WorldWideScience

Sample records for flight control design

  1. Robust Control Design for Flight Control

    Science.gov (United States)

    1989-07-01

    to achieve desired performance over the full flight envelope when linear feedback is employed. Exact linearization methods [48] provide means for...designing nonlinear feedback laws which satisfy these requirements. However, exact linearization is not always compatible with control authority...specific situations. The most promising approaches appear to be those associated with methods of exact linearization . This procedure is based on some

  2. Flying qualities criteria and flight control design

    Science.gov (United States)

    Berry, D. T.

    1981-01-01

    Despite the application of sophisticated design methodology, newly introduced aircraft continue to suffer from basic flying qualities deficiencies. Two recent meetings, the DOD/NASA Workshop on Highly Augmented Aircraft Criteria and the NASA Dryden Flight Research Center/Air Force Flight Test Center/AIAA Pilot Induced Oscillation Workshop, addressed this problem. An overview of these meetings is provided from the point of view of the relationship between flying qualities criteria and flight control system design. Among the items discussed are flying qualities criteria development, the role of simulation, and communication between flying qualities specialists and control system designers.

  3. Flight Control Design - Best Practices

    Science.gov (United States)

    2007-11-02

    certains aspects théoriques. Vient d’abord un débat sur les critères de qualités de vol, en particulier sur les spécifications militaires...was designed such that a failure could not result in an unsafe recovery. The system is credited with saving the test aircraft during the evaluation of a...Recherche et développement - Estado Maior da Força Aérea AnalysisCommunications et gestion de SDFA - Centro de Documentação Institute of Military

  4. Quadrocopter Control Design and Flight Operation

    Science.gov (United States)

    Karwoski, Katherine

    2011-01-01

    A limiting factor in control system design and analysis for spacecraft is the inability to physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly and take much preparation. As such, EV41 recently acquired a small research quadrocopter that has the ability to be a test bed for new control systems. This project focused on learning how to operate, fly, and maintain the quadrocopter, as well as developing and testing protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the design and analysis of simple control systems for the quadrocopter. Software provided by the manufacturer enabled testing of the Simulink control system on the vehicle.

  5. Flight Controller Design of Transport Airdrop

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; SHIZhongke

    2011-01-01

    During airdrop of heavy load,the flight paramctcrs vary continuously as the load moves in the hold,and change suddenly when the load drops out.This process deteriorates the flight quality and control characteristic as the load becomes heavier.Based on the simplified airdrop flight equations,the backstepping and switch control methods are developed to tackle the flight state holding and disturbance/uncertainty(such as large scale flight condition,pilot manipulation error,system measure delay,etc.)attenuation problem in this paper.Moreover,these methods can be used as a reference for pilot manipulating during airdrop.With the backstepping theory,an adaptive controller is synthesized for the purpose of stabilizing the transport when the load moves in the hold,and then a coordinated switch control method is used to control the aircraft when the condition jumps from the existence of load at the rear of fuselage to no load in the fuselage.Simulation results show that the proposed controllers not only provide effective state holding during airdrop,but also achieve robust performance within wide flight conditions.

  6. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment

    OpenAIRE

    Clara Nieto-Wire; Kenneth Sobel

    2011-01-01

    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  7. Design of energy-based terrain following flight control system

    Science.gov (United States)

    Wang, Wei; Li, Aijun; Xie, Yanwu; Tan, Jian

    2006-11-01

    Historically, aircraft longitudinal control has been realized by means of two loops: flight path (the control variable is elevator displacement) and speed control (the control variable is propulsive thrust or engine power). Both the elevator and throttle control cause coupled altitude and speed response, which exerts negative effects on longitudinal flight performance of aircraft, especially for Terrain Following(TF) flight. Energy-based method can resolve coupled problem between flight speed and path by controlling total energy rate and energy distribution rate between elevator and throttle. In this paper, energy-based control method is applied to design a TF flight control system for controlling flight altitude directly. An error control method of airspeed and altitude is adopted to eliminate the stable error of the total energy control system when decoupling control. Pitch loop and pitch rate feedback loop are designed for the system to damp the oscillatory response produced by TF system. The TF flight control system structure diagram and an aircraft point-mass energy motion model including basic control loops are given and used to simulate decoupling performance of the TF fight control system. Simulation results show that the energy-based TF flight control system can decouple flight velocity and flight path angle, exactly follow planned flight path, and greatly reduce altitude error, which is between +10m and -8m.

  8. Incremental approximate dynamic programming for nonlinear flight control design

    NARCIS (Netherlands)

    Zhou, Y.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    A self-learning adaptive flight control design for non-linear systems allows reliable and effective operation of flight vehicles in a dynamic environment. Approximate dynamic programming (ADP) provides a model-free and computationally effective process for designing adaptive linear optimal

  9. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  10. Sliding Mode Control Applied to Reconfigurable Flight Control Design

    Science.gov (United States)

    Hess, R. A.; Wells, S. R.; Bacon, Barton (Technical Monitor)

    2002-01-01

    Sliding mode control is applied to the design of a flight control system capable of operating with limited bandwidth actuators and in the presence of significant damage to the airframe and/or control effector actuators. Although inherently robust, sliding mode control algorithms have been hampered by their sensitivity to the effects of parasitic unmodeled dynamics, such as those associated with actuators and structural modes. It is known that asymptotic observers can alleviate this sensitivity while still allowing the system to exhibit significant robustness. This approach is demonstrated. The selection of the sliding manifold as well as the interpretation of the linear design that results after introduction of a boundary layer is accomplished in the frequency domain. The design technique is exercised on a pitch-axis controller for a simple short-period model of the High Angle of Attack F-18 vehicle via computer simulation. Stability and performance is compared to that of a system incorporating a controller designed by classical loop-shaping techniques.

  11. Design and Analysis of Morpheus Lander Flight Control System

    Science.gov (United States)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  12. Control Design and Performance Analysis for Autonomous Formation Flight Experimentss

    Science.gov (United States)

    Rice, Caleb Michael

    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.

  13. Modern digital flight control system design for VTOL aircraft

    Science.gov (United States)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.

    1979-01-01

    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  14. Rotorcraft flight-propulsion control integration: An eclectic design concept

    Science.gov (United States)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  15. Robust, Decoupled, Flight Control Design with Rate Saturating Actuators

    Science.gov (United States)

    Snell, S. A.; Hess, R. A.

    1997-01-01

    Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.

  16. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    Science.gov (United States)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  17. Analysis and Design of Launch Vehicle Flight Control Systems

    Science.gov (United States)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  18. Flight Control System Design with Rate Saturating Actuators

    Science.gov (United States)

    Hess, R. A.; Snell, S. A.

    1997-01-01

    Actuator rate saturation is an important factor adversely affecting the stability and performance of aircraft flight control systems. It has been identified as a catalyst in pilot-induced oscillations, some of which have been catastrophic. A simple design technique is described that utilizes software rate limiters to improve the performance of control systems operating in the presence of actuator rate saturation. As described, the technique requires control effectors to be ganged such that any effector is driven by only a single compensated error signal. Using an analysis of the steady-state behavior of the system, requirements are placed upon the type of the loop transmissions and compensators in the proposed technique. Application of the technique to the design of a multi-input/multi-output, lateral-directional control system for a simple model of a high-performance fighter is demonstrated as are the stability and performance improvements that can accrue with the technique.

  19. Unfalsified Control; Application to automatic flight control system design

    Directory of Open Access Journals (Sweden)

    Adrian-Mihail STOICA

    2011-09-01

    Full Text Available Unfalsified Control Theory has been developed to provide a way for avoiding modeling uncertainties in controller design. It belongs to the class of control methods called Adaptive Supervisory Switching Control, which work by introducing in the control scheme a supervisory unit which chooses, from a set of candidate controllers the one most suited for the current plant. Unfalsified Control works by using a switching logic that dispenses with the need for a-priori knowledge of the dynamic model. At discrete moments of time, using the input/output data recorded up to that point, the supervisory calculates for each candidate controller a performance index, and compares it to a given threshold. Controllers surpassing that threshold are removed from the candidate controller set. This process is called falsification. If the controller in the loop is one such falsified controller it is replaced. In this paper we investigate the suitability of this method for aeronautical control applications. We review the theory behind this control scheme and adapt it to the case of controlling a fighter aircraft. We also provide a case study, where we test this control scheme on a simulated fighter aircraft.

  20. Designing a Biomimetic Ornithopter Capable of Sustained and Controlled Flight

    Institute of Scientific and Technical Information of China (English)

    Joon Hyuk Park; Kwang-Joon Yoon

    2008-01-01

    We describe the design of four ornithopters ranging in wing span from 10 cm to 40 cm, and in weight from 5 g to 45 g. The controllability and power supply are two major considerations, so we compare the efficiency and characteristics between different types of subsystems such as gearbox and tail shape. Our current ornithopter is radio-controlled with inbuilt visual sensing and capable of takeoff and landing. We also concentrate on its wing efficiency based on design inspired by a real insect wing and consider that aspects of insect flight such as delayed stall and wake capture are essential at such small size. Most importantly, the advance ratio, controlled either by enlarging the wing beat amplitude or raising the wing beat frequency, is the most significant factor in an ornithopter which mimics an insect.

  1. Reconfigurable Flight Control Design for Combat Flying Wing with Multiple Control Surfaces

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; WANG Lixin

    2012-01-01

    With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must be able to reconfigure after such failures.Considering three types of typical control surface failures (lock-in-place (LIP),loss-of-effectiveness (LOE) and float),flight control reconfiguration characteristic and capability of such aircraft types are analyzed.Because of the control surface redundancy,the aircraft using the dynamic inversion flight control law already has a control allocation block.In this paper,its flight control configuration during the above failures is achieved by modifying this block.It is shown that such a reconfigurable flight control design is valid,through numerical simulations of flight attitude control task.Results indicate that,in the circumstances of control surface failures with limited degree and the degradation of the flying quality level,a combat flying wing adopting this flight control reconfiguration approach based on control allocation could guarantee its flight safety and perform some flight combat missions.

  2. H-infinity based integrated flight/propulsion control design for a STOVL aircraft in transition flight

    Science.gov (United States)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle; Ouzts, Peter

    1990-01-01

    This paper presents results from an application of H(infinity) control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC design with controller partitioning. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H(infinity) control problem such that it reflects the IFPC design objective. The H(infinity) controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance.

  3. Digital flight control software design requirements. [for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    The objective of the integrated digital flight control system is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effects by using an executive routine/function subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN and C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described. The specific estimation and control algorithms used in the various mission phases are shown. Attitude maneuver routines that interface with the DFCS are also described.

  4. DESIGNING REDUCED-ORDER CONTROLLERS OF MIXED SENSITIVITY PROBLEM FOR FLIGHT CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on linear matrix inequalities (LMI), the design method of reduced-order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not greater than the difference between the generalized plant order and the number of independent control variables, if the mixed sensitivity problem is solvable for strict regular flight control plants. The proof is constructive, and an approach to design such a controller can be obtained in terms of a pair of feasible solution to the well-known 3 LMI. Finally, an example of mixed sensitivity problem for a flight control system is given to demonstrate practice of the approach.

  5. Design and Testing of Flight Control Laws on the RASCAL Research Helicopter

    Science.gov (United States)

    Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.

    2001-01-01

    Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.

  6. Digital flight control research

    Science.gov (United States)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  7. Flight Control Design for an Autonomous Rotorcraft Using Pseudo-Sliding Mode Control and Waypoint Navigation

    Science.gov (United States)

    Mallory, Nicolas Joseph

    The design of robust automated flight control systems for aircraft of varying size and complexity is a topic of continuing interest for both military and civilian industries. By merging the benefits of robustness from sliding mode control (SMC) with the familiarity and transparency of design tradeoff offered by frequency domain approaches, this thesis presents pseudo-sliding mode control as a viable option for designing automated flight control systems for complex six degree-of-freedom aircraft. The infinite frequency control switching of SMC is replaced, by necessity, with control inputs that are continuous in nature. An introduction to SMC theory is presented, followed by a detailed design of a pseudo-sliding mode control and automated flight control system for a six degree-of-freedom model of a Hughes OH6 helicopter. This model is then controlled through three different waypoint missions that demonstrate the stability of the system and the aircraft's ability to follow certain maneuvers despite time delays, large changes in model parameters and vehicle dynamics, actuator dynamics, sensor noise, and atmospheric disturbances.

  8. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  9. A knowledge-based system design/information tool for aircraft flight control systems

    Science.gov (United States)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  10. An Integrated Approach to Aircraft Modelling and Flight Control Law Design

    NARCIS (Netherlands)

    Looye, G.H.N.

    2008-01-01

    The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions.

  11. An Integrated Approach to Aircraft Modelling and Flight Control Law Design

    NARCIS (Netherlands)

    Looye, G.H.N.

    2008-01-01

    The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions. Cons

  12. X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes

    Science.gov (United States)

    Hall, Charles E.; Gallaher, Michael W.; Hendrix, Neal D.

    1998-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.

  13. H-infinity based integrated flight-propulsion control design for a STOVL aircraft in transition flight

    Science.gov (United States)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle M.; Ouzts, Peter J.

    1990-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic Short Take-Off and Vertical Landing (STOVL) fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC controller design with controller partitioning. Only the feedback controller design portion of the methodology is addressed. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H-infinity control problem such that it reflects the IFPC design objectives. The H-infinity controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance. A discussion is presented of the areas in which the controller performance needs to be improved, and ways in which these improvements can be achieved within the framework of an H-infinity based linear control design.

  14. Flying qualities - A costly lapse in flight-control design

    Science.gov (United States)

    Berry, D. T.

    1982-01-01

    Generic problems in advanced aircraft with advanced control systems which suffer from control sensitivity, sluggish response, and pilot-induced oscillation tendencies are examined, with a view to improving techniques for eliminating the problems in the design phase. Results of two NASA and NASA/AIAA workshops reached a consensus that flying qualities criteria do not match control system development, control system designers are not relying on past experience in their field, ground-based simulation is relied on too heavily, and communications between flying qualities and control systems engineers need improvement. A summation is offered in that hardware and software have outstripped the pilot's capacity to use the capabilities which new aircraft offer. The flying qualities data base is stressed to be dynamic, and continually redefining the man/machine relationships.

  15. Bifurcation Tools for Flight Dynamics Analysis and Control System Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern bifurcation analysis methods have been proposed for investigating flight dynamics and control system design in highly nonlinear regimes and also for the...

  16. Flight Test Experiment Design for Characterizing Stability and Control of Hypersonic Vehicles

    Science.gov (United States)

    Morelli, Eugene A.

    2008-01-01

    A maneuver design method that is particularly well-suited for determining the stability and control characteristics of hypersonic vehicles is described in detail. Analytical properties of the maneuver design are explained. The importance of these analytical properties for maximizing information content in flight data is discussed, along with practical implementation issues. Results from flight tests of the X-43A hypersonic research vehicle (also called Hyper-X) are used to demonstrate the excellent modeling results obtained using this maneuver design approach. A detailed design procedure for generating the maneuvers is given to allow application to other flight test programs.

  17. Electromechanical flight control actuator

    Science.gov (United States)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  18. Design of a flight control architecture using a non-convex bundle method

    OpenAIRE

    Gabarrou, Marion; Alazard, Daniel; Noll, Dominikus

    2013-01-01

    We design a feedback control architecture for longitudinal flight of an aircraft. The multi-level architecture includes the flight control loop to govern the short term dynamics of the aircraft, and the autopilot to control the long term modes. Using H1 performance and robustness criteria, the problem is cast as a non-convex and non-smooth optimization program. We present a non-convex bundle method, prove its convergence, and show that it is apt to solve the longitudinal flight control pro...

  19. Flight Control System Design by Quadratic Stabilization with Partial Pole Placement

    Science.gov (United States)

    Satoh, Atsushi; Sugimoto, Kenji

    The most fundamental requirements for flight control system are ensuring robust stability and improving flying quality. Quadratic stabilization is a powerful technique ensuring robust stability against parameter change of aircraft due to flight condition. Furthermore, flying quality requirements are regarded as eigenstructure assignment specifications. This paper proposes a new design method of feedback gain which simultaneously achieves quadratic stabilization and partial pole placement. This design method is reduced to a numerical optimization problem including linear matrix inequality (LMI) constraints.

  20. Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation

    Science.gov (United States)

    Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy

    2001-01-01

    Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.

  1. Three axis electronic flight motion simulator real time control system design and implementation.

    Science.gov (United States)

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  2. Three axis electronic flight motion simulator real time control system design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua [School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072 (China); Wang, Xuyong [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  3. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    Science.gov (United States)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  4. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    Science.gov (United States)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  5. Spacecraft flight control system design selection process for a geostationary communication satellite

    Science.gov (United States)

    Barret, C.

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.

  6. On the synthesis of sliding mode controller for the autopilot design of free flight system

    Science.gov (United States)

    Devika K., B.; Thomas, Susy

    2017-01-01

    Today's rapid growth in air transportation demand leads to the problem of congestion in air traffic routes. In recent years, free flight concept is widely discussed as the solution to this problem. Free flight is a decentralized method of air traffic management, in which each aircraft has the freedom to self optimize its own route. Conflict detection and its subsequent resolution are the major challenges in the realization of this concept. Today's modern navigation and surveillance equipment can ensure accurate conflict predictions. Once a conflict is detected, it should be avoided through suitable conflict avoidance maneuvers. An autopilot capable of initiating these conflict free maneuvers should be a necessary part of any aircraft in free flight to ensure conflict avoided flight. Controller design based on Sliding Mode Control (SMC) strategy is presented in this paper for the purpose of free flight autopilot implementation. Since SMC has the inherent property of robustness in sliding mode, it can ensure a highly efficient autopilot design. Conventional and reaching law approaches of SMC design are considered here for controller design. Conventional SMC technique usually exhibits an unacceptable phenomenon, viz., chattering. Reaching law approaches for SMC design are being investigated here so as to identify an appropriate strategy that can ensure near chattering free operation. Considering typical free flight conflict avoidance modes of operation, the performance of all the considered SMC strategies are compared through simulation studies. The comparison is based on their ability to reduce chattering and the effectiveness in ensuring quick conflict resolution maneuvers, so that an efficient controller for free flight autopilot system can be recommended.

  7. Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design

    Science.gov (United States)

    Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.

    2016-01-01

    The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.

  8. Flight Path Control Design for the Cassini Solstice Mission

    Science.gov (United States)

    Ballard, Christopher G.; Ionasescu, Rodica

    2011-01-01

    The Cassini spacecraft has been in orbit around Saturn for just over 7 years, with a planned 7-year extension, called the Solstice Mission, which started on September 27, 2010. The Solstice Mission includes 205 maneuvers and 70 flybys which consist of the moons Titan, Enceladus, Dione, and Rhea. This mission is designed to use all available propellant with a statistical margin averaging 0.6 m/s per encounter, and the work done to prove and ensure the viability of this margin is highlighted in this paper.

  9. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  10. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    Science.gov (United States)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  11. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    Science.gov (United States)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  12. Flight control design using a blend of modern nonlinear adaptive and robust techniques

    Science.gov (United States)

    Yang, Xiaolong

    In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles

  13. Rotorcraft flight control design using quantitative feedback theory and dynamic crossfeeds

    Science.gov (United States)

    Cheng, Rendy P.

    1995-01-01

    A multi-input, multi-output controls design with robust crossfeeds is presented for a rotorcraft in near-hovering flight using quantitative feedback theory (QFT). Decoupling criteria are developed for dynamic crossfeed design and implementation. Frequency dependent performance metrics focusing on piloted flight are developed and tested on 23 flight configurations. The metrics show that the resulting design is superior to alternative control system designs using conventional fixed-gain crossfeeds and to feedback-only designs which rely on high gains to suppress undesired off-axis responses. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets current handling qualities specifications relative to the decoupling of off-axis responses. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensator successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective.

  14. Design of passive fault-tolerant flight controller against actuator failures

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    2015-02-01

    Full Text Available The problem of designing passive fault-tolerant flight controller is addressed when the normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are formed by polytopes. As considering that the safety of a post-fault system is directly related to the maximum values of physical variables in the system, peak-to-peak gain is selected to represent the relationships among the amplitudes of actuator outputs, system outputs, and reference commands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant flight controllers in the absence/presence of system uncertainty for actuator failure cases are designed, respectively. Case studies of an airplane under actuator failures are carried out to validate the effectiveness of the proposed approach.

  15. Design of passive fault-tolerant flight controller against actuator failures

    Institute of Scientific and Technical Information of China (English)

    Yu Xiang; Zhang Youmin

    2015-01-01

    The problem of designing passive fault-tolerant flight controller is addressed when the normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are formed by polytopes. As considering that the safety of a post-fault system is directly related to the maximum values of physical variables in the system, peak-to-peak gain is selected to represent the relationships among the amplitudes of actuator outputs, system outputs, and reference com-mands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant flight controllers in the absence/presence of system uncertainty for actuator failure cases are designed, respectively. Case studies of an airplane under actuator failures are carried out to validate the effectiveness of the proposed approach.

  16. A fast microprocessor communication network design for interprocessor communications for an integrated flight control system

    Science.gov (United States)

    Kelly, G. L.; Jiang, P.-W.

    1982-01-01

    A node design with connectivity four is presented whose communication processor handles data at four million bits/sec on each of the four channels into the node, and on each of the four channels out of the node, for a total node capacity of 32 million bits/sec. An integrated flight control system real-time application of this communication network design is discussed. It is shown that such high speed node communication hardware, arranged in the topological configuration of a minimum diameter graph with connectivity four and all links active, has good potential for real time control applications requiring reliability, availability, and survivability characteristics.

  17. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    Science.gov (United States)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  18. Design and Experiment of Flight Path Control System of Unmanned Autogyro

    Directory of Open Access Journals (Sweden)

    Wang Song

    2016-01-01

    Full Text Available This paper presents the architecture of flight tracking control system for unmanned autogyro, and designs the control law based on the control characteristics of unmanned autogyro. To reduce the lift force loss during turning and maintain the altitude, the feedforward control method of pitching rudder for propeller is adopted (during rolling; To reduce the influence of propeller anti-twisting effect on the roll attitude and course, feedforward control method of the propeller rolling rudder (during throttle changing, is adopted; to reduce the slide slipping and achieve coordinated turning, a hybrid control strategy of the yaw rudder and rolling rud-der of propeller is developed. The flying platform is built to verify the flying. It is proved that this control system can effectively control the altitude and horizontal path of the unmanned autogyro, the control accuracy is better than ± 5m.

  19. Designing for Damage: Robust Flight Control Design using Sliding Mode Techniques

    Science.gov (United States)

    Vetter, T. K.; Wells, S. R.; Hess, Ronald A.; Bacon, Barton (Technical Monitor); Davidson, John (Technical Monitor)

    2002-01-01

    A brief review of sliding model control is undertaken, with particular emphasis upon the effects of neglected parasitic dynamics. Sliding model control design is interpreted in the frequency domain. The inclusion of asymptotic observers and control 'hedging' is shown to reduce the effects of neglected parasitic dynamics. An investigation into the application of observer-based sliding mode control to the robust longitudinal control of a highly unstable is described. The sliding mode controller is shown to exhibit stability and performance robustness superior to that of a classical loop-shaped design when significant changes in vehicle and actuator dynamics are employed to model airframe damage.

  20. Design and Flight Test of a Cable Angle Feedback Control System for Improving Helicopter Slung Load Operations at Low Speed

    Science.gov (United States)

    2014-04-01

    11-13 May 2010. [21] Anon., Aeronautical design Standard, Handling Quality Requirements for Military Rotorcraft , ADS- 33E-PRF, U.S. Army Aviation...Dec 1989. [47] Cheng, R.P., Rotorcraft Flight Control Design Using Quantitative Feedback Theory and Dynamic Crossfeeds, Master’s Thesis, California...Cheung, K.K., Berger, T., Berrios, M., “Handling- Qualities Optimization and Trade-offs in Rotorcraft Flight Control Design ,” Proceedings of the RAeS

  1. Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems

    Science.gov (United States)

    Wells, Scott R.

    2002-01-01

    Observer-based sliding mode control is investigated for application to aircraft reconfigurable flight control. A comprehensive overview of reconfigurable flight control is given, including, a review of the current state-of-the-art within the subdisciplines of fault detection, parameter identification, adaptive control schemes, and dynamic control allocation. Of the adaptive control methods reviewed, sliding mode control (SMC) appears very promising due its property of invariance to matched uncertainty. An overview of sliding mode control is given and its remarkable properties are demonstrated by example. Sliding mode methods, however, are difficult to implement because unmodeled parasitic dynamics cause immediate and severe instability. This presents a challenge for all practical applications with limited bandwidth actuators. One method to deal with parasitic dynamics is the use of an asymptotic observer in the feedback path. Observer-based SMC is investigated, and a method for selecting observer gains is offered. An additional method for shaping the feedback loop using a filter is also developed. It is shown that this SMC prefilter is equivalent to a form of model reference hedging. A complete design procedure is given which takes advantage of the sliding mode boundary layer to recast the SMC as a linear control law. Frequency domain loop shaping is then used to design the sliding manifold. Finally, three aircraft applications are demonstrated. An F-18/HARV is used to demonstrate a SISO pitch rate tracking controller. It is also used to demonstrate a MIMO lateral-directional roll rate tracking controller. The last application is a full linear six degree-of-freedom advanced tailless fighter model. The observer-based SMC is seen to provide excellent tracking with superior robustness to parameter changes and actuator failures.

  2. Designing Flight Deck Procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  3. Stochastic contraction-based observer and controller design algorithm with application to a flight vehicle

    Science.gov (United States)

    Mohamed, Majeed; Narayan Kar, Indra

    2015-11-01

    This paper focuses on a stochastic version of contraction theory to construct observer-controller structure for a flight dynamic system with noisy velocity measurement. A nonlinear stochastic observer is designed to estimate the pitch rate, the pitch angle, and the velocity of an aircraft example model using stochastic contraction theory. Estimated states are used to compute feedback control for solving a tracking problem. The structure and gain selection of the observer is carried out using Itô's stochastic differential equations and the contraction theory. The contraction property of integrated observer-controller structure is derived to ensure the exponential convergence of the trajectories of closed-loop nonlinear system. The upper bound of the state estimation error is explicitly derived and the efficacy of the proposed observer-controller structure has been shown through the numerical simulations.

  4. Digital flight control systems

    Science.gov (United States)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  5. Bifurcation Tools for Flight Dynamics Analysis and Control System Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the project is the development of a computational package for bifurcation analysis and advanced flight control of aircraft. The development of...

  6. Control design for robust stability in linear regulators: Application to aerospace flight control

    Science.gov (United States)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  7. Guidance, Navigation and Control (GN and C) Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    Science.gov (United States)

    Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.

  8. Sliding Mode Controller Design for Position and Speed Control of Flight Simulator Servo System with Large Friction

    Institute of Scientific and Technical Information of China (English)

    刘金琨; 尔联洁

    2003-01-01

    Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is proved. Simulation example indicates that the controller can guarantee a high robust performance and have a high precision of position tracking and speed tracking for a flight simulator servo system.

  9. Bumblebee calligraphy: the design and control of flight motifs in the learning and return flights of Bombus terrestris.

    Science.gov (United States)

    Philippides, Andrew; de Ibarra, Natalie Hempel; Riabinina, Olena; Collett, Thomas S

    2013-03-15

    Many wasps and bees learn the position of their nest relative to nearby visual features during elaborate 'learning' flights that they perform on leaving the nest. Return flights to the nest are thought to be patterned so that insects can reach their nest by matching their current view to views of their surroundings stored during learning flights. To understand how ground-nesting bumblebees might implement such a matching process, we have video-recorded the bees' learning and return flights and analysed the similarities and differences between the principal motifs of their flights. Loops that take bees away from and bring them back towards the nest are common during learning flights and less so in return flights. Zigzags are more prominent on return flights. Both motifs tend to be nest based. Bees often both fly towards and face the nest in the middle of loops and at the turns of zigzags. Before and after flight direction and body orientation are aligned, the two diverge from each other so that the nest is held within the bees' fronto-lateral visual field while flight direction relative to the nest can fluctuate more widely. These and other parallels between loops and zigzags suggest that they are stable variations of an underlying pattern, which enable bees to store and reacquire similar nest-focused views during learning and return flights.

  10. Singular perturbations and time scales in the design of digital flight control systems

    Science.gov (United States)

    Naidu, Desineni S.; Price, Douglas B.

    1988-01-01

    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  11. A design procedure and handling quality criteria for lateral directional flight control systems

    Science.gov (United States)

    Stein, G.; Henke, A. H.

    1972-01-01

    A practical design procedure for aircraft augmentation systems is described based on quadratic optimal control technology and handling-quality-oriented cost functionals. The procedure is applied to the design of a lateral-directional control system for the F4C aircraft. The design criteria, design procedure, and final control system are validated with a program of formal pilot evaluation experiments.

  12. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    Science.gov (United States)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  13. Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design

    Science.gov (United States)

    Hueschen, R. M.

    1984-01-01

    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees.

  14. Space Shuttle flight control system

    Science.gov (United States)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  15. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls,...

  16. Initial design and evaluation of automatic restructurable flight control system concepts

    Science.gov (United States)

    Weiss, J. L.; Looze, D. P.; Eterno, J. S.; Grunberg, D. B.

    1986-01-01

    Results of efforts to develop automatic control design procedures for restructurable aircraft control systems is presented. The restructurable aircraft control problem involves designing a fault tolerance control system which can accommodate a wide variety of unanticipated aircraft failure. Under NASA sponsorship, many of the technologies which make such a system possible were developed and tested. Future work will focus on developing a methodology for integrating these technologies and demonstration of a complete system.

  17. Design of Advanced Digital Flight Control Systems via Command Generator Tracker (CGT) Synthesis Methods. Volume I.

    Science.gov (United States)

    1981-12-01

    of the CGT controllers. For the aircraft longitudinal dynamics system, three different design models are used. All three design jmodels employ simple... longitudinal dynamics are given below. Reference 30 details * Ithe derivation of the linear perturbation model of aircraft longitudinal dynamics while the...decoupled pitch-pointing control for an aircraft system model representative of modern aircraft longitudinal dynamics. The CGT/PI/KF controller is found

  18. Advanced Thermal Control Flight Experiment.

    Science.gov (United States)

    Kirkpatrick, J. P.; Brennan, P. J.

    1973-01-01

    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  19. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-06-01

    ...; Electronic Flight Control System: Control Surface Position Awareness AGENCY: Federal Aviation Administration... design features include an electronic flight control system. The applicable airworthiness regulations do... an electronic flight control system and no direct coupling from the cockpit controller to the...

  20. LQG/LTR Design of a Robust Flight Controller for the STOL F-15.

    Science.gov (United States)

    1985-12-01

    34truth modelo equated to the design model. While this controller shows an improvement In settling time, both position and rate limits for the canard...8. D’Azzo, John J., and Constantine H. Houpis. Lineal - Control S/stem.3 Analysis and Desion (3euond Elitlcri). New York: McGaw-Hill Book Company

  1. Multicriteria Gain Tuning for Rotorcraft Flight Controls (also entitled The Development of the Conduit Advanced Control System Design and Evaluation Interface with a Case Study Application Fly by Wire Helicopter Design)

    Science.gov (United States)

    Biezad, Daniel

    1997-01-01

    Handling qualities analysis and control law design would seem to be naturally complimenting components of aircraft flight control system design, however these two closely coupled disciplines are often not well integrated in practice. Handling qualities engineers and control system engineers may work in separate groups within an aircraft company. Flight control system engineers and handling quality specialists may come from different backgrounds and schooling and are often not aware of the other group's research. Thus while the handling qualities specifications represent desired aircraft response characteristics, these are rarely incorporated directly in the control system design process. Instead modem control system design techniques are based on servo-loop robustness specifications, and simple representations of the desired control response. Comprehensive handling qualities analysis is often left until the end of the design cycle and performed as a check of the completed design for satisfactory performance. This can lead to costly redesign or less than satisfactory aircraft handling qualities when the flight testing phase is reached. The desire to integrate the fields of handling qualities and flight,control systems led to the development of the CONDUIT system. This tool facilitates control system designs that achieve desired handling quality requirements and servo-loop specifications in a single design process. With CONDUIT, the control system engineer is now able to directly design and control systems to meet the complete handling specifications. CONDUIT allows the designer to retain a preferred control law structure, but then tunes the system parameters to meet the handling quality requirements.

  2. Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles

    Science.gov (United States)

    2016-12-07

    RP/AOARD/2016 Kapil Sachan, Radhakant Padhi Department of Aerospace Engineering Indian Institute of Science Bangalore, 560012, INDIA DISTRIBUTION A...compatibility. Further, the important vehicle related constants used in controller design and analysis are summarized in Table 2.1 The vehicle...Alberto Isidori. Nonlinear control systems. Springer Science & Business Media , 2013. Shahriar Keshmiri, Maj D Mirmirani, and Richard Colgren. Six-dof

  3. A Few Questions on Flight Control System Research and Design of Near Space Vehicle%关于近空间飞行器飞行控制系统研究设计的几个问题

    Institute of Scientific and Technical Information of China (English)

    姜长生

    2015-01-01

    Several problems on the flight control system design of Near Space Vehicle ( NSV ) are discussed. Firstly, the recent developments and the importance of NSV research are introduced. Then, several important problems for the NSV flight control are discussed, including:1 ) modeling of NSV flight motion control;2 ) robustness of NSV flight attitude control;3 ) integrated coordination control between flight attitude and centre-of-gravity motion;4 ) integrated coordination control between flight and engine control;and 5 ) anti-disturbance of flight control. The corresponding view is given and methods are proposed for solution of the problems. At last, the author’s viewpoints on design principles of NSV flight control system are presented, and the significance of applying integrated coordination control idea in NSV flight control system design is pointed out.

  4. Research in digital adaptive flight controllers

    Science.gov (United States)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  5. Design of a T Factor Based RBFNC for a Flight Control System

    Directory of Open Access Journals (Sweden)

    C. S. Mohanty

    2014-01-01

    Full Text Available This paper presents the design of modified radial basic function neural controller (MRBFNC for the pitch control of an aircraft to obtain the desired pitch angel as required by the pilot while maneuvering an aircraft. In this design, the parameters of radial basis function neural controller (RBFNC are optimized by implementing a feedback mechanism which is controlled by a tuning factor “α” (T factor. For a given input, the response of the RBFN controller is tuned by using T factor for better performance of the aircraft pitch control system. The proposed system is demonstrated under different condition (absence and presence of sensor noise. The simulation results show that MRBFNC performs better, in terms of settling time and rise time for both conditions, than the conventional RBFNC. It is also seen that, as the value of the T factor increases, the aircraft pitch control system performs better and settles quickly to its reference trajectory. A comparison between MRBFNC and conventional RBFNC is also established to discuss the superiority of the former techniques.

  6. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    Science.gov (United States)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; hide

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  7. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis

    Science.gov (United States)

    Gerren, Donna S.

    1995-01-01

    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  8. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    Science.gov (United States)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  9. Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement (ADVANCE) Technology Development for Resilient Flight Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test a framework referred to as the ADVANCE (Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement), within which...

  10. Digital Flight Control System Validation.

    Science.gov (United States)

    1982-06-01

    Uperioust languages and formal progrmiag Logic (Such was the cae ina the formation of the Radio end design, hag resulted in the accelerated Technical...wee In defined , dM tin Osytm e all as wssLuete Ohe 0esig of these same- Isei to btop ues eM m defined . "UK""t fault coie am ep~es syste prior ft Mo... Softwre Cost etilstift, 131 Computer Society 17. ’Simulator Investigation Plan for Digital 1977, Pages 13-177. Flight Controls Validation Technology

  11. Design and Realization of Remote Control UAV' s Flight Controller%超视距遥控无人机飞行控制台设计与实现

    Institute of Scientific and Technical Information of China (English)

    邓红德; 李兴岷; 王亮

    2011-01-01

    为了给无人机地面站系统操纵人员提供实时、准确、直观和形象的飞行信息,文章依据超视距遥控无人机的特点和人机交互界面设计原则,设计并实现了超视距遥控无人机飞行控制台;飞行控制台以嵌入了GL Studio控件的LabWindows/CVI为主要开发平台,采用UDP协议进行实时通信;项目测试表明飞行控制台的设计达到了系统指标要求,满足了地面站对飞行控制台的功能性需求.%To provide UAV s operator with flight information in real time, according to the property of remote control UAV and human-machine interface design, a flight controller has been implemented. The flight controller used LabWindows/CVI, GL Studio and UDP communication as the main developing platform. The system has been used in projection, and the test had showed that it could meet the need of the GCS (ground control station) of remote control UAV.

  12. Supporting Flight Control for UAV-Assisted Wilderness Search and Rescue Through Human Centered Interface Design

    Science.gov (United States)

    2007-12-01

    wonderful, loving wife, Amanda, has sacrificed, encouraged, and patiently helped me all the way through the graduate program. My daughter, Emily , gave me...AIAA- 2005-6949, 2005. [6] Alan F. Blackwell . The reification of metaphor as a design tool. ACM Trans. Comput.-Hum. Interact., 13(4):490–530, 2006

  13. Mechatronic Design, Dynamic Modeling and Results of a Satellite Flight Simulator for Experimental Validation of Satellite Attitude Determination and Control Schemes in 3-Axis

    Directory of Open Access Journals (Sweden)

    M.A. Mendoza-Bárcenas

    2014-06-01

    Full Text Available This paper describes the integration and implementation of a satellite flight simulator based on an air bearing system, which was designed and instrumented in our laboratory to evaluate and to perform research in the field of Attitude Determination and Control Systems for satellites, using the hardware-in-the-loop technique. The satellite flight simulator considers two main blocks: an instrumented mobile platform and an external computer executing costume-made Matlab® software. The first block is an air bearing system containing an FPGA based on-board computer with capabilities to integrate digital architectures for data acquisition from inertial navigation sensors, control of actuators and communications data handling. The second block is an external personal computer, which runs in parallel Matlab® based algorithms for attitude determination and control. Both blocks are linked by means of radio modems. The paper also presents the analysis of the satellite flight simulator dynamics in order to obtain its movement equation which allows a better understanding of the satellite flight simulator behavior. In addition, the paper shows experimental results about the automated tracking of the satellite flight simulator based a virtual reality model developed in Matlab®. It also depicts two different versions of FPGA based on-board computers developed in-house to integrate embedded and polymorphic digital architectures for spacecrafts applications. Finally, the paper shows successful experimental results for an attitude control test using the satellite flight simulator based on a linear control law.

  14. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  15. Space shuttle digital flight control system

    Science.gov (United States)

    Minott, G. M.; Peller, J. B.; Cox, K. J.

    1976-01-01

    The space shuttle digital, fly by wire, flight control system presents an interesting challenge in avionics system design. In residence in each of four redundant general purpose computers at lift off are the guidance, navigation, and control algorithms for the entire flight. The mission is divided into several flight segments: first stage ascent, second stage ascent; abort to launch site, abort once around; on orbit operations, entry, terminal area energy management; and approach and landing. The FCS is complicated in that it must perform the functions to fly the shuttle as a boost vehicle, as a spacecraft, as a reentry vehicle, and as a conventional aircraft. The crew is provided with both manual and automatic modes of operations in all flight phases including touchdown and rollout.

  16. Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls. Ph.D. Thesis

    Science.gov (United States)

    Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.

    1995-01-01

    A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.

  17. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    Science.gov (United States)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  18. Design and Implementation of Flight Visual Simulation System

    OpenAIRE

    Tian, Feng; Chai, Wenjian; Wang, Chuanyun; Sun, Xiaoping

    2012-01-01

    The design requirement for flight visual simulation system is studied and the overall structure and development process are proposed in this paper. Through the construction of 3D scene model library and aircraft model, the rendering and interaction of visual scene are implemented. The changes of aircraft flight attitude in visual system are controlled by real-time calculation of aircraft aerodynamic and dynamic equations and flight simulation effect is enhanced by this kind of control. Severa...

  19. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  20. Next Generation Flight Controller Trainer System

    Science.gov (United States)

    Arnold, Scott; Barry, Matthew R.; Benton, Isaac; Bishop, Michael M.; Evans, Steven; Harvey, Jason; King, Timothy; Martin, Jacob; Mercier, Al; Miller, Walt; Payne, Dan L.; Phu, Hanh; Thompson, James C.; Aadsen, Ron

    2008-01-01

    The Next Generation Flight Controller Trainer (NGFCT) is a relatively inexpensive system of hardware and software that provides high-fidelity training for spaceshuttle flight controllers. NGFCT provides simulations into which are integrated the behaviors of emulated space-shuttle vehicle onboard general-purpose computers (GPCs), mission-control center (MCC) displays, and space-shuttle systems as represented by high-fidelity shuttle mission simulator (SMS) mathematical models. The emulated GPC computers enable the execution of onboard binary flight-specific software. The SMS models include representations of system malfunctions that can be easily invoked. The NGFCT software has a flexible design that enables independent updating of its GPC, SMS, and MCC components.

  1. Hardware Design of a Small UAV Flight Control System%小型无人机飞行控制系统硬件设计

    Institute of Scientific and Technical Information of China (English)

    都基焱; 张振

    2014-01-01

    For the disadvantage of traditional flight control computer system with single chip, design the flight control computer system of a small UAV. Technical index and functional is formulated, and TMS320F28335 chip is used as the core controller, which integrates GPS and sensor, and expands a few of communication interfaces. All of these designs ensure the real-time and reliability of data communication, and can achieve the independent autonomous navigation of small UAV. For the characteristics of low weight, small size and small power, the flight control system can provide a reference for the design and application of small UAV.%针对传统单片机飞行控制系统的不足,设计一种适用于小型无人机的飞行控制系统。制定了技术和功能指标,以TMS320F28335芯片为核心,集成了GPS和传感器,并进行少量外部接口扩展,保证了数据通信的实时性和可靠性,实现了小型无人机的自主控制。实验结果表明:该系统成本低、体积小、功率小,可为小型无人机的设计与应用提供参考。

  2. 14 CFR 27.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 27.151 Section 27.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls....

  3. 14 CFR 29.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 29.151 Section 29.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls....

  4. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-02-17

    ... Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY: Federal... transport category airplanes. These design features include an electronic flight control system. The... The GVI has an electronic flight control system and no direct coupling from the cockpit controller to...

  5. Flight tests of the total automatic flight control system (Tafcos) concept on a DHC-6 Twin Otter aircraft

    Science.gov (United States)

    Wehrend, W. R., Jr.; Meyer, G.

    1980-01-01

    Flight control systems capable of handling the complex operational requirements of the STOL and VTOL aircraft designs as well as designs using active control concepts are considered. Emphasis is placed on the total automatic flight control system (TACOS) (TAFCOS). Flight test results which verified the performance of the system concept are presented.

  6. The Study of Large Civil Aircraft Flight Control System Design Philosophy%大型民用飞机飞控系统设计理念研究

    Institute of Scientific and Technical Information of China (English)

    谢殿煌

    2015-01-01

    Design philosophy shall be an idea which will be built before project starts to launch. As the flight control system’s top level input, it will directly affect the design of control handling device, system architecture, control law architecture and so on. Civil aircraft flight control system’s design philosophy was studied from the view of methodology. Lifecycle, philosophy characteristics and strategic essence were erected, the influence factors were analyzed importantly, architecture and evaluation method were set up, and the relative database between aircraft accidents and design philosophy were developed, provided aircraft manufacturers to define the flight control system’s design philosophy for the theoretical method direction and technical basis.%飞控系统设计理念是大型民用飞机飞控系统设计的顶层输入,直接影响着飞控操纵器件、系统架构、控制律架构等设计。该文从方法论角度探索和研究了民用飞机飞控系统设计理念,重点分析了设计理念影响因素,建立了设计理念体系结构,提出了设计理念评估方法,建立了民机事故与设计理念的关系数据库,为民机制造商确立自己的民用飞机飞控系统设计理念提供了理论方法指导和技术基础。

  7. Design of a Computerised Flight Mill Device to Measure the Flight Potential of Different Insects.

    Science.gov (United States)

    Martí-Campoy, Antonio; Ávalos, Juan Antonio; Soto, Antonia; Rodríguez-Ballester, Francisco; Martínez-Blay, Victoria; Malumbres, Manuel Pérez

    2016-04-07

    Several insect species pose a serious threat to different plant species, sometimes becoming a pest that produces significant damage to the landscape, biodiversity, and/or the economy. This is the case of Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), Semanotus laurasii Lucas (Coleoptera: Cerambycidae), and Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae), which have become serious threats to ornamental and productive trees all over the world such as palm trees, cypresses, and pines. Knowledge about their flight potential is very important for designing and applying measures targeted to reduce the negative effects from these pests. Studying the flight capability and behaviour of some insects is difficult due to their small size and the large area wherein they can fly, so we wondered how we could obtain information about their flight capabilities in a controlled environment. The answer came with the design of flight mills. Relevant data about the flight potential of these insects may be recorded and analysed by means of a flight mill. Once an insect is attached to the flight mill, it is able to fly in a circular direction without hitting walls or objects. By adding sensors to the flight mill, it is possible to record the number of revolutions and flight time. This paper presents a full description of a computer monitored flight mill. The description covers both the mechanical and the electronic parts in detail. The mill was designed to easily adapt to the anatomy of different insects and was successfully tested with individuals from three species R. ferrugineus, S. laurasii, and M. galloprovincialis.

  8. A Method of UAV Embedded Flight Control System Design%无人机嵌入式飞行控制系统软件设计方法

    Institute of Scientific and Technical Information of China (English)

    罗伟; 吴森堂

    2011-01-01

    目前,小型无人机飞行控制多采用前后台系统实现;针对前后台系统功能简单,实时性差等缺点,在μC/OS-- Ⅱ操作系统下,对以ARM处理器为核心的嵌入式小型无人机飞行控制系统软件进行了完整设计;首先阐述了系统的基本原理并引入实时内核,接着对系统任务进行了划分,并对任务的调度管理和通信机制给出了详细设计和分析,最后通过地面测试和试飞实验对所设计的系统软件进行了验证;结果表明,该系统软件符合飞控系统设计要求.%At present, most flight control systems for SUAV adopt fore-background system. As fore- background system' s simple function and weak real-time, an embedded SUAV flight control system is designed based on ARM core and μC/OS- II operating system. First, the basic system principle and real time kernel are elaborated. Then, the system tasks are divided and task schedule and communication mechanisms are analyzed in detail. Last, the design is verified by ground test and flight experiment. The result shows, this design meets the flight control system requirement.

  9. Flight Path Recovery System (FPRS) design study

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented.

  10. Building A Flight Control System For A Modelled Aircraft

    OpenAIRE

    Garratt, Paul William; Rushton, Andrew; Yilmaz, Esat

    2004-01-01

    Abstract. We modelled an aircraft based on the Airbus A320 and constructed a synthesisable flight control system. The novel feature was the use of C and VHDL, Very High Speed Inte-grated Circuit Design Language, to allow the flight control system to reside in a Field Pro-grammable Gate Array in a model aircraft or an Uninhabited Aerial Vehicle. The simulator models axial, normal, transverse, pitch, roll and yaw movements. The flight control system has automatic manoeuvre envelope protection a...

  11. Structural Pain Compensating Flight Control

    Science.gov (United States)

    Miller, Chris J.

    2014-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  12. Robust adaptive constrained backstepping flight controller design for re-entry reusable launch vehicle under input constraint

    Directory of Open Access Journals (Sweden)

    Qin Zou

    2015-09-01

    Full Text Available A nonlinear constrained controller is designed for a reusable launch vehicle during re-entry phase in the presence of model uncertainty, external disturbance, and input constraint, via combining sliding mode control and adaptive backstepping control. Since the complex coupling between the translational and rotational dynamics of reusable launch vehicle, a control-oriented model derived from rotational dynamic is used for controller design. During the virtual control input design procedure, a dynamic robust term is utilized to compensate for the uncertainty. In addition, a filter is applied to handle “explosion of terms” problem during the actual control input design. To reduce the computational burden, adaptive law is used to evaluate the unknown norm bound of the lumped uncertainty. An auxiliary system is constructed to compensate for the input constraint effect. The stability of the closed-loop system is analyzed based on Lyapunov theory. Simulation results demonstrate the validity of the developed controller in providing stable tracking of the guidance command by numerical simulation on the 6-degree-of-freedom model of reusable launch vehicle.

  13. 某型无人机飞行控制计算机硬件设计%Hardware design on flight control computer for a certain UAV

    Institute of Scientific and Technical Information of China (English)

    郭昱津; 王道波; 路引

    2016-01-01

    According to the high performance and miniaturization requirements for a certain UAV, the flight control computer hardware is designed and developed based on DSP as the processing core. The design methods and principle diagrams of each module for the flight control computer hardware are given in detail, including:DSP minimum system module, analog signal conditioning module, digital signal input/output module, DA output module, serial communication expansion module, strapdown attitude system module, barometric altimeter module, ferroelectric memory expansion module. The flight control computer has the characteristics of small volume, strong autonomous navigation ability, and is applied to flight experiment for a certain UAV successfully.%按照某型无人机高性能和小型化的要求,设计并开发了基于DSP为处理核心的飞行控制计算机硬件。详细给出了飞行控制计算机硬件的各个模块的设计方法和原理图,包括:DSP最小系统模块、模拟量信号调理模块、数字量输入/输出模块、DA输出模块、串行通信扩展模块、捷联航姿系统模块、气压高度计模块、铁电存储器扩展模块。该飞行控制计算机具有体积小、自主导航能力强的特点,并成功应用于某型无人机飞行实验。

  14. 基于SmartFusion的无人机飞行控制系统设计%Design of SmartFusion-based flight control system for UAVs

    Institute of Scientific and Technical Information of China (English)

    王昱辉; 雷金奎; 田力

    2012-01-01

    为了使无人机飞行控制系统具有强大的数据处理能力、较低的功耗、较强的灵活性和更高的集成度,提出了一种以SmartFusion为核心的无人机飞行控制系统解决方案.为满足飞控系统实时性和稳定性的要求,系统采用了μC/OS-Ⅱ实时操作系统.与传统的无人机飞行控制系统相比,在具有很强的数据处理能力的同时拥有较小的体积和较低的功耗.多次飞行证明,各个模块设计合理,整个系统运行稳定,可以用作下一代无人机高性能应用平台.%In order to make the unmanned aerial vehicle flight control system has the formidable data-processing capacity, low power consumption* strong flexibility and small volume, a solution of unmanned aerial vehicle flight control system based on SmartFusion is proposed. The real-time opereational system (RTOS) pC /OS- II is adopted in the system to meet the realtime and stability needs of the flight control system. Compared with the control system of traditional unmanned aerial vehicle, it has higher integration and lower power consumption while having stronger data-handling capacity. The several flights prove that each modular design is reasonable, the overall system works stably, and the control system may serve as a high performance application platform for the next generation unmanned aerial vehicle.

  15. The Terminal Sliding Mode Control System Design for Hypersonic Flight Vehicle%高超声速飞行器Terminal滑模控制系统设计

    Institute of Scientific and Technical Information of China (English)

    王鹏; 刘鲁华; 吴杰

    2012-01-01

    Based on dynamic inversion and terminal sliding mode control method, a method of integrated design of the guidance and attitude control for hypersonic flight vehicle is proposed according to the feature that hypersonic vehicle model is highly nonlinear, strong coupling and great uncertainties. The nonlinear decoupling ability of dynamic inversion with the strong robustness of terminal sliding mode control is combined very well in this method. Thus, the nonlinear longitudinal dynamic model of hypersonic flight vehicle can be linearized completely from the Input/Output point of view by feedback linearization. The terminal sliding mode control system can ensure the longitudinal flight stability under the influence of uncertain parameters and outside interference. The simulation results show that the proposed control method is feasible for hypersonic flight vehicle.%针对高超声速飞行器模型的强非线性、快时变、强耦合和强不确定性,提出了基于动态逆和Terminal滑模控制的制导/姿控一体化设计方法.该方法将动态逆控制的非线性解耦能力与Terminal滑模控制的强鲁棒性有机结合,实现了模型的反馈线性化和多通道解耦,保证高超声速飞行器在存在参数不确定性和外界干扰的条件下实现稳定飞行.仿真结果表明该控制方法对高超声速飞行器是可行的.

  16. Morphing Flight Control Surface for Advanced Flight Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  17. Flight Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  18. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    Science.gov (United States)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  19. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    Science.gov (United States)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  20. Arduino-based UAV flight stick controller design%基于Arduino的无人机飞行摇杆控制器设计

    Institute of Scientific and Technical Information of China (English)

    黄文恺

    2013-01-01

    Flight Joystick control UAVs more realistic,traditional remote control incomparable advantages,and has more number of channels.This article uses the Arduino development board designed a UAV lfight stick control er,which does not require a computer,low cost,easy to carry,is the ideal platform for UAV control.%飞行摇杆控制无人机更具有真实感,有传统遥控器无法比拟的优点,且拥有较多的通道数。本文使用Arduino开发板设计了一套无人机飞行摇杆控制器,该控制器不需要电脑,成本低廉,携带方便,是理想的无人机控制平台。

  1. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  2. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  3. Flight Software Design Choices Based on Criticality

    Science.gov (United States)

    Lee, Earl

    1999-01-01

    This slide presentation reviews the rationale behind flight software design as a function of criticality. The requirements of human rated systems implies a high criticality for the flight support software. Human life is dependent on correct operation of the software. Flexibility should be permitted when the consequences of software failure are not life threatening. This is also relevant for selecting Commercial Off the Shelf (COTS) software.

  4. 75 FR 77569 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Science.gov (United States)

    2010-12-13

    ...; Electronic Flight Control System Mode Annunciation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... design features include an electronic flight control system. The applicable airworthiness regulations do... system. This system provides an electronic interface between the pilot's flight controls and ] the flight...

  5. Design of a Computerised Flight Mill Device to Measure the Flight Potential of Different Insects

    Directory of Open Access Journals (Sweden)

    Antonio Martí-Campoy

    2016-04-01

    Full Text Available Several insect species pose a serious threat to different plant species, sometimes becoming a pest that produces significant damage to the landscape, biodiversity, and/or the economy. This is the case of Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae, Semanotus laurasii Lucas (Coleoptera: Cerambycidae, and Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae, which have become serious threats to ornamental and productive trees all over the world such as palm trees, cypresses, and pines. Knowledge about their flight potential is very important for designing and applying measures targeted to reduce the negative effects from these pests. Studying the flight capability and behaviour of some insects is difficult due to their small size and the large area wherein they can fly, so we wondered how we could obtain information about their flight capabilities in a controlled environment. The answer came with the design of flight mills. Relevant data about the flight potential of these insects may be recorded and analysed by means of a flight mill. Once an insect is attached to the flight mill, it is able to fly in a circular direction without hitting walls or objects. By adding sensors to the flight mill, it is possible to record the number of revolutions and flight time. This paper presents a full description of a computer monitored flight mill. The description covers both the mechanical and the electronic parts in detail. The mill was designed to easily adapt to the anatomy of different insects and was successfully tested with individuals from three species R. ferrugineus, S. laurasii, and M. galloprovincialis.

  6. The Propulsive-Only Flight Control Problem

    Science.gov (United States)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  7. Flight Dynamics and Controls Discipline Overview

    Science.gov (United States)

    Theodore, Colin R.

    2012-01-01

    This presentation will touch topics, including but not limited to, the objectives and challenges of flight dynamics and controls that deal with the pilot and the cockpit's technology, the flight dynamics and controls discipline tasks, and the full envelope of flight dynamics modeling. In addition, the LCTR 7x10-ft wind tunnel test will also be included along with the optimal trajectories for noise abatement and its investigations on handling quality. Furthermore, previous experiments and their complying results will also be discussed.

  8. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    Science.gov (United States)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  9. 基于SCADE的自动飞行控制系统设计与仿真%Automatic Flight Control System Design and Simulation Based on SCADE

    Institute of Scientific and Technical Information of China (English)

    王禹; 曹义华

    2015-01-01

    飞机飞行的安全性是航空业发展的重要课题,自动飞行控制是降低驾驶员工作负荷,提高飞行安全性的有效途径。利用高安全性应用开发环境SCADE,综合考虑飞机运动安全特性,通过数据流程图,平面状态以及安全状态机的建模方法,建立了飞机俯仰方向的自动飞行控制系统的模型。通过飞机仪表盘可视化以及襟翼状态仿真界面,利用验证模块,飞行数据测试等手段,完成了模型的可靠性验证并利用SCAD-KCG生成满足DO-178B民航A级标准的高可靠性嵌入式实时C语言代码。%Aircraft flight safety is an important topic in the aviation industry development, the automatic flight control is the effective way to reduce pilot workload and improve flight safety.Considering the aircraft movement security features,automatic pitchingflight control system model is set up in a high security SCADE application development environment by the data flow diagram,surface state and safety state machine modeling method.Through designing the dashboard and flap state simulation interface,the reliability of the model validation is completed by using the authentication module and data test.A high reliability embedded real-time C language code which meets the DO-178B grade A standard of civil aviation is generated by SCADE-KCG.

  10. Redundant Flight-Critical Control System Evaluation: Analog and Digital Systems Failure Analyses and Preflight Test Designs

    Science.gov (United States)

    1975-01-01

    Supplementary Notes L mam m DOT/SST FCD task technical monitors: Messrs. Siu ’’ latt and M.H. Lowe (ARD-500). Abstract The U.S. SST prototype...technology was selected for the HSAS and ECSS hardware primarily because sufficient insight into state-of-the- art digital hardware failure modes and...of the very low confidence level (high risk) in the applicability of digital computers for flight-critical functions. The state of the art of

  11. The 747 primary flight control systems reliability and maintenance study

    Science.gov (United States)

    1979-01-01

    The major operational characteristics of the 747 Primary Flight Control Systems (PFCS) are described. Results of reliability analysis for separate control functions are presented. The analysis makes use of a NASA computer program which calculates reliability of redundant systems. Costs for maintaining the 747 PFCS in airline service are assessed. The reliabilities and cost will provide a baseline for use in trade studies of future flight control system design.

  12. Remote radio control of insect flight.

    Science.gov (United States)

    Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  13. Remote radio control of insect flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2009-10-01

    Full Text Available We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely-controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  14. GPS Based Autonomous Flight Control System for an Unmanned Airship

    Directory of Open Access Journals (Sweden)

    Vishnu G Nair,

    2014-01-01

    Full Text Available An unmanned airship, also known as a Unmanned aircraft System (UAS or a remotely piloted aircraft is a machine which functions either by the remote control of a navigator or pilot. The unmanned airship uses the autonomous flight, navigation and guidance based on the telemetry command of ground station. The Autonomous Flight Control System (AFCS [1] plays a key role in achieving the given requirements and missions. This paper introduces the overall design architecture of the hardware and software of the flight control systems in a 50m long unmanned airship

  15. A Ground Control Station for the UAV Flight Simulator

    Directory of Open Access Journals (Sweden)

    Romaniuk Sławomir

    2016-03-01

    Full Text Available In the paper implementation of a ground control station for UAV flight simulator is shown. The ground control station software is in cooperation with flight simulator, displaying various aircraft flight parameters. The software is programmed in C++ language and utilizes the windows forms for implementing graphical content. One of the main aims of the design of the application was to simplify the interface, simultaneously maintaining the functionality and the eligibility. A mission can be planned and monitored using the implemented map control supported by waypoint list.

  16. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Science.gov (United States)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  17. Design, Manufacturing and Test of a High Lift Secondary Flight Control Surface with Shape Memory Alloy Post-Buckled Precompressed Actuators

    Directory of Open Access Journals (Sweden)

    Thomas Sinn

    2015-07-01

    Full Text Available The use of morphing components on aerospace structures can greatly increase the versatility of an aircraft. This paper presents the design, manufacturing and testing of a new kind of adaptive airfoil with actuation through Shape Memory Alloys (SMA. The developed adaptive flap system makes use of a novel actuator that employs SMA wires in an antagonistic arrangement with a Post-Buckled Precompressed (PBP mechanism. SMA actuators are usually used in an antagonistic arrangement or are arranged to move structural components with linearly varying resistance levels similar to springs. Unfortunately, most of this strain energy is spent doing work on the passive structure rather than performing the task at hand, like moving a flight control surface or resisting air loads. A solution is the use of Post-Buckled Precompressed (PBP actuators that are arranged so that the active elements do not waste energy fighting passive structural stiffnesses. One major problem with PBP actuators is that the low tensile strength of the piezoelectric elements can often result in tensile failure of the actuator on the convex face. A solution to this problem is the use of SMA as actuator material due to their tolerance of tensile stresses. The power consumption to hold deflections is reduced by approximately 20% with the Post-Buckled Precompressed mechanism. Conventional SMAs are essentially non-starters for many classes of aircraft due to the requirement of holding the flight control surfaces in a given position for extremely long times to trim the vehicle. For the reason that PBP actuators balance out air and structural loads, the steady-state load on the SMAs is essentially negligible, when properly designed. Simulations and experiments showed that the SMAPBP actuator shows tip rotations on the order of 45°, which is nearly triple the levels achieved by piezoelectric PBP actuators. The developed SMAPBP actuator was integrated in a NACA0012 airfoil with a flexible skin

  18. 民用飞机设计驾驶舱操纵设备的评估%Evaluation on Flight Cockpit Control Equipments of Civil Aircraft Design

    Institute of Scientific and Technical Information of China (English)

    丰立东; 赵京洲; 田金强

    2013-01-01

    人机工效影响着飞行员操纵飞机的感受,因此在民用飞机设计过程中,对人机工效进行及早考虑是非常重要的。在民用飞机设计的各个阶段,都需要适时邀请具有一定资质的飞行员对驾驶舱的人机工效进行评估。对民用飞机设计中飞控驾驶舱飞行员评估方法进行介绍,对评估的要点进行总结分析,供相关工程设计人员参考。%Human factors affect the feeling of pilots operating airplanes. It is necessary to take human factors into account at the beginning of designing civil aircraft. During each phase of designing civil aircraft, it is necessary to invite qualified pilots to evaluate human factors in cockpit when needed. A method of pilot evaluation related with flight cockpit control system in designing civil airplane is introduced and some important issues are summarized and analyzed so as to refer to other relevant engineers and designers when necessary.

  19. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL...

  20. F-8C digital CCV flight control laws

    Science.gov (United States)

    Hartmann, G. L.; Hauge, J. A.; Hendrick, R. C.

    1976-01-01

    A set of digital flight control laws were designed for the NASA F-8C digital fly-by-wire aircraft. The control laws emphasize Control Configured Vehicle (CCV) benefits. Specific pitch axis objectives were improved handling qualities, angle-of-attack limiting, gust alleviation, drag reduction in steady and maneuvering flight, and a capability to fly with reduced static stability. The lateral-directional design objectives were improved Dutch roll damping and turn coordination over a wide range in angle-of-attack. An overall program objective was to explore the use of modern control design methodilogy to achieve these specific CCV benefits. Tests for verifying system integrity, an experimental design for handling qualities evaluation, and recommended flight test investigations were specified.

  1. Formation Flight Control System for In-Flight Sweet Spot Estimation

    NARCIS (Netherlands)

    Brodecki, M.; Subbarao, K.; Chu, Q.P.

    2013-01-01

    A formation flight control system has been designed that addresses the unique environment encountered by aircraft flying in formation and in the upwash of the leading aircraft. In order to test the control system a simulation environment has been created that adequately represents the aerodynamic co

  2. Formation Flight Control System for In-Flight Sweet Spot Estimation

    NARCIS (Netherlands)

    Brodecki, M.; Subbarao, K.; Chu, Q.P.

    2013-01-01

    A formation flight control system has been designed that addresses the unique environment encountered by aircraft flying in formation and in the upwash of the leading aircraft. In order to test the control system a simulation environment has been created that adequately represents the aerodynamic co

  3. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  4. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  5. Early SP-100 flight mission designs

    Science.gov (United States)

    Josloff, Allan T.; Shepard, Neal F.; Kirpich, Aaron S.; Murata, Ronald; Smith, Michael A.; Stephen, James D.

    1993-01-01

    Early flight mission objectives can be met with a Space Reactor Power System (SRPS) using thermoelectric conversion in conjunction with fast spectrum, lithium-cooled reactors. This paper describes two system design options using thermoelectric technology to accommodate an early launch. In the first of these options, radiatively coupled Radioiosotope Thermoelectric Generator (RTG) unicouples are adapted for use with a SP-100-type reactor heat source. Unicouples have been widely used as the conversion technology in RTGs and have demonstrated the long-life characteristics necessary for a highly relible SRPS. The thermoelectric leg height is optimized in conjunction with the heat rejection temperature to provide a mass optimum 6-kWe system configured for launch on a Delta II launch vehicle. The flight-demonstrated status of this conversion technology provides a high confidence that such a system can be designed, assembled, tested, and launched by 1997. The use of a SP-100-type reactor assures compliance with safety requirements and expedites the flight safety approval process while, at the same time, providing flight performance verification for a heat source technology with the growth potential to meet future national needs for higher power levels. A 15-kW2, Atlas IIAS-launched system using the compact, conductively coupled multicouple converters being developed under the SP-100 program to support an early flight system launch also described. Both design concepts have been scaled to 20-kWe in order to support recent studies by DOE/NASA for higher power early launch missions.

  6. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  7. PHARAO Laser Source Flight Model: Design and Performances

    CERN Document Server

    Lévèque, Thomas; Esnault, François-Xavier; Delaroche, Christophe; Massonnet, Didier; Grosjean, Olivier; Buffe, Fabrice; Torresi, Patrizia; Bomer, Thierry; Pichon, Alexandre; Béraud, Pascal; Lelay, Jean-Pierre; Thomin, Stéphane; Laurent, Philippe

    2015-01-01

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  8. PHARAO laser source flight model: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P. [Centre National d’Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse (France); Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S. [Sodern, 20 Avenue Descartes, 94451 Limeil-Brévannes (France); Laurent, Ph. [LNE-SYRTE, CNRS, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris (France)

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  9. The Design of a Small UAV's Flight Controller Based on ARM11+CPLD%基于ARM11+CPLD的小型无人机飞行控制器设计

    Institute of Scientific and Technical Information of China (English)

    郑积仕; 蒋新华; 陈兴武

    2012-01-01

    本文针对小型无人机控制精度低、实时性不足的问题,设计了基于ARM11+ CPLD的飞行控制器.阐述该飞行控制器的硬件总体架构,各传感器与ARM11接口设计,CPLD并行多路PWM输入、输出设计;阐述硬件的驱动,导航控制、姿态控制的算法设计与实现.该飞行控制器的飞行测试结果理想.%The design of the flight controller based on ARM11+CPLD is presented in this paper aiming to solve the low accuracy and the inadequacy of real time in the control of UAV (Unamed Aircraft Veheicle). The overall frame of the flight controller hardware, the design of the interface between ARM11 and several sensors and the design of multi parallel PWM controls in CPLD are all presented. Furthermore, this paper also elaborates the hardware drive and the algorithm design and fulfillment of the navigation control and the attitude control. The flight test shows the flight controller works well.

  10. Use of feedback control to address flight safety issues

    Science.gov (United States)

    Ganguli, Subhabrata

    This thesis addresses three control problems related to flight safety. The first problem relates to the scope of improvement in performance of conventional flight control laws. In particular, aircraft longitudinal axis control based on the Total Energy Control System (TECS) is studied. The research draws attention to a potentially sluggish and undesirable aircraft response when the engine dynamics is slow (typically the case). The proposed design method uses a theoretically well-developed modern design method based on Hinfinity optimization to improve the aircraft dynamic behavior in spite of slow engine characteristics. At the same time, the proposed design method achieves other desirable performance goals such as insensitivity to sensor noise and wind gust rejection: all addressed in one unified framework. The second problem is based on a system level analysis of control structure hierarchy for aircraft flight control. The objective of the analysis problem is to translate outer-loop stability and performance specifications into a comprehensive inner-loop metric. The prime motivation is to make the flight control design process more systematic and the system-integration reliable and independent of design methodology. The analysis problem is posed within the robust control analysis framework. Structured singular value techniques and free controller parameterization ideas are used to impose a hierarchical structure for flight control architecture. The third problem involves development and demonstration of a new reconfiguration strategy in the flight control architecture that has the potential of improving flight safety while keeping cost and complexity low. This research proposes a fault tolerant feature based on active robust reconfiguration. The fault tolerant control problem is formulated in the Linear Parameter Varying (LPV) design framework. A prime advantage of this approach is that the synthesis results in a single nonlinear controller (as opposed to a bank

  11. Distributed Flight Controls for UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for research and development, both of which incorporate shape memory alloy (SMA) wires...

  12. Distributed Flight Controls for UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for prototype development, both of which incorporate shape memory alloy (SMA) wires as...

  13. Engines-only flight control system

    Science.gov (United States)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  14. 小型飞翼布局无人机控制律设计与试飞验证%Flight Control Law Design and Flight Test for Small Flying Wing Aircraft

    Institute of Scientific and Technical Information of China (English)

    马雯; 张宁; 马蓉; 陈小龙; 张奕煊

    2015-01-01

    For a due to the cancellation of the vertical tail and horizontal tail result in decreased stability, especially unstable heading for flying-wing. We design the flight control law for the full process base on the scaled flying-wing aircraft. Taking certain type shrinkage ratio aircraft of flying-wing as the control object, analysis aerodynamic characteristics of the aircraft longitudinal and lateral directional, and using eigenstructure assignment method, respectively, the longitudinal and lateral directional add stability design. The simulation results and actual test data show that, the control law can track a desired trajectory effectively, inhibit the gust disturbance, and has great practical significance.%针对无尾飞翼布局的无人机由于取消了水平尾翼和垂直尾翼,导致纵向、横航向的稳定下降,特别是横航向变为静不安定的问题,设计一种小型飞翼布局无人机全流程飞行控制律。以某型飞翼布局飞机的缩比飞机为控制对象,分析该飞机纵向与横航向的气动特性,采用特征结构配置方式,分别对纵向与横航向进行增稳设计。仿真与实际试飞结果表明:该控制律能够很好地跟踪期望的轨迹,并能有效地抑制侧风扰动,具有良好的工程应用价值。

  15. Compound control methodology for flight vehicles

    CERN Document Server

    Xia, Yuanqing

    2013-01-01

    “Compound Control Methodology for Flight Vehicles” focuses on new control methods for flight vehicles. In this monograph the concept of compound control is introduced. It is demonstrated that both Sliding Mode Control (SMC) and Active Disturbance Rejection Control (ADRC) have their own advantages and limitations, i.e., chattering of SMC and the observability of extended state observer (ESO), respectively. It is shown that compound control combines their advantages and improves the performance of the closed-loop systems. The book is self-contained, providing sufficient mathematical foundations for understanding the contents of each chapter. It will be of significant interest to scientists and engineers engaged in the field of flight vehicle control.

  16. Merging Autopilot/Flight Control and Navigation-Flight Management Systems

    Directory of Open Access Journals (Sweden)

    Khaleel Qutbodin

    2010-01-01

    Full Text Available In this abstract the following commercial aircraft 3 avionics systems will be merged together: (1 Autopilot Flight Director System (APFDS, (2 Flight Control System (FCS and (3 Flight Management Systems (FMS. Problem statement: These systems perform functions that are dependant and related to each other, also they consists of similar hardware components. Each of these systems consists of at least one computer, control panel and displays that place on view the selection and aircraft response. They receive several similar sensor inputs, or outputs of one system are fed as input to the other system. By combining the three systems, repeated and related functions are reduced. Since these systems perform related functions, designers and programmers verify that conflict between these systems is not present. Combining the three systems will eliminate such possibility. Also used space, weight, wires and connections are decreased, consequently electrical consumption is reduced. To keep redundancy, the new system can be made of multiple channels. Approach: The new system (called Autopilot Navigation Management System, APNMS is more efficient and resolves the above mention drawbacks. Results: The APFDS system functions (as attitude-hold or heading-hold are merged with the FCS system main function which is controlling flight control surfaces as well as other functions as flight protection, Turn coordination and flight stability augmentation. Also the Flight Management system functions (as flight planning, aircraft flight performance/engine thrust management are merged in the new system. All this is done through combining all 3 systems logic software’s. Conclusion/Recommendations: The new APNMS system can be installed and tested on prototype aircraft in order to verify its benefits and fruits to the aviation industry.

  17. The Temporal Resolution of Flight Attitude Control in Dragonflies and Locusts: Lessons for the Design of Flapping-Wing MAVs

    Science.gov (United States)

    2007-12-04

    recording, at a frequency that equals the frequency difference. Images were digitized using the firewire capture software by Ultravision and could...1963): A stretch reflex controlling wingbeat frequency in grasshoppers . J. Exp. Biol. 40, 171-185 WILSON, D. M., WEIS-FOGH, T.(1962

  18. 76 FR 14795 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Science.gov (United States)

    2011-03-18

    ...; Electronic Flight Control System Mode Annunciation. AGENCY: Federal Aviation Administration (FAA), DOT... electronic flight control system. The applicable airworthiness regulations do not contain adequate or...). Novel or Unusual Design Features The GVI will have a fly-by-wire electronic flight control system. This...

  19. Loads in the design of flight vehicles

    Directory of Open Access Journals (Sweden)

    Simion TĂTARU

    2010-09-01

    Full Text Available The calculation of flight loads is a critical part of air vehicle design. On the other hand, the prediction of accurate loads is a sophisticated and complex process that requires skilled and experienced engineers. They must integrate results from wind tunnel tests, computer simulations, historical data and empirical formulations into a number of loads cases that provide a realistic assessment of the flight vehicle’s environment. Under these conditions, the vehicle must satisfy requirements imposed by regulatory agencies as part of the vehicle certification process.Loads and boundary conditions can be associated to either the finite element model or the underlying geometry. By associating loads and boundary conditions to the geometry the finite element model mesh and elements can be modified without redefining and applying the loads to the model. Loads and boundary conditions are associated to the model geometry by default.

  20. Adaptive Backstepping Flight Control for Modern Fighter Aircraft

    NARCIS (Netherlands)

    Sonneveldt, L.

    2010-01-01

    The main goal of this thesis is to investigate the potential of the nonlinear adaptive backstepping control technique in combination with online model identification for the design of a reconfigurable flight control system for a modern fighter aircraft. Adaptive backstepping is a recursive,

  1. UAV Formation Flight Based on Nonlinear Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Zhou Chao

    2012-01-01

    Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.

  2. Dual control vibration tests of flight hardware

    Science.gov (United States)

    Scharton, Terry D.

    1991-01-01

    A vibration retest of a spacecraft flight instrument, the Mars Observer Camera (MOC), was conducted using extremal dual control to automatically limit the shaker force and notch the shaker acceleration at resonances. This was the first application of extremal dual control with flight hardware at JPL. The retest was successful in that the environment was representative of flight plus some margin, the instrument survived without any structural or performance degradation, and the force limiting worked very well. The test set-up, force limiting procedure, and test results are described herein. It is concluded that dual control should be utilized when there is a concern about overtesting in hard-base-drive tests and the instrumentation for force measurement and control is available. Recommendations for improving the implementation of dual control are provided as a result of this first experience.

  3. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lin

    2011-07-01

    Full Text Available This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS and the Flight Control System (FCS. The FPPS finds the shortest flight path by the A-Star (A* algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM.

  4. 基于动态仿真激励模型的飞控计算机测试系统设计%The design of the test verification system for flight control computer based on dynamic simulation model

    Institute of Scientific and Technical Information of China (English)

    虞健飞; 钟季龙; 邵帅

    2016-01-01

    飞行控制计算机作为飞行控制系统的核心组成单元,其性能的好坏很大程度上决定了整个飞行控制系统的性能指标,并最终影响飞机飞行安全。针对全时全权数字电传系统结构和功能复杂的特点,以自动飞行控制计算机测试验证为目的,设计开发了一套面向自动飞行控制计算机性能测试的测试验证系统,包括信号表决、余度管理、控制律软件测试等功能。双余度飞控计算机有故障信号注入试验测试表明,本文设计的测试验证系统测试结果准确,可有效验证飞控计算机功能和性能,达到设计要求。%As the core composition of flight control system ,the performance of flight control computer decides the whole performance index of flight control system ,which ultimately affects the flight safety .As for the complicated structure and function of full‐time and full‐authority digital fly‐by‐wire flight control system ,this paper designs a set of test verification system for the automatic flight control computer function and performance test ,taking automatic flight control computer test as the purpose ,including the signal vote ,redundancy management and control law software testing and so on .Through the dual‐redundant flight control computer test ,the test verification system can effectively test the function and performance of flight control computer ,reaching the design requirement .

  5. Vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  6. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    Science.gov (United States)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  7. Mechanics and aerodynamics of insect flight control.

    Science.gov (United States)

    Taylor, G K

    2001-11-01

    Insects have evolved sophisticated fight control mechanisms permitting a remarkable range of manoeuvres. Here, I present a qualitative analysis of insect flight control from the perspective of flight mechanics, drawing upon both the neurophysiology and biomechanics literatures. The current literature does not permit a formal, quantitative analysis of flight control, because the aerodynamic force systems that biologists have measured have rarely been complete and the position of the centre of gravity has only been recorded in a few studies. Treating the two best-known insect orders (Diptera and Orthoptera) separately from other insects, I discuss the control mechanisms of different insects in detail. Recent experimental studies suggest that the helicopter model of flight control proposed for Drosophila spp. may be better thought of as a facultative strategy for flight control, rather than the fixed (albeit selected) constraint that it is usually interpreted to be. On the other hand, the so-called 'constant-lift reaction' of locusts appears not to be a reflex for maintaining constant lift at varying angles of attack, as is usually assumed, but rather a mechanism to restore the insect to pitch equilibrium following a disturbance. Differences in the kinematic control mechanisms used by the various insect orders are related to differences in the arrangement of the wings, the construction of the flight motor and the unsteady mechanisms of lift production that are used. Since the evolution of insect flight control is likely to have paralleled the evolutionary refinement of these unsteady aerodynamic mechanisms, taxonomic differences in the kinematics of control could provide an assay of the relative importance of different unsteady mechanisms. Although the control kinematics vary widely between orders, the number of degrees of freedom that different insects can control will always be limited by the number of independent control inputs that they use. Control of the moments

  8. Flight control electronics reliability/maintenance study

    Science.gov (United States)

    Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.

    1977-01-01

    Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.

  9. Integrated flight propulsion control research results using the NASA F-15 HIDEC Flight Research Facility

    Science.gov (United States)

    Stewart, James F.

    1992-01-01

    Over the last two decades, NASA has conducted several flight research experiments in integrated flight propulsion control. Benefits have included increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. These flight programs were flown at NASA Dryden Flight Research Facility. This paper presents the basic concepts for control integration, examples of implementation, and benefits of integrated flight propulsion control systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real time, onboard optimization of engine, inlet, and flight control variables; a self repairing flight control system; and an engines only control concept for emergency control. The flight research programs and the resulting benefits are described for the F-15 research.

  10. Pilot control through the TAFCOS automatic flight control system

    Science.gov (United States)

    Wehrend, W. R., Jr.

    1979-01-01

    The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.

  11. Design of Flight Vehicle Management Systems

    Science.gov (United States)

    Meyer, George; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possess much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.

  12. Design and Simulation of an Adaptive Flight Control System for Unmanned Rotorcraft%无人旋翼飞行器自适应飞行控制系统设计与仿真

    Institute of Scientific and Technical Information of China (English)

    夏青元; 徐锦法; 张梁

    2013-01-01

    The principle of the model inverse controller is discussed in order to design an unmanned rotorcraft flight control system applicable to different mission tasks. A neural network compensation controller and online algorithms of its weight coefficients are proposed, and the stability of the synthesized controller is analyzed. The rotational dynamics inverse controller and translational dynamics inverse controller for the unmanned rotorcraft are deduced. The attitude inner loop controller and trajectory outer loop controller are designed. The control distribution strategy of the driving motor is determined to control the speed of coaxial rotor. A combined maneuver flight mission task is planned to imitate automatic flight motion. The adaptive flight control system is verified with simulation, and the flight control abilities of horizontal and vertical motion, hover and heading motion are demonstrated and validated. These results show that the designed adaptive flight control system has adaptability and robustness, and can realize attitude stability and trajectory following.%为了设计出能适应不同飞行任务的无人旋翼飞行器飞行控制系统,讨论了模型逆控制器原理.提出了神经网络补偿控制器及其权系数在线算法,分析了综合控制器稳定性.导出了无人旋翼飞行器旋转动力学逆控制器和平移动力学逆控制器,设计了姿态内回路控制器和轨迹外回路控制器,确定了共轴旋翼转速驱动电机的控制分配策略.规划了组合机动飞行科目来模拟自动飞行任务.通过仿真验证了自适应飞行控制系统对无人旋翼飞行器水平垂直运动、悬停和航向运动的飞行控制能力.结果表明,所设计的飞行控制系统具有自适应性和鲁棒性,能实现姿态与轨迹的稳定和跟踪控制.

  13. Integration of Fire Control, Flight Control and Propulsion Control Systems.

    Science.gov (United States)

    1983-08-01

    system, the answer was by a comprehensive programme of simulation and rig testing. ix In the only paper in the programme deailing with systems for civil ...be used otherwise. At one time there was an explosive growth in the application of automatic flight control to civil transport aircraft, culminating in...nombre at l’ampleur des 6quipesenta de maintenance extgrieurs a lavion, 11 faut s’efforcer I ce qua 1. mayan privil~gif pareattant lea 6changss

  14. A formal structure for advanced automatic flight-control systems

    Science.gov (United States)

    Meyer, G.; Cicolani, L. S.

    1975-01-01

    Techniques were developed for the unified design of multimode, variable authority automatic flight-control systems for powered-lift STOL and VTOL aircraft. A structure for such systems is developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with advanced air traffic control, and to admit a variety of active control tasks. The aircraft being considered is the augmentor wing jet STOL research aircraft.

  15. Learning control of a flight simulator stick

    NARCIS (Netherlands)

    Velthuis, W.J.R.; de Vries, Theodorus J.A.; Vrielink, Koen H.J.; Wierda, G.J.; Borghuis, André

    1998-01-01

    Aimportant part of a flight simulator is its control loading system, which is the part that emulates the behaviour of an aircraft as experienced by the pilot through the stick. Such a system consists of a model of the aircraft that is to be simulated and a stick that is driven by an electric motor.

  16. NASA develops new digital flight control system

    Science.gov (United States)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  17. Flight Test Results for the F-16XL With a Digital Flight Control System

    Science.gov (United States)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  18. 基于DSP的双发无人靶机飞控系统设计%Design of Flight Control System Based on DSP for Double Engines Unmanned Target Drone

    Institute of Scientific and Technical Information of China (English)

    路引; 王道波; 徐扬; 陈睿璟

    2011-01-01

    A flight control system of unmanned target drone has many requirements,such as performance,cost,power,integration,etc.In order to adapt to plateau targeting experiment,this paper presents a double engines flight control system based on TMS320F28335 microprocessor.The design scheme,hardware and software structure and strategy are expatiated in detail combined with CCSv4.1.1.1 Software development platform.The results of hardware-in-loop simulation show that the structure designed for the double engines flight control system is reasonable,and satisfies the requirements of flight quality and further engineering applications.%针对某型无人靶机飞控系统在性能、成本、功耗以及集成度等方面的较高要求,为了适应高原打靶实验,设计了一种基于TMS320F28335的双发飞控系统。结合CCSv4.1.1软件开发平台,详细阐述了飞控系统的设计思想及软硬件结构和控制策略。半实物仿真试验表明:该双发飞行控制系统结构设计合理并满足飞行要求,具有一定的工程应用价值。

  19. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  20. A flight test facility design for examining digital information transfer

    Science.gov (United States)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  1. 基于SysML与Simulink的飞控系统概念样机设计%Flight Control System Conceptual Prototype Design Based on SysML and Simulink

    Institute of Scientific and Technical Information of China (English)

    刘兴华; 曹云峰; 王彪; 庄丽葵; 周在华

    2011-01-01

    A flight control system conceptual prototype design method based on integration of SysML and Simulink is researched. Firstly, the improvements between SysML and UML /STATEMATE that meet the flight control system design requirements are introduced. Secondly, a SysML extension mechanism that integrates SysML and Simulink model through code embedding is researched, the key problems it faces are analyzed and its profile definition is given. In the last, taking an unmanned aircraft system for example, the conceptual virtual prototype of its flight control system predator is designed, and functions, behaviors of predator are verified and validated. The design practice shows this method could meet the design requirements of flight control system conceptual prototype.%研究了一种基于SysML与Simulink的飞控系统概念样机设计方法.首先分析了SysML相对于UML的扩展及其比STATEMATE/UML更适合飞控系统概念样机设计的原因;其次,为了实现对飞控系统概念样机设计过程的完整支持,研究了一种实现SysML与Simulink模型集成及协同仿真的SysML扩展机制,分析了扩展机制需要解决的关键问题以及扩展机制的Profile定义;最后,以一无人飞行器飞控系统Predator为例,基于SysML与Simulink对其概念样机进行了设计,并进行了仿真验证.设计实践表明该方法能有效支持飞控系统概念样机设计.

  2. Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements

    Science.gov (United States)

    Lortz, Charlene L.; Huang, Chi-Chien N.; Ravich, Joshua A.; Steiner, Carl N.

    2013-01-01

    This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements.

  3. Design of All Digital Flight Program Training Desktop Application System

    Directory of Open Access Journals (Sweden)

    Li Yu

    2017-01-01

    Full Text Available All digital flight program training desktop application system operating conditions are simple. Can make the aircraft aircrew learning theory and operation training closely. Improve the training efficiency and effectiveness. This paper studies the application field and design requirements of flight program training system. Based on the WINDOWS operating system desktop application, the design idea and system architecture of the all digital flight program training system are put forward. Flight characteristics, key airborne systems and aircraft cockpit are simulated. Finally, By comparing flight training simulator and the specific script program training system, The characteristics and advantages of the training system are analyzed in this paper.

  4. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    Science.gov (United States)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  5. The B-747 flight control system maintenance and reliability data base for cost effectiveness tradeoff studies

    Science.gov (United States)

    1982-01-01

    Primary and automatic flight controls are combined for a total flight control reliability and maintenance cost data base using information from two previous reports and additional cost data gathered from a major airline. A comparison of the current B-747 flight control system effects on reliability and operating cost with that of a B-747 designed for an active control wing load alleviation system is provided.

  6. Nonlinear inversion flight control for a supermaneuverable aircraft

    Science.gov (United States)

    Snell, S. Antony; Garrard, William L., Jr.; Enns, Dale F.

    1990-01-01

    This paper describes the use of nonlinear dynamic inversion for the design of a flight control system for a supermaneuverable aircraft. First, the dynamics to be controlled were separated into fast and slow variables. The fast variables were the angular rates and the slow variables were the attitude angles. Then a nonlinear inversion controller was designed for the fast variables. This stabilized the longitudinal short-period and improved the lateral-directional responses over a wide range of angle of attack by making use of a combination for aerodynamic surfaces and thrust vectoring control. Outer loops were then closed to allow the pilot to control the slow dynamics, the angle of attack, side-slip angle and the velocity bank angle. Nonlinear inversion was also used to design of the outer loop control laws. The dynamic inversion control laws were compared with more conventional, gain-scheduled control laws and were shown to yield much better performance.

  7. Characterization of a Recoverable Flight Control Computer System

    Science.gov (United States)

    Malekpour, Mahyar; Torres, Wilfredo

    1999-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time-critical communication of data and commands between the RCS and flight simulation code in real-time while meeting the stringent hard deadlines is also submitted. The performance results of the RCS and characteristics of its upset recovery scheme while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields are also discussed.

  8. Flight telerobotic servicer control from the Orbiter

    Science.gov (United States)

    Ward, Texas M.; Harlan, Don L.

    1989-01-01

    The research and work conducted on the development of a testbed for a display and control panel for the Flight Telerobotic Servicer (FTS) are presented. Research was conducted on both software and hardware needed to control the FTS. A breadboard was constructed and placed into a mockup of the aft station of the Orbiter spacecraft. This breadboard concept was then evaluated using a computer graphics representation of the Tinman FTS. Extensive research was conducted on the software requirements and implementation. The hardware selected for the breadboard was 'flight like' and in some cases fit and function evaluated. The breadboard team studied some of the concepts without pursuing in depth their impact on the Orbiter or other missions. Assumptions are made concerning payload integration.

  9. Hermes flight control center: Definition status

    Science.gov (United States)

    Letalle, Pierre

    1990-10-01

    The Hermes Flight Control Center (HFCC) located in Toulouse (France) is described. The center is the third in the world after the American center in Houston and the Soviet center in Kaliningrad. All the Hermes elements, both on board and on the ground will be coordinated by the HFCC for all phases of each mission. Aspects of the detailed definition phase still in the requirements analysis subphase are described. Diagrams are used to illustrate the interplay between the different systems.

  10. Technology research for digital flight control

    Science.gov (United States)

    Carestia, R. A.

    1983-01-01

    The use of advanced digital systems for flight control and guidance for a specific mission is investigated. The research areas include advanced electronic system architectures, tests with the global positioning system (GPS) in a helicopter, and advanced integrated systems concept for rotorcraft. Emphasis is on a search and rescue mission, differential global positioning systems to provide a data base of performance information for navigation, and a study to determine the present usage and trends of microcomputers and microcomputer components in the avionics industries.

  11. Flight Control System Reliability and Maintainability Investigations. Appendix F. Design Handbook Change Resommendations, AFSC Design Handbook, DH-2- 1, DH-2-X.

    Science.gov (United States)

    1975-03-01

    wij i-ii!, . 8 mckWiriri A.^ FVR «.-BI P’.C.I. 7. <HTtF"l«l RAtlAl tllAi’V ,. ,0003 TO .Cri09 INCH 8. p-M’i.;. /.■•o i ATF’.L r; 11 nif ...5 (or U.08) times the B;LO design life, d , has already been determined, is given as J ^ (9.^9 log Ps) 0-7Z46 d e toT\\-- k.08 B10 and (2...J i (9.49 logo Ps) 0.856 for 4 = 5.00 B10 (3) ^-^ ( 98 90 80 70 60 _ — - W - /M - )t V - /> SO 40 30 20 * r -• 8 s

  12. Flight-determined benefits of integrated flight-propulsion control systems

    Science.gov (United States)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  13. Multimodel Predictive Control Approach for UAV Formation Flight

    Directory of Open Access Journals (Sweden)

    Chang-jian Ru

    2014-01-01

    Full Text Available Formation flight problem is the most important and interesting problem of multiple UAVs (unmanned aerial vehicles cooperative control. In this paper, a novel approach for UAV formation flight based on multimodel predictive control is designed. Firstly, the state equation of relative motion is obtained and then discretized. By the geometrical method, the characteristic points of state are determined. Afterwards, based on the linearization technique, the standard linear discrete model is obtained at each characteristic state point. Then, weighted model set is proposed using the idea of T-S (Takagi-Sugeno fuzzy control and the predictive control is carried out based on the multimodel method. Finally, to verify the performance of the proposed method, two different simulation scenarios are performed.

  14. A pilot rating scale for evaluating failure transients in electronic flight control systems

    Science.gov (United States)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  15. Pattern Recognition Control Design

    Science.gov (United States)

    Gambone, Elisabeth A.

    2018-01-01

    Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.

  16. Shuttle Orbiter Environmental Control and Life Support System - Flight experience

    Science.gov (United States)

    Winkler, H. E.

    1992-01-01

    This paper describes the overall design of the Shuttle Orbiter Environmental Control and Life Support System (ECLSS). The Orbiter ECLSS consists of six major subsystems which accomplish the functions of providing a habitable pressurized cabin atmosphere and removing gaseous contaminants, controlling the temperature of the cabin and vehicle components within acceptable ranges, providing fire detection and suppression capability, maintaining a supply of potable water, collecting and removing metabolic waste materials, and providing utilities and access for extravehicular activity. The operational experience is summarized for the 45 space flights accomplished to date during which the Orbiter ECLSS has been demonstrated to perform reliably, and has proved to have the flexibility to meet a variety of mission needs. Significant flight problems are described, along with the design or procedure changes which were implemented to resolve the problems.

  17. Functional integration of vertical flight path and speed control using energy principles

    Science.gov (United States)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  18. Balancing Training Techniques for Flight Controller Certification

    Science.gov (United States)

    Gosling, Christina

    2011-01-01

    Training of ground control teams has been a difficult task in space operations. There are several intangible skills that must be learned to become the steely eyed men and women of mission control who respond to spacecraft failures that can lead to loss of vehicle or crew if handled improperly. And as difficult as training is, it can also be costly. Every day, month or year an operator is in training, is a day that not only they are being trained without direct benefit to the organization, but potentially an instructor or mentor is also being paid for hours spent assisting them. Therefore, optimization of the training flow is highly desired. Recently the Expedition Division (DI) at Johnson Space Flight Center has recreated their training flows for the purpose of both moving to an operator/specialist/instructor hierarchy and to address past inefficiencies in the training flow. This paper will discuss the types of training DI is utilizing in their new flows, and the balance that has been struck between the ideal learning environments and realistic constraints. Specifically, the past training flow for the ISS Attitude Determination and Control Officer will be presented, including drawbacks that were encountered. Then the new training flow will be discussed and how a new approach utilizes more training methods and teaching techniques. We will look at how DI has integrated classes, workshops, checkouts, module reviews, scenarios, OJT, paper sims, Mini Sims, and finally Integrated Sims to balance the cost and timing of training a new flight controller.

  19. Spaceflight payload design flight experience G-408

    Science.gov (United States)

    Durgin, William W.; Looft, Fred J.; Sacco, Albert, Jr.; Thompson, Robert; Dixon, Anthony G.; Roberti, Dino; Labonte, Robert; Moschini, Larry

    1992-01-01

    Worcester Polytechnic Institute's first payload of spaceflight experiments flew aboard Columbia, STS-40, during June of 1991 and culminated eight years of work by students and faculty. The Get Away Special (GAS) payload was installed on the GAS bridge assembly at the aft end of the cargo bay behind the Spacelab Life Sciences (SLS-1) laboratory. The Experiments were turned on by astronaut signal after reaching orbit and then functioned for 72 hours. Environmental and experimental measurements were recorded on three cassette tapes which, together with zeolite crystals grown on orbit, formed the basis of subsequent analyses. The experiments were developed over a number of years by undergraduate students meeting their project requirements for graduation. The experiments included zeolite crystal growth, fluid behavior, and microgravity acceleration measurement in addition to environmental data acquisition. Preparation also included structural design, thermal design, payload integration, and experiment control. All of the experiments functioned on orbit and the payload system performed within design estimates.

  20. Nonlinear region of attraction analysis for hypersonic flight vehicles’ flight control verification

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-05-01

    Full Text Available The stability analysis method based on region of attraction is proposed for the hypersonic flight vehicles’ flight control verification in this article. Current practice for hypersonic flight vehicles’ flight control verification is largely dependent on linear theoretical analysis and nonlinear simulation research. This problem can be improved by the nonlinear stability analysis of flight control system. Firstly, the hypersonic flight vehicles’ flight dynamic model is simplified and fitted by polynomial equation. And then the region of attraction estimation method based on V–s iteration is presented to complete the stability analysis. Finally, with the controller law, the closed-loop system stability is analyzed to verify the effectiveness of the proposed method.

  1. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  2. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used...... to deduce the requirements for a propulsion system consituting the actuator part of a control system eliminating the disturbances from the space environment. Due to the minute magnitudes of the forces to be delivered, this type of propulsion has been denoted Micropropulsion. Initially a theoretical study...... of the disturbance forces and their influence on a precision controlled spacecraft, is used to deduce the requirements for a micropropulsion system compensating for these. Following this an LTCC based resistojet microthruster is developed and fabricated, utilizing water as fuel. Towards the end of the project...

  3. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  4. Design and Manufacturing of Extremely Low Mass Flight Systems

    Science.gov (United States)

    Johnson, Michael R.

    2002-01-01

    Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.

  5. A Multi-Layer Intelligent Loss-of-Control Prevention System (LPS) for Flight Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of the proposed work is to design and develop a multi-layer intelligent Loss-of-control Prevention System (LPS) for flight control applications....

  6. Dynamic analysis and control of novel moving mass flight vehicle

    Science.gov (United States)

    Li, Jianqing; Gao, Changsheng; Jing, Wuxing; Wei, Pengxin

    2017-02-01

    In terms of the moving mass control technology, the configuration of internal moving masses is a key challenge. In order to reduce the complexity of configuring these moving masses in a flight vehicle, a combination bank-to-turn control mode with the single moving mass and reaction jet is proposed in this paper. To investigate the dynamics and the potential of the control mechanism, an attitude dynamic model with single moving mass is generated. The dynamic analysis indicates that the control stability, control authority and dynamic behavior of the pitch channel are determined by the mass ratio of the moving mass to the system and the difference between the mass center of the moving mass and the mass center of the vehicle body. Interestingly, control authority increases proportionally with increasing mass ratio and also with decreasing the magnitude of the static margin. To deal with the coupling caused by the additional inertia moment which is generated by the motion of the moving mass, an adaptive control law by using dynamic inversion theory and the extended state observer is designed. Also, a compensator is designed for eliminating the influence of the servo actuator's dynamics on attitude of the flight vehicle. Finally, the simulation results validate the quality of the proposed adaptive controller which ensures a good performance in the novel configuration with internal moving mass.

  7. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  8. Emergency Flight Control Using Computer-Controlled Thrust

    Science.gov (United States)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.

    1995-01-01

    Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.

  9. Design and verification on embedded software platform of flight control system%嵌入式飞行控制系统软件平台的设计及验证

    Institute of Scientific and Technical Information of China (English)

    张睿; 曹云峰; 庄丽葵; 王彪; 胡亮

    2012-01-01

    An embedded-Linux software platform of flight control system is exploited for the developing requirements of flight control system on micro air vehicle. The platform consists of embedded development environment on the host computer and airborne embedded bottom software. The building process of the embedded development environment on the host computer is introduced at first; then software platform is built, which includes making boot-loader, compiling the kernel, making root file system, and designing peripheral device drivers. The performance of software platform is verified through testing the device drivers of sensors with different kinds of interface, which indicates that the designed platform is general, easy to be maintained, easy to expand functions and it can satisfy the requirements for the de,sign and test of upper flight control software on micro air vehicle.%为满足微型飞行器飞控系统开发的需要,设计开发了一种基于嵌入武Linux的飞控系统软件平台.介绍了宿主机嵌入式开发环境的搭建过程,进行了机载飞控系统软件平台的搭建,主要包括制作启动引导程序,编译内核,制作根文件系统和设计外围设备驱动;最后进行驱动程序的测试及软件平台的验证.通过对不同接口类型传感器的驱动程序进行测试,验证了软件平台的性能,满足微型飞行器上层飞控软件开发和测试的需要,且具有通用、易维护和易扩展的特点.

  10. An LMI-based decoupling control for electromagnetic formation flight

    Directory of Open Access Journals (Sweden)

    Huang Xianlin

    2015-04-01

    Full Text Available Electromagnetic formation flight (EMFF leverages electromagnetic force to control the relative position of satellites. EMFF offers a promising alternative to traditional propellant-based spacecraft flight formation. This novel strategy is very attractive since it does not consume fuel. Due to the highly coupled nonlinearity of electromagnetic force, it is difficult to individually design a controller for one satellite without considering others, which poses challenges to communications. This paper is devoted to decoupling control of EMFF, including regulations, constraints and controller design. A learning-based adaptive sliding mode decoupling controller is analyzed to illustrate the problem of existing results, and input rate saturation is introduced to guarantee the validity of frequency division technique. Through transformation, the imposed input rate saturation is converted to state and input constraints. A linear matrix inequalities (LMI-based robust optimal control method can then be used and improved to solve the transformed problem. Simulation results are presented to demonstrate the effectiveness of the proposed decoupling control.

  11. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    Science.gov (United States)

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  12. Factors affecting the design of instrument flight procedures

    Directory of Open Access Journals (Sweden)

    Ivan FERENCZ

    2008-01-01

    Full Text Available The article highlights factors, which might affect the design of instrument flight procedures. Ishikawa diagram is used to distribute individual factors into classes, as are People, Methods, Regulations, Tools, Data and Environment.

  13. Factors affecting the design of instrument flight procedures

    OpenAIRE

    Ivan FERENCZ; František JÚN; Dušan KEVICKÝ

    2008-01-01

    The article highlights factors, which might affect the design of instrument flight procedures. Ishikawa diagram is used to distribute individual factors into classes, as are People, Methods, Regulations, Tools, Data and Environment.

  14. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  15. Aircraft automatic flight control system with model inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, George

    1990-01-01

    A simulator study was conducted to verify the advantages of a Newton-Raphson model-inversion technique as a design basis for an automatic trajectory control system in an aircraft with highly nonlinear characteristics. The simulation employed a detailed mathematical model of the aerodynamic and propulsion system performance characteristics of a vertical-attitude takeoff and landing tactical aircraft. The results obtained confirm satisfactory control system performance over a large portion of the flight envelope. System response to wind gusts was satisfactory for various plausible combinations of wind magnitude and direction.

  16. Aircraft automatic flight control system with model inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, George

    1990-01-01

    A simulator study was conducted to verify the advantages of a Newton-Raphson model-inversion technique as a design basis for an automatic trajectory control system in an aircraft with highly nonlinear characteristics. The simulation employed a detailed mathematical model of the aerodynamic and propulsion system performance characteristics of a vertical-attitude takeoff and landing tactical aircraft. The results obtained confirm satisfactory control system performance over a large portion of the flight envelope. System response to wind gusts was satisfactory for various plausible combinations of wind magnitude and direction.

  17. The effects of lightning on digital flight control systems

    Science.gov (United States)

    Plumer, J. A.; Malloy, W. A.; Craft, J. B.

    1976-01-01

    Present practices in lightning protection of aircraft deal primarily with the direct effects of lightning, such as structural damage and ignition of fuel vapors. There is increasing evidence of troublesome electromagnetic effects, however, in aircraft employing solid-state microelectronics in critical navigation, instrumentation and control functions. The potential impact of these indirect effects on critical systems such as digital fly by wire (DFBW) flight controls was studied. The results indicate a need for positive steps to be taken during the design of future fly by wire systems to minimize the possibility of hazardous effects from lightning.

  18. Fault Tolerant Flight Control Using Sliding Modes and Subspace Identification-Based Predictive Control

    KAUST Repository

    Siddiqui, Bilal A.

    2016-07-26

    In this work, a cascade structure of a time-scale separated integral sliding mode and model predictive control is proposed as a viable alternative for fault-tolerant control. A multi-variable sliding mode control law is designed as the inner loop of the flight control system. Subspace identification is carried out on the aircraft in closed loop. The identified plant is then used for model predictive controllers in the outer loop. The overall control law demonstrates improved robustness to measurement noise, modeling uncertainties, multiple faults and severe wind turbulence and gusts. In addition, the flight control system employs filters and dead-zone nonlinear elements to reduce chattering and improve handling quality. Simulation results demonstrate the efficiency of the proposed controller using conventional fighter aircraft without control redundancy.

  19. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Science.gov (United States)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  20. H/OZ: PFD and Collaborative Flight Control System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With aircraft automation increasingly able to control flight autonomously, situational awareness and engagement of the crew can suffer. To improve aviation safety...

  1. Intermediate experimental vehicle, ESA program aerodynamics-aerothermodynamics key technologies for spacecraft design and successful flight

    Science.gov (United States)

    Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre

    2016-07-01

    With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.

  2. Semi-physical simulation design for flight control systems based on xPC%基于xPC的飞行控制系统半实物仿真设计

    Institute of Scientific and Technical Information of China (English)

    王晓东; 董新民; 姚崇

    2011-01-01

    利用Matlab的xPC目标工具在仿真回路中引入飞控计算机、传感器等实物部件,设计了某型飞机飞行控制系统的半实物仿真系统.根据飞行控制系统的原理特点设计了数据采集卡与信号转换处理电路,并在VC 6.0环境下对系统软件进行了编制.仿真结果表明:该半实物仿真系统具有较高的仿真置信度和可靠度.%With the introduction of flight control computers, sensors and other physical components to the simulation loop, semi-physical simulation system of an type of aircraft is designed by xPC target tool of Matlab.Data acquisition card and signal transition and processing circuit are designed according to the principles and characteristics of flight control system. System software is programmed under VC 6.0. Simulation result shows that the semi-physical simulation system has high confidence level.

  3. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a f

  4. A Hybrid Flight Control for a Simulated Raptor-30 V2 Helicopter

    Directory of Open Access Journals (Sweden)

    Arbab Nighat Khizer

    2015-04-01

    Full Text Available This paper presents a hybrid flight control system for a single rotor simulated Raptor-30 V2 helicopter. Hybrid intelligent control system, combination of the conventional and intelligent control methodologies, is applied to small model helicopter. The proposed hybrid control used PID as a traditional control and fuzzy as an intelligent control so as to take the maximum advantage of advanced control theory. The helicopter?s model used; comes from X-Plane flight simulator and their hybrid flight control system was simulated using MATLAB/SIMULINK in a simulation platform. X-Plane is also used to visualize the performance of this proposed autopilot design. Through a series of numerous experiments, the operation of hybrid control system was investigated. Results verified that the proposed hybrid control has an excellent performance at hovering flight mode.

  5. Visual Flight Control of a Quadrotor Using Bioinspired Motion Detector

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2012-01-01

    Full Text Available Motion detection in the fly is extremely fast with low computational requirements. Inspired from the fly's vision system, we focus on a real-time flight control on a miniquadrotor with fast visual feedback. In this work, an elaborated elementary motion detector (EMD is utilized to detect local optical flow. Combined with novel receptive field templates, the yaw rate of the quadrotor is estimated through a lookup table established with this bioinspired visual sensor. A closed-loop control system with the feedback of yaw rate estimated by EMD is designed. With the motion of the other degrees of freedom stabilized by a camera tracking system, the yaw-rate of the quadrotor during hovering is controlled based on EMD feedback under real-world scenario. The control performance of the proposed approach is compared with that of conventional approach. The experimental results demonstrate the effectiveness of utilizing EMD for quadrotor control.

  6. Backstepping Designs for Aircraft Control - What is there to Gain?

    OpenAIRE

    Härkegård, Ola

    2001-01-01

    Aircraft flight control design is traditionally based on linear control theory, due to the existing wealth of tools for linear design and analysis. However, in order to achieve tactical advantages, modern fighter aircraft strive towards performing maneuvers outside the region where the dynamics of flight are linear, and the need for nonlinear tools arises. In this paper, backstepping is proposed as a possible framework for nonlinear flight control design. Its capabilities of handling five maj...

  7. On the design of flight-deck procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl L.

    1994-01-01

    In complex human-machine systems, operations, training, and standardization depend on a elaborate set of procedures which are specified and mandated by the operational management of the organization. The intent is to provide guidance to the pilots, to ensure a logical, efficient, safe, and predictable means of carrying out the mission objectives. In this report the authors examine the issue of procedure use and design from a broad viewpoint. The authors recommend a process which we call 'The Four P's:' philosophy, policies, procedures, and practices. We believe that if an organization commits to this process, it can create a set of procedures that are more internally consistent, less confusing, better respected by the flight crews, and that will lead to greater conformity. The 'Four-P' model, and the guidelines for procedural development in appendix 1, resulted from cockpit observations, extensive interviews with airline management and pilots, interviews and discussion at one major airframe manufacturer, and an examination of accident and incident reports. Although this report is based on airline operations, we believe that the principles may be applicable to other complex, high-risk systems, such as nuclear power production, manufacturing process control, space flight, and military operations.

  8. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests.

  9. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  10. Discrete Neural Altitude Control for Hypersonic Vehicle Via Flight Path Angle Tracking

    Directory of Open Access Journals (Sweden)

    Shixing Wang

    2012-09-01

    Full Text Available In this study, the altitude control is analyzed for the longitudinal dynamics of a generic Hypersonic Flight Vehicle (HFV. By transforming altitude command into the tracking of flight path angle with fast dynamics, the system design is focusing on the control of the attitude subsystem. The virtual control is designed with nominal feedback and Neural Network (NN approximation via back-stepping. Under the proposed controller, the Semiglobal Uniform Ultimate Boundedness (SGUUB stability is guaranteed. The slow dynamics are transformed into the parameter estimation problem and the update law is designed. The simulation is presented to show the effectiveness of the proposed control approach.

  11. Design of Fuzzy Controllers

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    Design of a fuzzy controller requires more design decisions than usual, for example regarding rule base, inference engine, defuzzification, and data pre- and post processing. This tutorial paper identifies and describes the design choices related to single-loop fuzzy control, based...... on an international standard which is underway. The paper contains also a design approach, which uses a PID controller as a starting point. A design engineer can view the paper as an introduction to fuzzy controller design....

  12. Digital electronic engine control fault detection and accommodation flight evaluation

    Science.gov (United States)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  13. ADAPTIVE FLIGHT CONTROL SYSTEM OF ARMED HELICOPTER USING WAVELET NEURAL NETWORK METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHURong-gang; JIANGChangsheng; FENGBin

    2004-01-01

    A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good.

  14. Haptic-Multimodal Flight Control System Update

    Science.gov (United States)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2011-01-01

    The rapidly advancing capabilities of autonomous aircraft suggest a future where many of the responsibilities of today s pilot transition to the vehicle, transforming the pilot s job into something akin to driving a car or simply being a passenger. Notionally, this transition will reduce the specialized skills, training, and attention required of the human user while improving safety and performance. However, our experience with highly automated aircraft highlights many challenges to this transition including: lack of automation resilience; adverse human-automation interaction under stress; and the difficulty of developing certification standards and methods of compliance for complex systems performing critical functions traditionally performed by the pilot (e.g., sense and avoid vs. see and avoid). Recognizing these opportunities and realities, researchers at NASA Langley are developing a haptic-multimodal flight control (HFC) system concept that can serve as a bridge between today s state of the art aircraft that are highly automated but have little autonomy and can only be operated safely by highly trained experts (i.e., pilots) to a future in which non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform a variety of missions. This paper reviews the motivation and theoretical basis of the HFC system, describes its current state of development, and presents results from two pilot-in-the-loop simulation studies. These preliminary studies suggest the HFC reshapes human-automation interaction in a way well-suited to revolutionary ease-of-use.

  15. A system look at electromechanical actuation for primary flight control

    NARCIS (Netherlands)

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  16. A system look at electromechanical actuation for primary flight control

    NARCIS (Netherlands)

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  17. A benchmark for fault tolerant flight control evaluation

    Science.gov (United States)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-12-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.

  18. Efficient, Multi-Scale Designs Take Flight

    Science.gov (United States)

    2003-01-01

    Engineers can solve aerospace design problems faster and more efficiently with a versatile software product that performs automated structural analysis and sizing optimization. Collier Research Corporation's HyperSizer Structural Sizing Software is a design, analysis, and documentation tool that increases productivity and standardization for a design team. Based on established aerospace structural methods for strength, stability, and stiffness, HyperSizer can be used all the way from the conceptual design to in service support. The software originated from NASA s efforts to automate its capability to perform aircraft strength analyses, structural sizing, and weight prediction and reduction. With a strategy to combine finite element analysis with an automated design procedure, NASA s Langley Research Center led the development of a software code known as ST-SIZE from 1988 to 1995. Collier Research employees were principal developers of the code along with Langley researchers. The code evolved into one that could analyze the strength and stability of stiffened panels constructed of any material, including light-weight, fiber-reinforced composites.

  19. Formation Flight Control for Aerial Refueling

    Science.gov (United States)

    2006-03-01

    Microbiotics , Inc. The IMU data were recorded on a flight of a Cessna 172, and a representative time slice was reproduced for all of the simulations...nothing about. The final position relative Data Source: Flight Test MIDG II IMU Cessna 172 Microbiotics , Inc. 48 to the boom will obviously...Embedded PC ATH-400 Athena Diamond Systems, Inc GPS Receiver Card JNS100 OEM Javad Navigation Systems MEMS IMU MIDG II INS/GPS Microbiotics , Inc UHF

  20. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    Science.gov (United States)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  1. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    Science.gov (United States)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  2. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  3. Bird or bat: comparing airframe design and flight performance.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer; Spedding, Geoffrey R

    2009-03-01

    Birds and bats have evolved powered flight independently, which makes a comparison of evolutionary 'design' solutions potentially interesting. In this paper we highlight similarities and differences with respect to flight characteristics, including morphology, flight kinematics, aerodynamics, energetics and flight performance. Birds' size range is 0.002-15 kg and bats' size range is 0.002-1.5 kg. The wingbeat kinematics differ between birds and bats, which is mainly due to the different flexing of the wing during the upstroke and constraints by having a wing of feathers and a skin membrane, respectively. Aerodynamically, bats appear to generate a more complex wake than birds. Bats may be more closely adapted for slow maneuvering flight than birds, as required by their aerial hawking foraging habits. The metabolic rate and power required to fly are similar among birds and bats. Both groups share many characteristics associated with flight, such as for example low amounts of DNA in cells, the ability to accumulate fat as fuel for hibernation and migration, and parallel habitat-related wing shape adaptations.

  4. Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight

    Science.gov (United States)

    Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

    1979-01-01

    An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

  5. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  6. Somatosensory substrates of flight control in bats.

    Science.gov (United States)

    Marshall, Kara L; Chadha, Mohit; deSouza, Laura A; Sterbing-D'Angelo, Susanne J; Moss, Cynthia F; Lumpkin, Ellen A

    2015-05-12

    Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.

  7. Somatosensory Substrates of Flight Control in Bats

    Directory of Open Access Journals (Sweden)

    Kara L. Marshall

    2015-05-01

    Full Text Available Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.

  8. Robust bounded control for uncer tain flight dynamics using disturbance observer

    Institute of Scientific and Technical Information of China (English)

    Mou Chen; Bin Jiang

    2014-01-01

    The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with con-trol input saturation invoking the backstepping technique. To en-hance the disturbance rejection ability of the robust flight control for fighters, the sliding mode disturbance observer is designed to esti-mate the compounded disturbance including the unknown external disturbance and the effect of the control input saturation. Based on the backstepping technique and the compounded disturbance estimated output, the robust bounded flight control scheme is pro-posed for the fighter with the unknown external disturbance and the control input saturation. The closed-loop system stability under the developed robust bounded flight control scheme is rigorously proved using the Lyapunov method and the uniformly asymptotical convergences of al closed-loop signals are guaranteed. Final y, simulation results are presented to show the effectiveness of the proposed robust bounded flight control scheme for the uncertain longitudinal flight dynamics of the fighter.

  9. A new ball launching system with controlled flight parameters for catching experiments.

    Science.gov (United States)

    d'Avella, A; Cesqui, B; Portone, A; Lacquaniti, F

    2011-03-30

    Systematic investigations of sensorimotor control of interceptive actions in naturalistic conditions, such as catching or hitting a ball moving in three-dimensional space, requires precise control of the projectile flight parameters and of the associated visual stimuli. Such control is challenging when air drag cannot be neglected because the mapping of launch parameters into flight parameters cannot be computed analytically. We designed, calibrated, and experimentally validated an actuated launching apparatus that can control the average spatial position and flight duration of a ball at a given distance from a fixed launch location. The apparatus was constructed by mounting a ball launching machine with adjustable delivery speed on an actuated structure capable of changing the spatial orientation of the launch axis while projecting balls through a hole in a screen hiding the apparatus. The calibration procedure relied on tracking the balls with a motion capture system and on approximating the mapping of launch parameters into flight parameters by means of polynomials functions. Polynomials were also used to estimate the variability of the flight parameters. The coefficients of these polynomials were obtained using the launch and flight parameters of 660 launches with 65 different initial conditions. The relative accuracy and precision of the apparatus were larger than 98% for flight times and larger than 96% for ball heights at a distance of 6m from the screen. Such novel apparatus, by reliably and automatically controlling desired ball flight characteristics without neglecting air drag, allows for a systematic investigation of naturalistic interceptive tasks.

  10. Integrated assurance assessment of a reconfigurable digital flight control system

    Science.gov (United States)

    Ness, W. G.; Davis, R. M.; Benson, J. W.; Smith, M. K.; Eldredge, D.

    1983-01-01

    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety.

  11. Recent developments in the remote radio control of insect flight.

    Science.gov (United States)

    Sato, Hirotaka; Maharbiz, Michel M

    2010-01-01

    The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the state-of-the-art and discuss future directions in this field.

  12. The integrated manual and automatic control of complex flight systems

    Science.gov (United States)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  13. Design of Packaging for Microballoon Actuators and Feasibility of their Integration within Aerodynamic Flight Vehicle

    Directory of Open Access Journals (Sweden)

    A. Linga Murthy

    2009-09-01

    Full Text Available The microballoon actuators are used for the active flow control in turbulent boundary layer for aerodynamic control of flight vehicles. The packaging, interfacing, and integration of the microballoon actuators within the flight vehicle play a key role for functioning of the microballoon actuators during the flight conditions. This paper addresses the design and analysis of packaging and integration aspects and associated issues. The use of microballoon actuators on the control surfaces and nose cone of flight vehicles has the positive influence of delaying the flow separation from the aerodynamic surface. This results in enhancing aerodynamic effectiveness and lift as well as reduction of drag. A typical control surface is configured with eight microballoon actuators symmetric wrt the hinge line of the control surface and embedded within the control surface. Provision of the Pneumatic feed line system for inflation and deflation of the microballoons within the control surface has been made. The nose cone has been designed to have 32 such actuators at the circular periphery. The design is found to be completely feasible for the incorporation of microballoon actuators, both in the nose cone and in the control surface.Defence Science Journal, 2009, 59(5, pp.485-493, DOI:http://dx.doi.org/10.14429/dsj.59.1549

  14. A simple active controller to suppress helicopter air resonance in hover and forward flight

    Science.gov (United States)

    Friedmann, P. P.; Takahashi, M. D.

    1989-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. This model is used to illustrate the effect of unsteady aerodynamics, forward flight, and torsional flexibility on air resonance. Next, a nominal configuration, which experiences air resonance in forward flight, is selected. A simple multivariable compensator using conventional swashplate inputs and a single body roll rate measurement is then designed. The controller design is based on a linear estimator in conjunction with optimal feedback gains, and the design is done in the frequency domain using the loop-transfer recovery method. The controller is shown to suppress the air resonance instability throughout wide range helicopter loading conditions and forward flight speeds.

  15. Design and Development of a Flight Route Modification, Logging, and Communication Network

    Science.gov (United States)

    Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.

    2016-01-01

    There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.

  16. Sliding Mode Implementation of an Attitude Command Flight Control System for a Helicopter in Hover

    Directory of Open Access Journals (Sweden)

    D. J. McGeoch

    2005-01-01

    Full Text Available This paper presents an investigation into the design of a flight control system, using a decoupled non-linear sliding mode control structure, designed using a linearised, 9th order representation of the dynamics of a PUMA helicopter in hover. The controllers are then tested upon a higher order, non-linear helicopter model, called RASCAL. This design approach is used for attitude command flight control implementation and the control performance is assessed in the terms of handling qualities through the Aeronautical Design Standards for Rotorcraft (ADS-33. In this context a linearised approximation of the helicopter system is used to design an SMC control scheme. These controllers have been found to yield a system that satisfies the Level 1 handling qualities set out by ADS-33. 

  17. Stabilization control of a bumblebee in hovering and forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2009-01-01

    Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stabil-ity (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization con-trol of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds consid-ered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizon-tal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable.

  18. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    Science.gov (United States)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  19. F-8 digital fly-by-wire flight test results viewed from an active controls perspective

    Science.gov (United States)

    Zalai, K. J.; Deets, D. A.

    1975-01-01

    The results of the NASA F-8 digital fly-by-wire flight test program are presented, along with the implications for active controls applications. The closed loop performance of the digital control system agreed well with the sampled-data system design predictions. The digital fly-by-wire mechanization also met pilot flying qualities requirements. The advantages of mechanizing the control laws in software became apparent during the flight program and were realized without sacrificing overall system reliability. This required strict software management. The F-8 flight test results are shown to be encouraging in light of the requirements that must be met by control systems for flight-critical active controls applications.

  20. Orion Relative Navigation Flight Software Analysis and Design

    Science.gov (United States)

    D'Souza, Chris; Christian, John; Zanetti, Renato

    2011-01-01

    The Orion relative Navigation System has sought to take advantage of the latest developments in sensor and algorithm technology while living under the constraints of mass, power, volume, and throughput. In particular, the only sensor specifically designed for relative navigation is the Vision Navigation System (VNS), a lidar-based sensor. But it uses the Star Trackers, GPS (when available) and IMUs, which are part of the overall Orion navigation sensor suite, to produce a relative state accurate enough to dock with the ISS. The Orion Relative Navigation System has significantly matured as the program has evolved from the design phase to the flight software implementation phase. With the development of the VNS system and the STORRM flight test of the Orion Relative Navigation hardware, much of the performance of the system will be characterized before the first flight. However challenges abound, not the least of which is the elimination of the RF range and range-rate system, along with the development of the FSW in the Matlab/Simulink/Stateflow environment. This paper will address the features and the rationale for the Orion Relative Navigation design as well as the performance of the FSW in a 6-DOF environment as well as the initial results of the hardware performance from the STORRM flight.

  1. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    Science.gov (United States)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  2. 三轴式无人旋翼飞行器及自适应飞行控制系统设计%A Design of Triaxial Unmanned Rotor Aircraft and Its Adaptive Flight Control System

    Institute of Scientific and Technical Information of China (English)

    夏青元; 徐锦法

    2013-01-01

    A tri-axial unmanned rotor aircraft consisting of three sets of coaxial rotors is designed. The control mechanism of the unmanned rotor aircraft is very much simplified. The rotors are directly driven by DC motors. The speed of each motor is the only regulating variable which could control the attitude and trajectory of the aircraft. In order to verify the design of the flight control system for the triaxial unmanned rotor aircraft, a nonlinear dynamic model of the aircraft is investigated. A computing method of the rotor aerodynamic loads is established by means of the blade element momentum theory. The effect of the rotor inflow characteristics on the rotor aerodynamic load is analyzed. The validity of the rotor aerodynamic load model for the co-axial rotor is tested by experiments. Due to the influence of nonlinearity and un-modeled dynamics, it is quite difficult to establish a very accurate mathematical model, which makes it a challenge to design a flight control system. In this paper, a rotational dynamical model inverse controller and translational dynamical model inverse controller are deduced according to the nonlinear model of the aircraft. The model inverse error is adaptively compensated with an online neural network. The command following error is regulated with a PD/PI controller. A combined maneuver flight mission task element is applied to simulation validation, which included pirouette and vertical maneuvers. A demonstration is conducted to validate the flight control system of the tri-axial unmanned rotor aircraft. Simulation results including an imitation of gust disturbance are provided. The demonstration shows clearly that the designed flight control system has adaptability and robustness, and that it can implement accurate command following control.%设计了一种操控简便的三轴式无人旋翼飞行器,由三组共轴双旋翼组成,各旋翼由直流电机直接驱动,只需调节各电机转速就能控制旋翼飞行器运动姿态

  3. Real Time Control Software for Electromagnetic Formation Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a maintainable and evolvable real-time control software system for Electromagnetic Formation Flight (EMFF). EMFF systems use...

  4. Reduction of Flight Control System/Structural Mode Interaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for reducing the degree of interaction of a high gain flight control system with the airframe structural vibration modes, representing a...

  5. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    Science.gov (United States)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  6. Flight control synthesis for flexible aircraft using Eigenspace assignment

    Science.gov (United States)

    Davidson, J. B.; Schmidt, D. K.

    1986-01-01

    The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired

  7. Feedback Control Design for Counterflow Thrust Vectoring

    Science.gov (United States)

    2005-09-01

    in Figures 3 thru 6, but enabled the experimentation to much more closely mimic flight conditions. PID controllers were designed using robust -f1...compensation of both delayed and non-delayed processes. 8 PID controllers often display robustness to incorrect process model order assumptions and...valve saturation is also a significant obstacle. PID controllers are the most commonly used controllers in industrial practice.’ PID control was used

  8. A Robust H∞ Controller for an UAV Flight Control System

    Directory of Open Access Journals (Sweden)

    J. López

    2015-01-01

    Full Text Available The objective of this paper is the implementation and validation of a robust H∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H∞ robust controller in the inner loop, H∞ control methodology is used. The two controllers that conform the outer loop are designed using the H∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

  9. F-16XL ship #1 (#849) takes off for first flight of the Digital Flight Control System (DFCS)

    Science.gov (United States)

    1997-01-01

    The F-16XL #1 (NASA 849) takes off for the first flight of the Digital Flight Control System (DFCS) on December 16, 1997. Like most first flight, the DFCS required months of preparations. During July 1997, crews worked on the engine, cockpit, canopy, seat, and instrumentation. By late August, the aircraft began combined systems tests and a flight readiness review. Although the Air Force Safety Review Board (AFSRB)- a group that provided double checks on all flight operations - approved the program in late November 1997, a problem with the aircraft flight computer delayed the functional check flight until mid-December.

  10. An alternative flight control system for an unmanned aircraft whose flight control system fails during a longitudinal flight with constant forward velocity

    OpenAIRE

    Balint, Agneta M.; Ştefan BALINT

    2010-01-01

    In this paper we build up a flight control system for an unmanned aircraft whose flightcontrol system fails during a longitudinal flight with constant forward velocity. This task isaccomplished using only the system of differential equations, which governs the movement of theaircraft around its center of mass. Numerical simulation is given.

  11. Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Arbab Nighat Khizer

    2014-01-01

    Full Text Available Stable hover flight control for small unmanned helicopter under light air turbulent environment is presented. Intelligent fuzzy logic is chosen because it is a nonlinear control technique based on expert knowledge and is capable of handling sensor created noise and contradictory inputs commonly encountered in flight control. The fuzzy nonlinear control utilizes these distinct qualities for attitude, height, and position control. These multiple controls are developed using two-loop control structure by first designing an inner-loop controller for attitude angles and height and then by establishing outer-loop controller for helicopter position. The nonlinear small unmanned helicopter model used comes from X-Plane simulator. A simulation platform consisting of MATLAB/Simulink and X-Plane© flight simulator was introduced to implement the proposed controls. The main objective of this research is to design computationally intelligent control laws for hovering and to test and analyze this autopilot for small unmanned helicopter model on X-Plane under ideal and mild turbulent condition. Proposed fuzzy flight controls are validated using an X-Plane helicopter model before being embedded on actual helicopter. To show the effectiveness of the proposed fuzzy control method and its ability to cope with the external uncertainties, results are compared with a classical PD controller. Simulated results show that two-loop fuzzy controllers have a good ability to establish stable hovering for a class of unmanned rotorcraft in the presence of light turbulent environment.

  12. Research on Multi-objective Optimal Parameters Design of Aircraft Flight Control System%飞机飞行控制系统参数多目标优化设计研究

    Institute of Scientific and Technical Information of China (English)

    白俊杰; 张坤; 崔彦勇

    2014-01-01

    In the traditional optimization design of flight control system (FCS),there are some disadvanta-ges such as weak correlation between the single object and the flight quality requirements , ambiguous physical meaning and difficulty of using single object to optimize many objects at the same time .To solve such problem ,an improved particle swarm optimization ( PSO) algorithm was proposed .By simulating the foraging aggregation behavior of birds ,the particles can be divided into several dynamic sub-swarms with respect to the finding and expanding of forage in the improved PSO algorithm .So that ,the diversity of par-ticles can be maintained by this method , thus can restrain local optimum phenomena .Finally , using the improved PSO algorithm for numerical simulation of a certain type of aircraft longitudinal control law ,the results show that the proposed algorithm can effectively improve the efficiency of the FCS parameters tun-ing,and the results can meet the flight qualities requirements .%针对传统飞行控制律参数单目标优化设计不能同时满足多控制指标要求,且与飞行品质要求缺乏相关性,物理意义不明确等缺点,提出了一种基于改进粒子群算法的飞行控制律多目标优化设计方法。算法模拟鸟类捕食过程,使得种群随着“食物”的发现和消耗,聚集为数量和构成动态调整多个子群,且子群粒子速度也随之进行自适应变异,从而有利于维持种群的多样性,有效抑制早熟收敛现象发生。最后,使用改进的粒子群优化算法对某型飞机纵向控制律设计进行数值仿真,结果显示,算法有效提高控制律优化调参效率,结果满足期望的飞行品质要求。

  13. The design and realisation of the IXV Mission Analysis and Flight Mechanics

    Science.gov (United States)

    Haya-Ramos, Rodrigo; Blanco, Gonzalo; Pontijas, Irene; Bonetti, Davide; Freixa, Jordi; Parigini, Cristina; Bassano, Edmondo; Carducci, Riccardo; Sudars, Martins; Denaro, Angelo; Angelini, Roberto; Mancuso, Salvatore

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is a suborbital re-entry demonstrator successfully launched in February 2015 focusing on the in-flight demonstration of a lifting body system with active aerodynamic control surfaces. This paper presents an overview of the Mission Analysis and Flight Mechanics of the IXV vehicle, which comprises computation of the End-to-End (launch to splashdown) design trajectories, characterisation of the Entry Corridor, assessment of the Mission Performances through Monte Carlo campaigns, contribution to the aerodynamic database, analysis of the Visibility and link budget from Ground Stations and GPS, support to safety analyses (off nominal footprints), specification of the Centre of Gravity box, selection of the Angle of Attack trim line to be flown and characterisation of the Flying Qualities performances. An initial analysis and comparison with the raw flight data obtained during the flight will be discussed and first lessons learned derived.

  14. A mathematical perspective on flight dynamics and control

    CERN Document Server

    L'Afflitto, Andrea

    2017-01-01

    This brief presents several aspects of flight dynamics, which are usually omitted or briefly mentioned in textbooks, in a concise, self-contained, and rigorous manner. The kinematic and dynamic equations of an aircraft are derived starting from the notion of the derivative of a vector and then thoroughly analysed, interpreting their deep meaning from a mathematical standpoint and without relying on physical intuition. Moreover, some classic and advanced control design techniques are presented and illustrated with meaningful examples. Distinguishing features that characterize this brief include a definition of angular velocity, which leaves no room for ambiguities, an improvement on traditional definitions based on infinitesimal variations. Quaternion algebra, Euler parameters, and their role in capturing the dynamics of an aircraft are discussed in great detail. After having analyzed the longitudinal- and lateral-directional modes of an aircraft, the linear-quadratic regulator, the linear-quadratic Gaussian r...

  15. Selecting a software development methodology. [of digital flight control systems

    Science.gov (United States)

    Jones, R. E.

    1981-01-01

    The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.

  16. ZERO PHASE ERROR REAL TIME CONTROL FOR FLIGHT SIMULATOR SERVO SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liu Jinkun; Liu Qiang; Er Lianjie

    2004-01-01

    Flight simulator is an important device and a typical high performance position servo system used in the hardware-in-the-loop simulation of flight control system.Without using the future desired output, zero phase error controller makes the overall system's frequency response exhibit zero phase shift for all frequencies and a very small gain error at low frequency range can be achieved.A new algorithm to design the feedforward controller is presented, in order to reduce the phase error, the design of proposed feedforward controller uses a modified plant model, which is a closed loop transfer function, through which the system tracking precision performance can be improved greatly.Real-time control results show the effectiveness of the proposed approach in flight simulator servo system.

  17. A review of design issues specific to hypersonic flight vehicles

    Science.gov (United States)

    Sziroczak, D.; Smith, H.

    2016-07-01

    This paper provides an overview of the current technical issues and challenges associated with the design of hypersonic vehicles. Two distinct classes of vehicles are reviewed; Hypersonic Transports and Space Launchers, their common features and differences are examined. After a brief historical overview, the paper takes a multi-disciplinary approach to these vehicles, discusses various design aspects, and technical challenges. Operational issues are explored, including mission profiles, current and predicted markets, in addition to environmental effects and human factors. Technological issues are also reviewed, focusing on the three major challenge areas associated with these vehicles: aerothermodynamics, propulsion, and structures. In addition, matters of reliability and maintainability are also presented. The paper also reviews the certification and flight testing of these vehicles from a global perspective. Finally the current stakeholders in the field of hypersonic flight are presented, summarizing the active programs and promising concepts.

  18. Design of Air Traffic Control Operation System

    Directory of Open Access Journals (Sweden)

    Gabriela STROE

    2017-09-01

    Full Text Available This paper presents a numerical simulation for a different aircraft, based on the specific aircraft data that can be incorporated in the model and the equations of motions which can be consequently solved. The aircraft flight design involves various technical steps and requires the use of sophisticated software having modeling and simulation capabilities. Within the flight simulation model, the aerodynamic model can be regarded as the most complex and most important. With appropriate aerodynamic modeling the aerodynamic forces and moments acting on the aircraft's center of gravity can be numerically solved with accuracy. These forces and moments are further used to solve the equations of motion. The development of control and computing technology makes it possible for advanced flight control strategy. The advanced control techniques tend to make the control design and their implementation much more complicated with more control loops or channels; in this line, the autopilot of modern aircrafts includes a variety of automatic control systems that aid and support the flight navigation, flight management, and perform the enhancing and/or augmenting of the stability characteristics of the airplane. Therefore in this context it is very important to choose the dynamic that will satisfy the performance and robustness specifications.

  19. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  20. Age and expertise effects in aviation decision making and flight control in a flight simulator.

    Science.gov (United States)

    Kennedy, Quinn; Taylor, Joy L; Reade, Gordon; Yesavage, Jerome A

    2010-05-01

    Age (due to declines in cognitive abilities necessary for navigation) and level of aviation expertise are two factors that may affect aviation performance and decision making under adverse weather conditions. We examined the roles of age, expertise, and their relationship on aviation decision making and flight control performance during a flight simulator task. Seventy-two IFR-rated general aviators, aged 19-79 yr, made multiple approach, holding pattern entry, and landing decisions while navigating under Instrument Flight Rules weather conditions. Over three trials in which the fog level varied, subjects decided whether or not to land the aircraft. They also completed two holding pattern entries. Subjects' flight control during approaches and holding patterns was measured. Older pilots (41+ yr) were more likely than younger pilots to land when visibility was inadequate (older pilots' mean false alarm rate: 0.44 vs 0.25). They also showed less precise flight control for components of the approach, performing 0.16 SD below mean approach scores. Expertise attenuated an age-related decline in flight control during holding patterns: older IFR/CFI performed 0.73 SD below mean score; younger IFR/CFI, younger CFII/ATP, older CFII/ATP: 0.32, 0.26, 0.03 SD above mean score. Additionally, pilots with faster processing speed (by median split) had a higher mean landing decision false alarm rate (0.42 vs 0.28), yet performed 0.14 SD above the mean approach control score. Results have implications regarding specialized training for older pilots and for understanding processes involved in older adults' real world decision making and performance.

  1. Nonlinear and fault-tolerant flight control using multivariate splines

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear

  2. Nonlinear and fault-tolerant flight control using multivariate splines

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear c

  3. DYNAMICAL VARIABLE STRUCTURE CONTROL OF A HELICOPTER IN VERTICAL FLIGHT

    OpenAIRE

    Sira-Ramirez, Hebertt; Zribi, Mohamed; Ahmad, Shaheen

    1991-01-01

    In this article, a dynamical multivariable discontinuous feedback control strategy of the sliding nlode type is proposed for the altitude stabilization of a nonlinear helicopter model in vertical flight. Vlrhile retaining the basic robustness features associated to sliding mode control policies, the proposed approach also results in smoothed out (i.e., non-chattering) input trajectories and controlled state variable responses.

  4. Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems

    Science.gov (United States)

    Chou, Hwei-Lan; Biezad, Daniel J.

    1996-01-01

    Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.

  5. An Indispensable Ingredient: Flight Research and Aircraft Design

    Science.gov (United States)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  6. Management of flight control for "ExoMars-2018" robotic interplanetary space station

    Science.gov (United States)

    Shirshakov, A. E.; Artyukhov, M. I.; Kazakevich, Yu. V.; Kalashnikov, A. I.

    2015-12-01

    The article covers the current status of activities on development of "ExoMars-2018" robotic interplanetary space station in terms of SC Composite flight program, results of onboard systems interaction functional design study. Organizational structure of p]Russian part of ground control and management of its interaction with European part of ground control are proposed.

  7. Flight Controllability Limits and Related Human Transfer Functions as Determined from Simulator and Flight Tests

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Day, Richard E.

    1961-01-01

    A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.

  8. Rapid, sensitive and simultaneous determination of fluorescence-labeled designated substances controlled by the Pharmaceutical Affairs Law in Japan by ultra-performance liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Min, Jun Zhe; Hatanaka, Suguru; Toyo'oka, Toshimasa; Inagaki, Shinsuke; Kikura-Hanajiri, Ruri; Goda, Yukihiro

    2009-11-01

    A simultaneous determination method based on ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS) was developed for 16 "designated substances" (Shitei-Yakubutsu) controlled by the Pharmaceutical Affairs Law in Japan. These substances were first labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole at 60 degrees C for 2 h in 0.1 M borax (pH 9.3). The resulting fluorophores were well separated by reversed-phase chromatography using an Acquity UPLC BEH C(18) column (1.7 microm, 100 mm x 2.1 mm i.d.) by isocratic elution with a mixture of water and acetonitrile-methanol (20:80) containing 0.1% formic acid. The separated derivatives were sensitively detected by both FL and TOF-MS. However, the determination of several designated substances by FL detection showed interference from endogenous substances in biological samples. Therefore, the determination in real samples was carried out by a combination of UPLC separation and ESI-TOF-MS detection. The structures of the designated substances were identified from the protonated-molecular ions [M+H](+) obtained from the TOF-MS measurement. The calibration curves obtained from the peak area ratios of the internal standard (I.S.), i.e., 3-phenyl-1-propylamine, and the designated substances versus the injection amounts showed good linearity. The limits of detection (S/N = 3) and the limits of quantification (S/N = 10) in 0.1 mL of human plasma and urine for the present method were 0.30-150 pmol and 1.0-500 pmol, respectively. Good accuracy and precision (according to intraday and interday assays) were also obtained with the present procedure. This method was applied to analyses of human plasma, urine and real products.

  9. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    Science.gov (United States)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  10. Performance of active vibration control technology: the ACTEX flight experiments

    Science.gov (United States)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  11. Recent Developments in the Remote Radio Control of Insect Flight

    Directory of Open Access Journals (Sweden)

    Hirotaka eSato

    2010-12-01

    Full Text Available The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the state-of-the-art and discuss future directions in this field.

  12. 基于模型的民机自动飞行功能分析与设计%The Model-Based Functional Analysis and Design for Auto Flight Control System on Commercial Airplane

    Institute of Scientific and Technical Information of China (English)

    方俊伟; 汤超; 张翔; 张磊; 谢陵

    2016-01-01

    This paper reports the model-based functional analysis and architecture design for the auto flight con-trol system on commercial aircraft. The system engineering process develops functional models that can define and validate the system functions. The functional flow is logically dynamic upon changes in operational states, human-machine interaction and external environment. Its static and dynamic characteristics are systematically studied in-cluding external actors, application cases, functional logics, interactive sequence and state shifting. The logical ar-chitecture and interfaces are also generated, and relevant requirements are allocated accordingly as development references of physical architecture and implementation design. The study examines availability and integrity of flight guidance, auto thrust, auto landing, crew warning and alerts functions and improves the design requirements.%描述了民用飞机自动飞行系统基于模型的功能分析与架构设计过程。该研究采用符合现代系统工程理念的模型化设计形式,表明和确认系统功能在各种运行决策、人机交互和外部环境中的变化。它针对系统级功能静态、动态特性进行结构化分析和设计,系统性地研究外部对象、应用用例、功能逻辑、交联时序和状态跳转,在确认模型的合理性后生成逻辑架构与接口,将设计需求进行分配,用于设计实现和软硬件架构。该研究通过对飞行导引、自动推力、自动着陆、机组通告等功能的可用性和完整性进行分析检验,改进了功能需求设计。

  13. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  14. Verifying Architectural Design Rules of the Flight Software Product Line

    Science.gov (United States)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen

    2009-01-01

    This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.

  15. Self-tuning Generalized Predictive Control applied to terrain following flight

    Science.gov (United States)

    Hess, R. A.; Jung, Y. C.

    1989-01-01

    Generalized Predictive Control (GPC) describes an algorithm for the control of dynamic systems in which a control input is generated which minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. Self-tuning GPC refers to an implementation of the GPC algorithm in which the parameters of the internal model(s) are estimated on-line and the predictive control law tuned to the parameters so identified. The self-tuning GPC algorithm is applied to a problem of rotorcraft longitudinal/vertical terrain-following flight. The ability of the algorithm to tune to the initial vehicle parameters and to successfully adapt to a stability augmentation failure is demonstrated. Flight path performance is compared to a conventional, classically designed flight path control system.

  16. Flight mechanism and design of biomimetic micro air vehicles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper summaries the investigations on natural flyers and development of bio-mimetic micro air vehicles(MAVs)at NUAA,China,where the authors have led a group to conduct research for a decade. The investigations include the studies of low Reynolds number aerodynamics,unsteady computational fluid dynamics and flight control for the fixed-wing MAVs,the bird-like MAVs,the dragonfly-like MAVs and the bee-like MAVs.

  17. Multistrand, Fast Reaction, Shape Memory Alloy System for Uninhabited Aerial Vehicle Flight Control

    Directory of Open Access Journals (Sweden)

    M. Brennison

    2012-01-01

    Full Text Available This paper details an investigation of shape memory alloy (SMA filaments which are used to drive a flight control system with precision control in a real flight environment. An antagonistic SMA actuator was developed with an integrated demodulator circuit from a JR NES 911 subscale UAV actuator. Most SMA actuator studies concentrate on modeling the open-loop characteristics of such a system with full actuator performance modeling. This paper is a bit different in that it is very practically oriented and centered on development of a flight-capable system which solves the most tricky, practical problems associated with using SMA filaments for aircraft flight control. By using well-tuned feedback loops, it is shown that intermediate SMA performance prediction is not appropriate for flight control system (FCS design. Rather, capturing the peak behavior is far more important, along with appropriate feedback loop design. To prove the system, an SMA actuator was designed and installed in the fuselage of a 2 m uninhabited aerial vehicle (UAV and used to control the rudder through slips and coordinated turns. The actuator was capable of 20 degrees of positive and negative deflection and was capable of 7.5 in-oz (5.29 N cm of torque at a bandwidth of 2.8 Hz.

  18. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    Science.gov (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  19. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  20. Induction motor control design

    CERN Document Server

    Marino, Riccardo; Verrelli, Cristiano M

    2010-01-01

    ""Nonlinear and Adaptive Control Design for Induction Motors"" is a unified exposition of the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible to readers who are not experts in electric motors at the same time as giving a more theoretical control viewpoint to those who are. In order to increase readability, the book concentrates on the induction motor, eschewing the much more complex and less-well-understood control of asynchronous motors. The

  1. F-16XL ship #1 (#849) with Digital Flight Control System (DFCS) in flight over desert

    Science.gov (United States)

    1997-01-01

    An image of the F-16XL #1 during its functional flight check of the Digital Flight Control System (DFCS) on December 16, 1997. The mission was flown by NASA research pilot Dana Purifoy, and lasted 1 hour and 25 minutes. The tests included pilot familiarly, functional check, and handling qualities evaluation maneuvers to a speed of Mach 0.6 and 300 knots. Purifoy completed all the briefed data points with no problems, and reported that the DFCS handled as well, if not better than the analog computer system that it replaced.

  2. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  3. A benchmark for fault tolerant flight control evaluation

    NARCIS (Netherlands)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-01-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return − RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the

  4. Nocturnal insects use optic flow for flight control.

    Science.gov (United States)

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.

  5. Matlab as a robust control design tool

    Science.gov (United States)

    Gregory, Irene M.

    1994-01-01

    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  6. 基于MEGA2560的低成本飞控系统双存储方案的设计%Dual Storage Solution Design of Low-Cost Flight Control System Based on MEGA2560

    Institute of Scientific and Technical Information of China (English)

    孙其瑞; 熊继军; 梁庭; 李颖; 翟瑞永

    2014-01-01

    针对某型航拍无人机不同任务阶段对数据存储的速度与容量的不同性能要求,设计了高速Flash加大容量SD卡的双存储数据记录模块。实现了对飞行器姿态、GPS以及控制指令等信息的完整记录,系统经试飞验证效果良好。该系统可作为黑匣用于故障分析,又可用于后期航拍图像处理以及控制策略优化、航拍轨迹优化分析,对于野外航拍任务数据记录具有重要的实用价值。%According to different performance requirements on data storage speed and capacity of different mission phases of a certain type of aerial drones, a dual data storage solution was designed on the low-cost flight control system by using high speed Flash and the SD card. It can fully record the aircraft attitude, GPS and control instructions and other information. It has been verified by test and it works well. The system can be used for failure analysis as a black box, as well as for aerial image processing and the analysis of the control strategy and aerial trajectory optimization,which has important practical value especially for field aerial mission.

  7. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  8. Flight Integral Field Spectrograph (IFS) Optical Design for WFIRST Coronagraphic Exoplanet Demonstration

    Science.gov (United States)

    Gong, Qian; Groff, Tyler D.; Zimmerman, Neil; Mandell, Avi; McElwain, Michael; Rizzo, Maxime; Saxena, Prabal

    2017-01-01

    Based on the experience from Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST, we have moved to the flight instrument design phase. The specifications for flight IFS have similarities and differences from the prototype. This paper starts with the science and system requirement, discusses a number of critical trade-offs: such as IFS type selection, lenslet array shape and layout versus detector pixel accuracy, how to accommodate the larger Field Of View (FOV) and wider wavelength band for a potential add-on StarShade occulter. Finally, the traditional geometric optical design is also investigated and traded: reflective versus refractive, telecentric versus non-telecentric relay. The relay before the lenslet array controls the chief angle distribution on the lenslet array. Our previous paper has addressed how the relay design combined with lenslet arraypinhole mask can further compress the residual star light and increase the contrast. Finally, a complete phase A IFS optical design is presented.

  9. Design Considerations for a Launch Vehicle Development Flight Instrumentation System

    Science.gov (United States)

    Johnson, Martin L.; Crawford, Kevin

    2011-01-01

    When embarking into the design of a new launch vehicle, engineering models of expected vehicle performance are always generated. While many models are well established and understood, some models contain design features that are only marginally known. Unfortunately, these analytical models produce uncertainties in design margins. The best way to answer these analytical issues is with vehicle level testing. The National Aeronautics and Space Administration respond to these uncertainties by using a vehicle level system called the Development Flight Instrumentation, or DFI. This DFI system can be simple to implement, with only a few measurements, or it may be a sophisticated system with hundreds of measurement and video, without a recording capability. From experience with DFI systems, DFI never goes away. The system is renamed and allowed to continue, in most cases. Proper system design can aid the transition to future data requirements. This paper will discuss design features that need to be considered when developing a DFI system for a launch vehicle. It will briefly review the data acquisition units, sensors, multiplexers and recorders, telemetry components and harnessing. It will present a reasonable set of requirements which should be implemented in the beginning of the program in order to start the design. It will discuss a simplistic DFI architecture that could be the basis for the next NASA launch vehicle. This will be followed by a discussion of the "experiences gained" from a past DFI system implementation, such as the very successful Ares I-X test flight. Application of these design considerations may not work for every situation, but they may direct a path toward success or at least make one pause and ask the right questions.

  10. Qualitative Functional Decomposition Analysis of Evolved Neuromorphic Flight Controllers

    Directory of Open Access Journals (Sweden)

    Sanjay K. Boddhu

    2012-01-01

    Full Text Available In the previous work, it was demonstrated that one can effectively employ CTRNN-EH (a neuromorphic variant of EH method methodology to evolve neuromorphic flight controllers for a flapping wing robot. This paper describes a novel frequency grouping-based analysis technique, developed to qualitatively decompose the evolved controllers into explainable functional control blocks. A summary of the previous work related to evolving flight controllers for two categories of the controller types, called autonomous and nonautonomous controllers, is provided, and the applicability of the newly developed decomposition analysis for both controller categories is demonstrated. Further, the paper concludes with appropriate discussion of ongoing work and implications for possible future work related to employing the CTRNN-EH methodology and the decomposition analysis techniques presented in this paper.

  11. Nutrient Control Design Manual

    Science.gov (United States)

    The purpose of this EPA design manual is to provide updated, state‐of‐the‐technology design guidance on nitrogen and phosphorus control at municipal Wastewater Treatment Plants (WWTPs). Similar to previous EPA manuals, this manual contains extensive information on the principles ...

  12. Visual control of prey-capture flight in dragonflies.

    Science.gov (United States)

    Olberg, Robert M

    2012-04-01

    Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects.

  13. Validation of Flight Critical Control Systems

    Science.gov (United States)

    1991-12-01

    resonances , electromagnetic shielding/interference effects, power transients, cooling system performance, and other elements which are sensitive to the... Magnetic Capability *Electro Magnectic Itnterference -Lightning Protection - lectrical Girouinds - lectrica I Bondinog ( beiiical - Biological I -n vi...ments, the funtional specification, the design specification, the implementation and prototype, the pro- totye aircraft, and the production system

  14. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    Science.gov (United States)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  15. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  16. The development and flight test of an electronic integrated propulsion control system

    Science.gov (United States)

    Johnson, H. J.; Painter, W. D.

    1976-01-01

    Advanced technical features of the electronic integrated propulsion control system (IPCS) and flight evaluation tests of IPCS (F-111E with TF30-P-9 engines as test vehicle) are described. Nine baseline flight tests and 15 IPCS flight tests were conducted. Instrumentation, data acquisition and data processing systems, software maintenance procedures, flight test procedures, flight safety criteria, flight test results, and ground and flight testing of the aircraft system are described. Advantages conferred by IPCS include: faster accelerations (both gas generator and afterburner performance), better thrust and flight control, reduced flight idle thrust, reduced engine ground trim, extended service ceiling, automatic stall detection, and stall recovery detection.

  17. The use of vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  18. Physical design of positronium time of flight spectroscopy apparatus

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiao-Pan; ZHANG Zi-Liang; QIN Xiu-Bo; YU Run-Sheng; WANG Bao-Yi

    2010-01-01

    Positronium time of flight spectroscopy(Ps-TOF)is an effective technique for porous material research.It has advantages over other techniques for analyzing the porosity and pore tortuosity of materials.This paper describes a design for Ps-TOF apparatus based on the Beijing intense slow positron beam,supplying a new material characterization technique.In order to improve the time resolution and increase the count rate of the apparatus,the detector system is optimized.For 3 eV o-Ps,the time broadening is 7.66 ns and the count rate is 3 cps after correction.

  19. Behavioural system identification of visual flight speed control in Drosophila melanogaster.

    Science.gov (United States)

    Rohrseitz, Nicola; Fry, Steven N

    2011-02-06

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.

  20. Dawn Spacecraft Reaction Control System Flight Experience

    Science.gov (United States)

    Mizukami, Masashi; Nakazono, Barry

    2014-01-01

    The NASA Dawn spacecraft mission is studying conditions and processes of the solar system's earliest epoch by investigating two protoplanets remaining intact since their formations, Ceres and Vesta. Launch was in 2007. Ion propulsion is used to fly to and enter orbit around Vesta, depart Vesta and fly to Ceres, and enter orbit around Ceres. A conventional blowdown hydrazine reaction control system (RCS) is used to provide external torques for attitude control. Reaction wheel assemblies were intended to provide attitude control in most cases. However, the spacecraft experienced one, then two apparent failures of reaction wheels. Also, similar thrusters experienced degradation in a long life application on another spacecraft. Those factors led to RCS being operated in ways completely different than anticipated prior to launch. Numerous mitigations and developments needed to be implemented. The Vesta mission was fully successful. Even with the compromises necessary due to those anomalies, the Ceres mission is also projected to be feasible.

  1. Total energy control system autopilot design with constrained parameter optimization

    Science.gov (United States)

    Ly, Uy-Loi; Voth, Christopher

    1990-01-01

    A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.

  2. A Discrete-Time Chattering Free Sliding Mode Control with Multirate Sampling Method for Flight Simulator

    Directory of Open Access Journals (Sweden)

    Yunjie Wu

    2013-01-01

    Full Text Available In order to improve the tracking accuracy of flight simulator and expend its frequency response, a multirate-sampling-method-based discrete-time chattering free sliding mode control is developed and imported into the systems. By constructing the multirate sampling sliding mode controller, the flight simulator can perfectly track a given reference signal with an arbitrarily small dynamic tracking error, and the problems caused by a contradiction of reference signal period and control period in traditional design method can be eliminated. It is proved by theoretical analysis that the extremely high dynamic tracking precision can be obtained. Meanwhile, the robustness is guaranteed by sliding mode control even though there are modeling mismatch, external disturbances and measure noise. The validity of the proposed method is confirmed by experiments on flight simulator.

  3. An Advanced Fly-By-Wire Flight Control System for the RASCAL Research Rotorcraft: Concept to Reality

    Science.gov (United States)

    Rediess, Nicholas A.; Dones, Fernando; McManus, Bruce L.; Ulmer, Lon; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Design features of a new fly-by-wire flight control system for the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these pro-rams and the design implementation of the research flight control system (RFCS), with emphasis on safety-of-flight, adaptability to multiple requirements and performance considerations.

  4. FLIGHT PATH CONTROL FOR UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    M. A. Al-Mashhadani

    2014-01-01

    Full Text Available Studying the optimized control law specified criteria on UAV while hovering over a path defined by the reference points in the inertial frame. An illustrative example is the  theoretical efficiency of the proposed provisions. 

  5. A new flight control and management system architecture and configuration

    Science.gov (United States)

    Kong, Fan-e.; Chen, Zongji

    2006-11-01

    The advanced fighter should possess the performance such as super-sound cruising, stealth, agility, STOVL(Short Take-Off Vertical Landing),powerful communication and information processing. For this purpose, it is not enough only to improve the aerodynamic and propulsion system. More importantly, it is necessary to enhance the control system. A complete flight control system provides not only autopilot, auto-throttle and control augmentation, but also the given mission management. F-22 and JSF possess considerably outstanding flight control system on the basis of pave pillar and pave pace avionics architecture. But their control architecture is not enough integrated. The main purpose of this paper is to build a novel fighter control system architecture. The control system constructed on this architecture should be enough integrated, inexpensive, fault-tolerant, high safe, reliable and effective. And it will take charge of both the flight control and mission management. Starting from this purpose, this paper finishes the work as follows: First, based on the human nervous control, a three-leveled hierarchical control architecture is proposed. At the top of the architecture, decision level is in charge of decision-making works. In the middle, organization & coordination level will schedule resources, monitor the states of the fighter and switch the control modes etc. And the bottom is execution level which holds the concrete drive and measurement; then, according to their function and resources all the tasks involving flight control and mission management are sorted to individual level; at last, in order to validate the three-leveled architecture, a physical configuration is also showed. The configuration is distributed and applies some new advancement in information technology industry such line replaced module and cluster technology.

  6. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  7. Vision-based flight control in the hawkmoth Hyles lineata.

    Science.gov (United States)

    Windsor, Shane P; Bomphrey, Richard J; Taylor, Graham K

    2014-02-06

    Vision is a key sensory modality for flying insects, playing an important role in guidance, navigation and control. Here, we use a virtual-reality flight simulator to measure the optomotor responses of the hawkmoth Hyles lineata, and use a published linear-time invariant model of the flight dynamics to interpret the function of the measured responses in flight stabilization and control. We recorded the forces and moments produced during oscillation of the visual field in roll, pitch and yaw, varying the temporal frequency, amplitude or spatial frequency of the stimulus. The moths' responses were strongly dependent upon contrast frequency, as expected if the optomotor system uses correlation-type motion detectors to sense self-motion. The flight dynamics model predicts that roll angle feedback is needed to stabilize the lateral dynamics, and that a combination of pitch angle and pitch rate feedback is most effective in stabilizing the longitudinal dynamics. The moths' responses to roll and pitch stimuli coincided qualitatively with these functional predictions. The moths produced coupled roll and yaw moments in response to yaw stimuli, which could help to reduce the energetic cost of correcting heading. Our results emphasize the close relationship between physics and physiology in the stabilization of insect flight.

  8. Flight Simulator Evaluation of Synthetic Vision Display Concepts to Prevent Controlled Flight Into Terrain (CFIT)

    Science.gov (United States)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.

    2004-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.

  9. Improving flight condition situational awareness through Human Centered Design.

    Science.gov (United States)

    Craig, Carol

    2012-01-01

    In aviation, there is currently a lack of accurate and timely situational information, specifically weather data, which is essential when dealing with the unpredictable complexities that can arise while flying. For example, weather conditions that require immediate evasive action by the flight crew, such as isolated heavy rain, micro bursts, and atmospheric turbulence, require that the flight crew receive near real-time and precise information about the type, position, and intensity of those conditions. Human factors issues arise in considering how to display the various sources of weather information to the users of that information and how to integrate this display into the existing environment. In designing weather information display systems, it is necessary to meet the demands of different users, which requires an examination of the way in which the users process and use weather information. Using Human Centered Design methodologies and concepts will result in a safer, more efficient and more intuitive solution. Specific goals of this approach include 1) Enabling better fuel planning; 2) Allowing better divert strategies; 3) Ensuring pilots, navigators, dispatchers and mission planners are referencing weather from the same sources; 4) Improving aircrew awareness of aviation hazards such as turbulence, icing, hail and convective activity; 5) Addressing inconsistent availability of hazard forecasts outside the United States Air Defense Identification Zone (ADIZ); and 6) Promoting goal driven approaches versus event driven (prediction).

  10. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-14

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined.

  11. An Overview of Adaptive Approaches in Flight Control

    Directory of Open Access Journals (Sweden)

    Y. Rajeshwari

    2015-01-01

    Full Text Available Multi-mode switching between controllers corresponding to different modes of operation is needed in those cases when the transition from one mode to another results in substantial flight-critical variations in the aircraft dynamics. To address this problem, a general framework for multi-modal flight control is proposed. The framework is based on the Multiple Models, Switching and Tuning (MMST methodology, combined with Model-Predictive Control (MPC, and the use of different robust mechanisms for switching between the multi-modal controllers. It was shown that many different switching control strategies can be naturally derived from the basic framework, which demonstrates the generality of the proposed approach.

  12. Neural Network-Based Adaptive Backstepping Control for Hypersonic Flight Vehicles with Prescribed Tracking Performance

    OpenAIRE

    Zhu Guoqiang; Liu Jinkun

    2015-01-01

    An adaptive neural control scheme is proposed for a class of generic hypersonic flight vehicles. The main advantages of the proposed scheme include the following: (1) a new constraint variable is defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries; (2) RBF NNs are employed to compensate for complex and uncertain terms to solve the problem of controller complexity; (3) only one parameter needs to be updated online at each design step, whi...

  13. Immersion and Invariance Based Nonlinear Adaptive Flight Control

    NARCIS (Netherlands)

    Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is

  14. Immersion and Invariance Based Nonlinear Adaptive Flight Control

    NARCIS (Netherlands)

    Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is co

  15. Zero phase error control based on neural compensation for flight simulator servo system

    Institute of Scientific and Technical Information of China (English)

    Liu Jinkun; He Peng; Er Lianjie

    2006-01-01

    Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.

  16. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  17. Stability of simulated flight path control at +3 Gz in a human centrifuge.

    Science.gov (United States)

    Guardiera, Simon; Dalecki, Marc; Bock, Otmar

    2010-04-01

    Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.

  18. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Science.gov (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  19. Control and flight test of a tilt-rotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Chao Chen

    2017-01-01

    Full Text Available Tilt-rotor unmanned aerial vehicles have attracted increasing attention due to their ability to perform vertical take-off and landing and their high-speed cruising abilities, thereby presenting broad application prospects. Considering portability and applications in tasks characterized by constrained or small scope areas, this article presents a compact tricopter configuration tilt-rotor unmanned aerial vehicle with full modes of flight from the rotor mode to the fixed-wing mode and vice versa. The unique multiple modes make the tilt-rotor unmanned aerial vehicle a multi-input multi-output, non-affine, multi-channel cross coupling, and nonlinear system. Considering these characteristics, a control allocation method is designed to make the controller adaptive to the full modes of flight. To reduce the cost, the accurate dynamic model of the tilt-rotor unmanned aerial vehicle is not obtained, so a full-mode flight strategy is designed in view of this situation. An autonomous flight test was conducted, and the results indicate the satisfactory performance of the control allocation method and flight strategy.

  20. Robust Predictive Functional Control for Flight Vehicles Based on Nonlinear Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Yinhui Zhang

    2015-01-01

    Full Text Available A novel robust predictive functional control based on nonlinear disturbance observer is investigated in order to address the control system design for flight vehicles with significant uncertainties, external disturbances, and measurement noise. Firstly, the nonlinear longitudinal dynamics of the flight vehicle are transformed into linear-like state-space equations with state-dependent coefficient matrices. And then the lumped disturbances are considered in the linear structure predictive model of the predictive functional control to increase the precision of the predictive output and resolve the intractable mismatched disturbance problem. As the lumped disturbances cannot be derived or measured directly, the nonlinear disturbance observer is applied to estimate the lumped disturbances, which are then introduced to the predictive functional control to replace the unknown actual lumped disturbances. Consequently, the robust predictive functional control for the flight vehicle is proposed. Compared with the existing designs, the effectiveness and robustness of the proposed flight control are illustrated and validated in various simulation conditions.

  1. Muscle function in avian flight: achieving power and control

    Science.gov (United States)

    Biewener, Andrew A.

    2011-01-01

    Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern. PMID:21502121

  2. Electronics plus fluidics for V/STOL flight control

    Science.gov (United States)

    Hendrick, R. C.

    1977-01-01

    The redundant digital fly by wire flight control system coupled with a fluidic system, which uses hydraulic pressure as its signal transmission means to provide pilot and feedback sensor control of airframe forcing functions is considered for application to the V/STOL aircraft. A potential fluidics system is introduced, and anticipated performance, weight, and reliability is discussed. Integration with the redundant electronic channels is explored, with the safety and mission reliability of alternate configurations estimated.

  3. The use of minimum order state observers in digital flight-control systems.

    Science.gov (United States)

    Montgomery, R. C.; Hatch, H. G., Jr.

    1972-01-01

    This paper deals with the problem of selecting the 'arbitrary' design parameters of digital state observers when they are being used as a part of a digital flight-control system. A cost index is developed which indicates the output noise caused by input quantization due to analog-to-digital conversion. The cost index assumes that the input quantization error is uniformly distributed over the least-significant-bit of the conversion. Formulas relating the cost index to the observer design parameters are presented. The cost index is minimized with respect to the design parameters using a conjugate gradient algorithm. An example of the theory is presented in which a digital observer is designed so that a satisfactory digital flight-control system is obtained starting from an unacceptable one.

  4. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    Science.gov (United States)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  5. ROBUST STABILIZATION AND OPTIMIZATION OF FLIGHT CONTROL SYSTEM WITH STATE FEEDBACK AND FUZZY LOGICS

    Directory of Open Access Journals (Sweden)

    Marta M. Komnatska

    2009-04-01

    Full Text Available  This paper deals with combination of two powerful and modern control tools as linear matrix inequality that is used for synthesis a ‘crisp’ controller and a fuzzy control approach for designing a soft controller. The control design consists of two stages. The first stage investigates the problem of a robust an controller design with parameters uncertainties of the handled plant in the presence of external disturbances. Stability conditions are obtained via a quadratic Lyapunov function and represented in the form of linear matrix inequalities. The second stage consists of the outer loop controller construction based on fuzzy inference system that utilizes for altitude hold mode. The parameters of the fuzzy controller are adjusted with a gradient descent method in order to improve the performance of the overall system. The case study illustrates the efficiency of the proposed approach to the flight control of small Unmanned Aerial Vehicle

  6. Adaptive Controller Design for Faulty UAVs via Quantum Information Technology

    Directory of Open Access Journals (Sweden)

    Fuyang Chen

    2012-12-01

    Full Text Available In this paper, an adaptive controller is designed for a UAV flight control system against faults and parametric uncertainties based on quantum information technology and the Popov hyperstability theory. First, considering the bounded control input, the state feedback controller is designed to make the system stable. The model of adaptive control is introduced to eliminate the impact by the uncertainties of system parameters via quantum information technology. Then, according to the model reference adaptive principle, an adaptive control law based on the Popov hyperstability theory is designed. This law enable better robustness of the flight control system and tracking control performances. The closed-loop system's stability is guaranteed by the Popov hyperstability theory. The simulation results demonstrate that a better dynamic performance of the UAV flight control system with faults and parametric uncertainties can be maintained with the proposed method.

  7. Adaptive Controller Design for Faulty UAVs via Quantum Information Technology

    Directory of Open Access Journals (Sweden)

    Fuyang Chen

    2012-12-01

    Full Text Available In this paper, an adaptive controller is designed for a UAV flight control system against faults and parametric uncertainties based on quantum information technology and the Popov hyperstability theory. First, considering the bounded control input, the state feedback controller is designed to make the system stable. The model of adaptive control is introduced to eliminate the impact by the uncertainties of system parameters via quantum information technology. Then, according to the model reference adaptive principle, an adaptive control law based on the Popov hyperstability theory is designed. This law enable better robustness of the flight control system and tracking control performances. The closed‐loop system’s stability is guaranteed by the Popov hyperstability theory. The simulation results demonstrate that a better dynamic performance of the UAV flight control system with faults and parametric uncertainties can be maintained with the proposed method.

  8. Adaptive and Resilient Flight Control System for a Small Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Gonzalo Garcia

    2013-01-01

    Full Text Available The main purpose of this paper is to develop an onboard adaptive and robust flight control system that improves control, stability, and survivability of a small unmanned aerial system in off-nominal or out-of-envelope conditions. The aerodynamics of aircraft associated with hazardous and adverse onboard conditions is inherently nonlinear and unsteady. The presented flight control system improves functionalities required to adapt the flight control in the presence of aircraft model uncertainties. The fault tolerant inner loop is enhanced by an adaptive real-time artificial neural network parameter identification to monitor important changes in the aircraft’s dynamics due to nonlinear and unsteady aerodynamics. The real-time artificial neural network parameter identification is done using the sliding mode learning concept and a modified version of the self-adaptive Levenberg algorithm. Numerically estimated stability and control derivatives are obtained by delta-based methods. New nonlinear guidance logic, stable in Lyapunov sense, is developed to guide the aircraft. The designed flight control system has better performance compared to a commercial off-the-shelf autopilot system in guiding and controlling an unmanned air system during a trajectory following.

  9. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  10. Nonlinear Robust Control of a Hypersonic Flight Vehicle Using Fuzzy Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Lei Zhengdong

    2013-01-01

    Full Text Available This paper is concerned with a novel tracking controller design for a hypersonic flight vehicle in complex and volatile environment. The attitude control model is challengingly constructed with multivariate uncertainties and external disturbances, such as structure dynamic and stochastic wind disturbance. In order to resist the influence of uncertainties and disturbances on the flight control system, nonlinear disturbance observer is introduced to estimate them. Moreover, for the sake of high accuracy and sensitivity, fuzzy theory is adopted to improve the performance of the nonlinear disturbance observer. After the total disturbance is eliminated by dynamic inversion method, a cascade system is obtained and then stabilized by a sliding-mode controller. Finally, simulation results show that the strong robust controller achieves excellent performance when the closed-loop control system is influenced by mass uncertainties and external disturbances.

  11. Cooperative GN&C development in a rapid prototyping environment. [flight software design for space vehicles

    Science.gov (United States)

    Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim

    1993-01-01

    The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.

  12. Control system design and analysis using the INteractive Controls Analysis (INCA) program

    Science.gov (United States)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    The INteractive Controls Analysis (INCA) program was developed at the Goddard Space Flight Center to provide a user friendly efficient environment for the design and analysis of linear control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. Moreover, the results of the analytic tools imbedded in INCA have been flight proven with at least three currently orbiting spacecraft. This paper describes the INCA program and illustrates, using a flight proven example, how the package can perform complex design analyses with relative ease.

  13. Control system design and analysis using the INteractive Controls Analysis (INCA) program

    Science.gov (United States)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    The INteractive Controls Analysis (INCA) program was developed at the Goddard Space Flight Center to provide a user friendly efficient environment for the design and analysis of linear control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. Moreover, the results of the analytic tools imbedded in INCA have been flight proven with at least three currently orbiting spacecraft. This paper describes the INCA program and illustrates, using a flight proven example, how the package can perform complex design analyses with relative ease.

  14. Adaptive Neural Network Dynamic Inversion with Prescribed Performance for Aircraft Flight Control

    OpenAIRE

    Wendong Gai; Honglun Wang; Jing Zhang; Yuxia Li

    2013-01-01

    An adaptive neural network dynamic inversion with prescribed performance method is proposed for aircraft flight control. The aircraft nonlinear attitude angle model is analyzed. And we propose a new attitude angle controller design method based on prescribed performance which describes the convergence rate and overshoot of the tracking error. Then the model error is compensated by the adaptive neural network. Subsequently, the system stability is analyzed in detail. Finally, the proposed meth...

  15. Investigation of Inner Loop Flight Control Strategies for High-Speed Research

    Science.gov (United States)

    Newman, Brett; Kassem, Ayman

    1999-01-01

    This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.

  16. A nonlinear trajectory command generator for a digital flight-control system

    Science.gov (United States)

    Cicolani, L. S.; Weissenberger, S.

    1978-01-01

    Operational application of the command generator (CG) was examined in detail in a simulation of a flight control system with the augmentor wing jet STOL research aircraft. The basic repertoire of single axis maneuvers and operational constraints are discussed, and the system behavior is tested on a rigorous STOL approach path and as affected by various approximations in the CG synthesis and types of disturbances found in the operational environment. The simulation results indicate that a satisfactory nonlinear system with general maneuvering capabilities throughout the flight envelope was developed which satisfies the basic design objectives while maintaining a practicable degree of simplicity.

  17. Robust Near-Hovering Flight Controller for Model-Scale Helicopters Via Parametric Approach

    Institute of Scientific and Technical Information of China (English)

    Zhigang Zhou; Yongan Zhang∗

    2015-01-01

    This paper aims to provide a parametric design for robust flight controller of the model⁃scale helicopter. The main contributions lie in two aspects. Firstly, under near⁃hovering condition, a procedure is presented for simplification of the highly nonlinear and under⁃actuated model of the model⁃scale helicopter. This nonlinear system is linearized around the trim values of the chosen flight mode, followed by decomposing this high⁃order linear model into three lower⁃order subsystems according to the coupling properties among channels. After decomposition, the three subsystems are obtained which include the coupling subsystem between the roll ( pitch) motion and the lateral ( longitudinal) motion, the subsystem of the yaw motion and the subsystem of the vertical motion. Secondly, by using eigenstructure assignment, the problem of flight controller design can be converted into solving two optimization problems and the linear robust controllers of these subsystems are designed through solving these optimization problems. Besides, this paper contrasts and analyzed the performances of the LQR controller and the parametric controller. The results demonstrate the effectiveness and the robustness against the parametric perturbations of the parametric controller.

  18. Cassini Attitude Control Operations Flight Rules and How They are Enforced

    Science.gov (United States)

    Burk, Thomas; Bates, David

    2008-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe which descended through the Titan atmosphere and landed on its surface on January 14, 2005. Operating the Cassini spacecraft is a complex scientific, engineering, and management job. In order to safely operate the spacecraft, a large number of flight rules were developed. These flight rules must be enforced throughout the lifetime of the Cassini spacecraft. Flight rules are defined as any operational limitation imposed by the spacecraft system design, hardware, and software, violation of which would result in spacecraft damage, loss of consumables, loss of mission objectives, loss and/or degradation of science, and less than optimal performance. Flight rules require clear description and rationale. Detailed automated methods have been developed to insure the spacecraft is continuously operated within these flight rules. An overview of all the flight rules allocated to the Cassini Attitude Control and Articulation Subsystem and how they are enforced is presented in this paper.

  19. Cassini Attitude Control Operations Flight Rules and How They are Enforced

    Science.gov (United States)

    Burk, Thomas; Bates, David

    2008-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe which descended through the Titan atmosphere and landed on its surface on January 14, 2005. Operating the Cassini spacecraft is a complex scientific, engineering, and management job. In order to safely operate the spacecraft, a large number of flight rules were developed. These flight rules must be enforced throughout the lifetime of the Cassini spacecraft. Flight rules are defined as any operational limitation imposed by the spacecraft system design, hardware, and software, violation of which would result in spacecraft damage, loss of consumables, loss of mission objectives, loss and/or degradation of science, and less than optimal performance. Flight rules require clear description and rationale. Detailed automated methods have been developed to insure the spacecraft is continuously operated within these flight rules. An overview of all the flight rules allocated to the Cassini Attitude Control and Articulation Subsystem and how they are enforced is presented in this paper.

  20. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis

  1. HYFLEX (Hypersonic Flight Experiment). Results of flight testing (Navigation, guidance and control of HYFLEX vehicle and actual reentry flight trajectory); Gokuchoonsoku hiko jikken (HYFLEX) ni tsuite. Hiko kekka wo chushin ni (koho yudo seigyo to jitsuhiko keiro)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Takizawa, M. [National Aerospace Laboratory, Tokyo (Japan); Ishimoto, S.; Morito, T. [National Space Development Agency of Japan, Tokyo (Japan); Tsujioka, M.; Shimura, K. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1997-11-05

    The HYFLEX vehicle is the first reentry testing vehicle with an airframe generating lift in Japan. Establishment of guidance and control technology is one of the purposes. For the design of flight trajectory, in order to satisfy the constraint of J-1 rocket during launching and the heat resistance performance of HYFLEX, the altitude 110 km and ground speed 3.9 km/s were determined as an apogee condition of the reentry trajectory. For the trajectory design on the ground surface, were considered the insurance of radar tracking and telemetry transfer from the Ogasawara Tracking Station and the load reduction for development cost and attitude control system. The navigation, guidance and control system is composed of an inertia sensor unit, an on-board computer, and an on-board software (OBS). The attitude is controlled by the elevon at the rear end of airframe and the gas jet. The design requirements include an accuracy of flight trajectory and a stable flight by attitude control. In response to these requirements, OBS was divided into function units, i.e., navigation, guidance, and control, which were individually designed. The flight experiments were conducted as scheduled. 12 refs., 3 figs., 1 tab.

  2. Automated Control of Endotracheal Tube Cuff Pressure during Simulated Flight

    Science.gov (United States)

    2016-06-21

    711th Human Performance Wing U.S. Air Force School of Aerospace Medicine Int’l Expeditionary Educ & Training Dept Air Force Expeditionary Medical ...International Expeditionary Education & Training Dept Air Force Expeditionary Medical Skills Institute/C-STARS Cincinnati 2510 Fifth St., Bldg. 840...AFRL-SA-WP-SR-2016-0008 Automated Control of Endotracheal Tube Cuff Pressure during Simulated Flight Thomas C. Blakeman

  3. Shape-Memory-Alloy Actuator For Flight Controls

    Science.gov (United States)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  4. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

    Science.gov (United States)

    Tahmasian, Sevak; Woolsey, Craig A.

    2016-09-01

    A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

  5. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

    Science.gov (United States)

    Tahmasian, Sevak; Woolsey, Craig A.

    2017-08-01

    A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

  6. Thermal Design and Flight Validation for Solid-state Transmitter

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2014-06-01

    Full Text Available Solid-state transmitter with large power and high heat flux is a key equipment of an HJ-1-C satellite; therefore, it has a great influence on satellite thermal design. Thermal design ensures that the solid-state transmitter works well within the allowable temperature limits of the equipment. The solid-state transmitter thermal design and solved key problems are provided in accordance with the HJ-1-C characteristics. Moreover, an analysis of satellites on orbit was performed. Based on the telemetry data, the thermal control design is shown to satisfy the temperature requirements of the solid-state transmitter.

  7. Simulation results of automatic restructurable flight control system concepts

    Science.gov (United States)

    Weiss, J. L.; Looze, D. P.; Eterno, J. S.; Ostroff, A.

    1986-01-01

    The restructurable flight control system (RFCS) described by Weiss et al. (1986) is reviewed, and several results of an extensive six degrees of freedom nonlinear simulation of several aspects of this system are reported. It is concluded that the nontraditional use of standard control surfaces in a nominal feedback control system to spread control authority among many redundant control elements provides a significant amount of fault tolerance without any use of restructuring techniques. The use of new feedback gains alone following a failure can provide significantly improved recovery as long as the control elements remain within their travel limits and as long as uncertainty about the failure identity is properly handled. The use of the feed-forward trim solution in conjunction with redesigned feedback gains allows recovery to take place even when significant control saturation occurs.

  8. Simulation results of automatic restructurable flight control system concepts

    Science.gov (United States)

    Weiss, J. L.; Looze, D. P.; Eterno, J. S.; Ostroff, A.

    1986-01-01

    The restructurable flight control system (RFCS) described by Weiss et al. (1986) is reviewed, and several results of an extensive six degrees of freedom nonlinear simulation of several aspects of this system are reported. It is concluded that the nontraditional use of standard control surfaces in a nominal feedback control system to spread control authority among many redundant control elements provides a significant amount of fault tolerance without any use of restructuring techniques. The use of new feedback gains alone following a failure can provide significantly improved recovery as long as the control elements remain within their travel limits and as long as uncertainty about the failure identity is properly handled. The use of the feed-forward trim solution in conjunction with redesigned feedback gains allows recovery to take place even when significant control saturation occurs.

  9. Tracking performance and global stability guaranteed neural control of uncertain hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Tao Teng

    2016-02-01

    Full Text Available In this article, a global adaptive neural dynamic surface control with predefined tracking performance is developed for a class of hypersonic flight vehicles, whose accurate dynamics is hard to obtain. The control scheme developed in this paper overcomes the limitations of neural approximation region by employing a switching mechanism which incorporates an additional robust controller outside the neural approximation region to pull the transient state variables back when they overstep the neural approximation region, such that globally uniformly ultimately bounded stability can be guaranteed. Especially, the developed global adaptive neural control also improves the tracking performance by introducing an error transformation mechanism, such that both transient and steady-state performance can be shaped according to the predefined bounds. Simulation studies on the hypersonic flight vehicle validate that the designed controller has good velocity modulation and velocity stability performance.

  10. Design of a Helicopter Stability and Control Augmentation System Using Optimal Control Theory.

    Science.gov (United States)

    technique is described for the design of multivariable feedback controllers based upon results in optimal control theory . For a specified performance...helicopter flight envelope. The results show that optimal control theory can be used to design a helicopter stability and control augmentation system

  11. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Science.gov (United States)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  12. The telerobot workstation testbed for the shuttle aft flight deck: A project plan for integrating human factors into system design

    Science.gov (United States)

    Sauerwein, Timothy

    1989-01-01

    The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.

  13. Preliminary design features of the RASCAL - A NASA/Army rotorcraft in-flight simulator

    Science.gov (United States)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1992-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-latitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  14. Preliminary design features of the RASCAL: A NASA /Army rotorcraft in-flight simulator

    Science.gov (United States)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1993-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-altitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  15. Flight Tests of Autopilot Integrated with Fault-Tolerant Control of a Small Fixed-Wing UAV

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2016-01-01

    Full Text Available A fault-tolerant control scheme for the autopilot of the small fixed-wing UAV is designed and tested by the actual flight experiments. The small fixed-wing UAV called Xiang Fei is developed independently by Nanjing University of Aeronautics and Astronautics. The flight control system is designed based on an open-source autopilot (Pixhawk. Real-time kinematic (RTK GPS is introduced due to its high accuracy. Some modifications on the longitudinal and lateral guidance laws are achieved to improve the flight control performance. Moreover, a data fusion based fault-tolerant control scheme is integrated in altitude control and speed control for altitude sensor failure and airspeed sensor failure, which are the common problems for small fixed-wing UAV. Finally, the real flight experiments are implemented to test the fault-tolerant control based autopilot of UAV. Real flight test results are given and analyzed in detail, which show that the fixed-wing UAV can track the desired altitude and speed commands during the whole flight process including takeoff, climbing, cruising, gliding, landing, and wave-off by the fault-tolerant control based autopilot.

  16. Design of a cusped field thruster for drag-free flight

    Science.gov (United States)

    Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.

    2016-09-01

    Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.

  17. Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms

    Science.gov (United States)

    Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan

    2014-01-01

    Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance

  18. Flight management concepts compatible with air traffic control

    Science.gov (United States)

    Morello, S. A.

    1986-01-01

    With the advent of airline deregulation and increased competition, the need for cost efficient airline operations is critical. This paper summarizes past research efforts and planned research thrusts toward the development of compatible flight management and air traffic control systems that promise increased operational effectiveness and efficiency. Potential capacity improvements resulting from a time-based ATC simulation (fast-time) are presented. Advanced display concepts with time guidance and velocity vector information to allow the flight crew to play an important role in the future ATC environment are discussed. Results of parametric sensitivity analyses are also presented that quantify the fuel/cost penalties for idle-thrust mismodeling and wind-modeling errors.

  19. Control/structure interaction design methodology

    Science.gov (United States)

    Briggs, Hugh C.; Layman, William E.

    1989-01-01

    The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies.

  20. Thermal design and flight validation for laser communicator equipment

    Science.gov (United States)

    Meng, Henghui; Geng, Liyin; Tan, Canghai; Li, Guoqiang

    2014-11-01

    Laser communicator equipment, designed for advanced optical communication, with a large capacity communication, good encryption and lightweight structures, etc., has a wide range of applications. As for the special transmission characteristic of optical communication, laser phase in the transmission path should be accurate, and less thermal deformation for the optical parts is required in the working process, so the laser communicator equipment has a high level requirement for temperature. Large power units cooling, outer two-dimensional rotating units, temperature control for rotating cable, and high temperature stability and equality, bring a challenge for thermal design. Using structure -electric-thermo-optical integration technology, active and passive thermal control methods are adopt in thermal design for laser communicator equipment: heat-conducted plate and heat pipe were adopted for heat transfer of high heat-flux parts, a new passive and active thermal control method to solve cable cryogenic problems, and high precision temperature control methods were applied for key parts. In-orbit data were analyzed, and the results prove the thermal design correct, and bring a way to thermal control for the equipment with high heat flux and running parts.

  1. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    Science.gov (United States)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  2. Circulation control STOL aircraft design aspects

    Science.gov (United States)

    Loth, John L.

    1987-01-01

    Since Davidson patented Circulation Control Airfoils in 1960, there have been only 2 aircraft designed and flown with circulation control (CC). Designing with CC is complex for the following reasons: the relation between lift increase and blowing momentum is nonlinear; for good cruise performance one must change the wing geometry in flight from a round to a sharp trailing edge. The bleed air from the propulsion engines or an auxiliary compressor, must be used efficiently. In designing with CC, the propulsion and control aspects are just as important as aerodynamics. These design aspects were examined and linearized equations are presented in order to facilitate a preliminary analysis of the performance potential of CC. The thrust and lift requirements for takeoff make the calculated runway length very sensitive to the bleed air ratio. Thrust vectoring improves performance and can offset nose down pitching moments. The choice of blowing jet to free stream velocity ratio determines the efficiency of applying bleed air power.

  3. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  4. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  5. Evaluation Model of Design for Operation and Architecture of Hierarchical Virtual Simulation for Flight Vehicle Design

    Institute of Scientific and Technical Information of China (English)

    LIU Hu; TIAN Yongliang; ZHANG Chaoying; YIN Jiao; SUN Yijie

    2012-01-01

    In order to take requirements for commercial operations or military missions into better consideration in new flight vehicle design,a tri-hierarchical task classification model of "design for operation" is proposed,which takes basic man-object interaction task,complex collaborative operation and large-scale joint operation into account.The corresponding general architecture of evaluation criteria is also depicted.Then a virtual simulation-based approach to implement the evaluations at three hierarchy levels is mainly analyzed with a detailed example,which validates the feasibility and effectiveness of evaluation architecture.Finally,extending the virtual simulation architecture from design to operation training is discussed.

  6. Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward Flight

    Science.gov (United States)

    Giovanetti, Eli B.

    This dissertation investigates the optimal aerodynamic performance and design of conventional and coaxial helicopters in hover and forward flight using conventional and higher harmonic blade pitch control. First, we describe a method for determining the blade geometry, azimuthal blade pitch inputs, optimal shaft angle (rotor angle of attack), and division of propulsive and lifting forces among the components that minimize the total power for a given forward flight condition. The optimal design problem is cast as a variational statement that is discretized using a vortex lattice wake to model inviscid forces, combined with two-dimensional drag polars to model profile losses. The resulting nonlinear constrained optimization problem is solved via Newton iteration. We investigate the optimal design of a compound vehicle in forward flight comprised of a coaxial rotor system, a propeller, and optionally, a fixed wing. We show that higher harmonic control substantially reduces required power, and that both rotor and propeller efficiencies play an important role in determining the optimal shaft angle, which in turn affects the optimal design of each component. Second, we present a variational approach for determining the optimal (minimum power) torque-balanced coaxial hovering rotor using Blade Element Momentum Theory including swirl. We show that the optimal hovering coaxial rotor generates only a small percentage of its total thrust on the portion of the lower rotor operating in the upper rotor's contracted wake, resulting in an optimal design with very different upper and lower rotor twist and chord distributions. We also show that the swirl component of induced velocity has a relatively small effect on rotor performance at the disk loadings typical of helicopter rotors. Third, we describe a more refined model of the wake of a hovering conventional or coaxial rotor. We approximate the rotor or coaxial rotors as actuator disks (though not necessarily uniformly loaded

  7. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    Directory of Open Access Journals (Sweden)

    Yamina BOUGHARI

    2017-06-01

    Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.

  8. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    Science.gov (United States)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  9. Advanced nonlinear control: Robustness and stability with applications to aircraft flight control systems

    Science.gov (United States)

    Frye, Michael Takaichi

    This dissertation examines the problem of global decentralized control by output feedback for large-scale uncertain nonlinear systems whose subsystems are interconnected not only by their outputs but also by their unmeasurable states. Several innovative techniques will be developed to create decentralized output feedback controllers rendering the closed-loop systems globally asymptotically stable. This is accomplished by extending an output feedback domination design that requires only limited information about the nonlinear system. We will apply our design to lower, upper, and non-triangular nonlinear systems. A time-varying output feedback controller is also constructed for use with large-scale systems that have unknown parameters. Furthermore, a mixed large-scale system consisting of both lower and upper triangular systems is shown to be stabilizable by employing a combined high and low gain domination technique. The significance of our results is that we do not need to have prior information about the nonlinearities of the system. In addition, a new design technique was developed using homogeneous system theory, which allows for the design of nonsmooth controllers and observers to stabilize a class of feedforward system with uncontrollable and unobservable linearization. An example of a large-scale system is a group of autonomous airships performing the function of a temporary mobile cell phone network. An airship mobile cell phone network is a novel solution to the problem of maintaining communication during the advent of extensive damage to the communication infrastructure; be it from a flood, earthquake, hurricane, or terrorist attack. A first principle force-based dynamic model for the Tri-Turbofan Airship was developed and will be discussed in detail. The mathematical model was based on actual flight test data that has been collected at the Gait Analysis and Innovative Technologies Laboratory. This model was developed to research autonomous airship

  10. Design of a digital adaptive control system for reentry vehicles.

    Science.gov (United States)

    Picon-Jimenez, J. L.; Montgomery, R. C.; Grigsby, L. L.

    1972-01-01

    The flying qualities of atmospheric reentry vehicles experience considerable variations due to the wide changes in flight conditions characteristic of reentry trajectories. A digital adaptive control system has been designed to modify the vehicle's dynamic characteristics and to provide desired flying qualities for all flight conditions. This adaptive control system consists of a finite-memory identifier which determines the vehicle's unknown parameters, and a gain computer which calculates feedback gains to satisfy flying quality requirements.

  11. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  12. System identification methods for aircraft flight control development and validation

    Science.gov (United States)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  13. QFT control based on zero phase error compensation for flight simulator

    Institute of Scientific and Technical Information of China (English)

    Liu Jinkun; He Yuzhu

    2007-01-01

    To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFr controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.

  14. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    Science.gov (United States)

    Simon, Miguel

    In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and

  15. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    Science.gov (United States)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  16. Digital system identification and its application to digital flight control

    Science.gov (United States)

    Kotob, S.; Kaufman, H.

    1974-01-01

    On-line system identification of linear discrete systems for implementation in a digital adaptive flight controller is considered by the conventional extended Kalman filter and a decoupling process in which the linear state estimation problem and the linear parameter identification problem are each treated separately and alternately. Input requirements for parameter identifiability are established using the standard conditions of observability for a time variant system. Experimental results for simulated linearized lateral aircraft motion are included along with the effect of different initialization and updating procedures for the priming trajectory used by the filter.

  17. Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics.

    Science.gov (United States)

    Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wethington, Susan M; Chiu, George T C; Deng, Xinyan

    2016-11-15

    Hummingbirds are nature's masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the 'helicopter model' that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species. © 2016. Published by The Company of Biologists Ltd.

  18. Cooperative control theory and integrated flight and propulsion control

    Science.gov (United States)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  19. Information distribution in distributed microprocessor based flight control systems

    Science.gov (United States)

    Montgomery, R. C.; Lee, P. S.

    1977-01-01

    This paper presents an optimal control theory that accounts for variable time intervals in the information distribution to control effectors in a distributed microprocessor based flight control system. The theory is developed using a linear process model for the aircraft dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved that provides the control law that minimizes the expected value of a quadratic cost function. An example is presented where the theory is applied to the control of the longitudinal motions of the F8-DFBW aircraft. Theoretical and simulation results indicate that, for the example problem, the optimal cost obtained using a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained using a known uniform information update interval.

  20. Design of Low Complexity Model Reference Adaptive Controllers

    Science.gov (United States)

    Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan

    2012-01-01

    Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.

  1. Adaptive Neural Network Dynamic Inversion with Prescribed Performance for Aircraft Flight Control

    Directory of Open Access Journals (Sweden)

    Wendong Gai

    2013-01-01

    Full Text Available An adaptive neural network dynamic inversion with prescribed performance method is proposed for aircraft flight control. The aircraft nonlinear attitude angle model is analyzed. And we propose a new attitude angle controller design method based on prescribed performance which describes the convergence rate and overshoot of the tracking error. Then the model error is compensated by the adaptive neural network. Subsequently, the system stability is analyzed in detail. Finally, the proposed method is applied to the aircraft attitude tracking control system. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance in the transient and steady behavior.

  2. Design and test of an NLF wing glove for the variable-sweep transition flight experiment

    Science.gov (United States)

    Waggoner, Ed G.; Campbell, Richard L.; Phillips, Pam S.; Hallissy, James B.

    1987-01-01

    Gloves for M = 0.7 and 0.8 design points were computationally designed and analyzed at conditions over the proposed flight test envelope. The resulting computational pressure distributions were analyzed in a boundary layer stability code. These results indicate that the available pressure distributions offer a wide range of combinations of cross flow and Tollmien-Schlichting N-factors. The glove designs along with the baseline configuration were tested in an entry into the National Transonic Facility. Analysis of the force and moment data showed no significant differences in the performance and stability and control characteristics between the baseline and gloved configurations. The rolling moment constraint was met over the entire flight test envelope for the gloved configuration. Pressure distributions for the NTF test confirmed the design pressure distributions were achieved. However, it was decided that with minor modifications to the inboard region of the glove, useful available data could be significantly increased by adding another row of pressure orifices at span station 167.

  3. Fault Tolerant Design Concepts for Highly Integrated Flight Critical Guidance and Control Systems: Conference Proceedings Held at the Guidance and Control Panel Symposium (49th) Held in Toulouse, France on 10-13 October 1989

    Science.gov (United States)

    1990-04-01

    of this design aim will aid the psychology of validation and certification but will neither make the MMA tactically predictable or reduce the trials...deux chalnes redondantes pour 6viter des points do panne commune. - Alimentation do chaque chaine par les deux r~seaux de bard. ainsi quo par une

  4. A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility

    Science.gov (United States)

    Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland

    2003-01-01

    Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.

  5. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Flight-Test Performance

    Science.gov (United States)

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.

  6. Synergistic Allocation of Flight Expertise on the Flight Deck (SAFEdeck): A Design Concept to Combat Mode Confusion, Complacency, and Skill Loss in the Flight Deck

    Science.gov (United States)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2016-01-01

    This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.

  7. H/OZ: PFD and Collaborative Flight Control System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Researchers at the Institute for Human and Machine Cognition invented OZ, a primary flight display that provides a single, unified graphic display of critical flight...

  8. Flight system design for a receiver aircraft to perform autonomous aerial refueling provided with relative position data link

    Science.gov (United States)

    Awni, Kahtan A.

    An automatic aerial refueling system was developed that is capable of controlling the receiving aircraft to rendezvous, dock and station keep the receiver refueling probe in the tanker refueling probe. The automatic refueling system consisted of an active trajectory generator, a guidance system and a control system. The active trajectory generator continuously updated the commanded rendezvous trajectory to be flown by the receiver aircraft. This active trajectory generator concept incorporated design variables that the designer could use to specify the time sequence of the rendezvous and docking maneuver. The output of the trajectory generator was then the command to the flight systems guidance and control systems. To demonstrate this automatic aerial refueling system concept, a detailed design of the flight system algorithms was done for typical aerial refueling mission with a heavy jet tanker aircraft similar to the KC135 and the SIAI-Marchetti S-211 Jet Trainer as a receiver aircraft. The systems gains were selected to minimize the control surface activity while achieving adequate tracking. A simulation was developed that included the flight system algorithms, linear models of the receiver aircraft, atmospheric and tanker wake disturbance models. The performance of the aerial refueling system design was then evaluated in a batch computer simulator. The simulation study demonstrated results showed better disturbance rejection relative to the controller performance while minimizing the utilization of the control surfaces. Results also demonstrated the ability to schedule rendezvous.

  9. Flight results from the gravity-gradient-controlled RAE-1 satellite

    Science.gov (United States)

    Blanchard, D. L.

    1986-01-01

    The in-orbit dynamics of a large, flexible spacecraft has been modeled with a computer simulation, which was used for designing the control system, developing a deployment and gravity-gradient capture procedure, predicting the steady-state behavior, and designing a series of dynamics experiments for the Radio Astronomy Explorer (RAE) satellite. This flexible body dynamics simulator permits three-dimensional, large-angle rotation of the total spacecraft and includes effects of orbit eccentricity, thermal bending, solar pressure, gravitational accelerations, and the damper system. Flight results are consistent with the simulator predictions and are presented for the deployment and capture phases, the steady-state mission, and the dynamics experiments.

  10. The design of flight hardware: Organizational and technical ideas from the MITRE/WPI Shuttle Program

    Science.gov (United States)

    Looft, F. J.

    1986-01-01

    The Mitre Corporation of Bedford Mass. and the Worcester Polytechnic Institute are developing several experiments for a future Shuttle flight. Several design practices for the development of the electrical equipment for the flight hardware have been standardized. Some of the ideas are presented, not as hard and fast rules but rather in the interest of stimulating discussions for sharing such ideas.

  11. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    CERN Document Server

    Canizares, C R; Dewey, D; Flanagan, K A; Galton, E B; Huenemoerder, D P; Ishibashi, K; Markert, T H; Marshall, H L; McGuirk, M; Schattenburg, M L; Schulz, N S; Smith, H I; Wise, M; Canizares, Claude R.; Davis, John E.; Dewey, Daniel; Flanagan, Kathryn A.; Galton, Eugene B.; Huenemoerder, David P.; Ishibashi, Kazunori; Markert, Thomas H.; Marshall, Herman L.; Guirk, Michael Mc; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Henry I.; Wise, Michael

    2005-01-01

    Details of the design, fabrication, ground and flight calibration of the High Energy Transmission Grating, HETG, on the Chandra X-ray Observatory are presented after five years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly six years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.

  12. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  13. Pre-X Experimental Re-Entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena

    Science.gov (United States)

    2007-06-01

    hypersonic domain has never been explored with a controlled glider . BOR 4 BOR 5 The hypersonic glider HYFLEX The main concrete...the most critical phenomena concerning the design and sizing of a re- entry vehicle. Pre-X hypersonic glider • Improving the flight measurement...laws of a gliding body with body flaps. • Performing the first design and development end to end of the hypersonic glider . • To reduce risk for

  14. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Design Status

    Science.gov (United States)

    Sargusingh, Miriam C.; Callahan, Michael R.

    2016-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. The CDS provides a similar function to the state of the art (SOA) vapor compressor distiller (VCD) currently employed on the International Space Station, but its control scheme and ancillary components are judged to be more straightforward and simpler to implement into a more reliable and efficient system. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). A preliminary design fo the CDS 2.0 was presented to the project in September 2014. Following this review, detailed design of the system continued. The existing ground test prototype was used as a platform to demonstrate key 2.0 design and operational concepts to support this effort and mitigate design risk. A volumetric prototype was also developed to evaluate the packaging design for operability and maintainability. The updated system design was reviewed by the AES LSS Project and other key stakeholders in September 2015. This paper details the status of the CDS 2.0 design.

  15. Fault Tolerant Control Design for the Longitudinal Aircraft Dynamics using Quantitative Feedback Theory

    OpenAIRE

    Ossmann, Daniel

    2015-01-01

    Flight control laws of modern aircraft are scheduled with respect to flight point parameters. The loss of the air data measurement system implies inevitably the loss of relevant scheduling information. A strategy to design a fault tolerant longitudinal flight control system is proposed which can accommodate the total loss of the angle of attack and the calibrated airspeed measurements. In this scenario the described robust longitudinal control law is employed ensuring a control performance ...

  16. Flight test results of the fuzzy logic adaptive controller-helicopter (FLAC-H)

    Science.gov (United States)

    Wade, Robert L.; Walker, Gregory W.

    1996-05-01

    The fuzzy logic adaptive controller for helicopters (FLAC-H) demonstration is a cooperative effort between the US Army Simulation, Training, and Instrumentation Command (STRICOM), the US Army Aviation and Troop Command, and the US Army Missile Command to demonstrate a low-cost drone control system for both full-scale and sub-scale helicopters. FLAC-H was demonstrated on one of STRICOM's fleet of full-scale rotary-winged target drones. FLAC-H exploits fuzzy logic in its flight control system to provide a robust solution to the control of the helicopter's dynamic, nonlinear system. Straight forward, common sense fuzzy rules governing helicopter flight are processed instead of complex mathematical models. This has resulted in a simplified solution to the complexities of helicopter flight. Incorporation of fuzzy logic reduced the cost of development and should also reduce the cost of maintenance of the system. An adaptive algorithm allows the FLAC-H to 'learn' how to fly the helicopter, enabling the control system to adjust to varying helicopter configurations. The adaptive algorithm, based on genetic algorithms, alters the fuzzy rules and their related sets to improve the performance characteristics of the system. This learning allows FLAC-H to automatically be integrated into a new airframe, reducing the development costs associated with altering a control system for a new or heavily modified aircraft. Successful flight tests of the FLAC-H on a UH-1H target drone were completed in September 1994 at the White Sands Missile Range in New Mexico. This paper discuses the objective of the system, its design, and performance.

  17. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    Science.gov (United States)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  18. Piloted Simulator Evaluation Results of New Fault-Tolerant Flight Control Algorithm

    NARCIS (Netherlands)

    Lombaerts, T.J.J.; Smaili, M.H.; Stroosma, O.; Chu, Q.P.; Mulder, J.A.; Joosten, D.A.

    2010-01-01

    A high fidelity aircraft simulation model, reconstructed using the Digital Flight Data Recorder (DFDR) of the 1992 Amsterdam Bijlmermeer aircraft accident (Flight 1862), has been used to evaluate a new Fault-Tolerant Flight Control Algorithm in an online piloted evaluation. This paper focuses on the

  19. Tracking error constrained robust adaptive neural prescribed performance control for flexible hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-02-01

    Full Text Available A robust adaptive neural control scheme based on a back-stepping technique is developed for the longitudinal dynamics of a flexible hypersonic flight vehicle, which is able to ensure the state tracking error being confined in the prescribed bounds, in spite of the existing model uncertainties and actuator constraints. Minimal learning parameter technique–based neural networks are used to estimate the model uncertainties; thus, the amount of online updated parameters is largely lessened, and the prior information of the aerodynamic parameters is dispensable. With the utilization of an assistant compensation system, the problem of actuator constraint is overcome. By combining the prescribed performance function and sliding mode differentiator into the neural back-stepping control design procedure, a composite state tracking error constrained adaptive neural control approach is presented, and a new type of adaptive law is constructed. As compared with other adaptive neural control designs for hypersonic flight vehicle, the proposed composite control scheme exhibits not only low-computation property but also strong robustness. Finally, two comparative simulations are performed to demonstrate the robustness of this neural prescribed performance controller.

  20. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  1. Anthropometric considerations for a 4-axis side-arm flight controller

    Science.gov (United States)

    Debellis, W. B.

    1986-01-01

    A data base on multiaxis side-arm flight controls was generated. The rapid advances in fly-by-light technology, automatic stability systems, and onboard computers have combined to create flexible flight control systems which could reduce the workload imposed on the operator by complex new equipment. This side-arm flight controller combines four controls into one unit and should simplify the pilot's task. However, the use of a multiaxis side-arm flight controller without complete cockpit integration may tend to increase the pilot's workload.

  2. Flexibility and control of thorax deformation during hawkmoth flight.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2016-01-01

    The interaction between neuromuscular systems and body mechanics plays an important role in the production of coordinated movements in animals. Lepidopteran insects move their wings by distortion of the thorax structure via the indirect flight muscles (IFMs), which are activated by neural signals at every stroke. However, how the action of these muscles affects thorax deformation and wing kinematics is poorly understood. We measured the deformation of the dorsal thorax (mesonotum) of tethered flying hawkmoths, Agrius convolvuli, using a high-speed laser profilometer combined with simultaneous recordings of electromyograms and wing kinematics. We observed that locally amplified mesonotum deformation near the wing hinges ensures sufficient wing movement. Furthermore, phase asymmetry in IFM activity leads to phase asymmetry in mesonotum oscillations and wingbeats. Our results revealed the flexibility and controllability of the single structure of the mesonotum by neurogenic action of the IFMs. © 2016 The Author(s).

  3. Flight Dynamics and Control of Elastic Hypersonic Vehicles Uncertainty Modeling

    Science.gov (United States)

    Chavez, Frank R.; Schmidt, David K.

    1994-01-01

    It has been shown previously that hypersonic air-breathing aircraft exhibit strong aeroelastic/aeropropulsive dynamic interactions. To investigate these, especially from the perspective of the vehicle dynamics and control, analytical expressions for key stability derivatives were derived, and an analysis of the dynamics was performed. In this paper, the important issue of model uncertainty, and the appropriate forms for representing this uncertainty, is addressed. It is shown that the methods suggested in the literature for analyzing the robustness of multivariable feedback systems, which as a prerequisite to their application assume particular forms of model uncertainty, can be difficult to apply on real atmospheric flight vehicles. Also, the extent to which available methods are conservative is demonstrated for this class of vehicle dynamics.

  4. Novel SiL evaluation of an optimal H∞ controller on the stability of a MAV in flight simulator

    Science.gov (United States)

    Sampaio, Rafael C. B.; Becker, Marcelo; Siqueira, Adriano A. G.; Freschi, Leonardo W.; Montanher, Marcelo P.

    This paper introduces a novel methodology to assist the evaluation of control algorithms for MAVs (Micro Aerial Vehicles) using Software-in-the-Loop (SiL) based flight simulation. The originality of this paper is to use © Microsoft Flight Simulator (MSFS) as the environment to embed both the dynamic and graphic models of © Ascending Technologies Pelican MAV flying robot. The resulting is a reliable model of the Pelican quadrotor. The full duplex communication between the virtual aircraft and the control algorithm is achieved by a custom C++/C software named FVMS (Flight Variables Management System), developed by Aerial Robots Team (ART), which is able to reach (read/write) a great number of flight variables from MSFS. To illustrate the effectiveness of such method, we first completely present FVMS architecture and main features. Later, the synthesis and then the application of the optimal H∞ robust control algorithm and its operation into the FVMS SiL context are explained. Regarding MAVs control evaluation, SiL simulation considerably contributes to save battery time, to ease control synthesis and prototyping and to prevent accidents during tests with the real robot. The final goal is to evaluate the stability of the Pelican platform in hovering tasks in flight simulation focusing on the efficiency of FVMS to properly run the optimal H∞ robust control algorithm. The SiL control of the MAV has proven FVMS capabilities, which may be extended to assist the design of other classes of controllers.

  5. 六轴旋翼碟形飞行器控制系统软件设计及仿真研究%Simulation Research and Software Design of Flight Control System for a Six-axis Rotor Saucer Shaped Rotorcraft

    Institute of Scientific and Technical Information of China (English)

    刘羽峰; 宁媛

    2011-01-01

    采用了控制不同电机转速组合的方法,对六轴旋翼碟形飞行器进行姿态控制,使六轴旋翼碟形飞行器在不同姿态下飞行时具有较好的性能;为了实现六轴旋翼碟形飞行器的飞行控制,对飞行器的控制系统进行了初步的设计,并且给出了控制系统软件设计流程图;同时以ProtueslSIS软件为基础建立了六轴旋翼碟形飞行器控制系统的仿真模型,并进行了仿真,仿真结果显示该控制系统能够满足六轴旋翼碟形飞行器起飞、悬停及降落等控制姿态的要求.%In order to control flies state of the six-axis saucer ahaped rotorcraft,method of adjusting the speed of the different motors is proposed,so that make it good works performance for different flies state.For the purpose of relizing the flight control for the six -axis rotor saucer shaped rotorcraft,the flight control system is designed preliminarily and the software of flight control system flow chart s given.At the same time.simulation model of the six-axis rotor saucer ahaped rotor saucer shaped rotoreraft control system is created on the basis of software Protues ISIS.simulation result shows that can meet control atate requirement of taking off,hovcring and landing and so on.

  6. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag

  7. Commonality of flight control systems for support of European telecommunications missions

    Science.gov (United States)

    Debatin, Kurt

    1993-01-01

    This paper is concerned with the presentation of mission-independent software systems that provide a common software platform to ground data systems for mission operations. The objectives of such common software platforms are to reduce the cost of the development of mission-dedicated software systems and to increase the level of reliability of the ground data systems for mission operations. In accordance with this objective, the Multi-Satellite Support System (MSSS) was developed at the European Space Operations Center (ESOC). Between 1975 and 1992, the MSSS provided support to 16 European Space Agency (ESA) missions, among them very demanding science missions such as GEOS, EXOSAT, and Giotto. The successful support of these missions proved the validity of the MSSS concept with its extended mission-independent platform. This paper describes the MSSS concept and focuses on the wide use of MSSS as a flight control system for geosynchronous telecommunications satellites. Reference is made to more than 15 telecommunications missions that are operated from Western Europe using flight control systems with an underlying MSSS concept, demonstrating the benefits of a commonly used software platform. Finally, the paper outlines the design of the new generation of flight control systems, which is being developed at ESOC for this decade, following a period of more than 15 years of MSSS support.

  8. Discrete Sliding Mode control of small UAS in tight formation flight under information constraints

    OpenAIRE

    Bolting , Jan; Fergani, Soheib; Biannic, Jean-Marc; Defay, François; Stolle, Martin

    2016-01-01

    This paper is concerned with a new control strategy based on discrete sliding mode control of small Unmanned Aerial Systems (UAS) in tight formation flight under information constraints. Tight formation flight enables, among other advantages, significant performance benefits due to wake vortex interactions. A discrete robust control strategy based on the sliding mode approach and a leader-follower scheme is proposed to achieve the desired flight performances while assuming realistic informati...

  9. Flight Dynamics Simulation Modeling and Control of a Large Flexible Tiltrotor Aircraft

    Science.gov (United States)

    2014-09-01

    TECHNICAL REPORT CR-RDMR-AF-14-01 FLIGHT DYNAMICS SIMULATION MODELING AND CONTROL OF A LARGE FLEXIBLE TILTROTOR AIRCRAFT...September 2014 3. REPORT TYPE AND DATES COVERED Final 4. TITLE AND SUBTITLE Flight Dynamics Simulation Modeling and Control of a Large Flexible...18 298-102 i/ii (Blank) FLIGHT DYNAMICS SIMULATION MODELING AND CONTROL OF A LARGE FLEXIBLE TILTROTOR AIRCRAFT by Ondrej Juhasz Dissertation

  10. Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles

    Science.gov (United States)

    Shim, Hyunchul

    the identification, control and general operation. A high-fidelity helicopter model is established with the lumped-parameter approach. With the lift and torque aerodynamic model of the main and tail rotors, a nonlinear simulation model is first constructed. The control models of the RUAVs used in our research are derived by the application of a time-domain parametric identification method to the flight data of target RUAVs. Two distinct control theories, namely classical control theory and modern linear robust control theory, are applied to the identified model. The proposed controllers are validated in a nonlinear simulation environment and tested in a series of test flights. With the successful implementation of the low-level vehicle controller, the guidance layer is designed. The waypoint navigator, which decides the adequate flight mode and the associated reference trajectory, serves as an intermediary between the low-level vehicle control layer and the high-level mission-planning layer. In order to interpret the abstract mission planning to commands that are compatible with the low-level structure, a novel framework called Vehicle Control Language (VCL) is developed. The key idea of VCL is to provide a mission-independent methodology to describe given flight patterns. The VCL processor and vehicle control layer are integrated into the hierarchical control structure, which is the backbone of our intelligent UAV system. The proposed idea is validated in the simulation environment and then fully tested in a series of flight tests.

  11. Comparison of flight design of Asian honeybee drones

    OpenAIRE

    Radloff, Sarah; Randall Hepburn, H.; KOENIGER, Gudrun

    2003-01-01

    International audience; The excess power index (integrating body dry mass, thorax-to-body dry mass and wing surface area) was compared in drones of seven Asian Apis species. There are two statistically distinct groups of drones: drones of the dwarf honeybees form one class, all other Asian species belong to the second. Drones of dwarf honeybees have a 36% ergonomic advantage in power availability and 20% advantage in available excess power over all other drones. Comparisons of flight dimensio...

  12. Design of a Mission Data Storage and Retrieval System for NASA Dryden Flight Research Center

    Science.gov (United States)

    Lux, Jessica; Downing, Bob; Sheldon, Jack

    2007-01-01

    The Western Aeronautical Test Range (WATR) at the NASA Dryden Flight Research Center (DFRC) employs the WATR Integrated Next Generation System (WINGS) for the processing and display of aeronautical flight data. This report discusses the post-mission segment of the WINGS architecture. A team designed and implemented a system for the near- and long-term storage and distribution of mission data for flight projects at DFRC, providing the user with intelligent access to data. Discussed are the legacy system, an industry survey, system operational concept, high-level system features, and initial design efforts.

  13. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    Science.gov (United States)

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  14. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    Science.gov (United States)

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  15. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    Science.gov (United States)

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  16. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    Science.gov (United States)

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  17. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  18. Spaceflight Holography Investigation in a Virtual Apparatus (SHIVA) Ground Experiments and Concepts for Flight Design

    Science.gov (United States)

    Miernik, Janie H.; Trolinger, James D.; Lackey, Jeffrey D.; Milton, Martha E.; Waggoner, Jason; Pope, Regina D.

    2002-01-01

    This paper discusses the development and design of an experimental test cell for ground-based testing to provide requirements for the Spaceflight Holography Investigation in a Virtual Apparatus (SHIVA) experiment. Ground-based testing of a hardware breadboard set-up is being conducted at Marshall Space Flight Center in Huntsville, Alabama. SHIVA objectives are to test and validate new solutions of the general equation of motion of a particle in a fluid, including particle-particle interaction, wall effects, motion at higher Reynolds Number, and a motion and dissolution of a crystal moving in a fluid. These objectives will be achieved by recording a large number of holograms of particle motion in the International Space Station (ISS) glove box under controlled conditions, extracting the precise three- dimensional position of all the particles as a function of time, and examining the effects of all parameters on the motion of the particles. This paper will describe the mechanistic approach to enabling the SHIVA experiment to be performed in a ISS glove box in microgravity. Because the particles are very small, surface tension becomes a major consideration in designing the mechanical method to meet the experiments objectives in microgravity, To keep a particle or particles in the center of the test cell long enough to perform and record the experiment and to preclude contribution to particle motion, requires avoiding any initial velocity in particle placement. A Particle Injection Mechanism (PIM) designed for microgravity has been devised and tested to enable SHIVA imaging. Also, a test cell capture mechanism, to secure the test cell during vibration on a specially designed shaker table for the SHIVA experiment will be described. Concepts for flight design are also presented.

  19. AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing

    Science.gov (United States)

    Jordan, Thomas L.; Foster, John V.; Bailey, Roger M.; Belcastro, Christine M.

    2006-01-01

    As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.

  20. UAV-Based L-Band SAR with Precision Flight Path Control

    Science.gov (United States)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul

    2004-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  1. Adaptive estimation and control with application to vision-based autonomous formation flight

    Science.gov (United States)

    Sattigeri, Ramachandra

    2007-05-01

    Modern Unmanned Aerial Vehicles (UAVs) are equipped with vision sensors because of their light-weight, low-cost characteristics and also their ability to provide a rich variety of information of the environment in which the UAVs are navigating in. The problem of vision based autonomous flight is very difficult and challenging since it requires bringing together concepts from image processing and computer vision, target tracking and state estimation, and flight guidance and control. This thesis focuses on the adaptive state estimation, guidance and control problems involved in vision-based formation flight. Specifically, the thesis presents a composite adaptation approach to the partial state estimation of a class of nonlinear systems with unmodeled dynamics. In this approach, a linear time-varying Kalman filter is the nominal state estimator which is augmented by the output of an adaptive neural network (NN) that is trained with two error signals. The benefit of the proposed approach is in its faster and more accurate adaptation to the modeling errors over a conventional approach. The thesis also presents two approaches to the design of adaptive guidance and control (G&C) laws for line-of-sight formation flight. In the first approach, the guidance and autopilot systems are designed separately and then combined together by assuming time-scale separation. The second approach is based on integrating the guidance and autopilot design process. The developed G&C laws using both approaches are adaptive to unmodeled leader aircraft acceleration and to own aircraft aerodynamic uncertainties. The thesis also presents theoretical justification based on Lyapunov-like stability analysis for integrating the adaptive state estimation and adaptive G&C designs. All the developed designs are validated in nonlinear, 6DOF fixed-wing aircraft simulations. Finally, the thesis presents a decentralized coordination strategy for vision-based multiple-aircraft formation control. In this

  2. Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design

    Science.gov (United States)

    Laughter, Sean A.

    2012-01-01

    The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.

  3. MEMS-Based Low-Cost Flight Control System for Small UAVs

    Institute of Scientific and Technical Information of China (English)

    FU Xu; ZHOU Zhaoying; XIONG Wei; GUO Qi

    2008-01-01

    Small unmanned air vehicles(UAVs)can be used for vanous kinds of surveillance and data collection missions.The UAV flight control system is the key to a successful mission.This paper describes a low-cost micro-electro mechanical system-based flight control system for small UAVs.The integrated hardware flight control system weighs only 24 g.The system includes a highly-integrated wireless transmission link,which is lighter than traditional links.The flight control provides altitude hold control and global positioning system navigation based on gain scheduling proportional-integral-derivative control.Flight tests to survey the grass quality of a large lawn show that the small UAV can fly autonomously according to a series of pre-arranged waypoints with a controlled altitude while the wireless video system transmits images of the surveillance target to a ground control station.

  4. A self-reorganizing digital flight control system for aircraft

    Science.gov (United States)

    Montgomery, R. C.; Caglayan, A. K.

    1974-01-01

    This paper presents a design method for digital self-reorganizing control systems which is optimally tolerant of failures in aircraft sensors. The functions of this system are accomplished with software instead of the popular and costly technique of hardware duplication. The theoretical development, based on M-ary hypothesis testing, results in a bank of M Kalman filters operating in parallel in the failure detection logic. A moving window of the innovations of each Kalman filter drives the detection logic to decide the failure state of the system. The detection logic also selects the optimal state estimate (for control logic) from the bank of Kalman filters. The design process is applied to the design of a self-reorganizing control system for a current configuration of the space shuttle orbiter at Mach 5 and 120,000 feet. The failure detection capabilities of the system are demonstrated using a real-time simulation of the system with noisy sensors.

  5. Advanced control techniques for post-buckled precompressed (PBP) flight control actuators

    NARCIS (Netherlands)

    Groen, M.; Van Schravendijk, M.; Barrett, R.; Vos, R.

    2009-01-01

    The dynamic response of a new class of flight control actuators that rely on post-buckled recompressed (PBP) piezoelectric elements is investigated. While past research has proven that PBP actuators are capable of generating deflections three times higher than conventional bimorph actuators, this pa

  6. Design of Controllers for Liquid Level Control

    Directory of Open Access Journals (Sweden)

    Augustin Simon,

    2015-08-01

    Full Text Available The liquid level control system is commonly used in many process control applications. The aim of the process is to keep the liquid level in the tank at the desired value. The conventional proportional-integral-derivative (PID controller is simple, reliable and eliminates the error rate but it cannot handle complex problems. Fuzzy logic controllers are rule based systems which simulates human behavior of the process. The fuzzy controller is combined with the PID controller and then applied to the tank level control system. This paper proposes Inverse fuzzy with fuzzy logic controller for controlling liquid level system for a plant. This paper also compares the transient response as well as error indices of PID, Fuzzy logic controller, inverse fuzzy controllers. The responses of the controllers are verified through simulation. From the simulation results, it is observed that inverse fuzzy-PID controller gives the superior performance than the other controllers. The inverse fuzzy-PID controller gives better performance than the PID and fuzzy controller in terms of overshoot and settling time. Performance analysis is carried out with Liquid Flow Control System Design with Fuzzy logic controller. Results are evaluated by comparing the response time of conventional PID, fuzzy logic and Inverse fuzzy controller. Comparative analysis of the performance of different controllers is done in MATLAB and Simulink.

  7. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  8. Integration and In-Field Gains Selection of Flight and Navigation Controller for Remotely Piloted Aircraft System

    Directory of Open Access Journals (Sweden)

    Słowik Maciej

    2017-03-01

    Full Text Available In the paper the implementation process of commercial flight and navigational controller in own aircraft is shown. The process of autopilot integration were performed for the fixed-wing type of unmanned aerial vehicle designed in high-wing and pull configuration of the drive. The above equipment were integrated and proper software control algorithms were chosen. The correctness of chosen hardware and software solution were verified in ground tests and experimental flights. The PID controllers for longitude and latitude controller channels were selected. The proper deflections of control surfaces and stabilization of roll, pitch and yaw angles were tested. In the next stage operation of telecommunication link and flight stabilization were verified. In the last part of investigations the preliminary control gains and configuration parameters for roll angle control loop were chosen. This enable better behavior of UAV during turns. Also it affected other modes of flight such as loiter (circle around designated point and auto mode where the plane executed a pre-programmed mission.

  9. SPINFIN: A computer program for trajectory simulation of flight vehicles with semi-passive roll control systems

    Energy Technology Data Exchange (ETDEWEB)

    Kryvoruka, J.K.

    1972-07-01

    This report presents the trajectory computer program, SPINFIN. The program has been in use at Sandia Laboratories, Livermore, for flight simulation of those reentry vehicles which utilize a class of semi-passive fin roll-control systems. As such, it has served as an important design tool for some time. The report includes a presentation of the prominent features of the mathematical model which describes the vehicle aero-, flight-, and control-system dynamics. Additionally, detailed descriptions of the program input and output are provided as a user`s guide.

  10. Teaching medical device design using design control.

    Science.gov (United States)

    May-Newman, Karen; Cornwall, G Bryan

    2012-01-01

    The design of medical devices requires an understanding of a large number of factors, many of which are difficult to teach in the traditional educational format. This subject benefits from using a challenge-based learning approach, which provides focused design challenges requiring students to understand important factors in the context of a specific device. A course was designed at San Diego State University (CA, USA) that applied challenge-based learning through in-depth design challenges in cardiovascular and orthopedic medicine, and provided an immersive field, needs-finding experience to increase student engagement in the process of knowledge acquisition. The principles of US FDA 'design control' were used to structure the students' problem-solving approach, and provide a format for the design documentation, which was the basis of grading. Students utilized a combination of lecture materials, industry guest expertise, texts and readings, and internet-based searches to develop their understanding of the problem and design their solutions. The course was successful in providing a greatly increased knowledge base and competence of medical device design than students possessed upon entering the course.

  11. Design for controllability

    OpenAIRE

    Tsukaya, Hirokazu

    2012-01-01

    The safety of genetically modified crops remains a contested issue, given the potential risk for human health and the environment. To further reduce any risks and alleviate public concerns, terminator technology could be used both to tag and control genetically modified plants.

  12. Three-Axis Fluidic/Electronic Automatic Flight Control System Flight Test Report

    Science.gov (United States)

    1974-08-01

    sustained vertical bounce which could be due tc the location of the rate vortex sensor being in the cockpit rather than under the transmission. 3...29,000 lbs vs U7,000 lbs). A very minor reduction in dampening was incorporater"—but the response of the SAS to vertical bounce was critical in a...Sensitivity to vertical bounce in hover flight was increased with SAS on or off over that experience on the previous flight. Aircraft buzz and

  13. Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter Based on Dynamical Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts:orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented.

  14. Design of a north pole Neutron Time-of-Flight (NTOF) system at NIF

    Science.gov (United States)

    Caggiano, J. A.; Barbosa, F.; Clancy, T. J.; Eckart, M. J.; Grim, G.; Hartouni, E. P.; Hatarik, R.; Khater, H.; Lee, A.; Sampson, M.; Sayre, D. B.; Yeamans, C.; Yeoman, M.

    2016-05-01

    A north pole NTOF system for neutron spectroscopy is being implemented at the NIF. The design is centered around a fast scintillator with low mass housing fielded 21.6m from target chamber center at θ=18°,ϕ=304°. The line-of-sight (LOS) features a primary port collimator, two secondary collimators in the intervening concrete floors, and a beam dump with a backscatter shield. Because the detector is being fielded on the roof of the NIF building, diagnostic options such as optical and electrical attenuation are remotely controlled, saving setup time and increasing shot rate. The expected performance of the diagnostic is excellent with high sensitivity to both high-energy reaction-in-flight neutrons as well as lower energy down-scattered neutrons.

  15. Pseudo Control Hedging and its Application for Safe Flight Envelope Protection

    NARCIS (Netherlands)

    Lombaerts, T.J.J.; Looye, G.H.N.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    This paper describes how the previously developed concept of Pseudo Control Hedging (PCH) can be integrated in a Fault Tolerant Flight Controller (FTFC) as a safe flight envelope protection system of the first degree. This PCH algorithm adapts the reference model for the system output in case of

  16. Model and Sensor Based Nonlinear Adaptive Flight Control with Online System Identification

    NARCIS (Netherlands)

    Sun, L.G.

    2014-01-01

    Consensus exists that many loss-of-control (LOC) in flight accidents caused by severe aircraft damage or system failure could be prevented if flight performance could be recovered using the valid and remaining control authorities. However, the safe maneuverability of a post-failure aircraft will

  17. 14 CFR 417.415 - Post-launch and post-flight-attempt hazard controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Post-launch and post-flight-attempt hazard controls. 417.415 Section 417.415 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-flight-attempt hazard controls. (a) A launch operator must establish, maintain and perform procedures...

  18. Model and Sensor Based Nonlinear Adaptive Flight Control with Online System Identification

    NARCIS (Netherlands)

    Sun, L.G.

    2014-01-01

    Consensus exists that many loss-of-control (LOC) in flight accidents caused by severe aircraft damage or system failure could be prevented if flight performance could be recovered using the valid and remaining control authorities. However, the safe maneuverability of a post-failure aircraft will ine

  19. Pseudo Control Hedging and its Application for Safe Flight Envelope Protection

    NARCIS (Netherlands)

    Lombaerts, T.J.J.; Looye, G.H.N.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    This paper describes how the previously developed concept of Pseudo Control Hedging (PCH) can be integrated in a Fault Tolerant Flight Controller (FTFC) as a safe flight envelope protection system of the first degree. This PCH algorithm adapts the reference model for the system output in case of una

  20. Optimal Airline Multi-Leg Flight Seat Inventory Control

    Science.gov (United States)

    Nechval, Nicholas A.; Rozite, Kristine; Strelchonok, Vladimir F.

    2006-06-01

    In this paper, the problem of determining optimal booking policy for multiple fare classes in a pool of identical seats for multi-leg flights is considered. For large commercial airlines, efficiently setting and updating seat allocation targets for each passenger category on each multi-leg flight is an extremely difficult problem. This paper presents static and dynamic policies of allocation of airline seats for multi-leg flights with multiple fare classes, which allow one to maximize an expected contribution to profit. The dynamic policy uses the most recent demand and capacity information and allows one to allocate seats dynamically with anticipation over time. A numerical example is given.

  1. Integrated controls design optimization

    Science.gov (United States)

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  2. Receiver-exciter controller design

    Science.gov (United States)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  3. Design of a wing shape for study of hypersonic crossflow transition in flight

    Science.gov (United States)

    Godil, A.; Bertelrud, A.

    1992-01-01

    Computational fluid dynamics methods were used in the design of a wing shape for study of hypersonic crossflow transition in flight. The flight experiment is to be performed on the delta wing of the first stage of a Pegasus launch vehicle as a piggy-back experiment to support boundary-layer stability code development and validation. The design goal is to obtain crossflow-induced transition at 20-40 percent of the chord for a flight Mach number of approximately six. The present paper describes the design and analysis process utilized to obtain desired glove shape. A variety of schemes were used in the design, ranging from simple empirical crossflow correlations to three-dimensional Navier-Stokes codes in conjunction with linear stability/N-factor computations. The sensitivity to various parameters, such as trajectory variations, allowable wing thickness, leading-edge radius and surface temperature, is also discussed.

  4. Automated Control Surface Design and Sizing for the Prandtl Plane

    NARCIS (Netherlands)

    Van Ginneken, D.A.J.; Voskuijl, M.; Van Tooren, M.J.L.; Frediani, A.

    2010-01-01

    This paper presents a methodology for the design of the primary flight control surfaces, in terms of size, number and location, for fixed wing aircraft (conventional or unconventional). As test case, the methodology is applied to a 300 passenger variant of the Prandtl Plane. This box wing aircraft i

  5. Flight dynamics and control modelling of damaged asymmetric aircraft

    Science.gov (United States)

    Ogunwa, T. T.; Abdullah, E. J.

    2016-10-01

    This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.

  6. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  7. Investigation of a Simple Visual System for Flight Control

    Science.gov (United States)

    2011-07-01

    wings or ocelli Mizunami, The diversity of insect ocellar systems, 1994 Fleas lice proturans Dragonflies and damselflies mayflies 7 Identifying...and some do not). – Dragonflies vs. nearctic owlflies •Same sensor suites different behaviors – Very different flight, but all have the same sensor...Flight setup, by David Forester. Network 13 Similar behaving insects, different sensors. \\.J ••• • AFR .!;l 14 Dragonfly in field \\.J ••• • , AFR

  8. The impact of remote manipulator structural dynamics on Shuttle on-orbit flight control

    Science.gov (United States)

    Sargent, D. G.

    1984-01-01

    The performance of the Space Shuttle on-orbit flight control system during payload operations with the remote manipulator system is described. The changing mass and inertia distribution associated with payload manipulation can have a significant effect on the control authority provided by the orbiter's reaction control jets. Commanded payload motion and jet firings can excite significant flexure in the orbiter/manipulator/payload structure. These effects combine to stress the control capabilities of the flight control system. Data from recent flight tests is presented to illustrate these effects.

  9. Status of a digital integrated propulsion/flight control system for the YF-12 airplane

    Science.gov (United States)

    Reukauf, P. J.; Burcham, F. W., Jr.; Holzman, J. K.

    1975-01-01

    The NASA Flight Research Center is engaged in a program with the YF-12 airplane to study the control of interactions between the airplane and the propulsion system. The existing analog air data computer, autothrottle, autopilot, and inlet control system are to be converted to digital systems by using a general purpose airborne computer and interface unit. First, the existing control laws will be programmed in the digital computer and flight tested. Then new control laws are to be derived from a dynamic propulsion model and a total force and moment aerodynamic model to integrate the systems. These control laws are to be verified in a real time simulation and flight tested.

  10. Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)

    Science.gov (United States)

    Weisbrich, R.; Perley, R.; Howes, H.

    1977-01-01

    The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.

  11. Ground and flight test experience with a triple redundant digital fly by wire control system. [installed in F-8C aircraft

    Science.gov (United States)

    Jarvis, C. R.; Szalai, K. J.

    1981-01-01

    A triplex digital fly by wire flight control system was developed and installed in an F-8C aircraft to provide fail operative, full authority control. Hardware and software redundancy management techniques were designed to detect and identify failures in the system. Control functions typical of those projected for future actively controlled vehicles were implemented.

  12. Neural Network-Based Adaptive Backstepping Control for Hypersonic Flight Vehicles with Prescribed Tracking Performance

    Directory of Open Access Journals (Sweden)

    Zhu Guoqiang

    2015-01-01

    Full Text Available An adaptive neural control scheme is proposed for a class of generic hypersonic flight vehicles. The main advantages of the proposed scheme include the following: (1 a new constraint variable is defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries; (2 RBF NNs are employed to compensate for complex and uncertain terms to solve the problem of controller complexity; (3 only one parameter needs to be updated online at each design step, which significantly reduces the computational burden. It is proved that all signals of the closed-loop system are uniformly ultimately bounded. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

  13. Controlling radiated emissions by design

    CERN Document Server

    Mardiguian, Michel

    2014-01-01

    The 3rd edition of Controlling Radiated Emissions by Design has been updated to reflect the latest changes in the field. New to this edition is material related to technical advances, specifically super-fast data rates on wire pairs, with no increase in RF interference. Throughout the book, details are given to control RF emissions using EMC design techniques. This book retains the step-by-step approach for incorporating EMC into every new design from the ground up. It describes the selection of quieter IC technologies, their implementation into a noise-free printed circuit layout, and the gathering of these into a low emissions package. Also included is how to design an I/O filter, along with connectors and cable considerations. All guidelines are supported throughout with comprehensive calculated examples. Design engineers, EMC specialists, and technicians will benefit from learning about the development of more efficient and economical control of emissions.

  14. Thermal Design and Flight Validation for Solid-state Transmitter

    OpenAIRE

    Wang Lei; Wen Yao-pu

    2014-01-01

    Solid-state transmitter with large power and high heat flux is a key equipment of an HJ-1-C satellite; therefore, it has a great influence on satellite thermal design. Thermal design ensures that the solid-state transmitter works well within the allowable temperature limits of the equipment. The solid-state transmitter thermal design and solved key problems are provided in accordance with the HJ-1-C characteristics. Moreover, an analysis of satellites on orbit was performed. Based on the tele...

  15. Computer program to simulate digital computer based longitudinal flight control laws in a high performance aircraft

    OpenAIRE

    Carter, James Robert

    1983-01-01

    Approved for public release; distribution unlimited The IEH Company's Continuous Systems Modeling Program was used to simulate the longitudinal flight control system of the F/A-18 aircraft. The model is intended for use in investigations cf aircraft response to flight conditions which approach spin or stall and is restricted to the automatic flaps up (AFU) flight mode. Program outputs include stabilator deflection, leading and trailing edge flap positions, and cress-ax...

  16. A preliminary investigation of the use of throttles for emergency flight control

    Science.gov (United States)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  17. Partition optimization in the flight envelope for control design of aero-engines%用于控制器分区设计的发动机飞行包线区域最优划分

    Institute of Scientific and Technical Information of China (English)

    李述清; 张胜修; 胡卫红

    2012-01-01

    结合最优化理论和线性系统理论,对控制问题中航空发动机飞行包线区域划分方法展开了研究.首先基于小偏离线性动态模型,根据线性系统理论,将发动机动态特性的摄动归为线性模型的状态矩阵特征值和稳态增益的摄动来表征.然后在此基础上,定义了一种广义距离以表征发动机动态特性的摄动程度,并以定义了区域的划分原则.继而提出将飞行包线区域划分问题转化为一个基于该广义距离的最优化问题.最后就某型涡扇发动机情形,对其飞行包线区域进行了划分计算,并对划分区域内发动机线性模型摄动进行了比较。结果表明该区域划分和标称点选择方法的有效性.%According to the optimization theory and linear system theory, the method of flight-envelop optimization partition for aero-engines is researched. First, linear state variable mode (LSVM) was used to describe aero-engine's dynamic characteristic of small perturbation on steady operating point, and the perturbation between LSVMs was denoted by the perturbation of coefficient matrix eigenvalues and low-frequency gains of the LSVMs. Then, a general distance based on the perturbation of eigenvalues and low-frequency gains of the LSVMs was put forward. And the problem of dividing the flight envelope and selecting the nominal points in a flight envelope was translated into a most overlay problem. Thus, based on the general distance, a set of least number of nominal points could be found to divide the flight envelope by using optimizing method. Last, a flight envelope area of a turbofan engine was divided by using this method, and the results indicated that this method was proper.

  18. UAV Flight Control using Distributed Actuation and Sensing

    Science.gov (United States)

    Barnwell, William G.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona; Raney, David L. (Technical Monitor)

    2003-01-01

    An array of effectors and sensors has been designed, tested and implemented on a Blended Wing Body Uninhabited Aerial Vehicle (UAV). This UAV is modified to serve as a flying, controls research, testbed. This effectorhensor array provides for the dynamic vehicle testing of controller designs and the study of decentralized control techniques. Each wing of the UAV is equipped with 12 distributed effectors that comprise a segmented array of independently actuated, contoured control surfaces. A single pressure sensor is installed near the base of each effector to provide a measure of deflections of the effectors. The UAV wings were tested in the North Carolina State University Subsonic Wind Tunnel and the pressure distribution that result from the deflections of the effectors are characterized. The results of the experiments are used to develop a simple, but accurate, prediction method, such that for any arrangement of the effector array the corresponding pressure distribution can be determined. Numerical analysis using the panel code CMARC verifies this prediction method.

  19. Design, development, fabrication, and safety-of-flight testing of a panoramic night vision goggle

    Science.gov (United States)

    Jackson, Timothy W.; Craig, Jeffrey L.

    1999-07-01

    A novel approach to significantly increasing the field of view (FOV) of night vision goggles (NVGs) has been developed. This approach uses four image intensifier tubes instead of the usual two to produce a 100 degree wide FOV. A conceptual demonstrator device was fabricated in November 1995 and limited flight evaluations were performed. Further development of this approach continues with eleven advanced technology demonstrators delivered in March 1999 that feature five different design configurations. Some of the units will be earmarked for ejection seat equipped aircraft due to their low profile design allowing the goggle to be retained safely during and after ejection. Other deliverables will be more traditional in design approach and lends itself to transport and helicopter aircraft as well as ground personnel. Extensive safety-of-flight testing has been accomplished as a precursor to the F-15C operational utility evaluation flight testing at Nellis AFB that began in March 1999.

  20. Integrated digital flight-control system for the space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.

  1. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  2. An Integrated Approach for Entry Mission Design and Flight Simulations

    Science.gov (United States)

    Lu, Ping; Rao, Prabhakara

    2004-01-01

    An integrated approach for entry trajectory design, guidance, and simulation is proposed. The key ingredients for this approach are an on-line 3 degree-of-freedom entry trajectory planning algorithm and the entry guidance algorithm that generates the guidance gains automatically. When fully developed, such a tool could enable end-bend entry mission design and simulations in 3DOF and 6DOF mode from de-orbit burn to the TAEM interface and beyond, all in one key stroke. Some preliminary examples of such a capability are presented in this paper that demonstrate the potential of this type of integrated environment.

  3. Specification and Design of Electrical Flight System Architectures with SysML

    Science.gov (United States)

    McKelvin, Mark L., Jr.; Jimenez, Alejandro

    2012-01-01

    Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.

  4. 3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission

    Science.gov (United States)

    Chasset, C.; Noteborn, R.; Bodin, P.; Larsson, R.; Jakobsson, B.

    2013-09-01

    PRISMA implements guidance, navigation and control strategies for advanced formation flying and rendezvous experiments. The project is funded by the Swedish National Space Board and run by OHB-Sweden in close cooperation with DLR, CNES and the Danish Technical University. The PRISMA test bed consists of a fully manoeuvrable MANGO satellite as well as a 3-axis controlled TANGO satellite without any Δ V capability. PRISMA was launched on the 15th of June 2010 on board DNEPR. The TANGO spacecraft is the reference satellite for the experiments performed by MANGO, either with a "cooperative" or "non-cooperative" behaviour. Small, light and low-cost were the keywords for the TANGO design. The attitude determination is based on Sun sensors and magnetometers, and the active attitude control uses magnetic torque rods only. In order to perform the attitude manoeuvres required to fulfil the mission objectives, using any additional gravity gradient boom to passively stabilize the spacecraft was not allowed. After a two-month commissioning phase, TANGO separated from MANGO on the 11th of August 2010. All operational modes have been successfully tested, and the pointing performance in flight is in accordance with expectations. The robust Sun Acquisition mode reduced the initial tip-off rate and placed TANGO into a safe attitude in TANGO points its GPS antenna towards zenith with sufficient accuracy to track as many GPS satellites as MANGO. At the same time, it points its solar panel towards the Sun, and all payload equipments can be switched on without any restriction. This paper gives an overview of the TANGO Attitude Control System design. It then presents the flight results in the different operating modes. Finally, it highlights the key elements at the origin of the successful 3-axis magnetic control strategy on the TANGO satellite.

  5. Electrical, Electronic, and Electromechanical (EEE) parts management and control requirements for NASA space flight programs

    Science.gov (United States)

    1989-01-01

    This document establishes electrical, electronic, and electromechanical (EEE) parts management and control requirements for contractors providing and maintaining space flight and mission-essential or critical ground support equipment for NASA space flight programs. Although the text is worded 'the contractor shall,' the requirements are also to be used by NASA Headquarters and field installations for developing program/project parts management and control requirements for in-house and contracted efforts. This document places increased emphasis on parts programs to ensure that reliability and quality are considered through adequate consideration of the selection, control, and application of parts. It is the intent of this document to identify disciplines that can be implemented to obtain reliable parts which meet mission needs. The parts management and control requirements described in this document are to be selectively applied, based on equipment class and mission needs. Individual equipment needs should be evaluated to determine the extent to which each requirement should be implemented on a procurement. Utilization of this document does not preclude the usage of other documents. The entire process of developing and implementing requirements is referred to as 'tailoring' the program for a specific project. Some factors that should be considered in this tailoring process include program phase, equipment category and criticality, equipment complexity, and mission requirements. Parts management and control requirements advocated by this document directly support the concept of 'reliability by design' and are an integral part of system reliability and maintainability. Achieving the required availability and mission success objectives during operation depends on the attention given reliability and maintainability in the design phase. Consequently, it is intended that the requirements described in this document are consistent with those of NASA publications

  6. Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center, 2000-2014

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    A brief introductory overview of multi-vehicle cooperative control research conducted at the NASA Armstrong Flight Research Center from 2000 - 2014. Both flight research projects and paper studies are included. Since 2000, AFRC has been almost continuously pursuing research in the areas of formation flight for drag reduction and automated cooperative trajectories. An overview of results is given, including flight experiments done on the FA-18 and with the C-17. Other multi-vehicle cooperative research is discussed, including small UAV swarming projects and automated aerial refueling.

  7. A Flight-Path Control of Aircraft Based on Required Acceleration Vector

    Science.gov (United States)

    Yoshitani, Naoharu

    This paper presents an automatic flight-path control of aircraft. In the control, a desired flight trajectory is first determined as a sequence of straight lines, arcs and spirals in the three-dimensional space. Commands and command rates of heading and flight-path (climb) angles are then obtained from the desired trajectory. A required acceleration vector of the aircraft is calculated based on the command rates and angle deviations. Desired roll, pitch and yaw rates are then obtained by acceleration controller and are fed to attitude control. The feedback control of acceleration employs conventional PID control technology, without using inverse dynamics of the aircraft, and the attitude control can employ any existing control technologies suitable for the aircraft to be controlled. These make the proposed control relatively simple and easy to implement. Numerical simulations illustrate the effectiveness of the control.

  8. LMI–based robust controller design approach in aircraft multidisciplinary design optimization problem

    Directory of Open Access Journals (Sweden)

    Qinghua Zeng

    2015-07-01

    Full Text Available This article proposes a linear matrix inequality–based robust controller design approach to implement the synchronous design of aircraft control discipline and other disciplines, in which the variation in design parameters is treated as equivalent perturbations. Considering the complicated mapping relationships between the coefficient arrays of aircraft motion model and the aircraft design parameters, the robust controller designed is directly based on the variation in these coefficient arrays so conservative that the multidisciplinary design optimization problem would be too difficult to solve, or even if there is a solution, the robustness of design result is generally poor. Therefore, this article derives the uncertainty model of disciplinary design parameters based on response surface approximation, converts the design problem of the robust controller into a problem of solving a standard linear matrix inequality, and theoretically gives a less conservative design method of the robust controller which is based on the variation in design parameters. Furthermore, the concurrent subspace approach is applied to the multidisciplinary system with this kind of robust controller in the design loop. A multidisciplinary design optimization of a tailless aircraft as example is shown that control discipline can be synchronous optimal design with other discipline, especially this method will greatly reduce the calculated amount of multidisciplinary design optimization and make multidisciplinary design optimization results more robustness of flight performance.

  9. STS-46 Payload Specialist Malerba at aft flight deck controls in JSC mockup

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba, wearing flight suit, operates controls on the aft flight deck of the Full Fuselage Trainer (FFT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9. During the training session, Malerba adjusts a control on the A3 panel closed circuit television (CCTV). Onorbit station panels appear in front of Malerba and payload station controls behind him.

  10. Modeling and HIL Simulation of Flight Conditions Simulating Control System for the Altitude Test Facility

    Science.gov (United States)

    Zhou, Jun; Shen, Li; Zhang, Tianhong

    2016-12-01

    Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.

  11. Management of redundancy in flight control systems using optimal decision theory

    Science.gov (United States)

    1981-01-01

    The problem of using redundancy that exists between dissimilar systems in aircraft flight control is addressed. That is, using the redundancy that exists between a rate gyro and an accelerometer--devices that have dissimilar outputs which are related only through the dynamics of the aircraft motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure status and can reconfigure itself in the event of one or more failures. An optimal decision theory was tutorially developed for the management of sensor redundancy and the theory is applied to two aircraft examples. The first example is the space shuttle and the second is a highly maneuvering high performance aircraft--the F8-C. The examples illustrate the redundancy management design process and the performance of the algorithms presented in failure detection and control law reconfiguration.

  12. A Survey on Open-Source Flight Control Platforms of Unmanned Aerial Vehicle

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Jin, Jie

    2017-01-01

    Recently, Unmanned Aerial Vehicle (UAV), so-called drones, have gotten a lot of attention in academic research and commercial applications due to their simple structure, ease of operations and low-cost hardware components. Flight controller, embedded electronics component, represents the core part...... of the drone. It aims at performing the main operations of the drone (e.g., autonomous control and navigation). There are various types of flight controllers and each of them has its own characteristics and features. This paper presents an extensive survey on the publicly available open-source flight...

  13. NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles per Gallon

    Science.gov (United States)

    Wells, Douglas P.

    2011-01-01

    The Green Flight Challenge is one of the National Aeronautics and Space Administration s Centennial Challenges designed to push technology and make passenger aircraft more efficient. Airliners currently average around 50 passenger-miles per gallon and this competition will push teams to greater than 200 passenger-miles per gallon. The aircraft must also fly at least 100 miles per hour for 200 miles. The total prize money for this competition is $1.65 Million. The Green Flight Challenge will be run by the Comparative Aircraft Flight Efficiency (CAFE) Foundation September 25 October 1, 2011 at Charles M. Schulz Sonoma County Airport in California. Thirteen custom aircraft were developed with electric, bio-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsion, and structural efficiency. This paper will explore the feasibility of the rule set, competitor vehicles, design approaches, and technologies used.

  14. Robust control design with MATLAB

    CERN Document Server

    Gu, Da-Wei; Konstantinov, Mihail M

    2013-01-01

    Robust Control Design with MATLAB® (second edition) helps the student to learn how to use well-developed advanced robust control design methods in practical cases. To this end, several realistic control design examples from teaching-laboratory experiments, such as a two-wheeled, self-balancing robot, to complex systems like a flexible-link manipulator are given detailed presentation. All of these exercises are conducted using MATLAB® Robust Control Toolbox 3, Control System Toolbox and Simulink®. By sharing their experiences in industrial cases with minimum recourse to complicated theories and formulae, the authors convey essential ideas and useful insights into robust industrial control systems design using major H-infinity optimization and related methods allowing readers quickly to move on with their own challenges. The hands-on tutorial style of this text rests on an abundance of examples and features for the second edition: ·        rewritten and simplified presentation of theoretical and meth...

  15. Design of flying vehicle control system by signal to noise ratio

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the new concept of ″Desired to be small″ based on thebasic function of vehicle flight control system for an optimal design of flying vehicle control system, and the definition of S/N ratio and calculation formula for ″Desired to be small″ dynamic characteristics, and the S/N ratio method established for design of velicle flight control systems, by which, an orthogrnal table is used to arrange test schemes, and error facters are used to simulate various interferences, and the use of S/N ratio as a design criterion to synthesise the design of dynamic and static characteristics for definition of an optimal scheme, the application of S/N ratio method to the design of a type of vehicle control system and the single run success abtained in design of control system, technical evaluation test and design finalization flight test.

  16. Inspection of CF188 composite flight control surfaces with neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.J.; Bennett, L.G.I. [Royal Military Coll. of Canada, Kingston, Ontario (Canada). Dept. of Chemistry and Chemical Engineering; Mullin, S.K. [Aerospace and Telecommunications Engineering Support Squadron, Astra, Ontario (Canada). Nondestructive Testing Center Development Section

    1996-12-31

    At the Royal Military College of Canada`s SLOWPOKE-2 Facility, a neutron radiography facility has been designed and installed using a small (20kWth), pool-type research reactor called the SLOWPOKE-2 (Safe Low Power c(K)ritical Experiment) as the neutron source. Since then, the research has continued along two fronts: developing applications and improving the quality of the neutron beam. The most interesting applications investigated to date has been the inspection of various metal ceramic composites and the inspection of the composite flight control surfaces of some of the CF188 Hornet aircraft. As part of the determination of the integrity of the aircraft, it was decided to inspect an aircraft with the highest flight house using both X- and neutron radiography. The neutron radiography and, to a lesser extent, X-radiography inspections completed at McClellan AFB revealed 93 anomalies. After returning to Canada, the component with the greatest structural significance, namely the right hand rudder from the vertical stabilizer, was removed from the aircraft and put through a rigorous program of numerous NDT inspections, including X-radiography (film and real-time), eddy current, ultrasonics (through transmission and pitch-catch), infrared thermography, and neutron radiography. Therefore, of all the techniques investigated, only through transmission ultrasonics and neutron radiography were able to identify large areas of hydration. However, only neutron radiography could identify the small areas of moisture and hydration. Given the structural significance of the flight control surfaces in modern fighter aircraft, even the smallest amounts of hydration could potentially lead to catastrophic results.

  17. Mechanics of Flapping Flight: Analytical Formulations of Unsteady Aerodynamics, Kinematic Optimization, Flight Dynamics, and Control

    Science.gov (United States)

    Taneja, Jayant Kumar

    Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load

  18. Validation of Flight Control Law Based on LFT and Structured Singular Value

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xi; LIU Lin; CHEN Zong-ji; DUAN Hai-bin

    2007-01-01

    The main goal of flight clearance is to use the structured singular value (μ) analysis of the flight control system when some parameters in the system vary in a certain range. As theμ-analysis can only be done on a linear fractional transformation (LFT) model, the first step of flight clearance is to generate the LFT model of the flight control system. In this paper, based on the introduction of basic theory of LFT and μ-analysis, an X-fighter is chosen as an example to utilize the proposed methods. In order to realize the flight clearance process automatically, a novel software package based on MATLAB programming language is developed. The results of simulation experiments validate the feasibility and effectiveness of the novel methods proposed in this paper.

  19. Flight Investigation of a Normal-Acceleration Automatic Longitudinal Control System in a Fighter Airplane

    Science.gov (United States)

    Sjoberg, S. A.; Russell, Walter R.; Alford, William L.

    1958-01-01

    A flight investigation was made to obtain experimental information on the handling qualities of a normal-acceleration type of automatic longitudinal control system. The control system was installed in a subsonic fighter-type airplane. In hands-off (stick-free) flight the normal-acceleration control system attempted to regulate the normal acceleration to a constant value which is dependent on the automatic-control-system trim setting. In maneuvering flight a given pilot's stick deflection produced a proportional change in normal acceleration, the change in acceleration being independent of flight condition. A small side-located controller stick was used by the pilot to introduce signals into the automatic control system. In the flight program emphasis was placed on the acceleration-limiting capabilities of the control system. The handling qualities were investigated in maneuvers such as slow and rapid pull-ups and turns and also in flight operations such as cruising, stalls, landings, aerobatics, and air-to-air tracking. Good acceleration limiting was obtained with the normal-acceleration control system by limiting the magnitude of the input signal that the pilot could introduce into the control system. The same values of control-system gain settings could be used from an acceleration-limiting stand-point at both 10,000 and 30,000 feet for the complete speed range of the airplane. The response characteristics of the airplane-control system combination were also satisfactory at both high and low altitude with these same values of control-system gain setting. In the pilot's opinion, the normal-acceleration control system provided good stability and control characteristics in flight operations such as cruising, stalls, landings, aerobatics, and air-to-air tracking.

  20. Design of a simple active controller to suppress helicopter air resonance

    Science.gov (United States)

    Takahashi, M. D.; Friedmann, P. P.

    1988-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected that experiences an air resonance instability throughout most of its flight envelope. A simple multivariable compensator using conventional swashplate inputs and a single body roll rate measurement is then designed. The controller design is based on a linear estimator in conjunction with optimal feedback gains, and the design is done in the frequency domain using the Loop Transfer Recovery method. The controller is shown to suppress the air resonance instability throughout wide range helicopter loading conditions and forward flight speeds.