forecast for all earthquakes was λ̅f=2.84×10-2. The best forecasts are about an order of magnitude better than random forecasts. We discuss the earthquakes, the forecasts, and alternative methods of evaluation of the performance of RELM forecasts. We also discuss the relative merits of alarm-based versus probability-based forecasts.

  5. EFTF cobalt test assembly results

    International Nuclear Information System (INIS)

    Rawlins, J.A.; Wootan, D.W.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1988-01-01

    A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility during Cycle 9A for 137.7 equivalent full power days at a power level fo 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal to produce Co-60, and a set of 4 pins with europium oxide to produce Gd-153, a radioisotope used in detection of the bone disease Osteoporosis. Post-irradiation examination of the cobalt pins determined the Co-60 produced with an accuracy of about 5 %. The measured Co-60 spatially distributed concentrations were within 20 % of the calculated concentrations. The assembly average Co-60 measured activity was 4 % less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes Eu-152 and Eu-154 to an absolute accuracy of about 10 %. The measured europium radioisotpe anc Gd-153 concentrations were within 20 % of calculated values. In conclusion, the hydride assembly performed well and is an excellent vehicle for many Fast Flux Test Facility isotope production applications. The results also demonstrate that the calculational methods developed by the Westinghouse Hanford Company are very accurate. (author)

  6. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  7. Design, construction, test and field support of a containerless payload package for rocket flight. [electromagnetic heating and confinement

    Science.gov (United States)

    1977-01-01

    The performance of a device for electromagnetically heating and positioning containerless melts during space processing was evaluated during a 360 second 0-g suborbital sounding rocket flight. Components of the electromagnetic containerless processing package (ECPP), its operation, and interface with the rocket are described along with flight and qualification tests results.

  8. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  9. RSG Deployment Case Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Owsley, Stanley L.; Dodson, Michael G.; Hatchell, Brian K.; Seim, Thomas A.; Alexander, David L.; Hawthorne, Woodrow T.

    2005-09-01

    The RSG deployment case design is centered on taking the RSG system and producing a transport case that houses the RSG in a safe and controlled manner for transport. The transport case was driven by two conflicting constraints, first that the case be as light as possible, and second that it meet a stringent list of Military Specified requirements. The design team worked to extract every bit of weight from the design while striving to meet the rigorous Mil-Spec constraints. In the end compromises were made primarily on the specification side to control the overall weight of the transport case. This report outlines the case testing results.

  10. Cyclonic valve test: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Andre Sampaio; Moraes, Carlos Alberto C.; Marins, Luiz Philipe M.; Soares, Fabricio; Oliveira, Dennis; Lima, Fabio Soares de; Airao, Vinicius [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ton, Tijmen [Twister BV, Rijswijk (Netherlands)

    2012-07-01

    For many years, the petroleum industry has been developing a valve that input less shear to the flow for a given required pressure drop and this can be done using the cyclonic concept. This paper presents a comparison between the performances of a cyclonic valve (low shear) and a conventional globe valve. The aim of this work is to show the advantages of using a cyclonic low shear valve instead of the commonly used in the primary separation process by PETROBRAS. Tests were performed at PETROBRAS Experimental Center (NUEX) in Aracaju/SE varying some parameters: water cut; pressure loss (from 4 kgf/cm2 to 10 kgf/cm2); flow rates (30 m3/h and 45 m3/h). Results indicates a better performance of the cyclonic valve, if compared with a conventional one, and also that the difference of the performance, is a function of several parameters (emulsion stability, water content free, and oil properties). The cyclonic valve tested can be applied as a choke valve, as a valve between separation stages (for pressure drop), or for controlling the level of vessels. We must emphasize the importance to avoid the high shear imposed by conventional valves, because once the emulsion is created, it becomes more difficult to break it. New tests are being planned to occur in 2012, but PETROBRAS is also analyzing real cases where the applications could increase the primary process efficiency. In the same way, the future installations are also being designed considering the cyclonic valve usage. (author)

  11. ASKA STOL research aircraft flight tests and evaluation. STOL jikkenki Asuka'' no hiko shiken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, M; Inoue, T; Tobinaga, Y; Tsuji, H [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1991-07-20

    The present report evaluated the powered high-lift device (PHLD) distance of upper surface blowing (USB) system, basing the materialization of short distance take-off and landing (STOL) performance, one of the main flight test purposes by the Aska'', quiet STOL research aircraft, which evaluation was then added with reporting its flight test result to cover several topics. As prototypical, a C-1 tactical transport aircraft produced by Kawasaki Heavy Industries was modified to the aska'' together with the following change in design for the STOL flight test: Adoption was made of a PHLD of USB system where the wing surface was mounted with four turbofan jet engines thereon. Application was made of a boundary layer control (BLC) to the main wing leading edge and aileron. Mounting was made of a stability and control augmentation system (SCAS) using a triple system digital computer. Fitting was made of a vortex generator for the prevention from peeling by jet exhaust. As a result of flight test, the recorded distance was confirmed to be 1580ft in landing and 1670ft in take-off. 5 refs., 15 figs., 2 tabs.

  12. Normobaric hypoxia inhalation test vs. response to airline flight in healthy passengers.

    Science.gov (United States)

    Kelly, Paul T; Swanney, Maureen P; Frampton, Chris; Seccombe, Leigh M; Peters, Matthew J; Beckert, Lutz E

    2006-11-01

    There is little data available to determine the normal response to normobaric hypoxia inhalation testing (NHIT) and air travel. Quantifying a healthy response may assist in the evaluation of passengers considered at risk for air travel. The aims of this study were: (1) to quantify the degree of desaturation in healthy subjects during a NHIT and air travel; and (2) assess the validity of the NHIT when compared with actual in-flight responses. There were 15 healthy adults (age 23-57; 10 women) who volunteered for this study. Preflight tests included lung function, arterial blood gas, pulse oximetry (SpO2), and NHIT (inspired oxygen 15%). SpO2 and cabin pressure were measured continuously on each subject during a commercial air flight (mean cabin altitude 2178 m; range 1719-2426 m). In-flight oxygenation was compared with the preflight NHIT. Lung function testing results were normal. There was significant desaturation (SpO2) during the NHIT (pre: 98 +/- 2%; post: 92 +/- 2%) and at cruising altitude (pre: 97 +/- 1%; cruise: 92 +/- 2%). There was no difference between the final NHIT SpO2 and the mean in-flight SpO2. There was a significant difference between the lowest in-flight SpO2 (88 +/- 2%) vs. the lowest NHIT SpO2, (90 +/- 2%). Oxygen saturation decreases significantly during air travel in normal individuals. In this group of healthy passengers the NHIT approximates some, but not all, aspects of in-flight oxygenation. These results can be used to describe a normal response to the NHIT and air-travel.

  13. Pitch control margin at high angle of attack - Quantitative requirements (flight test correlation with simulation predictions)

    Science.gov (United States)

    Lackey, J.; Hadfield, C.

    1992-01-01

    Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.

  14. Design and Testing of Flight Control Laws on the RASCAL Research Helicopter

    Science.gov (United States)

    Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.

    2001-01-01

    Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.

  15. Thermosyphon Flooding in Reduced Gravity Environments Test Results

    Science.gov (United States)

    Gibson, Marc A.; Jaworske, Donald A.; Sanzi, Jim; Ljubanovic, Damir

    2013-01-01

    The condenser flooding phenomenon associated with gravity aided two-phase thermosyphons was studied using parabolic flights to obtain the desired reduced gravity environment (RGE). The experiment was designed and built to test a total of twelve titanium water thermosyphons in multiple gravity environments with the goal of developing a model that would accurately explain the correlation between gravitational forces and the maximum axial heat transfer limit associated with condenser flooding. Results from laboratory testing and parabolic flights are included in this report as part I of a two part series. The data analysis and correlations are included in a follow on paper.

  16. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    Science.gov (United States)

    1998-01-01

    The Perseus B remotely piloted aircraft taxis on the runway at Edwards Air Force Base, California, before a series of development flights at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus

  17. Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems

    Science.gov (United States)

    McCrink, Matthew Henry

    This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is

  18. Test Results for CSTR Test 4

    International Nuclear Information System (INIS)

    Lee, D.D.

    2001-01-01

    One of the 3 technologies currently being developed for the Savannah River Salt Waste Processing Program is the Small-Tank Tetraphenylborate Process (STTP). This process uses sodium tetraphenylborate to precipitate and remove radioactive Cs from the waste and monosodium titanate to sorb and remove radioactive Sr and actinides. ORNL is demonstrating this process at the 1:4000 scale using a 20-liter continuous-flow stirred tank reactor (CSTR) system. The primary goal of Test 4 was to verify that the STTP process could achieve and maintain the necessary Cs decontamination while TPB was actively decomposing. Even with TPB being decomposed by the off-normal conditions of this test, the decontaimination factor for 137 Cs obtained for the filtrate from the Slurry Concentrating Tank ranged from 47,000 to 646,000, exceeding the WAC standard

  19. Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data

    Science.gov (United States)

    Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.

    2003-01-01

    A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.

  20. Sims Prototype System 2 test results: Engineering analysis

    Science.gov (United States)

    1978-01-01

    The testing, problems encountered, and the results and conclusions obtained from tests performed on the IBM Prototype System, 2, solar hot water system, at the Marshall Space Flight Center Solar Test Facility was described. System 2 is a liquid, non draining solar energy system for supplying domestic hot water to single residences. The system consists of collectors, storage tank, heat exchanger, pumps and associated plumbing and controls.

  1. Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD

    Science.gov (United States)

    Lau, Kei Y.; Holden, M. S.

    2011-01-01

    This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at Calspan-University of Buffalo Research Center (CUBRC), the test flow field calibration. It showed the versatility of the CUBRC Large Energy National Shock Tunnel (LENS) II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results.

  2. FIRST RESULTS FROM OEDOTENSIOMETRIC TESTS

    Directory of Open Access Journals (Sweden)

    Luigi Cavazza

    2008-09-01

    Full Text Available An oedotensiometer was used to examine to examine the behaviour of sieved sample of a swelling soil (a vertisol as well as of the same soils treated with solution of Na+ + Ca2+ to simulate the soil changes from excessive irrigation with brackish water. The oedometer test consisted in an infiltration of water from below through a ceramic porous plate at a feeding pressure of +10 cm water and successive drainage under a depression mostly of -112 cm of water. The rate of water entry as well as the swelling rate of the sample were monitored. Preliminary considerations regards the domains in which the shrinkage curve of a swelling soil is subdivided and make hypothesis on the swelling process expected when the infiltration from below of the sample is applied. The results support the hypothesis that when the water pressure is applied some water enters rather rapidly in the larger structural pores and is followed later by the swelling in the smaller pores, responsible for the basic domain. This first conclusion demonstrates that the assumption of a simultaneous movement of solid and liquid components in the sample, which is the base of most theoretical developments for swelling soils, cannot be accepted for the tested samples. Some cases with water clogging on the sample surface confirm a late final swelling of the soil and permitted to evaluate the hydraulic conductivity of the swollen soil. These manifestations are more evident in sodicated soils. The loading of the sample reduces the swelling of the sample and seems to reduce its permeability. The reduction of the feeding water pressure further reduces the sample swelling. The draining process from saturated soil sample shows that most of the process occurs in the large pores of the structural domain. This gives the possibility to evaluate the water diffusivity coefficient for the structural domain of the sample. In draining the soil with the highest sodication there was a variation of soil volume

  3. Ares-I-X Stability and Control Flight Test: Analysis and Plans

    Science.gov (United States)

    Brandon, Jay M.; Derry, Stephen D.; Heim, Eugene H.; Hueschen, Richard M.; Bacon, Barton J.

    2008-01-01

    The flight test of the Ares I-X vehicle provides a unique opportunity to reduce risk of the design of the Ares I vehicle and test out design, math modeling, and analysis methods. One of the key features of the Ares I design is the significant static aerodynamic instability coupled with the relatively flexible vehicle - potentially resulting in a challenging controls problem to provide adequate flight path performance while also providing adequate structural mode damping and preventing adverse control coupling to the flexible structural modes. Another challenge is to obtain enough data from the single flight to be able to conduct analysis showing the effectiveness of the controls solutions and have data to inform design decisions for Ares I. This paper will outline the modeling approaches and control system design to conduct this flight test, and also the system identification techniques developed to extract key information such as control system performance (gain/phase margins, for example), structural dynamics responses, and aerodynamic model estimations.

  4. Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance

    Science.gov (United States)

    Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter

    2018-01-01

    In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.

  5. Irradiation effects test series test IE-1 test results report

    International Nuclear Information System (INIS)

    Quapp, W.J.; Allison, C.M.; Farrar, L.C.; Mehner, A.S.

    1977-03-01

    The report describes the results of the first programmatic test in the Nuclear Regulatory Commission Irradiation Effects Test Series. This test (IE-1) used four 0.97m long PWR-type fuel rods fabricated from previously irradiated Saxton fuel. The objectives of this test were to evaluate the effect of fuel pellet density on pellet-cladding interaction during a power ramp and to evaluate the influence of the irradiated state of the fuel and cladding on rod behavior during film boiling operation. Data are presented on the behavior of irradiated fuel rods during steady-state operation, a power ramp, and film boiling operation. The effects of as-fabricated gap size, as-fabricated fuel density, rod power, and power ramp rate on pellet-cladding interaction are discussed. Test data are compared with FRAP-T2 computer model predictions, and comments on the consequences of sustained film boiling operation on irradiated fuel rod behavior are provided

  6. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    Science.gov (United States)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    into a real-time simulation capability, generating techniques for uncertainty modeling that draw data from multiple modeling sources, and providing a unified database model that includes nominal plus increments for each flight condition. This paper presents status of testing in the BR&T water tunnel and analysis of the resulting data and efforts to characterize these data using alternative modeling methods. Program challenges and issues are also presented.

  7. Volatile Removal Assembly Flight Experiment and KC-135 Packed Bed Experiment: Results and Lessons Learned

    Science.gov (United States)

    Holder, Donald W.; Parker, David

    2000-01-01

    The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.

  8. Irradiation effects test Series Scoping Test 1: test results report

    International Nuclear Information System (INIS)

    Quapp, W.J.; Allison, C.M.; Farrar, L.C.

    1977-09-01

    The report describes the results of the first scoping test in the Irradiation Effects Test Series conducted by the Thermal Fuels Behavior Program, which is part of the Water Reactor Research Program of EG and G Idaho, Inc. The research is sponsored by the United States Nuclear Regulatory Commission. This test used an unirradiated, three-foot-long, PWR-type fuel rod. The objective of this test was to thoroughly evaluate the remote fabrication procedures to be used for irradiated rods in future tests, handling plans, and reactor operations. Additionally, selected fuel behavior data were obtained. The fuel rod was subjected to a series of preconditioning power cycles followed by a power increase which brought the fuel rod power to about 20.4 kW/ft peak linear heat rating at a coolant mass flux of 1.83 x 10 6 lb/hr-ft 2 . Film boiling occurred for a period of 4.8 minutes following flow reductions to 9.6 x 10 5 and 7.5 x 10 5 lb/hr-ft 2 . The test fuel rod failed following reactor shutdown as a result of heavy internal and external cladding oxidation and embrittlement which occurred during the film boiling operation

  9. Chemical compatibility screening test results

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60 degrees C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m 2 for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals

  10. MATE: Modern Software Technology for Flight Test Automation and Orchestration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of advanced technologies for flight testing, measurement, and data acquisition are critical to effectively meeting the future goals and challenges...

  11. Irradiation effects test series, test IE-5. Test results report

    International Nuclear Information System (INIS)

    Croucher, D.W.; Yackle, T.R.; Allison, C.M.; Ploger, S.A.

    1978-01-01

    Test IE-5, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory, employed three 0.97-m long pressurized water reactor type fuel rods, fabricated from previously irradiated zircaloy-4 cladding and one similar rod fabricated from unirradiated cladding. The objectives of the test were to evaluate the influence of simulated fission products, cladding irradiation damage, and fuel rod internal pressure on pellet-cladding interaction during a power ramp and on fuel rod behavior during film boiling operation. The four rods were subjected to a preconditioning period, a power ramp to an average fuel rod peak power of 65 kW/m, and steady state operation for one hour at a coolant mass flux of 4880 kg/s-m 2 for each rod. After a flow reduction to 1800 kg/s-m 2 , film boiling occurred on one rod. Additional flow reductions to 970 kg/s-m 2 produced film boiling on the three remaining fuel rods. Maximum time in film boiling was 80s. The rod having the highest initial internal pressure (8.3 MPa) failed 10s after the onset of film boiling. A second rod failed about 90s after reactor shutdown. The report contains a description of the experiment, the test conduct, test results, and results from the preliminary postirradiation examination. Calculations using a transient fuel rod behavior code are compared with the test results

  12. UAS Integration in the NAS Project: Flight Test 3 Data Analysis of JADEM-Autoresolver Detect and Avoid System

    Science.gov (United States)

    Gong, Chester; Wu, Minghong G.; Santiago, Confesor

    2016-01-01

    The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS Integration in the NAS, aims to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The UAS Integration in the NAS Project conducted a flight test activity, referred to as Flight Test 3 (FT3), involving several Detect-and-Avoid (DAA) research prototype systems between June 15, 2015 and August 12, 2015 at the Armstrong Flight Research Center (AFRC). This report documents the flight testing and analysis results for the NASA Ames-developed JADEM-Autoresolver DAA system, referred to as 'Autoresolver' herein. Four flight test days (June 17, 18, 22, and July 22) were dedicated to Autoresolver testing. The objectives of this test were as follows: 1. Validate CPA prediction accuracy and detect-and-avoid (DAA, formerly known as self-separation) alerting logic in realistic flight conditions. 2. Validate DAA trajectory model including maneuvers. 3. Evaluate TCAS/DAA interoperability. 4. Inform final Minimum Operating Performance Standards (MOPS). Flight test scenarios were designed to collect data to directly address the objectives 1-3. Objective 4, inform final MOPS, was a general objective applicable to the UAS in the NAS project as a whole, of which flight test is a subset. This report presents analysis results completed in support of the UAS in the NAS project FT3 data review conducted on October 20, 2015. Due to time constraints and, to a lesser extent, TCAS data collection issues, objective 3 was not evaluated in this analysis.

  13. Acoustic results of the Boeing model 360 whirl tower test

    Science.gov (United States)

    Watts, Michael E.; Jordan, David

    1990-09-01

    An evaluation is presented for whirl tower test results of the Model 360 helicopter's advanced, high-performance four-bladed composite rotor system intended to facilitate over-200-knot flight. During these performance measurements, acoustic data were acquired by seven microphones. A comparison of whirl-tower tests with theory indicate that theoretical prediction accuracies vary with both microphone position and the inclusion of ground reflection. Prediction errors varied from 0 to 40 percent of the measured signal-to-peak amplitude.

  14. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    Science.gov (United States)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  15. Command and Data Handling Flight Software test framework: A Radiation Belt Storm Probes practice

    Science.gov (United States)

    Hill, T. A.; Reid, W. M.; Wortman, K. A.

    During the Radiation Belt Storm Probes (RBSP) mission, a test framework was developed by the Embedded Applications Group in the Space Department at the Johns Hopkins Applied Physics Laboratory (APL). The test framework is implemented for verification of the Command and Data Handling (C& DH) Flight Software. The RBSP C& DH Flight Software consists of applications developed for use with Goddard Space Flight Center's core Flight Executive (cFE) architecture. The test framework's initial concept originated with tests developed for verification of the Autonomy rules that execute with the Autonomy Engine application of the RBSP C& DH Flight Software. The test framework was adopted and expanded for system and requirements verification of the RBSP C& DH Flight Software. During the evolution of the RBSP C& DH Flight Software test framework design, a set of script conventions and a script library were developed. The script conventions and library eased integration of system and requirements verification tests into a comprehensive automated test suite. The comprehensive test suite is currently being used to verify releases of the RBSP C& DH Flight Software. In addition to providing the details and benefits of the test framework, the discussion will include several lessons learned throughout the verification process of RBSP C& DH Flight Software. Our next mission, Solar Probe Plus (SPP), will use the cFE architecture for the C& DH Flight Software. SPP also plans to use the same ground system as RBSP. Many of the RBSP C& DH Flight Software applications are reusable on the SPP mission, therefore there is potential for test design and test framework reuse for system and requirements verification.

  16. Boraflex test results and evaluation

    International Nuclear Information System (INIS)

    Lindquist, K.; Kline, D.E.; Haley, T.C.

    1993-02-01

    New data developed, collected, and evaluated to further assess the in-pool performance of the neutron absorber material, Boraflex. The data are from new EPRI test programs, utility surveillance programs, and blackness testing at a number of plants. This new data provides a basis for quantifying the gap phenomenon in full length panels of Boraflex in spent fuel racks; the maximum anticipated gap size, frequency of gap occurrence, and axial distribution of gaps. Methods have been developed to assess the reactivity effects of gaps and Boraflex shrinkage. The analyses presented demonstrates that the reactivity effect of gaps is very small, not much larger than the statistical variations inherent in the calculational method. The data and analyses presented serve to close the issue of gap formation and shrinkage in panels of Boraflex and the effect of such gaps and shrinkage on the reactivity of the fuel/rack configuration. Ongoing EPRI programs to assess the long term performance of Boraflex in spent fuel storage racks are described

  17. Irradiation Effects Test Series: Test IE-3. Test results report

    International Nuclear Information System (INIS)

    Farrar, L.C.; Allison, C.M.; Croucher, D.W.; Ploger, S.A.

    1977-10-01

    The objectives of the test reported were to: (a) determine the behavior of irradiated fuel rods subjected to a rapid power increase during which the possibility of a pellet-cladding mechanical interaction failure is enhanced and (b) determine the behavior of these fuel rods during film boiling following this rapid power increase. Test IE-3 used four 0.97-m long pressurized water reactor type fuel rods fabricated from previously irradiated fuel. The fuel rods were subjected to a preconditioning period, followed by a power ramp to 69 kW/m at a coolant mass flux of 4920 kg/s-m 2 . After a flow reduction to 2120 kg/s-m 2 , film boiling occurred on the fuel rods. One rod failed approximately 45 seconds after the reactor was shut down as a result of cladding embrittlement due to extensive cladding oxidation. Data are presented on the behavior of these irradiated fuel rods during steady-state operation, the power ramp, and film boiling operation. The effects of a power ramp and power ramp rates on pellet-cladding interaction are discussed. Test data are compared with FRAP-T3 computer model calculations and data from a previous Irradiation Effects test in which four irradiated fuel rods of a similar design were tested. Test IE-3 results indicate that the irradiated state of the fuel rods did not significantly affect fuel rod behavior during normal, abnormal (power ramp of 20 kW/m per minute), and accident (film boiling) conditions

  18. Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique

    Science.gov (United States)

    Yen, J. G.; Viswanathan, S.; Matthys, C. G.

    1976-01-01

    A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft.

  19. Evidences of SEU tolerance for digital implementations of artificial neural networks: one year of MPTB flight results

    International Nuclear Information System (INIS)

    Velazco, R.; Cheynet, Ph.; Tissot, A.; Haussy, J.; Lambert, J.; Ecoffet, R.

    1999-01-01

    The Microelectronics and Photonics Test-bed (MPTB) carrying twenty-four experiments on-board a scientific satellite is in a high radiation orbit since November 1997. This paper presents flight results of two of these experiments programmed to emulate an Artificial Neural Network devoted to texture analysis. (authors)

  20. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  1. Irradiation Effects Test Series: Test IE-2. Test results report

    International Nuclear Information System (INIS)

    Allison, C.M.; Croucher, D.W.; Ploger, S.A.; Mehner, A.S.

    1977-08-01

    The report describes the results of a test using four 0.97-m long PWR-type fuel rods with differences in diametral gap and cladding irradiation. The objective of this test was to provide information about the effects of these differences on fuel rod behavior during quasi-equilibrium and film boiling operation. The fuel rods were subjected to a series of preconditioning power cycles of less than 30 kW/m. Rod powers were then increased to 68 kW/m at a coolant mass flux of 4900 kg/s-m 2 . After one hour at 68 kW/m, a power-cooling-mismatch sequence was initiated by a flow reduction at constant power. At a flow of 2550 kg/s-m 2 , the onset of film boiling occurred on one rod, Rod IE-011. An additional flow reduction to 2245 kg/s-m 2 caused the onset of film boiling on the remaining three rods. Data are presented on the behavior of fuel rods during quasiequilibrium and during film boiling operation. The effects of initial gap size, cladding irradiation, rod power cycling, a rapid power increase, and sustained film boiling are discussed. These discussions are based on measured test data, preliminary postirradiation examination results, and comparisons of results with FRAP-T3 computer model calculations

  2. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    Science.gov (United States)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (pperformance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.

  3. Flight-Test Evaluation of Kinematic Precise Point Positioning of Small UAVs

    Directory of Open Access Journals (Sweden)

    Jason N. Gross

    2016-01-01

    Full Text Available An experimental analysis of Global Positioning System (GPS flight data collected onboard a Small Unmanned Aerial Vehicle (SUAV is conducted in order to demonstrate that postprocessed kinematic Precise Point Positioning (PPP solutions with precisions approximately 6 cm 3D Residual Sum of Squares (RSOS can be obtained on SUAVs that have short duration flights with limited observational periods (i.e., only ~≤5 minutes of data. This is a significant result for the UAV flight testing community because an important and relevant benefit of the PPP technique over traditional Differential GPS (DGPS techniques, such as Real-Time Kinematic (RTK, is that there is no requirement for maintaining a short baseline separation to a differential GNSS reference station. Because SUAVs are an attractive platform for applications such as aerial surveying, precision agriculture, and remote sensing, this paper offers an experimental evaluation of kinematic PPP estimation strategies using SUAV platform data. In particular, an analysis is presented in which the position solutions that are obtained from postprocessing recorded UAV flight data with various PPP software and strategies are compared to solutions that were obtained using traditional double-differenced ambiguity fixed carrier-phase Differential GPS (CP-DGPS. This offers valuable insight to assist designers of SUAV navigation systems whose applications require precise positioning.

  4. X-43A Flight Controls

    Science.gov (United States)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  5. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  6. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  7. Stability and control of the Gossamer human powered aircraft by analysis and flight test

    Science.gov (United States)

    Jex, H. R.; Mitchell, D. G.

    1982-01-01

    The slow flight speed, very light wing loading, and neutral stability of the Gossamer Condor and the Gossamer Albatross emphasized apparent-mass aerodynamic effects and unusual modes of motion response. These are analyzed, approximated, and discussed, and the resulting transfer functions and dynamic properties are summarized and compared. To verify these analytical models, flight tests were conducted with and electrically powered Gossamer Albatross II. Sensors were installed and their outputs were telemetered to records on the ground. Frequency sweeps of the various controls were made and the data were reduced to frequency domain measures. Results are given for the response of: pitch rate, airspeed and normal acceleration from canard-elevator deflection; roll rate and yaw rate from canard-rudder tilt; and roll rate and yaw rate from wing warp. The reliable data are compared with the analytical predictions.

  8. Summary of CPAS EDU Testing Analysis Results

    Science.gov (United States)

    Romero, Leah M.; Bledsoe, Kristin J.; Davidson, John.; Engert, Meagan E.; Fraire, Usbaldo, Jr.; Galaviz, Fernando S.; Galvin, Patrick J.; Ray, Eric S.; Varela, Jose

    2015-01-01

    The Orion program's Capsule Parachute Assembly System (CPAS) project is currently conducting its third generation of testing, the Engineering Development Unit (EDU) series. This series utilizes two test articles, a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) and capsule-shaped Parachute Test Vehicle (PTV), both of which include a full size, flight-like parachute system and require a pallet delivery system for aircraft extraction. To date, 15 tests have been completed, including six with PCDTVs and nine with PTVs. Two of the PTV tests included the Forward Bay Cover (FBC) provided by Lockheed Martin. Advancements in modeling techniques applicable to parachute fly-out, vehicle rate of descent, torque, and load train, also occurred during the EDU testing series. An upgrade from a composite to an independent parachute simulation allowed parachute modeling at a higher level of fidelity than during previous generations. The complexity of separating the test vehicles from their pallet delivery systems necessitated the use the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulator for modeling mated vehicle aircraft extraction and separation. This paper gives an overview of each EDU test and summarizes the development of CPAS analysis tools and techniques during EDU testing.

  9. Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis

    Science.gov (United States)

    Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus

    2011-05-01

    The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.

  10. Application of a flight test and data analysis technique to flutter of a drone aircraft

    Science.gov (United States)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  11. Mission definition study for Stanford relativity satellite. Volume 2: Engineering flight test program

    Science.gov (United States)

    1971-01-01

    The need is examined for orbital flight tests of gyroscope, dewar, and other components, in order to reduce the technical and financial risk in performing the relativity experiment. A program is described that would generate engineering data to permit prediction of final performance. Two flight tests are recommended. The first flight would test a dewar smaller than that required for the final flight, but of size and form sufficient to allow extrapolation to the final design. The second flight would use the same dewar design to carry a set of three gyroscopes, which would be evaluated for spinup and drift characteristics for a period of a month or more. A proportional gas control system using boiloff helium gas from the dewar, and having the ability to prevent sloshing of liquid helium, would also be tested.

  12. Flight Tests of a Ministick Controller in an F/A-18 Airplane

    Science.gov (United States)

    Stoliker, Patrick C.; Carter, John

    2003-01-01

    In March of 1999, five pilots performed flight tests to evaluate the handling qualities of an F/A-18 research airplane equipped with a small-displacement center stick (ministick) controller that had been developed for the JAS 39 Gripen airplane (a fighter/attack/ reconnaissance airplane used by the Swedish air force). For these tests, the ministick was installed in the aft cockpit (see figure) and production support flight control computers (PSFCCs) were used as interfaces between the controller hardware and the standard F/A-18 flight-control laws. The primary objective of the flight tests was to assess any changes in handling qualities of the F/A-18 airplane attributable to the mechanical characteristics of the ministick. The secondary objective was to demonstrate the capability of the PSFCCs to support flight-test experiments.

  13. Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain

    Science.gov (United States)

    Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen

    2011-01-01

    A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.

  14. Orion Exploration Flight Test-l (EFT -1) Absolute Navigation Design

    Science.gov (United States)

    Sud, Jastesh; Gay, Robert; Holt, Greg; Zanetti, Renato

    2014-01-01

    Scheduled to launch in September 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion Multi-Purpose-Crew-Vehicle (MPCV's) maiden flight dubbed "Exploration Flight Test -1" (EFT-1) intends to stress the system by placing the uncrewed vehicle on a high-energy parabolic trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. Unique challenges associated with designing the navigation system for EFT-1 are presented in the narrative with an emphasis on how redundancy and robustness influenced the architecture. Two Inertial Measurement Units (IMUs), one GPS receiver and three barometric altimeters (BALTs) comprise the navigation sensor suite. The sensor data is multiplexed using conventional integration techniques and the state estimate is refined by the GPS pseudorange and deltarange measurements in an Extended Kalman Filter (EKF) that employs the UDUT decomposition approach. The design is substantiated by simulation results to show the expected performance.

  15. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses

    Science.gov (United States)

    Winebarger, R. M.; Neely, W. R., Jr.

    1984-01-01

    An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

  16. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    Science.gov (United States)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  17. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    Science.gov (United States)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  18. Abnormal Cervical Cancer Screening Test Results

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ187 GYNECOLOGIC PROBLEMS Abnormal Cervical Cancer Screening Test Results • What is cervical cancer screening? • What causes abnormal cervical cancer screening test ...

  19. An analysis of unit tests of a flight software product line

    NARCIS (Netherlands)

    Ganesan, D.; Lindvall, M.; McComas, D.; Bartholomew, M.; Slegel, S.; Medina, B.; Krikhaar, R.; Verhoef, C.; Dharmalingam, G.; Montgomery, L.P.

    2013-01-01

    This paper presents an analysis of the unit testing approach developed and used by the Core Flight Software System (CFS) product line team at the NASA Goddard Space Flight Center (GSFC). The goal of the analysis is to understand, review, and recommend strategies for improving the CFS' existing unit

  20. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    Science.gov (United States)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  1. A comparison of theory and flight test of the BO 105/BMR in hover and forward flight

    Science.gov (United States)

    Mirick, Paul H.

    1988-01-01

    Four cases were selected for comparison with theoretical predictions using stability data obtained during the flight test of the Bearingless Main Rotor (BMR) on a Messerschmidt-Boelkow-Blohm BO 105 helicopter. The four cases selected form the flight test included two ground resonance cases and two air resonance cases. The BMR used four modified BO 105 blades attached to a bearingless hub. The hub consisted of dual fiberglass C-channel beams attached to the hub center at 0.0238R and attached to the blade root at 0.25R with blade pitch control provided by a torque tube. Analyses from Bell Helicopter Textron, Boeing Vertol, and Sikorsky Aircraft were compared with the data and the correlation ranged from very poor-to-poor to poor-to-fair.

  2. Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Science.gov (United States)

    Dececchi, T. Alexander; Larsson, Hans C. E.

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918

  3. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    Directory of Open Access Journals (Sweden)

    T Alexander Dececchi

    Full Text Available The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  4. Flight Test Comparison of Different Adaptive Augmentations for Fault Tolerant Control Laws for a Modified F-15 Aircraft

    Science.gov (United States)

    Burken, John J.; Hanson, Curtis E.; Lee, James A.; Kaneshige, John T.

    2009-01-01

    This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.

  5. Dive Angle Sensitivity Analysis for Flight Test Safety and Efficiency

    Science.gov (United States)

    2010-03-01

    22]. Raymer points out that most flutter modes are driven by improper balancing of control surfaces, but these flutter modes can be excited...description1.html [cited 2 Feb. 2010] [10] Nelson, Robert C., Flight Stability and Automatic Control, 2nd ed., McGraw-Hill Higher Education, Boston...Patuxent River Naval Air Station MD, May 1992, Chap. 10 [15] Raymer , Daniel, P., Aircraft Design: A Conceptual Approach, 4th ed., AIAA Education

  6. Operational Overview for UAS Integration in the NAS Project Flight Test Series 3

    Science.gov (United States)

    Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael

    2018-01-01

    The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries.

  7. Innovative Virtual Air Data Sensors: Algorithms and Flight Test Results

    OpenAIRE

    Garbarino, Luca

    2015-01-01

    This thesis deals with the design, prototype implementation and the assessment of virtual sensors for an Air Data System (ADS). The needs for the development of a virtual Air Data Sensors resides on two relevant aspects in aviation transport development: a) the opportunity to improve the safety of manned aviation, by implementing an affordable solution for ADS redundancy; b) the possibility to improve the reliability of unmanned air vehicles (UAVs), which can support their integration in non-...

  8. Verification of Simulation Results Using Scale Model Flight Test Trajectories

    National Research Council Canada - National Science Library

    Obermark, Jeff

    2004-01-01

    .... A second compromise scaling law was investigated as a possible improvement. For ejector-driven events at minimum sideslip, the most important variables for scale model construction are the mass moment of inertia and ejector...

  9. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  10. 3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission

    Science.gov (United States)

    Chasset, C.; Noteborn, R.; Bodin, P.; Larsson, R.; Jakobsson, B.

    2013-09-01

    PRISMA implements guidance, navigation and control strategies for advanced formation flying and rendezvous experiments. The project is funded by the Swedish National Space Board and run by OHB-Sweden in close cooperation with DLR, CNES and the Danish Technical University. The PRISMA test bed consists of a fully manoeuvrable MANGO satellite as well as a 3-axis controlled TANGO satellite without any Δ V capability. PRISMA was launched on the 15th of June 2010 on board DNEPR. The TANGO spacecraft is the reference satellite for the experiments performed by MANGO, either with a "cooperative" or "non-cooperative" behaviour. Small, light and low-cost were the keywords for the TANGO design. The attitude determination is based on Sun sensors and magnetometers, and the active attitude control uses magnetic torque rods only. In order to perform the attitude manoeuvres required to fulfil the mission objectives, using any additional gravity gradient boom to passively stabilize the spacecraft was not allowed. After a two-month commissioning phase, TANGO separated from MANGO on the 11th of August 2010. All operational modes have been successfully tested, and the pointing performance in flight is in accordance with expectations. The robust Sun Acquisition mode reduced the initial tip-off rate and placed TANGO into a safe attitude in MANGO. At the same time, it points its solar panel towards the Sun, and all payload equipments can be switched on without any restriction. This paper gives an overview of the TANGO Attitude Control System design. It then presents the flight results in the different operating modes. Finally, it highlights the key elements at the origin of the successful 3-axis magnetic control strategy on the TANGO satellite.

  11. Configuration management issues and objectives for a real-time research flight test support facility

    Science.gov (United States)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  12. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    Science.gov (United States)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  13. Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation

    Science.gov (United States)

    Murman, E. M.

    1982-01-01

    The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.

  14. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    Science.gov (United States)

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  15. Flight test of a head-worn display as an equivalent-HUD for terminal operations

    Science.gov (United States)

    Shelton, K. J.; Arthur, J. J.; Prinzel, L. J.; Nicholas, S. N.; Williams, S. P.; Bailey, R. E.

    2015-05-01

    Research, development, test, and evaluation of flight deck interface technologies is being conducted by NASA to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in the Next Generation Air Transportation System (NextGen). Under NASA's Aviation Safety Program, one specific area of research is the use of small Head-Worn Displays (HWDs) as a potential equivalent display to a Head-up Display (HUD). Title 14 of the US CFR 91.175 describes a possible operational credit which can be obtained with airplane equipage of a HUD or an "equivalent"' display combined with Enhanced Vision (EV). A successful HWD implementation may provide the same safety and operational benefits as current HUD-equipped aircraft but for significantly more aircraft in which HUD installation is neither practical nor possible. A flight test was conducted to evaluate if the HWD, coupled with a head-tracker, can provide an equivalent display to a HUD. Approach and taxi testing was performed on-board NASA's experimental King Air aircraft in various visual conditions. Preliminary quantitative results indicate the HWD tested provided equivalent HUD performance, however operational issues were uncovered. The HWD showed significant potential as all of the pilots liked the increased situation awareness attributable to the HWD's unique capability of unlimited field-of-regard.

  16. Testing command and control of the satellites in formation flight

    Science.gov (United States)

    Gheorghe, Popan; Gheorghe, Gh. Ion; Gabriel, Todoran

    2013-10-01

    The topics covered in the paper are mechatronic systems for determining the distance between the satellites and the design of the displacement system on air cushion table for satellites testing. INCDMTM has the capability to approach the collaboration within European Programms (ESA) of human exploration of outer space through mechatronic systems and accessories for telescopes, mechatronics systems used by the launchers, sensors and mechatronic systems for the robotic exploration programs of atmosphere and Mars. This research has a strong development component of industrial competitiveness many of the results of space research have direct applicability in industrial fabrication.

  17. NASA-FAA helicopter Microwave Landing System curved path flight test

    Science.gov (United States)

    Swenson, H. N.; Hamlin, J. R.; Wilson, G. W.

    1984-01-01

    An ongoing series of joint NASA/FAA helicopter Microwave Landing System (MLS) flight tests was conducted at Ames Research Center. This paper deals with tests done from the spring through the fall of 1983. This flight test investigated and developed solutions to the problem of manually flying curved-path and steep glide slope approaches into the terminal area using the MLS and flight director guidance. An MLS-equipped Bell UH-1H helicopter flown by NASA test pilots was used to develop approaches and procedures for flying these approaches. The approaches took the form of Straight-in, U-turn, and S-turn flightpaths with glide slopes of 6 deg, 9 deg, and 12 deg. These procedures were evaluated by 18 pilots from various elements of the helicopter community, flying a total of 221 hooded instrument approaches. Flying these curved path and steep glide slopes was found to be operationally acceptable with flight director guidance using the MLS.

  18. Preliminary studies of microchannel plate photomultiplier tube neutron detectors for flight test applications

    International Nuclear Information System (INIS)

    Dolan, K.W.

    1978-10-01

    Electrical, mechanical, thermal, and neutron response data indicate that microchannel plate photomultiplier tubes are viable candidates as miniature, ruggedized neutron detectors for flight test applications in future weapon systems

  19. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    Science.gov (United States)

    Jones, Daniel S.; Brooks, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles

  20. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  1. Qualification and Flight Test of Non-Chrome Primers for C-130 Aircraft

    Science.gov (United States)

    2011-08-17

    system  Significant hexavalent chrome reduction in finish system  Potential exposure level of spray applied chromated conversion coating not as...Lockheed Martin Aeronautics Company Qualification and Flight Test of Non- Chrome Primers for C-130 Aircraft Scott Jones Lockheed Martin...00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Qualification and Flight Test of Non- Chrome Primers for C-130 Aircraft 5a. CONTRACT NUMBER 5b. GRANT

  2. Finding of No Significant Impact and Environmental Assessment for Flight Test to the Edge of Space

    Science.gov (United States)

    2008-12-01

    Runway 22 or on Rogers Dry Lakebed at Edwards AFB. 17 On the basis of the findings of the Environmental Assessment, no significant impact to human...FLIGHT TEST CENTER Environmental Assessment for Flight Test to the Edge of Space Page 5-3 Bowles, A.E., S. Eckert, L . Starke, E. Berg, L . Wolski, and...Numbers. Anne Choate, Laura 20 Pederson , Jeremy Scharfenberg, Henry Farland. Washington, D.C. September. 21 Jeppesen Sanderson, Incorporated 22

  3. Wind tunnel test IA300 analysis and results, volume 1

    Science.gov (United States)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  4. Reproducibility of the results in ultrasonic testing

    International Nuclear Information System (INIS)

    Chalaye, M.; Launay, J.P.; Thomas, A.

    1980-12-01

    This memorandum reports on the conclusions of the tests carried out in order to evaluate the reproducibility of ultrasonic tests made on welded joints. FRAMATOME have started a study to assess the dispersion of results afforded by the test line and to characterize its behaviour. The tests covered sensors and ultrasonic generators said to be identical to each other (same commercial batch) [fr

  5. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    Science.gov (United States)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  6. Tests and Calibration of the NIF Neutron Time of Flight Detectors

    International Nuclear Information System (INIS)

    Ali, Z.A.; Glebov, V.Yu.; Cruz, M.; Duffy, T.; Stoeckl, C.; Roberts, S.; Sangster, T.C.; Tommasini, R.; Throop, A; Moran, M.; Dauffy, L.; Horsefield, C.

    2008-01-01

    The National Ignition Facility (NIF) Neutron Time of Flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD (D = deuterium, T = tritium, H = hydrogen) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 10 9 to 2 x 10 19 . The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 m and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory (LLNL). Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detectors tests and calibration will be presented

  7. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    Science.gov (United States)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  8. Development of a test and flight engineering oriented language, phase 3

    Science.gov (United States)

    Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.

    1970-01-01

    Based on an analysis of previously developed test oriented languages and a study of test language requirements, a high order language was designed to enable test and flight engineers to checkout and operate the proposed space shuttle and other NASA vehicles and experiments. The language is called ALOFT (a language oriented to flight engineering and testing). The language is described, its terminology is compared to similar terms in other test languages, and its features and utilization are discussed. The appendix provides the specifications for ALOFT.

  9. The development of a SAR dedicated navigation system: from scratch to the first test flight: 2004BU1-RE

    NARCIS (Netherlands)

    Lorga, J.F.M.; Rossum, W.L. van; Halsema, D. van; Chu, Q.P.; Mulder, J.A.

    2004-01-01

    In this paper, the authors propose to describe the development process of a navigation system, concerning Syntectic Aperture Radar (SAR) applications, starting from the motivation for the sensor selection and finalizing with the first flight-test results. Sensors selection was one of the first steps

  10. Flight Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane with the Lower Vertical Tail Removed, TED No.DE 368

    Science.gov (United States)

    Lovell, Powell M., Jr.

    1954-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.

  11. Operational Lessons Learned from the Ares I-X Flight Test

    Science.gov (United States)

    Davis, Stephan R.

    2010-01-01

    The Ares I-X flight test, launched in 2009, is the first test of the Ares I crew launch vehicle. This development flight test evaluated the flight dynamics, roll control, and separation events, but also provided early insights into logistical, stacking, launch, and recovery operations for Ares I. Operational lessons will be especially important for NASA as the agency makes the transition from the Space Shuttle to the Constellation Program, which is designed to be less labor-intensive. The mission team itself comprised only 700 individuals over the life of the project compared to the thousands involved in Shuttle and Apollo missions; while missions to and beyond low-Earth orbit obviously will require additional personnel, this lean approach will serve as a model for future Constellation missions. To prepare for Ares I-X, vehicle stacking and launch infrastructure had to be modified at Kennedy Space Center's Vehicle Assembly Building (VAB) as well as Launch Complex (LC) 39B. In the VAB, several platforms and other structures designed for the Shuttle s configuration had to be removed to accommodate the in-line, much taller Ares I-X. Vehicle preparation activities resulted in delays, but also in lessons learned for ground operations personnel, including hardware deliveries, cable routing, transferred work and custodial paperwork. Ares I-X also proved to be a resource challenge, as individuals and ground service equipment (GSE) supporting the mission also were required for Shuttle or Atlas V operations at LC 40/41 at Cape Canaveral Air Force Station. At LC 39B, several Shuttle-specific access arms were removed and others were added to accommodate the in-line Ares vehicle. Ground command, control, and communication (GC3) hardware was incorporated into the Mobile Launcher Platform (MLP). The lightning protection system at LC 39B was replaced by a trio of 600-foot-tall towers connected by a catenary wire to account for the much greater height of the vehicle. Like Shuttle

  12. Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight

    Science.gov (United States)

    Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.

    2016-01-01

    compression garment during the second testing session in Scotland, but none wore it during testing at JSC. RESULTS: The mean Delta HR from the supine to standing position in the 8 crewmembers measured pre-flight or 60 days after return from long-duration space flight was 9.8 bpm. During the first few hours after landing from long-duration space flight, the mean Delta HR of the 6 crewmembers who wore the Russian Kentavr compression garment in Kazakhstan or Karaganda was +14 bpm and the change in mean arterial pressure (Delta MAP) was +0.8 mmHg, while the 2 crewmembers who did not wear the Russian Kentavr compression garment had a Delta HR of +38 bpm and a Delta MAP of +1.1 mmHg. In Scotland, 4 crewmembers wore the Russian Kentavr compression garment and had a Delta HR of +7.4 bpm while the 3 crewmembers who did not wear it had a Delta HR of +25.0 bpm. Seven crewmembers were tested upon return to JSC approx. 24 hr after landing, but none wore the Russian Kentavr compression garment and their Delta HR was 16.0 bpm. CONCLUSIONS: These are the first stand-test data to be collected from long-duration crewmembers during the first 24 hr of re-adaptation to gravity on Earth. The Delta HR measured in crewmembers who completed the stand-test while wearing Kentavr within the first approx.4 hours after returning to Earth was only slightly elevated from pre-flight Delta HR, while the few subjects who did not wear the Russian Kentavr compression garment had a much larger increase in HR in order to maintain arterial pressure throughout 3.5-min of standing. These data demonstrate the effectiveness of a compression garment in preventing large increases in HR during a 3.5 min stand test after long-duration space flight. However, the fact that three crewmembers were too ill to complete the test or was not able to complete 3.5 min of standing despite wearing the Russian Kentavr compression garment indicates that wearing a compression garment does not resolve all problems crewmembers face during

  13. Test Results for the Automated Rendezvous and Capture System

    Science.gov (United States)

    Cruzen, Craig; Dabney, Richard; Lomas, James

    1999-01-01

    The Automated Rendezvous and Capture (AR&C) system was designed and tested at NASA's Marshall Space Flight Center (MSFC) to demonstrate technologies and mission strategies for automated rendezvous and docking of spacecraft in Earth orbit, The system incorporates some of the latest innovations in Global Positioning, System space navigation, laser sensor technologies and automated mission sequencing algorithms. The system's initial design and integration was completed in 1998 and has undergone testing at MSFC. This paper describes the major components of the AR&C system and presents results from the official system tests performed in MSFC's Flight Robotics Laboratory with digital simulations and hardware in the loop tests. The results show that the AR&C system can safely and reliably perform automated rendezvous and docking missions in the absence of system failures with 100 percent success. When system failures are included, the system uses its automated collision avoidance maneuver logic to recover in a safe manner. The primary objective of the AR&C project is to prove that by designing a safe and robust automated system, mission operations cost can be reduced by decreasing the personnel required for mission design, preflight planning and training required for crewed rendezvous and docking missions.

  14. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  15. Space flight research leading to the development of enhanced plant products: Results from STS-94

    Science.gov (United States)

    Stodieck, Louis S.; Hoehn, Alex; Heyenga, A. Gerard

    1998-01-01

    Products derived from plants, such as foods, pharmaceuticals, lumber, paper, oils, etc., are pervasive in everyday life and generate revenues in the hundreds of billions of dollars. Research on space-grown plants has the potential to alter quantities, properties and types of plant-derived products in beneficial ways. Research on space grown plants may help expand the utilization of this resource for Earth based benefit to an even greater extent. The use of space flight conditions may help provide a greater understanding and ultimate manipulation of the metabolic and genetic control of commercially important plant products. Companies that derive and sell plant products could significantly benefit from investing in space research and development. A flight investigation was conducted on the Shuttle mission STS-94 to establish the initial experimental conditions necessary to test the hypothesis that the exposure of certain plant forms to an adequate period of microgravity may divert the cell metabolic expenditure on structural compounds such as lignin to alternative secondary metabolic compounds which are of commercial interest. Nine species of plants were grown for 16 days in the Astro/Plant Generic Bioprocessing Apparatus (Astro/PGBA) under well-controlled environmental conditions. Approximately half of the plant species exhibited significant growth comparable with synchronous ground controls. The other flight plant species were stunted and showed signs of stress with the cause still under investigation. For the plants that grew well, analyses are underway and are expected to demonstrate the potential for space flight biotechnology research.

  16. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    Science.gov (United States)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  17. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    Science.gov (United States)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  18. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    Science.gov (United States)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  19. RTG performance on Galileo and Ulysses and Cassini test results

    International Nuclear Information System (INIS)

    Kelly, C. Edward; Klee, Paul M.

    1997-01-01

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted

  20. RTG performance on Galileo and Ulysses and Cassini test results

    International Nuclear Information System (INIS)

    Kelly, C.E.; Klee, P.M.

    1997-01-01

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted. copyright 1997 American Institute of Physics

  1. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    Science.gov (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  2. Results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.; Komine, Kuniaki; Matsumoto, Tomoyuki; Costello, J.F.

    1998-05-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed by the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed

  3. Heart Rate Measures of Flight Test and Evaluation

    National Research Council Canada - National Science Library

    Bonner, Malcolm A; Wilson, Glenn F

    2001-01-01

    .... Because flying is a complex task, several measures are required to derive the best evaluation. This article describes the use of heart rate to augment the typical performance and subjective measures used in test and evaluation...

  4. The PANDA facility and first test results

    International Nuclear Information System (INIS)

    Dreier, J.; Huggenberger, M.; Aubert, C.; Bandurski, T.; Fischer, O.; Healzer, J.; Lomperski, S.; Strassberger, H.J.; Varadi, G.; Yadigaroglu, G.

    1996-01-01

    The PANDA test facility at the Paul Scherrer Institute is used to study the long-term performance of the Simplified Boiling Water Reactor's passive containment cooling system. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensable gases in the system. The facility is in 1:1 vertical scale and 1:25 scale for volume, power etc. Extensive facility characterization tests and steady-state passive containment condenser performance tests are presented. The results of the base case test of a series of transient system behaviour tests are reviewed. The first PANDA tests exhibited reproducibility, and indicated that the Simplified Boiling Water Reactor's containment is likely to be favorably responsive and highly robust to changes in the thermal transport patterns. (orig.) [de

  5. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  6. Acquisition/expulsion system for earth orbital propulsion system study. Volume 4: Flight test article

    Science.gov (United States)

    1973-01-01

    Two orbital test plans were prepared to verify one of the passive cryogenic storage tank/feedline candidate designs. One plan considered the orbital test article to be launched as a dedicated payload using an Atlas F burner launching configuration. The second plan proposed to launch the orbital test article as a secondary payload on the Titan E/Centaur proof flight. The secondary payload concept was pursued until January 1973, when work to build the hardware for this phase of the contract was terminated for lack of a sponsor for the flight. The dedicated payload launched on an Atlas F is described.

  7. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  8. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  9. Alternative filtration testing program: Pre-evaluation of test results

    International Nuclear Information System (INIS)

    Georgeton, G.K.; Poirier, M.R.

    1990-01-01

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing

  10. Alternative filtration testing program: Pre-evaluation of test results

    Energy Technology Data Exchange (ETDEWEB)

    Georgeton, G.K.; Poirier, M.R.

    1990-09-28

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing.

  11. The third flight of the Colorado high-resolution echelle stellar spectrograph (CHESS): improvements, calibrations, and preliminary results

    Science.gov (United States)

    Kruczek, Nicholas; Nell, Nicholas; France, Kevin; Hoadley, Keri; Fleming, Brian; Kane, Robert; Ulrich, Stefan; Egan, Arika; Beatty, Dawson

    2017-08-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado HighResolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the third launch of the payload (CHESS-3). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) crossdispersing grating, and is designed to achieve a resolving power R > 100,000 over the bandpass λλ 1000-1600 Å. Results from final efficiency and reflectivity measurements for the optical components of CHESS-3 are presented. An important role of sounding rocket experiments is the testing and verification of the space flight capabilities of experimental technologies. CHESS-3 utilizes a 40mm-diameter cross-strip anode microchannel plate detector fabricated by Sensor Sciences LLC, capable of achieving high spatial resolution and a high global count rate (˜1 MHz). We present pre-flight laboratory spectra and calibration results, including wavelength solution and resolving power of the instrument. The fourth launch of CHESS (CHESS-4) will demonstrate a δ-doped CCD, assembled in collaboration with the Microdevices Laboratory at JPL and Arizona State University. In support of CHESS-4, the CHESS-3 payload included a photomultiplier tube, used as a secondary confirmation of the optical alignment of the payload during flight. CHESS-3 launched on 26 June 2017 aboard NASA/CU sounding rocket mission 36.323 UG. We present initial flight results for the CHESS-3 observation of the β1 Scorpii sightline.

  12. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  13. Test results of HTTR control system

    International Nuclear Information System (INIS)

    Motegi, Toshihiro; Iigaki, Kazuhiko; Saito, Kenji; Sawahata, Hiroaki; Hirato, Yoji; Kondo, Makoto; Shibutani, Hideki; Ogawa, Satoru; Shinozaki, Masayuki; Mizushima, Toshihiko; Kawasaki, Kozo

    2006-06-01

    The plant control performance of the IHX helium flow rate control system, the PPWC helium flow rate control system, the secondary helium flow rate control system, the inlet temperature control system, the reactor power control system and the outlet temperature control system of the HTTR are obtained through function tests and power-up tests. As the test results, the control systems show stable control response under transient condition. Both of inlet temperature control system and reactor power control system shows stable operation from 30% to 100%, respectively. This report describes the outline of control systems and test results. (author)

  14. Analysis of Droplet Size during the Ice Accumulation Phase Of Flight Testing

    Science.gov (United States)

    Miller, Eric James

    2004-01-01

    There are numerous hazards associated with air travel. One of the most serious dangers to the pilot and passengers safety is the result of flying into conditions which are conducive to the formation of ice on the surface of an aircraft. Being a pilot myself I am very aware of the dangers that Icing can pose and the effects it can have on an airplane. A couple of the missions of the Icing branch is to make flying safer with more research to increase our knowledge of how ice effects the aerodynamics of an airfoil, and to increase are knowledge of the weather for better forecasting. The Icing Branch uses three different tools to determine the aerodynamic affects that icing has on a wing. The Icing research tunnel is an efficient way to test various airfoils in a controlled setting. To make sure the data received from the wind tunnel is accurate the Icing branch conducts real flight tests with the DHC-6 Twin Otter. This makes sure that the methods used in the wind tunnel accurately model what happens on the actual aircraft. These two tools are also compared to the LEWICE code which is a program that models the ice shape that would be formed on an airfoil in the particular weather conditions that are input by the user. One benefit of LEWICE is that it is a lot cheaper to run than the wind tunnel or flight tests which make it a nice tool for engineers designing aircraft that don t have the money to spend on icing research. Using all three of these tools is a way to cross check the data received from one and check it against the other two. industries, but it is also looked at by weather analysts who are trying to improve forecasting methods. The best way to avoid the troubles of icing encounters is to not go into it in the first place. By looking over the flight data the analyst can determine which conditions will most likely lead to an icing encounter and then this information will aid forecasters when briefing the pilots on the weather conditions. am looking at the

  15. BWR Full Integral Simulation Test (FIST). Phase I test results

    International Nuclear Information System (INIS)

    Hwang, W.S.; Alamgir, M.; Sutherland, W.A.

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report

  16. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    Science.gov (United States)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  17. SULTAN test facility: Summary of recent results

    International Nuclear Information System (INIS)

    Stepanov, Boris; Bruzzone, Pierluigi; Sedlak, Kamil; Croari, Giancarlo

    2013-01-01

    The test campaigns of the ITER conductors in the SULTAN test facility re-started in December 2011 after three months break. The main focus of the activities is about the qualification tests of the Central Solenoid (CS) conductors, with three different samples for a total six variations of strand suppliers and cable layouts. In 2012, five Toroidal Field (TF) conductor samples have also been tested as part of the supplier and process qualification phase of the European, Korean, Chinese and Russian Federation Agencies. A summary of the test results for all the ITER samples tested in the last period is presented, including an updated statistics of the broad transition, the performance degradation and the impact of layout variations. The role of SULTAN test facility during the ITER construction is reviewed, and the load of work for the next three years is anticipated

  18. Production LHC HTS power lead test results

    CERN Document Server

    Tartaglia, M; Fehér, S; Huang, Y; Orris, D F; Pischalnikov, Y; Rabehl, Roger Jon; Sylvester, C D; Zbasnik, J

    2005-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under "standard" and "extreme" operating conditions, and the stability of performance across thermal cycles.

  19. Production LHC HTS power lead test results

    International Nuclear Information System (INIS)

    Tartaglia, M.A.; Carcagno, R.H.; Feher, S.; Huang, Y.; Orris, D.F.; Pischalnikov, Y.; Rabehl, R.J.; Sylvester, C.; Zbasnik, J.

    2004-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under ''standard'' and ''extreme'' operating conditions, and the stability of performance across thermal cycles

  20. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  1. Current Hypersonic and Space Vehicle Flight Test and Instrumentation

    Science.gov (United States)

    2015-06-22

    ground station hardware and software. B. Space- based Platforms There are already in place several satellite based options to collecting and... Transceive data over very long range at low to very high altitudes DARPA: XS-1 Ground Based Aircraft Based Space Based Future Data...412TW-PA-15264 AIR FORCE TEST CENTER EDWARDS AIR FORCE BASE , CALIFORNIA AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE REPORT

  2. Fixed Wing Performance. Theory and Flight Test Techniques

    Science.gov (United States)

    1977-07-01

    descent data by digital computer routines is common practice at both military and contractor test facilities. The Wautomatic data reduction process...inability to reach ruider pedals or foot controls , inability to fit through emergency egrean openlngs, etc. CONTROl. DESIGN Contiols must meot various...most important controls should be the easiest to reach and manipulate. Controls should never be located such that the hand or arm manipulating the

  3. NPS Solar Cell Array Tester Cubesat Flight Testing and Integration

    Science.gov (United States)

    2014-09-01

    with current (I). P V I      (2.1) This is significant because the battery discharge test will not lineup perfectly with Figure 12...accordance with the charging procedures [13]. 3. NPS-SCAT Power Budget A power budget analysis was performed to determine if the NPS-SCAT is self...using procedures developed by Marissa Brummitt, and with the assistance of Adam Hill, NPS-SCAT Program Manager. 1. ELaNa IV Random Vibration Levels

  4. Real-time flight test data distribution and display

    Science.gov (United States)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  5. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    Science.gov (United States)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  6. Control and Non-Payload Communications Generation 1 Prototype Radio Flight Test Report

    Science.gov (United States)

    Shalkhauser, Kurt A.; Young, Daniel P.; Bretmersky, Steven C.; Ishac, Joseph A.; Walker, Steven H.; Griner, James H.; Kachmar, Brian A.

    2014-01-01

    regularity of flight. Only recently has radiofrequency (RF) spectrum been allocated by the International Telecommunications Union specifically for commercial UA C2, LOS communication (L-Band: 960 to 1164 MHz, and C-Band: 5030 to 5091 MHz). The safe and efficient integration of UA into the NAS requires the use of protected RF spectrum allocations and a new data communications system that is both secure and scalable to accommodate the potential growth of these new aircraft. Data communications for UA-referred to as control and non-payload communications (CNPC)-will be used to exchange information between a UA and a ground station (GS) to ensure safe, reliable, and effective UA flight operation. The focus of this effort is on validating and allocating new RF spectrum and data link communications to enable civil UA integration into the NAS. Through a cost-sharing cooperative agreement with Rockwell Collins, Inc., the NASA Glenn Research Center is exploring and performing the necessary development steps to realize a prototype UA CNPC system. These activities include investigating signal waveforms and access techniques, developing representative CNPC radio hardware, and executing relevant testing and validation activities. There is no intent to manufacture the CNPC end product, rather the goals are to study, demonstrate, and validate a typical CNPC system that will allow safe and efficient communications within the L-Band and C-Band spectrum allocations. The system is addressing initial "seed" requirements from RTCA, Inc., Special Committee 203 (SC-203) and is on a path to Federal Aviation Administration certification. This report provides results from the flight testing campaign of the Rockwell Collins Generation 1 prototype radio, referred hereafter as the "radio." The radio sets operate within the 960- to 977-MHz frequency band with both air and ground radios using identical hardware. Flight tests involved one aircraft and one GS. Results include discussion of aircraft flight

  7. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  8. Tether dynamics and control results for tethered satellite system's initial flight

    Science.gov (United States)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  9. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Flight Test Report

    Science.gov (United States)

    Iannicca, Dennis C.; Ishac, Joseph A.; Shalkhauser, Kurt A.

    2015-01-01

    NASA Glenn Research Center (GRC), in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the Federal Aviation Administration (FAA) and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the GRC prototype CNPC architecture as a demonstration platform. The proposed security controls were integrated into the GRC flight test system aboard our S-3B Viking surrogate aircraft and several network tests were conducted during a flight on November 15th, 2014 to determine whether the controls were working properly within the flight environment. The flight test was also the first to integrate Robust Header Compression (ROHC) as a means of reducing the additional overhead introduced by the security controls and Mobile IPv6. The effort demonstrated the complete end-to-end secure CNPC link in a relevant flight environment.

  10. Role of HZE particles in space flight - Results from spaceflight and ground-based experiments

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H.; Facius, R.

    1981-09-01

    Selected results from experiments investigating the potentially specific radiobiological importance of the cosmic HZE (equals high Z, energetic) particles are discussed. Results from the Biostack space flight experiments, which were designed to meet the experimental requirements imposed by the microdosimetric nature of this radiation field, clearly indicate the existence of radiation mechanisms which become effective only at higher values of LET (linear energy transfer). Accelerator irradiation studies are reviewed which conform with this conjecture. The recently discovered production of 'micro-lesions' in mammalian tissues by single HZE particles is possibly the most direct evidence. Open questions concerning the establishment of radiation standards for manned spaceflight, such as late effects, interaction with flight dynamic parameters, and weightlessness, are indicated.

  11. Flight Testing and Real-Time System Identification Analysis of a UH-60A Black Hawk Helicopter with an Instrumented External Sling Load

    Science.gov (United States)

    McCoy, Allen H.

    1998-01-01

    Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near

  12. Immunotoxicity and genotoxicity testing for in-flight experiments under microgravity

    Science.gov (United States)

    Hansen, Peter-Diedrich; Hansen, Peter-Diedrich; Unruh, Eckehardt

    Life Sciences as Related to Space (F) Influence of Spaceflight Environment on Biological Systems (F44) Immunotoxicity and genotoxicity testing for In-flight experiments under microgravity Sensing approaches for ecosystem and human health Author: Peter D. Hansen Technische Universit¨t Berlin, Faculty VI - Planen, Bauen, Umwelt, a Institute for Ecological Research and Technology, Department for Ecotoxicology, Berlin, Germany Peter-diedrich.hansen@tu-berlin.de Eckehardt Unruh Technische Universit¨t Berlin, Faculty VI - Planen, Bauen, Umwelt, Institute a for Ecological Research and Technology, Department for Ecotoxicology, Berlin, Germany An immune response by mussel hemocytes is the selective reaction to particles which are identified as foreign by its immune system shown by phagocytosis. Phagocytotic activity is based on the chemotaxis and adhesion, ingestion and phagosome formation. The attachment at the surface of the hemocytes and consequently the uptake of the particles or bacteria can be directly quantified in the format of a fluorescent assay. Another relevant endpoint of phagocytosis is oxidative burst measured by luminescence. Phagocytosis-related production of ROS will be stimulated with opsonised zymosan. The hemocytes will be stored frozen at -80oC and reconstituted in-flight for the experiment. The assay system of the TRIPLELUX-B Experiment has been performed with a well-defined quantification and evaluation of the immune function phagocytosis. The indicator cells are the hemocytes of blue mussels (Mytilus edulis). The signals of the immuno cellular responses are translated into luminescence as a rapid optical reporter system. The results expected will determine whether the observed responses are caused by microgravity and/or radiation (change in permeability, endpoints in genotoxicity: DNA unwinding). The samples for genotoxicity will be processed after returning to earth. The immune system of invertebrates has not been studied so far in space. The

  13. Aeroelastic model identification of winglet loads from flight test data

    NARCIS (Netherlands)

    Reijerkerk, M.J.

    2008-01-01

    Numerical computational methods are getting more and more sophisticated every day, enabling more accurate aircraft load predictions. In the structural design of aircraft higher levels of flexibility can be tolerated to arrive at a substantial weight reduction. The result is that aircraft of the

  14. Flight Tests of a Remaining Flying Time Prediction System for Small Electric Aircraft in the Presence of Faults

    Science.gov (United States)

    Hogge, Edward F.; Kulkarni, Chetan S.; Vazquez, Sixto L.; Smalling, Kyle M.; Strom, Thomas H.; Hill, Boyd L.; Quach, Cuong C.

    2017-01-01

    This paper addresses the problem of building trust in the online prediction of a battery powered aircraft's remaining flying time. A series of flight tests is described that make use of a small electric powered unmanned aerial vehicle (eUAV) to verify the performance of the remaining flying time prediction algorithm. The estimate of remaining flying time is used to activate an alarm when the predicted remaining time is two minutes. This notifies the pilot to transition to the landing phase of the flight. A second alarm is activated when the battery charge falls below a specified limit threshold. This threshold is the point at which the battery energy reserve would no longer safely support two repeated aborted landing attempts. During the test series, the motor system is operated with the same predefined timed airspeed profile for each test. To test the robustness of the prediction, half of the tests were performed with, and half were performed without, a simulated powertrain fault. The pilot remotely engages a resistor bank at a specified time during the test flight to simulate a partial powertrain fault. The flying time prediction system is agnostic of the pilot's activation of the fault and must adapt to the vehicle's state. The time at which the limit threshold on battery charge is reached is then used to measure the accuracy of the remaining flying time predictions. Accuracy requirements for the alarms are considered and the results discussed.

  15. Flight Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in a Setup Simulating that Proposed for Captive-Flight Tests in a Hangar, TED No. NACA DE 368

    Science.gov (United States)

    Lovell, Powell M., Jr.

    1953-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a 0.13-scale free-flight model of the Convair XFY-1 airplane in test setups representing the setup proposed for use in the first flight tests of the full-scale airplane in the Moffett Field airship hangar. The investigation was conducted in two parts: first, tests with the model flying freely in an enclosure simulating the hangar, and second, tests with the model partially restrained by an overhead line attached to the propeller spinner and ground lines attached to the wing and tail tips. The results of the tests indicated that the airplane can be flown without difficulty in the Moffett Field airship hangar if it does not approach too close to the hangar walls. If it does approach too close to the walls, the recirculation of the propeller slipstream might cause sudden trim changes which would make smooth flight difficult for the pilot to accomplish. It appeared that the tethering system proposed by Convair could provide generally satisfactory restraint of large-amplitude motions caused by control failure or pilot error without interfering with normal flying or causing any serious instability or violent jerking motions as the tethering lines restrained the model.

  16. Aeroelastic model identification of winglet loads from flight test data

    OpenAIRE

    Reijerkerk, M.J.

    2008-01-01

    Numerical computational methods are getting more and more sophisticated every day, enabling more accurate aircraft load predictions. In the structural design of aircraft higher levels of flexibility can be tolerated to arrive at a substantial weight reduction. The result is that aircraft of the future can be bigger, have better performance and less mass. The performance of an aircraft can be even further enhanced by the use of winglets or other wing tip devices. A more flexible structure in c...

  17. Reproducibility of the results in nondestructive testing

    International Nuclear Information System (INIS)

    Launay, J.P.; Chalaye, H.; Thomas, A.

    1980-10-01

    Pressure vessels must comply with very severe safety criteria. In order to ensure that the required quality is attained, non destructive tests are used and these have to be highly reliable: magnetoscopy and liquid penetration for surface examinations, radiography and ultrasonics for voluminal examinations. In the case of ultrasonic examinations, a study of parameters has been made and a statistical analysis of the results has made it possible to calculate the dispersion due to the testing equipment [fr

  18. Acknowledging the results of blood tests

    DEFF Research Database (Denmark)

    Torkilsheyggi, Arnvør Martinsdottir á; Hertzum, Morten

    At the studied hospital, physicians from the Medical and Surgical Departments work some of their shifts in the Emergency Department (ED). Though icons showing the blood-test process were introduced on electronic whiteboards in the ED, these icons did not lead to increased attention to test acknow...... acknowledgement. Rather, the physicians, trans-ferred work practices from their own departments, which did not have electronic white-boards, to the ED. This finding suggests a challenge to the cross-disciplinary work and norms for how to follow up on blood-test results in the ED....

  19. Some results of the effect of space flight factors on Drosophila melanogaster

    International Nuclear Information System (INIS)

    Filatova, L.P.; Vaulina, E.N.

    1983-01-01

    Chromosomal effects of space flight factors were investigated in Drosophila melanogaster flown aboard the Salyut 6 orbital station. Drosophila males heterozygous for four linked traits were exposed to space flight conditions for periods of eight days, and the progeny when the males were mated with homozygous recessive females were compared with those from control flies exposed to the same vibration and acceleration environment, and the progeny of laboratory controls. Increases in recombination and nondisjunction frequencies were observed in the flies exposed to the space environment, with recombinant flies also found in the F1 generation of the vibration and acceleration controls. Results suggest that it is the action of heavy particles that accounts for the major portion of the genetic effects observed. 17 references

  20. Results of interlaboratory tests regarding TXRF

    International Nuclear Information System (INIS)

    Klockenkaemper, R.; Bohlen, A. von

    2000-01-01

    Interlaboratory or intercomparison tests can be performed for proficiency testing of individual laboratories, for the certification of a special sample material and for the validation of a certain method. We participated in two interlaboratory tests in order to validate total reflection x-ray fluorescence analysis (TXRF). We used our results to evaluate TXRF and to compare it with other competing methods, particularly with respect of precision and accuracy. The first interlaboratory test was organized by IAEA (International Atomic Energy Agency, Vienna, Austria). As a candidate for reference material, a lichen (IAEA-336 Lichen) was distributed among 27 participants. In our laboratory, the powdered biogenic material was digested with nitric acid under high pressure and analyzed by TXRF. - The second interlaboratory test was organized by IRMM (Institute for Reference Materials and Measurements, Geel, Belgium). As a certified test sample with undisclosed values, a sediment (IMEP-14) was delivered to 220 laboratories. We digested the geogenic material again by nitric acid and additionally by hydrofluoric acid and analyzed it by TXRF. - In both test samples, six or eight different trace elements, respectively, were determined by TXRF with a content between 2 and 2000 mg/kg. Calibration was carried out by internal standardization. For that purpose, Ga or Se, respectively, was added as standard element. The measurement uncertainty of TXRF was estimated by the method of error propagation. In our paper we will report on the results of the two interlaboratory tests. It will be shown that TXRF is highly reliable for a correct determination of trace elements in biogenic and geogenic samples. It is competitive with the established methods of trace analyses which were involved in these tests and it is even superior to them in certain aspects. (author)

  1. Test Results of PBMR Fuel Spheres

    International Nuclear Information System (INIS)

    Koshcheev, Konstantin; Diakov, Alexander; Beltyukov, Igor; Barybin, Andrey; Chernetsov, Mikhail

    2014-01-01

    Results of pre-irradiation testing of fuel spheres (FS) and coated particles (CP) manufactured by PBMR SOC (Republic of South Africa) are described. The stable high quality level of major characteristics (dimensions, CP coating structure, uranium-235 contamination of the FS matrix graphite and the outer PyC layer of the CP coating) are shown. Results of a methodical irradiation test of two FS in helium and neon medium at temperatures of 800 to 1300 °C with simultaneous determination of release-to-birth ratios for major gaseous fission products (GFP) are described. (author)

  2. UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E

    Science.gov (United States)

    Marston, Michael

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  3. Cascade Distiller System Performance Testing Interim Results

    Science.gov (United States)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  4. The Ares I-1 Flight Test--Paving the Road for the Ares I Crew Launch Vehicle

    Science.gov (United States)

    Davis, Stephan R.; Tinker, Michael L.; Tuma, Meg

    2007-01-01

    In accordance with the U.S. Vision for Space Exploration and the nation's desire to again send humans to explore beyond Earth orbit, NASA has been tasked to send human beings to the moon, Mars, and beyond. It has been 30 years since the United States last designed and built a human-rated launch vehicle. NASA is now building the Ares I crew launch vehicle, which will loft the Orion crew exploration vehicle into orbit, and the Ares V cargo launch vehicle, which will launch the Lunar Surface Access Module and Earth departure stage to rendezvous Orion for missions to the moon. NASA has marshaled unique resources from the government and private sectors to perform the technically and programmatically complex work of delivering astronauts to orbit early next decade, followed by heavy cargo late next decade. Our experiences with Saturn and the Shuttle have taught us the value of adhering to sound systems engineering, such as the "test as you fly" principle, while applying aerospace best practices and lessons learned. If we are to fly humans safely aboard a launch vehicle, we must employ a variety of methodologies to reduce the technical, schedule, and cost risks inherent in the complex business of space transportation. During the Saturn development effort, NASA conducted multiple demonstration and verification flight tests to prove technology in its operating environment before relying upon it for human spaceflight. Less testing on the integrated Shuttle system did not reduce cost or schedule. NASA plans a progressive series of demonstration (ascent), verification (orbital), and mission flight tests to supplement ground research and high-altitude subsystem testing with real-world data, factoring the results of each test into the next one. In this way, sophisticated analytical models and tools, many of which were not available during Saturn and Shuttle, will be calibrated and we will gain confidence in their predictions, as we gain hands-on experience in operating the first

  5. ALICE TRD results from prototype tests

    CERN Document Server

    Andronic, A; Blume, C; Braun-Munzinger, P; Bucher, D; Catanescu, G; Ciobanu, M; Daues, H W; Devismes, A; Finck, C; Herrmann, N; Lister, T A; Mahmoud, Tariq; Peitzmann, Thomas; Petrovici, M; Reygers, K; Santo, R; Schicker, R; Sedykha, S; Simon, R S; Stachel, J; Stelzer, H; Wessels, J P; Winkelmann, O; Windelband, B; Xu, C

    2002-01-01

    We present results from tests of a prototype of the TRD for the ALICE experiment at LHC. We investigate the performance-of different radiator types, composed of foils, fibres and foams. The pion rejection performance for different methods of analysis over a momentum range from 0.7 to 2 GeV/c is presented. (8 refs).

  6. SLD liquid argon calorimeter prototype test results

    International Nuclear Information System (INIS)

    Dubois, R.; Eigen, G.; Au, Y.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses

  7. Cone Penetrometer N Factor Determination Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2014-03-05

    This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

  8. Ball Aerospace SBMD Coating Test Results

    Science.gov (United States)

    Brown, Robert; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The Sub-scale Beryllium Mirror Demonstrator that was successfully tested to demonstrate cryogenic figuring of a bare mirror has been coated with a protected gold reflective surface and retested at cryogenic temperatures. Results showing less than 9 nm rms surface distortion attributable to the added coating are presented.

  9. Space dosimetry measurement results using the Pille instrument during the EUROMIR/NASAMIR space flights

    International Nuclear Information System (INIS)

    Hejja, I.; Apathy, J.; Deme, S.

    1997-01-01

    The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)

  10. Development of an Antimicrobial Susceptibility Testing Method Suitable for Performing During Space Flight

    Science.gov (United States)

    Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.

    1997-01-01

    Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control

  11. Ground testing and flight demonstration of charge management of insulated test masses using UV-LED electron photoemission

    Science.gov (United States)

    Saraf, Shailendhar; Buchman, Sasha; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; Suwaidan, Badr Al; AlRashed, Abdullah; Al-Nassban, Badr; Alaqeel, Faisal; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; Alfauwaz, Abdulrahman; Al-Majed, Mohammed; DeBra, Daniel; Byer, Robert

    2016-12-01

    The UV-LED mission demonstrates the precise control of the potential of electrically isolated test masses. Test mass charge control is essential for the operation of space accelerometers and drag-free sensors which are at the core of geodesy, aeronomy and precision navigation missions as well as gravitational wave experiments and observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV-LED mission and prior ground testing demonstrates that AlGaN UVLEDs operating at 255 nm are superior to Hg lamps because of their smaller size, lower power draw, higher dynamic range, and higher control authority. We show laboratory data demonstrating the effectiveness and survivability of the UV-LED devices and performance of the charge management system. We also show flight data from a small satellite experiment that was one of the payloads on KACST’s SaudiSat-4 mission that demonstrates ‘AC charge control’ (UV-LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its housing. The result of the mission brings the UV-LED device Technology Readiness Level (TRL) to TRL-9 and the charge management system to TRL-7. We demonstrate the ability to control the test mass potential on an 89 mm diameter spherical test mass over a 20 mm gap in a drag-free system configuration, with potential measured using an ultra-high impedance contact probe. Finally, the key electrical and optical characteristics of the UV-LEDs showed less than 7.5% change in performance after 12 months in orbit.

  12. Ground testing and flight demonstration of charge management of insulated test masses using UV-LED electron photoemission

    International Nuclear Information System (INIS)

    Saraf, Shailendhar; Buchman, Sasha; Balakrishnan, Karthik; Lui, Chin Yang; Alfauwaz, Abdulrahman; DeBra, Daniel; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; Suwaidan, Badr Al; AlRashed, Abdullah; Al-Nassban, Badr; Alaqeel, Faisal; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; Al-Majed, Mohammed

    2016-01-01

    The UV-LED mission demonstrates the precise control of the potential of electrically isolated test masses. Test mass charge control is essential for the operation of space accelerometers and drag-free sensors which are at the core of geodesy, aeronomy and precision navigation missions as well as gravitational wave experiments and observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV-LED mission and prior ground testing demonstrates that AlGaN UVLEDs operating at 255 nm are superior to Hg lamps because of their smaller size, lower power draw, higher dynamic range, and higher control authority. We show laboratory data demonstrating the effectiveness and survivability of the UV-LED devices and performance of the charge management system. We also show flight data from a small satellite experiment that was one of the payloads on KACST’s SaudiSat-4 mission that demonstrates ‘AC charge control’ (UV-LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its housing. The result of the mission brings the UV-LED device Technology Readiness Level (TRL) to TRL-9 and the charge management system to TRL-7. We demonstrate the ability to control the test mass potential on an 89 mm diameter spherical test mass over a 20 mm gap in a drag-free system configuration, with potential measured using an ultra-high impedance contact probe. Finally, the key electrical and optical characteristics of the UV-LEDs showed less than 7.5% change in performance after 12 months in orbit. (paper)

  13. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  14. Research on computer aided testing of pilot response to critical in-flight events

    Science.gov (United States)

    Giffin, W. C.; Rockwell, T. H.; Smith, P. J.

    1984-01-01

    Experiments on pilot decision making are described. The development of models of pilot decision making in critical in flight events (CIFE) are emphasized. The following tests are reported on the development of: (1) a frame system representation describing how pilots use their knowledge in a fault diagnosis task; (2) assessment of script norms, distance measures, and Markov models developed from computer aided testing (CAT) data; and (3) performance ranking of subject data. It is demonstrated that interactive computer aided testing either by touch CRT's or personal computers is a useful research and training device for measuring pilot information management in diagnosing system failures in simulated flight situations. Performance is dictated by knowledge of aircraft sybsystems, initial pilot structuring of the failure symptoms and efficient testing of plausible causal hypotheses.

  15. Space Launch System Base Heating Test: Experimental Operations & Results

    Science.gov (United States)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  16. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  17. Flight Test of a Propulsion-Based Emergency Control System on the MD-11 Airplane with Emphasis on the Lateral Axis

    Science.gov (United States)

    Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.

    1996-01-01

    A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.

  18. Laboratory results of the AOF system testing

    Science.gov (United States)

    Kolb, Johann; Madec, Pierre-Yves; Arsenault, Robin; Oberti, Sylvain; Paufique, Jérôme; La Penna, Paolo; Ströbele, Stefan; Donaldson, Robert; Soenke, Christian; Suárez Valles, Marcos; Kiekebusch, Mario; Argomedo, Javier; Le Louarn, Miska; Vernet, Elise; Haguenauer, Pierre; Duhoux, Philippe; Aller-Carpentier, Emmanuel; Valenzuela, Jose Javier; Guerra, Juan Carlos

    2016-07-01

    For two years starting in February 2014, the AO modules GRAAL for HAWK-I and GALACSI for MUSE of the Adaptive Optics Facility project have undergone System Testing at ESO's Headquarters. They offer four different modes: NGS SCAO, LGS GLAO in the IR, LGS GLAO and LTAO in the visible. A detailed characterization of those modes was made possible by the existence of ASSIST, a test bench emulating an adaptive VLT including the Deformable Secondary Mirror, a star simulator and turbulence generator and a VLT focal plane re-imager. This phase aimed at validating all the possible components and loops of the AO modules before installation at the actual VLT that comprises the added complexity of real LGSs, a harsher non-reproducible environment and the adaptive telescope control. In this paper we present some of the major results obtained and challenges encountered during the phase of System Tests, like the preparation of the Acquisition sequence, the testing of the Jitter loop, the performance optimization in GLAO and the offload of low-order modes from the DSM to the telescope (restricted to the M2 hexapod). The System Tests concluded with the successful acceptance, shipping, installation and first commissioning of GRAAL in 2015 as well as the acceptance and shipping of GALACSI, ready for installation and commissioning early 2017.

  19. RESULTS OF THE FIRST MI-171A2 FLYING LABORATORY TEST PHASE

    Directory of Open Access Journals (Sweden)

    V. A. Ivchin

    2014-01-01

    Full Text Available The present publication describes the results of the first stage of the flying laboratory (Mi-171 helicopter flight tests performed at Mil Moscow Helicopter Plant, JSC facilities. Main rotor components with blades made of polymer composite materials and X-type tail rotor were tested on the Mi-171 № 14987, flying laboratory, under Mi-171A Helicopter Retrofit Program.

  20. RESULTS OF THE FIRST MI-171A2 FLYING LABORATORY TEST PHASE

    OpenAIRE

    V. A. Ivchin; K. Y. Samsonov

    2014-01-01

    The present publication describes the results of the first stage of the flying laboratory (Mi-171 helicopter) flight tests performed at Mil Moscow Helicopter Plant, JSC facilities. Main rotor components with blades made of polymer composite materials and X-type tail rotor were tested on the Mi-171 № 14987, flying laboratory, under Mi-171A Helicopter Retrofit Program.

  1. Flight results from the gravity-gradient-controlled RAE-1 satellite

    Science.gov (United States)

    Blanchard, D. L.

    1986-01-01

    The in-orbit dynamics of a large, flexible spacecraft has been modeled with a computer simulation, which was used for designing the control system, developing a deployment and gravity-gradient capture procedure, predicting the steady-state behavior, and designing a series of dynamics experiments for the Radio Astronomy Explorer (RAE) satellite. This flexible body dynamics simulator permits three-dimensional, large-angle rotation of the total spacecraft and includes effects of orbit eccentricity, thermal bending, solar pressure, gravitational accelerations, and the damper system. Flight results are consistent with the simulator predictions and are presented for the deployment and capture phases, the steady-state mission, and the dynamics experiments.

  2. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    Science.gov (United States)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  3. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  4. Boeing's STAR-FODB test results

    Science.gov (United States)

    Fritz, Martin E.; de la Chapelle, Michael; Van Ausdal, Arthur W.

    1995-05-01

    Boeing has successfully concluded a 2 1/2 year, two phase developmental contract for the STAR-Fiber Optic Data Bus (FODB) that is intended for future space-based applications. The first phase included system analysis, trade studies, behavior modeling, and architecture and protocal selection. During this phase we selected AS4074 Linear Token Passing Bus (LTPB) protocol operating at 200 Mbps, along with the passive, star-coupled fiber media. The second phase involved design, build, integration, and performance and environmental test of brassboard hardware. The resulting brassboard hardware successfully passed performance testing, providing 200 Mbps operation with a 32 X 32 star-coupled medium. This hardware is suitable for a spaceflight experiment to validate ground testing and analysis and to demonstrate performace in the intended environment. The fiber bus interface unit (FBIU) is a multichip module containing transceiver, protocol, and data formatting chips, buffer memory, and a station management controller. The FBIU has been designed for low power, high reliability, and radiation tolerance. Nine FBIUs were built and integrated with the fiber optic physical layer consisting of the fiber cable plant (FCP) and star coupler assembly (SCA). Performance and environmental testing, including radiation exposure, was performed on selected FBIUs and the physical layer. The integrated system was demonstrated with a full motion color video image transfer across the bus while simultaneously performing utility functions with a fiber bus control module (FBCM) over a telemetry and control (T&C) bus, in this case AS1773.

  5. Results from the CLIC Test Facility

    CERN Document Server

    Braun, H; Bossart, Rudolf; Chautard, F; Corsini, R; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Madsen, J H B; Rinolfi, Louis; Rossat, G; Schreiber, S; Suberlucq, Guy; Thorndahl, L; Wilson, Ian H; Wuensch, Walter

    1996-01-01

    In order to study the principle of the Compact Linear Collider (CLIC) based on the Two Beam Acceleration (TBA) scheme at high frequency, a CLIC Test Facility (CTF) has been set-up at CERN. After four years of successful running, the experimental programme is now fully completed and all its objectives reached, particularly the generation of a high intensity drive beam with short bunches by a photo-injector, the production of 30 GHz RF power and the acceleration of a probe beam by 30 GHz structures. A summary of the CTF results and their impact on linear collider design is given. This covers 30 GHz high power testing, study of intense, short single bunches; as well as RF-Gun, photocathode and beam diagnostic developments. A second phase of the test facility (CTF2) is presently being installed to demonstrate the feasibility of the TBA scheme by constructing a fully engineered, 10 m long, test section very similar to the CLIC drive and main linacs, producing up to 480 MW of peak RF power at 30 GHz and acceleratin...

  6. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    Science.gov (United States)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  7. The Benchmark Test Results of QNX RTOS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Yeol; Lee, Young Jun; Cheon, Se Woo; Lee, Jang Soo; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    A Real-Time Operating System(RTOS) is an Operating System(OS) intended for real-time applications. Benchmarking is a point of reference by which something can be measured. The QNX is a Real Time Operating System(RTOS) developed by QSSL(QNX Software Systems Ltd.) in Canada. The ELMSYS is the brand name of commercially available Personal Computer(PC) for applications such as Cabinet Operator Module(COM) of Digital Plant Protection System(DPPS) and COM of Digital Engineered Safety Features Actuation System(DESFAS). The ELMSYS PC Hardware is being qualified by KTL(Korea Testing Lab.) for use as a Cabinet Operator Module(COM). The QNX RTOS is being dedicated by Korea Atomic Energy Research Institute (KAERI). This paper describes the outline and benchmarking test results on Context Switching, Message Passing, Synchronization and Deadline Violation of QNX RTOS under the ELMSYS PC platform

  8. The Benchmark Test Results of QNX RTOS

    International Nuclear Information System (INIS)

    Kim, Jang Yeol; Lee, Young Jun; Cheon, Se Woo; Lee, Jang Soo; Kwon, Kee Choon

    2010-01-01

    A Real-Time Operating System(RTOS) is an Operating System(OS) intended for real-time applications. Benchmarking is a point of reference by which something can be measured. The QNX is a Real Time Operating System(RTOS) developed by QSSL(QNX Software Systems Ltd.) in Canada. The ELMSYS is the brand name of commercially available Personal Computer(PC) for applications such as Cabinet Operator Module(COM) of Digital Plant Protection System(DPPS) and COM of Digital Engineered Safety Features Actuation System(DESFAS). The ELMSYS PC Hardware is being qualified by KTL(Korea Testing Lab.) for use as a Cabinet Operator Module(COM). The QNX RTOS is being dedicated by Korea Atomic Energy Research Institute (KAERI). This paper describes the outline and benchmarking test results on Context Switching, Message Passing, Synchronization and Deadline Violation of QNX RTOS under the ELMSYS PC platform

  9. Synthesis of low cycle fatigue test results

    International Nuclear Information System (INIS)

    Andrews, R.M.

    1990-01-01

    Axial strain controlled cycle fatigue tests were carried out on type 316 stainless steel parent metal, vacuum and non-vacuum electron beams welds, submerged arc welds and gas shielded metal arc welds. Testing covered total strains in the range 0.6% to 2%, and was at room temperature and 550 0 C. Parent metal and the electron beam welds showed rapid cyclic hardening, while arc welds showed little hardening. The weld metal cyclic stress-strain response was above that obtained for the parent metal, although below data obtained by other workers for similar parent materials. Weld metal endurances were above the ASME N47 continuous cycling design line at both temperatures, and comparable with parent metal data. However, the weld metal data approached the design line at low strain ranges (around 0.5%). Endurances were predicted from crack growth rates estimated from striation spacings, giving acceptable results except for the gas shielded metal arc weldments. (author)

  10. Results from the STAR TPC system test

    International Nuclear Information System (INIS)

    Betts, W.

    1996-01-01

    A system test of various components of the Solenoidal Tracker at RHIC (STAR) detector, operating in concern, has recently come on-line. Communication between a major sub-detector, a sector of the Time Projection Chamber (TPC), and the trigger, data acquisition and slow controls systems has been established, enabling data from cosmic ray muons to be collected. First results from an analysis of the TPC data are presented. These include measurements of system noise, electronic parameters such as amplifier gains and pedestal values, and tracking resolution for cosmic ray muons and laser induced ionization tracks. A discussion on the experience gained in integrating the different components for the system test is also given

  11. A Description of the Software Element of the NASA EME Flight Tests

    Science.gov (United States)

    Koppen, Sandra V.

    1996-01-01

    In support of NASA's Fly-By-Light/Power-By-Wire (FBL/PBW) program, a series of flight tests were conducted by NASA Langley Research Center in February, 1995. The NASA Boeing 757 was flown past known RF transmitters to measure both external and internal radiated fields. The aircraft was instrumented with strategically located sensors for acquiring data on shielding effectiveness and internal coupling. The data are intended to support computational and statistical modeling codes used to predict internal field levels of an electromagnetic environment (EME) on aircraft. The software was an integral part of the flight tests, as well as the data reduction process. The software, which provided flight test instrument control, data acquisition, and a user interface, executes on a Hewlett Packard (HP) 300 series workstation and uses BP VEEtest development software and the C programming language. Software tools were developed for data processing and analysis, and to provide a database organized by frequency bands, test runs, and sensors. This paper describes the data acquisition system on board the aircraft and concentrates on the software portion. Hardware and software interfaces are illustrated and discussed. Particular attention is given to data acquisition and data format. The data reduction process is discussed in detail to provide insight into the characteristics, quality, and limitations of the data. An analysis of obstacles encountered during the data reduction process is presented.

  12. Evaluation of ring tensile test results

    International Nuclear Information System (INIS)

    Chatterjee, S.; Anantharaman, S.; Balakrishnan, K.S.; Sivaramakrish, K.S.

    1990-01-01

    Ring specimens of 5-mm width cut from Zircaloy-2 cladding of reactor operated fuel elements that had experienced 5000 to 15,000 MWD/T of fuel burnup were subjected to ring tensile testing. The true stress-true strain data points up to the onset of necking from the individual load-elongation curves of these specimens were used as input data in Voce's equation. The results reveal that the uniform elongation (UE) values generated using Voce's equation were within (UE-2)% of the experimental percent uniform elongation (UE%). The corresponding ultimate tensile strength values were within ±1%. The uncertainty inherently associated in the determination of gauge length introduces extraneous deformation in the rings tested. Previous results had shown that a 14% increase in cladding diameter caused the gauge length to increase by 40%. To simulate the contribution of extraneous deformation due to an increase in cladding diameter, an analysis of the variation of the tensile parameters (uniform elongation and ultimate tensile strength) due to increase in the gauge length in the range of 10 to 40% was carried out. The results are discussed

  13. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    Science.gov (United States)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  14. Hollow Fiber Space Water Membrane Evaporator Flight Prototype Design and Testing

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice; Vogel, Mtthew; Honas, Matt; Dillon, Paul; Colunga, Aaron; Truong, Lily; Porwitz, Darwin; Tsioulos, Gus

    2011-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, eliminated the spacers, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. A number of tests were performed in order to improve the strength of the polyurethane header that holds the fibers in place while the system is pressurized. Vacuum chamber testing showed similar heat rejection as a function of inlet water temperature and water vapor backpressure was similar to the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated acceptable performance decline.

  15. Dual color radiometer imagery and test results

    International Nuclear Information System (INIS)

    Silver, A.; Carlen, F.; Link, D.; Zegel, F.

    1989-01-01

    This paper presents a review of the technical characteristics of the Dual Color Radiometer and recent data and test results. The Dual Color Radiometer is a state-of-the-art device that provides simultaneous pixel to pixel registered thermal imagery in both the 3 to 5 and 8 to 12 micron regions. The device is unique in terms of its spatial and temperature resolution of less than 0.10 degrees C temperature and 0.10 milliradian spatial resolution. In addition, the device is tailored for use by the Automatic Target Recognizer (ATR) community

  16. Arc melter demonstration baseline test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O'Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process

  17. AOF: standalone test results of GALACSI

    Science.gov (United States)

    La Penna, P.; Aller Carpentier, E.; Argomedo, J.; Arsenault, R.; Conzelmann, R. D.; Delabre, B.; Donaldson, R.; Gago, F.; Gutierrez-Cheetam, P.; Hubin, N.; Jolley, P.; Kiekebusch, M.; Kirchbauer, J. P.; Klein, B.; Kolb, J.; Kuntschner, H.; Le Louarn, M.; Lizon, J.-L.; Madec, P.-Y.; Manescau, A.; Mehrgan, L.; Oberti, S.; Quentin, J.; Sedghi, B.; Ströbele, S.; Suárez Valles, M.; Soenke, C.; Tordo, S.; Vernet, J.

    2016-07-01

    GALACSI is the Adaptive Optics (AO) module that will serve the MUSE Integral Field Spectrograph. In Wide Field Mode it will enhance the collected energy in a 0.2"×0.2" pixel by a factor 2 at 750 nm over a Field of View (FoV) of 1'×1' using the Ground Layer AO (GLAO) technique. In Narrow Field Mode, it will provide a Strehl Ratio of 5% (goal 10%) at 650 nm, but in a smaller FoV (7.5"×7.5" FoV), using Laser Tomography AO (LTAO). Before being ready for shipping to Paranal, the system has gone through an extensive testing phase in Europe, first in standalone mode and then in closed loop with the DSM in Europe. After outlining the technical features of the system, we describe here the first part of that testing phase and the integration with the AOF ASSIST (Adaptive Secondary Setup and Instrument Stimulator) testbench, including a specific adapter for the IRLOS truth sensor. The procedures for the standalone verification of the main system performances are outlined, and the results of the internal functional tests of GALACSI after full integration and alignment on ASSIST are presented.

  18. Partial-array test results in IFSMTF

    International Nuclear Information System (INIS)

    Lue, J.W.; Dresner, L.; Koizumi, K.; Lubell, M.S.; Luton, J.N.; Shen, S.S.; Zahn, G.R.; Zichy, J.A.

    1985-01-01

    Preliminary performance tests of two large superconducting magnets have been carried out in the International Fusion Superconducting Magnet Test Facility (IFSMTF). Each of the Japanese (JA) and General Dynamics/Convair (GD) coils was operated up to its full design current of 10.2 kA with the other serving as an adjacent background coil at 40% of design current. Cryostatic stability was demonstrated for both coils by noting recovery from a full half-turn (5 m) driven normal. A new pick-up coil compensation scheme was successfully used for the quench detection system. Each coil remained superconducting when the other was dumped. Unique instrumentation was used to measure changes in bore dimensions and displacement of the winding from the coil case. Agreement between structural analysis and measurement of bore dimension changes resulting from magnetic loads is good. The Swiss (CH) coil underwent only a cryogenic test. The forced cooling worked well and an inlet temperature of 3.8 K was demonstrated

  19. Handling Qualities Flight Testing of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    Science.gov (United States)

    Glaser, Scott T.; Strovers, Brian K.

    2011-01-01

    Airborne infrared astronomy has a long successful history, albeit relatively unknown outside of the astronomy community. A major problem with ground based infrared astronomy is the absorption and scatter of infrared energy by water in the atmosphere. Observing the universe from above 40,000 ft puts the observation platform above 99% of the water vapor in the atmosphere, thereby addressing this problem at a fraction of the cost of space based systems. The Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft is the most ambitious foray into the field of airborne infrared astronomy in history. Using a 747SP (The Boeing Company, Chicago, Illinois) aircraft modified with a 2.5m telescope located in the aft section of the fuselage, the SOFIA endeavors to provide views of the universe never before possible and at a fraction of the cost of space based systems. The modification to the airplane includes moveable doors and aperture that expose the telescope assembly. The telescope assembly is aimed and stabilized using a multitude of on board systems. This modification has the potential to cause aerodynamic anomalies that could induce undesired forces either at the cavity itself or indirectly due to interference with the empennage, both of which could cause handling qualities issues. As a result, an extensive analysis and flight test program was conducted from December 2009 through March 2011. Several methods, including a Lower Order Equivalent Systems analysis and pilot assessment, were used to ascertain the effects of the modification. The SOFIA modification was found to cause no adverse handling qualities effects and the aircraft was cleared for operational use. This paper discusses the history and modification to the aircraft, development of test procedures and analysis, results of testing and analysis, lessons learned for future projects and justification for operational certification.

  20. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  1. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  2. Identification of a Cessna Citation II Model Based on Flight Test Data

    NARCIS (Netherlands)

    de Visser, C.C.; Pool, D.M.

    2017-01-01

    As a result of new aviation legislation, from 2019 on all air-carrier pilots are obliged to go through flight simulator-based stall recovery training. For this reason the Control and Simulation division at Delft University of Technology has set up a task force to develop a new methodology for

  3. Orion Exploration Flight Test 1 (EFT-1) Best Estimated Trajectory Development

    Science.gov (United States)

    Holt, Greg N.; Brown, Aaron

    2016-01-01

    The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approximately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions.

  4. Full-scale flight tests of aircraft morphing structures using SMA actuators

    Science.gov (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  5. Use of a Commercially Available Flight Simulator during Aircrew Performance Testing.

    Science.gov (United States)

    1991-11-01

    Automiated Battery of Performance-based Tests, NAMRL 1354, Naval Aerospace Medical Research Laboratory, Pensacola, FL, 1990. 13. Human Performance...ability of an aircraft to remain airborne well beyond the limits of its human operator. This capacity for longer flights, coupled with a tendency for short...Measurement, Final Report, Air Force Human Resources Laboratory, Brooks AFB, TX, 1983. 5. Stein, E.S., Measurement of Pilot Performance: A Master Journeyman

  6. Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test

    Science.gov (United States)

    2017-11-01

    STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...stationary instabilities of the three-dimensional flow as the grid becomes finer. It may not be possible to obtain a strictly laminar basic state on a very...fine grid. A basic state solution was desired for the laminar flow calculations, and the oscillations observed in Fig. 3 were judged to be undesirable

  7. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    Science.gov (United States)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  8. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    Science.gov (United States)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  9. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    Science.gov (United States)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  10. Implementation of Dryden Continuous Turbulence Model into Simulink for LSA-02 Flight Test Simulation

    Science.gov (United States)

    Ichwanul Hakim, Teuku Mohd; Arifianto, Ony

    2018-04-01

    Turbulence is a movement of air on small scale in the atmosphere that caused by instabilities of pressure and temperature distribution. Turbulence model is integrated into flight mechanical model as an atmospheric disturbance. Common turbulence model used in flight mechanical model are Dryden and Von Karman model. In this minor research, only Dryden continuous turbulence model were made. Dryden continuous turbulence model has been implemented, it refers to the military specification MIL-HDBK-1797. The model was implemented into Matlab Simulink. The model will be integrated with flight mechanical model to observe response of the aircraft when it is flight through turbulence field. The turbulence model is characterized by multiplying the filter which are generated from power spectral density with band-limited Gaussian white noise input. In order to ensure that the model provide a good result, model verification has been done by comparing the implemented model with the similar model that is provided in aerospace blockset. The result shows that there are some difference for 2 linear velocities (vg and wg), and 3 angular rate (pg, qg and rg). The difference is instantly caused by different determination of turbulence scale length which is used in aerospace blockset. With the adjustment of turbulence length in the implemented model, both model result the similar output.

  11. Results from the Cooler and Lead Tests

    International Nuclear Information System (INIS)

    Green, Michael A.

    2010-01-01

    The report presents the results of testing MICE spectrometer magnet current leads on a test apparatus that combines both the copper leads and the high temperature superconducting (HTS) leads with a single Cryomech PT415 cooler and liquid helium tank. The current is carried through the copper leads from 300 K to the top of the HTS leads. The current is then carried through the HTS leads to a feed-through from the vacuum space to the inside of a liquid helium tank. The experiment allows one to measure the performance of both cooler stages along with the performance of the leads. While the leads were powered we measured the voltage drops through the copper leads, through the HTS leads, through spliced to the feed-through, through the feed-through and through the low-temperature superconducting loop that connects one lead to the other. Measurements were made using the leads that were used in spectrometer magnet 1A and spectrometer magnet 2A. These are the same leads that were used for Superbend and Venus magnets at LBNL. The IL/A for these leads was 5.2 x 10 6 m -1 . The leads turned out to be too long. The same measurements were made using the leads that were installed in magnet 2B. The magnet 2B leads had an IL/A of 3.3 x 10 6 A m -1 . This report discusses the cooler performance and the measured electrical performance of the lead circuit that contains the copper leads and the superconducting leads. All of the HTS leads that were installed in magnet 2B were current tested using this apparatus.

  12. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  13. The Use of Dynamic Visual Acuity as a Functional Test of Gaze Stabilization Following Space Flight

    Science.gov (United States)

    Peters, B. T.; Mulavara, A. P.; Brady, R.; Miller, C. A.; Richards, J. T.; Warren, L. E.; Cohen, H. S.; Bloomberg, J. J.

    2006-01-01

    After prolonged exposure to a given gravitational environment the transition to another is accompanied by adaptations in the sensorimotor subsystems, including the vestibular system. Variation in the adaptation time course of these subsystems, and the functional redundancies that exist between them make it difficult to accurately assess the functional capacity and physical limitations of astro/cosmonauts using tests on individual subsystems. While isolated tests of subsystem performance may be the only means to address where interventions are required, direct measures of performance may be more suitable for assessing the operational consequences of incomplete adaptation to changes in the gravitational environment. A test of dynamic visual acuity (DVA) is currently being used in the JSC Neurosciences Laboratory as part of a series of measures to assess the efficacy of a countermeasure to mitigate postflight locomotor dysfunction. In the current protocol, subjects visual acuity is determined using Landolt ring optotypes presented sequentially on a computer display. Visual acuity assessments are made both while standing and while walking at 1.8 m/s on a motorized treadmill. The use of a psychophysical threshold detection algorithm reduces the required number of optotype presentations and the results can be presented immediately after the test. The difference between the walking and standing acuity measures provides a metric of the change in the subject s ability to maintain gaze fixation on the visual target while walking. This functional consequence is observable regardless of the underlying subsystem most responsible for the change. Data from 15 cosmo/astronauts have been collected following long-duration (approx. 6 months) stays in space using a visual target viewing distance of 4.0 meters. An investigation of the group mean shows a change in DVA soon after the flight that asymptotes back to baseline approximately one week following their return to earth. The

  14. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    Science.gov (United States)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard

    2013-01-01

    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  15. Field Lysimeter Test Facility: Second year (FY 1989) test results

    International Nuclear Information System (INIS)

    Campbell, M.D.; Gee, G.W.; Kanyid, M.J.; Rockhold, M.L.

    1990-04-01

    The Record of Decision associated with the Hanford Defense Waste Environmental Impact Statement (53 FR 12449-53) commits to an evaluation of the use of protective barriers placed over near-surface wastes. The barrier must protect against wind and water erosion and limit plant and animal intrusion and infiltration of water. Successful conclusion of this program will yield the necessary protective barrier design for near-surface waste isolation. This report presents results from the second year of tests at the FLTF. The primary objective of testing protective barriers at the FLTF was to measure the water budgets within the various barriers and assess the effectiveness of their designs in limiting water intrusion into the zone beneath each barrier. Information obtained from these measurements is intended for use in refining barrier designs. Four elements of water budget were measured during the year: precipitation, evaporation, storage, and drainage. Run-off, which is a fifth element of a complete water budget, was made negligible by a lip on the lysimeters that protrudes 5 cm above the soil surface to prevent run-off. A secondary objective of testing protective barriers at the FLTF was to refine procedures and equipment to support data collection for verification of the computer model needed for long-term projections of barrier performance. 6 refs

  16. A prototype tap test imaging system: Initial field test results

    Science.gov (United States)

    Peters, J. J.; Barnard, D. J.; Hudelson, N. A.; Simpson, T. S.; Hsu, D. K.

    2000-05-01

    This paper describes a simple, field-worthy tap test imaging system that gives quantitative information about the size, shape, and severity of defects and damages. The system consists of an accelerometer, electronic circuits for conditioning the signal and measuring the impact duration, a laptop PC and data acquisition and processing software. The images are generated manually by tapping on a grid printed on a plastic sheet laid over the part's surface. A mechanized scanner is currently under development. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Images of the local contact stiffness, deduced from the impact duration using a spring model, revealed quantitatively the stiffness reduction due to flaws and damages, as well as the stiffness enhancement due to substructures. The system has been field tested on commercial and military aircraft as well as rotor blades and engine decks on helicopters. Field test results will be shown and the operation of the system will be demonstrated.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  17. Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile

    Science.gov (United States)

    Hoľko, Michal; Stacho, Jakub

    2014-12-01

    The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.

  18. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  19. Measuring structure deformations of a composite glider by optical means with on-ground and in-flight testing

    Science.gov (United States)

    Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf

    2016-12-01

    In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.

  20. Full length prototype SSC dipole test results

    International Nuclear Information System (INIS)

    Strait, J.; Brown, B.C.; Carson, J.

    1987-01-01

    Results are presented from tests of the first full length prototype SSC dipole magnet. The cryogenic behavior of the magnet during a slow cooldown to 4.5K and a slow warmup to room temperature has been measured. Magnetic field quality was measured at currents up to 2000 A. Averaged over the body field all harmonics with the exception of b 2 and b 8 are at or within the tolerances specified by the SSC Central Design Group. (The values of b 2 and b 8 result from known design and construction defects which will be be corrected in later magnets.) Using an NMR probe the average body field strength is measured to be 10.283 G/A with point to point variations on the order of one part in 1000. Data are presented on quench behavior of the magnet up to 3500 A (approximately 55% of full field) including longitudinal and transverse velocities for the first 250 msec of the quench

  1. Ground vibration test results of a JetStar airplane using impulsive sine excitation

    Science.gov (United States)

    Kehoe, Michael W.; Voracek, David F.

    1989-01-01

    Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.

  2. STS-114: Discovery TCDT Flight Crew Test Media Event at Pad 39-B

    Science.gov (United States)

    2005-01-01

    The STS-114 Space Shuttle Discovery Terminal Countdown Demonstration Test (TCDT) flight crew is shown at Pad 39-B. Eileen Collins, Commander introduces the astronauts. Andrew Thomas, mission specialist talks about his primary responsibility of performing boom inspections, Wendy Lawrence, Mission Specialist 4 (MS4) describes her role as the robotic arm operator supporting Extravehicular Activities (EVA), Stephen Robinson, Mission Specialist 3 (MS3) talks about his role as flight engineer, Charlie Camarda, Mission Specialist 5 (MS5) says that his duties are to perform boom operations, transfer operations from the space shuttle to the International Space Station and spacecraft rendezvous. Soichi Noguchi, Mission Specialist 1 (MS1) from JAXA, introduces himself as Extravehicular Activity 1 (EVA1), and Jim Kelley, Pilot will operate the robotic arm and perform pilot duties. Questions from the news media about the safety of the external tank, going to the International Space Station and returning, EVA training, and thoughts about the Space Shuttle Columbia crew are answered.

  3. VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-08-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (UV, EUV and X-ray science cameras at MSFC.

  4. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  5. A Multi-Verse Optimizer with Levy Flights for Numerical Optimization and Its Application in Test Scheduling for Network-on-Chip.

    Directory of Open Access Journals (Sweden)

    Cong Hu

    Full Text Available We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO, which incorporates Levy flights into multi-verse optimizer (MVO algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC. Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed.

  6. Flight Testing of Night Vision Systems in Rotorcraft (Test en vol de systemes de vision nocturne a bord des aeronefs a voilure tournante)

    Science.gov (United States)

    2007-07-01

    Test Engineer GVE Good Visual Environment HMD Head Mounted Displays HQR Handling Quality Rating HUD Heads Up Display IFR Instrument Flight...may take the form of general questionnaires such as the China Lake Situational Awareness Rating Scale, the Situational Awareness Global Assessment...performed in 5-ft decrements. IFR transit flight duties should also be performed, when simulating flight in IMC. In all cases, internal lighting must

  7. Combined Raman/LIBS spectrometer elegant breadboard: built and tested - and flight model spectrometer unit

    Science.gov (United States)

    Ahlers, B.; Hutchinson, I.; Ingley, R.

    2017-11-01

    A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the

  8. Initial Burn Pan (JMTF) Testing Results

    Science.gov (United States)

    2016-03-01

    burn pan and one located high on the Ex-USS Shadwell. There were also a number of GoPro cameras (3-4) that were positioned to observe specific...locations around the test area. A remote control drone equipped with a GoPro camera was also used to video the third test. All recorded video and still

  9. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    Science.gov (United States)

    Champey, Patrick R.; Kobayashi, Ken; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  10. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  11. 14 CFR 61.405 - What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating?

    Science.gov (United States)

    2010-01-01

    ... flight instructor certificate with a sport pilot rating? 61.405 Section 61.405 Aeronautics and Space..., FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.405 What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating? To obtain a...

  12. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.

    Directory of Open Access Journals (Sweden)

    Adam E Duerr

    Full Text Available To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring. It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.

  13. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.

    Science.gov (United States)

    Duerr, Adam E; Miller, Tricia A; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd

    2012-01-01

    To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.

  14. Summary results of the first United States manned orbital space flight

    Science.gov (United States)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  15. Individual flight styles in ski jumping: results obtained during Olympic Games competitions.

    Science.gov (United States)

    Schmölzer, B; Müller, W

    2005-05-01

    From the physics point of view, the jump length in ski jumping depends on: the in-run velocity v(0), the velocity perpendicular to the ramp v(p0) due to the athlete's jumping force, the lift and drag forces acting during take-off and during the flight, and the weight of the athlete and his equipment. The aerodynamic forces are a function of the flight position and of the equipment features. They are a predominant performance factor and can largely be influenced by the athlete. The field study conducted during the Olympic Games competitions 2002 at Park City (elevation: 2000 m) showed an impressive ability of the Olympic medallists to reproduce their flight style and remarkable differences between different athletes have been found. The aerodynamic forces are proportional to the air density. Elite athletes are able to adapt their flight style to thin air conditions in order to maximise jump length and to keep the flight stable. The effects of flight position variations on the performance have been analysed by means of a computer model which is based on the equations of motion and on wind tunnel data corresponding to the flight positions found in the field. Athletes have to solve extremely difficult optimisation problems within fractions of a second. The computer simulation can be used as a reliable starting point for the improvement of training methods and gives an insight into the "implicit" knowledge of physics that the ski jumping athlete must have available for a good performance.

  16. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    Science.gov (United States)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  17. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    Science.gov (United States)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  18. Supercritical CO2 test loop operation and first test results

    International Nuclear Information System (INIS)

    Wright, Steven A.; Pickard, Paul S.

    2009-01-01

    The DOE Office of Nuclear Energy is investigating advanced Brayton cycles for use with next generation nuclear power plants. The focus of this work is on the supercritical CO 2 Brayton cycle which has the potential for high efficiency, and for reduced capital costs due to very compact turbomachinery. Sandia has fabricated and is operating a supercritical CO 2 (S-CO 2 ) test loop to investigate the key technology issues associated with this cycle. This loop is part of a multi-year phased development program to develop a megawatt (MW) class closed S-CO 2 Brayton cycle to demonstrate the applicability of this cycle for DOE Gen-IV program. The current loop has been configured as both a compression loop and as simple heated but unrecuperated Brayton cycle. A second split-flow or re-compression Brayton cycle is currently under development that will use approximately 1 MW of heat to run the Brayton cycle. Early configurations of this split-flow Brayton cycle will be operational later this fiscal year. The key issues for this cycle include the fundamental issues of compressor fluid performance and system control near the critical point, but also the supporting technology issues of bearings, sealing technologies, and rotor windage losses which are also essential to achieving efficiency and cost objectives. These tests are providing the first measurements and information on these key supercritical CO 2 power conversion systems questions. Important data for all these issues has been obtained. This report presents the major results of the testing by showing and comparing the measured compressor performance map with the predicted performance. The compression loop uses a ∼50 kWe motor driven compressor to spin a 37 mm OD compressor at design speeds up to 75,000 rpm with a pressure ratio of 1.8 and a flow rate of 3.53 kg/s for a compressor inlet condition of 305.3 K and 7690 kPa. The most recent configuration of this loop has added a small turbine and 260 kW of heater power is

  19. Flight Reynolds Number Testing of the Orion Launch Abort Vehicle in the NASA Langley National Transonic Facility

    Science.gov (United States)

    Chan, David T.; Brauckmann, Gregory J.

    2011-01-01

    A 6%-scale unpowered model of the Orion Launch Abort Vehicle (LAV) ALAS-11-rev3c configuration was tested in the NASA Langley National Transonic Facility to obtain static aerodynamic data at flight Reynolds numbers. Subsonic and transonic data were obtained for Mach numbers between 0.3 and 0.95 for angles of attack from -4 to +22 degrees and angles of sideslip from -10 to +10 degrees. Data were also obtained at various intermediate Reynolds numbers between 2.5 million and 45 million depending on Mach number in order to examine the effects of Reynolds number on the vehicle. Force and moment data were obtained using a 6-component strain gauge balance that operated both at warm temperatures (+120 . F) and cryogenic temperatures (-250 . F). Surface pressure data were obtained with electronically scanned pressure units housed in heated enclosures designed to survive cryogenic temperatures. Data obtained during the 3-week test entry were used to support development of the LAV aerodynamic database and to support computational fluid dynamics code validation. Furthermore, one of the outcomes of the test was the reduction of database uncertainty on axial force coefficient for the static unpowered LAV. This was accomplished as a result of good data repeatability throughout the test and because of decreased uncertainty on scaling wind tunnel data to flight.

  20. SCTF Core-I test results

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Sudo, Yukio; Iwamura, Takamichi; Osakabe, Masahiro; Ohnuki, Akira; Hirano, Kemmei

    1982-07-01

    The Slab Core Test Facility (SCTF) of Japan Atomic Energy Research Institute (JAERI) was constructed to investigate two-dimensional thermohydrodynamics in the core and the communication in fluid behavior between the core and the upper plenum during the last part of blowdown, refill and reflood phases of a posturated loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). In the present report, effects of system pressure on reflooding phenomena shall be discussed based on the data of Tests S1-SH2, S1-01 and S1-02 which are the parameteris tests for system pressure effects belonging to the SCTF Core-I forced flooding test series. Major items discussed in this report are (1) hydrodynamic behavior in the system, (2) core thermal behavior, (3) core heat transfer and (4) two-dimensional hydrodynamic behavior in the pressure vessel including the core. (author)

  1. Reliability Estimation Based Upon Test Plan Results

    National Research Council Canada - National Science Library

    Read, Robert

    1997-01-01

    The report contains a brief summary of aspects of the Maximus reliability point and interval estimation technique as it has been applied to the reliability of a device whose surveillance tests contain...

  2. Test OPTRAN 1-1 results

    International Nuclear Information System (INIS)

    Martinson, Z.R.

    1982-01-01

    The objective of the OPT 1-1 Test Series was to evaluate the extent of damage and the threshold for failure during simulated BWR anticipated transients. Four power transient tests with progressively higher power levels were performed with preirradiated fuel rods at power ramp rates as high as 550 kW/m per second. Six separately shrouded fuel rods fabricated by the General Electric Co., and preirradiated in the Monticello BWR to burnups of about 5000 to 23,000 MWd/t were tested, four at a time. Four of the fuel rods were of typical GE 8 x 8 design, except for fuel length (0.75 m). Two of the rods included design modifications to improve their PCI-resistant characteristics. A lengthy fuel conditioning preceded the transient testing of the fuel rods

  3. Visual perception skills testing: preliminary results

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2009-02-01

    Full Text Available Good visual perception skills are important in the effective manipulation of Tangible User Interfaces. This paper reports on the application of a test set researchers have developed specifically to quantify the visual perception skills of children...

  4. Testing the time-of-flight model for flagellar length sensing.

    Science.gov (United States)

    Ishikawa, Hiroaki; Marshall, Wallace F

    2017-11-07

    Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. First in-flight results of Pleiades 1A innovative methods for optical calibration

    Science.gov (United States)

    Kubik, Philippe; Lebègue, Laurent; Fourest, Sébastien; Delvit, Jean-Marc; de Lussy, Françoise; Greslou, Daniel; Blanchet, Gwendoline

    2017-11-01

    The PLEIADES program is a space Earth Observation system led by France, under the leadership of the French Space Agency (CNES). Since it was successfully launched on December 17th, 2011, Pleiades 1A high resolution optical satellite has been thoroughly tested and validated during the commissioning phase led by CNES. The whole system has been designed to deliver submetric optical images to users whose needs were taken into account very early in the design process. This satellite opens a new era in Europe since its off-nadir viewing capability delivers a worldwide 2- days access, and its great agility will make possible to image numerous targets, strips and stereo coverage from the same orbit. Its imaging capability of more than 450 images of 20 km x 20 km per day can fulfill a broad spectrum of applications for both civilian and defence users. For an earth observing satellite with no on-board calibration source, the commissioning phase is a critical quest of wellcharacterized earth landscapes and ground patterns that have to be imaged by the camera in order to compute or fit the parameters of the viewing models. It may take a long time to get the required scenes with no cloud, whilst atmosphere corrections need simultaneous measurements that are not always possible. The paper focuses on new in-flight calibration methods that were prepared before the launch in the framework of the PLEIADES program : they take advantage of the satellite agility that can deeply relax the operational constraints and may improve calibration accuracy. Many performances of the camera were assessed thanks to a dedicated innovative method that was successfully validated during the commissioning period : Modulation Transfer Function (MTF), refocusing, absolute calibration, line of sight stability were estimated on stars and on the Moon. Detectors normalization and radiometric noise were computed on specific pictures on Earth with a dedicated guidance profile. Geometric viewing frame was

  6. 76 FR 64229 - Function and Reliability Flight Testing for Turbine-Powered Airplanes Weighing 6,000 Pounds or Less

    Science.gov (United States)

    2011-10-18

    ... F & R flight testing regardless of the airplane's systems complexity or level of automation. After... than some transport category airplanes of the 1960s and earlier. The NPRM contains more of the...

  7. 75 FR 18134 - Function and Reliability Flight Testing for Turbine-Powered Airplanes Weighing 6,000 Pounds or Less

    Science.gov (United States)

    2010-04-09

    ... undergo F & R flight testing regardless of the airplane's systems complexity or level of automation. After... airplanes that weigh 6,000 pounds or less to be more complex and integrated than some transport category...

  8. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    Science.gov (United States)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  9. Flight test of a spin parachute for use with a Super Arcas sounding rocket

    Science.gov (United States)

    Silbert, M. N.

    1975-01-01

    The development and flight testing of a specially configured 16.6 ft Disc Band Gap (DBG) Spin Parachute is discussed. The parachute is integrated with a modified Super Arcas launch vehicle. Total payload weight was 17.6 lbs including the Spin Parachute and a scientific payload, and lift-off weight was 100.3 lbs. The Super Arcas vehicle was despun from 18.4 cps. After payload separation at 244,170 ft the Spin Parachute and its payload attained a maximum spin rate of 2.4 cps. Total suspended weight of the Spin Parachute and its payload was 14.64 lbs.

  10. A measurement of Omega from the North American test flight of Boomerang

    International Nuclear Information System (INIS)

    Melchiorri, A.; Ade, P.A.R.; De Bernardis, P.; Bock, J.J.; Borrill, J.; Boscaleri, A.; Crill, B.P.; De Troia, G.; Farese, P.; Ferreira, P.G.; Ganga, K.; Gasperis, G. de; Giacometti, M.; Hristov, V.V.; Jaffe, A.H.; Lange, A.E.; Masi, S.; Mauskopf, P.D.; Miglio, L.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Romeo, G.; Ruhl, J.E.; Vittorio, N.

    1999-01-01

    We use the power spectrum of the Cosmic Microwave Background, measured during the North American test flight of the BOOMERANG experiment, to constrain the geometry of the universe. Within the class of Cold Dark Matter models, we find the overall fractional energy density of the universe, Omega, is constrained to be 0.85 < or = Omega < or = 1.25 at the 68 percent confidence level. Combined with the COBE measurement and the high redshift supernovae data we obtain new constraints on the fractional matter density and the cosmological constant

  11. A measurement of $\\Omega$ from the North American test flight of BOOMERANG

    CERN Document Server

    Melchiorri, A; De Bernardis, P; Bock, J J; Borrill, J; Boscaleri, A; Crill, B P; De Troia, G; Farese, P; Ferreira, P G; Ganga, K; De Gasperis, G; Giacometti, M; Hristov, V V; Jaffe, A H; Lange, A E; Masi, S; Mauskopf, P D; Miglio, L; Netterfield, C B; Pascale, E; Piacentini, F; Romeo, G

    2000-01-01

    We use the angular power spectrum of the Cosmic Microwave Background, measured during the North American test flight of the BOOMERANG experiment, to constrain the geometry of the universe. Within the class of Cold Dark Matter models, we find that the overall fractional energy density of the universe, Omega, is constrained to be 0.85 < Omega < 1.25 at the 68% confidence level. Combined with the COBE measurement and the high redshift supernovae data we obtain new constraints on the fractional matter density and the cosmological constant.

  12. Test Operations Procedure (TOP) 05-2-543 Enhanced Flight Termination Receiver (EFTR) Range Certification Testing

    Science.gov (United States)

    2011-07-25

    35 5.10 Signal Strength Telemetry Output ( SSTO ) (Test Number 10) ............ 38 5.11 Operational...All command outputs and monitor outputs shall respond properly. TOP 05-2-543 25 July 2011 38 5.10 Signal Strength Telemetry Output ( SSTO ...Test Number 10). a. Purpose. This test verifies that the signal strength telemetry output ( SSTO ) voltage is monotonic and directly related to the

  13. Overview of the PBF test results

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1980-01-01

    The Thermal Fuels Behavior Program (TFBP) of EG and G Idaho conducts fuel behavior research in the Power Burst Facility (PBF) at INEL and at the Halden Reactor in Norway. The fuels behavior research in the PBF is directed toward providing a detailed understanding of the response of light water reactor (LWR) nuclear fuel assemblies to off-normal and hypothesized accident conditions. Single fuel rods and clusters of highly instrumented fuel rods are installed within a central test space of the PBF core for testing. The core can be operated in various modes to provide test conditions typical of accidents and off-normal conditions that may be experienced in a pressurized water reactor or a boiling water reactor

  14. Tests results of skutterudite based thermoelectric unicouples

    International Nuclear Information System (INIS)

    Saber, Hamed H.; El-Genk, Mohamed S.; Caillat, Thierry

    2007-01-01

    Tests were performed of skutterudite based unicouples with (MAY-04) and without (MAR-03) metallic coating on the legs near the hot junction to quantify the effect on reducing performance degradation with operation time. The p-legs in the unicouples were made of CeFe 3.5 Co 0.5 Sb 12 and the n-legs of CoSb 3 . The MAY-04 test was performed in vacuum (∼9 x 10 -7 torr) for ∼2000 h at hot and cold junction temperatures of 892.1 ± 11.9 K and 316.1 ± 5.5 K, respectively, while the MAR-03 test was performed in argon cover gas (0.051-0.068 MPa) at 972.61 ± 10.0 K and 301.1 ± 5.1 K, respectively. The argon cover gas decreased antimony loss from the legs in the MAR-03 test, but marked degradation in performance occurred over time. Conversely, the metallic coating in the MAY-04 test was very effective in reducing performance degradation of the unicouple. Because the cross sectional areas of the legs in MAY-04 were larger than those in MAR-03, the measured electrical power of the former is much higher than that of the latter, but the Beginning of Test (BOT) open circuit voltages, V oc (204.2 mV) for both unicouples were almost the same. The peak electrical power of the MAY-04 unicouple decreased 12.35% from 1.62W e at BOT to 1.42W e after ∼2000 h of testing, while that of the MAR-03 unicouple decreased 25.37% from 0.67 to 0.5W e after 261 h of testing at the above temperatures. The estimated peak efficiency of the MAY-04 unicouple, shortly after BOT (10.65%), was only ∼0.37% points lower than the theoretical value, calculated assuming zero side heat losses and zero contact resistance per leg

  15. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  16. Conventional fuel tank blunt impact tests : test and analysis results

    Science.gov (United States)

    2014-04-02

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. A series of impact tests are planned to : measure fuel tank deformation under two types of dynamic : loading conditi...

  17. HERBE- Analysis of test operation results

    International Nuclear Information System (INIS)

    Pesic, M. et.al.

    1991-01-01

    This document is part of the safety analyses performed for the RB reactor operation with the coupled fast-thermal system HERBE and is part of the final safety report together with the 'Report on test operation of HERBE for the period Dec. 15 1989 - May 15 1990. This report covers the following main topics: determination of reactivity variations dependent on the variations moderator critical level; determination of reactivity for the flooded neutron converter; and the accident analysis of neutron converter flooding

  18. Results of Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Dieter R

    2003-06-13

    The beam experiments of Final Focus Test Beam (FFTB) started in September 1993 at SLAC, and have produced a 1.7 {micro}m x 75 nm spot of 46 GeV electron beam. A number of new techniques involving two nanometer spot-size monitors have been developed. Several beam diagnostic/tuning schemes are applied to achieve and maintain the small spot. This experiment opens the way toward the nanometer world for future linear colliders.

  19. Results of workplace drug testing in Norway

    Directory of Open Access Journals (Sweden)

    Hilde Marie Erøy Lund

    2011-12-01

    Full Text Available Workplace drug testing is less common in Norway than in many other countries. During the period from 2000-2006, 13469 urine or blood samples from employees in the offshore industry, shipping companies and aviation industry were submitted to the Norwegian Institute of Public Health for drug testing. The samples were analysed for benzodiazepines, illicit drugs, muscle relaxants with sedating properties, opioids and z-hypnotics. In total, 2.9% of the samples were positive for one or more substances. During the study period the prevalence decreased for morphine (from 1.9% to 1.1% and increased for amphetamine (from 0.04% to 0.6%, clonazepam (from 0% to 0.1%, methamphetamine (from 0.04% to 0.6%, nitrazepam (from 0% to 0.4% and oxazepam (from 0.5% to 1.3% (p<0.05. There was no significant change in prevalence for the other substances included in the analytical programme. Illicit drugs were significantly associated with lower age (OR: 0.93, p<0.05. This study found low prevalence of drugs among employees in companies with workplace drug testing programmes in Norway.

  20. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Directory of Open Access Journals (Sweden)

    M. O. Archer

    2015-06-01

    Full Text Available We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College, aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF, which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20–60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program and POES (Polar-orbiting Operational Environmental Satellites spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  1. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Science.gov (United States)

    Archer, M. O.; Horbury, T. S.; Brown, P.; Eastwood, J. P.; Oddy, T. M.; Whiteside, B. J.; Sample, J. G.

    2015-06-01

    We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20-60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  2. AMORE Mo-99 Spike Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A [Argonne National Lab. (ANL), Argonne, IL (United States); Brossard, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wesolowski, Kenneth [Argonne National Lab. (ANL), Argonne, IL (United States); Alford, Kurt [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-27

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solution is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project

  3. SURVEY RESULTS AND TESTING OF RAILWAY BRIDGES

    Directory of Open Access Journals (Sweden)

    I. H. Haniiev

    2010-03-01

    Full Text Available The article is devoted to the survey and testing of railway bridges by the State Joint-Stock Railway Company «Uzbekiston Temir Yollari» («Uzbekistan Railways». It is stated that in the existing rules on determination of the capacity of bridges the recommendations on taking into account the cumulative deflection to the moment of technical diagnostics of spans on the bridge capacity are absent. The author states on the need to develop a method for determining the wear of spans on restriction of the residual deflection in the bridge floor slabs.

  4. Fort St. Vrain hot functional test results

    International Nuclear Information System (INIS)

    Phelps, R.D.

    1974-01-01

    A description is given of Fort St. Vrain hot functional tests performed to evaluate the initial nonnuclear performance of the primary coolant system and the associated effects on the various internal components of the reactor vessel and primary coolant system. The components included the twelve steam generator modules, the four helium circulators, the PCRV thermal barrier and liner coolant system, the helium purification system, and the primary and secondary closures at each of the PCRV penetrations. Additional objectives included analysis of the parallel operation of the four helium circulators and the performance of several circulator start/stop transients under various conditions of primary coolant temperature and pressure. Vibration and acoustical phenomena within the vessel were measured, recorded, and compared to theoretical analyses; a verification of reverse flow in the shutdown loop steam generator during one loop operation was performed; the PCRV was again observed for its structural response to internal pressure; and comparisons were made relative to data recorded during the initial pressure test completed in July 1971. (U.S.)

  5. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    International Nuclear Information System (INIS)

    1978-03-01

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests

  6. Tests of a photovoltaic pump: first results

    International Nuclear Information System (INIS)

    Petroselli, A.; Pica, M.; Biondi, P.

    2005-01-01

    The paper deals with a first series of tests conducted in Viterbo (42 deg 25 min North, 12 deg 06 min East) on a PV-DC pump. This series lasted eight months - from the first days of January to the end of August 2003 - and involved measurements of: air and PV-module temperatures; solar radiations, both on horizontal surface and tilted module surface; voltage and intensity of the DC currents from the panel; pump pressures and flow rates. In total, as much as 3,150 data were collected every day. The analysis of the data allowed to obtain some simple empirical relations expressing daily pumped water volumes, instantaneous flow rates and system efficiencies as a function of both radiations and total dynamic heads [it

  7. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-30

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reduce hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.

  8. Performance of CREAM Calorimeter Results of Beam Tests

    CERN Document Server

    Ahn, H S; Beatty, J J; Bigongiari, G; Castellina, A; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Kang, T G; Kim, H J; Kim, K C; Kim, M Y; Kim, T; Kim, Y J; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinine, A; Marrocchesi, P S; Mognet, S I; Nam, S W; Nutter, S; Park, N H; Park, H; Seo, E S; Sina, R; Syed, S; Song, C; Swordy, S; Wu, J; Yang, J; Zhang, H Q; Zei, R; Zinn, S Y

    2005-01-01

    The Cosmic Ray Energetics And Mass (CREAM), a balloon-borne experiment, is under preparation for a flight in Antarctica at the end of 2004. CREAM is planned to measure the energy spectrum and composition of cosmic rays directly at energies between 1 TeV and 1000 TeV. Incident particle energies will be measured by a transition radiation detector and a sampling calorimeter. The calorimeter was constructed at the University of Maryland and tested at CERN in 2003. Performance of the calorimeter during the beam tests is reported.

  9. Design considerations and practical results with long duration systems for manned world flights

    Science.gov (United States)

    Nott, Julian

    2004-01-01

    This paper describes development of three balloon types by the author, all proposed for piloted flights around the world. The first was a superpressure pumpkin used to cross Australia. However, the balloon took up an incorrect shape when inflated. Because of this and other problems, the pumpkin was abandoned and the author built a combined helium-hot air balloon. This in turn was abandoned because it was cumbersome and costly. The author then developed an entirely new system, carrying cryogenic liquid helium to create lift in flight. Two very successful 24-h flights were made. In addition several inventions were developed for crew safety. Perhaps the most important is an entirely new way to protect pilots against sudden cabin pressure loss, with potentially broad use.

  10. Middleware for big data processing: test results

    Science.gov (United States)

    Gankevich, I.; Gaiduchok, V.; Korkhov, V.; Degtyarev, A.; Bogdanov, A.

    2017-12-01

    Dealing with large volumes of data is resource-consuming work which is more and more often delegated not only to a single computer but also to a whole distributed computing system at once. As the number of computers in a distributed system increases, the amount of effort put into effective management of the system grows. When the system reaches some critical size, much effort should be put into improving its fault tolerance. It is difficult to estimate when some particular distributed system needs such facilities for a given workload, so instead they should be implemented in a middleware which works efficiently with a distributed system of any size. It is also difficult to estimate whether a volume of data is large or not, so the middleware should also work with data of any volume. In other words, the purpose of the middleware is to provide facilities that adapt distributed computing system for a given workload. In this paper we introduce such middleware appliance. Tests show that this middleware is well-suited for typical HPC and big data workloads and its performance is comparable with well-known alternatives.

  11. INTRAVAL test case 1b - modelling results

    International Nuclear Information System (INIS)

    Jakob, A.; Hadermann, J.

    1991-07-01

    This report presents results obtained within Phase I of the INTRAVAL study. Six different models are fitted to the results of four infiltration experiments with 233 U tracer on small samples of crystalline bore cores originating from deep drillings in Northern Switzerland. Four of these are dual porosity media models taking into account advection and dispersion in water conducting zones (either tubelike veins or planar fractures), matrix diffusion out of these into pores of the solid phase, and either non-linear or linear sorption of the tracer onto inner surfaces. The remaining two are equivalent porous media models (excluding matrix diffusion) including either non-linear sorption onto surfaces of a single fissure family or linear sorption onto surfaces of several different fissure families. The fits to the experimental data have been carried out by Marquardt-Levenberg procedure yielding error estimates of the parameters, correlation coefficients and also, as a measure for the goodness of the fits, the minimum values of the χ 2 merit function. The effects of different upstream boundary conditions are demonstrated and the penetration depth for matrix diffusion is discussed briefly for both alternative flow path scenarios. The calculations show that the dual porosity media models are significantly more appropriate to the experimental data than the single porosity media concepts. Moreover, it is matrix diffusion rather than the non-linearity of the sorption isotherm which is responsible for the tailing part of the break-through curves. The extracted parameter values for some models for both the linear and non-linear (Freundlich) sorption isotherms are consistent with the results of independent static batch sorption experiments. From the fits, it is generally not possible to discriminate between the two alternative flow path geometries. On the basis of the modelling results, some proposals for further experiments are presented. (author) 15 refs., 23 figs., 7 tabs

  12. TRISTAR I: Evaluation Methods for Testing Head-Up Display (HUD) Flight Symbology

    National Research Council Canada - National Science Library

    Newman, R

    1995-01-01

    A piloted head up display (HUD) flight symbology study (TRISTAR) measuring pilot task performance was conducted at the NASA Ames Research Center by the Tri-Service Flight Symbology Working Group (FSWO...

  13. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    Science.gov (United States)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  14. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  15. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  16. Large bundle BWR test CORA-18: Test results

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1998-04-01

    The CORA out-of-pile experiments are part of the international Severe Fuel Damage (SFD) Program. They were performed to provide information on the damage progression of Light Water Reactor (LWR) fuel elements in Loss-of-coolant Accidents in the temperature range 1200 C to 2400 C. CORA-18 was the large BWR bundle test corresponding to the PWR test CORA-7. It should investigate if there exists an influence of the BWR bundle size on the fuel damage behaviour. Therefore, the standard-type BWR CORA bundle with 18 fuel rod simulators was replaced by a large bundle with two additional surrounding rows of 30 rods (48 rods total). Power input and steam flow were increased proportionally to the number of fuel rod simulators to give the same initial heat-up rate of about 1 K/s as in the smaller bundles. Emphasis was put on the initial phase of the damage progression. More information on the chemical composition of initial and intermediate interaction products and their relocation behaviour should be obtained. Therefore, power and steam input were terminated after the onset of the temperature escalation. (orig.) [de

  17. Stirling convertor performance mapping test results

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; White, Maurice A.; Faultersack, Franklyn; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. Recent TDC performance data are provided in this paper, together with predictions from Stirling simulation models. .

  18. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Flight-Test Performance

    Science.gov (United States)

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.

  19. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    Science.gov (United States)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  20. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    Science.gov (United States)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  1. A method for calibration and test of the time-of-flight detectors for DELPHI

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Castillo, M.V.; Ferrer, A.; Fuster, J.; Higon, E.; Lozano, J.; Salt, J.; Sanchez, E.; Sanchis, E.; Cuevas, J.

    1990-01-01

    We describe a method for calibration and test of large-area TOF counters using cosmic radiation. We applied the method to the time-of-flight system of the DELPHI detector at the LEP e + e - storage ring, made of scintillation (NE110) counters (20x350 cm 2 ). The photomultipliers used (EMI 9902KB) reach an average gain of 5x10 8 at 1700 V and the time resolution achieved is 1.2 ns. Using this method we measured the counter efficiencies as a function of the position; we obtained 135 cm for the effective attenuation length and 40 photoelectrons for a minimum-ionizing particle crossing the center of the counter. (orig.)

  2. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  3. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    Science.gov (United States)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  4. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    Science.gov (United States)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  5. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    Science.gov (United States)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  6. First results from the ground calibration of the NuSTAR flight optics

    DEFF Research Database (Denmark)

    Koglin, Jason E.; An, HongJun; Barriere, Nicolas

    2011-01-01

    NuSTAR is a hard X-ray satellite experiment to be launched in 2012. Two optics with 10.15 m focal length focus Xrays with energies between 5 and 80 keV onto CdZnTe detectors located at the end of a deployable mast. The FM1 and FM2 flight optics were built at the same time based on the same design...

  7. Flight results of attitude matching between Space Shuttle and Inertial Upper Stage (IUS) navigation systems

    Science.gov (United States)

    Treder, Alfred J.; Meldahl, Keith L.

    The recorded histories of Shuttle/Orbiter attitude and Inertial Upper Stage (IUS) attitude have been analyzed for all joint flights of the IUS in the Orbiter. This database was studied to determine the behavior of relative alignment between the IUS and Shuttle navigation systems. It is found that the overall accuracy of physical alignment has a Shuttle Orbiter bias component less than 5 arcmin/axis and a short-term stability upper bound of 0.5 arcmin/axis, both at 1 sigma. Summaries of the experienced physical and inertial alginment offsets are shown in this paper, together with alignment variation data, illustrated with some flight histories. Also included is a table of candidate values for some error source groups in an Orbiter/IUS attitude errror model. Experience indicates that the Shuttle is much more accurate and stable as an orbiting launch platform than has so far been advertised. This information will be valuable for future Shuttle payloads, especially those (such as the Aeroassisted Flight Experiment) which carry their own inertial navigation systems, and which could update or initialize their attitude determination systems using the Shuttle as the reference.

  8. Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.

    Science.gov (United States)

    Feo, Teresa J; Prum, Richard O

    2014-06-01

    Asymmetry in flight feather vane width is a major functional innovation associated with the evolution of flight in the ancestors of birds. However, the developmental and morphological basis of feather shape is not simple, and the developmental processes involved in vane width asymmetry are poorly understood. We present a theoretical model of feather morphology and development that describes the possible ways to modify feather development and produce vane asymmetry. Our model finds that the theoretical morphospace of feather shape is redundant, and that many different combinations of parameters could be responsible for vane asymmetry in a given feather. Next, we empirically measured morphological and developmental model parameters in asymmetric and symmetric feathers from two species of parrots to identify which combinations of parameters create vane asymmetry in real feathers. We found that both longer barbs, and larger barb angles in the relatively wider trailing vane drove asymmetry in tail feathers. Developmentally, longer barbs were the result of an offset of the radial position of the new barb locus, whereas larger barb angles were produced by differential expansion of barbs as the feather unfurls from the tubular feather germ. In contrast, the helical angle of barb ridge development did not contribute to vane asymmetry and could be indicative of a constraint. This research provides the first comprehensive description of both the morphological and developmental modifications responsible for vane asymmetry within real feathers, and identifies key steps that must have occurred during the evolution of vane asymmetry. © 2014 Wiley Periodicals, Inc.

  9. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    Science.gov (United States)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  10. Five years of testing using the simi-automated ultrasonic time of flight diffraction system

    International Nuclear Information System (INIS)

    Webber, S.A.

    2002-01-01

    This paper provides a brief description of the Time of Flight Diffraction (TOFD) test system and also describes a couple of case histories where the system has been successfully applied. The T.O.F.D. system has been contrasted with the conventional manual ultrasonic technique. Whilst the T.O.F.D. system has proven potential, and is without doubt a valuable tool that will continue to gain market share in the inspection industry, conventional manual ultrasonics still has its part to play and will survive for some time to come. One of the outstanding issues facing the T.O.F.D. systems is the question of acceptance testing which is still the predominant convention specified in most standards. Training for a T.O.F.D. system technician is particularly important and the author suggests there are more traps for the unwary than with the conventional manual ultrasonic systems. The overall judgement of the T.O.F.D. system is that it is a most welcome and powerful tool in the hands of the right operator and will do much to boost the prominence of Non-Destructive Testing

  11. Models of disordered media: some new results, including some new connections between composite-media, fluid-state, and random-flight theories

    International Nuclear Information System (INIS)

    Stell, G.

    1983-01-01

    Some new theoretical results on the microstructure of models of two-phase disordered media are given, as well as the new quantitative bounds on the thermal conductivity that follows for one such model (randomly centered spherical inclusions). A second set of results is then given for random flights, including random flights with hit expectancy prescribed in a unit hall around the flight origin. Finally, some interesting correspondences are demonstrated, via the Ornstein-Zernike equation, between random-flight results, liquid-state results and percolation-theory results. 27 references, 6 figures, 4 tables

  12. Particular Characterisation of an In-Vitro-DTH Test to Monitor Cellular Immunity - Applications for Patient Care and Space Flight

    Science.gov (United States)

    Feurecker, M.; Mayer, W.; Gruber, M.; Muckenthaler, F.; Draenert, R.; Bogner, J.; Kaufmann, I.; Crucian, B.; Rykova, M.; Morukov, B.; hide

    2010-01-01

    Goal:i) Characterization of the role of the main immune reactive cell types contributing to the cellular immune response in the in-vitro DTH and ii) Validation of the in-vitro DTH under different clinical and field conditions. Methods:As positive control whole blood was incubated in the in-vitro DTH, supernatants were gathered after 12, 24 and 48h. Readout parameters of this test are cytokines in the assay's supernatant. To determine the role of T-cells, monocytes and natural killer (NK), these cell populations were depleted using magnetic beads prior to in-vitro-DTH incubation. Validation of the test has occurred under clinical (HIV-patients, ICU) and field-conditions (parabolic/space-flights, confinement). Results:T-cell depletion abandoned almost any IL-2 production and reduced IFN-gamma production irrespective of the type of antigen, whereas CD56 depleted cultures tended to lower IL-2 secretion and IFN-gamma and to parallel a IL-10-increase after viral challenge. This IL-10-increase was seen also in CD14-depleted setups. DTH read-out was significantly different under acute stress (parabolic flight) or chronic stress (ISS), respectively. Preliminary data of HIV infected patients demonstrate that this test can display the contemporary immune status during an antiviral therapy. Conclusion:The in-vitro DTH mirrors adaptive and innate immune activation and may serve as tool also for longitudinal follow up of Th1/Th2 weighed immune response under adverse life conditions on earth and in space. It is planned to implement the assay in the on the ISS (MoCISS).

  13. Interpreting Results from the Standardized UXO Test Sites

    National Research Council Canada - National Science Library

    May, Michael; Tuley, Michael

    2007-01-01

    ...) and the Environmental Security Technology Certification Program (ESCTP) to complete a detailed analysis of the results of testing carried out at the Standardized Unexploded Ordnance (UXO) Test Sites...

  14. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  15. First Results of the aerogravity measurements during the geoscientific flight mission GEOHALO over Italy and the adjacent Mediterranean

    Science.gov (United States)

    Heyde, Ingo; Barthelmes, Franz; Scheinert, Mirko

    2013-04-01

    In June 2012 the first scientific flight mission was realized with the new German research aircraft HALO (High Altitude and Long Range Research Aircraft). For this geoscientific flight mission GEOHALO was equipped with geophysical-geodetic instrumentation to acquire data over the tectonically active region of Italy and the adjacent Medtiterranean. The Federal Institute for Geosciences and Resources (BGR) as a member of the "HALO geoscience group" operated the recently modernized KSS32-M aerogravity system. The instrumentation of the group partners consists of an additional gravimeter, vector and scalar magnetometers, a laser altimeter and GNSS equipment with zenith, sideward and nadir antennas. During four flights with duration of up to 10 hours, data along a total track length of 16150 kilometers were obtained. The mission flights started and ended at the special airfield Oberpfaffenhofen, near the compound of the German Aerospace Center (DLR). Eight parallel profiles running from north-west to south-east were flown in an altitude of about 3500 m. The length of each profile was about 1000 km with a line spacing of 40 km. The flight velocity on the survey lines amounted to approximately 450 km/h. Four crossing lines of about 300 km length and a profile at an altitude of about 10500 m along the same track as a line in the lower altitude completed the survey. The first results of the BGR aerogravity will be presented. To determine the free-air gravity anomalies from the measured gravimeter data a number of corrections have to be applied. For their calculation mainly high-precision position and velocity data are mandatory. The kinematic GPS data were combined with INS data. In addition to own GPS base station data from Oberpfaffenhofen, data of Italian GNSS stations were considered to improve the determination of the flight trajectory by differential GPS. The corrected gravity data are compared with the corresponding data from global gravity models. The free

  16. Manned/Unmanned Common Architecture Program (MCAP) net centric flight tests

    Science.gov (United States)

    Johnson, Dale

    2009-04-01

    Properly architected avionics systems can reduce the costs of periodic functional improvements, maintenance, and obsolescence. With this in mind, the U.S. Army Aviation Applied Technology Directorate (AATD) initiated the Manned/Unmanned Common Architecture Program (MCAP) in 2003 to develop an affordable, high-performance embedded mission processing architecture for potential application to multiple aviation platforms. MCAP analyzed Army helicopter and unmanned air vehicle (UAV) missions, identified supporting subsystems, surveyed advanced hardware and software technologies, and defined computational infrastructure technical requirements. The project selected a set of modular open systems standards and market-driven commercial-off-theshelf (COTS) electronics and software, and, developed experimental mission processors, network architectures, and software infrastructures supporting the integration of new capabilities, interoperability, and life cycle cost reductions. MCAP integrated the new mission processing architecture into an AH-64D Apache Longbow and participated in Future Combat Systems (FCS) network-centric operations field experiments in 2006 and 2007 at White Sands Missile Range (WSMR), New Mexico and at the Nevada Test and Training Range (NTTR) in 2008. The MCAP Apache also participated in PM C4ISR On-the-Move (OTM) Capstone Experiments 2007 (E07) and 2008 (E08) at Ft. Dix, NJ and conducted Mesa, Arizona local area flight tests in December 2005, February 2006, and June 2008.

  17. Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American test flight of BOOMERANG

    CERN Document Server

    Mauskopf, P D; De Bernardis, P; Bock, J J; Borrill, J; Boscaleri, A; Crill, B P; De Gasperis, G; De Troia, G; Farese, P; Ferreira, P G; Ganga, K; Giacometti, M; Hanany, S; Hristov, V V; Iacoangeli, A; Jaffe, A H; Lange, A E; Lee, A T; Masi, S; Melchiorri, A; Melchiorri, F; Miglio, L; Montroy, T; Netterfield, C B; Pascale, E; Piacentini, F; Richards, P L; Romeo, G; Ruhl, J E; Scannapieco, E S; Scaramuzzi, F; Stompor, R; Vittorio, N

    2000-01-01

    We describe a measurement of the angular power spectrum of anisotropies in the Cosmic Microwave Background (CMB) from 0.3 degrees to ~10 degrees from the North American test flight of the BOOMERANG experiment. BOOMERANG is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a Long Duration Balloon flight. During a 6-hour test flight of a prototype system in 1997, we mapped > 200 square degrees at high galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and 16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of ~1 degree with an amplitude ~70 uK.

  18. Measurement of a peak in the cosmic microwave background power spectrum from the North American test flight of Boomerang

    International Nuclear Information System (INIS)

    Mauskopf, P.D.; Ade, P.A.R.; Bock, J.J.; Borrill, J.; Boscaleri, A.; Crill, B.P.; Bernardis, P. de; DeGasperis, G.; De Troia, G.; Farese, P.; Ferreira, P.G.; Ganga, K.; Giacometti, M.; Hanany, S.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Lange, A.E.; Lee, A.T.; Masi, S.; Melchiorri, A.; Melchiorri, F.; Miglio, L.; Montroy, T.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Richards, P.L.; Romeo, G.; Ruhl, J.E.; Scannapieco, E.; Scaramuzzi, F.; Stompor, R.; Vittorio, N.

    1999-01-01

    We describe a measurement of the angular power spectrum of anisotrophies in the Cosmic Microwave Background (CMB) from 0.2 deg to approx. 10 deg. from the test flight of the BOOMERANG experiment. BOOMERANG is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotrophies on a Long Duration Balloon flight. During a 6-hour test flight of a prototype system in 1997, we mapped > 200 square degrees at high galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and 16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of approx. 1 deg. with an amplitude of approx. 70-muKcmb

  19. Air STAR Beyond Visual Range UAS Description and Preliminary Test Results

    Science.gov (United States)

    Cunningham, Kevin; Cox, David E.; Foster, John V.; Riddick, Stephen E.; Laughter, Sean A.

    2016-01-01

    The NASA Airborne Subscale Transport Aircraft Research Unmanned Aerial System project's capabilities were expanded by updating the system design and concept of operations. The new remotely piloted airplane system design was flight tested to assess integrity and operational readiness of the design to perform flight research. The purpose of the system design is to improve aviation safety by providing a capability to validate, in high-risk conditions, technologies to prevent airplane loss of control. Two principal design requirements were to provide a high degree of reliability and that the new design provide a significant increase in test volume (relative to operations using the previous design). The motivation for increased test volume is to improve test efficiency and allow new test capabilities that were not possible with the previous design and concept of operations. Three successful test flights were conducted from runway 4-22 at NASA Goddard Space Flight Center's Wallops Flight Facility.

  20. Flight Testing of the Forward Osmosis Bag for Water Recovery on STS-135

    Science.gov (United States)

    Roberts, Michael S.; Soler, Monica; Mortenson, Todd; McCoy, LaShelle; Woodward, Spencer; Levine, Howard G.

    2011-01-01

    The Forward Osmosis Bag (FOB) is a personal water purification device for recovery of potable liquid from almost any non-potable water source. The FOB experiment was flown as a sortie mission on STS-135/ULF7 using flight-certified materials and a design based on the X-Pack(TradeMark) from Hydration Technology Innovations (Albany, OR). The primary objective was to validate the technology for use under microgravity conditions. The FOB utilizes a difference in solute concentration across a selectively permeable membrane to draw water molecules from the non-potable water while rejecting most chemical and all microbial contaminants contained within. Six FOB devices were tested on STS-135 for their ability to produce a potable liquid permeate from a feed solution containing 500 mL potassium chloride (15 g/L) amended with 0.1% methyl blue dye (w:v) tracer against an osmotic gradient created by addition of 60 mL of concentrate containing the osmolytes fructose and glucose, and 0.01% sodium fluorescein (w:v) tracer. Three FOB devices were physically mixed by hand for 2 minutes by a crewmember after loading to augment membrane wetting for comparison with three unmixed FOB devices. Hydraulic flux rate and rejection of salt and dye in microgravity were determined from a 60-mL sample collected by the crew on orbit after 6 hours. Post-flight analysis of samples collected on orbit demonstrated that the Forward Osmosis Bag achieved expected design specifications in microgravity. The hydraulic flux rate of water across the membrane was reduced approximately 50% in microgravity relative to ground controls that generated an average of 50 mL per hour using the same water and osmolyte solutions. The membrane rejected both potassium and chloride at >92% and methyl blue dye at >99.9%. Physical mixing of the FOB during water recovery did not have any significant effect on either flux rate or rejection of solutes from the water solution. The absence of buoyancy-driven convection in

  1. Pollution from aircraft emissions in the North Atlantic flight corridor. Overview on the results of the POLINAT project

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, U; Duerbeck, T; Feigl, C [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany); Arnold, F; Droste-Franke, B [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Flatoy, F [Bergen Univ. (Norway). Inst. of Geophysics; Ford, I J [University Coll., London (United Kingdom); Hagen, D E; Hopkins, A R [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Sciences; Hayman, G D [National Environmental Technology Centre, AEA Technology, Culham (United Kingdom); others, and

    1998-12-31

    The POLINAT project (phase 1) was performed 1994 to 1996 within the Environment Research Programme of the European Commission. POLINAT-2 is being performed now since April 1996. The objectives of POLINAT-1 and -2, the methods used, the measurements, and some selected results are described. Details are given on the measured background concentrations, the emission indices of several aircraft, comparisons between modelled and measured data, and the impact of the emissions within the North Atlantic flight corridor. (author) 21 refs.

  2. Pollution from aircraft emissions in the North Atlantic flight corridor. Overview on the results of the POLINAT project

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, U.; Duerbeck, T.; Feigl, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany); Arnold, F.; Droste-Franke, B. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Flatoy, F. [Bergen Univ. (Norway). Inst. of Geophysics; Ford, I.J. [University Coll., London (United Kingdom); Hagen, D.E.; Hopkins, A.R. [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Sciences; Hayman, G.D. [National Environmental Technology Centre, AEA Technology, Culham (United Kingdom); and others

    1997-12-31

    The POLINAT project (phase 1) was performed 1994 to 1996 within the Environment Research Programme of the European Commission. POLINAT-2 is being performed now since April 1996. The objectives of POLINAT-1 and -2, the methods used, the measurements, and some selected results are described. Details are given on the measured background concentrations, the emission indices of several aircraft, comparisons between modelled and measured data, and the impact of the emissions within the North Atlantic flight corridor. (author) 21 refs.

  3. Boundary Layer Transition During the Orion Exploration Flight Test 1 (EFT-1)

    Science.gov (United States)

    Kirk, Lindsay C.

    2016-01-01

    Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.

  4. Flight Test Techniques. Proceedings of the Flight Mechanics Panel Symposium Held in Lisbon, Portugal on 2-5 April 1984

    Science.gov (United States)

    1984-07-01

    E103 3000 200 270090 1800 Fig. 7: Antenna Radiation Pattern Aircraft: D028. Type of Antenna: Monopole Frequency: 1.5 6Nz, Bank Angle: 0±Z Deg. Ref...Pattern: - - - Monopole Mr 70 250 F 4g. 8: S.uae1tpcl S0OA0r a) Test Emitter: Frequency Range UHF -18 GHz Antenna Parabolic Dish Wln Horn Feeds Transmitter...essais d’extinction et rallumages moteur, de flottement, etc.. Un effort sp~cial a 6t consacr6, Ai Istres, A Ia mice en place de moyens et dispositifs

  5. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    Science.gov (United States)

    Bull, John; Mah, Robert; Hardy, Gordon; Sullivan, Barry; Jones, Jerry; Williams, Diane; Soukup, Paul; Winters, Jose

    1997-01-01

    Partial failures of aircraft primary flight control systems and structural damages to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. DC-10, B-747, C-5, B-52, and others). Following the DC-10 accident at Sioux City, Iowa in 1989, the National Transportation Safety Board recommended 'Encourage research and development of backup flight control systems for newly certified wide-body airplanes that utilize an alternate source of motive power separate from that source used for the conventional control system.' This report describes the concept of a propulsion controlled aircraft (PCA), discusses pilot controls, displays, and procedures; and presents the results of a PCA piloted simulation test and evaluation of the B747-400 airplane conducted at NASA Ames Research Center in December, 1996. The purpose of the test was to develop and evaluate propulsion control throughout the full flight envelope of the B747-400 including worst case scenarios of engine failures and out of trim moments. Pilot ratings of PCA performance ranged from adequate to satisfactory. PCA performed well in unusual attitude recoveries at 35,000 ft altitude, performed well in fully coupled ILS approaches, performed well in single engine failures, and performed well at aft cg. PCA performance was primarily limited by out-of-trim moments.

  6. Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas

    Science.gov (United States)

    Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; Boswell, M.; Fowler, M. M.; Grim, G.; Klein, A.; Rundberg, R. S.; Wilhelmy, J. B.; Wilson, D.; Cerjan, C.; Schneider, D.; Sepke, S. M.; Tonchev, A.; Yeamans, C.

    2015-08-01

    We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF ( En> 15 MeV) component of the neutron spectrum was found to be about 10-4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ˜ 0.6) and electron degenerate (θFermi/θe˜ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. We find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.

  7. Relationship between ultrasonic pulse velocity test result and ...

    African Journals Online (AJOL)

    Ultrasonic Pulse Velocity test result showed an inverse relationship (of -0.935) with the crushed concrete compressive strength. Correlation test, multiple regression analysis, graphs and visual inspection were used to analyze the results. The conclusion drawn is that there exists a relationship between UPV test results and ...

  8. Mathematics Placement Test: Typical Results with Unexpected Outcomes

    Science.gov (United States)

    Ingalls, Victoria

    2011-01-01

    Based on the results of a prior case-study analysis of mathematics placement at one university, the mathematics department developed and piloted a mathematics placement test. This article describes the implementation process for a mathematics placement test and further analyzes the test results for the pilot group. As an unexpected result, the…

  9. Buckling Test Results and Preliminary Test and Analysis Correlation from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA02

    Science.gov (United States)

    Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.; Thornburgh, Robert P

    2017-01-01

    Results from the testing of cylinder test article SBKF-P2-CYL-TA02 (referred to herein as TA02) are presented. TA02 is an 8-foot-diameter (96-inches), 78.0-inch-long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch-vehicle structures and was designed to exhibit global buckling when subjected to combined compression and bending loads. The testing was conducted at the Marshall Space Flight Center (MSFC), February 3-6, 2009, in support of the Shell Buckling Knockdown Factor Project (SBKF). The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF researchers.

  10. Irradiation effects test series, test IE-5. Test results report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Croucher, D. W.; Yackle, T. R.; Allison, C. M.; Ploger, S. A.

    1978-01-01

    Test IE-5, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory, employed three 0.97-m long pressurized water reactor type fuel rods, fabricated from previously irradiated zircaloy-4 cladding and one similar rod fabricated from unirradiated cladding. The objectives of the test were to evaluate the influence of simulated fission products, cladding irradiation damage, and fuel rod internal pressure on pellet-cladding interaction during a power ramp and on fuel rod behavior during film boiling operation. The four rods were subjected to a preconditioning period, a power ramp to an average fuel rod peak power of 65 kW/m, and steady state operation for one hour at a coolant mass flux of 4880 kg/s-m/sup 2/ for each rod. After a flow reduction to 1800 kg/s-m/sup 2/, film boiling occurred on one rod. Additional flow reductions to 970 kg/s-m/sup 2/ produced film boiling on the three remaining fuel rods. Maximum time in film boiling was 80s. The rod having the highest initial internal pressure (8.3 MPa) failed 10s after the onset of film boiling. A second rod failed about 90s after reactor shutdown. The report contains a description of the experiment, the test conduct, test results, and results from the preliminary postirradiation examination. Calculations using a transient fuel rod behavior code are compared with the test results.

  11. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    Science.gov (United States)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  12. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    International Nuclear Information System (INIS)

    Kelly, C.E.; Klee, P.M.

    1997-01-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, mass properties (weight and c.g.) and thermal vacuum test. This paper presents the thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is the backup RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at the Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on these tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also shown. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over 5% are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission

  13. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    International Nuclear Information System (INIS)

    Kelly, C.E.; Klee, P.M.

    1997-01-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is tile back-up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission

  14. Real Time Monitoring and Test Vector Generation for Improved Flight Safety, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — As the complexity of flight controllers grows so does the cost associated with verification and validation (V&V). Current-generation controllers are reaching...

  15. New test methods for BIPV. Results from IP performance

    International Nuclear Information System (INIS)

    Jol, J.C.; Van Kampen, B.J.M.; De Boer, B.J.; Reil, F.; Geyer, D.

    2009-11-01

    Within the Performance project new test procedures for PV building products and the building performance as a whole when PV is applied in buildings have been drafted. It has resulted in a first draft of new test procedures for PV building products and proposals for tests for novel BIPV technology like thin film. The test proposed are a module breakage test for BIPV products, a fire safety test for BIPV products and a dynamic load test for BIPV products. Furthermore first proposals of how flexible PV modules could be tested in an appropriate way to ensure long time quality and safety of these new products are presented.

  16. Legal provisions governing the acknowledgment of test results

    International Nuclear Information System (INIS)

    Strecker, A.

    1982-01-01

    The legal provisions governing the acknowledgment of test results are most frequently applied by administrative orders (design and qualification approvals or specimen testing and approval) and are thus claimable and voidable in accordance with general administrative law. The acknowledgment of test certificates requires a legal basis. Test results, however, can be acknowledged also by administrative bodies. Recently, the Federal Government began to delegate more of its legal authority in this field to private institutions, allowing test results to be acknowledged and test certificates to be issued by government controlled private institutions. (orig.) [de

  17. Comparison between ground tests and flight data for two static 32 KB memories

    International Nuclear Information System (INIS)

    Cheynet, Ph.; Velazco, R.; Cheynet, Ph.; Ecoffet, R.; Duzellier, S.; David, J.P.; Loquet, J.G.

    1999-01-01

    The study concerns two 32 K-byte static memories, one from Hitachi (HM62256) and the other (HM65756) from Matra-MHS. The results correspond to around one year of measurement in high radiation orbit and a total of 268 upsets were detected. As a preliminary conclusion it can be stated that the MHS SRAM is probably at least 4 times more sensitive to SEU (single event upset) than the Hitachi SRAM. The Hitachi memory has exhibited what we call ''stuck-at'' bit errors. This kind of event is identified when the same address and data is found in error (fixed read data) for several consecutive read cycles. A confrontation of SEU rates derived from predictions to those measured in flight has shown that: - error rate is underestimated for HM62256 using standard prediction models, - error rate can be under or over-estimated for HM65756 but the dispersion on heavy-ion ground results does not allow us to conclude. (A.C.)

  18. Results of the 1973 NASA/JPL balloon flight solar cell calibration program

    Science.gov (United States)

    Yasui, R. K.; Greenwood, R. F.

    1975-01-01

    High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.

  19. Helicopter Flight Test of a Compact, Real-Time 3-D Flash Lidar for Imaging Hazardous Terrain During Planetary Landing

    Science.gov (United States)

    Roback, VIncent E.; Amzajerdian, Farzin; Brewster, Paul F.; Barnes, Bruce W.; Kempton, Kevin S.; Reisse, Robert A.; Bulyshev, Alexander E.

    2013-01-01

    -scanning mode in which successive, gimbaled images of the hazard field are mosaicked together as well as in a wider, 4.85deg FOV staring mode in which digital magnification, via a novel 3-D superresolution technique, is used to effectively achieve the same spatial precision attained with the more narrow FOV optics. The lidar generates calibrated and corrected 3-D range images of the hazard field in real-time and passes them to the ALHAT Hazard Detection System (HDS) which stitches the images together to generate on-the-fly Digital Elevation Maps (DEM's) and identifies hazards and safe-landing sites which the ALHAT GN&C system can then use to guide the host vehicle to a safe landing on the selected site. Results indicate that, for the KSC hazard field, the lidar operational range extends from 100m to 1.35 km for a 30 degree line-of-sight angle and a range precision as low as 8 cm which permits hazards as small as 25 cm to be identified. Based on the Flash Lidar images, the HDS correctly found and reported safe sites in near-real-time during several of the flights. A follow-on field test, planned for 2013, seeks to complete the closing of the GN&C loop for fully-autonomous operations on-board the Morpheus robotic, rocket-powered, free-flyer test bed in which the ALHAT system would scan the KSC hazard field (which was vetted during the present testing) and command the vehicle to landing on one of the selected safe sites.

  20. 42 CFR 493.1281 - Standard: Comparison of test results.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Comparison of test results. 493.1281 Section 493.1281 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Testing Analytic Systems § 493.1281 Standard: Comparison of test results. (a) If a laboratory performs the...

  1. Irradiation Effects Test Series: Test IE-3. Test results report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, L. C.; Allison, C. M.; Croucher, D. W.; Ploger, S. A.

    1977-10-01

    The objectives of the test reported were to: (a) determine the behavior of irradiated fuel rods subjected to a rapid power increase during which the possibility of a pellet-cladding mechanical interaction failure is enhanced and (b) determine the behavior of these fuel rods during film boiling following this rapid power increase. Test IE-3 used four 0.97-m long pressurized water reactor type fuel rods fabricated from previously irradiated fuel. The fuel rods were subjected to a preconditioning period, followed by a power ramp to 69 kW/m at a coolant mass flux of 4920 kg/s-m/sup 2/. After a flow reduction to 2120 kg/s-m/sup 2/, film boiling occurred on the fuel rods. One rod failed approximately 45 seconds after the reactor was shut down as a result of cladding embrittlement due to extensive cladding oxidation. Data are presented on the behavior of these irradiated fuel rods during steady-state operation, the power ramp, and film boiling operation. The effects of a power ramp and power ramp rates on pellet-cladding interaction are discussed. Test data are compared with FRAP-T3 computer model calculations and data from a previous Irradiation Effects test in which four irradiated fuel rods of a similar design were tested. Test IE-3 results indicate that the irradiated state of the fuel rods did not significantly affect fuel rod behavior during normal, abnormal (power ramp of 20 kW/m per minute), and accident (film boiling) conditions.

  2. Results from the 2013 drug and alcohol testing survey.

    Science.gov (United States)

    2015-12-01

    This report summarizes the results of the 2013 Federal Motor Carrier Safety Administration (FMCSA) Drug and Alcohol Testing Survey. This annual survey measures the percentage of drivers with commercial drivers licenses (CDLs) that test positive fo...

  3. Results from the 2008 Drug and Alcohol Testing Survey

    Science.gov (United States)

    2010-01-01

    This report summarizes the results of the 2008 Federal Motor Carrier Safety Administration Drug and Alcohol Testing Survey. This annual survey measures the percentage of drivers with commercial drivers licenses who test positive for controlled sub...

  4. Experimental test results of multi-channel test rig of T1 test section, 5

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Takase, Kazuyuki; Miyamoto, Yoshiaki

    1990-09-01

    Channel blockage test on a fuel column of the high temperature engineering test reactor (HTTR) has been performed under the helium gas atmosphere at a high temperature and a high pressure in order to obtain safety data on flow rate and temperature distributions in the fuel column with the multi-channel test rig of the fuel stack test section (T 1 ) in HENDEL. In the test, one of 12 fuel channels was blockaded to 90% of flow area at the channel inlet. Experimental results showed that the helium gas flow rate in the blockaded channel was 28%∼33% lower than the average flow rate for Reynolds number from 2300 to 14000 in isothermal flow. When simulated fuel rods were heated, the flow rate in the blockaded channel did not decrease down in comparison with the isothermal flow. This is due to that the heat generated in the fuel rods conducts to the other fuel channels in graphite fuel blocks, so that accelerated pressure losses in the fuel channels change with helium gas temperatures. (author)

  5. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    Science.gov (United States)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  6. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    Science.gov (United States)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  7. Integrated leak rate test results of JOYO reactor containment vessel

    International Nuclear Information System (INIS)

    Tamura, M.; Endo, J.

    1982-02-01

    Integrated leak rate tests of JOYO after the reactor coolant system had been filled with sodium have been performed two times since 1978 (February 1978 and December 1979). The tests were conducted with the in-containment sodium systems, primary argon cover gas system and air conditioning systems operating. Both the absolute pressure method and the reference chamber method were employed during the test. The results of both tests confirmed the functioning of the containment vessel, and leak rate limits were satisfied. In Addition, the adequancy of the test instrumentation system and the test method was demonstrated. Finally the plant conditions required to maintain reasonable accuracy for the leak rate testing of LMFBR were established. In this paper, the test conditions and the test results are described. (author)

  8. Assessment of the quality of test results from selected civil engineering material testing laboratories in Tanzania

    CSIR Research Space (South Africa)

    Mbawala, SJ

    2017-12-01

    Full Text Available Civil and geotechnical engineering material testing laboratories are expected to produce accurate and reliable test results. However, the ability of laboratories to produce accurate and reliable test results depends on many factors, among others...

  9. Melter operation results in chemical test at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kanehira, Norio; Yoshioka, Masahiro; Muramoto, Hitoshi; Oba, Takaaki; Takahashi, Yuji

    2005-01-01

    Chemical Test of the glass melter system of the Vitrification Facility at Rokkasho Reprocessing Plant (RRP) was performed. In this test, basic performance of heating-up of the melter, melting glass, pouring glass was confirmed using simulated materials. Through these tests and operation of all modes, good results were gained, and training of operators was completed. (author)

  10. The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results

    Science.gov (United States)

    Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad

    1992-01-01

    To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.

  11. Production Facility Prototype Blower 1000 Hour Test Results II

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-08

    Long duration tests of the Aerzen GM 12.4 roots style blower in a closed loop configuration provides valuable data and lessons learned for long-term operation at the Mo-99 production facility. The blower was operated in a closed loop configuration with the flow conditions anticipated in plant operation with a Mo-100 target inline. The additional thermal energy generated from beam heating of the Mo-100 disks were not included in these tests. Five 1000 hour tests have been completed since the first test was performed in January of 2016. All five 1000 hour tests have proven successful in exposing preventable issues related to oil and helium leaks. All blower tests to this date have resulted in stable blower performance and consistency. A summary of the results for each test, including a review of the first and second tests, are included in this report.

  12. Results and Analysis from Space Suit Joint Torque Testing

    Science.gov (United States)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  13. Hawaiian Electric Advanced Inverter Test Plan - Result Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson; Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    2016-10-14

    This presentation is intended to share the results of lab testing of five PV inverters with the Hawaiian Electric Companies and other stakeholders and interested parties. The tests included baseline testing of advanced inverter grid support functions, as well as distribution circuit-level tests to examine the impact of the PV inverters on simulated distribution feeders using power hardware-in-the-loop (PHIL) techniques. hardware-in-the-loop (PHIL) techniques.

  14. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    Science.gov (United States)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  15. Use of Minute-by-Minute Cardiovascular Measurements During Tilt Tests to Strengthen Inference on the Effect of Long-Duration Space Flight on Orthostatic Hypotension

    Science.gov (United States)

    Feiveson, Alan H.; Lee, Stuart M. C.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.

    2011-01-01

    time. Actual analysis proceeded in the opposite direction. First we identified those CPs or linear combinations that best predicted OTT survival regardless of what spaceflight conditions led to OTT completion or presyncope. From these, we calculated a summary statistic (one per OTT) that best predicted survival. We then used mixed ]model regression analysis to relate changes in the summary statistic to flight phase and duration. Inference on the effects of phase, duration, and their interaction on OH follows directly from this second analysis. Results: A linear combination (W) of diastolic blood pressure (DBP) and stroke volume (SV) was found to be the best predictor of OTT survival using the complete data set of minute-by-minute observations of CPs for each OTT. Furthermore, the log-transformed standard deviation of W (Z = log SW) was found to be a strong predictor of survival in the reduced data set consisting of one observation per OTT. In other words, this measure of variability of W during an OTT was the best indicator of whether or not the subject could complete the 10-min test, with higher variability (i.e. higher values of Z) being associated with greater probability of failure. In the mixed-model regression analysis where Z was now treated as a outcome with flight phase and duration groups (ISS and STS) as predictors, we found that there was a significantly more variability in W (higher values of Z) for both groups at R+0, but with no evidence of an interaction until R+3, when the ISS group still had inflated variability, but not the STS group. Conclusions: Variability of the cardiovascular index W recovers more slowly after long-compared to short-duration spaceflight. Since high variability of W has also been shown to be predictive of OTT failure, a primary manifestation of OH, a logical conclusion is that recovery from OH also is slower after long-duration compared to short-duration spaceflights.

  16. Concordance between hypoxic challenge testing and predictive equations for hypoxic flight assessment in chronic obstructive pulmonary disease patients prior to air travel

    Directory of Open Access Journals (Sweden)

    Mohie Aldeen Abd Alzaher Khalifa

    2016-10-01

    Conclusions: The present study supports on-HCT as a reliable, on-invasive and continuous methods determining the requirement for in-flight O2 are relatively constant. Predictive equations considerably overestimate the need for in-flight O2 compared to hypoxic inhalation test. Predictive equations are cheap, readily available methods of flight assessment, but this study shows poor agreement between their predictions and the measured individual hypoxic responses during HCT.

  17. Evaluation of LLTR series II test A-7 results

    International Nuclear Information System (INIS)

    Knittle, D.E.; Amos, J.C.; Yang, T.M.

    1981-09-01

    This report evaluates the test A-7 data and assesses the capability of the analytical methodology (as a result of Series I program) to predict the thermal/hydraulic phenomena associated with a large SWR event occurring after the sodium system pressure has increased to near the rupture disc burst pressure due to a smaller size leak event. Evaluation of intertest examination data to determine the extent of test article damage resulting from test A-7 is also included

  18. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  19. Test beam results from the D0 end electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Roe, N.A.

    1991-11-01

    Test beam results are presented for the DO end electromagnetic calorimeter. Data were taken with electrons and pions ranging in energy from 5 GeV to 150 GeV. Results from the analysis of the test beam data are presented on energy resolution and linearity, stability and uniformity of response, position resolution and electron-pion separation

  20. Test results and in-orbit operation of the Infrared Astronomical Satellite circumvention circuit

    Science.gov (United States)

    Long, E. C.; Langford, D.

    1984-01-01

    The IRAS circumvention circuit (CC) eliminates the unwanted charged-particle pulses from the IR signal. The operation of the CC along with preflight and in-orbit testing is described. Ground testing of the brassboard circuit using a simulated preamplifier output showed that the CC would perform the circumvention function as designed. When all flight detectors and preamplifiers became available, the CC was tested using a gamma source to simulate charged-particle sources; with the low energy deposited in the detectors (20 keV average) the noise was reduced by up to 5 times with the CC turned on. In-orbit results show that the CC decreases the unwanted charged-particle background noise by up to two orders of magnitude. The difference in the results with the CC on and off is so great that the science team has recommended that no data be taken with the CC off.