WorldWideScience

Sample records for flight spectrometer cosy-tof

  1. Implementation of a new data acquisition and exclusive measurement of the reaction (vector)pp {yields} pp{pi}{sup +}{pi}{sup -} at the time of flight spectrometer COSY-TOF; Implementierung einer neuen Datenerfassung und exklusive Messung der Reaktion (vector)pp {yields} pp{pi}{sup +}{pi}{sup -} am Flugzeitspektrometer COSY-TOF

    Energy Technology Data Exchange (ETDEWEB)

    Erhardt, Arthur

    2009-06-12

    The two-pion production pp pp{pi}{sup +}{pi}{sup -} was measured exclusively at T{sub p}=793 MeV using the short version of the COSY-TOF spectrometer. In this measurement both the new EMS-based data acquisition system and a delayed pulse technique have been used, which, in addition to particle identification, energy, time of flight, and angle determination provides pi+ identification for pions in the theta{sub lab} range from 2 to 28 degrees. The measured total cross section for this reaction is {sigma}=4.1(4) {mu}b at T{sub p}=793 MeV. Due to an improved efficiency correction, the earlier measured total cross section has been corrected to {sigma}=1.6 {mu}b at T{sub p}=747 MeV. This value agrees nicely with the results from WASA/PROMICE. The data are compared to previous data and theoretical models which have been developed to understand the results from WASA/PROMICE measurements. The measurements have been carried out with transversally polarized proton beam which made it possible to determine analyzing powers for different subsystems of the two pion production reaction. In contrast to predictions we find significant analyzing power values up to A{sub y}=0.3. The data in the range of Roper excitation confirm that the dominating {pi} {pi} decay channel is N{sup *}{yields}N{sigma}. (orig.)

  2. Measurement of {lambda} polarisation observables at the COSY-TOF spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pizzolotto, C.

    2007-05-22

    In this work the (vector)pp {yields} pK{sup +}{lambda} reaction is studied. Data were taken at the COSY-TOF experiment in 2002 with a polarised proton beam at the momenta of 2.75 GeV/c and 2.95 GeV/c. The calculated beam polarisation was 39.8% and 61.9% respectively. The experimental setup covers the whole phase space of the reaction. The exclusive measurement allows the extraction of polarisation observables not only in the beam fragmentation region (x{sub F}>0), but also in the target fragmentation region (x{sub F} < 0). Samples of 11991 pK{sup +}{lambda} events at 2.75 GeV/c and of 19243 events at 2.95 GeV/c beam momentum have been reconstructed. The {lambda} polarisation, the {lambda} analysing power and the spin transfer coefficient were extracted. The {lambda} polarisation P{sub {lambda}} has a negative trend. The analysing power A{sup {lambda}}{sub y} and the spin transfer coefficient D{sub NN} are found to be compatible with zero. The measured spin transfer coefficient is in contradiction with the only result published up to now at comparable beam momenta. (orig.)

  3. Improved study of a possible $\\Theta^{+} production in the pp /to p K^{0} \\Sigma^{+}$ reaction with the COSY-TOF spectrometer

    CERN Document Server

    Abdel-Bary, M; Brinkmann, K T; Castelijns, R; Clement, H; Dietrich, J; Dshemuchadse, S; Dorochkevitch, E; Eyrich, W; Ehrhardt, K; Erhardt, A; Freiesleben, H; Gast, W; Georgi, J; Gillitzer, A; Karsch, L; Kilian, K; Krapp, M; Kuhlmann, E; Lehmann, A; Morsch, H P; Paul, N; Pinna, L; Pizzolotto, C; Roderburg, J; Ritman, E; Schadmand, S; Schonmeier, P; Schulte-Wissermann, M; Schroeder, W; Sefzick, T; Teufel, A; Ucar, A; Ullrich, W; Wenzel, R; Wintz, P; Wüstner, P; Zupranski, P

    2007-01-01

    The pp -> p K0 Sigma+ reaction was investigated with the TOF spectrometer at COSY at 3.059 GeV/c incident beam momentum. The main objective was to clarify wether or not a narrow exotic S = +1 resnance, the Theta+ pentaquark, is populated at 1.53 GeV/c2 in the K0 p subsystem with a data sample of much higher statistical significance compared to the previously reported data in this channel. An analysis of these data does not confirm the existence of the Theta+ pentaquark. This is expressed as an upper limit for the cross section sigma (pp -> p K0 Sigma+) < 0.3 microbarn at the 95 percent confidence level.

  4. Feasibility study of {\\eta}-mesic nuclei production by means of the WASA-at-COSY and COSY-TOF facilities

    CERN Document Server

    Skurzok, Magdalena

    2010-01-01

    Despite the fact that existence of {\\eta}-mesic nuclei in which the {\\eta} meson might be bound with the light nucleus by means of the strong interaction was postulated already in 1986, it is still not experimentally confirmed. Discovering of this new kind of an exotic nuclear matter is very important as it might allow for better understanding of {\\eta} meson structure and its interaction with nucleons. The search of the {\\eta}-helium bound states is carried out at the COSY accelerator in the Research Center Juelich in Germany, by means of the WASA detection system. The search are conducted with high statistic and high acceptance for the free production of the 4He-{\\eta} bound states. It is also considered to search for {\\eta}-tritium in quasi free reaction which might be realised with COSY-TOF facility. In this thesis the results of the Monte Carlo simulations of the {\\eta}-helium bound states and {\\eta}-tritium bound state are presented and discussed. The acceptances of the WASA-at-COSY and COSY-TOF detecto...

  5. Hyperspectral Thermal Emission Spectrometer: Engineering Flight Campaign

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Shoen, Steven S.; Eng, Bjorn T.

    2013-01-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) successfully completed its first set of engineering test flights. HyTES was developed in support of the Hyperspectral Infrared Imager (HyspIRI). HyspIRI is one of the Tier II Decadal Survey missions. HyTES currently provides both high spectral resolution (17 nm) and high spatial resolution (2-5m) data in the thermal infrared (7.5-12 micron) part of the electromagnetic spectrum. HyTES data will be used to help determine the optimum band positions for the HyspIRI Thermal Infrared (TIR) sensor and provide antecedent data for HyspIRI related studies.

  6. Miniaturised Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Rohner, U.; Benz, W.; Whitby, J. A.; Wurz, P.; Schulz, R.; Romstedt, J.

    2004-04-01

    Originally intended for the European Space Agency's BepiColombo mission to Mercury, we have built a series of highly miniaturised laser ablation time of flight mass spectrometers (LMS), suitable for in situ measurements of the elemental and isotopic composition of the surface of airless planetary bodies. The instruments will determine ma jor, minor, and trace element abundances in minerals on a spatial scale of 10 m, and will have sufficient dynamic range and mass resolution to perform useful isotopic measurements in favourable cases. Solid material is simultaneously evaporated and ionised by means of laser ablation, requiring intense pulsed laser radiation. Laser ablation was chosen as the sample introduction technique principally because of its high spatial resolution and the lack of any need for sample preparation. Advantages of the technique include simplicity of the resulting design, speed of measurement, and the ability for depth profiling (potentially important for a regolith in which mineral grains are coated with impact produced glass). Time of flight mass spectrometers are simple, robust devices that couple well to a pulsed ion source and we have previous experience of their construction for space flight, e.g. the ROSINA instrument suite for the ROSETTA mission. For BepiColombo, we have built two prototype instruments, one with a design mass of 500 g and a volume comparable to a beer can intended to be deployed on a static lander, and a smaller cigarettebox sized version with a design mass of 250 g, small enough to be integrated in a rover or robotic arm.

  7. In-flight spectrometers status and new developments

    CERN Document Server

    Geissel, H; Weick, H

    2002-01-01

    In-flight spectrometers have been successfully used for the investigation of exotic nuclei from low energies near the Coulomb barrier up to the A GeV regime. The in-flight method takes advantage of the reaction kinematics to efficiently separate short-lived nuclei at the limits of stability down to a sensitivity of single atoms. Modern in-flight separators are combined with high-resolution devices such as electromagnetic spectrometers, storage-cooler rings, and ion traps. Atomic interaction in matter is a versatile tool to tailor the phase space of nuclear reaction products for efficient separation in flight.

  8. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  9. Inverse time-of-flight spectrometer for beam plasma research

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  10. Ion trap with integrated time-of-flight mass spectrometer

    CERN Document Server

    Schneider, Christian; Yu, Peter; Hudson, Eric R

    2015-01-01

    Recently, we reported an ion trap experiment with an integrated time-of-flight mass spectrometer (TOFMS) [Phys. Rev. Appl. 2, 034013 (2014)] focussing on the improvement of mass resolution and detection limit due to sample preparation at millikelvin temperatures. The system utilizes a radio-frequency (RF) ion trap with asymmetric drive for storing and manipulating laser-cooled ions and features radial extraction into a compact $275$ mm long TOF drift tube. The mass resolution exceeds $m / \\Delta m = 500$, which provides isotopic resolution over the whole mass range of interest in current experiments and constitutes an improvement of almost an order of magnitude over other implementations. In this manuscript, we discuss the experimental implementation in detail, which is comprised of newly developed drive electronics for generating the required voltages to operate RF trap and TOFMS, as well as control electronics for regulating RF outputs and synchronizing the TOFMS extraction.

  11. Polarisation analysis on the LET time-of-flight spectrometer

    Science.gov (United States)

    Nilsen, G. J.; Košata, J.; Devonport, M.; Galsworthy, P.; Bewley, R. I.; Voneshen, D. J.; Dalgliesh, R.; Stewart, J. R.

    2017-06-01

    We present a design for implementing uniaxial polarisation analysis on the LET cold neutron time-of-flight spectrometer, installed on the second target station at ISIS. The polarised neutron beam is to be produced by a transmission-based supermirror polariser with the polarising mirrors arranged in a “double-V” formation. This will be followed by a Mezei-type precession coil spin flipper, selected for its small spatial requirements, as well as a permanent magnet guide field to transport the beam polarisation to the sample position. The sample area will contain a set of holding field coils, whose purpose is to produce a highly homogenous magnetic field for the wide-angle 3He analyser cell. To facilitate fast cell changes and reduce the risk of cell failure, we intend to separate the cell and cryostat from the vacuum of the sample tank by installing both in a vessel at atmospheric pressure. When the instrument upgrade is complete, the performance of LET is expected to be commensurate with existing and planned polarised cold neutron spectrometers at other sources. Finally, we discuss the implications of performing uniaxial polarisation analysis only, and identify quasi-elastic neutron scattering (QENS) on ionic conducting materials as an interesting area to apply the technique.

  12. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  13. FOCUS: neutron time-of-flight spectrometer at SINQ: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Mesot, J.; Holitzner, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hempelmann, R. [Saarbruecken Univ. (Germany)

    1997-09-01

    At the Swiss neutron spallation source SINQ a time-of-flight spectrometer for cold neutrons is under construction. The design foresees a Hybrid solution combining a Fermi chopper with a doubly focusing crystal monochromator. During 1996 important progress has been made concerning the main spectrometer components such as the spectrometer housing and the detector system. (author) 2 figs., 3 refs.

  14. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  15. Ion spectrometer composed of time-of-flight and Thomson parabola spectrometers for simultaneous characterization of laser-driven ions.

    Science.gov (United States)

    Choi, I W; Kim, C M; Sung, J H; Yu, T J; Lee, S K; Kim, I J; Jin, Y-Y; Jeong, T M; Hafz, N; Pae, K H; Noh, Y-C; Ko, D-K; Yogo, A; Pirozhkov, A S; Ogura, K; Orimo, S; Sagisaka, A; Nishiuchi, M; Daito, I; Oishi, Y; Iwashita, Y; Nakamura, S; Nemoto, K; Noda, A; Daido, H; Lee, J

    2009-05-01

    An ion spectrometer, composed of a time-of-flight spectrometer (TOFS) and a Thomson parabola spectrometer (TPS), has been developed to measure energy spectra and to analyze species of laser-driven ions. Two spectrometers can be operated simultaneously, thereby facilitate to compare the independently measured data and to combine advantages of each spectrometer. Real-time and shot-to-shot characterizations have been possible with the TOFS, and species of ions can be analyzed with the TPS. The two spectrometers show very good agreement of maximum proton energy even for a single laser shot. The composite ion spectrometer can provide two complementary spectra measured by TOFS with a large solid angle and TPS with a small one for the same ion source, which are useful to estimate precise total ion number and to investigate fine structure of energy spectrum at high energy depending on the detection position and solid angle. Advantage and comparison to other online measurement system, such as the TPS equipped with microchannel plate, are discussed in terms of overlay of ion species, high-repetition rate operation, detection solid angle, and detector characteristics of imaging plate.

  16. Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.;

    2014-01-01

    spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly...

  17. Neutron Time of Flight Spectrometer for Velocity Selector Calibration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Small angle neutron spectrometer on China Advanced Research Reactor (CARR) is located at neutron guide hall and is installed on the end of cold neutron guide. Velocity selector which can purify white light neutron beam into monochromatic neutron beam with wavelength

  18. A Differential Time-of-flight Spectrometer of Very Slow Neutrons

    CERN Document Server

    Pokotilovski, Yu N; Geltenbort, P; Brenner, Th

    2011-01-01

    A time-of-flight spectrometer of neutrons in the energy range (0.05 -- 2.5)$\\mu$eV is described. This spectrometer has been tested my measuring the total and differential neutron cross sections for a number of materials: Al, Cu, $^{6}$LiF, Si, Zr, teflon, polyethylene and liquid fluoropolymers, that are essential for experiments in the physics of ultracold neutrons.

  19. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  20. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m∕Δm > 2500. The system design...

  1. A magnetic-free high-resolution parabolic mirror time-of-flight electron energy spectrometer

    Institute of Scientific and Technical Information of China (English)

    张戈; 沈鸿元; 曾瑞荣; 黄呈辉; 林文雄; 黄见洪

    2001-01-01

    The principle and structure of a magnetic-free high-resolution high-efficiency parabolic mirror time-offligght electron energy spectrometer are presented. The electron energy spectrum of Nz in a flight tube is measured using a 105 fs Ti:sappbire laser under different gas pressures.

  2. Balloon Flight Tests of a Gas-Ionization-Chamber-Based Isotope Spectrometer

    Science.gov (United States)

    Wiedenbeck, M. E.; Milliken, B.

    1995-01-01

    High resolution studies of the isotopic composition of heavy elements in the galactic cosmic radiation have been performed using satellites. The performance of the Tracking Heavy Isotope Spectrometer Telescopes for Low Energies (THISTLE) is investigated using data from a balloon flight carried out in 1993. The instrument design is discussed; and data, and additional analysis, is shown.

  3. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    signal. Without loss of generality, the secondary signal is obtained by the passage of the ion through a thin carbon foil, which produces ion-induced secondary electron emission (IISEE). The time-of-flight spectrometer physically acts as an ion/electron separator. The electrons that enter the active volume of the spectrometer are transported onto the microchannel plate detector to generate the secondary signal. The electron optics can be designed in variety of ways depending on the nature of the measurement and physical requirements. Two ion time-of-flight spectrometer designs are introduced: the parallel electric and magnetic (PEM) field spectrometer and the cross electric and magnetic (CEM) field spectrometer. The CEM field spectrometers have been extensively used in a wide range of applications where precise mass differentiation is required. The PEM field spectrometers have lately found interest in mass spectroscopy applications. The application of the PEM field spectrometer for energy measurements is a novel approach. The PEM field spectrometer used in the measurements employs axial electric and magnetic fields along the nominal direction of the incident ion. The secondary electrons are created by a thin carbon foil on the entrance disk and transported on the microchannel plate that faces the carbon foil. The initial angular distribution of the secondary electrons has virtually no effect on the transport time of the secondary electrons from the surface of the carbon foil to the electron microchannel plate detector. Therefore, the PEM field spectrometer can offer high-resolution energy measurement for relatively lower electric fields. The measurements with the PEM field spectrometer were made with the Tandem linear particle accelerator at the IBM T. J. Watson Research Center at Yorktown Heights, NY. The CEM field spectrometer developed for the thesis employs axial electric field along the nominal direction of the ion, and has perpendicular magnetic field. As the

  4. FOCUS: time-of-flight spectrometer for cold neutrons at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Mesot, J. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland); Hempelmann, R. [Saarbruecken Univ., Physical Chemistry, Saarbruecken (Germany)

    1996-11-01

    The physical layout of the Time-Of-Flight spectrometer at the new spallation source SINQ is presented. The concept shows up a hybrid-TOF combining a Fermi-chopper with a crystal monochromator. The demand of a versatile and flexible instrument for several applications is taken into account by the option of switching from time-focusing to monochromatic focusing mode such that the spectrometer can be optimised for both quasielastic and inelastic scattering applications. (author) 5 figs., 2 tabs., 16 refs.

  5. Analysis of ion dynamics and peak shapes for delayed extraction time-of-flight mass spectrometers

    Science.gov (United States)

    Collado, V. M.; Ponciano, C. R.; Fernandez-Lima, F. A.; da Silveira, E. F.

    2004-06-01

    The dependence of time-of-flight (TOF) peak shapes on time-dependent extraction electric fields is studied theoretically. Conditions for time focusing are analyzed both analytically and numerically for double-acceleration-region TOF spectrometers. Expressions for the spectrometer mass resolution and for the critical delay time are deduced. Effects due to a leakage field in the first acceleration region are shown to be relevant under certain conditions. TOF peak shape simulations for the delayed extraction method are performed for emitted ions presenting a Maxwellian initial energy distribution. Calculations are compared to experimental results of Cs+ emission due to CsI laser ablation.

  6. In-Flight Calibration of the Chandra High Energy Transmission Grating Spectrometer

    CERN Document Server

    Marshall, H L; Ishibashi, K; Marshall, Herman L.; Dewey, Daniel; Ishibashi, Kazunori

    2003-01-01

    We present results from in-flight calibration of the High Energy Transmission Grating Spectrometer (HETGS) on the Chandra X-ray Observatory. Basic grating assembly parameters such as orientation and average grating period were measured using emission line sources. These sources were also used to determine the locations of individual CCDs within the flight detector. The line response function (LRF) was modeled in detail using an instrument simulator based on pre-flight measurements of the grating alignments and periods. These LRF predictions agree very well with in-flight observations of sources with narrow emission lines. Using bright continuum sources, we test the consistency of the detector quantum efficiencies by comparing positive orders to negative orders.

  7. Mobile high-resolution time-of-flight mass spectrometer for in-situ analytics

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Johannes; Ebert, Jens [II. Physikalisches Institut, JLU, Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [II. Physikalisches Institut, JLU, Giessen (Germany); GSI, Darmstadt (Germany)

    2011-07-01

    A compact multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been developed. For the first time it allows for mass measurements with a resolving power exceeding 100000 and sub ppm accuracy in a mobile device. Thus it allows to resolve isobars and enables to accurately determine the composition and structure of biomolecules. The MR-TOF-MS consists of an atmospheric pressure interface for DESI and REIMS, ion cooler, ion trap, time-of-flight analyzer, MCP detector and DAQ. Vacuum system components, power supplies as well as electronics are mounted together with the ion optical spectrometer parts on a single frame with a total volume of 0.8 m{sup 3}. Applications of the device within the AmbiProbe research program include in-situ mass spectrometry such as real-time tissue recognition in electrosurgery, identification of mycotoxins and analysis of soil samples for environmental studies.

  8. A compact time-of-flight spectrometer for electrofission studiesrefid="FN1">*

    Science.gov (United States)

    Heil, R. D.; Drexler, J.; Huber, K.; Kneissl, U.; Mank, G.; Ries, H.; Ströher, H.; Weber, T.; Wilke, W.

    1985-09-01

    A compact time-of-flight spectrometer for measurements of fission fragment distributions is described. The start detector consists of a channel plate arrangement with an electrostatic mirror. The time resolution of PPACs, serving as stop detectors, has been optimized. Velocity distributions of 252Cf fragments and mean velocities are reported. The results are discussed with respect to planned (e, e'f) coincidence experiments at the Mainz microtron.

  9. The Cosmic Infrared Background Experiment: Flight Characterization Of The Ciber Narrow Band Spectrometer.

    Science.gov (United States)

    Levenson, Louis R.; Battle, J.; Bock, J. J.; Cooray, A.; Hristov, V.; Keating, B.; Lee, D.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Wada, T.; Zemcov, M.

    2011-01-01

    Subtraction of the Zodiacal light foreground is the dominant source of uncertainty in absolute photometric measurements of the extra-galactic background at near-infrared to optical wavelengths. The second flight of the Cosmic Infrared Background ExpeRiment (CIBER) occurred on July 10th, 2010. CIBER is a NASA sounding rocket experiment carrying four co-aligned instruments including two imaging telescopes with wide passbands centered at 1 and 1.6 microns, respectively, as well as a low resolution spectrometer and a narrow-band spectrometer. THE CIBER spectrometers are absolutely calibrated in collaboration with NIST. The narrow-band spectrometer filter is centered on the Ca II solar Fraunhofer line at 854.2 nm and is designed to measure the equivalent width of the solar line reflected by the interplanetary dust in order to obtain an absolute measurement of the Zodiacal contribution to the infrared sky at that wavelength. In conjunction with measured low resolution spectrum from 700 to 1900 nm, this will provide an accurate independent check of the DIRBE Zodiacal light models. Here we describe the NBS instrument, calibration and in-flight characterization.

  10. An Algorithm for In-Flight Spectral Calibration of Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Gerrit Kuhlmann

    2016-12-01

    Full Text Available Accurate spectral calibration of satellite and airborne spectrometers is essential for remote sensing applications that rely on accurate knowledge of center wavelength (CW positions and slit function parameters (SFP. We present a new in-flight spectral calibration algorithm that retrieves CWs and SFPs across a wide spectral range by fitting a high-resolution solar spectrum and atmospheric absorbers to in-flight radiance spectra. Using a maximum a posteriori optimal estimation approach, the quality of the fit can be improved with a priori information. The algorithm was tested with synthetic spectra and applied to data from the APEX imaging spectrometer over the spectral range of 385–870 nm. CWs were retrieved with high accuracy (uncertainty <0.05 spectral pixels from Fraunhofer lines below 550 nm and atmospheric absorbers above 650 nm. This enabled a detailed characterization of APEX’s across-track spectral smile and a previously unknown along-track drift. The FWHMs of the slit function were also retrieved with good accuracy (<10% uncertainty for synthetic spectra, while some obvious misfits appear for the APEX spectra that are likely related to radiometric calibration issues. In conclusion, our algorithm significantly improves the in-flight spectral calibration of APEX and similar spectrometers, making them better suited for the retrieval of atmospheric and surface variables relying on accurate calibration.

  11. Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, A. S., E-mail: Ajsen@fysik.dtu.dk; Salewski, M.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M. [Association Euratom - DTU, Technical University of Denmark, Department of Physics, Kgs. Lyngby (Denmark); Eriksson, J.; Ericsson, G.; Hjalmarsson, A. [Association Euratom - VR, Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)

    2014-11-15

    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR.

  12. Combined distance-of-flight and time-of-flight mass spectrometer

    Science.gov (United States)

    Enke, Christie G; Ray, Steven J; Graham, Alexander W; Hieftje, Gary M; Barinaga, Charles J; Koppenaal, David W

    2014-02-11

    A combined distance-of-flight mass spectrometry (DOFMS) and time-of-flight mass spectrometry (TOFMS) instrument includes an ion source configured to produce ions having varying mass-to-charge ratios, a first detector configured to determine when each of the ions travels a predetermined distance, a second detector configured to determine how far each of the ions travels in a predetermined time, and a detector extraction region operable to direct portions of the ions either to the first detector or to the second detector.

  13. High precision electric gate for time-of-flight ion mass spectrometers

    Science.gov (United States)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  14. A High-Resolution Time-of-Flight Mass Spectrometer for Experiments with Ultracold Gases

    CERN Document Server

    Kraft, S D; Staanum, P; Fioretti, A; Lange, J; Wester, R; Weidemüller, M; Kraft, Stephan D.; Mikosch, Jochen; Staanum, Peter; Fioretti, Andrea; Lange, Joerg; Wester, Roland; Weidemueller, Matthias

    2005-01-01

    We have realized a high-resolution time-of-flight mass spectrometer combined with a magneto-optical trap. The spectrometer enables excellent optical access to the trapped atomic cloud using properly devised acceleration and deflection electrodes. The ions are extracted along a laser axis and deflected onto an off axis detector. The setup is applied to detect atoms and molecules photoassociated from ultracold atoms. The detection is based on resonance-enhanced multi-photon ionization. The versatile setup can easily be implemented in more complex experiments with ultracold atomic and molecular gases. Mass resolution up to $m/\\Delta m_{rms} = 1000$ at the mass of $^{133}$Cs is achieved.

  15. Delayed extraction time-of-flight mass spectrometer with electron impact for PAH studies

    Science.gov (United States)

    Najeeb, P. K.; Kadhane, U.

    2017-03-01

    A time-of-flight (ToF) mass spectrometer with a pulsed electron beam as well as pulsed extraction of the recoil ions, with variable delay is reported. The effectiveness of this technique is highlighted by studying the statistical decay of mono-cations over microsecond time scales. Various details of the design and operation are discussed in the context of electron impact ionization and fragmentation of naphthalene (C10H8). The temporal behavior of acetylene (C2H2) and diacetylene (C4H2) loss is observed and compared with the associated Arrhenius decay constant, internal energy and plasmon excitation energy.

  16. Start Detector for Time-of-Flight Spectrometers of Heavy Charged Particles

    CERN Document Server

    Aleksandrov, A A; Kamanin, D V; Kondratiev, B A; Penionzhkevich, Yu E

    2004-01-01

    Design description of a low gas pressure avalanche counter which is used as a start detector in time-of-flight spectrometers of heavy charged particles is presented. The detector has three-electrode construction with two wire anodes and a metallized cathode between the anodes. Pentane at a pressure of about 4 torr is used as a working gas. The results of the investigations obtained with the help of the sources of $\\alpha$-particles and spontaneous fission fragments of $^{252}{\\rm Cf}$ source are also presented.

  17. A radial collimator for a time-of-flight neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. B.; Abernathy, D. L. [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Niedziela, J. L.; Loguillo, M. J.; Overbay, M. A. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-08-15

    We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator.

  18. A radial collimator for a time-of-flight neutron spectrometer

    Science.gov (United States)

    Stone, M. B.; Niedziela, J. L.; Loguillo, M. J.; Overbay, M. A.; Abernathy, D. L.

    2014-08-01

    We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator.

  19. Solid Phase Microextraction and Miniature Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, j.m.

    1999-01-26

    A miniature mass spectrometer, based on the time-of-flight principle, has been developed for the detection of chemical warfare agent precursor molecules. The instrument, with minor modifications, could fulfill many of the needs for sensing organic molecules in various Defense Programs, including Enhanced Surveillance. The basic footprint of the instrument is about that of a lunch box. The instrument has a mass range to about 300, has parts-per-trillion detection limits, and can return spectra in less than a second. The instrument can also detect permanent gases and is especially sensitive to hydrogen. In volume, the device could be manufactured for under $5000.

  20. Performance Characteristics of a New Hybrid Triple Quadrupole Time-of-Flight Tandem Mass Spectrometer

    Science.gov (United States)

    Andrews, Genna L.; Simons, Brigitte L.; Young, J. Bryce; Hawkridge, Adam M.; Muddiman, David C.

    2011-01-01

    The TripleTOF 5600 System, a hybrid triple quadrupole time-of-flight mass spectrometer, was evaluated to explore the key figures of merit in generating peptide and protein identifications which included spectral acquisition rates, data quality, proteome coverage, and biological depth. Employing a Saccharomyces cerevisiae tryptic digest, careful consideration of several performance features demonstrated that the speed of the TripleTOF contributed most to the resultant data. The TripleTOF system was operated with 8, 20, and 50 MS/MS events in an effort to compare to other MS technologies and to demonstrate the abilities of the instrument platform. PMID:21619048

  1. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  2. A miniature laser ablation time-of-flight mass spectrometer for in situ planetary exploration

    Science.gov (United States)

    Rohner, Urs; Whitby, James A.; Wurz, Peter

    2003-12-01

    We report the development and testing of a miniature mass spectrometer and ion source intended to be deployed on an airless planetary surface to measure the elemental and isotopic composition of rocks and soils. Our design concentrates at this stage on the proposed BepiColombo mission to the planet Mercury. The mass analyser is an axially symmetric reflectron time-of-flight design. The ion source utilizes a laser induced plasma, which is directly coupled into the mass analyser. Laser ablation gives high spatial resolution, and avoids the need for sample preparation. Our prototype instrument has a demonstrated mass resolution m/Dgrm (FWHM) in excess of 600 and a predicted dynamic range of better than four orders of magnitude. Isotopic fractionation effects are found to be minor. We estimate that a flight instrument would have a mass of 500 g (including all electronics), a volume of 650 cm3 and could operate on 3 W power.

  3. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    CERN Document Server

    Arnold, C W; Meierbachtol, K; Bredeweg, T; Jandel, M; Jorgenson, H J; Laptev, A; Rusev, G; Shields, D W; White, M; Blakeley, R E; Mader, D M; Hecht, A A

    2014-01-01

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with $\\alpha$-particles from $^{229}$Th and its decay chain and $\\alpha$-particles and spontaneous fission fragments from $^{252}$Cf. Each detector module is comprised of a thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times on the order of 70 ns were measured with 200 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for mode...

  4. A collinear tandem time-of-flight mass spectrometer for infrared photodissociation spectroscopy of mass-selected ions

    Institute of Scientific and Technical Information of China (English)

    WANG GuanJun; CHI ChaoXian; XING XiaoPeng; DING ChuanFan; ZHOU MingFei

    2014-01-01

    An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed laser vaporization supersonic ion source are skimmed and mass separated by a Wiley-McLaren time-of-flight mass spectrometer.The ion of interest is mass selected,decelerated and dissociated by a tunable IR laser.The fragment and parent ions are reaccelerated and mass analyzed by the second time-of-flight mass spectrometer.A simple new assembly integrated with mass gate,deceleration and reacceleration ion optics was designed,which allows us to measure the infrared spectra of mass selected ions with high sensitivity and easy timing synchronization.

  5. Neutron time-of-flight spectrometer based on HIRFL for studies of spallation reactions related to ADS project

    Institute of Scientific and Technical Information of China (English)

    张苏雅拉吐; 罗飞; 陈志强; 韩瑞; 刘星泉; 林炜平; 刘建立; 石福栋; 任培培; 田国玉

    2015-01-01

    A Neutron Time-of-Flight (NTOF) spectrometer, based at the Heavy Ion Research Facility in Lanzhou (HIRFL) was developed for studies of neutron production of proton induced spallation reactions related to the ADS project. After the presentation of comparisons between calculated spallation neutron production double-differential cross sections and the available experimental data, a detailed description of the NTOF spectrometer is given. Test beam results show that the spectrometer works well and data analysis procedures are established. The comparisons of the test beam neutron spectra with those of GEANT4 simulations are presented.

  6. MONSTER: a time of flight spectrometer for β-delayed neutron emission measurements

    Science.gov (United States)

    Garcia, A. R.; Martínez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marín, J.; Martínez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarín, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J. L.; Banerjee, K.; Bhattacharya, C.; Pentillä, H.; Rinta-Antila, S.; Gorelov, D.

    2012-05-01

    The knowledge of the β-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the β-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (Sβ) function. In addition, β-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.

  7. An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    G Raina; G U Kulkarni; R T Yadav; V S Ramamurthy; C N R Rao

    2000-04-01

    The design and fabrication of a Smalley-type cluster source in combination with a reflectron based time-of-flight (TOF) mass spectrometer are reported. The generation of clusters is based on supersonic jet expansion of the sampling plume. Sample cells for both liquid and solid targets developed for this purpose are described. Two pulsed Nd-YAG lasers are used in tandem, one (532 nm) for target vapourization and the other (355 nm) for cluster ionization. Methanol clusters of nuclearity up to 14 (mass 500 amu) were produced from liquid methanol as the test sample. The clusters were detected with a mass resolution of ~ 2500 in the R-TOF geometry. Carbon clusters up to a nuclearity of 28 were obtained using a polyimide target. The utility of the instrument is demonstrated by carrying out experiments to generate mixed clusters from alcohol mixtures.

  8. Background optimization for the neutron time-of-flight spectrometer NEAT

    Energy Technology Data Exchange (ETDEWEB)

    Günther, G., E-mail: gerrit.guenther@helmholtz-berlin.de; Russina, M., E-mail: margarita.russina@helmholtz-berlin.de

    2016-08-21

    The neutron time-of-flight spectrometer NEAT at BER II is currently undergoing a major upgrade where an important aspect is the prevention of parasitic scattering to enhance the signal-to-noise ratio. Here, we discuss the impact of shielding to suppress parasitic scattering from two identified sources of background: the sample environment and detector tubes. By means of Monte Carlo simulations and a modification of the analytical model of Copley et al. [Copley and Cook, 1994], the visibility functions of instrument parts are computed for different shielding configurations. According to three selection criteria, namely suppression of background, transmission and detection limit, the parameters of an oscillating radial collimator are optimized for NEAT's default setup. Moreover, different configurations of detector shielding are discussed to prevent cross-talk within the radial detector system.

  9. Development of a portable time-of-flight membrane inlet mass spectrometer for environmental analysis

    Science.gov (United States)

    White, A. J.; Blamire, M. G.; Corlett, C. A.; Griffiths, B. W.; Martin, D. M.; Spencer, S. B.; Mullock, S. J.

    1998-02-01

    The benefits of on-site analysis of environmental pollutants are well known, with such techniques increasing sample throughput and reducing the overall cost of pollution level monitoring. This article describes a transportable time-of-flight (TOF) mass spectrometer, based upon a converging, annular TOF (CAT) arrangement. The instrument, the transportable CAT or T-CAT is battery powered and self-contained. The vacuum chamber is never vented and is kept at a very low pressure, even during analysis. Sample gases are admitted to the mass spectrometer via a membrane inlet system. Data collection and analysis are accomplished via a portable PC. The T-CAT is capable of detection limits approaching those of more conventional, nonportable design. The device shows reasonable linearity over wide concentration ranges. Initial results indicate that the T-CAT will be capable of use in a wide range of applications, particularly for environmental monitoring. This article describes the features of the T-CAT, and presents initial results from the membrane inlet/T-CAT system.

  10. Highly miniaturized laser ablation time-of-flight mass spectrometer for a planetary rover

    Science.gov (United States)

    Rohner, Urs; Whitby, James A.; Wurz, Peter; Barabash, Stas

    2004-05-01

    We report the development and testing of a highly miniaturized mass spectrometer and ion source intended to be deployed on an airless planetary surface to measure the elemental and isotopic composition of solids, e.g., rocks and soils. Our design concentrates at this stage on the proposed BepiColombo mission to the planet Mercury. The mass analyzer is a novel combination of an electrostatic analyzer and a reflectron time-of-flight design. The ion source utilizes a laser induced plasma, which is directly coupled into the mass analyzer. Laser ablation gives high spatial resolution and avoids the need for sample preparation. Our prototype instrument has a demonstrated mass resolution m/Δm full width at half maximum in excess of 180 and a predicted dynamic range of better than five orders of magnitude. We estimate that a flight instrument would have a mass of 280 g (including laser and all electronics), a volume of 84 cm3, and could operate on 3 W power.

  11. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    Science.gov (United States)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 μs. Accordingly, the sample is under excitation in 10-4 part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 1010 V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the mathematical

  12. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction.

    Science.gov (United States)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 micros. Accordingly, the sample is under excitation in 10(-4) part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 10(10) V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the

  13. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  14. The Design and Optimization Spectrometer with Double Diagnostics of a Neutron Time-of-Flight Scintillators for Neutron on EAST

    Institute of Scientific and Technical Information of China (English)

    张兴; 袁熙; 谢旭飞; 樊铁栓; 陈金象; 李湘庆

    2012-01-01

    Neutron energy spectrometry diagnosis plays an important role in magnetic con- finement fusion. A new neutron time-of-flight (TOF) spectrometer with double scintillators is designed and optimized for the EAST toknmak. A set of optimM parameters is obtained by Monte Carlo simulation, based on the GEANT4 and ROOT codes. The electronic setup of the measurement system is designed. The count rate capability is increased by introducing a flash ADC. The designed spectrometer with high resolution and efficiency is capable of being applied to fusion neutron diagnostics. Applications in mixed-energy and continuous energy neutron fields can also be considered.

  15. Development of a time-of-flight mass spectrometer for ion desorption studies at HiSOR

    CERN Document Server

    Fujii, K; Nakashima, Y; Waki, S; Sardar, S A; Yasui, Y; Wada, S I; Sekitani, T; Tanaka, K

    2001-01-01

    We have developed a time-of-flight mass spectrometer which is now under operation at HiSOR storage ring for research of photon stimulated ion desorption (PSID). The employment of the pulsed high voltage method as a trigger allowed us to perform the investigations at a multi bunch operation of the storage ring. The performance of this spectrometer was evaluated by applying to the PSID measurements of PMMA (poly-methylmethacrylate) thin films. The results are compared with those obtained at Photon Factory by using pulsed synchrotron radiation in a single bunch operation. The capabilities of the apparatus for ion desorption studies are discussed.

  16. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  17. Separated flow operation of the SHARAQ spectrometer for in-flight proton-decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dozono, M., E-mail: dozono@cns.s.u-tokyo.ac.jp [Center for Nuclear Study, University of Tokyo, Saitama 351-0198 (Japan); Uesaka, T. [RIKEN Nishina Center, Saitama 351-0198 (Japan); Michimasa, S.; Takaki, M.; Kobayashi, M.; Matsushita, M.; Ota, S.; Tokieda, H.; Shimoura, S. [Center for Nuclear Study, University of Tokyo, Saitama 351-0198 (Japan)

    2016-09-11

    A new “separated flow” operating mode has been developed for in-flight proton-decay experiments using the SHARAQ spectrometer. In this mode, the protons and heavy-ion products are separated and measured in coincidence at two different focal planes of the SHARAQ. The ion-optical properties of the new mode were studied using a proton beam at 246 MeV, and the momentum vector was reconstructed from the parameters measured in the focal plane of the SHARAQ. In the experiment with the ({sup 16}O, {sup 16}F) reaction at a beam energy of 247 MeV/u, the outgoing {sup 15}O+p produced by the decay of {sup 16}F were measured in coincidence with the SHARAQ. High energy resolutions of 100 keV (FWHM) and ∼2 MeV were achieved for a relative energy of 535 keV and a {sup 16}F kinetic energy of 3940 MeV, respectively. The mode allows a new form of missing-mass spectroscopy using a reaction probe with a particle-decay channel.

  18. Tandem Mass Spectrometry on a Miniaturized Laser Desorption Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Li, Xiang; Cornish, Timothy; Getty, Stephanie A.; Brinckerhoff, William B.

    2016-01-01

    Tandem mass spectrometry (MSMS) is a powerful and widely-used technique for identifying the molecular structure of organic constituents of a complex sample. Application of MSMS to the study of unknown planetary samples on a remote space mission would contribute to our understanding of the origin, evolution, and distribution of extraterrestrial organics in our solar system. Here we report on the realization of MSMS on a miniaturized laser desorption time-of-flight mass spectrometer (LD-TOF-MS), which is one of the most promising instrument types for future planetary missions. This achievement relies on two critical components: a curved-field reflectron and a pulsed-pin ion gate. These enable use of the complementary post-source decay (PSD) and laser-assisted collision induced dissociation (L-CID) MSMS methods on diverse measurement targets with only modest investment in instrument resources such as volume and weight. MSMS spectra of selected molecular targets in various organic standards exhibit excellent agreement when compared with results from a commercial, laboratory-scale TOF instrument, demonstrating the potential of this powerful technique in space and planetary environments.

  19. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    Science.gov (United States)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  20. A field-deployable, chemical ionization time-of-flight mass spectrometer

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2011-07-01

    Full Text Available We constructed a new chemical ionization time-of-flight mass spectrometer (CI-TOFMS that measures atmospheric trace gases in real time with high sensitivity. We apply the technique to the measurement of formic acid via negative-ion proton transfer, using acetate as the reagent ion. A novel high pressure interface, incorporating two RF-only quadrupoles is used to efficiently focus ions through four stages of differential pumping before analysis with a compact TOFMS. The high ion-duty cycle (>20 % of the TOFMS combined with the efficient production and transmission of ions in the high pressure interface results in a highly sensitive (>300 ions s−1 pptv−1 formic acid instrument capable of measuring and saving complete mass spectra at rates faster than 10 Hz. We demonstrate the efficient transfer and detection of both bare ions and ion-molecule clusters, and characterize the instrument during field measurements aboard the R/V Atlantis as part of the CalNex campaign during the spring of 2010. The in-field short-term precision is better than 5 % at 1 pptv (pL/L, for 1-s averages. The detection limit (3 σ, 1-s averages of the current version of the CI-TOFMS, as applied to the in situ detection of formic acid, is limited by the magnitude and variability in the background determination and was determined to be 4 pptv. Application of the CI-TOFMS to the detection of other inorganic and organic acids, as well as the use of different reagent ion molecules (e.g. I, CF3O, CO3 is promising, as we have demonstrated efficient transmission and detection of both bare ions and their associated ion-molecule clusters.

  1. Implementation of Ion/Ion Reactions in a Quadrupole/Time-of-Flight Tandem Mass Spectrometer

    Science.gov (United States)

    Xia, Yu; Chrisman, Paul A.; Erickson, David E.; Liu, Jian; Liang, Xiaorong; Londry, Frank A.; Yang, Min J.; McLuckey, Scott A.

    2008-01-01

    A commercial quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been adapted for ion/ion reaction studies. To enable mutual storage of oppositely charged ions in a linear ion trap, the oscillating quadrupole field of the second quadrupole of the system (Q2) serves to store ions in the radial dimension while auxiliary RF is superposed on the end lenses of Q2 during the reaction period to create barriers in the axial dimension. A pulsed dual electrospray (ESI) source is directly coupled to the instrument interface for the purpose of proton transfer reactions. Singly and doubly charged protein ions as high in mass as 66 kDa are readily formed and observed after proton transfer reactions. For the modified instrument, the mass resolving power is about 8000 for a wide m/z range and the mass accuracy is ~20 ppm for external calibration and ~5 ppm for internal calibration after ion/ion reactions. Parallel ion parking is demonstrated with a six-component protein mixture, which shows the potential application of reducing spectral complexity and concentrating certain charge states. The current system has high flexibility with respect to defining MSn experiments involving collision-induced dissociation (CID) and ion/ion reactions. Protein precursor and CID product masses can be determined with good accuracy, providing an attractive platform for top-down proteomics. Electron transfer dissociation (ETD) ion/ion reactions are implemented by using a pulsed nano-ESI/atmospheric pressure chemical ionization (APCI) dual source for ionization. The reaction between protonated peptide ions and radical anions of 1,3-dinitrobenzene formed exclusively c- and z- type fragment ions. PMID:16771545

  2. Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season

    Science.gov (United States)

    Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

    1988-01-01

    Spectral and radiometric calibrations of AVIRIS are described together with changes in instrument characteristics that occurred during the flight season. These changes include detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. Means of improving the instrument are discussed.

  3. Sensitivity and fragmentation calibration of the time-of-flight mass spectrometer RTOF on board ESA's Rosetta mission

    Science.gov (United States)

    Gasc, Sébastien; Altwegg, Kathrin; Fiethe, Björn; Jäckel, Annette; Korth, Axel; Le Roy, Léna; Mall, Urs; Rème, Henri; Rubin, Martin; Hunter Waite, J.; Wurz, Peter

    2017-01-01

    The European Space Agency's Rosetta spacecraft, with the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard, has been following and observing comet 67P/Churyumov-Gerasimenko since summer 2014. Prior to this period, and due to a technical failure also during this period, optimization and calibration campaigns have been conducted on ground with the Reflectron-type Time Of Flight (RTOF) mass spectrometer as a preparatory work for the analysis of data recorded during the science phase of the mission. In this work, we show the evolution of the performance of RTOF, and demonstrate and quantify the sensitivity and functionality of RTOF onboard Rosetta. We also present a fragmentation and sensitivity database for the most abundant molecules observed around the comet such as H2O, CO, CO2, as well as the noble gases.

  4. Direct Chemical Analysis of Solids by Laser Ablation in an Ion-Storage Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Grant, P M; Andresen, B D; Russo, R E

    2003-09-29

    A laser ablation/ionization mass spectrometer system is described for the direct analysis of solids, particles, and fibers. The system uses a quadrupole ion trap operated in an ion-storage (IS) mode, coupled with a reflectron time-of-flight mass spectrometer (TOF-MS). The sample is inserted radially into the ring electrode and an imaging system allows direct viewing and selected analysis of the sample. Measurements identified trace contaminants of Ag, Sn, and Sb in a Pb target with single laser-shot experiments. Resolution (m/{micro}m) of 1500 and detection limits of approximately 10 pg have been achieved with a single laser pulse. The system configuration and related operating principles for accurately measuring low concentrations of isotopes are described.

  5. Development of a mass spectrometer for planetary exosphere exploration: from simulations to a flight like design

    Science.gov (United States)

    Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2017-04-01

    The exploration of habitable environments around the gas giants in the Solar System is of major interest in upcoming planetary missions. Exactly this theme is addressed by the Jupiter Icy Moons Explorer (JUICE) mission of ESA, which will characterise Ganymede, Europa and Callisto as planetary objects and potential habitats [1], [2]. We developed a prototype of the Neutral gas and Ion Mass spectrometer (NIM) of the Particle Environment Package (PEP) for the JUICE mission intended for composition measurements of neutral gas and thermal plasma [3]. NIM/PEP will be used to measure the chemical composition of the exospheres of the icy Jovian moons. Besides direct ion measurement, the NIM instrument is able to measure the inflowing neutral gas in two different modes: in neutral mode the gas enters directly the ion source (open source) and in thermal mode, the gas gets thermally accommodated to wall temperature by several collisions inside an equilibrium sphere before entering the ion source (closed source). We started the development of NIM with detailed ion-optical simulations and optimisations using SIMION software. Based on the ion-optical design we developed a prototype of NIM with several iterations. We tested the prototype NIM under realistic mission conditions and thereby successfully verified its required functionality. We will present the development process from ion-optical simulation up to NIM prototype test results and the concluded flight like design. Furthermore, we will provide an insight into the working principle of NIM and its performance, based on measurement data. References: 1) ESA, "JUICE assessment study report (Yellow Book)", ESA/SRE(2011)18, 2012. 2) O. Grasset, M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, D. Titov, M. Blanc, A. Coates, P. Drossart, L.N. Fletcher, H. Hussmann, R. Jaumann, N. Krupp, J.-P. Lebreton, O. Prieto-Ballesteros, P. Tortora, F. Tosi, T. Van Hoolst, "JUpiter Icy moons Explorer (JUICE): An ESA mission to orbit Ganymede

  6. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  7. Sensitivity and fragmentation calibration of the time-of-flight mass spectrometer RTOF on board ESA's Rosetta mission

    Science.gov (United States)

    Gasc, Sébastien; Altwegg, Kathrin; Jäckel, Annette; Le Roy, Léna; Rubin, Martin; Fiethe, Björn; Mall, Urs; Rème, Henri

    2014-05-01

    The European Space Agency's Rosetta mission will rendez-vous comet 67P/Churyumov-Gerasimenko (67P) in September 2014. The Rosetta spacecraft with the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard will follow and survey 67P for more than a year until the comet reaches its perihelion and beyond. ROSINA will provide new information on the global molecular, elemental, and isotopic composition of the coma [1]. ROSINA consists of a pressure sensor (COPS) and two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time Of Flight mass spectrometer (RTOF). RTOF has a wide mass range, from 1 amu/e to >300 amu/e, and contains two ion sources, a reflectron and two detectors. The two ion sources, the orthogonal and the storage source, are capable to measure cometary ions while the latter also allows measuring cometary neutral gas. In neutral gas mode the ionization is performed through electron impact. A built-in Gas Calibration Unit (GCU) contains a known gas mixture composed of He, CO2, and Kr that can be used for in-flight calibration of the instrument. Among other ROSINA specific scientific goals, RTOF's task will be to determine molecular composition of volatiles via measuring and separating heavy hydrocarbons; it has been designed to study the development of the cometary activity as well as the coma chemistry between 3.5 AU and perihelion. From the spectroscopic studies and in-situ observations of other comets, we expect to find molecules such as H2O, CO, CO2, hydrocarbons, alcohols, formaldehyde, and other organic compounds in the coma of 67P/Churyumov-Gerasimenko [2]. To demonstrate and quantify the sensitivity and functionality of RTOF, calibration measurements have been realized with more than 20 species among the most abundant molecules quoted above, as well as other species such as PAHs. We will describe the applied methods used to realize this calibration and will discuss our preliminary results, i

  8. A tandem time–of–flight spectrometer for negative–ion/positive–ion coincidence measurements with soft x-ray excitation

    Energy Technology Data Exchange (ETDEWEB)

    Stråhlman, Christian, E-mail: Christian.Strahlman@maxlab.lu.se; Sankari, Rami; Nyholm, Ralf [MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund (Sweden); Kivimäki, Antti [Consiglio Nazionale delle Ricerche—Istituto Officina dei Materiali, Laboratorio TASC, 34149 Trieste (Italy); Richter, Robert [Elettra–Sincrotrone Trieste, Area Science Park, 34149 Trieste (Italy); Coreno, Marcello [Consiglio Nazionale delle Ricerche—Istituto di Struttura della Materia, 34149 Trieste (Italy)

    2016-01-15

    We present a newly constructed spectrometer for negative–ion/positive–ion coincidence spectroscopy of gaseous samples. The instrument consists of two time–of–flight ion spectrometers and a magnetic momentum filter for deflection of electrons. The instrument can measure double and triple coincidences between mass–resolved negative and positive ions with high detection efficiency. First results include identification of several negative–ion/positive–ion coincidence channels following inner-shell photoexcitation of sulfur hexafluoride (SF{sub 6})

  9. Performance test on PELICAN - a multi-purpose time of flight cold neutron spectrometer

    Science.gov (United States)

    Yu, Dehong; Mole, Richard. A.; Kearley, Gordon J.

    2015-01-01

    Pelican, a direct geometry multi-purpose cold neutron spectrometer has recently been commissioned at the Bragg Institute, ANSTO. The energy resolution and flux at the sample position as a function of neutron wavelength has been evaluated and time focusing at selected energy transfers has also been demonstrated. Several test experiments of quasi-elastic and inelastic neutron scatterings have been performed and these have indicated the realisation of the design specifications and performance of the instrument.

  10. Performance test on PELICAN – a multi-purpose time of flight cold neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Yu Dehong

    2015-01-01

    Full Text Available Pelican, a direct geometry multi-purpose cold neutron spectrometer has recently been commissioned at the Bragg Institute, ANSTO. The energy resolution and flux at the sample position as a function of neutron wavelength has been evaluated and time focusing at selected energy transfers has also been demonstrated. Several test experiments of quasi-elastic and inelastic neutron scatterings have been performed and these have indicated the realisation of the design specifications and performance of the instrument.

  11. Performance test on PELICAN – a multi-purpose time of flight cold neutron spectrometer

    OpenAIRE

    Yu Dehong; Mole Richard. A.; Kearley Gordon J.

    2015-01-01

    Pelican, a direct geometry multi-purpose cold neutron spectrometer has recently been commissioned at the Bragg Institute, ANSTO. The energy resolution and flux at the sample position as a function of neutron wavelength has been evaluated and time focusing at selected energy transfers has also been demonstrated. Several test experiments of quasi-elastic and inelastic neutron scatterings have been performed and these have indicated the realisation of the design specifications and performance of...

  12. Construction and simulation of a multi-reflection time-of-flight mass spectrometer at the University of Notre Dame

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, B.E., E-mail: bschult4@nd.edu; Kelly, J.M.; Nicoloff, C.; Long, J.; Ryan, S.; Brodeur, M.

    2016-06-01

    One of the most significant problems in the production of rare isotopes is the simultaneous production of contaminants, often time isobaric. Thus, a high-resolution beam purification method is required which needs to be compatible with both the low yield and short half-life of the desired radionuclide. A multi-reflection time-of-flight mass spectrometer meets all these criteria, in addition to boasting a smaller footprint relative to traditional separator dipole magnets. Such a device is currently under construction at the University of Notre Dame and is intended to be coupled to the IG-ISOL source of the planned cyclotron facility. The motivation and conceptual design are presented, as well as the status of simulations to determine the feasibility of using a Bradbury–Nielsen gate for bunching ion beams during initial system testing.

  13. Construction and simulation of a multi-reflection time-of-flight mass spectrometer at the University of Notre Dame

    Science.gov (United States)

    Schultz, B. E.; Kelly, J. M.; Nicoloff, C.; Long, J.; Ryan, S.; Brodeur, M.

    2016-06-01

    One of the most significant problems in the production of rare isotopes is the simultaneous production of contaminants, often time isobaric. Thus, a high-resolution beam purification method is required which needs to be compatible with both the low yield and short half-life of the desired radionuclide. A multi-reflection time-of-flight mass spectrometer meets all these criteria, in addition to boasting a smaller footprint relative to traditional separator dipole magnets. Such a device is currently under construction at the University of Notre Dame and is intended to be coupled to the IG-ISOL source of the planned cyclotron facility. The motivation and conceptual design are presented, as well as the status of simulations to determine the feasibility of using a Bradbury-Nielsen gate for bunching ion beams during initial system testing.

  14. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  15. Methods for Retrievals of CO2 Mixing Ratios from JPL Laser Absorption Spectrometer Flights During a Summer 2011 Campaign

    Science.gov (United States)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2013-01-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. This instrument employs CW laser transmitters and coherent detection receivers in the 2.05- micro m spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the evolving LAS signal processing and data analysis algorithms and the calibration/validation methodology. Results from 2011 flights in various U.S. locations include observed mid-day CO2 drawdown in the Midwest and high spatial resolution plume detection during a leg downwind of the Four Corners power plant in New Mexico.

  16. Mars Organic Molecule Analyzer (MOMA) Mass Spectrometer Flight Model and Future Ion Trap-Based Planetary Instruments

    Science.gov (United States)

    Brinckerhoff, W. B.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Arevalo, R. D., Jr.; Li, X.; Grubisic, A.; Getty, S.; Hovmand, L.; Mahaffy, P. R.

    2015-12-01

    The Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars rover will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. MOMA combines pyrolysis gas chromatography mass spectrometry (GCMS) of bulk powder samples and Mars ambient laser desorption mass spectrometry (LDMS) surface analysis, using a single ion trap MS. This dual source design enables MOMA to detect compounds over a wide range of molecular weights and volatilities. The structure of any detected organics may be further examined using MOMA's tandem mass spectrometry (MS/MS) mode. The flight model (FM) ion trap sensor and electronics have been assembled under the extremely clean and sterile conditions required by ExoMars, and have met or exceeded all performance specifications during initial functional tests. After Mars ambient thermal cycling and calibration, the FM will be delivered as a subsystem of MOMA to rover integration in mid-2016. There MOMA will join complementary rover instruments such as the Raman and MicrOmega spectrometers designed to analyze common drill samples. Following the MOMA design, linear ion trap mass spectrometer (LITMS)-based instruments are under development for future missions. LITMS adds enhanced capabilities such as precision (point-by-point) analysis of drill cores, negative ion detection, a wider mass range, and higher temperature pyrolysis with precision evolved gas analysis, while remaining highly compact and robust. Each of the capabilities of LITMS has been demonstrated on breadboard hardware. The next phase will realize an end-to-end brassboard at flight scale that will meet stringent technology readiness level (TRL) 6 criteria, indicating readiness for development toward missions to Mars, comets, asteroids, outer solar system moons, and beyond.

  17. In-flight performance of the Soft X-ray Spectrometer detector system on Astro-H

    Science.gov (United States)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Caroline A.; Leutenegger, Maurice A.; McCammon, Dan; Mitsuda, Kazuhisa; Sato, Kosuke; Seta, Hiromi; Sawada, Makoto; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tashiro, Makoto S.; Tsujimoto, Masahiro; Watanabe, Tomomi; Yamada, Shinya

    2016-07-01

    The SXS instrument was launched aboard the Astro-H observatory on February 17, 2016. The SXS spectrometer is based on a high sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous band-pass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anti-coincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain-stability, and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7 eV FWHM at 6 keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in pre-flight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  18. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Arrell, C. A., E-mail: christopher.arrell@epfl.ch; Ojeda, J.; Mourik, F. van; Chergui, M. [Laboratory of Ultrafast Spectroscopy, ISIC, Station 6, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Sabbar, M.; Gallmann, L.; Keller, U. [Physics Department, ETH Zurich, 8093 Zurich (Switzerland); Okell, W. A.; Witting, T.; Siegel, T.; Diveki, Z.; Hutchinson, S.; Tisch, J. W.G.; Marangos, J. P. [Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Chapman, R. T.; Cacho, C.; Rodrigues, N.; Turcu, I. C.E.; Springate, E. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxon OX11 0QX (United Kingdom)

    2014-10-01

    We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10⁻¹ mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented, while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer.

  19. Development of a high resolution laser based angle-resolving time-of-flight photoelectron spectrometer

    CERN Document Server

    Berntsen, M H; Tjernberg, O

    2011-01-01

    We present the design and performance of a novel Laser-based Angle-Resolving Time-of-Flight (LARTOF) system for photoemission from solids in the vacuum ultraviolet (VUV) energy range. A pulsed laser provides photons which through a third harmonic generation (THG) process performed in a xenon filled gas cell generates VUV photons of energy 10.5 eV. The time-of-flight analyzer is able to collect all electrons that are emitted from the sample within a circular cone of up to +/-15 degrees. By simultaneously measuring the energy and emission angle along two spatial directions for the electrons the analyzer provides three-dimensional detection capability. Data from a test measurement performed on the Au(111) surface state is presented along with some more advanced measurements of the Fermi surface of the high-temperature superconductor Bi2212.

  20. Timing and Spectroscopy Requirements for a Plastic Scintillating Fiber Bundle Time-of-Flight Neutron Spectrometer

    Science.gov (United States)

    2013-12-01

    flexibility, efficiency, timing, and position resolution in developing novel Compton camera detectors capable of detecting special nuclear material. 1.3...oscilloscope needs to be fast enough to resolve coincident pulse events on the picoseconds to nanosecond time scale. The final objective is to experimentally...Mirsaleh-Kohan, W. D. Nasrin, and R. N. Compton , “Electron ionization time-of-flight mass spectroscopy: Historical review and current applications

  1. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Directory of Open Access Journals (Sweden)

    T. Dickel

    2015-05-01

    Full Text Available 211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC. They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS. The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  2. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Dickel, T. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Plaß, W.R., E-mail: Wolfgang.R.Plass@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Ayet San Andres, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Ebert, J. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Geissel, H.; Haettner, E. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Hornung, C. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Miskun, I. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Pietri, S.; Purushothaman, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); and others

    2015-05-11

    {sup 211}Po ions in the ground and isomeric states were produced via {sup 238}U projectile fragmentation at 1000 MeV/u. The {sup 211}Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  3. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    DEFF Research Database (Denmark)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-01-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (a...

  4. Measurement and simulation of the response function of time of flight enhanced diagnostics neutron spectrometer for beam ion studies at EAST tokamak

    Science.gov (United States)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.; Du, T. F.; Hu, Z. M.; Ge, L. J.; Zhang, Y. M.; Sun, J. Q.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Pu, N.; Lin, S. Y.; Wan, B. N.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.

    2016-11-01

    The 2.5 MeV TOFED (Time-Of-Flight Enhanced Diagnostics) neutron spectrometer with a double-ring structure has been installed at Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas. This work describes the response function of the TOFED spectrometer, which is evaluated for the fully assembled instrument in its final layout. Results from Monte Carlo simulations and dedicated experiments with pulsed light sources are presented and used to determine properties of light transport from the scintillator. A GEANT4 model of the TOFED spectrometer was developed to calculate the instrument response matrix. The simulated TOFED response function was successfully benchmarked against measurements of the time-of-flight spectra for quasi-monoenergetic neutrons in the energy range of 1-4 MeV. The results are discussed in relation to the capability of TOFED to perform beam ion studies on EAST.

  5. Measuring the Heat Load on the Flight ASTRO-H Soft Xray Spectrometer Dewar

    Science.gov (United States)

    DiPirro, M.; Shirron, P.; Yoshida, S.; Kanao, K.; Tsunematsu, S.; Fujimoto, R.; Sneiderman, G.; Kimball, M.; Ezoe, Y.; Ishikawa, K.; Takei, Y.; Mitsuda, K.; Kelley, R.

    2015-01-01

    The Soft Xray Spectrometer (SXS) instrument on-board the ASTRO-H X-ray mission is based on microcalorimeters operating at 50 mK. Low temperature is achieved by use of an adiabatic demagnetization refrigerator (ADR) cyclically operating up to a heat sink at either 1.2 K or 4.5 K. The 1.2 K heat sink is provided by a 40 liter superfluid helium dewar. The parasitic heat to the helium from supports, plumbing, wires, and radiation, and the cyclic heat dumped by the ADR operation determine the liquid helium lifetime. To measure this lifetime we have used various techniques to rapidly achieve thermal equilibrium and then measure the boil-off rate of the helium. We have measured a parasitic heat of 650 microwatts and a cyclic heat of 100 microwatts for a total of 750 microwatts. This closely matches the predicted heat load. Starting with a fill level at launch of more than 33 liters results in a lifetime of greater than 4 years for the liquid helium. The techniques and accuracy for this measurement will be explained in this paper.

  6. Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer.

    Science.gov (United States)

    Gao, Dan; Wei, Huibin; Guo, Guang-Sheng; Lin, Jin-Ming

    2010-07-01

    A novel method for the characterization of drug metabolites was developed by integrating chip-based solid-phase extraction (SPE) with an online electrospray ionization quadrupole time-of-fight mass spectrometer (ESI-Q-TOF-MS). The integrated microfluidic device was composed of circular chambers for cell culture and straight microchannels with shrink ends to pack the solid-phase material for sample cleanup and concentration prior to mass analysis. By connecting the two separated microchannels with polyethylene tubes, drug metabolism studies related to functional units, including cell culture, metabolism generation, sample pretreatment, and detection, were all integrated into the microfluidic device. To verify the feasibility of a drug metabolism study on the microfluidic device, the metabolism of vitamin E in human lung epithelial A549 cells was studied. The metabolites were successfully detected by online ESI-Q-TOF-MS with high sensitivity and short analysis time (8 min). By integrating several parallel channels, the desalting and concentration process could be simultaneously achieved. The total sample pretreatment time only needed about 15 min, and solvent consumption could be reduced to less than 100 microL. All this demonstrated that the developed microfluidic device could be a potential useful tool for cellular drug metabolism research.

  7. Biological tissue imaging with a hybrid cluster SIMS quadrupole time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Carado, A. [Pennsylvania State University, 104 Chemistry Building, University Park, PA (United States)], E-mail: ajc161@psu.edu; Kozole, J.; Passarelli, M.; Winograd, N. [Pennsylvania State University, 104 Chemistry Building, University Park, PA (United States); Loboda, A. [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ontario, CA (United States); Bunch, J. [Centre for Analytical Sciences, University of Sheffield, Sheffield S3 7HF (United Kingdom); Wingate, J. [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ontario, CA (United States); Hankin, J.; Murphy, R. [University of Colorado at Denver and Health Science Center, 12801 East 17th Avenue, Aurora, CO (United States)

    2008-12-15

    A 20 keV C{sub 60}{sup +} ion source was mounted onto a commercial MALDI/electrospray orthogonal ToF mass spectrometer. Cross-sectional mouse brain and lung slices between 5 and 10 {mu}m prepared by cryostat sectioning were successfully imaged using a DC C{sub 60}{sup +} primary ion beam at a spot size of 100 {mu}m. Analysis was performed at room temperature following vacuum drying. An abundance of ions were mapped in all samples, many whose identity can only be found using the MS/MS functionality. We have successfully identified and imaged localizations of diacylglycerol (DAG) ions - 1-palmitoyl-2-oleoyl-glycerol (m/z{sup +} 577.5) and 1,2-dioleoyl-glycerol (m/z{sup +} 603.5) - in lung tissue. The mouse brain slice revealed strong, distinct localizations of many ions revealing the potential for this technique for biological imaging. Ions throughout the mass range of m/z{sup +} 50-800 were collected in sufficient quantities to permit unambiguous chemical mapping. Mass resolutions of 12,000 or greater were routinely obtained allowing for more accurate ion mapping than typically seen with ToF-SIMS image analysis.

  8. On Applicability of a Miniaturised Laser Ablation Time of Flight Mass Spectrometer for Trace Elements Measurements

    Directory of Open Access Journals (Sweden)

    Marek Tulej

    2012-01-01

    Full Text Available We present results from mass spectrometric analysis of NIST standard materials and meteoritic samples conducted by a miniaturised laser ablation mass spectrometer designed for space research. The mass analyser supports investigation with a mass resolution (/Δ ≈ 500–600 and dynamic range within seven decades. Nevertheless, to maintain an optimal spectral quality laser irradiances lower than ~1 GW/cm2 are applied so far which results in a spread of RSC values. To achieve the quantitative performance of mass analyser, various effects influencing RSC factors have to be investigated. In this paper we investigate influence of laser irradiance, sampling procedure and plasma chemistry on the quantitative elemental and isotopic analysis. The studies indicate necessity for accurate control of laser characteristics and acquisition procedure. A relatively low irradiance applied causes a negligible sample damage and allows for accumulation of large number of waveforms from one sample location. The procedure yields statistically well averaged data and allows a sensitive in-depth analysis. The quantitative analyses of isotopic composition can be performed with accuracy and precision better as 1% and 2%, for isotopic patterns of elements and clusters, respectively. The numerical integration methods would be preferred to achieve more accurate results. The measurements of Allende sample yield detection of Pb isotopic pattern, nevertheless cluster species are readily observed in spectrum and make the elemental analysis of other trace elements difficult due to isobaric interferences. These detections are of a considerable interest because of possible application of the instrument for in situ elemental and isotopic analysis and radiometric dating of solids.

  9. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies.

    Science.gov (United States)

    Tranter, Robert S; Giri, Binod R; Kiefer, John H

    2007-03-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr.

  10. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    SHAPIRO,S.M.ZALIZNYAK,I.PASSELL,L.GHOSH,V.

    2003-05-12

    HYSPEC combines time-of-flight spectroscopy with focusing Bragg optics to enhance the flux on small single crystal samples. It will look at a coupled H{sub 2} moderator and will use a 20-25 meter supermirror guide to transport the neutron beam. A counter-rotating chopper pair will monochromate the beam and determine the neutron burst width. A short distance from the chopper pair a vertical focusing crystal is placed in a drum shield that will focus the beam to a 2 cm height, thus maximizing the flux at the sample position. Collimators and beam definers will be placed before and after the sample, which will allow standard sample environment equipment to be used covering a wide range of temperatures and magnetic fields. About 200 He{sup 3} position sensitive detectors will be housed in a moveable detector bank 4.5 m from the sample to cover a horizontal range of 60{sup o} and a vertical range of {+-}7.5{sup o}. HYSPEC can easily be converted to a polarized beam instrument by using a Heusler crystal for a monochromator, and supermirror benders for polarization analysis of the scattered beam. HYSPEC is a moderate resolution instrument optimized for an incident energy range of 5

  11. Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H

    Science.gov (United States)

    Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuichi; Sato, Yoichi; DiPirro, Mike; Shirron, Peter

    2016-03-01

    ASTRO-H is a Japanese X-ray astronomy satellite, scheduled to be launched in fiscal year 2015. The mission includes a soft X-ray spectrometer instrument (SXS), which contains an X-ray micro calorimeter operating at 50 mK by using an adiabatic demagnetization refrigerator (ADR). The heat sink of the ADR is superfluid liquid helium below 1.3 K. The required lifetime of the superfluid helium is 3 years or more. In order to realize this lifetime, we have improved the thermal performance from the engineering model (EM) while maintaining the mechanical performance. Then, we have performed a thermal test of the flight model (FM). The results were that the heat load to the helium tank was reduced to below 0.8 mW in the FM from 1.2 mW in the EM. Therefore, the lifetime of the superfluid helium is more than 3 years with 30 L of liquid helium. In this paper, the thermal design and thermal test results are described.

  12. [Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].

    Science.gov (United States)

    Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

    2014-05-01

    A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical.

  13. Design study of magnetic environments for XYZ polarization analysis using 3He for the new thermal time of flight spectrometer TOPAS

    CERN Document Server

    Salhi, Zahir; Ioffe, Alexander

    2012-01-01

    We present a finite element calculation of the magnetic field (MagNet software) taken with the newly proposed PASTIS Coil, which uses a wide-angle banana shaped 3He Neuton Spin Filter cell (NSF) to cover a large range of scattering angle. The goal of this insert is to enable XYZ polarization analysis to be installed on the future thermal time-of flight spectrometer TOPAS.

  14. Further development and application of a mobile multiple-reflection time-of-flight mass spectrometer for analytical high-resolution tandem mass spectrometry

    OpenAIRE

    Lippert, Wayne

    2016-01-01

    In this work, a mobile multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) for analytical mass spectrometry was enhanced in many important aspects. Technical as well as software-based improvements have been added to the instrument, thus greatly increasing its performance and applicability. Changes have been applied to the whole beam preparation system of the MR-TOF-MS. In this context, the electronic setup was completely overhauled and a quadrupole mass filter was commissioned. C...

  15. GEANT4 simulation and evaluation of a time-of-flight spectrometer for nuclear cross section measurements in particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, Oxana

    2011-06-08

    In 2007 a new project has been launched in a cooperation between the RWTH Aachen Physics Department, the University Hospital Aachen and the Philips Research Laboratories. The project aim is to validate and improve GEANT4 nuclear interaction models for use in proton and ion therapy. The method chosen here is the measurement of nuclear reaction cross sections which will not only provide a comparison to the simulation but will also allow to improve some of the parameters in the nuclear models. In the first phase of the project 200 MeV protons are used as a projectile in combination with a thin graphite target. For use in particle therapy the excitation functions of the most frequently produced isotopes need to be measured with an accuracy of 10% or less. For this purpose a dedicated detector system has been designed and implemented in GEANT4. The detection of target fragments produced by protons in graphite is achieved via time-of-flight spectrometry. In the setup presented here the primary beam first hits the Start detector and initiates the time-of-flight measurement before it passes through the apertures of two Veto detectors and impinges on the target. Successively, the secondary particles emanating from the target travel a short distance of 70/80 cm through vacuum (0.1 mbar) before they hit one of the 20 Stop detectors which end the time-of-flight measurement and record the energy deposited by the particle. The dissertation at hand describes the underlying detector concept and presents a detailed GEANT4 simulation of the setup which allows to evaluate the detector performance with respect to target fragment identification at a projectile energy of 200 MeV. At first, correlations of time-of-flight and energy deposition are built from simulated data and are subsequently used to reconstruct mass spectra of the detected fragments. Such influences on the detection performance as the target thickness, the residual pressure within the detector chamber, the Veto system

  16. In-flight verification of the calibration and performance of the ASTRO-H (Hitomi) Soft X-Ray Spectrometer

    Science.gov (United States)

    Leutenegger, Maurice A.; Audard, Marc; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Furuzawa, Akihiro; Guainazzi, Matteo; Haas, Daniel; den Herder, Jan-Willem; Hayashi, Takayuki; Iizuka, Ryo; Ishida, Manabu; Ishisaki, Yoshitaka; Kelley, Richard L.; Kikuchi, Naomichi; Kilbourne, Caroline A.; Koyama, Shu; Kurashima, Sho; Maeda, Yoshitomo; Markevitch, Maxim; McCammon, Dan; Mitsuda, Kazuhisa; Mori, Hideyuki; Nakaniwa, Nozomi; Okajima, Takashi; Paltani, Stéphane; Petre, Robert; Porter, F. Scott; Sato, Kosuke; Sato, Toshiki; Sawada, Makoto; Serlemitsos, Peter J.; Seta, Hiromi; Sneiderman, Gary; Soong, Yang; Sugita, Satoshi; Szymkowiak, Andrew E.; Takei, Yoh; Tashiro, Makoto; Tawara, Yuzuru; Tsujimoto, Masahiro; de Vries, Cor P.; Watanabe, Tomomi; Yamada, Shinya; Yamasaki, Noriko

    2016-07-01

    The Soft X-ray Spectrometer (SXS) onboard the Astro-H (Hitomi) orbiting x-ray observatory featured an array of 36 silicon thermistor x-ray calorimeters optimized to perform high spectral resolution x-ray imaging spectroscopy of astrophysical sources in the 0.3-12 keV band. Extensive pre- flight calibration measurements are the basis for our modeling of the pulse-height-energy relation and energy resolution for each pixel and event grade, telescope collecting area, detector efficiency, and pulse arrival time. Because of the early termination of mission operations, we needed to extract the maximum information from observations performed only days into the mission when the onboard calibration sources had not yet been commissioned and the dewar was still coming into thermal equilibrium, so our technique for reconstructing the per-pixel time-dependent pulse-height-energy relation had to be modified. The gain scale was reconstructed using a combination of an absolute energy scale calibration at a single time using a fiducial from an onboard radioactive source, and calibration of a dominant time-dependent gain drift component using a dedicated calibration pixel, as well as a residual time-dependent variation using spectra from the Perseus cluster of galaxies. The energy resolution was also measured using the onboard radioactive sources. It is consistent with instrument-level measurements accounting for the modest increase in noise due to spacecraft systems interference. We use observations of two pulsars to validate our models of the telescope area and detector efficiency, and to derive a more accurate value for the thickness of the gate valve Be window, which had not been opened by the time mission operations ceased. We use observations of the Crab pulsar to refine the pixel-to-pixel timing and validate the absolute timing.

  17. Application of a time-of-flight spectrometer with delay-line detector for time- and angle-resolved two-photon photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Damm, A. [Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, D-35032 Marburg (Germany); Güdde, J., E-mail: Jens.Guedde@physik.uni-marburg.de [Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, D-35032 Marburg (Germany); Feulner, P. [Physikdepartment E20, Technische Universität München, 85747 Garching (Germany); Czasch, A.; Jagutzki, O.; Schmidt-Böcking, H. [Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main (Germany); RoentDek Handels GmbH, D-65779 Kelkheim (Germany); Höfer, U. [Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, D-35032 Marburg (Germany)

    2015-07-15

    Highlights: • The performance of a 2D time-of-flight electron spectrometer is demonstrated. • We discuss its application for time- and angle-resolved two-photon photoemission. • The decay dynamics of the first image-potential state on Cu(1 0 0) is investigated. • We find an azimuthal anisotropy of the decay rate with one-fold symmetry. • The anisotropy is attributed to residual steps on the nominal flat surface. - Abstract: We describe the design and operation of a time-of-flight electron spectrometer which is capable of simultaneously acquiring the energy and momentum distribution of low-energy photoelectrons in two dimensions parallel to the surface. We discuss its capabilities and limitations in particular for time- and angle-resolved two-photon photoemission (2PPE) with pulsed lasers. The performance of the spectrometer is demonstrated by presenting 2PPE data on the momentum-dependent electron dynamics of the first (n = 1) image-potential state on Cu(0 0 1). The data reveal a weak but systematic dependence of the decay dynamics on sample azimuth with one-fold symmetry which we attribute to a small residual step density on the nominal flat surface.

  18. Characterization of a time-of-flight mass spectrometer and its applications in the study of solid surfaces; Charakterisierung eines Flugzeitmassenspektrometers und seine Anwendungen in der Festkoerperoberflaechenuntersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Mazarov, P.

    2006-12-21

    The object and the purpose of the present work was to develop, to assemble and to start running a new TOF (time of flight) mass spectrometer for imaging SNMS analytic which is optimized for the analysis of highly molecular secondary ions. The most important purpose was the characterization of the TOF mass spectrometer. The obtained mass spectra of indium, tantalum and silver clusters reflect the excellent properties of the TOF mass spectrometer for the detection of large clusters with good detection efficiency up to masses of 16000 amu. The possibility of the deflection of selected saturated atom and cluster peaks serves for further improvement of the detection efficiency for large molecules. The accessible mass resolution was determined to be of the order of m/{delta}m=1000 in the high mass region. Numerous measurements were carried out to characterize the useful yield of this spectrometer. For a best possible adaptation of the TOF mass spectrometer for the detection of highly molecular particles, a device for post-acceleration of the detected particles by up to 10 keV were inserted directly before the MCP detector. The detection efficiency of positive secondary ions was determined for different post-acceleration voltages for the example of sputtered indium cluster ions. In addition, a new method was developed for the quantitative determination of the spectral ionization probability {alpha}{sup +}({nu}) of sputtered particles as a function of the emission velocity. The next application of the TOF mass spectrometer is the analysis of complicated organic molecules in solid state surfaces. During measurements of the photo-ionization behaviour of neutral tryptophan molecules, it was found out that a stable molecular ion signal is generated in the SNMS spectrum with h{nu}=7.9 eV can only be observed by the use of a continuous ion beam or very long (ms range) ion pulses. (orig.)

  19. Multi-Wavelength Laser Transmitter for the Two-Step Laser Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Yu, Anthony W.; Li, Steven X.; Fahey, Molly E.; Grubisic, Andrej; Farcy, Benjamin J.; Uckert, Kyle; Li, Xiang; Getty, Stephanie

    2017-01-01

    Missions to diverse Outer Solar System bodies will require investigations that can detect a wide range of organics in complex mixtures, determine the structure of selected molecules, and provide powerful insights into their origin and evolution. Previous studies from remote spectroscopy of the Outer Solar System showed a diverse population of macromolecular species that are likely to include aromatic and conjugated hydrocarbons with varying degrees of methylation and nitrile incorporation. In situ exploration of Titan's upper atmosphere via mass and plasma spectrometry has revealed a complex mixture of organics. Similar material is expected on the Ice Giants, their moons, and other Outer Solar System bodies, where it may subsequently be deposited onto surface ices. It is evident that the detection of organics on other planetary surfaces provides insight into the chemical and geological evolution of a Solar System body of interest and can inform our understanding of its potential habitability. We have developed a prototype two-step laser desorption/ionization time-of-flight mass spectrometer (L2MS) instrument by exploiting the resonance-enhanced desorption of analyte. We have successfully demonstrated the ability of the L2MS to detect hydrocarbons in organically-doped analog minerals, including cryogenic Ocean World-relevant ices and mixtures. The L2MS instrument operates by generating a neutral plume of desorbed analyte with an IR desorption laser pulse, followed at a delay by a ultraviolet (UV) laser pulse, ionizing the plume. Desorption of the analyte, including trace organic species, may be enhanced by selecting the wavelength of the IR desorption laser to coincide with IR absorption features associated with vibration transitions of minerals or organic functional groups. In this effort, a preliminary laser developed for the instrument uses a breadboard mid-infrared (MIR) desorption laser operating at a discrete 3.475 µm wavelength, and a breadboard UV

  20. Data acquisition techniques for exploiting the uniqueness of the time-of-flight mass spectrometer: Application to sampling pulsed gas systems

    Science.gov (United States)

    Lincoln, K. A.

    1980-01-01

    Mass spectra are produced in most mass spectrometers by sweeping some parameter within the instrument as the sampled gases flow into the ion source. It is evident that any fluctuation in the gas during the sweep (mass scan) of the instrument causes the output spectrum to be skewed in its mass peak intensities. The time of flight mass spectrometer (TOFMS) with its fast, repetitive mode of operation produces spectra without skewing or varying instrument parameters and because all ion species are ejected from the ion source simultaneously, the spectra are inherently not skewed despite rapidly changing gas pressure or composition in the source. Methods of exploiting this feature by utilizing fast digital data acquisition systems, such as transient recorders and signal averagers which are commercially available are described. Applications of this technique are presented including TOFMS sampling of vapors produced by both pulsed and continuous laser heating of materials.

  1. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenhao, E-mail: wenhao_sun@126.com [Southeast University, Nanjing 210096 (China); Cai, Xudong [Massachusetts Institute of Technology, MA 02139-4307 (United States); Meng, Qiao [Southeast University, Nanjing 210096 (China)

    2016-04-11

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  2. Real-time detection of individual secondary organic aerosol particle from photooxidation of toluene using aerosol time of flight mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenya; HAO Liqing; ZHOU Liuzhu; GUO Xiaoyong; ZHAO Wenwu; FANG Li; ZHANG Weijun

    2006-01-01

    Photooxidation of the aromatic hydrocarbon toluene and its subsequent reactions were carried out using UV-irradiation of toluene/CH3ONO/NO/air mixtures in a home-made smog chamber.The secondary organic aerosols could be formed after those oxidation products of semi-volatile or-ganic compounds were partitioned between gas phase and particle phase. The aerosol time of flight mass spectrometer (ATOFMS) was used to measure size and molecular composition of individual secondary organic aerosol particle. Size distribution and chemical composition of secondary organic aerosol were got in real time.

  3. Advanced 360o FOV, wide energy range, non-HV, gated time of flight mass spectrometers for Small Satellites and Cubesats

    Science.gov (United States)

    Paschalidis, N.; Jones, S.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Uribe, P.; Cameron, T.; Nanan, G.

    2015-12-01

    The time of flight technique is widely used for composition analysis of space plasma instruments. The foil - MCP/CEM combination is commonly used for E x TOF mass analysis at the cost of energy threshold, scattering, and direct particle interaction which ultimately affect performance. An alternative method especially effective at low energies is gated time of flight where the start foil is replaced with electric gating. There are several advantages of electric gating, including elimination of heavy HVPS required for pre-reacceleration to overcome foil thresholds, non- destructive interaction with atomic and molecular ions before analysis, and electronic controllability including geometric factor adjustment for flux dynamic range, FOV optimization, electronic filtering of most abundant elements in favor of minor species, and other properties affecting directly the scientific and engineering performance of the instruments. In addition special secondary emission surfaces can be used for triple coincidence when needed. The combination of electric gating and special surfaces works in an extensive energy range from 0 to tens of KeV without the need of start foil/HVPS making thus the use attractive to small satellites and cubesats. Those characteristics will be elaborated in the context of a gated time of flight wide field of view and energy range ion spectrometer combined with a neutral mass spectrometer (WINMS) developed at GSFC. The instrument prototypes have mass resolution adequate to separate N, O, OH, OH2; also static from ram moving H allowing thus separation of outgassing from ambient gases. A first implementation INMS with a mass <600 grams and size <1.5U is the main payload of the EXOCUBE Cubesat mission launched in January 2015 and already produced flight data; a second upgraded implementation is on onboard the GSFC Dellingr 6U CubeSat scheduled for launch in late 2015; and ongoing developments are baselined for other satellite missions.

  4. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2008-12-01

    Full Text Available We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS. The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12–30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27–30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information.

    The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH42SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion

  5. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds.

    Science.gov (United States)

    Lee, Ben H; Lopez-Hilfiker, Felipe D; Mohr, Claudia; Kurtén, Theo; Worsnop, Douglas R; Thornton, Joel A

    2014-06-03

    A high-resolution time-of-flight chemical-ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adducts has been characterized and deployed in several laboratory and field studies to measure a suite of organic and inorganic atmospheric species. The large negative mass defect of Iodide, combined with soft ionization and the high mass-accuracy (5500) of the time-of-flight mass spectrometer, provides an additional degree of separation and allows for the determination of elemental compositions for the vast majority of detected ions. Laboratory characterization reveals Iodide-adduct ionization generally exhibits increasing sensitivity toward more polar or acidic volatile organic compounds. Simultaneous retrieval of a wide range of mass-to-charge ratios (m/Q from 25 to 625 Th) at a high frequency (>1 Hz) provides a comprehensive view of atmospheric oxidative chemistry, particularly when sampling rapidly evolving plumes from fast moving platforms like an aircraft. We present the sampling protocol, detection limits and observations from the first aircraft deployment for an instrument of this type, which took place aboard the NOAA WP-3D aircraft during the Southeast Nexus (SENEX) 2013 field campaign.

  6. Qualification study of LiF flight crystals for the objective crystal spectrometer on the SPECTRUM-X-GAMMA satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Rasmussen, I.; Schnopper, Herbert W.;

    1992-01-01

    The Objective Crystal Spectrometer (OXS) on the SPECTRUM-X-GAMMA satellite will carry these types of natural crystals LiF(220), Ge(111) and RAP(001). They will be used to study, among others, the H- and the He-like emission from the cosmically important elements Fe, S, Ar and O. More than 300 Li...

  7. Rapid 'de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer.

    Science.gov (United States)

    Shevchenko, A; Chernushevich, I; Ens, W; Standing, K G; Thomson, B; Wilm, M; Mann, M

    1997-01-01

    Protein microanalysis usually involves the sequencing of gel-separated proteins available in very small amounts. While mass spectrometry has become the method of choice for identifying proteins in databases, in almost all laboratories 'de novo' protein sequencing is still performed by Edman degradation. Here we show that a combination of the nanoelectrospray ion source, isotopic end labeling of peptides and a quadrupole/ time-of-flight instrument allows facile read-out of the sequences of tryptic peptides. Isotopic labeling was performed by enzymatic digestion of proteins in 1:1 16O/18O water, eliminating the need for peptide derivatization. A quadrupole/time-of-flight mass spectrometer was constructed from a triple quadrupole and an electrospray time-of-flight instrument. Tandem mass spectra of peptides were obtained with better than 50 ppm mass accuracy and resolution routinely in excess of 5000. Unique and error tolerant identification of yeast proteins as well as the sequencing of a novel protein illustrate the potential of the approach. The high data quality in tandem mass spectra and the additional information provided by the isotopic end labeling of peptides enabled automated interpretation of the spectra via simple software algorithms. The technique demonstrated here removes one of the last obstacles to routine and high throughput protein sequencing by mass spectrometry.

  8. Search for efficient laser resonance ionization schemes of tantalum using a newly developed time-of-flight mass-spectrometer in KISS

    Science.gov (United States)

    Mukai, M.; Hirayama, Y.; Ishiyama, H.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Watanabe, Y. X.; Kimura, S.; Ozawa, A.; Jeong, S. C.; Sonoda, T.

    2016-06-01

    The technique of laser resonance ionization is employed for an element-selective ionization of multi-nucleon transfer reaction products which are stopped and neutralized in a gas cell filled with argon gas at 50 kPa. We have been searching for efficient laser ionization schemes for refractory elements of Z = 73-78 using a time-of-flight mass-spectrometer (TOF-MS) chamber. To evaluate the isotope shift and ionization efficiency for each candidate of the ionization scheme, isotope separation using the TOF-MS was devised. The TOF-MS was designed to separate the isotopes using two-stage linear acceleration with a mass resolving power M / ΔM of >350. A mass resolving power of 250 was experimentally confirmed by measuring the TOF of laser-ionized tantalum (Z = 73) ions with mass number 181. We searched for a laser resonance ionization scheme of tantalum using the TOF-MS.

  9. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    Science.gov (United States)

    Sayre, D. B.; Barbosa, F.; Caggiano, J. A.; DiPuccio, V. N.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Weber, F. A.

    2016-11-01

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures' image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures' edges. The fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at the National Ignition Facility.

  10. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    Science.gov (United States)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  11. Increasing throughput and information content for in vitro drug metabolism experiments using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer.

    Science.gov (United States)

    Castro-Perez, Jose; Plumb, Robert; Granger, Jennifer H; Beattie, Iain; Joncour, Karine; Wright, Andrew

    2005-01-01

    The field of drug metabolism has been revolutionized by liquid chromatography/mass spectrometry (LC/MS) applications with new technologies such as triple quadrupoles, ion traps and time-of-flight (ToF) instrumentation. Over the years, these developments have often relied on the improvements to the mass spectrometer hardware and software, which has allowed users to benefit from lower levels of detection and ease-of-use. One area in which the development pace has been slower is in high-performance liquid chromatography (HPLC). In the case of metabolite identification, where there are many challenges due to the complex nature of the biological matrices and the diversity of the metabolites produced, there is a need to obtain the most accurate data possible. Reactive or toxic metabolites need to be detected and identified as early as possible in the drug discovery process, in order to reduce the very costly attrition of compounds in late-phase development. High-resolution, exact mass measurement plays a very important role in metabolite identification because it allows the elimination of false positives and the determination of non-trivial metabolites in a much faster throughput environment than any other standard current methodology available to this field. By improving the chromatographic resolution, increased peak capacity can be achieved with a reduction in the number of co-eluting species leading to superior separations. The overall enhancement in the chromatographic resolution and peak capacity is transferred into a net reduction in ion suppression leading to an improvement in the MS sensitivity. To investigate this, a number of in vitro samples were analyzed using an ultra-performance liquid chromatography (UPLC) system, with columns packed with porous 1.7 mum particles, coupled to a hybrid quadrupole time-of-flight (ToF) mass spectrometer. This technique showed very clear examples for fundamental gains in sensitivity, chromatographic resolution and speed of

  12. Influence of internal standard charge state on the accuracy of mass measurements in orthogonal acceleration time-of-flight mass spectrometers.

    Science.gov (United States)

    Charles, Laurence

    2008-01-01

    Accuracy of mass measurements performed in orthogonal acceleration time-of-flight (oa-TOF) mass spectrometers highly depends on the quality of the signal and the internal calibration. The use of two reference compounds which bracket the targeted unknown, give rise to ions with sufficient signal-to-noise ratio while avoiding detector saturation and produce signals of similar intensity as compared to the target is a common requirement which allow a 5 ppm accuracy on a routine basis. Ion charge state is demonstrated here to be an additional and particularly critical parameter. Using internal references of lower charge state than the target ion systematically yielded overestimated data. Errors measured for quadruply charged molecules were in the range 16-18 ppm when mass calibrants were singly charged ions while accuracy was below 5 ppm when references and target ions were in the same charge state. Magnitude of errors was found to increase with the difference in charge state. This phenomenon arises from the orthogonal acceleration of ions in the TOF analyzer, an interface implemented in all TOF mass spectrometers to accommodate continuous beam ionization sources.

  13. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    Science.gov (United States)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-04-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the "chromatic" displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.

  14. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, N.G. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark); Simeoni, G.G., E-mail: ggsimeoni@outlook.com [Heinz Maier-Leibnitz Zentrum (MLZ) and Physics Department, Technical University of Munich, D-85748 Garching (Germany); Lefmann, K. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2016-04-21

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the “chromatic” displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.

  15. Development of a Space Flight Prototype Doppler Asymmetric Spatial Heterodyne (DASH) Spectrometer for the Measurement of Upper Atmospheric Winds

    Science.gov (United States)

    2011-10-31

    required for space flight. Dr. John Hughes and Dr. Abas Sivjee of Embry-Riddle Aeronautical University in Daytona FL and all the staff at the HAARP ...Laboratory, was conducted at the High Frequency Active Auroral Research Program ( HAARP ) facility in Alaska. ARROW was shipped to Anchorage AK from...the Naval Research Laboratory in Washington DC and was delivered, installed, and run at the HAARP facility by ARTEP Inc. personnel. The field

  16. In-flight performance of pulse processing system of the ASTRO-H soft x-ray spectrometer

    Science.gov (United States)

    Ishisaki, Yoshitaka; Yamada, Shinya; Seta, Hiromi; Tashiro, Makoto S.; Takeda, Sawako; Terada, Yukikatsu; Kato, Yuka; Tsujimoto, Masahiro; Koyama, Shu; MItsuda, Kazuhisa; Sawada, Makoto; Boyce, Kevin R.; Chiao, Meng P.; Watanabe, Tomomi; Leutenegger, Maurice A.; Eckart, Megan E.; Porter, F. Scott; Kilbourne, Caroline A.; Kelley, Richard L.

    2016-07-01

    We summarize results of the initial in-orbit performance of the pulse shape processor (PSP) of the soft x-ray spectrometer instrument onboard ASTRO-H (Hitomi). Event formats, kind of telemetry, and the pulse processing parameters are described, and the parameter settings in orbit are listed. PSP was powered-on two days after launch, and the event threshold was lowered in orbit. PSP worked fine in orbit, and there were no memory error nor SpaceWire communication error until the break-up of spacecraft. Time assignment, electrical crosstalk, and the event screening criteria are studied. It is confirmed that the event processing rate at 100% CPU load is 200 c/s/array, compliant with the requirement on PSP.

  17. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, S. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Bednarzik, M. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, Villigen (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.ch [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); ETH Zürich (Switzerland); Hurford, G.J. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Limousin, O.; Meuris, A. [CEA Saclay (France); Orleański, P. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Seweryn, K.; Skup, K.R. [Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland)

    2016-07-11

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  18. Headspace analysis of new psychoactive substances using a Selective Reagent Ionisation-Time of Flight-Mass Spectrometer

    OpenAIRE

    2014-01-01

    The rapid expansion in the number and use of new psychoactive substances presents a significant analytical challenge because highly sensitive instrumentation capable of detecting a broad range of chemical compounds in real-time with a low rate of false positives is required. A Selective Reagent Ionisation-Time of Flight-Mass Spectrometry (SRI-ToF-MS) instrument is capable of meeting all of these requirements. With its high mass resolution (up to m/Δm of 8000), the application of variations in...

  19. Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations in planetary space research.

    Science.gov (United States)

    Riedo, A; Bieler, A; Neuland, M; Tulej, M; Wurz, P

    2013-01-01

    Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility.

  20. Applicability of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer for determination of chemical composition of ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.

    2013-11-01

    This thesis is based on the construction of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer (laser AMS), which is capable of measuring 10 to 50 nm aerosol particles collected from urban and rural air at-site and in near real time. The operation and applicability of the instrument was tested with various laboratory measurements, including parallel measurements with filter collection/chromatographic analysis, and then in field experiments in urban environment and boreal forest. Ambient ultrafine aerosol particles are collected on a metal surface by electrostatic precipitation and introduced to the time-of-flight mass spectrometer (TOF-MS) with a sampling valve. Before MS analysis particles are desorbed from the sampling surface with an infrared laser and ionized with a UV laser. The formed ions are guided to the TOF-MS by ion transfer optics, separated according to their m/z ratios, and detected with a micro channel plate detector. The laser AMS was used in urban air studies to quantify the carbon cluster content in 50 nm aerosol particles. Standards for the study were produced from 50 nm graphite particles, suspended in toluene, with 72 hours of high power sonication. The results showed the average amount of carbon clusters (winter 2012, Helsinki, Finland) in 50 nm particles to be 7.2% per sample. Several fullerenes/fullerene fragments were detected during the measurements. In boreal forest measurements, the laser AMS was capable of detecting several different organic species in 10 to 50 nm particles. These included nitrogen-containing compounds, carbon clusters, aromatics, aliphatic hydrocarbons, and oxygenated hydrocarbons. A most interesting event occurred during the boreal forest measurements in spring 2011 when the chemistry of the atmosphere clearly changed during snow melt. On that time concentrations of laser AMS ions m/z 143 and 185 (10 nm particles) increased dramatically. Exactly at the same time, quinoline concentrations

  1. Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with a light scattering module

    Directory of Open Access Journals (Sweden)

    S. Liu

    2013-02-01

    Full Text Available Chemical and physical properties of individual ambient aerosol particles can vary greatly, so measuring the chemical composition at the single-particle level is essential for understanding atmospheric sources and transformations. Here we describe 46 days of single-particle measurements of atmospheric particles using a time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS. The light scattering module optically detects particles larger than 180 nm vacuum aerodynamic diameter (130 nm geometric diameter before they arrive at the chemical mass spectrometer and then triggers the saving of single-particle mass spectra. 271 641 particles were detected and sampled during 237 h of sampling in single-particle mode. By comparing timing of the predicted chemical ion signals from the light scattering measurement with the measured chemical ion signals by the mass spectrometer for each particle, particle types were classified and their number fractions determined as follows: prompt vaporization (46%, delayed vaporization (6%, and null (48%, where null was operationally defined as less than 6 ions per particle. Prompt and delayed vaporization particles with sufficient chemical information (i.e., more than 40 ions per particle were clustered based on similarity of organic mass spectra (using k-means algorithm to result in three major clusters: highly oxidized particles (dominated by m/z 44, relatively less oxidized particles (dominated by m/z 43, and particles associated with fresh urban emissions. Each of the three organic clusters had limited chemical properties of other clusters, suggesting that all of the sampled organic particle types were internally mixed to some degree; however, the internal mixing was never uniform and distinct particle types existed throughout the study. Furthermore, the single-particle mass spectra and time series of these clusters agreed well with mass-based components

  2. Shotgun Lipidomics by Sequential Precursor Ion Fragmentation on a Hybrid Quadrupole Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Brigitte Simons

    2012-02-01

    Full Text Available Shotgun lipidomics has evolved into a myriad of multi-dimensional strategies for molecular lipid characterization, including bioinformatics tools for mass spectrum interpretation and quantitative measurements to study systems-lipidomics in complex biological extracts. Taking advantage of spectral mass accuracy, scan speed and sensitivity of improved quadrupole linked time-of-flight mass analyzers, we developed a bias-free global lipid profiling acquisition technique of sequential precursor ion fragmentation called MS/MSALL. This generic information-independent tandem mass spectrometry (MS technique consists of a Q1 stepped mass isolation window through a set mass range in small increments, fragmenting and recording all product ions and neutral losses. Through the accurate MS and MS/MS information, the molecular lipid species are resolved, including distinction of isobaric and isomeric species, and composed into more precise lipidomic outputs. The method demonstrates good reproducibility and at least 3 orders of dynamic quantification range for isomeric ceramides in human plasma. More than 400 molecular lipids in human plasma were uncovered and quantified in less than 12 min, including acquisitions in both positive and negative polarity modes. We anticipate that the performance of sequential precursor ion fragmentation both in quality and throughput will lead to the uncovering of new avenues throughout the biomedical research community, enhance biomarker discovery and provide novel information target discovery programs as it will prospectively shed new insight into affected metabolic and signaling pathways.

  3. Analysis of psychoactive substances in water by information dependent acquisition on a hybrid quadrupole time-of-flight mass spectrometer.

    Science.gov (United States)

    Andrés-Costa, María Jesús; Andreu, Vicente; Picó, Yolanda

    2016-08-26

    Emerging drugs of abuse, belonging to many different chemical classes, are attracting users with promises of "legal" highs and easy access via internet. Prevalence of their consumption and abuse through wastewater-based epidemiology can only be realized if a suitable analytical screening procedure exists to detect and quantify them in water. Solid-phase extraction and ultra-high performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UHPLC-QqTOF-MS/MS) was applied for rapid suspect screening as well as for the quantitative determination of 42 illicit drugs and metabolites in water. Using this platform, we were able to identify amphetamines, tryptamines, piperazines, pyrrolidinophenones, arylcyclohexylamines, cocainics, opioids and cannabinoids. Additionally, paracetamol, carbamazepine, ibersartan, valsartan, sulfamethoxazole, terbumeton, diuron, etc. (including degradation products as 3-hydroxy carbamazepine or deethylterbuthylazine) were detected. This method encompasses easy sample preparation and rapid identification of psychoactive drugs against a database that cover more than 2000 compounds that ionized in positive mode, and possibility to identify metabolites and degradation products as well as unknown compounds. The method for river water, influent and effluents samples was fully validated for the target psychoactive substances including assessment of matrix effects (-88-67.8%), recovery (42-115%), precision (psychoactive drugs biomarkers and other water contaminants is demonstrated.

  4. Tuneable microsecond-pulsed glow discharge design for the simultaneous acquisition of elemental and molecular chemical information using a time-of-flight mass spectrometer.

    Science.gov (United States)

    Solà-Vázquez, Auristela; Martín, Antonio; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2009-04-01

    A microsecond-pulsed direct current glow discharge (GD) was interfaced and synchronized to a time-of-flight mass spectrometer MS(TOF) for time-gated generation and detection of elemental, structural, and molecular ions. In this way, sequential collection of the mass spectra at different temporal regimes occurring during the GD pulse cycle is allowed. The capabilities of this setup were explored using bromochloromethane as model analyte. A simple GD chamber, developed in our laboratory and characterized by a low plasma volume minimizing dilution of the sample but showing great robustness to the entrance of organic compounds in the microsecond-pulsed plasma, has been used. An exhaustive analytical characterization of the GD-MS(TOF) prototype has been performed. Calibration curves for bromochloromethane observed at the different time regimes of the GD pulse cycle (that is, for elemental, fragment, and molecular ions from the analyte) showed very good linearity for the measurement of the different involved ions, with precisions in the range of 7-13% (relative standard deviation). Actual detection limits obtained for bromochloromethane were in the range of 1-3 microg/L for elements monitoring in the GD pulse "prepeak", in the range of 11-13 microg/L when monitoring analyte fragments in the plateau, and about 238 microg/L when measuring the molecular peak in the afterpeak regime.

  5. A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems

    Science.gov (United States)

    Dürrstein, Steffen H.; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof

    2011-08-01

    A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

  6. Chemical Characteristics of Particulate Matter from Vehicle emission using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

    Science.gov (United States)

    Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.

    2015-12-01

    Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.

  7. A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems.

    Science.gov (United States)

    Dürrstein, Steffen H; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof

    2011-08-01

    A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

  8. Development of a linear ion trap/orthogonal-time-of-flight mass spectrometer for time-dependent observation of product ions by ultraviolet photodissociation of peptide ions.

    Science.gov (United States)

    Kim, Tae-Young; Schwartz, Jae C; Reilly, James P

    2009-11-01

    A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.

  9. The total column of CO2 and CH4 measured with a compact Fourier transform spectrometer at NASA Armstrong Flight Research Center and Railroad Valley, Nevada, USA

    Science.gov (United States)

    Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.

    2014-12-01

    The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by

  10. Development of a Robust, High Current, Low Power Field Emission Electron Gun for a Spaceflight Reflectron Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Southard, Adrian E.; Getty, Stephanie A.; Feng, Steven; Glavin, Daniel P.; Auciello, Orlando; Sumant, Anirudha

    2012-01-01

    Carbon materials, including carbon nanotubes (CNTs) and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD), have been of considerable interest for field emission applications for over a decade. In particular, robust field emission materials are compelling for space applications due to the low power consumption and potential for miniaturization. A reflectron time-of-flight mass spectrometer (TOF-MS) under development for in situ measurements on the Moon and other Solar System bodies uses a field emitter to generate ions from gaseous samples, using electron ionization. For these unusual environments, robustness, reliability, and long life are of paramount importance, and to this end, we have explored the field emission properties and lifetime of carbon nanotubes and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) thin films, the latter developed and patented by Argonne National Laboratory. We will present recent investigations of N-UNCD as a robust field emitter, revealing that this material offers stable performance in high vacuum for up to 1000 hours with threshold voltage for emission of about 3-4 V/lJm and current densities in the range of tens of microA. Optimizing the mass resolution and sensitivity of such a mass spectrometer has also been enabled by a parallel effort to scale up a CNT emitter to an array measuring 2 mm x 40 mm. Through simulation and experiment of the new extended format emitter, we have determined that focusing the electron beam is limited due to the angular spread of the emitted electrons. This dispersion effect can be reduced through modification of the electron gun geometry, but this reduces the current reaching the ionization region. By increasing the transmission efficiency of the electron beam to the anode, we have increased the anode current by two orders of magnitude to realize a corresponding enhancement in instrument sensitivity, at a moderate cost to mass resolution. We will report recent experimental and

  11. A field-deployable, chemical ionization time-of-flight mass spectrometer: application to the measurement of gas-phase organic and inorganic acids

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2011-03-01

    Full Text Available We report a new field-deployable chemical ionization time-of-flight mass spectrometer (CI-TOFMS for the direct measurement of trace gases in the atmosphere. We apply the technique to the measurement of gas-phase inorganic and organic acids via negative-ion proton transfer, using acetate as the reagent ion. A novel high pressure interface, incorporating two RF-only quadrupoles is used to efficiently focus ions through four stages of differential pumping before analysis with a compact TOFMS. The high ion-duty cycle (>20% of the TOFMS, coupled to efficient production and transmission of ions in the high pressure interface results in a highly sensitive (>300 ions s−1 pptv−1 instrument capable of the fast measurement of atmospheric gases at trace levels. We demonstrate the efficient transfer and detection of both bare ions and ion-molecule clusters, and characterize the instrument during field measurements aboard the R/V Atlantis as part of the CalNex campaign during the spring of 2010. The in-field short-term precision is better than 5% at 1 pptv (pL/L, for 1-second averages. The detection limit (3σ, 1-second averages of the current version of the CI-TOFMS, as applied to the in situ detection of gas-phase acids, is limited by the magnitude and variability in the background determination and was determined to be 4 pptv.

  12. Low Power Mass Spectrometer employing TOF Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A low power Mass Spectrometer employing multiple time of flight circuits for parallel processing is possible with a new innovation in design of the Time of flight...

  13. Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions

    Science.gov (United States)

    Yao, Lei; Wang, Ming-Yi; Wang, Xin-Ke; Liu, Yi-Jun; Chen, Hang-Fei; Zheng, Jun; Nie, Wei; Ding, Ai-Jun; Geng, Fu-Hai; Wang, Dong-Fang; Chen, Jian-Min; Worsnop, Douglas R.; Wang, Lin

    2016-11-01

    Amines and amides are important atmospheric organic-nitrogen compounds but high time resolution, highly sensitive, and simultaneous ambient measurements of these species are rather sparse. Here, we present the development of a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) method, utilizing protonated ethanol as reagent ions to simultaneously detect atmospheric gaseous amines (C1 to C6) and amides (C1 to C6). This method possesses sensitivities of 5.6-19.4 Hz pptv-1 for amines and 3.8-38.0 Hz pptv-1 for amides under total reagent ion signals of ˜ 0.32 MHz. Meanwhile, the detection limits were 0.10-0.50 pptv for amines and 0.29-1.95 pptv for amides at 3σ of the background signal for a 1 min integration time. Controlled characterization in the laboratory indicates that relative humidity has significant influences on the detection of amines and amides, whereas the presence of organics has no obvious effects. Ambient measurements of amines and amides utilizing this method were conducted from 25 July to 25 August 2015 in urban Shanghai, China. While the concentrations of amines ranged from a few parts per trillion by volume to hundreds of parts per trillion by volume, concentrations of amides varied from tens of parts per trillion by volume to a few parts per billion by volume. Among the C1- to C6-amines, the C2-amines were the dominant species with concentrations up to 130 pptv. For amides, the C3-amides (up to 8.7 ppb) were the most abundant species. The diurnal and backward trajectory analysis profiles of amides suggest that in addition to the secondary formation of amides in the atmosphere, industrial emissions could be important sources of amides in urban Shanghai. During the campaign, photo-oxidation of amines and amides might be a main loss pathway for them in daytime, and wet deposition was also an important sink.

  14. Trace metal analysis in arctic aerosols by an inductively coupled plasma-time of flight-mass spectrometer combined with an inductively heated vaporizer

    Energy Technology Data Exchange (ETDEWEB)

    Luedke, Christian [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany)]. E-mail: luedke@ansci.de; Skole, Jochen [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Taubner, Kerstin [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Kriews, Michael [Alfred Wegener Institute for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven (Germany)

    2005-11-15

    Two newly developed instruments were combined to analyze the trace metal content in size separated arctic aerosols during the measurement campaign ASTAR 2004 (Arctic Study of Tropospheric Aerosols, Clouds and Radiation 2004) at Spitsbergen in May-June 2004. The aim of this extensive aerosol measurement campaign was to obtain a database for model-calculations of arctic aerosol, which play an important role in the global climate change. The ASTAR project was centered on two aircraft measurement campaigns, scheduled from 2004 to 2005, addressing both aerosol and cloud measurements, combined with ground-based and satellite observations. In the present paper one example for the analysis of ground-based aerosol particles is described. The sampling of aerosol particles was performed in a well-known manner by impaction of the particles on cleaned graphite targets. By means of a cascade impactor eight size classes between 0.35 and 16.6 {mu}m aerodynamic diameters were separated. To analyze the metal content in the aerosol particles the targets were rapidly heated up to 2700 deg. C in an inductively heated vaporizer system (IHVS). An argon flow transports the vaporized sample material into the inductively coupled plasma (ICP) used as ionization source for the time of flight-mass spectrometer (TOF-MS). The simultaneous extraction of the ions from the plasma, as realized in the TOF instrument, allows to obtain the full mass spectrum of the sample during the vaporization pulse without any limitation in the number of elements detected. With optimized experimental parameters the element content in arctic aerosol particles was determined in a mass range between {sup 7}Li and {sup 209}Bi. Comparing the size distribution of the elemental content of the aerosol particles, two different meteorological situations were verified. For calibration acidified reference solutions were placed on the cleaned target inside the IHVS. The limits of detection (LOD) for the element mass on the

  15. Mass measurements of {sup 238}U-projectile fragments for the first time with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Jens

    2016-07-01

    Mass measurements of short-lived uranium projectile fragments were performed for the first time with a Multiple-Reflexion-Time-of-Flight Mass Spectrometer (MR-TOF-MS). A major part of this doctoral work was a novel development of a data analysis method for the MR-TOF-MS mass measurements of exotic nuclei at the fragment separator FRS at GSI. The developed method was successfully applied to the data obtained from two pilot experiments with the MR-TOF-MS at the FRS in 2012 and 2014. A substantial upgrade of the experimental setup of the MR-TOF-MS was also performed in the frame work of this doctoral thesis after the first run. In the experiments projectile fragments were created with 1000 MeV/u {sup 238}U ions in a Be/Nb target at the entrance of the in-flight separator FRS. The exotic nuclei were spatially separated, energy bunched and slowed down with the ion-optical system of the FRS combined with monoenergetic and homogeneous degraders. At the final focal plane of the FRS the fragments were completely slowed down and thermalized in a cryogenic stopping cell (CSC) filled with 3-5 mg/cm{sup 2} pure helium gas. The exotic nuclei were fast extracted from the CSC to enable mass measurements of very short-lived fragments with the MR-TOF-MS. The achievement of this goal was successfully demonstrated with the mass measurement of {sup 220}Ra ions with a half-life of 17.9 ms and 11 detected events. The mass measurements of the isobars {sup 211}Fr, {sup 211}Po and {sup 211}Rn have clearly demonstrated the scientific potential of the MR-TOF-MS for the investigation of exotic nuclei and the power of the data analysis system. Difficult measurements with overlapping mass distributions with only a few counts in the measured spectra were the challenge for the new data analysis method based on the maximum likelihood method. The drifts during the measurements were corrected with the developed time-resolved calibration method. After the improvements of the setup as a consequence of

  16. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  17. Development of a reflectron time-of-flight mass spectrometer for non-destructive analysis of isotope ratios in irradiated B4C pellets--Test measurements on an unirradiated control rod pellet

    Science.gov (United States)

    Manoravi, P.; Joseph, M.; Sivakumar, N.

    2008-09-01

    A laser mass spectrometric facility is developed using a home-built reflectron time-of-flight mass spectrometer (RTOFMS) to analyze the boron isotopic ratio 10B/11B in the irradiated B4C pellets of the FBTR control rod. Compared to other mass spectrometry-based methods, the present method is practically non-destructive and makes it relatively easier to handle irradiated (radioactive) B4C pellets through remote operation. The results with inactive samples indicate that the method yields 10B percentage values, accurate to within ±1%.

  18. Miniaturised TOF mass spectrometer

    Science.gov (United States)

    Rohner, U.; Wurz, P.; Whitby, J.

    2003-04-01

    For the BepiColombo misson of ESA to Mercury, we built a prototype of a miniaturised Time of Flight mass spectrometer with a low mass and low power consumption. Particles will be set free form the surface and ionized by short laser pluses. The mass spectrometer is dedicated to measure the elemental and isotopic composition of almost all elements of Mercurys planetary surface with an adequate dynamique range, mass range and mass resolution. We will present first results of our prototype and future designs.

  19. Characterization of the sources and processes of organic and inorganic aerosols in New York City with a high-resolution time-of-flight aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    Y.-L. Sun

    2010-10-01

    Full Text Available Submicron aerosol particles (PM1 were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS during the summer 2009 Field Intensive Study at Queens College in New York City. Organic aerosol (OA and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of total PM1 mass on average. The average mass size distribution of OA presents a small mode peaking at ~150 nm (Dva in addition to an accumulation mode (~550 nm that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of sulfate and OA both show pronounced peaks between 01:00–02:00 p.m. EST due to photochemical production. The average (±1σ oxygen-to-carbon (O/C, hydrogen-to-carbon (H/C, and nitrogen-to-carbon (N/C ratios of OA in NYC are 0.36 (±0.09, 1.49 (±0.08, and 0.012(±0.005, respectively, corresponding to an average organic mass-to-carbon (OM/OC ratio of 1.62(±0.11. Positive matrix factorization (PMF of the high resolution mass spectra identified five OA components: a hydrocarbon-like OA (HOA, two types of oxygenated OA (OOA including a low-volatility OOA (LV-OOA and a semi-volatile OOA (SV-OOA, a cooking-emission related OA (COA, and a unique nitrogen-enriched OA (NOA. HOA appears to represent primary OA (POA from urban traffic emissions. It comprises primarily of reduced species (H/C=1.83; O/C=0.06 and shows a mass spectral pattern very similar to those of POA from fossil fuel combustion, and correlates tightly with traffic emission tracers including elemental carbon and NOx. LV-OOA, which is highly oxidized (O/C=0.63 and correlates well with sulfate, appears to be representative for regional, aged secondary OA (SOA. SV-OOA, which is less oxidized (O/C=0.38 and correlates well with non-refractory chloride, likely represents less photo-chemically aged, semi-volatile SOA. COA shows a similar spectral pattern to the reference spectra of POA from

  20. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  1. Expansion of a shock plasma in the accelerating field of a parallel-plate capacitor in a time-of-flight mass spectrometer

    Science.gov (United States)

    Semkin, N. D.; Pomel'nikov, R. A.; Telegin, A. M.

    2014-05-01

    We have solved the problem of expansion of a multicomponent shock plasma (initiated by an impact of a fast microprojectile against a solid target) to vacuum in the electric field of a parallel-plate capacitor. The results of calculations can be used in the development of a dust impact mass spectrometer for studying the elemental composition of micrometeorites.

  2. Analysis of rocking curve measurements of LiF flight crystals for the objective crystal spectrometer on SPECTRUM-X-GAMMA

    DEFF Research Database (Denmark)

    Halm, I.; Wiebicke, H.-J.; Geppert, U.R.M.E.;

    1993-01-01

    The Objective Crystal Spectrometer on the SPECTRUM-X-GAMMA satellite will use three types of natural crystals LiF(220), Si(111), RAP(001), and a multilayer structure providing high-resolution X- ray spectroscopy of Fe, S, O, and C line regions of bright cosmic X-ray sources. 330 - 360 LiF(220...

  3. Analysis of rocking curve measurements of LiF flight crystals for the objective crystal spectrometer on SPECTRUM-X-GAMMA

    DEFF Research Database (Denmark)

    Halm, I.; Wiebicke, H.-J.; Geppert, U.R.M.E.

    1993-01-01

    The Objective Crystal Spectrometer on the SPECTRUM-X-GAMMA satellite will use three types of natural crystals LiF(220), Si(111), RAP(001), and a multilayer structure providing high-resolution X- ray spectroscopy of Fe, S, O, and C line regions of bright cosmic X-ray sources. 330 - 360 LiF(220) cr...

  4. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  5. Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro--amitriptyline and verapamil as model compounds.

    Science.gov (United States)

    Rousu, Timo; Herttuainen, Jukka; Tolonen, Ari

    2010-04-15

    Liquid chromatography in combination with mass spectrometry (LC/MS) is a superior analytical technique for metabolite profiling and identification studies performed in drug discovery and development laboratories. In the early phase of drug discovery the analytical approach should be both time- and cost-effective, thus providing as much data as possible with only one visit to the laboratory, without the need for further experiments. Recent developments in mass spectrometers have created a situation where many different mass spectrometers are available for the task, each with their specific strengths and drawbacks. We compared the metabolite screening properties of four main types of mass spectrometers used in analytical laboratories, considering both the ability to detect the metabolites and provide structural information, as well as the issues related to time consumption in laboratory and thereafter in data processing. Human liver microsomal incubations with amitriptyline and verapamil were used as test samples, and early-phase 'one lab visit only' approaches were used with all instruments. In total, 28 amitriptyline and 69 verapamil metabolites were found and tentatively identified. Time-of-flight mass spectrometry (TOFMS) was the only approach detecting all of them, shown to be the most suitable instrument for elucidating as comprehensive metabolite profile as possible leading also to lowest overall time consumption together with the LTQ-Orbitrap approach. The latter however suffered from lower detection sensitivity and false negatives, and due to slow data acquisition rate required slower chromatography. Approaches with triple quadrupole mass spectrometry (QqQ) and hybrid linear ion trap triple quadrupole mass spectrometry (Q-Trap) provided the highest amount of fragment ion data for structural elucidation, but, in addition to being unable to produce very high-important accurate mass data, they suffered from many false negatives, and especially with the Qq

  6. Portable Remote Imaging Spectrometer (PRISM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response...

  7. The SPEDE spectrometer arXiv

    CERN Document Server

    Papadakis, P.; O'Neill, G.G.; Borge, M.J.G.; Butler, P.A.; Gaffney, L.P.; Greenlees, P.T.; Herzberg, R.-D.; Illana, A.; Joss, D.T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R.D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of {\\gamma} rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams.

  8. A Compact Tandem Two-Step Laser Time-of-Flight Mass Spectrometer for In Situ Analysis of Non-Volatile Organics on Planetary Surfaces

    Science.gov (United States)

    Getty, Stephanie A.; Brinckerhoff, William B.; Li, Xiang; Elsila, Jamie; Cornish, Timothy; Ecelberger, Scott; Wu, Qinghao; Zare, Richard

    2014-01-01

    Two-step laser desorption mass spectrometry is a well suited technique to the analysis of high priority classes of organics, such as polycyclic aromatic hydrocarbons, present in complex samples. The use of decoupled desorption and ionization laser pulses allows for sensitive and selective detection of structurally intact organic species. We have recently demonstrated the implementation of this advancement in laser mass spectrometry in a compact, flight-compatible instrument that could feasibly be the centerpiece of an analytical science payload as part of a future spaceflight mission to a small body or icy moon.

  9. Objective Crystal Spectrometer on the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt; Rasmussen, I.

    1994-01-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high...

  10. Design and realization of a space-borne reflectron time of flight mass spectrometer: electronics and measuring head; Conception et realisation d'un spectrometre de masse a temps de vol spatialisable de type 'reflectron' electronique et tete de mesure

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, P

    2006-03-15

    The purpose of this thesis is the design of the electronics of a time of flight mass spectrometer, the making and the vacuum tests of a prototype which can be put onboard a satellite. A particular effort was necessary to decrease to the maximum the mass and electric consumption of the spectrometer, which led to the development of new circuits. The work completed during this thesis initially concerns the electronics of the measuring equipment which was conceived in a concern for modularity. A complete 'reflectron' type mass spectrometer was then designed, simulated and developed. The built prototype, which uses the developed electronics, was exposed to ion flows of different masses and energies in the CESR vacuum chambers. Its measured performances validate the implemented principles and show that an identical mass spectrometer can be put onboard a satellite with profit, for planetary or solar missions. (author)

  11. Preliminary results from the high resolution gamma-ray and hard x-ray spectrometer (HIREGS) '92-'93 long duration balloon flight in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Lin, R.P.; Feffer, P.T.; Slassi, S.; Whiteside, W.; Smith, D.M.; Hurley, K.C.; Kane, S.R.; McBride, S.; Primbsch, J.H.; Youssefi, K.; Zimmer, G. (Univ. of California, Berkeley, CA (United States)); Pelling, R.M. (Univ. of California, San Diego, CA (United States)); Cotin, F.; Lavigne, J.M.; Rouaix, G.; Vedrenne, G.; Pehl, R.; Cork, C.; Luke, P.; Madden, N.; Malone, D.

    1993-01-01

    HIREGS consists of an array of twelve 6.7 cm diameter x 6.1 cm long liquid nitrogen-cooled segmented germanium detectors enclosed in a bismuth germanate (BGO) active anticoincidence shield. A CsI front collimator defines a 24 degree FWHM field-of-view. The energy resolution is one to several keV FWHM over the instrument energy range of 20 keV to 16 MeV. HIREGS was flown on a 10-day (31 Dec 92--10 Jan 93) circumpolar balloon flight from McMurdo Station, Antarctica. 30.5 hours of observation were obtained between 31 Dec 0400-2130 UT and 1 Jan 0600-1900 UT. Because the Sun was inactive during the flight, only one small flare was detected on 31 Dec 1933 UT. Excellent high resolution [open quotes]quiet[close quotes] Sun hard X-ray and gamma-ray spectra were obtained. These provide stringent upper limits for solar gamma-ray line and hard X-ray and gamma-ray continuum emission, which in turn can constrain the storage and/or continuous acceleration of ions and electrons by the Sun.

  12. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  13. Developments for the TOF Straw Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, A.

    2006-07-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp{yields}d{pi}{sup +} data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  14. Core shell stationary phases for a novel separation of triglycerides in plant oils by high performance liquid chromatography with electrospray-quadrupole-time of flight mass spectrometer.

    Science.gov (United States)

    La Nasa, Jacopo; Ghelardi, Elisa; Degano, Ilaria; Modugno, Francesca; Colombini, Maria Perla

    2013-09-20

    A new method for the analysis of triglycerides (TAGs) in vegetable oils was developed using a Poroshell 120 EC-C18 column (3.0 mm×50 mm, 2.7 μm) with a high resolution ESI-Q-ToF tandem mass spectrometer as detection system. We used an Agilent Poroshell column, which is characterized by a recently developed stationary phase based on non-porous core particles. The results highlighted the advantages of this column in terms of the dramatic improvement in the number of theoretical plates and in low column backpressure. The developed method enabled us to analyze complex mixtures of more than 40 TAGs within less than 25 min and with a low backpressure (lower than 100 bar), and represents the first application of a core-shell stationary phase in reverse phase HPLC using an ESI-Q-ToF as detection system. The method was optimized on standards of TAGs, validated and applied to several plant oils. By a quantitative point of view, the method showed a very good linearity (r(2)>0.999) in the range 0.1-2.4 μg/g; high intra- and inter-day precision both in terms of retention times (RSD%<0.04%) and peak areas (RSD%<0.3%). Limits of detection and quantitation were lower than 0.03 μg/g and 0.10 μg/g, respectively.

  15. The identification of rare charged kaons in heavy-ion collisions at relativistic energies by time-of-flight with the HADES spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, 3004-516 Coimbra (Portugal)], E-mail: alessio@lipc.fis.uc.pt; Blanco, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, 3004-516 Coimbra (Portugal); Fonte, P. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, 3004-516 Coimbra (Portugal); Instituto Superior de Engenharia de Coimbra, Rua Pedro Nunes, 3030-199 Coimbra (Portugal)

    2009-05-01

    Detailed performance simulations of the HADES RPC time-of-flight wall have been undertaken. The most delicate situation is the identification of K{sup -} mesons close to the mid-rapidity region. While momentum resolution does not appear to be an issue, the small non-Gaussian tails in the time response are a clear problem. It will be argued that the use of redundant information supplied by time coincidence between the two layers (possible in the HADES design) can drastically improve the situation. The uniformity of acceptance for the two layer coincidence will be discussed. A possible distortion to the reconstructed kaon flow due to the wall occupancy, which is not isotropic with respect to the reaction plane because of the flow pattern of the much more abundant protons, pions and deuterons, has also been studied.

  16. Isotopically-selective two-photon ionization of 12C- and 13C-benzene and hexadeuterobenzene in a time-of-flight mass spectrometer

    Science.gov (United States)

    de La Cruz, A.; Ortiz, M.; Cabrera, J. A.; Campos, J.

    1994-04-01

    In this work the 610 band spectra for 12C6H6, 12C6D6, 13C12C5H6 and 13C12C5D6 isotopically-substituted benzenes are reported. Spectra of deuterated species are given for the first time. These molecular spectra can be employed to test the technical performances of REMPI-TOFMS systems. The experimental method was laser-induced two-photon ionization of molecules cooled in a He supersonic beam followed by time-of-flight mass spectrometry. A splitting of the 610 band appears when a 13C atom is present in the benzene-ring, favoring the isotope selectivity. In the present experiment a complete mass discrimination has been accomplished by using appropriate electronic circuits. A proportional counter has been used to obtain the corresponding spectra of the molecules at 300 K. The device is very useful to tune the laser wavelength to resonance in this kind of mass spectrometry experiment.

  17. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  18. Evaluation of a High Resolving Power Time-of-Flight Mass Spectrometer for Drug Analysis in Terms of Resolving Power and Acquisition Rate

    Science.gov (United States)

    Pelander, Anna; Decker, Petra; Baessmann, Carsten; Ojanperä, Ilkka

    2011-02-01

    Liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) is applied increasingly to various fields of small molecule analysis. The moderate resolving power (RP) of standard TOFMS instruments poses a risk of false negative results when complex biological matrices are to be analyzed. In this study, the performance of a high resolving power TOFMS instrument (maXis by Bruker Daltonik, Bremen, Germany) was evaluated for drug analysis. By flow injection analysis of critical drug mixtures, including a total of 17 compounds with nominal masses of 212-415 Da and with mass differences of 8.8-23.5 mDa, RP varied from 34,400 to 51,900 (FWHM). The effect of acquisition rate on RP, mass accuracy, and isotopic pattern fit was studied by applying 1, 2, 5, 10, and 20 Hz acquisition rates in a 16 min gradient elution LC separation. All three variables were independent of the acquisition rate, with an average mass accuracy and isotopic pattern fit factor (mSigma) of 0.33 ppm and 5.9, respectively. The average relative standard deviation of RP was 1.8%, showing high repeatability. The performance was tested further with authentic urine extracts containing a co-eluting compound pair with a nominal mass of 296 Da and an 11.2 mDa mass difference. The authentic sample components were readily resolved and correctly identified by the automated data analysis. The average RP, mass accuracy, and isotopic pattern fit were 36,600, 0.9 ppm, and 7.3 mSigma, respectively.

  19. Evaluation of a pulsed glow discharge time-of-flight mass spectrometer as a detector for gas chromatography and the influence of the glow discharge source parameters on the information volume in chemical speciation analysis.

    Science.gov (United States)

    Fliegel, Daniel; Fuhrer, Katrin; Gonin, Marc; Günther, Detlef

    2006-09-01

    The figures of merit of a pulsed glow discharge time-of-flight mass spectrometer (GD-TOFMS) as a detector for gas chromatography (GC) analysis were evaluated. The mass resolution for the GD-TOFMS was determined on FWHM in the high mass range (208Pb+) as high as 5,500. Precision of 400 subsequent analyses was calculated on 63Cu+ to be better than 1% RSD with no significant drift over the time of the analysis. Isotope precision based on the 63Cu+/65Cu+ ratio over 400 analyses was 1.5% RSD. The limits of detection for gaseous analytes (toluene in methanol as solvent) were determined to be as low as several hundred ppb or several hundred pg absolute without using any pre-concentration technique. Furthermore, the different GD source parameters like capillary distance, cathode-anode spacing, and GD source pressure with regards to the accessible elemental, structural, and molecular information were evaluated. It was demonstrated that each of these parameters has severe influence on the ratio of elemental, structural, and parent molecular information in chemical speciation analysis.

  20. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer.

    Science.gov (United States)

    Raijmakers, Reinout; Kraiczek, Karsten; de Jong, Ad P; Mohammed, Shabaz; Heck, Albert J R

    2010-02-01

    The study of protein phosphorylation events is one of the most important challenges in proteome analysis. Despite the importance of phosphorylation for many regulatory processes in cells and many years of phosphoprotein and phosphopeptide research, the identification and characterization of phosphorylation by mass spectrometry is still a challenging task. Recently, we introduced an approach that facilitates the analysis of phosphopeptides by performing automated, online, TiO(2) enrichment of phosphopeptides prior to mass spectrometry (MS) analysis. The implementation of that method on a "plug-and-play" microfluidic high-performance liquid chromatography (HPLC) chip design will potentially open up efficient phosphopeptide enrichment methods enabling phosphoproteomics analyses by a broader research community. Following our initial proof of principle, whereby the device was coupled to an ion trap, we now show that this so-called phosphochip is capable of the enrichment of large numbers of phosphopeptides from complex cellular lysates, which can be more readily identified when coupled to a higher resolution quadrupole time-of-flight (Q-TOF) mass spectrometer. We use the phosphochip-Q-TOF setup to explore the phosphoproteome of nonstimulated primary human leukocytes where we identify 1012 unique phosphopeptides corresponding to 960 different phosphorylation sites providing for the first time an overview of the phosphoproteome of these important circulating white blood cells.

  1. MASS SPECTROMETER

    Science.gov (United States)

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  2. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    Science.gov (United States)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  3. Computer Spectrometers

    Science.gov (United States)

    Dattani, Nikesh S.

    2017-06-01

    Ideally, the cataloguing of spectroscopic linelists would not demand laborious and expensive experiments. Whatever an experiment might achieve, the same information would be attainable by running a calculation on a computer. Kolos and Wolniewicz were the first to demonstrate that calculations on a computer can outperform even the most sophisticated molecular spectroscopic experiments of the time, when their 1964 calculations of the dissociation energies of H_2 and D_{2} were found to be more than 1 cm^{-1} larger than the best experiments by Gerhard Herzberg, suggesting the experiment violated a strict variational principle. As explained in his Nobel Lecture, it took 5 more years for Herzberg to perform an experiment which caught up to the accuracy of the 1964 calculations. Today, numerical solutions to the Schrödinger equation, supplemented with relativistic and higher-order quantum electrodynamics (QED) corrections can provide ro-vibrational spectra for molecules that we strongly believe to be correct, even in the absence of experimental data. Why do we believe these calculated spectra are correct if we do not have experiments against which to test them? All evidence seen so far suggests that corrections due to gravity or other forces are not needed for a computer simulated QED spectrum of ro-vibrational energy transitions to be correct at the precision of typical spectrometers. Therefore a computer-generated spectrum can be considered to be as good as one coming from a more conventional spectrometer, and this has been shown to be true not just for the H_2 energies back in 1964, but now also for several other molecules. So are we at the stage where we can launch an array of calculations, each with just the atomic number changed in the input file, to reproduce the NIST energy level databases? Not quite. But I will show that for the 6e^- molecule Li_2, we have reproduced the vibrational spacings to within 0.001 cm^{-1} of the experimental spectrum, and I will

  4. First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Oster, Markus; Elsasser, Michael; Schnelle-Kreis, Jürgen; Zimmermann, Ralf

    2011-12-01

    The on-line analysis of single aerosol particles with mass spectrometrical methods is an important tool for the investigation of aerosols. Often, a single laser pulse is used for one-step laser desorption/ionisation of aerosol particles. Resulting ions are detected with time-of-flight mass spectrometry. With this method, the detection of inorganic compounds is possible. The detection of more fragile organic compounds and carbon clusters can be accomplished by separating the desorption and the ionisation in two steps, e.g. by using two laser pulses. A further method is, using a heated metal surface for thermal desorption of aerosol particles. If an ultraviolet laser is used for ionisation, a selective ionisation of polycyclic aromatic hydrocarbons (PAH) and alkylated PAH is possible via a resonance-enhanced multiphoton-ionisation process. Laser velocimetry allows individual laser triggering for single particles and additionally delivers information on aerodynamic particle diameters. It was shown that particles deriving from different combustion sources can be differentiated according to their PAH patterns. For example, retene, a C(4)-alkylated phenanthrene derivative, is a marker for the combustion of coniferous wood. In this paper, the first field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer during a measurement campaign in Augsburg, Germany in winter 2010 is presented. Larger PAH-containing particles (i.e. with aerodynamic diameters larger than 1 μm), which are suspected to be originated by re-suspension processes of agglomerated material, were in the focus of the investigation. Due to the low concentration of these particles, an on-line virtual impactor enrichment system was used. The detection of particle-bound PAH in ambient particles in this larger size region was possible and in addition, retene could be detected on several particles, which allows to identify wood combustion as

  5. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source.

    Science.gov (United States)

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R

    2007-11-01

    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range.

  6. Laboratory and Field Characterizations of a Filter Inlet for Gases and AEROsols (FIGAERO) Collector Module for a Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) Instrument

    Science.gov (United States)

    Nowak, J. B.; Vogel, A.; Massoli, P.; Lambe, A. T.; Stark, H.; Kimmel, J.; Isaacman-VanWertz, G. A.; Kroll, J. H.; Canagaratna, M. R.; Worsnop, D. R.; Jayne, J. T.

    2015-12-01

    The Aerodyne Research, Inc. (ARI) Filter Inlet for Gases and AEROsols (FIGAERO) collector module is an add-on for Chemical Ionization Time-of-Flight Mass Spectrometer (CI-TOFMS) instruments. The FIGAERO enables simultaneous real-time chemical analysis of trace gases and particles in ambient air. The collector module described here is modelled after the University of Washington (UW) design of Lopez-Hilfikeret al., 2014. The collector module mounts directly to the front of the CI-TOFMS ion molecule reactor, replacing the standard gas phase inlet. Automated operation follows a two-step sequence alternating between gas and particle sampling. Gas and particle flows are sampled through separate inlet lines. Software provides automated control of the ARI FIGAERO and determines which inlet line is sampled into ion molecule reaction region. While in the gas phase measuring position particles are separately collected on a filter. After sufficient particle collection, heated clean nitrogen is passed over the filter to desorb the particles on the filter. The thermally desorbed material is then measured with the CI-TOFMS. Though conceptually similar, the ARI FIGAERO is mechanically different enough from the UW design that it requires its own performance assessment. Presented here is the characterization of the ARI FIGAERO collector module. The FIGAERO performance is assessed by using laboratory, chamber, and field data collected using iodide as the reagent ion to examine detection sensitivity, quantification limits, and time response. Lopez-Hilfiker et al., "A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)", Atmos. Meas. Tech., 7, 983-1001 (2014)

  7. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer%磁瓶飞行时间谱仪用复合磁场系统设计

    Institute of Scientific and Technical Information of China (English)

    王超; 田进寿; 张美志; 康轶凡

    2011-01-01

    根据磁瓶飞行时间谱仪磁场系统的基本要求,设计了一套符合其使用的复合磁场系统.最高强度达1.2T的强非均匀磁场部分由永久磁铁和结构经过优化的截圆锥状磁极靴所产生.永久磁铁为N52系列NdFeB,磁极靴材料为高磁导率珀明德合金.强度为1.0×10-3 T的弱均匀引导磁场由半径为3 cm、长度为3m螺线管提供.磁极靴与螺线管之间的距离为5 cm.%Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1. 2 T. is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet, known as NdFeB magnet, is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1. 0× 10-3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs.

  8. Infrared absorption of methanethiol clusters (CH3SH)n, n = 2-5, recorded with a time-of-flight mass spectrometer using IR depletion and VUV ionization.

    Science.gov (United States)

    Fu, Lung; Han, Hui-Ling; Lee, Yuan-Pern

    2012-12-21

    We investigated IR spectra in the CH- and SH-stretching regions of size-selected methanethiol clusters, (CH(3)SH)(n) with n = 2-5, in a pulsed supersonic jet using infrared (IR)-vacuum ultraviolet (VUV) ionization. VUV emission at 132.50 nm served as the source of ionization in a time-of-flight mass spectrometer. Clusters were dissociated with light from a tunable IR laser before ionization. The variations in intensity of methanethiol cluster ions (CH(3)SH)(n)(+) were monitored as the IR laser light was tuned across the range 2470-3100 cm(-1). In the SH-stretching region, the spectrum of (CH(3)SH)(2) shows a weak band near 2601 cm(-1), red-shifted only 7 cm(-1) from that of the monomer. In contrast, all spectra of (CH(3)SH)(n), n = 3-5, show a broad band near 2567 cm(-1) with much greater intensity. In the CH-stretching region, absorption bands of (CH(3)SH)(2) are located near 2865, 2890, 2944, and 3010 cm(-1), red-shifted by 3-5 cm(-1) from those of CH(3)SH. These red shifts increase slightly for larger clusters and bands near 2856, 2884, 2938, and 3005 cm(-1) were observed for (CH(3)SH)(5). These spectral results indicate that the S-H[middle dot][middle dot][middle dot]S hydrogen bond plays an important role in clusters with n = 3-5, but not in (CH(3)SH)(2), in agreement with theoretical predictions. The absence of a band near 2608 cm(-1) that corresponds to absorption of the non-hydrogen-bonded SH moiety and the large width of observed feature near 2567 cm(-1) indicate that the dominant stable structures of (CH(3)SH)(n), n = 3-5, have a cyclic hydrogen-bonded framework.

  9. Quadrupole Time-of-Flight Mass Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The system generates superior quality mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data from both atmospheric pressure ionization (API) and...

  10. Two-Pion Production in Proton-Proton Collisions with Polarized Beam

    CERN Document Server

    El-Bary, S Abd; Bilger, R; Brinkmann, K -Th; Clement, H; Dietrich, M; Doroshkevich, E; Dshemuchadse, S; Erhardt, A; Eyrich, W; Filippi, A; Freiesleben, H; Fritsch, M; Geyer, R; Gillitzer, A; Hanhart, C; Hauffe, J; Haug, K; Hesselbarth, D; Jaekel, R; Jakob, B; Karsch, L; Kilian, K; Koch, H; Kress, J; Kuhlmann, E; Marcello, S; Marwinski, S; Meier, R; Möller, K; Morsch, H P; Naumann, Lutz; Ritman, J; Roderburg, E; Schoenmeier, P; Schulte-Wissermann, M; Schroeder, W; Steinke, M; Stinzing, F; Sun, G Y; Waechter, J; Wagner, G J; Wagner, M; Weidlich, U; Wilms, A; Wintz, P; Wirth, S; Zhang, G; Zupranski, P

    2008-01-01

    The two-pion production reaction $\\vec{p}p\\to pp\\pi^+\\pi^-$ was measured with a polarized proton beam at $T_p \\approx$ 750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed pulse technique for Quirl and central calorimeter provided positive $\\pi^+$ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing power values up to $A_y$ = 0.3.

  11. Method of multiplexed analysis using ion mobility spectrometer

    Science.gov (United States)

    Belov, Mikhail E.; Smith, Richard D.

    2009-06-02

    A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.

  12. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere

    Science.gov (United States)

    Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Stark, Harald; de Gouw, Joost A.

    2016-07-01

    Proton transfer reactions between hydronium ions (H3O+) and volatile organic compounds (VOCs) provide a fast and highly sensitive technique for VOC measurements, leading to extensive use of proton-transfer-reaction mass spectrometry (PTR-MS) in atmospheric research. Based on the same ionization approach, we describe the development of a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) utilizing H3O+ as the reagent ion. The new H3O+ ToF-CIMS has sensitivities of 100-1000 cps ppb-1 (ion counts per second per part-per-billion mixing ratio of VOC) and detection limits of 20-600 ppt at 3σ for a 1 s integration time for simultaneous measurements of many VOC species of atmospheric relevance. The ToF analyzer with mass resolution (m/Δm) of up to 6000 allows the separation of isobaric masses, as shown in previous studies using similar ToF-MS. While radio frequency (RF)-only quadrupole ion guides provide better overall ion transmission than ion lens system, low-mass cutoff of RF-only quadrupole causes H3O+ ions to be transmitted less efficiently than heavier masses, which leads to unusual humidity dependence of reagent ions and difficulty obtaining a humidity-independent parameter for normalization. The humidity dependence of the instrument was characterized for various VOC species and the behaviors for different species can be explained by compound-specific properties that affect the ion chemistry (e.g., proton affinity and dipole moment). The new H3O+ ToF-CIMS was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX campaign in spring of 2015. The measured mixing ratios of several aromatics from the H3O+ ToF-CIMS agreed within ±10 % with independent gas chromatography measurements from whole air samples. Initial results from the SONGNEX measurements demonstrate that the H3O+ ToF-CIMS data set will be valuable for the identification and characterization of emissions from various sources, investigation of secondary

  13. Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis.

    Science.gov (United States)

    Mühlberger, F; Wieser, J; Ulrich, A; Zimmermann, R

    2002-08-01

    Fast on-line detection of organic compounds from complex mixtures, such as industrial process gas streams, require selective and sensitive analytical methods. One feasible approach for this purpose is the use of mass spectrometry (MS) with a selective and soft (fragment-free) ionization technique, such as chemical ionization (CI) or photo ionization (PI). Single photon ionization (SPI) with vacuum ultraviolet (VUV) light is a particularly sof tionization technique, well-suited for detection of both aromatic and aliphatic species. Problematic, however, is the generation of the VUV light. In general, the vacuum ultraviolet (VUV) light sources for SPI-MS are based either on lasers (e.g., 118-nm radiation generated by frequency-tripling of the third harmonic of a Nd:YAG laser) or on conventional VUV lamps, such as deuterium lamps. Althoughthe laser-based techniques are very sophisticated and expensive, the conventional lamps have serious drawbacks regarding their optical parameters, such as low-output power, low spectral power density, and broad emission bands. In this work, a novel excimer VUV light source, in which an electron beam is used to form rare gas excimer species, is used. The excimer VUV light sourceproduces brilliant and intense VUV light. The novel VUV light source was coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). A special interface design, including optical (VUV optics) as well as electronic measures (e.g., pulsed ion extraction) was realized. The use of the excimer VUV lamp for SPI will allow the realization of very compact, rugged, and sensitive SPI-TOFMS devices, which preferably will be adapted for process analytical application or monitoring issues (e.g., chemical warfare detection). The excimer VUV-lamp technology delivers VUV light with a good beam quality and high-output power at low costs. Furthermore, it allows changing the emitted wavelength as well as the bandwidth of the excimer VUV lamp in t he 100-200-nm region

  14. Development of Miniature Spectrometers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo

    2007-01-01

    Spectrometer is an essential and necessary optical element used for measuring the chemical components and content of the matter.The development of miniature spectrometers can be traced back to 1980s.The development state and different manufacturing methods of micro-spectrometers are presented.Finally,we analyze the miniaturization trend of spectrometers.Some groundwork for the scientific research is offered by introducing micro-spectrometers development.

  15. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  16. ISLA: An Isochronous Spectrometer with Large Acceptances

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, D., E-mail: bazin@nscl.msu.edu; Mittig, W.

    2013-12-15

    A novel type of recoil mass spectrometer and separator is proposed for the future secondary radioactive beams of the ReA12 accelerator at NSCL/FRIB, inspired from the TOFI spectrometer developed at the Los Alamos National Laboratory for online mass measurements. The Isochronous Spectrometer with Large Acceptances (ISLA) is able to achieve superior characteristics without the compromises that usually plague the design of large acceptance spectrometers. ISLA can provide mass-to-charge ratio (m/q) measurements to better than 1 part in 1000 by using an optically isochronous time-of-flight independent of the momentum vector of the recoiling ions, despite large acceptances of 20% in momentum and 64 msr in solid angle. The characteristics of this unique design are shown, including requirements for auxiliary detectors around the target and the various types of reactions to be used with the re-accelerated radioactive beams of the future ReA12 accelerator.

  17. Characterization of the organic matter in submicron urban aerosols using a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS)

    Science.gov (United States)

    Salvador, Christian Mark; Ho, T.-T.; Chou, Charles C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.

    2016-09-01

    Organic matter is the most complicated and unresolved major component of atmospheric aerosol particles. Its sources and global budget are still highly uncertain and thereby necessitate further research efforts with state-of-the-art instrument. This study employed a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS) for characterization of ambient organic aerosols. First, five authentic standard substances, which include phthalic acid, levoglucosan, arabitol, cis-pinonic acid and glutaric acid, were utilized to examine the response of the instrument. The results demonstrated the linearity of the TD-PTR-TOF-MS signals against a range of mass loading of specific species on filters. However, it was found that significant fragmentation happened to those challenging compounds, although the proton-transfer-reaction (PTR) was recognized as a soft ionization technique. Consequently, quantitative characterization of aerosols with the TD-PTR-TOF-MS depended on the availability of the fragmentation pattern in mass spectra and the recovery rate with the quantification ion peak(s). The instrument was further deployed to analyze a subset of submicron aerosol samples collected at the TARO (Taipei Aerosol and Radiation Observatory) in Taipei, Taiwan during August 2013. The results were compared with the measurements from a conventional DRI thermo-optical carbon analyzer. The inter-comparison indicated that the TD-PTR-TOF-MS underestimated the mass of total organic matter (TOM) in aerosol samples by 27%. The underestimation was most likely due to the thermo-decomposition during desorption processes and fragmentation in PTR drift tube, where undetectable fragments were formed. Besides, condensation loss of low vapor pressure species in the transfer components was also responsible for the underestimation to a certain degree. Nevertheless, it was showed that the sum of the mass concentrations of the major detected ion peaks correlated strongly

  18. New generation VNIR/SWIR/TIR airborne imaging spectrometer

    Science.gov (United States)

    Wang, Yueming; Wei, Liqin; Yuan, Liyin; Li, Chunlai; Lv, Gang; Xie, Feng; Han, Guicheng; Shu, Rong; Wang, Jianyu

    2016-10-01

    Imaging spectrometer plays an important role in the remote sensing application. Imaging spectrometer can collects and provides a unique spectral signature of many materials. The spectral signature may be absorbing, reflecting, and emitting. Generally, optical spectral bands for earth observing consist of VNIR, SWIR, TIR/LWIR. VNIR band imaging spectrometer is well-known in vegetation remote sensing and ocean detection. SWIR band imaging spectrometer is widely applied in mineralogy investigation. For its uniquely capability of spectral radiance measurement, TIR/LWIR imaging spectrometer attracts much attention these years. This paper will present a new generation VNIR/SWIR/TIR imaging spectrometer. The preliminary result of its first flight will also be shared. The spectral sampling intervals of VNIR/SWIR/TIR are 2.4nm/3nm/30nm, respectively. The spatial pixel numbers are 2800/1400/700,respectively. It's a push-broom imaging spectrometer.

  19. A SSS Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The SSS spectrometer, so called simple scintillation spectrometer, is made by BTI (Bubble Technology Industries). The spectrometer can be used in the neutron energy range from 4.0 to 17 MeV. The SSS includes two sections: A probe and an analyzer module

  20. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time-of-flightTOFtime-of-flight

  1. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  2. HyTES: Thermal Imaging Spectrometer Development

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  3. The VERDI fission fragment spectrometer

    Science.gov (United States)

    Frégeau, M. O.; Bryś, T.; Gamboni, Th.; Geerts, W.; Oberstedt, S.; Oberstedt, A.; Borcea, R.

    2013-12-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  4. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  5. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  6. A plume spectroscopy system for flight applications

    Science.gov (United States)

    Makel, D. B.; Petersen, T. V.; Duncan, D. B.; Madzsar, G. C.

    1993-06-01

    An operational plume spectroscopy system will be an important element of any rocket engine health management system (HMS). The flight capable FPI spectrometer will enable prognosis and response to incipient rocket engine failures as well as diagnosis of wear and degradation for on-condition maintenance. Spectrometer application to development programs, such as the Space Lifter, NASP, and SSTO, will reduce program risks, allow better adherence to schedules and save money by reducing or eliminating redesign and test costs. The diagnostic capability of a proven, calibrated spectrometer will enhance post-burn certification of high value, reusable engines, such as the Space Shuttle Main Engine (SSME), where life and reliability are key cost drivers. This paper describes a prototype FPI spectrometer for demonstration and validation testing on NASA's Technology Test Bed Engine (TTBE) at Marshall Space Flight Center. The TTBE test unit is designed with flight prototype optics and a commercial off-the-shelf data processing system.

  7. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  8. Inficon Transpector MPH Mass Spectrometer Random Vibration Test Report

    Science.gov (United States)

    Santiago-Bond, Jo; Captain, Janine

    2015-01-01

    The purpose of this test report is to summarize results from the vibration testing of the INFICON Transpector MPH100M model Mass Spectrometer. It also identifies requirements satisfied, and procedures used in the test. As a payload of Resource Prospector, it is necessary to determine the survivability of the mass spectrometer to proto-qualification level random vibration. Changes in sensitivity of the mass spectrometer can be interpreted as a change in alignment of the instrument. The results of this test will be used to determine any necessary design changes as the team moves forward with flight design.

  9. Improved Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Mass Spectrometer project will develop system requirements and analyze the path to space qualification.   The results of this project...

  10. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  11. Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: I. How much of the data is theoretically interpretable by search engines?

    Science.gov (United States)

    Chalkley, Robert J; Baker, Peter R; Hansen, Kirk C; Medzihradszky, Katalin F; Allen, Nadia P; Rexach, Michael; Burlingame, Alma L

    2005-08-01

    An in-depth analysis of a multidimensional chromatography-mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight (QqTOF) geometry instrument was carried out. A total of 3269 CID spectra were acquired. Through manual verification of database search results and de novo interpretation of spectra 2368 spectra could be confidently determined as predicted tryptic peptides. A detailed analysis of the non-matching spectra was also carried out, highlighting what the non-matching spectra in a database search typically are composed of. The results of this comprehensive dataset study demonstrate that QqTOF instruments produce information-rich data of which a high percentage of the data is readily interpretable.

  12. Qualitative and quantitative analysis of the chemical constituents in Mahuang-Fuzi-Xixin decoction based on high performance liquid chromatography combined with time-of-flight mass spectrometry and triple quadrupole mass spectrometers.

    Science.gov (United States)

    Sun, Qihui; Cao, Hongjie; Zhou, Yanyan; Wang, Xu; Jiang, Haiqiang; Gong, Lili; Yang, Yong; Rong, Rong

    2016-11-01

    High-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF/MS) and high-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ/MS/MS) were utilized to clarify the chemical constituents of Mahuang-Fuzi-Xixin Decoction. There are 52 compounds, including alkaloids, amino acids and organic acids were identified or tentatively characterized by their characteristic high resolution mass data by HPLC-QQQ/MS/MS. In the subsequent quantitative analysis, 10 constituents, including methyl ephedrine, aconine, songrine, fuziline, neoline, talatisamine, chasmanine, benzoylmesaconine, benzoylaconine and benzoylhypaconine were simultaneously determined by HPLC-QQQ/MS/MS with multiple reaction monitoring mode. Satisfactory linearity was achieved with wide linear range and fine determination coefficient (r > 0.9992). The relative standard deviations (RSD) of inter- and intra-day precisions were chemical constituents studying, including identification and quantification of Mahuang-Fuzi-Xixin decoction. Copyright © 2016 John Wiley & Sons, Ltd.

  13. A micromachined mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, G.; Siebert, P.; Mueller, J. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Microsystemtechnology

    2001-07-01

    This paper presents the concept, the processing and the simulated and measured characteristics of a miniaturised mass spectrometer, with dimensions of approximately only a few cm{sup 3}. The mass spectrometer consists of three main parts to be manufactured by micro structuring: an electron source, an ionisation chamber including accelerating and focusing units and a mass analyser with detector. Its fabrication is based on techniques used in micro-system processing and in particular anisotropic etching, thin film deposition, electroplating, and anodic bonding. The aim of the concept for this micro mass spectrometer is not only to scale down a macroscopic system but it also takes advantage of the added features of a micro system, i.e. a high Knudsen number of about 3 at a pressure of a few Pascal, and high field strengths at a relatively low voltage. Therefore, the demands on the vacuum systems and the electrical circuits are much more simple compared to a macroscopic mass spectrometer. In the presented design of the micro mass spectrometer the resolution is in the range of 10 to 20 at a sensitivity of several tens of ppm. (orig.)

  14. Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    Science.gov (United States)

    Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.

    1991-01-01

    An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.

  15. Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli.

    Science.gov (United States)

    Saffert, Ryan T; Cunningham, Scott A; Ihde, Sherry M; Jobe, Kristine E Monson; Mandrekar, Jayawant; Patel, Robin

    2011-03-01

    We compared the BD Phoenix automated microbiology system to the Bruker Biotyper (version 2.0) matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) system for identification of gram-negative bacilli, using biochemical testing and/or genetic sequencing to resolve discordant results. The BD Phoenix correctly identified 363 (83%) and 330 (75%) isolates to the genus and species level, respectively. The Bruker Biotyper correctly identified 408 (93%) and 360 (82%) isolates to the genus and species level, respectively. The 440 isolates were grouped into common (308) and infrequent (132) isolates in the clinical laboratory. For the 308 common isolates, the BD Phoenix and Bruker Biotyper correctly identified 294 (95%) and 296 (96%) of the isolates to the genus level, respectively. For species identification, the BD Phoenix and Bruker Biotyper correctly identified 93% of the common isolates (285 and 286, respectively). In contrast, for the 132 infrequent isolates, the Bruker Biotyper correctly identified 112 (85%) and 74 (56%) isolates to the genus and species level, respectively, compared to the BD Phoenix, which identified only 69 (52%) and 45 (34%) isolates to the genus and species level, respectively. Statistically, the Bruker Biotyper overall outperformed the BD Phoenix for identification of gram-negative bacilli to the genus (P gram-negative bacilli (P > 0.05). However, the Bruker Biotyper outperformed the BD Phoenix for identification of infrequently isolated gram-negative bacilli (P < 0.0001).

  16. Compact Grism Spectrometer

    Science.gov (United States)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  17. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    Science.gov (United States)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  18. The GRIFFIN spectrometer

    Science.gov (United States)

    Svensson, C. E.; Garnsworthy, A. B.

    2014-01-01

    Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is an advanced new high-efficiency γ-ray spectrometer being developed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMF's Isotope Separator and Accelerator (ISAC-I) radioactive ion beam facility. GRIFFIN will be comprised of sixteen large-volume clover-type high-purity germanium (HPGe) γ-ray detectors coupled to custom digital signal processing electronics and used in conjunction with a suite of auxiliary detection systems. This article provides an overview of the GRIFFIN spectrometer and its expected performance characteristics.

  19. Prismatic analyzer concept for neutron spectrometers

    DEFF Research Database (Denmark)

    Birk, Jonas O.; Marko, M.; Freeman, P.G.

    2014-01-01

    readily be combined with advanced focussing geometries and with multiplexing instrument designs. We present a combination of simulations and data showing three different energies simultaneously reflected from one analyser. Experiments were performed on a cold triple axis instrument and on a prototype...... inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor...

  20. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  1. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  2. The Alpha Magnetic Spectrometer Silicon Tracker

    CERN Document Server

    Burger, W J

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m sup 2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  3. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  4. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  5. Surface Plasmon Based Spectrometer

    Science.gov (United States)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  6. The Composite Infrared Spectrometer

    Science.gov (United States)

    Calcutt, Simon; Taylor, Fredric; Ade, Peter; Kunde, Virgil; Jennings, Donald

    1992-01-01

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. It contains two Fourier transform spectrometers covering wavelengths of 7-1000 microns. The instrument is expected to have higher spectral resolution, smaller field of view, and better signal-to-noise performance than its counterpart, IRIS, on the Voyager missions. These improvements allow the study of the variability of the composition and temperature of the atmospheres of both Saturn and Titan with latitude, longitude and height, as well as allowing the possibility of discovery of previously undetected chemical species in these atmospheres. The long wavelengths accessible to CIRS allow sounding deeper into both atmospheres than was possible with IRIS.

  7. Galileo Ultraviolet Spectrometer experiment

    Science.gov (United States)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  8. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  9. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  10. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  11. Large Acceptance Spectrometers for Invariant Mass Spectroscopy of Exotic Nuclei and Future Development

    CERN Document Server

    Nakamura, T

    2015-01-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also explore the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  12. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  13. A spectrometer for study of high mass objects created in relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.A.; Barish, K.N.; Batsouli, S.; Bennett, M.J.; Bennett, S.J.; Chikanian, A.; Coe, S.D.; Cormier, T.M.; Davies, R.R.; De Cataldo, G.; Dee, P.; Diebold, G.E.; Dover, C.B.; Ewell, L.A.; Emmet, W.; Fachini, P.; Fadem, B.; Finch, L.E.; George, N.K.; Giglietto, N.; Greene, S.V.; Haridas, P.; Hill, J.C. E-mail: jhill@iastate.edu; Hirsch, A.S.; Hoversten, R.A.; Huang, H.Z.; Jaradat, H.; Kim, B.; Kumar, B.S.; Lajoie, J.G.; Lainis, T.; Lewis, R.A.; Li, Q.; Li, Y.; Libby, B.; Majka, R.D.; Miller, T.E.; Munhoz, M.G.; Nagle, J.L.; Petridis, A.; Pless, I.A.; Pope, J.K.; Porile, N.T.; Pruneau, C.; Rabin, M.S.Z.; Reid, J.D.; Rimai, A.; Riso, J.; Rose, A.; Rotondo, F.S.; Sandweiss, J.; Scharenberg, R.P.; Skank, H.; Slaughter, A.J.; Sleage, G.; Smith, G.A.; Spinelli, P.; Srivastava, B.K.; Tincknell, M.L.; Toothacker, W.S.; Van Buren, G.; Wilson, W.K.; Wohn, F.K.; Wolin, E.J.; Xu, Z.; Zhao, K

    1999-11-21

    Experiment E864 at the Brookhaven AGS accelerator uses a high sensitivity, large acceptance spectrometer, designed to search for strangelets and other novel forms of matter produced in high-energy heavy ion collisions. The spectrometer has excellent acceptance and rate capabilities for measuring the production properties of known particles and nuclei such as p-bar, d-bar and {sup 6}He. The experiment uses a magnetic spectrometer and employs redundant time of flight and position detectors and a hadronic calorimeter. In this paper we describe the design and performance of the spectrometer.

  14. Mass spectrometers: instrumentation

    Science.gov (United States)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  15. MONSTER: a TOF Spectrometer for β-delayed Neutron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, T., E-mail: trino.martinez@ciemat.es [Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas, CIEMAT, Madrid 28040 (Spain); Cano-Ott, D.; Castilla, J.; Garcia, A.R.; Marin, J.; Martinez, G.; Mendoza, E.; Santos, C.; Tera, F.J.; Villamarin, D. [Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas, CIEMAT, Madrid 28040 (Spain); Agramunt, J.; Algora, A.; Domingo, C.; Jordan, M.D.; Rubio, B.; Taín, J.L. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia (Spain); Bhattacharya, C.; Banerjee, K.; Bhattacharya, S.; Roy, P. [Variable Energy Cyclotron Centre (VECC), Kolkata (India); and others

    2014-06-15

    β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  16. MONSTER: a TOF Spectrometer for β-delayed Neutron Spectroscopy

    Science.gov (United States)

    Martínez, T.; Cano-Ott, D.; Castilla, J.; Garcia, A. R.; Marin, J.; Martinez, G.; Mendoza, E.; Santos, C.; Tera, F. J.; Villamarin, D.; Agramunt, J.; Algora, A.; Domingo, C.; Jordan, M. D.; Rubio, B.; Taín, J. L.; Bhattacharya, C.; Banerjee, K.; Bhattacharya, S.; Roy, P.; Meena, J. K.; Kundu, S.; Mukherjee, G.; Ghosh, T. K.; Rana, T. K.; Pandey, R.; Saxena, A.; Behera, B.; Penttilä, H.; Jokinen, A.; Rinta-Antila, S.; Guerrero, C.; Ovejero, M. C.

    2014-06-01

    β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  17. MONSTER: a TOF Spectrometer for beta-delayed Neutron Spetroscopy

    CERN Document Server

    Martinez, T; Castilla, J; Garcia, A R; Marin, J; Martinez, G; Mendoza, E; Santos, C; Tera, F; Jordan, M D; Rubio, B; Tain, J L; Bhattacharya, C; Banerjee, K; Bhattacharya, S; Roy, P; Meena, J K; Kundu, S; Mukherjee, G; Ghosh, T K; Rana, T K; Pandey, R; Saxena, A; Behera, B; Penttila, H; Jokinen, A; Rinta-Antila, S; Guerrero, C; Ovejero, M C; Villamarin, D; Agramunt, J; Algora, A

    2014-01-01

    Beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  18. MASS SPECTROMETER LEAK

    Science.gov (United States)

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  19. Correlation Time-of-flight Spectrometry of Ultracold Neutrons

    CERN Document Server

    Novopoltsev, M I

    2010-01-01

    The fearures of the correlation method used in time-of-flight spectrometry of ultracold neutrons are analyzed. The time-of-flight spectrometer for the energy range of ultracold neutrons is described, and results of its testing by measuring spectra of neutrons passing through interference filters are presented.

  20. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  1. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  2. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  3. DNS: Diffuse scattering neutron time-of-flight spectrometer

    Directory of Open Access Journals (Sweden)

    Yixi Su

    2015-08-01

    Full Text Available DNS is a versatile diffuse scattering instrument with polarisation analysis operated by the Jülich Centre for Neutron Science (JCNS, Forschungszentrum Jülich GmbH, outstation at the Heinz Maier-Leibnitz Zentrum (MLZ. Compact design, a large double-focusing PG monochromator and a highly efficient supermirror-based polarizer provide a polarized neutron flux of about 107 n cm-2 s-1. DNS is used for the studies of highly frustrated spin systems, strongly correlated electrons, emergent functional materials and soft condensed matter.

  4. Miracle Flights

    Science.gov (United States)

    ... her future. Donate Now Make your donation today Saving Lives One Flight At A ... “To improve access to health care by providing financial assistance to low income children for commercial air ...

  5. Spatial heterodyne spectrometer for FLEX

    Science.gov (United States)

    Scott, Alan; Zheng, Sheng-Hai; Brown, Stephen; Bell, Andrew

    2007-10-01

    A spatial heterodyne spectrometer (SHS) has significant advantages for high spectral resolution imaging over narrow pre-selected bands compared to traditional solutions. Given comparable optical étendue at R~6500, a field-widened SHS will have a throughput-resolution product ~170 x larger than an air-spaced etalon spectrometer, and ~1000 x larger than a standard grating spectrometer. The monolithic glass Michelson design and lack of moving parts allows maximum stability of spectral calibration over the mission life. For these reasons, SHS offers considerable advantages for the core spectrometer instrument in the European Space Agency's (ESA) Fluorescence Explorer (FLEX) mission.

  6. Assessing polarization effects for the Airborne imaging spectrometer APEX

    Directory of Open Access Journals (Sweden)

    U. Böttger

    2006-01-01

    Full Text Available In the scope of hyperspectral airborne imaging spectrometer (APEX design activities, the acceptable sensitivity of linear polarization of the spectrometer is analyzed by assessing the amount of polarization of reflected light in the atmosphere-surface system. A large number of calculations is performed for a wide variaty of viewing geometries to study the influences of aerosol models, natural surfaces and flight altitudes over the spectral range from the near-UV to the short-wave infrared (SWIR. Thereinafter the design of the imaging spectrometer is outlined accounting for these requirements and a method of partially correcting the instrument polarization sensitivity is briefly introduced. APEX design and post-processing capabilities will enable to reduce the influence of polarization sensitivity of at-sensor radiance and its higher-level products generated for most of the observation conditions.

  7. Two RICH Detectors as Velocity Spectrometers in the CKM Experiment

    CERN Document Server

    Engelfried, J; Morelos, A; Torres, I

    2003-01-01

    We present the design of two velocity spectrometers, to be used in the recently approved CKM experiment. CKM's main goal is the measurement of the branching ratio of K+ -> pi+ nu nu with a precision of 10%, via decays in flight of the K+. The design of both RICH detectors is based on the SELEX Phototube RICH. We will discuss the design and the expected performance, based on studies with SELEX data and Monte Carlo Simulations.

  8. Extracting source parameters from beam monitors on a chopper spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  9. Test Measurements On A Resonance Filter Spectrometer Using Electronvolt Neutrons

    OpenAIRE

    Newport, Robert J.; Seeger, P. A.; Williams, W. G.

    1985-01-01

    Inelastic neutron scattering measurements carried out on a prototype spectrometer at the WNR pulsed neutron facility are presented. Energy transfers are determined by differencing time-of-flight spectra taken with and without absorbing foils containing sharp nuclear resonances which define the scattered neutron energy. The quality of the spectra are enhanced by i) applying a double difference technique to improve line shape and ii) using fixed incident and scattered beam filters which discrim...

  10. In-flight spectral performance monitoring of the Airborne Prism Experiment

    NARCIS (Netherlands)

    Odorico, D' P.; Alberti, E.; Schaepman, M.E.

    2010-01-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption fea

  11. Titan's Topside Ionospheric Composition: Cassini Plasma Spectrometer Ion Mass Spectrometer Measurements

    Science.gov (United States)

    Sittler, Edward; Hartle, Richard; Ali, Ashraf; Cooper, John; Lipatov, Alexander; Simpson, David; Sarantos, Menelaos; Chornay, Dennis; Smith, Todd

    2017-01-01

    We present ion composition measurements of Titan's topside ionosphere using both T9 and T15 Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements. The IMS is able to make measurements of Titan's ionosphere due to ionospheric outflows as originally reported for the T9 flyby. This allows one to take advantage of the unique capabilities of the CAPS IMS which measures both the mass-per-charge (M/Q) of the ions and the fragments of the ions produced inside the sensor such as carbon, nitrogen and oxygen fragments. Specific attention will be given to such ions as NH4 +, N +, O +, CH4 +, CxHy +, and HCNH + ions as examples. The CAPS IMS uses a time-of-flight (TOF) technique which accelerates ions up to 14.6 kV, so they can pass through ultra-thin carbon foils. Neutral fragments are used to measure the ion M/Q and positive fragments to measure the atomic components. We preliminarily find, by using IMS measurements of T9 and T15 ionospheric outflows, evidence for methane group ions, nitrogen ions, ammonium ions, water group ions and CnHm + ions with n = 2, 3, and 4 within Titan's topside ionosphere. E.C. Sittler acknowledges support at Goddard Space Flight Center by the CAPS Cassini Project from JPL funds under contract # NAS703001TONMO711123/1405851.

  12. Single \\pi^- production in np collisions for excess energies up to 90 MeV

    CERN Document Server

    Abdel-Bary, M; Clement, H; Doroshkevich, E; Dshemuchadse, S; Erhardt, A; Eyrich, W; Freiesleben, H; Gillitzer, A; Jäkel, R; Karsch, L; Kilian, K; Kuhlmann, E; Möller, K; Morsch, H P; Naumann, Lutz; Paul, N; Pizzolotto, C; Ritman, J; Roderburg, E; Schroeder, W; Schulte-Wissermann, M; Sefzick, Th; Teufel, A; Ucar, A; Wintz, P; Wüstner, P; Zupranski, P

    2007-01-01

    The quasifree reaction $np\\to pp\\pim$ was studied in a kinematically complete experiment by bombarding a liquid hydrogen target with a deuteron beam of momentum 1.85 GeV/c and analyzing the data along the lines of the spectator model. In addition to the three charged ejectiles the spectator proton was also detected in the large-acceptance time-of-flight spectrometer COSY-TOF. It was identified by its momentum and flight direction thus yielding access to the Fermi motion of the bound neutron and to the effective neutron 4-momentum vector $\\mathbb{P}_n$ which differed from event to event. A range of almost 90 MeV excess energy above threshold was covered. Energy dependent angular distributions, invariant mass spectra as well as fully covered Dalitz plots were deduced. Sizeable $pp$ FSI effects were found as were contributions of $p$ and $d$ partial waves. The behavior of the elementary cross section $\\sigma_{01}$ close to threshold is discussed in view of new cross section data. In comparison with existing lite...

  13. Study of spectator tagging in the reaction np{yields}pp{pi} with a deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Bary, M.; Gillitzer, A.; Kilian, K.; Morsch, H.P.; Paul, N.; Ritman, J.; Roderburg, E.; Ucar, A.; Wintz, P.; Wuestner, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Brinkmann, K.-Th.; Dshemuchadse, S.; Freiesleben, H.; Jaekel, R.; Karsch, L.; Kuhlmann, E.; Schoenmeier, P.; Schulte-Wissermann, M.; Sun, G.Y. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Clement, H.; Doroshkevich, E.; Erhardt, A.; Wagner, G.J. [Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Eyrich, W.; Pizzolotto, C.; Schroeder, W.; Teufel, A.; Wagner, M. [Universitaet Erlangen, Physikalisches Institut, Erlangen (Germany); Moeller, K.; Naumann, L. [Forschungszentrum Rossendorf, Institut fuer Kern- und Hadronenphysik, Dresden (Germany); Zupranski, P. [Andrzej Soltan Institute for Nuclear Studies, Warsaw (Poland)

    2006-09-15

    The reaction dp{yields}ppp{pi}{sup -} has been studied in a kinematically complete experiment at a single beam momentum p{sub d}=1.85 GeV/c (T=759 MeV). All four ejectiles have been detected in the large-acceptance time-of-flight spectrometer COSY-TOF. We analyzed the data along the lines of the spectator model as a means to isolate the quasi-free np{yields}pp{pi}{sup -} reaction. The spectator proton was identified by its momentum and flight direction thus yielding access to the associated Fermi motion of the bound neutron. A comparison is carried out with Monte Carlo simulations based on two different parameterizations of the deuteron wave function. Up to a Fermi momentum of roughly 150 MeV/c no significant deviations between experimental and simulated data of various observables were found from which we conclude that the deuteron can indeed be taken as a valid substitute for the neutron. (orig.)

  14. Single {pi}{sup -} production in np collisions for excess energies up to 90 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Bary, M.; Gillitzer, A.; Kilian, K.; Paul, N.; Ritman, J.; Roderburg, E.; Sefzick, T.; Ucar, A.; Wintz, P.; Wuestner, P. [Institut fuer Kernphysik, Forschungszentrum Juelich, Juelich (Germany); Brinkmann, K.T.; Dshemuchadse, S.; Freiesleben, H.; Jaekel, R.; Karsch, L.; Kuhlmann, E.; Schulte-Wissermann, M.; Ullrich, W. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Clement, H.; Doroshkevich, E.; Erhardt, A. [Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Eyrich, W.; Pizzolotto, C.; Schroeder, W.; Teufel, A. [Universitaet Erlangen, Physikalisches Institut, Erlangen (Germany); Moeller, K.; Naumann, L. [Institut fuer Strahlenphysik, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Morsch, H.P. [Institut fuer Kernphysik, Forschungszentrum Juelich, Juelich (Germany); Andrzej Soltan Institute for Nuclear Studies, Warsaw (Poland)

    2008-04-15

    The quasifree reaction np{yields}pp{pi}{sup -} was studied in a kinematically complete experiment by bombarding a liquid-hydrogen target with a deuteron beam of momentum 1.85 GeV/c and analyzing the data along the lines of the spectator model. In addition to the three charged ejectiles the spectator proton was also detected in the large-acceptance time-of-flight spectrometer COSY-TOF. It was identified by its momentum and flight direction thus yielding access to the Fermi motion of the bound neutron and to the effective neutron 4-momentum vector P{sub n} which differed from event to event. A range of almost 90MeV excess energy above threshold was covered. Energy-dependent angular distributions, invariant-mass spectra as well as fully covered Dalitz plots were deduced. Sizeable pp FSI effects were found as were contributions of p and d partial waves. In comparison with existing literature data the results provide a sensitive test of the spectator model. The behavior of the elementary cross-section {sigma}{sub 01} close to threshold is discussed in view of new cross-section data. (orig.)

  15. Single π- production in np collisions for excess energies up to 90 MeV

    Science.gov (United States)

    Abdel-Bary, M.; Brinkmann, K.-Th.; Clement, H.; Doroshkevich, E.; Dshemuchadse, S.; Erhardt, A.; Eyrich, W.; Freiesleben, H.; Gillitzer, A.; Jäkel, R.; Karsch, L.; Kilian, K.; Kuhlmann, E.; Möller, K.; Morsch, H. P.; Naumann, L.; Paul, N.; Pizzolotto, C.; Ritman, J.; Roderburg, E.; Schroeder, W.; Schulte-Wissermann, M.; Sefzick, Th.; Teufel, A.; Ucar, A.; Ullrich, W.; Wintz, P.; Wüstner, P.; Zupranski, P.

    2008-04-01

    The quasifree reaction nprightarrow ppπ- was studied in a kinematically complete experiment by bombarding a liquid-hydrogen target with a deuteron beam of momentum 1.85GeV/ c and analyzing the data along the lines of the spectator model. In addition to the three charged ejectiles the spectator proton was also detected in the large-acceptance time-of-flight spectrometer COSY-TOF. It was identified by its momentum and flight direction thus yielding access to the Fermi motion of the bound neutron and to the effective neutron 4-momentum vector mathbb {P} n which differed from event to event. A range of almost 90MeV excess energy above threshold was covered. Energy-dependent angular distributions, invariant-mass spectra as well as fully covered Dalitz plots were deduced. Sizeable pp FSI effects were found as were contributions of p and d partial waves. In comparison with existing literature data the results provide a sensitive test of the spectator model. The behavior of the elementary cross-section σ01 close to threshold is discussed in view of new cross-section data.

  16. The pp → nK+Σ+ reaction at 2.95 GeV/c

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Bilger, R.; Brinkmann, K.-Th.; Clement, H.; Doroshkevich, E.; Dshemuchadse, S.; Erhardt, A.; Eyrich, W.; Filges, D.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Georgi, J.; Gillitzer, A.; Hesselbarth, D.; Jakob, B.; Karsch, L.; Kilian, K.; Koch, H.; Kreß, J.; Kuhlmann, E.; Marcello, S.; Marwinski, S.; Mauro, S.; Michel, P.; Möller, K.; Morsch, H. P.; Naumann, L.; Paul, N.; Plettner, Ch.; Richter, M.; Ritman, J.; Roderburg, E.; Schamlott, A.; Schönmeier, P.; Schroeder, W.; Schulte-Wissermann, M.; Sefzick, T.; Stinzig, F.; Steinke, M.; Sun, G. Y.; Teufel, A.; Wagner, G. J.; Wagner, M.; Wilms, A.; Wintz, P.; Wirth, S.

    2012-03-01

    The total cross-section of the pp → nK+Σ+ reaction was measured at COSY using a proton beam with a momentum of p beam = 2.95 GeV/ c, corresponding to an excess energy of ɛ = 129 MeV. The neutron detector COSYnus was added to the time-of-flight spectrometer COSY-TOF which tracks charged primary and secondary particles. Thus a complete reconstruction of the exit channel was feasible by exploiting for both neutron and kaon their time and direction of flight as well as the decay of the Σ+-hyperon into a neutral and a charged particle. The cross-section was determined to be between σ = 2.0 and 5.9 μb with 68% confidence. The experimental data published so far by various groups for this reaction are assessed as a whole. We conclude that either the theoretical models lack some important aspect of the reaction mechanism if one takes the experimental data at face value, or the experimental data are inconsistent and therefore theoretical descriptions must fail.

  17. The pp{yields}nK{sup +}{sigma}{sup +} reaction at 2.95 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Bary, M.; Abdel-Samad, S.; Filges, D.; Gillitzer, A.; Hesselbarth, D.; Kilian, K.; Marwinski, S.; Morsch, H.P.; Paul, N.; Ritman, J.; Roderburg, E.; Sefzick, T.; Wintz, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Bilger, R.; Eyrich, W.; Fritsch, M.; Georgi, J.; Schroeder, W.; Stinzig, F.; Teufel, A.; Wagner, M.; Wirth, S. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Brinkmann, K.T. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Rheinische Friedrich-Wilhelms-Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Clement, H.; Doroshkevich, E.; Erhardt, A.; Kress, J.; Wagner, G.J. [Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Dshemuchadse, S.; Freiesleben, H.; Jakob, B.; Karsch, L.; Kuhlmann, E.; Plettner, C.; Richter, M.; Schoenmeier, P.; Schulte-Wissermann, M.; Sun, G.Y. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Filippi, A.; Marcello, S. [INFN Torino, Torino (Italy); Koch, H.; Mauro, S.; Steinke, M.; Wilms, A. [Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik, Bochum (Germany); Michel, P.; Moeller, K.; Naumann, L.; Schamlott, A. [Forschungszentrum Dresden-Rossendorf, Institut fuer Kern- und Hadronenphysik, Dresden (Germany)

    2012-03-15

    The total cross-section of the pp{yields}nK{sup +}{sigma}{sup +} reaction was measured at COSY using a proton beam with a momentum of p{sub beam} = 2.95 GeV/c, corresponding to an excess energy of {epsilon} = 129 MeV. The neutron detector COSYnus was added to the time-of-flight spectrometer COSY-TOF which tracks charged primary and secondary particles. Thus a complete reconstruction of the exit channel was feasible by exploiting for both neutron and kaon their time and direction of flight as well as the decay of the {sigma}{sup +}-hyperon into a neutral and a charged particle. The cross-section was determined to be between {sigma} = 2.0 and 5.9 {mu}b with 68% confidence. The experimental data published so far by various groups for this reaction are assessed as a whole. We conclude that either the theoretical models lack some important aspect of the reaction mechanism if one takes the experimental data at face value, or the experimental data are inconsistent and therefore theoretical descriptions must fail. (orig.)

  18. Study of spectator tagging in the reaction np → ppπwith a deuteron beam

    Science.gov (United States)

    Abdel-Bary, M.; Brinkmann, K.-Th.; Clement, H.; Doroshkevich, E.; Dshemuchadse, S.; Erhardt, A.; Eyrich, W.; Freiesleben, H.; Gillitzer, A.; Jäkel, R.; Karsch, L.; Kilian, K.; Kuhlmann, E.; Möller, K.; Morsch, H. P.; Naumann, L.; Paul, N.; Pizzolotto, C.; Ritman, J.; Roderburg, E.; Schönmeier, P.; Schroeder, W.; Schulte-Wissermann, M.; Sun, G. Y.; Teufel, A.; Ucar, A.; Wagner, G. J.; Wagner, M.; Wintz, P.; Wüstner, P.; Zupranski, P.

    2006-09-01

    The reaction dp ensuremath rightarrow ppp π^- has been studied in a kinematically complete experiment at a single beam momentum ensuremath pd=1.85GeV/c (T = 759MeV). All four ejectiles have been detected in the large-acceptance time-of-flight spectrometer COSY-TOF. We analyzed the data along the lines of the spectator model as a means to isolate the quasi-free ensuremath nprightarrow ppπ^- reaction. The spectator proton was identified by its momentum and flight direction thus yielding access to the associated Fermi motion of the bound neutron. A comparison is carried out with Monte Carlo simulations based on two different parameterizations of the deuteron wave function. Up to a Fermi momentum of roughly 150MeV/c no significant deviations between experimental and simulated data of various observables were found from which we conclude that the deuteron can indeed be taken as a valid substitute for the neutron.

  19. Recent exploits of the ISOLTRAP mass spectrometer

    CERN Document Server

    Kreim, S; Naimi, S; Blaum, K; Breitenfeldt, M; Rossel, R E; Fink, D; Stanja, J; Atanasov, D; Borgmann, Ch; Cocolios, T E; Zuber, K; Wolf, R N; George, S; Neidherr, D; Nicol, T; Rosenbusch, M; Lunney, D; Boehm, Ch; Manea, V; Herlert, A; Koester, U; Beck, D; Wienholtz, F; Kellerbauer, A; Ramirez, E Minaya; Schweikhard, L

    2013-01-01

    The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis. (C) 2013 Elsevier B.V. All rights reserved.

  20. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  1. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  2. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F.; Wieliczec, K.; Becker, U.

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  3. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  4. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  5. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  6. Spectrometers and Polyphase Filterbanks in Radio Astronomy

    CERN Document Server

    Price, Danny C

    2016-01-01

    This review gives an introduction to spectrometers and discusses their use within radio astronomy. While a variety of technologies are introduced, particular emphasis is given to digital systems. Three different types of digital spectrometers are discussed: autocorrelation spectrometers, Fourier transform spectrometers, and polyphase filterbank spectrometers. Given their growing ubiquity and significant advantages, polyphase filterbanks are detailed at length. The relative advantages and disadvantages of different spectrometer technologies are compared and contrasted, and implementation considerations are presented.

  7. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  8. Adaptive Computed Tomography Imaging Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can "instantaneously"...

  9. The K1.8BR spectrometer system at J-PARC

    CERN Document Server

    Agari, Keizo; Beer, George; Bhang, Hyoungchan; Bragadireanu, Mario; Buehler, Paul; Busso, Luigi; Cargnelli, Michael; Choi, Seonho; Curceanu, Catalina; Enomoto, Shun; Faso, Diego; Fujioka, Hiroyuki; Fujiwara, Yuya; Fukuda, Tomokazu; Guaraldo, Carlo; Hashimoto, Tadashi; Hayano, Ryugo S; Hiraiwa, Toshihiko; Hirose, Erina; Ieiri, Masaharu; Iio, Masami; Iliescu, Mihai; Inoue, Kentaro; Ishiguro, Yosuke; Ishikawa, Takashi; Ishimoto, Shigeru; Ishiwatari, Tomoichi; Itahashi, Kenta; Iwai, Masaaki; Iwasaki, Masahiko; Kakiguchi, Yutaka; Katoh, Yohji; Kawasaki, Shingo; Kienle, Paul; Kou, Hiroshi; Marton, Johann; Matsuda, Yasuyuki; Minakawa, Michifumi; Mizoi, Yutaka; Morra, Ombretta; Muto, Ryotaro; Nagae, Tomofumi; Naruki, Megumi; Noumi, Hiroyuki; Ohnishi, Hiroaki; Okada, Shinji; Outa, Haruhiko; Piscicchia, Kristian; Lener, Marco Poli; Vidal, Antonio Romero; Sada, Yuta; Sakaguchi, Atsushi; Sakuma, Fuminori; Sato, Masaharu; Sato, Yoshinori; Sawada, Shin'ya; Scordo, Alessandro; Sekimoto, Michiko; Shi, Hexi; Shirakabe, Yoshihisa; Sirghi, Diana; Sirghi, Florin; Suzuki, Ken; Suzuki, Shoji; Suzuki, Takatoshi; Suzuki, Yoshihiro; Takahashi, Hitoshi; Tanaka, Kazuhiro; Tanaka, Nobuaki; Tatsuno, Hideyuki; Tokuda, Makoto; Toyoda, Akihisa; Tomono, Dai; Toyoda, Akihisa; Tsukada, Kyo; Doce, Oton Vazquez; Watanabe, Hiroaki; Widmann, Eberhard; Wunschek, Barbara K; Yamanoi, Yutaka; Yamazaki, Toshimitsu; Yim, Heejoong; Zmeskal, Johann

    2012-01-01

    A new spectrometer system was designed and constructed at the secondary beam-line K1.8BR in the hadron hall of J-PARC, in order to investigate $\\bar K N$ interactions and $\\bar K$-nuclear bound systems. The spectrometer consists of a high precision beam line spectrometer, a liquid helium target system, a Cylindrical Detector System that surrounds the target to detect the decay particles from the target region, and a neutron time-of-flight counter array located $\\sim$15 m away from the target position. Details of the design, construction, and performance of the detector components are described.

  10. PANDA: Cold three axes spectrometer

    Directory of Open Access Journals (Sweden)

    Astrid Schneidewind

    2015-08-01

    Full Text Available The cold three axes spectrometer PANDA, operated by JCNS, Forschungszentrum Jülich, offers high neutron flux over a large dynamic range keeping the instrumental background comparably low.

  11. The GRAVITY spectrometers: optical qualification

    Science.gov (United States)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  12. Automated Nuclear Quadruple Resonance Spectrometer

    Directory of Open Access Journals (Sweden)

    IVANCHUK, M.

    2008-06-01

    Full Text Available Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  13. Automated Nuclear Quadruple Resonance Spectrometer

    OpenAIRE

    2008-01-01

    Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  14. FLIGHT INFORMATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Check in With Singapore Airlines, Check out With Paypal Singapore Airlines customers in the United States, Singapore and five other Asia Pacific countries and territories can now pay for their flights with PayPal on singaporeair.com. This facility will progressively be made available to the airline’s customers in up to 17 countries, making this the largest collaboration between PayPal and an Asian carrier to date.

  15. Evidence for a narrow resonance at 1530 MeV/c2 in the K0 p - system of the reaction pp --> Sigma+ K0 p from the COSY-TOF experiment

    CERN Document Server

    Abdel-Bary, M; Brinkmann, K T; Clement, H; Doroshkevich, E A; Drochner, M; Dshemuchadze, S V; Erhardt, A; Eyrich, W; Filges, D; Filippi, A; Freiesleben, H; Fritsch, M; Georgi, J; Gillman, A R; Hesselbarth, D; Jaekel, R; Jakob, B; Karsch, L; Kilian, K; Koch, H; Kress, J; Kuhlmann, E; Marcello, S; Marwinski, S; Meier, R; Michel, P; Möller, K; Moertel, H; Morsch, H P; Paul, N; Pinna, L; Pizzolotto, C; Richter, M; Roderburg, E; Schoenmeier, P; Schroeder, W; Schulte-Wissermann, M; Sefzick, T; Stinzing, F; Sun, G Y; Teufel, A; Ucar, A; Wagner, G J; Wagnerc, M; Wilms, A; Wintz, P; Wirth, S; Wüstner, P; Wirth, St.

    2004-01-01

    The hadronic reaction pp --> Sigma+ K0 p was measured exclusively at a beam momentum of 2.95 GeV/c using the TOF detector at the COSY storage ring. A narrow peak was observed in the invariant mass spectrum of the K0 p subsystem at 1530 +- 5 MeV/c2 with a significance of 4 - 6 standard deviations, depending on background assumptions. The upper limit of 18 +- 4 MeV/c2 (FWHM) for its width is given by the experimental resolution. The corresponding total cross section is estimated to be about 0.4 +- 0.1(stat) +- 0.1(syst) microbarn. Since a resonance in this subsystem must have strangeness S = + 1 we claim it to be the Theta+ state for which very recently evidence was found in various experiments.

  16. Evidence for a narrow resonance at 1530 MeV/c 2 in the K0p-system of the reaction pp→ Σ+K0p from the COSY-TOF experiment

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Brinkmann, K.-Th.; Clement, H.; Doroshkevich, E.; Drochner, M.; Dshemuchadse, S.; Erhardt, A.; Eyrich, W.; Filges, D.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Georgi, J.; Gillitzer, A.; Hesselbarth, D.; Jäkel, R.; Jakob, B.; Karsch, L.; Kilian, K.; Koch, H.; Kress, J.; Kuhlmann, E.; Naumann, L.; Marcello, S.; Marwinski, S.; Meier, R.; Michel, P.; Möller, K.; Mörtel, H.; Morsch, H. P.; Paul, N.; Pinna, L.; Pizzolotto, C.; Richter, M.; Roderburg, E.; Schönmeier, P.; Schroeder, W.; Schulte-Wissermann, M.; Sefzick, T.; Stinzing, F.; Sun, G. Y.; Teufel, A.; Ucar, A.; Wagner, G. J.; Wagner, M.; Wilms, A.; Wintz, P.; Wirth, St.; Wüstner, P.; COSY-TOF Collaboration

    2004-08-01

    The hadronic reaction pp→Σ+K0p was measured exclusively at a beam momentum of 2.95 GeV/c using the TOF detector at the COSY storage ring. A narrow peak was observed in the invariant mass spectrum of the K0p-subsystem at 1530±5 MeV/c2 with a significance of 4-6 standard deviations, depending on background assumptions. The upper limit of 18±4 MeV/c2 (FWHM) for its width is given by the experimental resolution. The corresponding total cross section is estimated to be about 0.4±0.1 (stat)±0.1(syst) μb. Since a resonance in this subsystem must have strangeness S=+1 we claim it to be the Θ+ state for which very recently evidence was found in various experiments.

  17. Two-pion production in proton-proton collisions with a polarized beam

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Bary, S.; Abd El-Samad, S.; Wintz, P. [Atomic Energy Authority, NRC, Cairo (Egypt); Bilger, R.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Ehrhardt, K.; Erhardt, A.; Haug, K.; Kress, J.; Meier, R.; Wagner, G.J.; Weidlich, U. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); Brinkmann, K.T. [Rheinische Friedrich-Wilhelms Universitaet Bonn, Bonn (Germany); Dshemuchadse, S. [Technische Universitaet Dresden, Dresden (Germany); Forschungszentrum Rossendorf, Rossendorf (Germany); Eyrich, W.; Hauffe, J.; Schroeder, W.; Stinzing, F.; Waechter, J.; Wagner, M.; Wirth, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany); Filippi, A.; Marcello, S. [University of Torino (Italy); INFN, Sezione di Torino (Italy); Freiesleben, H.; Jaekel, R.; Jakob, B.; Karsch, L.; Kuhlmann, E.; Schulte-Wissermann, M.; Sun, G.Y. [Technische Universitaet Dresden, Dresden (Germany); Fritsch, M. [Ruhr-Universitaet Bochum, Bochum (Germany); Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Geyer, R.; Gillitzer, A.; Hanhart, C.; Hesselbarth, D.; Kilian, K.; Marwinski, S.; Morsch, H.P.; Ritman, J.; Roderburg, E. [Forschungszentrum Juelich, Juelich (Germany); Koch, H.; Steinke, M.; Wilms, A. [Ruhr-Universitaet Bochum, Bochum (Germany); Moeller, K.; Naumann, L. [Forschungszentrum Rossendorf, Rossendorf (Germany); Schoenmeier, P. [Technische Universitaet Dresden, Dresden (Germany); Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Zhang, G. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); Zupranski, P. [Soltan Institute for Nuclear Studies, Warsaw (Poland)

    2008-09-15

    The two-pion production reaction pp{yields}pp{pi}{sup +}{pi}{sup -} was measured with a polarized proton beam at T{sub p}{approx}750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and central calorimeter provided positive {pi}{sup +} identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross-sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing-power values up to A{sub y}=0.3. The data taken in the energy region of the excitation of the Roper resonance confirm that its dominant {pi}{pi} decay channel is N{sup *}{yields}N{sigma}. (orig.)

  18. Single-pion production in pp collisions at 0.95 GeV/c (II)

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Samad, S. [Atomic Energy Authority NRC Cairo, Cairo (Egypt); Bilger, R.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Ehrhardt, K.; Erhardt, A.; Kress, J.; Meier, R.; Wagner, G.J.; Weidlich, U.; Zhang, G. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); Brinkmann, K.T.; Freiesleben, H.; Jaekel, R.; Jakob, B.; Karsch, L.; Kuhlmann, E.; Schulte-Wissermann, M.; Sun, G.Y. [Technische Universitaet Dresden, Dresden (Germany); Dshemuchadse, S. [Technische Universitaet Dresden, Dresden (Germany); Forschungszentrum Rossendorf, Dresden (Germany); Eyrich, W.; Hauffe, J.; Schroeder, W.; Stinzing, F.; Waechter, J.; Wagner, M.; Wirth, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen-Nuernberg (Germany); Filippi, A.; Marcello, S. [University of Torino (Italy); INFN, Sezione di Torino, Torino (Italy); Fritsch, M. [Ruhr-Universitaet Bochum, Bochum (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen-Nuernberg (Germany); Geyer, R.; Gillitzer, A.; Hesselbarth, D.; Kilian, K.; Marwinski, S.; Morsch, H.P.; Ritman, J.; Roderburg, E. [Forschungszentrum Juelich, Juelich (Germany); Moeller, K.; Naumann, L. [Forschungszentrum Rossendorf, Dresden (Germany); Schoenmeier, P. [Technische Universitaet Dresden, Dresden (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen-Nuernberg (Germany); Wilms, A. [Ruhr-Universitaet Bochum, Bochum (Germany)

    2009-03-15

    The single-pion production reactions pp{yields}d{pi}{sup +}, pp{yields}np{pi}{sup +} and pp{yields}pp{pi}{sup 0} were measured at a beam momentum of 0.95GeV/c (T{sub p}{approx}400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. The main emphasis is put on the presentation and discussion of the np{pi}{sup +} channel, since the results on the other channels have already been published previously. The total and differential cross-sections obtained are compared to theoretical calculations. In contrast to the pp{pi}{sup 0} channel we observe in the np{pi}{sup +} channel a strong influence of the {delta} excitation. In particular, the pion angular distribution exhibits a (3 cos{sup 2}{theta}+1)-dependence, typical for a pure s-channel {delta} excitation and identical to that observed in the d{pi}{sup +} channel. Since the latter is understood by a s-channel resonance in the {sup 1} D{sub 2}pn partial wave, we discuss an analogous scenario for the pn{pi}{sup +} channel. (orig.)

  19. Single-pion production in pp collisions at 0.95 GeV/c (I)

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Samad, S. [Atomic Energy Authority NRC, Cairo (Egypt); Bilger, R.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Erhardt, A.; Kress, J.; Meier, R.; Wagner, G.J.; Weidlich, U.; Zhang, G. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); Brinkmann, K.T.; Freiesleben, H.; Jaekel, R.; Jakob, B.; Karsch, L.; Kuhlmann, E.; Schulte-Wissermann, M.; Sun, G.Y. [Technische Universitaet Dresden (Germany); Dshemuchadse, S. [Forschungszentrum Rossendorf (Germany); Technische Univ. Dresden (Germany); Eyrich, W.; Hauffe, J.; Schroeder, W.; Stinzing, F.; Waechter, J.; Wagner, M.; Wirth, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany); Filippi, A.; Marcello, S. [University of Torino and INFN, Sezione di Torino (Italy); Fritsch, M. [Erlangen-Nuernberg Univ. (Germany); Ruhr-Univ. Bochum (Germany); Geyer, R.; Gillitzer, A.; Hesselbarth, D.; Kilian, K.; Marwinski, S.; Morsch, H.P.; Roderburg, E. [Forschungszentrum Juelich (Germany); Koch, H.; Steinke, M.; Wilms, A. [Ruhr-Universitaet Bochum (Germany); Moeller, K.; Naumann, L. [Forschungszentrum Rossendorf (Germany); Schoenmeier, P. [Technische Univ. Dresden (Germany); Erlangen-Nuernberg Univ. (Germany)

    2006-11-15

    The single-pion production reactions pp{yields}d{pi}{sup +}, pp{yields}np{pi}{sup +} and pp{yields}pp{pi}{sup 0} were measured at a beam momentum of 0.95 GeV/c (T{sub p}{approx}400 MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus, all pion production channels were recorded with 1-4 overconstraints. The total and differential cross-sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the pp{pi}{sup 0} channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular, we observe very large anisotropies for the {pi}{sup 0} angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions associated with {pi}{sup 0} s and d partial waves and emphasizing the important role of {pi}{sup 0} d-waves. (orig.)

  20. Single-Pion Production in pp Collisions at =.95 GeV/c (I)

    CERN Document Server

    El-Samad, S A; Brinkmann, K T; Clement, H; Dietrich, M; Doroshkevich, E; Dshemuchadze, S V; Erhardt, A; Eyrich, W; Filippi, A; Freiesleben, H; Fritsch, M; Geyer, R; Gillitzer, A; Hauffe, J; Hesselbarth, D; Jaekel, R; Jakob, B; Karsch, L; Kilian, K; Koch, H; Kress, J; Kuhlmann, E; Marcello, S; Marwinski, S; Meier, R; Möller, K; Morsch, H P; Naumann, Lutz; Roderburg, E; Schoenmeier, P; Schulte-Wissermann, M; Schroeder, W; Steinke, M; Stinzing, F; Sun, G Y; Waechter, J; Wagner, G J; Wagner, M; Weidlich, U; Wilms, A; Wirth, S; Zhang, G; Zupranski, P

    2006-01-01

    The single-pion production reactions $pp\\to d\\pi^+$, $pp\\to np\\pi^+$ and $pp\\to pp\\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \\approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus all pion production channels were recorded with 1-4 overconstraints. The total and differential cross sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the $pp\\pi^0$ channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular we observe very large anisotropies for the $\\pi^0$ angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions asso...

  1. Single-Pion Production in pp Collisions at 0.95 GeV/c (II)

    CERN Document Server

    El-Samad, S Abd; Brinkmann, K Th; Clement, H; Dietrich, M; Doroshkevich, E; Dshemuchadse, S; Ehrhardt, K; Erhardt, A; Eyrich, W; Filippi, A; Freiesleben, H; Fritsch, M; Geyer, R; Gillitzer, A; Hauffe, J; Hesselbarth, D; Jaekel, R; Jakob, B; Karsch, L; Kilian, K; Kress, J; Kuhlmann, E; Marcello, S; Marwinski, S; Meier, R; Möller, K; Morsch, H P; Naumann, Lutz; Ritman, J; Roderburg, E; Schoenmeier, P; Schulte-Wissermann, M; Schroeder, W; Stinzing, F; Sun, G Y; Waechter, J; Wagner, G J; Wagner, M; Weidlich, U; Wilms, A; Wirth, S; Zhang, G; Zupranski, P

    2008-01-01

    The single-pion production reactions $pp\\to d\\pi^+$, $pp\\to np\\pi^+$ and $pp\\to pp\\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \\approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. Main emphasis is put on the presentation and discussion of the $np\\pi^+$ channel, since the results on the other channels have already been published previously. The total and differential cross sections obtained are compared to theoretical calculations. In contrast to the $pp\\pi^0$ channel we find in the $np\\pi^+$ channel a strong influence of the $\\Delta$ excitation already at this energy close to threshold. In particular we find a $(3 cos^2\\Theta + 1)$ dependence in the pion angular distribution, typical for a pure s-channel $\\Delta$ excitation a...

  2. Influence of N*-resonances on hyperon production in the channel pp->K+ Lambda p at 2.95, 3.20 and 3.30 GeV/c beam momentum

    CERN Document Server

    AbdEl-Samad, S; Brinkmann, K; Clement, H; Dietrich, J; Dorochkevitch, E; Dshemuchadse, S; Ehrhardt, K; Erhardt, A; Eyrich, W; Fanara, C; Filges, D; Filippi, A; Freiesleben, H; Fritsch, M; Gast, W; Georgi, J; Gillitzer, A; Gottwald, J; Hauffe, J; Hesselbarth, D; Jaeger, H; Jakob, B; Jaekel, R; Karsch, L; Kilian, K; Koch, H; Krapp, M; Kress, J; Kuhlmann, E; Lehmann, A; Marcello, S; Marwinski, S; Mauro, S; Metzger, A; Meyer, W; Michel, P; Moeller, K; Moertel, H; Morsch, H P; Naumann, L; Paul, N; Pinna, L; Pizzolotto, C; Plettner, C; Reimann, S; Richter, M; Ritman, J; Roderburg, E; Schamlott, A; Schoenmeier, P; Schulte-Wissermann, M; Schroeder, W; Sefzick, T; Steinke, M; Stinzing, F; Sun, G; Teufel, A; Ullrich, W; Waechter, J; Wagner, G J; Wagner, M; Wenzel, R; Wilms, A; Wintz, P; Wirth, S; Wuestner, P; Zupranski, P

    2010-01-01

    Hyperon production in the threshold region was studied in the reaction pp -> K+Lp using the time-of-flight spectrometer COSY-TOF. Exclusive data, covering the full phase-space, were taken at the three different beam momenta of p_beam=2.95, 3.20 and 3.30 GeV/c, corresponding to excess energies of epsilon=204, 285 and 316 MeV, respectively. Total cross-sections were deduced for the three beam momenta to be 23.9+/-0.8 +/-2.0 ub, 28.4+/-1.3 +/-2.2 ub and 35.0+/-1.3 +/-3.0 ub. Differential observables including Dalitz plots were obtained. The analysis of the Dalitz plots reveals a strong influence of the N(1650)-resonance at p_beam=2.95 GeV/c, whereas for the higher momenta an increasing relative contribution of the N(1710)- and/or of the N(1720)-resonance was observed. In addition, the pL-final-state interaction turned out to have a significant influence on the Dalitz plot distribution.

  3. Single-pion production in pp collisions at 0.95 GeV/c (II)

    Science.gov (United States)

    Abd El-Samad, S.; Bilger, R.; Brinkmann, K.-Th.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Dshemuchadse, S.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Geyer, R.; Gillitzer, A.; Hauffe, J.; Hesselbarth, D.; Jaekel, R.; Jakob, B.; Karsch, L.; Kilian, K.; Kress, J.; Kuhlmann, E.; Marcello, S.; Marwinski, S.; Meier, R.; Möller, K.; Morsch, H. P.; Naumann, L.; Ritman, J.; Roderburg, E.; Schönmeier, P.; Schulte-Wissermann, M.; Schroeder, W.; Stinzing, F.; Sun, G. Y.; Wächter, J.; Wagner, G. J.; Wagner, M.; Weidlich, U.; Wilms, A.; Wirth, S.; Zhang, G.; Zupranski, P.

    2009-03-01

    The single-pion production reactions pp rightarrow d π+_{} , pp rightarrow np π+_{} and pp rightarrow pp π0_{} were measured at a beam momentum of 0.95GeV/c ( T p ≈ 400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. The main emphasis is put on the presentation and discussion of the np π+_{} channel, since the results on the other channels have already been published previously. The total and differential cross-sections obtained are compared to theoretical calculations. In contrast to the pp π0_{} channel we observe in the np π+_{} channel a strong influence of the Δ excitation. In particular, the pion angular distribution exhibits a (3 cos2 Θ + 1) -dependence, typical for a pure s -channel Δ excitation and identical to that observed in the d π+_{} channel. Since the latter is understood by a s -channel resonance in the 1 D 2 pn partial wave, we discuss an analogous scenario for the pn π+_{} channel.

  4. Two-pion production in proton-proton collisions with a polarized beam

    Science.gov (United States)

    El-Bary, S. Abd; El-Samad, S. Abd; Bilger, R.; Brinkmann, K.-Th.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Dshemuchadse, S.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Geyer, R.; Gillitzer, A.; Hanhart, C.; Hauffe, J.; Haug, K.; Hesselbarth, D.; Jaekel, R.; Jakob, B.; Karsch, L.; Kilian, K.; Koch, H.; Kress, J.; Kuhlmann, E.; Marcello, S.; Marwinski, S.; Meier, R.; Möller, K.; Morsch, H. P.; Naumann, L.; Ritman, J.; Roderburg, E.; Schönmeier, P.; Schulte-Wissermann, M.; Schroeder, W.; Steinke, M.; Stinzing, F.; Sun, G. Y.; Wächter, J.; Wagner, G. J.; Wagner, M.; Weidlich, U.; Wilms, A.; Wintz, P.; Wirth, S.; Zhang, G.; Zupranski, P.

    2008-09-01

    The two-pion production reaction pp → ppπ+π- was measured with a polarized proton beam at T p ≈ 750 and 800MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and central calorimeter provided positive π+ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross-sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing-power values up to A y = 0.3. The data taken in the energy region of the excitation of the Roper resonance confirm that its dominant ππ decay channel is N * → Nσ.

  5. Single-pion production in pp collisions at 0.95 GeV/c (I)

    Science.gov (United States)

    Abd El-Samad, S.; Bilger, R.; Brinkmann, K.-Th.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Dshemuchadse, S.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Geyer, R.; Gillitzer, A.; Hauffe, J.; Hesselbarth, D.; Jaekel, R.; Jakob, B.; Karsch, L.; Kilian, K.; Koch, H.; Kress, J.; Kuhlmann, E.; Marcello, S.; Marwinski, S.; Meier, R.; Möller, K.; Morsch, H. P.; Naumann, L.; Roderburg, E.; Schönmeier, P.; Schulte-Wissermann, M.; Schroeder, W.; Steinke, M.; Stinzing, F.; Sun, G. Y.; Wächter, J.; Wagner, G. J.; Wagner, M.; Weidlich, U.; Wilms, A.; Wirth, S.; Zhang, G.; Zupranski, P.

    2006-11-01

    The single-pion production reactions pp → dπ+, pp → npπ+ and pp → ppπ0 were measured at a beam momentum of 0.95GeV/c ( T p ≈ 400MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus, all pion production channels were recorded with 1-4 overconstraints. The total and differential cross-sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the ppπ0 channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular, we observe very large anisotropies for the π0 angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions associated with π0 s and d partial waves and emphasizing the important role of π0 d-waves.

  6. ZeroDegree spectrometer at RIKEN RI Beam Factory

    Science.gov (United States)

    Kubo, Toshiyuki; Ohnishi, Tetsuya; Takeda, Hiroyuki; Fukuda, Naoki; Kameda, Daisuke; Kusaka, Kensuke; Yoshida, Atsushi; Yoshida, Koichi; Ohtake, Masao; Inabe, Naohito; Yanagisawa, Yoshiyuki; Tanaka, Kanenobu

    2009-10-01

    At RI Beam Factory (RIBF) [1] at RIKEN Nishina Center, a variety of fast rare isotope (RI) beams are produced using the BigRIPS in-flight separator [2] for studies of exotic nuclei. The beam line following BigRIPS is designed to work as a forward spectrometer named ZeroDegree, so that it can be used for reaction studies with RI beams. The ZeroDegree spectrometer consists of two dipoles and six superconducting quadrupole triplets, of which designs are essentially the same as those of BigRIPS. It analyzes and indentifies projectile reaction residues, often in coincidence with gamma rays, and can be operated in different optics modes, depending on experimental requirements. The ZeroDegree spectrometer has recently been commissioned and used for a series of full-dress RI-beam experiments. Overview and status of the ZeroDegree spectrometer will be reported.[4pt] [1] Y. Yano: Nucl. Instr. and Meth. B 261 (2007) 1009. [0pt] [2] T. Kubo: Nucl. Instr. and Meth. B 204 (2003) 97 and T. Ohnishi et al.: J. Phys. Soc. Japan, 77 (2008) 083201.

  7. Ultra Compact Imaging Spectrometer (UCIS)

    Science.gov (United States)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  8. Results from the First Flight of BAM

    CERN Document Server

    Tucker, G S; Halpern, M; Towlson, W

    1996-01-01

    A new instrument, BAM (Balloon-borne Anisotropy Measurement), designed to measure cosmic microwave background (CMB) anisotropy at medium angular scales was flown for the first time in July of 1995. BAM is unique in that it uses a cryogenic differential Fourier transform spectrometer coupled to a lightweight off-axis telescope. The very successful first flight of BAM demonstrates the potential of the instrument for obtaining high quality CMB anisotropy data.

  9. The Cosmic Infrared Background Experiment (CIBER): the Narrow Band Spectrometer

    CERN Document Server

    Korngut, P M; Arai, T; Battle, J; Bock, J; Brown, S W; Cooray, A; Hristov, V; Keating, B; Kim, M G; Lanz, A; Lee, D H; Levenson, L R; Lykke, K R; Mason, P; Matsumoto, T; Matsuura, S; Nam, U W; Shultz, B; Smith, A W; Sullivan, I; Tsumura, K; Wada, T; Zemcov, M

    2013-01-01

    We have developed a near-infrared spectrometer designed to measure the absolute intensity of the Solar 854.2 nm CaII Fraunhofer line, scattered by interplanetary dust, in the Zodiacal light spectrum. Based on the known equivalent line width in the Solar spectrum, this measurement can derive the Zodiacal brightness, testing models of the Zodiacal light based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute Zodiacal light brightness, the measured laboratory characterization, and the instrument performance in flight.

  10. Apollo lunar orbital sciences program alpha and X-ray spectrometers

    Science.gov (United States)

    1972-01-01

    The development of the alpha and X-ray spectrometers which were used on the Apollo 15 and 16 flights is discussed. Specific subjects presented are: (1) lunar program management, (2) scientific and technical approach, (3) major test programs, (4) reliability, quality assurance, and safety, and (5) subcontract management.

  11. Simulations of chopper jitter at the LET neutron spectrometer at the ISIS TS2

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt; Lefmann, Kim; Willendrup, Peter Kjær

    2014-01-01

    The effect of uncertainty in chopper phasing (jitter) has been investigated for the high-resolution time-of-flight spectrometer LET at the ISIS second target station. The investigation is carried out using virtual experiments, with the neutron simulation package McStas, where the chopper jitter i...

  12. Portable smartphone optical fibre spectrometer

    Science.gov (United States)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  13. JPL Fourier transform ultraviolet spectrometer

    Science.gov (United States)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  14. A high-throughput neutron spectrometer

    Science.gov (United States)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  15. The Fission-fragment Spectrometer VERDI

    Science.gov (United States)

    Frégeau, M. O.; Oberstedt, S.

    VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer presently under construction at the Joint Research Centre IRMM. It will allow measuring the kinetic energy and the velocity of both fission fragments simultaneously. The velocity information provide information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in complement of the velocity, will provide us with the post-neutron mass. From the difference between pre- and post-neutron masses the number of neutrons emitted by each fragment may be deter- mined. Knowledge of this quantity as a function of the total kinetic energy will contribute to the understanding of how the available excitation energy is shared between both fission fragments at scission. The contemplated pre-neutron mass resolving power, A/ΔA, of at least 126 requires a time-of-flight (TOF) resolution better than 200 ps (FWHM) and an energy resolution, ΔE/E of 0.3% for a post-neutron mass. The VERDI spectrometer provides the best compromise between geometrical efficiency and time of flight. It consists of an electron detector located very close to the fissionable target and a double array of silicon detectors located 50 cm away on both sides of the target. Each silicon detector has an area of 450 mm2 and is made from neutron transmutation-doped (NTD) silicon to reduce rise-time variation, to minimize pulse height defect and to reduce the plasma delay time. The intrinsic timing resolution of the electron detector was determined, using a 241Am alpha source (Eα = 5.49 MeV), against a previously characterized single-crystal diamond to σ = 140 ps. The timing resolution of the NTD silicon detectors was determined using the spontaneous fission of 252Cf in conjunction with Monte-Carlo simulations to σNTD = 150 ps. With the present timing resolution, σTOF VERDI is already close to the set goals. The excellent timing properties

  16. FIssion Product Prompt γ-ray spectrometer: Development of an instrumented gas-filled magnetic spectrometer at the ILL

    Science.gov (United States)

    Blanc, A.; Chebboubi, A.; Faust, H.; Jentschel, M.; Kessedjian, G.; Köster, U.; Materna, T.; Panebianco, S.; Sage, C.; Urban, W.

    2013-12-01

    Accurate thermal neutron-induced fission data are important for applications in reactor physics as well as for fundamental nuclear physics. FIPPS is the new FIssion Product Prompt γ-ray Spectrometer being developed at the Institut Laue Langevin for neutron-induced fission studies. FIPPS is based on the combination of a large Germanium detector array surrounding a fission target, a Time-Of-Flight detector and a Gas-Filled Magnet (GFM) to identify mass, nuclear charge and kinetic energy of one of the fission fragments. The GFM will be instrumented with a Time-Projection Chamber (TPC) for individual 3D tracking of the fragments. A conceptual design study of the new spectrometer is presented.

  17. FIssion Product Prompt γ-ray spectrometer: Development of an instrumented gas-filled magnetic spectrometer at the ILL

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, A., E-mail: blanc@ill.fr [Institut Laue-Langevin, Grenoble (France); Chebboubi, A.; Faust, H.; Jentschel, M. [Institut Laue-Langevin, Grenoble (France); Kessedjian, G. [LPSC CNRS/IN2P3, UJF Grenoble 1, INPG, Grenoble (France); Köster, U. [Institut Laue-Langevin, Grenoble (France); Materna, T.; Panebianco, S. [DSM/IRFU/SPhN, CEA Saclay (France); Sage, C. [LPSC CNRS/IN2P3, UJF Grenoble 1, INPG, Grenoble (France); Urban, W. [Institut Laue-Langevin, Grenoble (France)

    2013-12-15

    Accurate thermal neutron-induced fission data are important for applications in reactor physics as well as for fundamental nuclear physics. FIPPS is the new FIssion Product Prompt γ-ray Spectrometer being developed at the Institut Laue Langevin for neutron-induced fission studies. FIPPS is based on the combination of a large Germanium detector array surrounding a fission target, a Time-Of-Flight detector and a Gas-Filled Magnet (GFM) to identify mass, nuclear charge and kinetic energy of one of the fission fragments. The GFM will be instrumented with a Time-Projection Chamber (TPC) for individual 3D tracking of the fragments. A conceptual design study of the new spectrometer is presented.

  18. VESPA: The vibrational spectrometer for the European Spallation Source

    Science.gov (United States)

    Fedrigo, Anna; Colognesi, Daniele; Bertelsen, Mads; Hartl, Monika; Lefmann, Kim; Deen, Pascale P.; Strobl, Markus; Grazzi, Francesco; Zoppi, Marco

    2016-06-01

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  19. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  20. The smallsat TIR spectrometer MIBS

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Court, A.J.; Lucas, J.W.

    2005-01-01

    In frame of the ESA Earthcare MSI study, TNO Science and Industry has developed a compact spectrometer which is optimized for operation in the 7 to 14 μm wavelength region. By optimizing the throughput of the system, and using the advantages of modern manufacturing technologies to the largest extend

  1. Inside the ETH spectrometer magnet

    CERN Multimedia

    1974-01-01

    The ETH spectrometer magnet being prepared for experiment S134, which uses a frozen spin polarized target to study the associated production of a kaon and a lambda by negative pions interacting with protons (CERN-ETH, Zurich-Helsinki-Imperial College, London-Southampton Collaboration). (See Photo Archive 7406316)

  2. Alpha proton x ray spectrometer

    Science.gov (United States)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  3. Inventory Control: Multiport Student Spectrometer.

    Science.gov (United States)

    Bishop, Carl B.

    1989-01-01

    Described is a spectrometer that can be used simultaneously by seven students to observe a single spectrum emitted by an element or compound in a single light tube against a calibrated screen. Included is a list of materials, directions for assembly, and procedures for use. (CW)

  4. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    Energy Technology Data Exchange (ETDEWEB)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M., E-mail: sobolevs@inr.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ilic, R. D. [Vinca Institute of Nuclear Sciences (Serbia)

    2013-04-15

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  5. OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Poellot, Michael [Univ. of North Dakota, Grand Forks, ND (United States)

    2016-07-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Aerial Facility (AAF) Counterflow Spectrometer and Impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Olympic Mountain Experiment (OLYMPEX). The field campaign took place from November 12 through December 19, 2015, over the Olympic Mountains and coastal waters of Washington State as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) validation campaign. The CSI was added to the Citation instrument suite to support the NASA Aerosol-Cloud Ecosystem (ACE) satellite program and flights of the NASA Lockheed Earth Resources (ER-2) aircraft. ACE funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the DOE Atmospheric System Research (ASR) program.

  6. The High-Acceptance Dielectron Spectrometer HADES

    CERN Document Server

    Agakichiev, G; Bannier, B; Bassini, R; Belver, D; Belyaev, A V; Blanco, A; Boehmer, M; Boyard, J L; Braun-Munzinger, P; Cabanelas, P; Castro, E; Chernenko, S; Christ, T; Destefanis, M; Díaz, J; Dohrmann, F; Dybczak, A; Eberl, T; Enghardt, W; Fabbietti, L; Fateev, O V; Finocchiaro, P; Fonte, Paulo J R; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Gil1, A; Gilardi, C; Golubeva, M; Gonzalez-Diaz, D; Guber, F; Heilmann, M; Heinz, T; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Kirschner, D; König, I; König, W; Kolb, B W; Kotte, R; Krizek, F; Krücken, R; Kühn, W; Kugler, A; Kurepin, A; Lang, S; Lange, J S; Lapidus, K; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michalska, B; Michel, J; Mishra, D; Moriniere, E; Mousa, J; Müntz, C; Naumann, Lutz; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; PerezCavalcanti, T; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Roy-Stephan, M; Rustamov, A; Sadovskii, A; Sailer, B; Salabura, P; Schmah, A; Schwab, E; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Sudol, M; Tarantola, A; Teilab, K; Tlustý, P; Traxler, M; Trebac, R; Tsertos, H; Wagner, V; Weber, M; Wisniowski, M; Wojcik, T; Wuestenfel, J; Yurevich, S; Zanevsky, Yu V; Zhou, P; Zumbruch, P

    2009-01-01

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main featur...

  7. The high-acceptance dielectron spectrometer HADES

    Energy Technology Data Exchange (ETDEWEB)

    Agakichiev, G.; Destefanis, M.; Gilardi, C.; Kirschner, D.; Kuehn, W.; Lange, J.S.; Lehnert, J.; Lichtblau, C.; Lins, E.; Metag, V.; Mishra, D.; Novotny, R.; Pechenov, V.; Pechenova, O.; Perez Cavalcanti, T.; Petri, M.; Ritman, J.; Salz, C.; Schaefer, D.; Skoda, M.; Spataro, S.; Spruck, B.; Toia, A. [Justus-Liebig-Univ. Giessen, II. Physikalisches Inst., Giessen (Germany); Agodi, C.; Coniglione, R.; Cosentino, L.; Finocchiaro, P.; Maiolino, C.; Piattelli, P.; Sapienza, P.; Vassiliev, D. [Lab. Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Alvarez-Pol, H.; Belver, D.; Cabanelas, P.; Castro, E.; Duran, I.; Fernandez, C.; Fuentes, B.; Garzon, J.A.; Kurtukian-Nieto, T.; Rodriguez-Prieto, G.; Sabin-Fernandez, J.; Sanchez, M.; Vazquez, A. [Univ. de Santiago de Compostela, Dept. de Fisica de Particulas, Santiago de Compostela (Spain); Atkin, E.; Volkov, Y. [State Univ., Moscow Engineering Physics Inst., Moscow (Russian Federation); Badura, E.; Bertini, D.; Bielcik, J.; Bokemeyer, H.; Dahlinger, M.; Daues, H.W.; Galatyuk, T.; Garabatos, C.; Gonzalez-Diaz, D.; Hehner, J.; Heinz, T.; Hoffmann, J.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Kopf, U.; Lang, S.; Leinberger, U.; Magestro, D.; Muench, M.; Niebur, W.; Ott, W.; Pietraszko, J.; Rustamov, A.; Schicker, R.M.; Schoen, H.; Schoen, W.; Schroeder, C.; Schwab, E.; Senger, P.; Simon, R.S.; Stelzer, H.; Traxler, M.; Yurevich, S.; Zovinec, D.; Zumbruch, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Balanda, A.; Kozuch, A.; Przygoda, W. [Jagiellonian Univ. of Krakow, Smoluchowski Inst. of Physics, Krakow (Poland); Pantwowa Wyzsza Szkola Zawodowa, Nowy Sacz (Poland); Bassi, A.; Bassini, R.; Boiano, C.; Bartolotti, A.; Brambilla, S. [Sezione di Milano, Istituto Nazionale di Fisica Nucleare, Milano (Italy); Bellia, G.; Migneco, E. [Lab. Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Univ. di Catania (Italy)] (and others)

    2009-08-15

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 , a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range (0.1< p< 1.0 GeV/c). This paper describes the main features and the performance of the detector system. (orig.)

  8. The high-acceptance dielectron spectrometer HADES

    Science.gov (United States)

    Agakichiev, G.; Agodi, C.; Alvarez-Pol, H.; Atkin, E.; Badura, E.; Balanda, A.; Bassi, A.; Bassini, R.; Bellia, G.; Belver, D.; Belyaev, A. V.; Benovic, M.; Bertini, D.; Bielcik, J.; Böhmer, M.; Boiano, C.; Bokemeyer, H.; Bartolotti, A.; Boyard, J. L.; Brambilla, S.; Braun-Munzinger, P.; Cabanelas, P.; Castro, E.; Chepurnov, V.; Chernenko, S.; Christ, T.; Coniglione, R.; Cosentino, L.; Dahlinger, M.; Daues, H. W.; Destefanis, M.; Díaz, J.; Dohrmann, F.; Dressler, R.; Durán, I.; Dybczak, A.; Eberl, T.; Enghardt, W.; Fabbietti, L.; Fateev, O. V.; Fernández, C.; Finocchiaro, P.; Friese, J.; Fröhlich, I.; Fuentes, B.; Galatyuk, T.; Garabatos, C.; Garzón, J. A.; Genolini, B.; Gernhäuser, R.; Gilardi, C.; Gilg, H.; Golubeva, M.; González-Díaz, D.; Grosse, E.; Guber, F.; Hehner, J.; Heidel, K.; Heinz, T.; Hennino, T.; Hlavac, S.; Hoffmann, J.; Holzmann, R.; Homolka, J.; Hutsch, J.; Ierusalimov, A. P.; Iori, I.; Ivashkin, A.; Jaskula, M.; Jourdain, J. C.; Jurkovic, M.; Kämpfer, B.; Kajetanowicz, M.; Kanaki, K.; Karavicheva, T.; Kastenmüller, A.; Kidon, L.; Kienle, P.; Kirschner, D.; Koenig, I.; Koenig, W.; Körner, H. J.; Kolb, B. W.; Kopf, U.; Korcyl, K.; Kotte, R.; Kozuch, A.; Krizek, F.; Krücken, R.; Kühn, W.; Kugler, A.; Kulessa, R.; Kurepin, A.; Kurtukian-Nieto, T.; Lang, S.; Lange, J. S.; Lapidus, K.; Lehnert, J.; Leinberger, U.; Lichtblau, C.; Lins, E.; Lippmann, C.; Lorenz, M.; Magestro, D.; Maier, L.; Maier-Komor, P.; Maiolino, C.; Malarz, A.; Marek, T.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Migneco, E.; Mishra, D.; Morinière, E.; Mousa, J.; Münch, M.; Müntz, C.; Naumann, L.; Nekhaev, A.; Niebur, W.; Novotny, J.; Novotny, R.; Ott, W.; Otwinowski, J.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pérez Cavalcanti, T.; Petri, M.; Piattelli, P.; Pietraszko, J.; Pleskac, R.; Ploskon, M.; Pospísil, V.; Pouthas, J.; Prokopowicz, W.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Ritman, J.; Roche, G.; Rodriguez-Prieto, G.; Rosenkranz, K.; Rosier, P.; Roy-Stephan, M.; Rustamov, A.; Sabin-Fernandez, J.; Sadovsky, A.; Sailer, B.; Salabura, P.; Salz, C.; Sánchez, M.; Sapienza, P.; Schäfer, D.; Schicker, R. M.; Schmah, A.; Schön, H.; Schön, W.; Schroeder, C.; Schroeder, S.; Schwab, E.; Senger, P.; Shileev, K.; Simon, R. S.; Skoda, M.; Smolyankin, V.; Smykov, L.; Sobiella, M.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Stelzer, H.; Ströbele, H.; Stroth, J.; Sturm, C.; Sudoł, M.; Suk, M.; Szczybura, M.; Taranenko, A.; Tarantola, A.; Teilab, K.; Tiflov, V.; Tikhonov, A.; Tlusty, P.; Toia, A.; Traxler, M.; Trebacz, R.; Troyan, A. Yu.; Tsertos, H.; Turzo, I.; Ulrich, A.; Vassiliev, D.; Vázquez, A.; Volkov, Y.; Wagner, V.; Wallner, C.; Walus, W.; Wang, Y.; Weber, M.; Wieser, J.; Winkler, S.; Wisniowski, M.; Wojcik, T.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y. V.; Zeitelhack, K.; Zentek, A.; Zhou, P.; Zovinec, D.; Zumbruch, P.

    2009-08-01

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18° to 85° , a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range ( 0.1 < p < 1.0 GeV/ c . This paper describes the main features and the performance of the detector system.

  9. The CEBAF large acceptance spectrometer (CLAS)

    Energy Technology Data Exchange (ETDEWEB)

    Mecking, B.A.; Adams, G.; Ahmad, S.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Auger, T.; Avakian, H.; Ball, J.P.; Barbosa, F.J.; Barrow, S.; Battaglieri, M.; Beard, K.; Berman, B.L.; Bianchi, N.; Boiarinov, S.; Bonneau, P.; Briscoe, W.J.; Brooks, W.K.; Burkert, V.D.; Carman, D.S.; Carstens, T.; Cetina, C.; Christo, S.B.; Cole, P.L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cuevas, R.C.; Degtyarenko, P.V.; Dennis, L.; DeSanctis, E.; DeVita, R.; Distelbrink, J.; Dodge, G.E.; Dodge, W.; Doolittle, G.; Doughty, D.; Dugger, M.; Duncan, W.S.; Dytman, S.; Egiyan, H.; Egiyan, K.S.; Elouadrhiri, L.; Feuerbach, R.J.; Ficenec, J.; Frolov, V.; Funsten, H.; Gilfoyle, G.P.; Giovanetti, K.L.; Golovatch, E.; Gram, J.; Guidal, M.; Gyurjyan, V.; Heddle, D.; Hemler, P.; Hersman, F.W.; Hicks, K.; Hicks, R.S.; Holtrop, M.; Hyde-Wright, C.E.; Insley, D.; Ito, M.M.; Jacobs, G.; Jenkins, D.; Joo, K.; Joyce, D.; Kashy, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F.J.; Klusman, M.; Kossov, M.; Kramer, L.; Koubarovski, V.; Kuhn, S.E.; Lake, A.; Lawrence, D.; Longhi, A.; Lukashin, K.; Lachniet, J.; Magahiz, R.A.; Major, W.; Manak, J.J.; Marchand, C.; Martin, C.; Matthews, S.K.; McMullen, M.; McNabb, J.W.C.; Mestayer, M.D.; Minehart, R.; Mirazita, M.; Miskimen, R.; Muccifora, V.; Mueller, J.; Murphy, L.Y.; Mutchler, G.S.; Napolitano, J.; Niculescu, I.; Niczyporuk, B.B.; Nozar, M.; O' Brien, J.T.; Opper, A.K.; O' Meara, J.E.; Pasyuk, E.; Philips, S.A.; Polli, E.; Price, J.W.; Pozdniakov, S.; Qin, L.M.; Raue, B.A.; Riccardi, G.; Ricco, G.; Riggs, C.; Ripani, M.; Ritchie, B.G.; Robb, J.; Ronchetti, F.; Rossi, P.; Roudot, F.; Salgado, C.; Sapunenko, V.; Schumacher, R.A.; Serov, V.S.; Sharabian, Y.G.; Smith, E.E.S. E-mail: elton@jlab.org; Smith, L.C.; Smith, T.; Sober, D.I.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Taiuti, M.; Taylor, W.M.; Taylor, S.; Tedeschi, D.J.; Thoma, U.; Thompson, R.; Tilles, D.; Todor, L. [and others

    2003-05-11

    The CEBAF large acceptance spectrometer (CLAS) is used to study photo- and electro-induced nuclear and hadronic reactions by providing efficient detection of neutral and charged particles over a good fraction of the full solid angle. A collaboration of about 30 institutions has designed, assembled, and commissioned CLAS in Hall B at the Thomas Jefferson National Accelerator Facility. The CLAS detector is based on a novel six-coil toroidal magnet which provides a largely azimuthal field distribution. Trajectory reconstruction using drift chambers results in a momentum resolution of 0.5% at forward angles. Cherenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data-acquisition rates allow operation at a luminosity of 10{sup 34} nucleon cm{sup -2} s{sup -1}. These capabilities are being used in a broad experimental program to study the structure and interactions of mesons, nucleons, and nuclei using polarized and unpolarized electron and photon beams and targets. This paper is a comprehensive and general description of the design, construction and performance of CLAS.

  10. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  11. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  12. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    31-Jan-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of HPLC -Mass Spectrometer The views, opinions and/or findings...published in peer-reviewed journals: Final Report: Acquisition of HPLC -Mass Spectrometer Report Title The acquisition of the mass spectrometer has been a

  13. New schemes of static mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Baisanov, O.A. [Military Institute of Air Defense Forces, Aktobe (Kazakhstan); Doskeyev, G.A. [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: baisanov@mail.ru [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan)

    2011-07-21

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  14. Holographic Fabry-Perot spectrometer.

    Science.gov (United States)

    Martínez-Matos, O; Rodrigo, José A; Vaveliuk, P; Calvo, M L

    2011-02-15

    We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance.

  15. On-Chip Random Spectrometer

    CERN Document Server

    Redding, Brandon; Sarma, Raktim

    2013-01-01

    Light scattering in disordered media has been studied extensively due to its prevalence in natural and artificial systems [1]. In the field of photonics most of the research has focused on understanding and mitigating the effects of scattering, which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve the device performance, e.g., in photovoltaics optical scattering improves the efficiency of light harvesting [2-5]. Here, we utilize multiple scattering in a random photonic structure to build a compact on-chip spectrometer. The probe signal diffuses through a scattering medium generating wavelength-dependent speckle patterns which can be used to recover the input spectrum after calibration. Multiple scattering increases the optical pathlength by folding the paths in a confined geometry, enhancing the spectral decorrelation of speckle patterns and thus increasing the spectral resolution. By designing and fabricating the spectrometer on a silicon wafe...

  16. On-chip spiral spectrometer

    CERN Document Server

    Redding, Brandon; Bromberg, Yaron; Sarma, Raktim; Cao, Hui

    2016-01-01

    We designed an on-chip spectrometer based on an evanescently-coupled multimode spiral waveguide. Interference between the modes in the waveguide forms a wavelength-dependent speckle pattern which can be used as a fingerprint to identify the input wavelength after calibration. Evanescent coupling between neighboring arms of the spiral enhances the temporal spread of light propagating through the spiral, leading to a dramatic increase in the spectral resolution. Experimentally, we demonstrated that a 250 {\\mu}m radius spiral spectrometer provides a resolution of 0.01 nm at a wavelength of 1520 nm. Spectra containing 40 independent spectral channels can be recovered simultaneously and the operation bandwidth can be increased further when measuring sparse spectra.

  17. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  18. On-chip plasmonic spectrometer.

    Science.gov (United States)

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  19. GREAT Highlights from the SOFIA Early Science Flights

    Science.gov (United States)

    Zinnecker, Hans; Gusten, R.; GREAT Team

    2012-01-01

    Since its first light on April 01, the German REceiver for Astronomy at TeraHertz Frequencies (GREAT) has flown more than a dozen SOFIA science flights both for US and German proposals. The spectrometer was operated routinely in its low frequency configurations, for sky frequencies between 1.25 and 1.5 THz (L1 channel) and 1.81-1.91 THz (L2 channel). During a GREAT engineering flight, the 2.5 THz OH ground-state transition was successfully observed. We will summarize the science opportunities with GREAT and present highlights from these Early Science flights.

  20. Use of a Fourier transform spectrometer on a balloon-borne telescope and at the multiple mirror telescope (MMT)

    Science.gov (United States)

    Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.

    1982-01-01

    The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.

  1. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    Science.gov (United States)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  2. On-board aircrew dosimetry using a semiconductor spectrometer

    CERN Document Server

    Spurny, F

    2002-01-01

    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise these fields. The spectrometer has been in use since spring 2000 on more than 130 return flights to monitor and characterise the on-board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level event, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (7 refs).

  3. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  4. The PNL high-transmission three-stage mass spectrometer

    Science.gov (United States)

    Stoffels, J. J.; Ells, D. R.; Bond, L. A.; Freedman, P. A.; Tattersall, B. N.; Lagergren, C. R.

    1992-12-01

    We have constructed a three-stage isotope-ratio mass spectrometer of unique ion-optical design that achieves high ion transmission efficiency and high abundance sensitivity. The spectrometer has tandem 90 deg deflection magnets with boundaries 18 deg off normal. The magnet drift lengths are 1.48 times the 27-cm radius of deflection. This extended geometry gives a mass dispersion equivalent to a 40-cm-radius magnet with normal boundaries. The first magnet renders the ion beam parallel in the vertical plane and provides a focus in the horizontal plane of mass dispersion. The second magnet brings the beam to a stigmatic focus. This novel ion-optical design gives 100 percent transmission without the need for intermediate focusing lenses. It also provides a 16 percent increase in mass resolution over the traditional tandem geometry with normal magnet boundaries. Complete transmission of ions is maintained through a third-stage cylindrical electric sector of 38-cm radius, which provides increased isotope-abundance sensitivity. The isotope-abundance sensitivity of the new mass spectrometer is an order of magnitude better than similar instruments with normal magnet boundaries. This is because the vertical focusing of the ion beam prevents ion scattering from the top and bottom of the flight tube. The measured values of the isotope-abundance sensitivity one-half mass unit away from the rhenium ion peaks at masses 185 and 187 are M - 1/2 = (6.5 +/- 0.5)(10)(exp -10) and M + 1/2 = (3.1 +/- 0.8)(10)(exp -10). By extrapolation, the uranium isotope-abundance sensitivity is M - 1 = 1(10)(exp -10). Construction of the instrument was facilitated by using standard commercial mass spectrometer components.

  5. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  6. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  7. FPGA based pulsed NQR spectrometer

    Science.gov (United States)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  8. Static Fourier transform infrared spectrometer.

    Science.gov (United States)

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.

  9. Fourier-Transform Infrared Spectrometer

    Science.gov (United States)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  10. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  11. Preliminary Analysis of the Multisphere Neutron Spectrometer

    Science.gov (United States)

    Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.

    2003-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  12. Continuous time of flight measurements in a Lissajous configuration

    Science.gov (United States)

    Dobos, G.; Hárs, G.

    2017-01-01

    Short pulses used by traditional time-of-flight mass spectrometers limit their duty cycle, pose space-charge issues, and require high speed detectors and electronics. The motivation behind the invention of continuous time of flight mass spectrometers was to mitigate these problems, by increasing the number of ions reaching the detector and eliminating the need for fast data acquisition systems. The most crucial components of these spectrometers are their modulators: they determine both the maximal modulation frequency and the modulation depth. Through these parameters they limit the achievable mass resolution and signal-to-noise ratio. In this paper, a new kind of setup is presented which modulates the beam by deflecting it in two perpendicular directions and collects ions on a position sensitive detector. Such an Lissajous time of flight spectrometer achieves modulation without the use of slits or apertures, making it possible for all ions to reach the detector, thereby increasing the transmission and signal-to-noise ratio. In this paper, we provide the mathematical description of the system, discuss its properties, and present a practical demonstration of the principle.

  13. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  14. Soft Particle Spectrometer, Langmuir Probe, and Data Analysis for Aerospace Magnetospheric/Thermospheric Coupling Rocket Program

    Science.gov (United States)

    Sharber, J. R.; Frahm, R. A.; Scherrer, J. R.

    1997-01-01

    Under this grant two instruments, a soft particle spectrometer and a Langmuir probe, were refurbished and calibrated, and flown on three instrumented rocket payloads as part of the Magnetosphere/Thermosphere Coupling program. The flights took place at the Poker Flat Research Range on February 12, 1994 (T(sub o) = 1316:00 UT), February 2, 1995 (T(sub o) = 1527:20 UT), and November 27, 1995 (T(sub o) = 0807:24 UT). In this report the observations of the particle instrumentation flown on all three of the flights are described, and brief descriptions of relevant geophysical activity for each flight are provided. Calibrations of the particle instrumentation for all ARIA flights are also provided.

  15. Aircraft laser infrared absorption spectrometer (ALIAS) for polar ozone studies

    Science.gov (United States)

    Webster, C. R.; May, R. D.

    1991-01-01

    The ALIAS instrument is a very high resolution (0.0003/cm) scanning, tunable diode laser spectrometer designed to make direct, simultaneous measurements of NO2, HNO3, HCl, CH4, and either O3 or N2O (including vertical profiles of CH4 and N2O) in the polar stratosphere at sub-part-per-billion level sensitivities over integration times from 3 to 30 s. Unique features include a sample inlet/throttle system designed to achieve near-isokinetic sampling, in PSC events, an in-flight wavelength reference cell rack, mechanical fringe-spoilers, a four-laser/four-detector dewar with 24-hr hold-time operating at a fixed temperature without electrical regulation, and in-flight fast correlation routines for spectral drift compensation prior to spectral addition. Instrument design and test flight results are discussed in the light of ALIAS's role in the Winter 1991 Arctic aircraft stratospheric ozone campaigns out of Fairbanks, Alaska, and Bangor, Maine.

  16. A Pulsed Spectrometer Designed for Feedback NQR

    Science.gov (United States)

    Schiano, J. L.; Ginsberg, M. D.

    2000-02-01

    A pulsed NQR spectrometer specifically designed to facilitate real-time tuning of pulse sequence parameters is described. A modular approach based on the interconnection of several rack-mounted blocks provides easy access to all spectrometer signals and simplifies the task of modifying the spectrometer design. We also present experimental data that demonstrates the ability of the spectrometer to increase the signal to noise ratio of NQR measurements by automatically adjusting the pulse width in the strong off-resonant comb pulse sequence.

  17. STS-46 plasma composition measurements using the EOIM-3 mass spectrometer

    Science.gov (United States)

    Hunton, Donald E.; Trzcinski, Edmund; Gosselin, Roger; Koontz, Steven; Leger, Lubert; Visentine, James T.

    1995-01-01

    One of the active instruments incorporated into the Evaluation of Oxygen Interactions with Materials - 3 experiment was a quadrupole mass spectrometer. The primary objectives for this instrument, which was built by the Air Force Phillips Laboratory and was a veteran of the STS-4 flight in 1982, were to quantify the flux of atomic oxygen striking the test surfaces in the EOIM-3 payload and to detect surface reaction products from the materials in the carousel. Other speakers in this session have covered the results of these experiments. Prior to the 40-hour-long dedicated EOIM-3 mission segment at the end of the STS-46 flight, the authors used the mass spectrometer to make measurements of ion and neutral gas composition in the shuttle environment. About 25 hours of data were collected during a variety of mission events, including Eureca deployment at high altitude and many tethered satellite system operations.

  18. High Precision Momentum Calibration of the Magnetic Spectrometers at MAMI for Hypernuclear Binding Energy Determination

    CERN Document Server

    Margaryan, A; Achenbach, P; Ajvazyan, R; Elbakyan, H; Montgomery, R; Nakamura, S N; Pochodzalla, J; Schulz, F; Toyama, Y; Zhamkochyan, S

    2016-01-01

    We propose a new method for absolute momentum calibration of magnetic spectrometers used in nuclear physics, using the time-of-flight (TOF), differences of pairs of particles with different masses. In cases where the flight path is not known, a calibration can be determined by using the TOF differences of two pair combinations of three particles. A Cherenkov detector, read out by a radio frequency photomultiplier tube, is considered as the high-resolution and highly stable TOF detector. By means of Monte Carlo simulations it is demonstrated that the magnetic spectrometers at the MAMI electron-scattering facility can be calibrated absolutely with an accuracy $\\delta p/p\\leq 10^{-4}$, which will be crucial for high precision determination of hypernuclear masses.

  19. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    Science.gov (United States)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  20. The resolution of the tof-backscattering spectrometer OSIRIS: Monte Carlo simulations and analytical calculations

    Science.gov (United States)

    Demmel, F.; Pokhilchuk, K.

    2014-12-01

    The energy resolution of an indirect time of flight (tof) spectrometer is determined mainly by the pulse shape of the incoming pulse and the contribution of the crystal analyser. We performed extensive Monte Carlo simulations for the indirect near-backscattering spectrometer OSIRIS utilising the McStas neutron ray-traycing package. The simulations are accompanied by analytical calculations for the energy resolution. From simulation and calculation an excellent description for the width of the line is achieved for the PG002 and PG004 energy setting. The simulations and calculations reveal that the secondary spectrometer and hence the analyser geometry is the dominating term for the energy resolution at zero energy transfer. The remaining differences in the lineshape can be traced to a not perfectly modeled hydrogen moderator. The simulations and calculations predict a superb energy resolution of less than 100 μeV at an energy transfer of 15 meV.

  1. The resolution of the tof-backscattering spectrometer OSIRIS: Monte Carlo simulations and analytical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, F., E-mail: franz.demmel@stfc.ac.uk [ISIS Facility, Didcot, OX11 0QX (United Kingdom); Pokhilchuk, K. [ISIS Facility, Didcot, OX11 0QX (United Kingdom); Loughborough University, Loughborough (United Kingdom)

    2014-12-11

    The energy resolution of an indirect time of flight (tof) spectrometer is determined mainly by the pulse shape of the incoming pulse and the contribution of the crystal analyser. We performed extensive Monte Carlo simulations for the indirect near-backscattering spectrometer OSIRIS utilising the McStas neutron ray-traycing package. The simulations are accompanied by analytical calculations for the energy resolution. From simulation and calculation an excellent description for the width of the line is achieved for the PG002 and PG004 energy setting. The simulations and calculations reveal that the secondary spectrometer and hence the analyser geometry is the dominating term for the energy resolution at zero energy transfer. The remaining differences in the lineshape can be traced to a not perfectly modeled hydrogen moderator. The simulations and calculations predict a superb energy resolution of less than 100 μeV at an energy transfer of 15 meV.

  2. Mass spectrometric analysis of the marine lipophilic biotoxins pectenotoxin-2 and okadaic acid by four different types of mass spectrometers

    NARCIS (Netherlands)

    Gerssen, A.; Mulder, P.P.J.; Rhijn, van J.A.; Boer, de J.

    2008-01-01

    The performances of four different mass spectrometers [triple-quadrupole (TQ), time-of-flight (ToF), quadrupole ToF (Q-ToF) and ion trap (IT)] for the detection of the marine lipophilic toxins pectenotoxin-2 (PTX2) and okadaic acid (OA) were investigated. The spectral data obtained with the differen

  3. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  4. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight...

  5. A Remote Laser-mass Spectrometer for Determination of Elemental Composition

    Science.gov (United States)

    Deyoung, R. J.; Situ, W.

    1993-01-01

    Determination of the elemental composition of lunar, asteroid, and planetary surfaces is a major concern for science and resource utilization of space. The science associated with the development of a satellite or lunar rover laser-mass spectrometer instrument is presented here. The instrument would include a pulsed laser with sufficient energy to create a plasma on a remote surface. Ions ejected from this plasma travel back to the spacecraft or rover, where they are analyzed by a time-of-flight mass spectrometer, giving the elemental and isotope composition. This concept is based on the LIMA-D instrument on board the former Soviet Union Phobos-88 spacecraft sent to Mars. A laser-mass spectrometer placed on a rover or satellite would substantially improve the data return over alternative techniques. The spatial resolution would be centimeters, and a complete mass spectrum could be achieved in one laser shot. An experiment is described that demonstrates these features. A 400 mj Nd:YAG laser is focused, to an intensity of 10(exp 11) w/sq cm, onto a Al, Ag, Cu, Ge, or lunar simulant target. A plasma forms from which ions are ejected. Some of these ions travel down an 18-m evacuated flight tube to a microchannel plate detector. Alternatively, the ions are captured by an ion trap where they are stored until pulsed into a 1-m time-of-flight mass spectrometer, giving the elemental composition of the remote surface. A television camera monitors the plasma plume shape, and a photodiode monitors the temporal plasma emission . With this system, ions of Al, Ag, Cu, Ge, and lunar simulant have been detected at 18 m. The mass spectrum from the ion trap and 1-m time-of-flight tube will be presented.

  6. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  7. Fluorescence imaging spectrometer optical design

    Science.gov (United States)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  8. Ornithopter flight stabilization

    Science.gov (United States)

    Dietl, John M.; Garcia, Ephrahim

    2007-04-01

    The quasi-steady aerodynamics model and the vehicle dynamics model of ornithopter flight are explained, and numerical methods are described to capture limit cycle behavior in ornithopter flight. The Floquet method is used to determine stability in forward flight, and a linear discrete-time state-space model is developed. This is used to calculate stabilizing and disturbance-rejecting controllers.

  9. White flight or flight from poverty?

    CERN Document Server

    Jego, C; Jego, Charles; Roehner, Bertrand M.

    2006-01-01

    The phenomenon of White flight is often illustrated by the case of Detroit whose population dropped from 1.80 million to 0.95 million between 1950 and 2000 while at the same time its Black and Hispanic component grew from 30 percent to 85 percent. But is this case really representative? The present paper shows that the phenomenon of White flight is in fact essentially a flight from poverty. As a confirmation, we show that the changes in White or Black populations are highly correlated which means that White flight is always paralleled by Black flight (and Hispanic flight as well). This broader interpretation of White flight accounts not only for the case of northern cities such as Cincinnati, Cleveland or Detroit, but for all population changes at county level, provided the population density is higher than a threshold of about 50 per square-kilometer which corresponds to moderately urbanized areas (as can be found in states like Indiana or Virginia for instance).

  10. A Mass Spectrometer Simulator in Your Computer

    Science.gov (United States)

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  11. The Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Paniccia, M

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to measure charged cosmic rays spectra up to TV region, with high energy photon detection capability up to few hundred GeV. With the large acceptance, the long duration (3 years) and the state of the art particle identification techniques, AMS will provide the most sensitive search for the existence of antimatter nuclei and for the origin of dark matter. The detector is being constructed with an eight layers Silicon Tracker inside a large superconducting magnet, providing a ~ 0.8 Tm2 bending power and an acceptance of ~ 0.5 m2sr. A Transition Radiation Detector and a 3D Electromagnetic Calorimeter allow for electron, positron and photon identification, while independent velocity measurements are performed by a Time of Flight scintillating system and a Ring Image Cherenkov detector. The overall construction is due to be completed by 2008.

  12. The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer

    CERN Document Server

    Tsumura, K; Battle, J; Bock, J; Brown, S; Cooray, A; Hristov, V; Keating, B; Kim, M G; Lee, D H; Levenson, L R; Lykke, K; Mason, P; Matsumoto, T; Matsuura, S; Murata, K; Nam, U W; Renbarger, T; Smith, A; Sullivan, I; Suzuki, K; Wada, T; Zemcov, M

    2011-01-01

    Absolute spectrophotometric measurements of diffuse radiation at 1 \\mu m to 2 \\mu m are crucial to our understanding of the radiative content of the Universe from nucleosynthesis since the epoch of reionization, the composition and structure of the Zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment (CIBER) is a \\lambda / \\Delta \\lambda \\sim 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 \\mu m < \\lambda < 2.1 \\mu m. This paper presents the optical, mechanical and electronic design of the LRS, as well as the ground testing, characterization and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding a...

  13. Polarization analysis for the thermal chopper spectrometer TOPAS

    Directory of Open Access Journals (Sweden)

    Voigt Jörg

    2015-01-01

    Full Text Available We report on the progress of the construction of the thermal time-of-flight spectrometer with polarization analysis TOPAS at the Mayer-Leibnitz Zentrum (MLZ. The instrument components approach the status to be ready for installation. The special feature of the instrument is its capability for wide-angle polarization analysis in the thermal spectral range. Here we describe a novel approach to rotate the neutron spin adiabatically into the X, Y or Z direction of the laboratory frame by combination of permanent magnets aligned as Halbach rings and electrically generated fields. Despite the severe spatial restrictions the design exhibits a very high adiabaticity and interacts only weakly with the coil layout for the analyzing 3He spin filter cell (SFC.

  14. Particle identification algorithms for the HARP forward spectrometer

    CERN Document Server

    Catanesi, M G; Radicioni, E; Edgecock, R; Ellis, M; Robbins, S; Soler, F J P; Go Xling, C; Bunyatov, S; Chelkov, G; Chukanov, A; Dedovitch, D; Gostkin, M; Guskov, A; Khartchenko, D; Klimov, O; Krasnoperov, A; Krumshtein, Z; Kustov, D; Nefedov, Y; Popov, B; Serdiouk, V; Tereshchenko, V; Zhemchugov, A; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Arce, P; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Gruber, P; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Pasternak, J; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Campanelli, M; Cervera-Villanueva, A; Morone, M C; Prior, G; Schroeter, R; Kato, I; Nakaya, T; Nishikawa, K; Ueda, S; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; De Min, A; Ferri, F; Paganoni, M; Paleari, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Pattison, C; Zuber, K; Bobisut, F; Gibin, D; Guglielmi, A; Laveder, M; Menegolli, A; Mezzetto, M; Dumarchez, J; Vannucci, F; Ammosov, V; Koreshev, V; Semak, A; Zaets, V; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Buttar, C; Hodgson, P; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Santin, G; Hayato, Y; Ichikawa, A; Kobayashi, T; Burguet-Castell, J; Gómez-Cadenas, J J; Novella, P; Sorel, M; Tornero, A

    2007-01-01

    The particle identification (PID) methods used for the calculation of secondary pion yields with the HARP forward spectrometer are presented. Information from time of flight and Cherenkov detectors is combined using likelihood techniques. The efficiencies and purities associated with the different PID selection criteria are obtained from the data. For the proton–aluminium interactions at 12.9 GeV/c incident momentum, the PID efficiencies for positive pions are 86% in the momentum range below 2 GeV/c, 92% between 2 and 3 GeV/c and 98% in the momentum range above 3 GeV/c. The purity of the selection is better than 92% for all momenta. Special emphasis has been put on understanding the main error sources. The final PID uncertainty on the pion yield is 3.3%.

  15. On board aircrew dosimetry with a semiconductor spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F.; Daschev, T

    2002-07-01

    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise the on board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level even, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (author00.

  16. Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    Science.gov (United States)

    Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.

    2001-01-01

    The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.

  17. The TOF method for the LSDS-100 spectrometer

    CERN Document Server

    Alekseev, A A; Dulin, V A; Libanova, O N; Matushko, V L; Mezentseva, Zh V; Novikov-Borodin, A V; Ryabov, Yu V

    2015-01-01

    The first lead neutron slowing-down spectrometer (LSDS) from a pulsed source in elastic scattering on lead nuclei has been constructed in the laboratory of the atomic nucleus of the Physics Institute of the Russian Academy of Sciences LPI. Currently, there are several operating lead neutron slowing-down spectrometers: LSDS-100 in Russia, RINS in United States, KULS in Japan and others. A relation between an energy of lead slowing-down moderated neutrons E (eV) and the time delay of t ({\\mu}s) is described by the expression: E(t) = K/(t + t_0)^2, where values of K=170.5 (keV {\\mu}s^2), t_0 = 0.3 ({\\mu}s) in the case of the LSDS-100 have been measured in the previous experiment. The energy resolution of LSDS is low (30-45%) and is being determined experimentally, but the aperture ratio luminosity of the neutron flux detector is 10^2-10^4 times greater than in the case of a time of flight method technique. It allows to make experiments with small amount of substance and small cross-sections of its interaction wi...

  18. Calibration of the spectrometer aboard the INTEGRAL satellite

    Science.gov (United States)

    Schanne, Stephane; Cordier, Bertrand; Gros, Maurice; Attie, David; von Ballmoos, Peter; Bouchet, Laurent; Carli, Raffaelo; Connell, Paul; Diehl, Roland; Jean, Pierre; Kiener, Juergen; von Kienlin, Andreas; Knoedlseder, Juergen; Laurent, Phillipe; Lichti, Giselher G.; Mandrou, Pierre; Paul, Jaques; Paul, Philippe; Roques, Jean-Pierre; Sanchez, Filomeno; Schoenfelder, Volker; Shrader, Chris; Skinner, Gerald K.; Strong, Andrew W.; Sturner, Steven J.; Tatischeff, Vincent; Teegarden, Bonnard J.; Vedrenne, Gilbert; Weidenspointner, Georg; Wunderer, Cornelia B.

    2003-03-01

    SPI, the Spectrometer on board the ESA INTEGRAL satellite, to be launched in October 2002, will study the gamma-ray sky in the 20 keV to 8 MeV energy band with a spectral resolution of 2 keV for photons of 1 MeV, thanks to its 19 germanium detectors spanning an active area of 500 cm2. A coded mask imaging technique provides a 2° angular resolution. The 16° field of view is defined by an active BGO veto shield, furthermore used for background rejection. In April 2001 the flight model of SPI underwent a one-month calibration campaign at CEA in Bruyères le Châtel using low intensity radioactive sources and the CEA accelerator for homogeneity measurements and high intensity radioactive sources for imaging performance measurements. After integration of all scientific payloads (the spectrometer SPI, the imager IBIS and the monitors JEM-X and OMC) on the INTEGRAL satellite, a cross-calibration campaign has been performed at the ESA center in Noordwijk. A set of sources has been placed in the field of view of the different instruments in order to compare their performances and determine their mutual influence. We report on the scientific goals of this calibration activity, and present the measurements performed as well as some preliminary results.

  19. Femtosecond photoelectron and photoion spectrometer with vacuum ultraviolet probe pulses

    CERN Document Server

    Koch, Markus; Grilj, Jakob; Sistrunk, Emily; Gühr, Markus

    2014-01-01

    We describe a setup to study ultrafast dynamics in gas-phase molecules using time-resolved photoelectron and photoion spectroscopy. The vacuum ultraviolet (VUV) probe pulses are generated via strong field high-order harmonic generation from infrared femtosecond laser pulses. The band pass characteristic in transmission of thin indium (In) metal foil is exploited to isolate the $9^{\\text{th}}$ harmonic of the 800 nm fundamental (H9, 14 eV, 89 nm) from all other high harmonics. The $9^{\\text{th}}$ harmonic is obtained with high conversion efficiencies and has sufficient photon energy to access the complete set of valence electron levels in most molecules. The setup also allows for direct comparison of VUV single-photon probe with 800 nm multi-photon probe without influencing the delay of excitation and probe pulse or the beam geometry. We use a magnetic bottle spectrometer with high collection efficiency for electrons, serving at the same time as a time of flight spectrometer for ions. Characterization measurem...

  20. Overview of the Design, Fabrication and Performance Requirements of Micro-Spec, an Integrated Submillimeter Spectrometer

    Science.gov (United States)

    Barrentine, Emily M.; Noroozian, Omid; Brown, Ari D.; Cataldo, Giuseppe; Ehsan, Negar; Hsieh, Wen-Ting; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey

    2015-01-01

    Micro-Spec is a compact submillimeter (350-700 GHz) spectrometer which uses low loss superconducting niobium microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a grating-analog spectrometer onto a single chip. Here we present details of the fabrication and design of a prototype Micro-Spec spectrometer with resolution, R64, where we use a high-yield single-flip wafer bonding process to realize instrument components on a 0.45 m single-crystal silicon dielectric. We discuss some of the electromagnetic design concerns (such as loss, stray-light, cross-talk, and fabrication tolerances) for each of the spectrometer components and their integration into the instrument as a whole. These components include a slot antenna with a silicon lens for optical coupling, a phase delay transmission line network, parallel plate waveguide interference region, and aluminum microstrip transmission line kinetic inductance detectors with extremely low cross-talk and immunity to stray light. We have demonstrated this prototype spectrometer with design resolution of R64. Given the optical performance of this prototype, we will also discuss the extension of this design to higher resolutions suitable for balloon-flight.

  1. Design and Performance of a Spectrometer for Deployment on MISSE 7

    Science.gov (United States)

    Pippin, Gary; Beymer, Jim; Robb, Andrew; Longino, James; Perry, George; Stewart, Alan; Finkenor, Miria

    2009-01-01

    A spectrometer for reflectance and transmission measurements of samples exposed to the space environment has been developed for deployment on the Materials on the International Space Station Experiment (MISSE) 7. The instrument incorporates a miniature commercial fiber optic coupled spectrometer with a computer control system for detector operation, sample motion and illumination. A set of three spectrometers were recently integrated on the MISSE7 platform with launch and deployment on the International Space Station scheduled for summer of this year. The instrument is one of many active experiments on the platform. The performance of the instrument prior to launch will be discussed. Data from samples measured in the laboratory will be compared to those from the instrument prior to launch. These comparisons will illustrate the capabilities of the current design. The space environment challenges many materials. When in operation on the MISSE 7 platform, the new spectrometer will provide real time data on the how the space environment affects the optical properties of thermal control paints and optical coatings. Data obtained from comparison of pre and post flight measurements on hundreds of samples exposed on previous MISSE platforms have been reported at these meetings. With the new spectrometer and the ability to correlate measured changes with time on orbit and the occurrence of both natural events and human activities, a better understanding of the processes responsible for degradation of materials in space will be possible.

  2. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Winzen, Daniel; Hannen, Volker; Ortjohann, Hans-Werner; Zacher, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2012-07-01

    The KATRIN (KArlsruhe TRItium Neutrino mass) experiment will study the tritium {beta}-spectrum near the endpoint of 18.6 keV, aiming to measure the mass of the electron antineutrino. Using an electrostatic retarding spectrometer (MAC-E-Filter), the projected sensitivity for m{sub ve} is 200 meV/c{sup 2} at 90% C.L. In order to map out the electric and magnetic fields in the main spectrometer, an angular selective electron gun is currently being developed. The e-gun uses an UV-Laser to produce electrons via the photo-electric effect from a copper substrate which are then accelerated electrostatically. It features a small energy spread of approx. 0.1 eV, a sharp emission angle and will be able to cover the whole magnetic flux tube of KATRIN. Using a pulsed laser it is also possible to investigate the time of flight (TOF) of electrons through the spectrometer, offering enhanced sensitivity to spectrometer properties far away from the analysing plane. By comparing information from transmission function measurements and TOF data with Monte Carlo simulations of the setup, one will be able to achieve a detailed understanding of the spectrometer properties.

  3. The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission

    Science.gov (United States)

    Reuter, D. C.; Simon-Miller, A. A.

    2012-01-01

    The OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) Mission is a planetary science mission to study, and return a sample from, the carbonaceous asteroid 1999 RQ-36. The third mission selected under NASA's New Frontiers Program, it is scheduled to be launched in 2016. It is led by PI Dante Lauretta at the University of Arizona and managed by NASA's Goddard Space Flight Center. The spacecraft and the asteroid sampling mechanism, TAGSAM (Touch-And-Go Sample Acquisition Mechanism) will be provided by Lockheed Martin Space Systems. Instrumentation for studying the asteroid include: OCAMS (the OSIRIS-REx Camera Suite), OLA (the OSIRIS-REx Laser Altimeter, a scanning LIDAR), OTES (The OSIRIS-REx Thermal Emission Spectrometer, a 4-50 micron point spectrometer) and OVIRS (the OSIRIS-REx Visible and IR Spectrometer, a 0.4 to 4.3 micron point spectrometer). The payload also includes REXIS (the Regolith X-ray Imaging Spectrometer) a student provided experiment. This paper presents a description of the OVIRS instrument.

  4. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    Science.gov (United States)

    Hughes, E. B.; Finman, L. C.; Hofstadter, R.; Lepetich, J. E.; Lin, Y. C.

    1986-01-01

    A large NaI(Tl) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described.

  5. Aircraft Integration and Flight Testing of 4STAR

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, CJ; Kassianov, E; Russell, P; Redemann, J; Dunagan, S; Holben, B

    2012-10-12

    Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

  6. Handheld spectrometers: the state of the art

    Science.gov (United States)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  7. [The coding correction of slit diffraction in Hadamard transform spectrometer].

    Science.gov (United States)

    Li, Bo; Wang, Shu-Rong; Huang, Yu; Wang, Jun-Bo

    2013-08-01

    According to the principles of Hadamard transform spectrometer and the slit diffraction characteristics, the influence of spectrometer entrance slit diffraction of Hadamard transform spectrometer on the measurement result was analyzed, for the diffraction case, the Hadamard transform spectrometer instrument structure matrix was studied, and the Hadamard transform spectrometer encoding/decoding method was established. The analysis of incident spectral verified the correctness of the coding/ decoding. This method is very important for the high precision measurement of Hadamard transform spectrometer.

  8. Digital Logarithmic Airborne Gamma Ray Spectrometer

    OpenAIRE

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energ...

  9. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  10. Mini-Orange Spectrometer at CIAE

    CERN Document Server

    Zheng, Yun; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-01-01

    A Mini-Orange spectrometer used for in-beam measurements of internal conversion electrons, which consists of a Si(Li) detector and different sets of SmO$_5$ permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at China Institute of Atomic Energy. The working principle and configuration of the Mini-Orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the Mini-Orange spectrometer.

  11. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    Science.gov (United States)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  12. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  13. Digital flight control research

    Science.gov (United States)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  14. Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  15. The SPIDER fission fragment spectrometer for fission product yield measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-11

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.

  16. Calibration of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    Science.gov (United States)

    Leisso, N.; Kampe, T. U.; Karpowicz, B. M.

    2014-12-01

    The National Ecological Observatory Network (NEON) is currently under construction by the National Science Foundation. NEON is designed to collect data on the causes and responses to change in the observed ecosystem. The observatory will combine site data collected by terrestrial, instrumental, and aquatic observation systems with airborne remote sensing data. The Airborne Observation Platform (AOP) is designed to collect high-resolution aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopic data over the NEON sites annually at or near peak-greenness. Three individual airborne sensor packages will be installed in leased Twin Otter aircraft and used to the collect the NEON sites as NEON enters operations. A key driver to the derived remote sensing data products is the calibration of the imaging spectrometers. This is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) grating spectrometer designed by NASA JPL. Spectroscopic data is collected at 5-nm intervals from 380-2500-nm. A single 480 by 640 pixel HgCdTe Focal Plane Array collects dispersed light from a grating tuned for efficiency across the solar-reflective utilized in a push-broom configuration. Primary calibration of the NIS consists of the characterizing the FPA behavior, spectral calibration, and radiometric calibration. To this end, NEON is constructing a Sensor Test Facility to calibrate the NEON sensors. This work discusses the initial NIS laboratory calibration and verification using vicarious calibration techniques during operations. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. A NIST traceable FEL bulb is used to radiometrically calibrate the imaging spectrometer. An On-board Calibration (OBC) system

  17. Remote UV Fluorescence Lifetime Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  18. Long-Wave Infrared Dyson Spectrometer

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis Z.; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2008-01-01

    Preliminary results are presented for an ultra compact long-wave infrared slit spectrometer based on the dyson concentric design. The dyson spectrometer has been integrated in a dewar environment with a quantum well infrared photodetecor (QWIP), concave electron beam fabricated diffraction grating and ultra precision slit. The entire system is cooled to cryogenic temperatures to maximize signal to noise ratio performance, hence eliminating thermal signal from transmissive elements and internal stray light. All of this is done while maintaining QWIP thermal control. A general description is given of the spectrometer, alignment technique and predicated performance. The spectrometer has been designed for optimal performance with respect to smile and keystone distortion. A spectral calibration is performed with NIST traceable targets. A 2-point non-uniformity correction is performed with a precision blackbody source to provide radiometric accuracy. Preliminary laboratory results show excellent agreement with modeled noise equivalent delta temperature and detector linearity over a broad temperature range.

  19. Calibration of a photomultiplier array spectrometer

    Science.gov (United States)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  20. Low Power FPGA Based Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a general purpose reconfigurable wide bandwidth spectrometer for use in NASA's passive microwave missions, deep space network and radio...

  1. Electronically-Scanned Fourier-Transform Spectrometer

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  2. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  3. Ruggedized Spectrometers Are Built for Tough Jobs

    Science.gov (United States)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  4. A Spectrometer Based on Diffractive Lens

    Institute of Scientific and Technical Information of China (English)

    WANG Daoyi; YAN Yingbai; JIN Guofan; WU Minxian

    2001-01-01

    A novel spectrometer is designed based on diffractive lens. It is essentially a flat field spectrometer. All the focal points are along the optical axis. Besides, all the asymmetrical aberrations vanish in our mounting. Thus low aberration can be obtained. In this article a diffractive lens is modeled as a special grating and analyzed by using a grating-based method. And a stigmatic point is introduced to reduce the aberrations.

  5. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  6. 1987 calibration of the TFTR neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Strachan, J.D. (Los Alamos National Lab., NM (USA); Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  7. Mass Spectrometer for Airborne Micro-Organisms

    Science.gov (United States)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  8. Optical Calibration For Jefferson Lab HKS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  9. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  10. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  11. NIST Calibration of a Neutron Spectrometer ROSPEC.

    Science.gov (United States)

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  12. LVGEMS Time-of-Flight Mass Spectrometry on Satellites

    Science.gov (United States)

    Herrero, Federico

    2013-01-01

    NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.

  13. Electromechanical flight control actuator

    Science.gov (United States)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  14. Java for flight software

    Science.gov (United States)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  15. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    Science.gov (United States)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  16. An echelle diffraction grating for imaging spectrometer

    Science.gov (United States)

    Yang, Minyue; Wang, Han; Li, Mingyu; He, Jian-Jun

    2016-09-01

    We demonstrate an echelle diffraction grating (EDG) of 17 input waveguides and 33 output waveguides. For each input waveguide, only 17 of 33 output waveguides are used, receiving light ranging from 1520 nm to 1600 nm wavelength. The channel spacing of the EDG is 5 nm, with loss of -6dB and crosstalk of -17dB for center input waveguide and -15dB for edge input waveguides. Based on the 3 μm SOI platform the device is polarization insensitive. As a simple version of EDG spectrometer it is designed to be a part of the on-chip spectroscopic system of the push-broom scanning imaging spectrometer. The whole on-chip spectrometer consists of an optical on-off switch array, a multi-input EDG and detector array. With the help of on-off switch array the multiple input waveguides of the EDG spectrometer could work in a time division multiplexed fashion. Since the switch can scan very fast (less than 10 microseconds), the imaging spectrometer can be operated in push-broom mode. Due to the CMOS compatibility, the 17_channel EDG scales 2.5×3 mm2. The full version of EDG spectrometer is designed to have 129 input waveguides and 257 output waveguides (129 output channel for each input waveguide), working in wavelength ranging from 1250 nm to 1750 nm, and had similar blazed facet size with the 17_channel one, which means similar fabrication tolerance in grating facets. The waveguide EDG based imaging spectrometer can provide a low-cost solution for remote sensing on unmanned aerial vehicles, with advantages of small size, light weight, vibration-proof, and high scalability.

  17. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  18. Automated ISS Flight Utilities

    Science.gov (United States)

    Offermann, Jan Tuzlic

    2016-01-01

    EVADES output. As mentioned above, GEnEVADOSE makes extensive use of ROOT version 6, the data analysis framework developed at the European Organization for Nuclear Research (CERN), and the code is written to the C++11 standard (as are the other projects). My second project is the Automated Mission Reference Exposure Utility (AMREU).Unlike GEnEVADOSE, AMREU is a combination of three frameworks written in both Python and C++, also making use of ROOT (and PyROOT). Run as a combination of daily and weekly cron jobs, these macros query the SRAG database system to determine the active ISS missions, and query minute-by-minute radiation dose information from ISS-TEPC (Tissue Equivalent Proportional Counter), one of the radiation detectors onboard the ISS. Using this information, AMREU creates a corrected data set of daily radiation doses, addressing situations where TEPC may be offline or locked up by correcting doses for days with less than 95% live time (the total amount time the instrument acquires data) by averaging the past 7 days. As not all errors may be automatically detectable, AMREU also allows for manual corrections, checking an updated plaintext file each time it runs. With the corrected data, AMREU generates cumulative dose plots for each mission, and uses a Python script to generate a flight note file (.docx format) containing these plots, as well as information sections to be filled in and modified by the space weather environment officers with information specific to the week. AMREU is set up to run without requiring any user input, and it automatically archives old flight notes and information files for missions that are no longer active. My other projects involve cleaning up a large data set from the Charged Particle Directional Spectrometer (CPDS), joining together many different data sets in order to clean up information in SRAG SQL databases, and developing other automated utilities for displaying information on active solar regions, that may be used by the

  19. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  20. The retarding Bessel–Box—An electron-spectrometer designed for pump/probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schiwietz, G., E-mail: schiwietz@helmholtz-berlin.de [Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung (FG-ISRR) and also former Division HMI/SF8, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Beye, M.; Kühn, D. [Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung (FG-ISRR) and also former Division HMI/SF8, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Xiao, G. [Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung (FG-ISRR) and also former Division HMI/SF8, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institute of Modern Physics, PO Box 31, Lanzhou 730000 (China)

    2015-08-15

    Highlights: • A new electrostatic electron spectrometer has been developed and tested. • It yields high count rates for rapid NEXAFS, photo ionization or Auger scans. • It yields excellent intrinsic timing even without position-sensitive detector. • It is optimized for electron coincidences and femtosecond pump/probe-experiments. • It is insensitive to electron pile-up and light due to strong Laser fields. - Abstract: A new type of electrostatic electron spectrometer is developed, capable of particular sensitive measurements of energy spectra and time-of-flight distributions. This instrument is specifically designed and optimized for laser-pump/X-ray-probe measurements, where photo electrons or Auger electrons from surfaces, clusters, molecular or atomic targets are being measured with high time-resolution at an extremely low detection-noise level. The compact and robust cylinder-symmetrical system is a strongly improved Bessel–Box design, featuring electron retardation, a large detection solid-angle, about 100% electron transmission (gridless design) and excellent time-resolution. In this paper we describe the principle of operation of this type of spectrometer and various tests. We present quantitative results for electron measurements with different solid-state targets and two different electron-detection systems in comparison to electron-trajectory simulations inside the electrostatic spectrometer fields. Picosecond-pump/probe operation has been tested with high laser power and even the ability to work under femtosecond-pump-probe conditions with electron detection at the BESSY II slicing facility has been proven.

  1. First results from the new double velocity-double energy spectrometer VERDI

    Science.gov (United States)

    Frégeau, M. O.; Oberstedt, S.; Gamboni, Th.; Geerts, W.; Hambsch, F.-J.; Vidali, M.

    2016-05-01

    The VERDI spectrometer (VElocity foR Direct mass Identification) is a two arm time-of-flight spectrometer built at the European Commission Joint Research Centre IRMM. It determines fragment masses and kinetic energy distributions produced in nuclear fission by means of the double velocity and double energy (2v-2E) method. The simultaneous measurement of pre- and post neutron fragment characteristics allows studying the share of excitation energy between the two fragments. In particular, the evolution of fission modes and neutron multiplicity may be studied as a function of the available excitation energy. Both topics are of great importance for the development of models used in the evaluation of nuclear data, and also have important implications for the fundamental understanding of the fission process. The development of VERDI focus on maximum geometrical efficiency while striving for highest possible mass resolution. An innovative transmission start detector, using electrons ejected from the target itself, was developed. Stop signal and kinetic energy of both fragments are provided by two arrays of silicon detectors. The present design provides about 200 times higher geometrical efficiency than that of the famous COSI FAN TUTTE spectrometer [Nuclear Instruments and Methods in Physics Research 219 (1984) 569]. We report about a commissioning experiment of the VERDI spectrometer, present first results from a 2v-2E measurement of 252Cf spontaneous fission and discuss the potential of this instrument to contribute to the investigation prompt fission neutron characteristics as a function of fission fragment properties.

  2. Ultrasensitive resonance ionization mass spectrometer for evaluating krypton contamination in xenon dark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Y., E-mail: iwata.yoshihiro@jaea.go.jp [Experimental Fast Reactor Department, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Sekiya, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Ito, C. [Experimental Fast Reactor Department, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan)

    2015-10-11

    An ultrasensitive resonance ionization mass spectrometer that can be applied to evaluate krypton (Kr) contamination in xenon (Xe) dark matter detectors has been developed for measuring Kr at the parts-per-trillion (ppt) or sub-ppt level in Xe. The gas sample is introduced without any condensation into a time-of-flight mass spectrometer through a pulsed supersonic valve. Using a nanosecond pulsed laser at 212.6 nm, {sup 84}Kr atoms in the sample are resonantly ionized along with other Kr isotopes. {sup 84}Kr ions are then mass separated and detected by the mass spectrometer in order to measure the Kr impurity concentration. With our current setup, approximately 0.4 ppt of Kr impurities contained in pure argon (Ar) gas are detectable with a measurement time of 1000 s. Although Kr detection sensitivity in Xe is expected to be approximately half of that in Ar, our spectrometer can evaluate Kr contamination in Xe to the sub-ppt level.

  3. First results from the new double velocity–double energy spectrometer VERDI

    Energy Technology Data Exchange (ETDEWEB)

    Frégeau, M.O.; Oberstedt, S., E-mail: stephan.oberstedt@ec.europa.eu; Gamboni, Th.; Geerts, W.; Hambsch, F.-J.; Vidali, M.

    2016-05-01

    The VERDI spectrometer (VElocity foR Direct mass Identification) is a two arm time-of-flight spectrometer built at the European Commission Joint Research Centre IRMM. It determines fragment masses and kinetic energy distributions produced in nuclear fission by means of the double velocity and double energy (2v–2E) method. The simultaneous measurement of pre- and post neutron fragment characteristics allows studying the share of excitation energy between the two fragments. In particular, the evolution of fission modes and neutron multiplicity may be studied as a function of the available excitation energy. Both topics are of great importance for the development of models used in the evaluation of nuclear data, and also have important implications for the fundamental understanding of the fission process. The development of VERDI focus on maximum geometrical efficiency while striving for highest possible mass resolution. An innovative transmission start detector, using electrons ejected from the target itself, was developed. Stop signal and kinetic energy of both fragments are provided by two arrays of silicon detectors. The present design provides about 200 times higher geometrical efficiency than that of the famous COSI FAN TUTTE spectrometer [Nuclear Instruments and Methods in Physics Research 219 (1984) 569]. We report about a commissioning experiment of the VERDI spectrometer, present first results from a 2v-2E measurement of {sup 252}Cf spontaneous fission and discuss the potential of this instrument to contribute to the investigation prompt fission neutron characteristics as a function of fission fragment properties.

  4. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    Science.gov (United States)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  5. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  6. Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications

    Science.gov (United States)

    Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.

    2014-12-01

    Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.

  7. The ExoMars Raman Laser Spectrometer: Performance and Optimisation

    Science.gov (United States)

    Hutchinson, Ian; EDWARDS, Howell G. M.; Ingley, Richard; Waltham, Nick; ExoMars RLS Team

    2016-10-01

    The ExoMars rover, which is due for launch in 2020, will incorporate an analytical laboratory for interrogating the composition of drill cores retrieved from the near sub-surface of the planet. The laboratory includes a Raman spectrometer with a green laser (532 nm) that will be used to investigate the molecular and structural properties of the material within the samples. The ExoMars, Raman Laser Spectrometer (RLS) is expected to be the first instrument of its kind to be used on another planet.In preparation for the deployment and operation of the RLS instrument, a broad range of laboratory and fieldwork activities are currently being performed in order to ensure optimum scientific return from the mission. These studies include: science operations and data exploitation, terrestrial analogue studies (and laboratory simulations) and lessons learned from previous planetary mission experiences.Here we report on the status of the RLS science team activities related to studies of terrestrial analogues. This work includes the recovery and characterisation of appropriate samples from various field-site locations (e.g. clay based samples and materials recovered from dry deserts) that reflect the nature of the materials that are expected to be present in the landing site locations currently anticipated for the ExoMars rover mission. Other work includes the detailed analysis of such analogue samples using flight-like prototype instruments, both in-situ and in the laboratory.A summary of the results obtained from all of these studies is presented along with an overview of the anticipated performance capabilities of the instrument. Particular emphasis is placed on the design and performance of the camera system (including both the detector and data processing sub-systems).

  8. Fast neutron detection with a segmented spectrometer

    Science.gov (United States)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  9. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  10. Digital logarithmic airborne gamma ray spectrometer

    Science.gov (United States)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  11. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  12. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  13. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  14. Gas-dust-impact mass spectrometer

    CERN Document Server

    Semkin, N D; Myasnikov, S V; Pomelnikov, R A

    2002-01-01

    Paper describes design of a mass spectrometer to study element composition of micro meteorite and man-made particles in space. Paper describes a way to improve resolution of mass spectrometer based on variation of parameters of accelerating electric field in time. The advantage of the given design of mass spectrometer in comparison with similar ones is its large operating area and higher resolution at the comparable weight and dimensions. Application of a combined design both for particles and for gas enables to remove space vehicle degassing products from the spectrum and, thus, to improve reliability of the acquired information, as well as, to acquire information on a gas component of the external atmosphere of a space vehicle

  15. Fast neutron detection with a segmented spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Langford, T.J., E-mail: thomas.langford@yale.edu [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H.; Erwin, D.K. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Heimbach, C.R.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-21

    A fast neutron spectrometer consisting of segmented plastic scintillator and {sup 3}He proportional counters was constructed for the measurement of neutrons in the energy range 1–200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  16. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  17. The Cosmic Infrared Background Experiment (CIBER): The Narrow-Band Spectrometer

    Science.gov (United States)

    Korngut, P. M.; Renbarger, T.; Arai, T.; Battle, J.; Bock, J.; Brown, S. W.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lanz, A.; Lee, D. H.; Levenson, L. R.; Lykke, K. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Shultz, B.; Smith, A. W.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2013-08-01

    We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight.

  18. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE NARROW-BAND SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Korngut, P. M.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Renbarger, T.; Keating, B. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Arai, T.; Matsumoto, T.; Matsuura, S. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Hristov, V.; Lanz, A.; Levenson, L. R.; Mason, P. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, S. W.; Lykke, K. R.; Smith, A. W. [Sensor Science Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Shultz, B., E-mail: pkorngut@caltech.edu [Materion Barr Precision Optics and Thin Film Coatings, Westford, MA 01886 (United States); and others

    2013-08-15

    We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight.

  19. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR: Instrument Technology

    Directory of Open Access Journals (Sweden)

    Yohei Shinozuka

    2013-08-01

    Full Text Available The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  20. Design and Performance of A High Resolution Micro-Spec: An Integrated Sub-Millimeter Spectrometer

    Science.gov (United States)

    Barrentine, Emily M.; Cataldo, Giuseppe; Brown, Ari D.; Ehsan, Negar; Noroozian, Omid; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey

    2016-01-01

    Micro-Spec is a compact sub-millimeter (approximately 100 GHz--1:1 THz) spectrometer which uses low loss superconducting microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a diffraction grating spectrometer onto a single chip. We have already successfully evaluated the performance of a prototype Micro-Spec, with spectral resolving power, R=64. Here we present our progress towards developing a higher resolution Micro-Spec, which would enable the first science returns in a balloon flight version of this instrument. We describe modifications to the design in scaling from a R=64 to a R=256 instrument, as well as the ultimate performance limits and design concerns when scaling this instrument to higher resolutions.

  1. The Joint Astrophysical Plasmadynamic Experiment (J-PEX): a high-resolution rocket spectrometer

    Science.gov (United States)

    Barstow, Martin A.; Bannister, Nigel P.; Cruddace, Raymond G.; Kowalski, Michael P.; Wood, Kent S.; Yentis, Daryl J.; Gursky, Herbert; Barbee, Troy W., Jr.; Goldstein, William H.; Kordas, Joseph F.; Fritz, Gilbert G.; Culhane, J. Leonard; Lapington, Jonathan S.

    2003-02-01

    We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245Å spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.

  2. The Joint astrophysical Plasmadynamic EXperiment (J-PEX) A high-resolution rocket spectrometer

    CERN Document Server

    Barstow, M A; Cruddace, R G; Kowalski, M; Wood, K S; Yentis, D J; Gursky, H; Barbee, T W; Goldstein, W H; Kordas, J F; Fritz, G G; Culhane, J L; Lapingtone, J S

    2002-01-01

    We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245A spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.

  3. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    CERN Document Server

    Canizares, C R; Dewey, D; Flanagan, K A; Galton, E B; Huenemoerder, D P; Ishibashi, K; Markert, T H; Marshall, H L; McGuirk, M; Schattenburg, M L; Schulz, N S; Smith, H I; Wise, M; Canizares, Claude R.; Davis, John E.; Dewey, Daniel; Flanagan, Kathryn A.; Galton, Eugene B.; Huenemoerder, David P.; Ishibashi, Kazunori; Markert, Thomas H.; Marshall, Herman L.; Guirk, Michael Mc; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Henry I.; Wise, Michael

    2005-01-01

    Details of the design, fabrication, ground and flight calibration of the High Energy Transmission Grating, HETG, on the Chandra X-ray Observatory are presented after five years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly six years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.

  4. Flight Research Building (Hangar)

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Glenn Flight Research Building is located at the NASA Glenn Research Center with aircraft access to Cleveland Hopkins International Airport. The facility is...

  5. Hypersonic flight testing

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, W.

    1987-01-01

    This presentation is developed for people attending the University of Texas week-long short course in hypersonics. The presentation will be late in the program after the audience has been exposed to computational tehniques and ground test methods. It will attempt to show why we flight test, flight test options, what we learn from flight tests and how we use this information to improve our knowledge of hypersonics. It presupposes that our primary interest is in developing vehicles which will fly in the hypersonic flight region and not in simply developing technology for technology's sake. The material is presented in annotated vugraph form so that the author's comments on each vugraph are on the back of the preceding page. It is hoped that the comments will help reinforce the message on the vugraph.

  6. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  7. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization

    Institute of Scientific and Technical Information of China (English)

    陈洲; 佟秋男; 张丛丛; 胡湛

    2015-01-01

    Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are per-formed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Com-pared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible.

  8. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer

    Science.gov (United States)

    Hellesen, C.; Skiba, M.; Dzysiuk, N.; Weiszflog, M.; Hjalmarsson, A.; Ericsson, G.; Conroy, S.; Andersson-Sundén, E.; Eriksson, J.; Binda, F.

    2014-11-01

    The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.

  9. 1999 Flight Mechanics Symposium

    Science.gov (United States)

    Lynch, John P. (Editor)

    1999-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  10. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  11. Effective area calibration of the reflection grating spectrometers of XMM-Newton. I. X-ray spectroscopy of the Crab nebula

    NARCIS (Netherlands)

    Kaastra, J.S.; de Vries, C.P.; Costantini, E.; den Herder, J.W.A.

    2009-01-01

    Context. The Crab nebula and pulsar have been widely used as a calibration source for X-ray instruments. The in-flight effective area calibration of the Reflection Grating Spectrometers (RGS) of XMM-Newton depend upon the availability of reliable calibration sources. Aims. We investigate how the abs

  12. Effective area calibration of the reflection grating spectrometers of XMM-Newton. I. X-ray spectroscopy of the Crab nebula

    NARCIS (Netherlands)

    Kaastra, J.S.; de Vries, C.P.; Costantini, E.; den Herder, J.W.A.

    2009-01-01

    Context. The Crab nebula and pulsar have been widely used as a calibration source for X-ray instruments. The in-flight effective area calibration of the Reflection Grating Spectrometers (RGS) of XMM-Newton depend upon the availability of reliable calibration sources. Aims. We investigate how the

  13. Vacuum system for the SAMURAI spectrometer

    Science.gov (United States)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  14. SAMURAI spectrometer for RI beam experiments

    Science.gov (United States)

    Kobayashi, T.; Chiga, N.; Isobe, T.; Kondo, Y.; Kubo, T.; Kusaka, K.; Motobayashi, T.; Nakamura, T.; Ohnishi, J.; Okuno, H.; Otsu, H.; Sako, T.; Sato, H.; Shimizu, Y.; Sekiguchi, K.; Takahashi, K.; Tanaka, R.; Yoneda, K.

    2013-12-01

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  15. SAMURAI spectrometer for RI beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayash@lambda.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Chiga, N. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Isobe, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Kondo, Y. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kubo, T.; Kusaka, K.; Motobayashi, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Ohnishi, J.; Okuno, H.; Otsu, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Sako, T. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Sato, H.; Shimizu, Y. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Sekiguchi, K.; Takahashi, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Tanaka, R. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Yoneda, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2013-12-15

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  16. Acousto-optic spectrometer for radio astronomy

    Science.gov (United States)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  17. Wide size range fast integrated mobility spectrometer

    Science.gov (United States)

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  18. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  19. Preliminary results from a new spin spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Bedrossian, P.J. [Lawrence Livermore National Lab., CA (United States); Cummins, T.R. [Univ. of Missouri, Rolla, MO (United States). Dept. of Physics] [and others

    1998-12-31

    The first preliminary results from a novel spectrometer for elementally-specific measurements of magnetic surfaces and ultrathin films are presented here. The key measurements are based upon spin-resolving and photon-dichroic photoelectron spectroscopy. True spin-resolution is achieved by the use of a Mini-Mott detection scheme. The photon-dichroic measurements include the variant magnetic x-ray linear dichroism (MXLD). Both a multi-channel, energy dispersive collection scheme as well as the spin-detecting Mini-Mott apparatus are used in data collection. The Spin Spectrometer is based at the Spectromicroscopy Facility (Beamline 7) at the Advanced Light Source.

  20. A 4[pi] dilepton spectrometer: PEPSI

    Energy Technology Data Exchange (ETDEWEB)

    Buda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Bacelar, J.C.S. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Balanda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Klinken, J. van (Kernfysisch Versneller Inst., Groningen (Netherlands)); Sujkowski, Z. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Woude, A. van der (Kernfysisch Versneller Inst., Groningen (Netherlands))

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd[sub 2]Fe[sub 14]B permanent magnets forming a compact 4[pi] magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ([alpha][sub [pi

  1. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  2. Magnesium and Space Flight.

    Science.gov (United States)

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  3. Interprofessional Flight Camp.

    Science.gov (United States)

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator.

  4. Designing Flight Deck Procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  5. In situ measurement of ions parameters of laser produced ion source using high resolution Thomson Parabola Spectrometer

    Science.gov (United States)

    Chaurasia, S.; Kaur, C.; Rastogi, V.; Poswal, A. K.; Munda, D. S.; Bhatia, R. K.; Nataraju, V.

    2016-08-01

    The laser produced plasma based heavy ion source has become an outstanding front end for heavy ion accelerators. Before being implemented in the heavy ion accelerators its detailed characterization is required. For this purpose, a high resolution and high dispersion Thomson parabola spectrometer comprising of Time-of-Flight diagnostics has been developed for the characterization of ions with energy in the range from 1 keV to 1 MeV/nucleon and incorporated in the Laser plasma experimental chamber. The ion spectrometer is optimized with graphite target. The carbon ions of charge states C1+ to C6+ are observed in the energy range from 3 keV to 300 keV, which has also been verified by Time-of-Flight measurement. Experimental results were matched with simulation done by SIMION 7.0 code which is used for the design of the spectrometer. We also developed data analysis software using Python language to measure in situ ion's parameters and the results are in better agreement to the experimental results than the commercially available software SIMION 7.0. The resolution of the spectrometer is ΔE/E = 0.026 @ 31 keV for charge state (C4+) of carbon.

  6. Identification of molecules in graphite furnace by laser ionization time-of-flight mass spectrometry: sulfur and chlorine containing compounds

    CSIR Research Space (South Africa)

    Raseleka, RM

    2004-01-01

    Full Text Available sulfate, chlo- rides of sodium, potassium, caesium, magnesium, calcium and strontium were vaporized in the graphite furnace. The vapors Fig. 1 UV absorption spectra of MgSO4,H2SO4 and sulfur powder. :10.1039/b400792a J. Anal. At. Spectrom., 2004, 19, 899... acquisition stages are 5 and 6. Fig. 2 (a) Electrothermal vaporizer coupled to a time of flight mass spectrometer. (b). Reflectron type time of flight mass spectrometer. 900 J. Anal. At. Spectrom., 2004, 19, 899?905 of the laser (10 Hz), the signals shown...

  7. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva [Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia)

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  8. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  9. Identification of heavy nuclei by combination of magnetic analysis time of flight and energy measurements

    CERN Document Server

    Stéphan, C; Garron, J P; Jacmart, J C; Poffé, N; Tassan-Got, L

    1976-01-01

    The addition of a time of flight measurement to a Delta E-E telescope set up in the focal plane of a magnetic spectrometer improves the identification of very heavy ions. The Delta E silicon detector is 8 mu thick. The time of flight is measured between a thin plastic scintillator at the entrance of the spectrometer and the Delta E detector, which gives a flight path of 3 m. In order to compensate for the different lengths of the trajectories, the plastic is bent at 15 degrees along the mean trajectory. In these conditions, one has obtained a time resolution of 0.7 ns with a solid angle of 1.8 10/sup -3/ sr (horizontal 2 degrees , vertical 3 degrees ). In these conditions, preliminary results already give an unambiguous identification up to mass approximately=100.

  10. A large area timing RPC prototype for ion collisions in the HADES spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Pol, H. [Facutad de Fisica, Universidade de Santiago de Compostela, Campus sur, Santiago de Compostela (Spain); Alves, R. [LIP, Coimbra (Portugal); Blanco, A. [LIP, Coimbra (Portugal); Carolino, N. [LIP, Coimbra (Portugal); Eschke, J. [GSI, Darmstadt (Germany); Ferreira-Marques, R. [LIP, Coimbra (Portugal); Universidade de Coimbra, Coimbra (Portugal); Fonte, P. [LIP, Coimbra (Portugal); ISEC, Coimbra (Portugal); Garzon, J.A. [Facutad de Fisica, Universidade de Santiago de Compostela, Campus sur, Santiago de Compostela (Spain); Gonzalez Diaz, D. [Facutad de Fisica, Universidade de Santiago de Compostela, Campus sur, Santiago de Compostela (Spain)]. E-mail: diego@fpddux.usc.es; Pereira, A. [LIP, Coimbra (Portugal); Pietraszko, J. [Smoluchowski Institute of Physics, Cracow (Poland); Pinhao, J. [LIP, Coimbra (Portugal); Policarpo, A. [LIP, Coimbra (Portugal); Universidade de Coimbra, Coimbra (Portugal); Stroth, J. [GSI, Darmstadt (Germany); Johann Wolfgang Goethe-Universitaet, Frankfurt (Germany)

    2004-12-11

    We present a resistive plate chamber (RPC) prototype for time-of-flight measurements over large areas and at high occupancies, minimizing the inter-channel cross-talk. A procedure for the stand-alone calibration of the detector using redundant information is proposed, taking advantage of the very good spatial uniformity observed. Measurements were performed at the GSI (Darmstadt) SIS accelerator for primary collisions of C at 1 GeV/u, as a first step towards the projected high acceptance di-electron spectrometer (HADES) upgrade to work at the highest multiplicities expected in Au-Au collisions.

  11. Precise Measurement of Cosmic-Ray Proton and Helium Spectra with the BESS Spectrometer

    CERN Document Server

    Sanuki, T; Matsumoto, H; Seo, E S; Wang, J Z; Abe, K; Anraku, K; Asaoka, Y; Fujikawa, M; Imori, M; Maeno, T; Makida, Y; Matsui, N; Matsunaga, H; Mitchell, J; Mitsui, T; Moiseev, A; Nishimura, J; Nozaki, M; Orito, S; Ormes, J F; Saeki, T; Sasaki, M; Shikaze, Y; Sonoda, T; Streitmatter, R E; Suzuki, J; Tanaka, K; Ueda, I; Yajima, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2000-01-01

    We report cosmic-ray proton and helium spectra in energy ranges of 1 to 120GeV and 1 to 54 GeV/nucleon, respectively, measured by a balloon flight of theBESS spectrometer in 1998. The magnetic-rigidity of the cosmic-rays wasreliably determined by highly precise measurement of the circular track in auniform solenoidal magnetic field of 1 Tesla. Those spectra were determinedwithin overall uncertainties of +-5 0.000000or protons and +- 10 0.000000or helium nucleiincluding statistical and systematic errors.

  12. Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS)

    Institute of Scientific and Technical Information of China (English)

    Behcet ALPAT

    2003-01-01

    The Alpha Magnetic Spectrometer experiment is realized in two phases. A precursor flight (STS-91)with a reduced experimental configuration (AMS01) has successfully flown on space shuttle Discovery in June 1998.The final version (AMS02) will be installed on the International Space Station (ISS) as an independent module inearly 2006 for an operational period of three years. The main scientific objectives of AMS02 include the searches forthe antimatter and dark matter in cosmic rays. In this work we will discuss the experimental details as well as the im-proved physics capabilities of AMS02 on ISS.

  13. Current Status and Future Plans for the General Antiparticle Spectrometer (GAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Fabris, Lorenzo [ORNL; Koglin, Johnathon D [ORNL; Craig, Teresa M [ORNL; Mori, Ken-Ichi [ORNL; Ziock, Klaus-Peter [ORNL

    2012-01-01

    We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza-Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon.

  14. IR spectrometer project for the BTA telescope

    Science.gov (United States)

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-07-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  15. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response f

  16. Handheld miniature ion trap mass spectrometers.

    Science.gov (United States)

    Ouyang, Zheng; Noll, Robert J; Cooks, R Graham

    2009-04-01

    For field applications, "miniature" and "rapid" have become almost synonymous, yet these small mass spectrometers are not useful if performance is too severely compromised. (To listen to a podcast about this feature, please go to the Analytical Chemistry website at pubs.acs.org/journal/ancham .).

  17. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  18. Neutron spectrometer for fast nuclear reactors

    CERN Document Server

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  19. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...

  20. Study and Demarcating of Electron Magnetic Spectrometer

    Institute of Scientific and Technical Information of China (English)

    LIYe-jun; SHANYu-sheng; TAOYe-zheng; CHENGYou-jian; ZHANGHai-feng

    2003-01-01

    The principle of electron magnetic spectrometer is a moving charged particle circles a central point for the Lorenz force when it moves in a steady magnetic field, at the same time, we consider the influence of gravity excursion, magnetic grads excursion and curvature excursion. Having adopted yoke iron equalizing technology and had magnetic field and gravity field at the same line.

  1. Imaging mass spectrometer with mass tags

    Science.gov (United States)

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  2. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    李道武; 刘军辉; 章志明; 王宝义; 张天保; 魏龙

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800 (a fast photomultiplier) to form the small size γ-ray detectors, a compact lifetime spectrometer has been built for the positron annihilation experiments. The system time resolution FWHM=193 ps and the co

  3. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response f

  4. Cryogenic imaging x-ray spectrometer

    NARCIS (Netherlands)

    Wiegerink, Remco J.; van Baar, J.J.J.; de Boer, J.H.; Ridder, M.L.; Bruijn, M.P.; Germeau, A.; Hoevers, H.F.C.

    2005-01-01

    A micro-calorimeter array consisting of superconducting transition-edge sensors is under development for the X-ray imaging spectrometer on board of ESA's XEUS (X-ray Evolving Universe Spectroscopy) mission. An array of 32 /spl times/ 32 pixels with a pixel size of 250 micron square is envisaged. So

  5. Digital Signal Processing in the GRETINA Spectrometer

    Science.gov (United States)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  6. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response

  7. Broadband Infrared Heterodyne Spectrometer: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  8. IR Spectrometer Project for the BTA Telescope

    OpenAIRE

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-01-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  9. Computer Enhanced SRO NQR-Spectrometer

    Science.gov (United States)

    Mano, Koichi; Hashimoto, Masao

    1986-02-01

    An automatic computer supported SRO NQR spectrometer system was constructed for the measurement of time dependent NQR signal intensities. The system has several functions: fast scanning (500 kH z/25 s), averaging, smoothing, automatic noise level estimation, automatic peak detection, etc. The process of the ß → α phase transition of p-dichlorobenzene is illustrated by the 3-dimensional spectrum .

  10. Long-term monitoring of the onboard aircraft exposure level with a Si-diode based spectrometer.

    Science.gov (United States)

    Spurny, F; Dachev, Ts

    2003-01-01

    The radiation fields onboard aircraft are complex (EURADOS, 1996), and several methods are used to characterise them for radiation protection. We have tested a spectrometer based on Si-diode at different sources and accelerator facilities. The energy deposited in the diode is analysed to estimate the contribution of different radiations to dosimetry quantities. The spectrum of energy deposition events onboard aircraft is similar to that registered in the CERN high-energy reference field. We used this similarity to determine the correction factors to appreciate radiation protection quantities from the results of onboard measurements. During 2001-2002, the spectrometer was used to acquire measurements onboard commercial aircraft during five long-term exposures. All necessary flight parameters were acquired; thus permitting calculations of the onboard effective dose and/or ambient dose equivalent by means of both the CARI 6 and the EPCARD codes and comparison with the results of the measurements. It was found that the apparent ambient dose equivalent values from measured data are in reasonable agreement with the results of calculations. Quantitative analysis of this agreement as a function of flight parameters (geomagnetic position, solar activity variations, etc.) is presented. During one flight, an important solar event (GLE 60 on 15 April 2001) was recorded by the spectrometer. In some other cases the measurements during a Forbush decreases were acquired. These extremes were well registered by the equipment and the data obtained are analyzed.

  11. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  12. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  13. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  14. Long duration flights management

    Science.gov (United States)

    Sosa-Sesma, Sergio; Letrenne, Gérard; Spel, Martin; Charbonnier, Jean-Marc

    Long duration flights (LDF) require a special management to take the best decisions in terms of ballast consumption and instant of separation. As a contrast to short duration flights, where meteorological conditions are relatively well known, for LDF we need to include the meteorological model accuracy in trajectory simulations. Dispersions on the fields of model (wind, temperature and IR fluxes) could make the mission incompatible with safety rules, authorized zones and others flight requirements. Last CNES developments for LDF act on three main axes: 1. Although ECMWF-NCEP forecast allows generating simulations from a 4D point (altitude, latitude, longitude and UT time), result is not statistical, it is determinist. To take into account model dispersion a meteorological NCEP data base was analyzed. A comparison between Analysis (AN) and Forecast (FC) for the same time frame had been done. Result obtained from this work allows implementing wind and temperature dispersions on balloon flight simulator. 2. For IR fluxes, NCEP does not provide ascending IR fluxes in AN mode but only in FC mode. To obtain the IR fluxes for each time frame, satellite images are used. A comparison between FC and satellites measurements had been done. Results obtained from this work allow implementing flux dispersions on balloon flight simulator. 3. An improved cartography containing a vast data base had been included in balloon flight simulator. Mixing these three points with balloon flight dynamics we have obtained two new tools for observing balloon evolution and risk, one of them is called ASTERISK (Statistic Tool for Evaluation of Risk) for calculations and the other one is called OBERISK (Observing Balloon Evolution and Risk) for visualization. Depending on the balloon type (super pressure, zero pressure or MIR) relevant information for the flight manager is different. The goal is to take the best decision according to the global situation to obtain the largest flight duration with

  15. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  16. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  17. Advanced Airborne Hyperspectral Imaging System (AAHIS): an imaging spectrometer for maritime applications

    Science.gov (United States)

    Voelker, Mark A.; Resmini, Ronald G.; Mooradian, Gregory C.; McCord, Thomas B.; Warren, Christopher P.; Fene, Michael W.; Coyle, Christopher C.; Anderson, Richard

    1995-06-01

    The Advanced Airborne Hyperspectral Imaging System (AAHIS) is a compact, lightweight visible and near IR pushbroom hyperspectral imaging spectrometer flown on a Piper Aztec aircraft. AAHIS is optimized for use in shallow water, littoral, and vegetation remote sensing. Data are collected at up to 55 frames/second and may be displayed and analyzed inflight or recorded for post-flight processing. Swath width is 200 meters at a flight altitude of 1 km. Each image pixel contains hyperspectral data simultaneously recorded in up to 288 contiguous spectral channels covering the 432 to 832 nm spectral region. Pixel binning typically yields pixels 1.0 meter square with a spectral channel width of 5.5 nm. Design and performance of the AAHIS is presented, including processed imagery demonstrating feature detection and materials discrimination on land and underwater at depths up to 27 meters.

  18. Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Poellot, Michael [University of North Dakota

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Integrated Precipitation and Hydrology Experiment (IPHEX). The field campaign took place during May and June of 2014 over North Carolina and its coastal waters as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA Advanced Composition Explorer (ACE) satellite program and flights of the NASA ER-2 aircraft, which is a civilian version of the Air Force’s U2-S reconnaissance platform. The ACE program funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the Atmospheric System Research program sponsored by DOE.

  19. Low-Power Wideband Digital Spectrometer for Planetary Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...

  20. The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer

    Science.gov (United States)

    Tsumura, K.; Arai, T.; Battle, J.; Bock, J.; Brown, S.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Lykke, K.; Mason, P.; Matsumoto, T.; Matsuura, S.; Murata, K.; Nam, U. W.; Renbarger, T.; Smith, A.; Sullivan, I.; Suzuki, K.; Wada, T.; Zemcov, M.

    2013-08-01

    Absolute spectrophotometric measurements of diffuse radiation at 1 μm to 2 μm are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a λ/Δλ ~ 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 μm <λ < 2.1 μm. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  1. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Brown, S.; Lykke, K.; Smith, A. [Optical Technology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Hristov, V.; Levenson, L. R.; Mason, P. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I., E-mail: tsumura@ir.isas.jaxa.jp [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); and others

    2013-08-15

    Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  2. NIRS3: The Near Infrared Spectrometer on Hayabusa2

    Science.gov (United States)

    Iwata, Takahiro; Kitazato, Kohei; Abe, Masanao; Ohtake, Makiko; Arai, Takehiko; Arai, Tomoko; Hirata, Naru; Hiroi, Takahiro; Honda, Chikatoshi; Imae, Naoya; Komatsu, Mutsumi; Matsunaga, Tsuneo; Matsuoka, Moe; Matsuura, Shuji; Nakamura, Tomoki; Nakato, Aiko; Nakauchi, Yusuke; Osawa, Takahito; Senshu, Hiroki; Takagi, Yasuhiko; Tsumura, Kohji; Takato, Naruhisa; Watanabe, Sei-ichiro; Barucci, Maria Antonietta; Palomba, Ernesto; Ozaki, Masanobu

    2017-03-01

    NIRS3: The Near Infrared Spectrometer is installed on the Hayabusa2 spacecraft to observe the target C-type asteroid 162173 Ryugu at near infrared wavelengths of 1.8 to 3.2 μm. It aims to obtain reflectance spectra in order to detect absorption bands of hydrated and hydroxide minerals in the 3 μm-band. We adopted a linear-image sensor with indium arsenide (InAs) photo diodes and a cooling system with a passive radiator to achieve an optics temperature of 188 K ( -85°C), which enables to retaining sufficient sensitivity and noise level in the 3 μm wavelength region. We conducted ground performance tests for the NIRS3 flight model (FM) to confirm its baseline specifications. The results imply that the properties such as the signal-to-noise ratio (SNR) conform to scientific requirements to determine the degree of aqueous alteration, such as CM or CI chondrite, and the stage of thermal metamorphism on the asteroid surface.

  3. NIRS3: The Near Infrared Spectrometer on Hayabusa2

    Science.gov (United States)

    Iwata, Takahiro; Kitazato, Kohei; Abe, Masanao; Ohtake, Makiko; Arai, Takehiko; Arai, Tomoko; Hirata, Naru; Hiroi, Takahiro; Honda, Chikatoshi; Imae, Naoya; Komatsu, Mutsumi; Matsunaga, Tsuneo; Matsuoka, Moe; Matsuura, Shuji; Nakamura, Tomoki; Nakato, Aiko; Nakauchi, Yusuke; Osawa, Takahito; Senshu, Hiroki; Takagi, Yasuhiko; Tsumura, Kohji; Takato, Naruhisa; Watanabe, Sei-ichiro; Barucci, Maria Antonietta; Palomba, Ernesto; Ozaki, Masanobu

    2017-07-01

    NIRS3: The Near Infrared Spectrometer is installed on the Hayabusa2 spacecraft to observe the target C-type asteroid 162173 Ryugu at near infrared wavelengths of 1.8 to 3.2 μm. It aims to obtain reflectance spectra in order to detect absorption bands of hydrated and hydroxide minerals in the 3 μm-band. We adopted a linear-image sensor with indium arsenide (InAs) photo diodes and a cooling system with a passive radiator to achieve an optics temperature of 188 K (-85°C), which enables to retaining sufficient sensitivity and noise level in the 3 μm wavelength region. We conducted ground performance tests for the NIRS3 flight model (FM) to confirm its baseline specifications. The results imply that the properties such as the signal-to-noise ratio (SNR) conform to scientific requirements to determine the degree of aqueous alteration, such as CM or CI chondrite, and the stage of thermal metamorphism on the asteroid surface.

  4. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  5. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

      In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  6. Flight Dynamics Laboratory overview

    Science.gov (United States)

    Sandford, Thaddeus

    1986-01-01

    The Flight Dynamics Laboratory (FDL) is one of four Air Force Wright Aeronautical Laboratories (AFWAL) and part of the Aeronautical Systems Division located at Wright-Patterson AFB, Ohio. The FDL is responsible for the planning and execution of research and development programs in the areas of structures and dynamics, flight controls, vehicle equipment/subsystems, and aeromechanics. Some of the areas being researched in the four FDL divisions are as follows: large space structures (LSS) materials and controls; advanced cockpit designs; bird-strike-tolerant windshields; and hypersonic interceptor system studies. Two of the FDL divisions are actively involved in programs that deal directly with LSS control/structures interaction: the Flight Controls Division and the Structures and Dynamics Division.

  7. 2001 Flight Mechanics Symposium

    Science.gov (United States)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  8. Technologies for hypersonic flight

    Science.gov (United States)

    Steinheil, Eckart; Uhse, Wolfgang

    An account is given of the technology readiness requirements of the West German Saenger II air-breathing first-stage, two-stage reusable launcher system. The present, five-year conceptual development phase will give attention to propulsion, aerothermodynamic, materials/structures, and flight guidance technology development requirements. The second, seven-year development phase will involve other West European design establishments and lead to the construction of a demonstration vehicle. Attention is presently given to the air-breathing propulsion system, and to flight-weight structural systems under consideration for both external heating and internal cryogenic tankage requirements.

  9. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  10. BaF2 TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION SPECTROMETER

    Institute of Scientific and Technical Information of China (English)

    朱升云; 勾振辉; 等

    1994-01-01

    A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE.The time resolution of the spectrometer is 195ps and the nonlinearity is less than 2%.The spectrometer works very stably and no time drift is found over a period of experimental runs.This spectrometer has been successfully used in the g-factor measurement of 43Sc(19/2-,3.1232MeV).

  11. Miniature anastigmatic spectrometer design with a concave toroidal mirror.

    Science.gov (United States)

    Dong, Jianing; Chen, He; Zhang, Yinchao; Chen, Siying; Guo, Pan

    2016-03-01

    An advanced optical design for a low-cost and astigmatism-corrected spectrometer with a high resolution is presented. The theory and method of astigmatism correction are determined with the use of a concave toroidal mirror. The performances of a modified spectrometer and a traditional spectrometer are compared, and the analysis is verified. Experimentally, the limiting resolution of our spectrometer is 0.1 nm full width at half-maximum, as measured for 579.1 nm.

  12. Editorial: New 1.2 GHz NMR Spectrometers- New Horizons?

    Science.gov (United States)

    Schwalbe, Harald

    2017-08-21

    The latest ultrahigh-field NMR spectrometers are a huge technological challenge that require large financial investments. In his Guest Editorial, Harald Schwalbe justifies the need for spectrometers with higher magnetic field strengths. The important results from previous generations of high-field NMR spectrometers are discussed, and research areas are identified that will benefit from the latest spectrometers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Remote sensing of phytoplankton functional types in the coastal ocean from the HyspIRI Preparatory Flight Campaign

    OpenAIRE

    Palacios, SL; Kudela, RM; Guild, LS; Negrey, KH; Torres-Perez, J; Broughton, J

    2015-01-01

    © 2015 Elsevier Inc. The 2013-2015 Hyperspectral Infrared Imager (HyspIRI) Preparatory Flight Campaign, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS/ASTER Airborne Simulator (MASTER), seeks to demonstrate appropriate sensor signal, spatial and spectral resolution, and orbital pass geometry for a global mission to reveal ecological and climatic gradients expressed in the selected California, USA study area. One of the awarded projects focused on the flight transe...

  14. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  15. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    Science.gov (United States)

    Yoneda, K.

    2012-11-01

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  16. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, K. [RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-11-12

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  17. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2016-11-15

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  18. Fourier and Hadamard transform spectrometers - A limited comparison. II

    Science.gov (United States)

    Harwit, M.; Tai, M. H.

    1977-01-01

    A mathematical approach was used to compare interferometric spectrometers and Hadamard transform spectrometers. The principle results are reported, noting that the simple Hadamard spectrometer encodes more efficiently than a Michelson interferometer which, in turn, encodes less efficiently than is usually acknowledged. Hirschfeld's (1977) major objections to these findings are discussed, although it is noted that none of his objections is supported by evidence.

  19. Space Shuttle flight control system

    Science.gov (United States)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  20. A wideband spectrometer for the SRT

    Science.gov (United States)

    Comoretto, G.; Natale, V.

    A radiotelescope operating at millimeter wavelengths must be able to analyze an instantaneous bandwidth of at least a few GHz in spectroscopic mode, with a number of spectral points of the order of thousands. Two solutions are examined. In the first, it is assumed that a multi-channel digital spectrometer, with a bandwidth of the order of 100 MHz for each channel, will be available. In this case, a digital filterbank derived from the experience with the ALMA correlator could be used to synthesize a total bandwidth of 1-2 GHz. For wider bandwidths, an acousto-optical spectrometer is proposed. The experience at IRA, Sez. di Firenze with these instruments is presented, and possible solutions are outlined.

  1. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  2. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  3. WSPEC: A Waveguide Filter Bank Spectrometer

    CERN Document Server

    Che, George; Underhill, Matthew; Mauskopf, Philip; Groppi, Christopher; Jones, Glenn; Johnson, Bradley; McCarrick, Heather; Flanigan, Daniel; Day, Peter

    2015-01-01

    We have designed, fabricated, and measured a 5-channel prototype spectrometer pixel operating in the WR10 band to demonstrate a novel moderate-resolution (R=f/{\\Delta}f~100), multi-pixel, broadband, spectrometer concept for mm and submm-wave astronomy. Our design implements a transmission line filter bank using waveguide resonant cavities as a series of narrow-band filters, each coupled to an aluminum kinetic inductance detector (KID). This technology has the potential to perform the next generation of spectroscopic observations needed to drastically improve our understanding of the epoch of reionization (EoR), star formation, and large-scale structure of the universe. We present our design concept, results from measurements on our prototype device, and the latest progress on our efforts to develop a 4-pixel demonstrator instrument operating in the 130-250 GHz band.

  4. Imaging spectrometer wide field catadioptric design

    Science.gov (United States)

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  5. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrometer by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  6. PAC Spectrometer for Condensed Matter Investigation

    CERN Document Server

    Brudanin, V B; Kochetov, O I; Korolev, N A; Milanov, M; Ostrovsky, I V; Pavlov, V N; Salamatin, A V; Timkin, V V; Velichkov, A I; Fomicheva, L N; Tsvyaschenko, A V; Akselrod, Z Z

    2005-01-01

    A four-detector spectrometer of perturbed angular $\\gamma \\gamma $ correlations is developed for investigation of hyperfine interactions in condensed matter. It allows measurements with practically any types of detectors. A unique circuit design involving a specially developed Master PAC unit combined with a computer allows a substantially higher efficiency, reduced setup time and simpler operation in comparison with traditional PAC spectrometers. A cryostat and a high-temperature oven allow measurements in the temperature range from 120 to 1300 K. An encased electromagnet makes it possible to generate a magnetic field up to 2 T on a sample. The measurement system includes a press with a specially designed high-pressure chamber allowing on-line PAC measurements in samples under pressure up to 60 GPa.

  7. A 4 π dilepton spectrometer: PEPSI

    Science.gov (United States)

    Buda, A.; Bacelar, J. C. S.; Bałanda, A.; van Klinken, J.; Sujkowski, Z.; van der Woude, A.

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2Fe 14B permanent magnets forming a compact 4 π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ( απ) of the 15.1 MeV M1 transition from a Jπ = 1 + state to the ground state in 12C. Our experimental value of απ = (3.3 ± 0.5) × 10 -3 is in good agreement with theoretical estimates.

  8. Data Reduction with the MIKE Spectrometer

    CERN Document Server

    Bernstein, Rebecca A; Prochaska, J Xavier

    2015-01-01

    This manuscript describes the design, usage, and data-reduction pipeline developed for the Magellan Inamori Kyocera Echelle (MIKE) spectrometer used with the Magellan telescope at the Las Campanas Observatory. We summarize the basic characteristics of the instrument and discuss observational procedures recommended for calibrating the standard data products. We detail the design and implementation of an IDL based data-reduction pipeline for MIKE data (since generalized to other echelle spectrometers, e.g. Keck/HIRES, VLT/UVES). This includes novel techniques for flat-fielding, wavelength calibration, and the extraction of echelle spectroscopy. Sufficient detail is provided in this manuscript to enable inexperienced observers to understand the strengths and weaknesses of the instrument and software package and an assessment of the related systematics.

  9. Cryogenic system for a superconducting spectrometer

    Science.gov (United States)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. The cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy are described. The system normally operates with a 4 K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. The 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  10. The transition-edge EBIT microcalorimeter spectrometer

    Science.gov (United States)

    Betancourt-Martinez, Gabriele L.; Adams, Joseph; Bandler, Simon; Beiersdorfer, Peter; Brown, Gregory; Chervenak, James; Doriese, Randy; Eckart, Megan; Irwin, Kent; Kelley, Richard; Kilbourne, Caroline; Leutenegger, Maurice; Porter, F. S.; Reintsema, Carl; Smith, Stephen; Ullom, Joel

    2014-07-01

    The Transition-edge EBIT Microcalorimeter Spectrometer (TEMS) is a 1000-pixel array instrument to be delivered to the Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory (LLNL) in 2015. It will be the first fully operational array of its kind. The TEMS will utilize the unique capabilities of the EBIT to verify and benchmark atomic theory that is critical for the analysis of high-resolution data from microcalorimeter spectrometers aboard the next generation of x-ray observatories. We present spectra from the present instrumentation at EBIT, as well as our latest results with time-division multiplexing using the current iteration of the TEMS focal plane assembly in our test platform at NASA/GSFC.

  11. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    TAN ChengMing; YAN YiHua; TAN BaoLin; XU GuiRong

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrom-eter by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  12. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  13. Two step processes for meson production at the time of flight spectrometer at cosy.

    CERN Document Server

    Hassan, A M

    2000-01-01

    in this work the contribution of the two step mechanism to the cross section of the reaction pd-> sup 3 He eta is presented in a model calculation. a simple approach is used where relativistic kinematics and empirical cross sections are employed. the on-and off -shell effects and the selective fusion of the baryons to sup 3 He on the velocity matching concept are described . for the first time the folding process includes the angular and energy dependence of the two subsequent steps (step A:pp -> d pi sup + and step B:pi sup + n-> eta p) in the simulation . the angular and energy dependences and the fusion probability of the baryons to a bound baryonic system ( sup 3 He )are used to weigh the events in each corresponding step. the velocity matching is the reason for selective fusion of the baryons to sup 3 He. the angular distribution predicted by the two step processes shows a forward peak of sup 3 He in the center of mass system except in a small range of 0 to 10 MeV excess energy where the cross section is...

  14. A real time scintillating fiber Time of Flight spectrometer for LINAC photoproduced neutrons

    NARCIS (Netherlands)

    Maspero, M; Berra, Alessandro; Conti, Valentina; Giannini, G.; Ostinelli, A.; Prest, M.; Vallazza, E.

    2015-01-01

    The use of high-energy (> 8MeV) LINear ACcelerators (LINACs) for medical cancer treatments causes the photoproduction of secondary neutrons, whose unwanted dose to the patient has to be calculated. The characterization of the neutron spectra is necessary to allow the dosimetric evaluation of the neu

  15. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Using a revolutionary ion-focusing scheme developed at Mississippi State University (provisional patent filed) we will be able to design and build a compact laser...

  16. Cluster SIMS with a hybrid quadrupole time-of-flight mass spectrometer

    Science.gov (United States)

    Carado, A.; Kozole, J.; Passarelli, M.; Winograd, N.; Loboda, A.; Wingate, J.

    2008-12-01

    The new physics associated with cluster SIMS, i.e. reduced chemical damage enabling 3D dynamic imaging, and increased ion yields from organics samples, suggests that cluster sources may be suitable for use on commercial MALDI/electrospray (ESI) instruments. In efforts to investigate this approach to secondary ion analysis, a 20 keV C 60+ primary ion source by Ionoptika Ltd. was fitted to a commercial LC/MS/MS instrument; the QSTAR ® XL system by Applied Biosystems/MDS Sciex. This instrument is capable of MS/MS, ion trapping, chemical imaging, and utilizes an orthogonal ToF, enabling use of a DC primary ion beam for imaging and data collection. The system employs high nitrogen pressure, typically several millitorr, in the sample region, as opposed to large extraction voltages, to facilitate the transmission of the secondary ions to the ToF region. In these initial experiments, it was demonstrated that ion signal generated by C 60+ bombardment can be enhanced by trapping in the collision cell and that secondary ions can fragment via collision induced dissociation (CID) to yield MS/MS information. In ToF-MS mode, efficiencies are comparable with pulsed primary beam ToF-SIMS instruments. Mass resolution of over 12,000 is routinely observed with mass accuracy in the 2 ppm range, which has important implications in accurate ion mapping in imaging mode.

  17. Cluster SIMS with a hybrid quadrupole time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Carado, A. [Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802 (United States)], E-mail: ajc161@psu.edu; Kozole, J.; Passarelli, M.; Winograd, N. [Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802 (United States); Loboda, A.; Wingate, J. [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ontario, CA (United States)

    2008-12-15

    The new physics associated with cluster SIMS, i.e. reduced chemical damage enabling 3D dynamic imaging, and increased ion yields from organics samples, suggests that cluster sources may be suitable for use on commercial MALDI/electrospray (ESI) instruments. In efforts to investigate this approach to secondary ion analysis, a 20 keV C{sub 60}{sup +} primary ion source by Ionoptika Ltd. was fitted to a commercial LC/MS/MS instrument; the QSTAR XL system by Applied Biosystems/MDS Sciex. This instrument is capable of MS/MS, ion trapping, chemical imaging, and utilizes an orthogonal ToF, enabling use of a DC primary ion beam for imaging and data collection. The system employs high nitrogen pressure, typically several millitorr, in the sample region, as opposed to large extraction voltages, to facilitate the transmission of the secondary ions to the ToF region. In these initial experiments, it was demonstrated that ion signal generated by C{sub 60}{sup +} bombardment can be enhanced by trapping in the collision cell and that secondary ions can fragment via collision induced dissociation (CID) to yield MS/MS information. In ToF-MS mode, efficiencies are comparable with pulsed primary beam ToF-SIMS instruments. Mass resolution of over 12,000 is routinely observed with mass accuracy in the 2 ppm range, which has important implications in accurate ion mapping in imaging mode.

  18. Simulating a Time-of-Flight Mass Spectrometer: A LabView Exercise

    Science.gov (United States)

    Marty, Michael T.; Beussman, Douglas J.

    2013-01-01

    An in-depth understanding of all parameters that affect an instrumental analysis method, allowing students to explore how these instruments work so that they are not just a "black box," is key to being able to optimize the technique and obtain the best possible results. It is, however, impractical to provide such in depth coverage of…

  19. Simulating a Time-of-Flight Mass Spectrometer: A LabView Exercise

    Science.gov (United States)

    Marty, Michael T.; Beussman, Douglas J.

    2013-01-01

    An in-depth understanding of all parameters that affect an instrumental analysis method, allowing students to explore how these instruments work so that they are not just a "black box," is key to being able to optimize the technique and obtain the best possible results. It is, however, impractical to provide such in depth coverage of…

  20. Flight Mechanics Symposium 1997

    Science.gov (United States)

    Walls, Donna M. (Editor)

    1997-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium. This symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.