WorldWideScience

Sample records for flight center gsfc

  1. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  2. GSFC Safety and Mission Assurance Organization

    Science.gov (United States)

    Kelly, Michael P.

    2010-01-01

    This viewgraph presentation reviews NASA Goddard Space Flight Center's approach to safety and mission assurance. The contents include: 1) NASA GSFC Background; 2) Safety and Mission Assurance Directorate; 3) The Role of SMA-D and the Technical Authority; 4) GSFC Mission assurance Requirements; 5) GSFC Systems Review Office (SRO); 6) GSFC Supply Chain Management Program; and 7) GSFC ISO9001/AS9100 Status Brief.

  3. One Micron Laser Technology Advancements at GSFC

    Science.gov (United States)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  4. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  5. GSFC contamination monitors for Space Station

    Science.gov (United States)

    Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

    1988-01-01

    This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

  6. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    Science.gov (United States)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  7. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  8. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    Science.gov (United States)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  9. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    Science.gov (United States)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; hide

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  10. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  11. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    Science.gov (United States)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  12. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    Science.gov (United States)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  13. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    Science.gov (United States)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications

  14. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    Science.gov (United States)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  15. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  16. Evolution of Information Management at the GSFC Earth Sciences (GES) Data and Information Services Center (DISC): 2006-2007

    Science.gov (United States)

    Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen

    2009-01-01

    Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007

  17. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; hide

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  18. An analysis of unit tests of a flight software product line

    NARCIS (Netherlands)

    Ganesan, D.; Lindvall, M.; McComas, D.; Bartholomew, M.; Slegel, S.; Medina, B.; Krikhaar, R.; Verhoef, C.; Dharmalingam, G.; Montgomery, L.P.

    2013-01-01

    This paper presents an analysis of the unit testing approach developed and used by the Core Flight Software System (CFS) product line team at the NASA Goddard Space Flight Center (GSFC). The goal of the analysis is to understand, review, and recommend strategies for improving the CFS' existing unit

  19. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  20. In-Flight Calibration Processes for the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.; hide

    2015-01-01

    The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and DigitalFluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, LosAngeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since thesuccessful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the groundcalibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluatetwelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers usingalgorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF,UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tonesand harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA.IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolutegains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS andgive examples of the quality of the resulting calibrations.

  1. In-Flight Calibration Processes for the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.

    2015-12-01

    The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and Digital Fluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, Los Angeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since the successful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the ground calibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluate twelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers using algorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF, UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tones and harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA. IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolute gains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS and give examples of the quality of the resulting calibrations.

  2. NASA GSFC Opportunities for STEM Professionals Using the Vantage Point of Space

    Science.gov (United States)

    Meeson, Blanche W.; Robbins, Geraldine B.

    2012-01-01

    NASA has a variety of learning opportunities for STEM professionals. Three opportunities at GSFC are examined in this chapter: 1) standard summer research and development internship for undergraduates, 2) senior internship for undergraduate and graduate students and 3) a workshop series for informal learning center professionals. We describe these programs, examine their evolution with respect to most effective education practices and their assessment and evaluation, and identify the similarities and differences between them. The internship programs highlight authentic project-based research and development experiences with the senior internship providing a richer, deeper, and more demanding experience that has greater professional value. The workshops for informal learning center professionals on-the-other hand, focus on building knowledge of GSFC s science and engineering strengths among these professionals, and on building enduring partnerships between individuals (participants and GSFC scientist, engineers and educators) and between organizations (GSFC and the informal learning center). Finally, we examine the characteristics of these programs from a design and management perspective. Through this examination we identify a general structure that provides insight into more effective design and management of similar education programs.

  3. LISA Beyond Einstein: From the Big Bang to Black Holes. LISA Technology Development at GSFC

    Science.gov (United States)

    Thorpe, James Ira

    2008-01-01

    This viewgraph presentation reviews the work that has been ongoing at the Goddard Space Flight Center (GSFC) in the development of the technology to be used in the Laser Interferometer Space Antenna (LISA) spacecrafts. The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry. Specifically efforts have been made in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. This presentation reports on a modification to the standard modulation/demodulation technique used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meet the LISA requirements.

  4. ASTEC and MODEL: Controls software development at Goddard Space Flight Center

    Science.gov (United States)

    Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.

    1993-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.

  5. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    Science.gov (United States)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  6. Baselining the New GSFC Information Systems Center: The Foundation for Verifiable Software Process Improvement

    Science.gov (United States)

    Parra, A.; Schultz, D.; Boger, J.; Condon, S.; Webby, R.; Morisio, M.; Yakimovich, D.; Carver, J.; Stark, M.; Basili, V.; hide

    1999-01-01

    This paper describes a study performed at the Information System Center (ISC) in NASA Goddard Space Flight Center. The ISC was set up in 1998 as a core competence center in information technology. The study aims at characterizing people, processes and products of the new center, to provide a basis for proposing improvement actions and comparing the center before and after these actions have been performed. The paper presents the ISC, goals and methods of the study, results and suggestions for improvement, through the branch-level portion of this baselining effort.

  7. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    Science.gov (United States)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  8. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  9. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  10. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    Science.gov (United States)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  11. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  12. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    Science.gov (United States)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  13. Integrated Exoplanet Modeling with the GSFC Exoplanet Modeling & Analysis Center (EMAC)

    Science.gov (United States)

    Mandell, Avi M.; Hostetter, Carl; Pulkkinen, Antti; Domagal-Goldman, Shawn David

    2018-01-01

    Our ability to characterize the atmospheres of extrasolar planets will be revolutionized by JWST, WFIRST and future ground- and space-based telescopes. In preparation, the exoplanet community must develop an integrated suite of tools with which we can comprehensively predict and analyze observations of exoplanets, in order to characterize the planetary environments and ultimately search them for signs of habitability and life.The GSFC Exoplanet Modeling and Analysis Center (EMAC) will be a web-accessible high-performance computing platform with science support for modelers and software developers to host and integrate their scientific software tools, with the goal of leveraging the scientific contributions from the entire exoplanet community to improve our interpretations of future exoplanet discoveries. Our suite of models will include stellar models, models for star-planet interactions, atmospheric models, planet system science models, telescope models, instrument models, and finally models for retrieving signals from observational data. By integrating this suite of models, the community will be able to self-consistently calculate the emergent spectra from the planet whether from emission, scattering, or in transmission, and use these simulations to model the performance of current and new telescopes and their instrumentation.The EMAC infrastructure will not only provide a repository for planetary and exoplanetary community models, modeling tools and intermodal comparisons, but it will include a "run-on-demand" portal with each software tool hosted on a separate virtual machine. The EMAC system will eventually include a means of running or “checking in” new model simulations that are in accordance with the community-derived standards. Additionally, the results of intermodal comparisons will be used to produce open source publications that quantify the model comparisons and provide an overview of community consensus on model uncertainties on the climates of

  14. Summary of initial results from the GSFC fluxgate magnetometer on Pioneer 11

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    The main magnetic field of Jupiter was measured by the Fluxgate Magnetometer on Pioneer 11 and analysis reveals it to be relatively more complex than expected. In a centered spherical harmonic representation with a maximum order of n = 3 (designated GSFC model 04), the dipole term (with opposite polarity to the Earth's) has a moment of 4.28 Gauss x (Jupiter radius cubed), tilted by 9.6 deg towards a system 111 longitude of 232. The quadrupole and octupole moments are significant, 24% and 21% of the dipole moment respectively, and this leads to deviations of the planetary magnetic field from a simple offset tilted dipole for distances smaller than three Jupiter radii. The GSFC model shows a north polar field strength of 14 Gauss and a south polar field strength of 10.4 Gauss. Enhanced absorption effects in the radiation belts may be predicted as a result of field distortion.

  15. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    Science.gov (United States)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on

  16. In-Flight Calibration of the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; hide

    2017-01-01

    We present an overview of the approach to in-flight calibration, which is a coordinated effort between the University of California Los Angeles (UCLA), Space Research Institute, Graz, Austria (IWF) and the NASA Goddard Space Flight Center (GSFC). We present details of the calibration effort at GSFC. During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.

  17. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  18. The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18

    Science.gov (United States)

    Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; hide

    1999-01-01

    This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.

  19. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  20. Walt Disney visited Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1965-01-01

    Walt Disney toured the West Test Area during his visit to the Marshall Space Flight Center on April 13, 1965. The three in center foreground are Karl Heimburg, Director, Test Division; Dr. von Braun, Director, MSFC; and Walt Disney. The Dynamic Test Stand with the S-1C stage being installed is in the background.

  1. Customizing graphical user interface technology for spacecraft control centers

    Science.gov (United States)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  2. NASA GSFC Tin Whisker Homepage http://nepp.nasa.gov/whisker

    Science.gov (United States)

    Shaw, Harry

    2000-01-01

    The NASA GSFC Tin Whisker Homepage provides general information and GSFC Code 562 experimentation results regarding the well known phenomenon of tin whisker formation from pure tin plated substrates. The objective of this www site is to provide a central repository for information pertaining to this phenomenon and to provide status of the GSFC experiments to understand the behavior of tin whiskers in space environments. The Tin Whisker www site is produced by Code 562. This www site does not provide information pertaining to patented or proprietary information. All of the information contained in this www site is at the level of that produced by industry and university researchers and is published at international conferences.

  3. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    Science.gov (United States)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  4. The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small Spacecraft

    Science.gov (United States)

    McComas, David; Wilmot, Jonathan; Cudmore, Alan

    2016-01-01

    In February 2015 the NASA Goddard Space Flight Center (GSFC) completed the open source release of the entire Core Flight Software (cFS) suite. After the open source release a multi-NASA center Configuration Control Board (CCB) was established that has managed multiple cFS product releases. The cFS was developed and is being maintained in compliance with the NASA Class B software development process requirements and the open source release includes all Class B artifacts. The cFS is currently running on three operational science spacecraft and is being used on multiple spacecraft and instrument development efforts. While the cFS itself is a viable flight software (FSW) solution, we have discovered that the cFS community is a continuous source of innovation and growth that provides products and tools that serve the entire FSW lifecycle and future mission needs. This paper summarizes the current state of the cFS community, the key FSW technologies being pursued, the development/verification tools and opportunities for the small satellite community to become engaged. The cFS is a proven high quality and cost-effective solution for small satellites with constrained budgets.

  5. Impact of Ada and object-oriented design in the flight dynamics division at Goddard Space Flight Center

    Science.gov (United States)

    Waligora, Sharon; Bailey, John; Stark, Mike

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  6. NOAA Aircraft Operations Center (AOC) Flight Level Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA AOC WP-3D Research Flight Data is digital data set DSI-6420, archived at the National Climatic Data Center (NCDC). This data set is meteorological data gathered...

  7. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  8. NASA Center for Climate Simulation (NCCS) Advanced Technology AT5 Virtualized Infiniband Report

    Science.gov (United States)

    Thompson, John H.; Bledsoe, Benjamin C.; Wagner, Mark; Shakshober, John; Fromkin, Russ

    2013-01-01

    The NCCS is part of the Computational and Information Sciences and Technology Office (CISTO) of Goddard Space Flight Center's (GSFC) Sciences and Exploration Directorate. The NCCS's mission is to enable scientists to increase their understanding of the Earth, the solar system, and the universe by supplying state-of-the-art high performance computing (HPC) solutions. To accomplish this mission, the NCCS (https://www.nccs.nasa.gov) provides high performance compute engines, mass storage, and network solutions to meet the specialized needs of the Earth and space science user communities

  9. Level 1 Processing of MODIS Direct Broadcast Data at the GSFC DAAC

    Science.gov (United States)

    Lynnes, Christopher; Kempler, Steven J. (Technical Monitor)

    2001-01-01

    The GSFC DAAC is working to test and package the MODIS Level 1 Processing software for Aqua Direct Broadcast data. This entails the same code base, but different lookup tables for Aqua and Terra. However, the most significant change is the use of ancillary attitude and ephemeris files instead of orbit/attitude information within the science data stream (as with Terra). In addition, we are working on Linux: ports of the algorithms, which could eventually enable processing on PC clusters. Finally, the GSFC DAAC is also working with the GSFC Direct Readout laboratory to ingest Level 0 data from the GSFC DB antenna into the main DAAC, enabling level 1 production in near real time in support of applications users, such as the Synergy project. The mechanism developed for this could conceivably be extended to other participating stations.

  10. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  11. The NASA radar entomology program at Wallops Flight Center

    Science.gov (United States)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  12. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Science.gov (United States)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  13. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  14. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  15. Business Plan: The Virginia Space Flight Center

    Science.gov (United States)

    Reed, Billie M.

    1997-01-01

    The Virginia Commercial Space Flight Authority (VCSFA) was established on July 1, 1995 and codified at Sections 9-266.1 et seq., Code of Virginia. It is governed by an eleven person Board of Directors representing industry, state and local government and academia. VCSFA has designated the Center for Commercial Space Infrastructure as its Executive Directorate and Operating Agent. This Business Plan has been developed to provide information to prospective customers, prospective investors, state and federal government agencies, the VCSFA Board and other interested parties regarding development and operation of the Virginia Space Flight Center (VSFC) at Wallops Island. The VSFC is an initiative sponsored by VCSFA to achieve its stated objectives in the areas of economic development and education. Further, development of the VSFC is in keeping with the state's economic goals set forth in Opportunity Virginia, the strategic plan for jobs and prosperity, which are to: (1) Strengthen the rapidly growing aerospace industry in space based services including launch services, remote sensing, satellite manufacturing and telecommunications; and (2) Capitalize on intellectual and technical resources throughout the state and become a leader in the development of advanced technology businesses.

  16. Space Flight Operations Center local area network

    Science.gov (United States)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  17. Maturing CCD Photon-Counting Technology for Space Flight

    Science.gov (United States)

    Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian

    2015-01-01

    This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.

  18. Enterprise Level Status and Control of Multi-Satellite Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Single-satellite mission operation centers are used for nearly all Goddard Space Flight Center (GSFC) mission ground data systems, with a focus on localized data...

  19. Small UAS Test Area at NASA's Dryden Flight Research Center

    Science.gov (United States)

    Bauer, Jeffrey T.

    2008-01-01

    This viewgraph presentation reviews the areas that Dryden Flight Research Center has set up for testing small Unmanned Aerial Systems (UAS). It also reviews the requirements and process to use an area for UAS test.

  20. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  1. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  2. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of exercise was quite successful.

  3. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  4. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    Science.gov (United States)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  5. The Effectiveness of Yoga on Spiritual Intelligence in Air Traffic Controllers of Tehran Flight Control Center

    Science.gov (United States)

    Safara, Maryam; Ghasemi, Pejman

    2017-01-01

    The aim of this study was to evaluate the efficacy of yoga on spiritual intelligence in air traffic controllers in Tehran flight control center. This was a quasi-experimental research and the study population includes all air traffic controllers in Tehran flight control center. The sample consisted of 40 people of the study population that were…

  6. NASAwide electronic publishing system: Electronic printing and duplicating, stage-2 evaluation report (GSFC)

    Science.gov (United States)

    Tuey, Richard C.; Lane, Robert; Hart, Susan V.

    1995-01-01

    The NASA Scientific and Technical Information Office was assigned the responsibility to continue with the expansion of the NASAwide networked electronic duplicating effort by including the Goddard Space Flight Center (GSFC) as an additional node to the existing configuration of networked electronic duplicating systems within NASA. The subject of this report is the evaluation of a networked electronic duplicating system which meets the duplicating requirements and expands electronic publishing capabilities without increasing current operating costs. This report continues the evaluation reported in 'NASA Electronic Publishing System - Electronic Printing and Duplicating Evaluation Report' (NASA TM-106242) and 'NASA Electronic Publishing System - Stage 1 Evaluation Report' (NASA TM-106510). This report differs from the previous reports through the inclusion of an external networked desktop editing, archival, and publishing functionality which did not exist with the previous networked electronic duplicating system. Additionally, a two-phase approach to the evaluation was undertaken; the first was a paper study justifying a 90-day, on-site evaluation, and the second phase was to validate, during the 90-day evaluation, the cost benefits and productivity increases that could be achieved in an operational mode. A benchmark of the functionality of the networked electronic publishing system and external networked desktop editing, archival, and publishing system was performed under a simulated daily production environment. This report can be used to guide others in determining the most cost effective duplicating/publishing alternative through the use of cost/benefit analysis and return on investment techniques. A treatise on the use of these techniques can be found by referring to 'NASA Electronic Publishing System -Cost/Benefit Methodology' (NASA TM-106662).

  7. Fifty Years of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-1996

    Science.gov (United States)

    Fisher, David F.

    1999-01-01

    Titles, authors, report numbers, and abstracts are given for more than 2200 unclassified and unrestricted technical reports and papers published from September 1946 to December 1996 by NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 50 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, and X-31 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, and F-18 Systems Research Aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 233 contractor reports, more than 200 UCLA Flight System Research Center reports and 25 video tapes are included.

  8. Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center, 2000-2014

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    A brief introductory overview of multi-vehicle cooperative control research conducted at the NASA Armstrong Flight Research Center from 2000 - 2014. Both flight research projects and paper studies are included. Since 2000, AFRC has been almost continuously pursuing research in the areas of formation flight for drag reduction and automated cooperative trajectories. An overview of results is given, including flight experiments done on the FA-18 and with the C-17. Other multi-vehicle cooperative research is discussed, including small UAV swarming projects and automated aerial refueling.

  9. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 5, May 2007

    Science.gov (United States)

    2007-05-01

    zation Program. Washington: GSA, DoD, and NASA , 2005 <http:// www.arnet.gov/far/>. 11. Department of Commerce. NIST. FIPS Pub 200, Minimum Security...on this Web site. The NASA Goddard Space Flight Center (GSFC) SwA http://sw-assurance.gsfc.nasa.gov The NASA GSFC SwA Web site pro- vides tools...OCT2006 c STAR WARS TO STAR TREK NOV2006 c MANAGEMENT BASICS DEC2006 c REQUIREMENTS ENG. JAN2007 c PUBLISHER’S CHOICE FEB2007 c CMMI MAR2007 c

  10. Crafting Flight: Aircraft Pioneers and the Contributions of the Men and Women of NASA Langley Research Center

    Science.gov (United States)

    Schultz, James

    2003-01-01

    While this is a self-contained history of NASA Langley Research Center's contributions to flight, many other organizations around the country played a vital role in the work described in this book.When you pass through the front gates of NASA Langley Research Center you are entering an extraordinary place. You could easily miss that fact, however. A few years cross-state bicycle tour passed through the Center. As interesting as looping around Center was, the riders observed that nothing about the vaguely industrial site fit the conventional stereotypes of what high tech looks like. NASA Langley does not fit many stereotypes. It takes a close examination to discover the many ways it has contributed to development of flight. As part of the national celebrations commemorating the 100th anniversary of the Wright brothers first flight, James Schultz, an experienced journalist with a gift for translating the language of engineers and scientists into prose that nonspecialists can comprehend, has revised and expanded Winds of Change , his wonderful guide to the Center. This revised book, Crafting Flight , invites you inside. You will read about one of the Nation s oldest research and development facilities, a place of imagination and ingenuity.

  11. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  12. Wide-swath Shared Aperture Cloud Radar

    Data.gov (United States)

    National Aeronautics and Space Administration — The Goddard Space Flight Center (GSFC) and Northrop Grumman Electronic Systems (NGES) seek to advance key enabling technologies for next generation multi-frequency...

  13. Strategies GeoCape Intelligent Observation Studies @ GSFC

    Science.gov (United States)

    Cappelaere, Pat; Frye, Stu; Moe, Karen; Mandl, Dan; LeMoigne, Jacqueline; Flatley, Tom; Geist, Alessandro

    2015-01-01

    This presentation provides information a summary of the tradeoff studies conducted for GeoCape by the GSFC team in terms of how to optimize GeoCape observation efficiency. Tradeoffs include total ground scheduling with simple priorities, ground scheduling with cloud forecast, ground scheduling with sub-area forecast, onboard scheduling with onboard cloud detection and smart onboard scheduling and onboard image processing. The tradeoffs considered optimzing cost, downlink bandwidth and total number of images acquired.

  14. Six Decades of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-2006

    Science.gov (United States)

    Fisher, David F.

    2007-01-01

    Titles, authors, report numbers, and abstracts are given for nearly 2900 unclassified and unrestricted technical reports and papers published from September 1946 to December 2006 by the NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 60 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, X-31, and X-43 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, F-18 Systems Research Aircraft and the NASA Landing Systems Research aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 270 contractor reports, more than 200 UCLA Flight System Research Center reports, nearly 200 Tech Briefs, 30 Dryden Historical Publications, and over 30 videotapes are included.

  15. Armstrong Flight Research Center Research Technology and Engineering 2017

    Science.gov (United States)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  16. Women in Flight Research at NASA Dryden Flight Research Center from 1946 to 1995. Number 6; Monographs in Aerospace History

    Science.gov (United States)

    Powers, Sheryll Goecke

    1997-01-01

    This monograph discusses the working and living environment of women involved with flight research at NASA Dryden Flight Research Center during the late 1940s and early 1950s. The women engineers, their work and the airplanes they worked on from 1960 to December 1995 are highlighted. The labor intensive data gathering and analysis procedures and instrumentation used before the age of digital computers are explained by showing and describing typical instrumentation found on the X-series aircraft from the X-1 through the X-15. The data reduction technique used to obtain the Mach number position error curve for the X-1 aircraft and which documents the historic first flight to exceed the speed of sound is described and a Mach number and altitude plot from an X-15 flight is shown.

  17. Gregory Merkel Tours Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1972-01-01

    Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  18. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  19. Parallel Enhancements of the General Mission Analysis Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The General Mission Analysis Tool (GMAT) is a state of the art spacecraft mission design tool under active development at NASA's Goddard Space Flight Center (GSFC)....

  20. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  1. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: flight service and inspection. Final report

    International Nuclear Information System (INIS)

    Kizer, J.A.

    1981-10-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force

  2. An application of the Multi-Purpose System Simulation /MPSS/ model to the Monitor and Control Display System /MACDS/ at the National Aeronautics and Space Administration /NASA/ Goddard Space Flight Center /GSFC/

    Science.gov (United States)

    Mill, F. W.; Krebs, G. N.; Strauss, E. S.

    1976-01-01

    The Multi-Purpose System Simulator (MPSS) model was used to investigate the current and projected performance of the Monitor and Control Display System (MACDS) at the Goddard Space Flight Center in processing and displaying launch data adequately. MACDS consists of two interconnected mini-computers with associated terminal input and display output equipment and a disk-stored data base. Three configurations of MACDS were evaluated via MPSS and their performances ascertained. First, the current version of MACDS was found inadequate to handle projected launch data loads because of unacceptable data backlogging. Second, the current MACDS hardware with enhanced software was capable of handling two times the anticipated data loads. Third, an up-graded hardware ensemble combined with the enhanced software was capable of handling four times the anticipated data loads.

  3. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  4. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  5. The hack attack - Increasing computer system awareness of vulnerability threats

    Science.gov (United States)

    Quann, John; Belford, Peter

    1987-01-01

    The paper discusses the issue of electronic vulnerability of computer based systems supporting NASA Goddard Space Flight Center (GSFC) by unauthorized users. To test the security of the system and increase security awareness, NYMA, Inc. employed computer 'hackers' to attempt to infiltrate the system(s) under controlled conditions. Penetration procedures, methods, and descriptions are detailed in the paper. The procedure increased the security consciousness of GSFC management to the electronic vulnerability of the system(s).

  6. Positron-Electron Pairs in Astrophysics (Goddard Space Flight Center, 1983)

    International Nuclear Information System (INIS)

    Burns, M.L.; Harding, A.K.; Ramaty, R.

    1983-01-01

    A workshop on Position-Electron Pairs in Astrophysics was held in 1983 at the Goddard Space Flight Center. This workshop brought together observers and theorists actively engaged in the study of astrophysical sites, as well as physical processes therein where position-electron pairs have a profound influence on both the overall dynamics of the source region and the properties of the emitted radiation. This volume consists of the workshop proceedings

  7. Software process improvement in the NASA software engineering laboratory

    Science.gov (United States)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin

    1994-01-01

    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  8. Dryden Flight Research Center Critical Chain Project Management Implementation

    Science.gov (United States)

    Hines, Dennis O.

    2012-01-01

    In Fiscal Year 2011 Dryden Flight Research Center (DFRC) implemented a new project management system called Critical Chain Project Management (CCPM). Recent NASA audits have found that the Dryden workforce is strained under increasing project demand and that multi-tasking has been carried to a whole new level at Dryden. It is very common to have an individual work on 10 different projects during a single pay period. Employee surveys taken at Dryden have identified work/life balance as the number one issue concerning employees. Further feedback from the employees indicated that project planning is the area needing the most improvement. In addition, employees have been encouraged to become more innovative, improve job skills, and seek ways to improve overall job efficiency. In order to deal with these challenges, DFRC management decided to adopt the CCPM system that is specifically designed to operate in a resource constrained multi-project environment. This paper will discuss in detail the rationale behind the selection of CCPM and the goals that will be achieved through this implementation. The paper will show how DFRC is tailoring the CCPM system to the flight research environment as well as laying out the implementation strategy. Results of the ongoing implementation will be discussed as well as change management challenges and organizational cultural changes. Finally this paper will present some recommendations on how this system could be used by selected NASA projects or centers.

  9. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  10. Design of a Mission Data Storage and Retrieval System for NASA Dryden Flight Research Center

    Science.gov (United States)

    Lux, Jessica; Downing, Bob; Sheldon, Jack

    2007-01-01

    The Western Aeronautical Test Range (WATR) at the NASA Dryden Flight Research Center (DFRC) employs the WATR Integrated Next Generation System (WINGS) for the processing and display of aeronautical flight data. This report discusses the post-mission segment of the WINGS architecture. A team designed and implemented a system for the near- and long-term storage and distribution of mission data for flight projects at DFRC, providing the user with intelligent access to data. Discussed are the legacy system, an industry survey, system operational concept, high-level system features, and initial design efforts.

  11. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  12. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    Science.gov (United States)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  13. Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services

    Science.gov (United States)

    Ido, Haisam Kassim

    2017-01-01

    His presentation will cover, the current and future, technical and organizational opportunities and challenges with virtualizing a multi-mission operations center. The full deployment of Goddard Space Flight Centers (GSFC) Virtualized Multi-Mission Operations Center (vMMOC) is nearly complete. The Space Science Mission Operations (SSMO) organizations spacecraft ACE, Fermi, LRO, MMS(4), OSIRIS-REx, SDO, SOHO, Swift, and Wind are in the process of being fully migrated to the vMMOC. The benefits of the vMMOC will be the normalization and the standardization of IT services, mission operations, maintenance, and development as well as ancillary services and policies such as collaboration tools, change management systems, and IT Security. The vMMOC will also provide operational efficiencies regarding hardware, IT domain expertise, training, maintenance and support.The presentation will also cover SSMO's secure Situational Awareness Dashboard in an integrated, fleet centric, cloud based web services fashion. Additionally the SSMO Telemetry as a Service (TaaS) will be covered, which allows authorized users and processes to access telemetry for the entire SSMO fleet, and for the entirety of each spacecrafts history. Both services leverage cloud services in a secure FISMA High and FedRamp environment, and also leverage distributed object stores in order to house and provide the telemetry. The services are also in the process of leveraging the cloud computing services elasticity and horizontal scalability. In the design phase is the Navigation as a Service (NaaS) which will provide a standardized, efficient, and normalized service for the fleet's space flight dynamics operations. Additional future services that may be considered are Ground Segment as a Service (GSaaS), Telemetry and Command as a Service (TCaaS), Flight Software Simulation as a Service, etc.

  14. Effective Schedule and Cost Management as a Product Development Lead

    Science.gov (United States)

    Simmons, Cynthia

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard SpaceFlight Center (GSFC) Thermal Engineering Branch (Code 545). This course provides best practices, helpful tools and lessons learned for staying on plan and day-to-day management of Subsystem flight development after getting Project approval for your Subsystem schedule and budget baseline.

  15. Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments Aboard the James Webb Space Telescope

    Science.gov (United States)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; hide

    2014-01-01

    The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.

  16. Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  17. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  18. Development of a NEW Vector Magnetograph at Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Hagyard, Mona; Gary, Allen; Smith, James; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the Experimental Vector Magnetograph that has been developed at the Marshall Space Flight Center (MSFC). This instrument was designed to improve linear polarization measurements by replacing electro-optic and rotating waveplate modulators with a rotating linear analyzer. Our paper will describe the motivation for developing this magnetograph, compare this instrument with traditional magnetograph designs, and present a comparison of the data acquired by this instrument and original MSFC vector magnetograph.

  19. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  20. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  1. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  2. Electrical Power System Architectures for In-House NASA/GSFC Missions

    Science.gov (United States)

    Yun, Diane D.

    2006-01-01

    This power point presentation reviews the electrical power system (EPS) architecture used for a few NASA GSFC's missions both current and planned. Included in the presentation are reviews of electric power systems for the Space Technology 5 (ST5) mission, the Solar Dynamics Observatory (SDO) Mission, and the Lunar Reconnaissance Orbiter (LRO). There is a slide that compares the three missions' electrical supply systems.

  3. X-Ray Optics at NASA Marshall Space Flight Center

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  4. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    Science.gov (United States)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  5. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    Science.gov (United States)

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  6. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Science.gov (United States)

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-047] NASA Advisory Council; Aeronautics... National Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA..., July 24, 2012, 8 a.m. to 3 p.m. local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC...

  7. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  8. Mass Evolution of Mediterranean, Black, Red, and Caspian Seas from GRACE and Altimetry: Accuracy Assessment and Solution Calibration

    Science.gov (United States)

    Loomis, B. D.; Luthcke, S. B.

    2016-01-01

    We present new measurements of mass evolution for the Mediterranean, Black, Red, and Caspian Seas as determined by the NASA Goddard Space Flight Center (GSFC) GRACE time-variable global gravity mascon solutions. These new solutions are compared to sea surface altimetry measurements of sea level anomalies with steric corrections applied. To assess their accuracy, the GRACE and altimetry-derived solutions are applied to the set of forward models used by GSFC for processing the GRACE Level-1B datasets, with the resulting inter-satellite range acceleration residuals providing a useful metric for analyzing solution quality.

  9. Satellite tracking of threatened species

    Science.gov (United States)

    Williams, M.; Lunsford, A.; Ellis, D.; Robinson, J.; Coronado, P.; Campbell, W.

    1998-01-01

    In 1990, a joint effort of two U.S. federal agencies, NASA Goddard Space Flight Center (GSFC) and the Patuxent Wildlife Research Center, began. We initially joined forces in a project that used satellite telemetry to discover the winter home of a tiny dwindling population of Siberian Cranes. Since then several projects have emerged, and a web site was created to follow some of these activities. This web site is called the Satellite Tracking of Threatened Species and its location is http://sdcd.gsfc.nasa.gov/ISTO/satellite_tracking. It describes the overall program, and links you to three subsections that describe the projects in more detail: Satellite Direct Readout, Birdtracks, and Birdworld.

  10. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    Science.gov (United States)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  11. 77 FR 38093 - NASA Advisory Council; Science Committee; Meeting

    Science.gov (United States)

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-046] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory.... to 2:30 p.m., local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100E...

  12. Improving flight condition situational awareness through Human Centered Design.

    Science.gov (United States)

    Craig, Carol

    2012-01-01

    In aviation, there is currently a lack of accurate and timely situational information, specifically weather data, which is essential when dealing with the unpredictable complexities that can arise while flying. For example, weather conditions that require immediate evasive action by the flight crew, such as isolated heavy rain, micro bursts, and atmospheric turbulence, require that the flight crew receive near real-time and precise information about the type, position, and intensity of those conditions. Human factors issues arise in considering how to display the various sources of weather information to the users of that information and how to integrate this display into the existing environment. In designing weather information display systems, it is necessary to meet the demands of different users, which requires an examination of the way in which the users process and use weather information. Using Human Centered Design methodologies and concepts will result in a safer, more efficient and more intuitive solution. Specific goals of this approach include 1) Enabling better fuel planning; 2) Allowing better divert strategies; 3) Ensuring pilots, navigators, dispatchers and mission planners are referencing weather from the same sources; 4) Improving aircrew awareness of aviation hazards such as turbulence, icing, hail and convective activity; 5) Addressing inconsistent availability of hazard forecasts outside the United States Air Defense Identification Zone (ADIZ); and 6) Promoting goal driven approaches versus event driven (prediction).

  13. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  14. Internal Social Media at Marshall Space Flight Center - An Engineer's Snapshot

    Science.gov (United States)

    Scott, David W.

    2013-01-01

    In the brief span of about six years (2004-2010), social media radically enhanced people's ways of maintaining recreational friendships. Social media's impact on public affairs (PAO) and community engagement is equally striking: NASA has involved millions of non-NASA viewers in its activities via outward-facing social media, often in a very two-way street fashion. Use of social media as an internal working tool by NASA's tens of thousands of civil servants, onsite contractor employees, and external stakeholders is evolving more slowly. This paper examines, from an engineer's perspective, Marshall Space Flight Center s (MSFC) efforts to bring the power of social media to the daily working environment. Primary emphasis is on an internal Social Networking Service called Explornet that could be scaled Agency-wide. Other topics include MSFC use of other social media day-to-day for non-PAO purposes, some specialized uses of social techniques in space flight control operations, and how to help a community open up so it can discover and adopt what works well.

  15. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    Science.gov (United States)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  16. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  17. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  18. Establishing BRDF calibration capabilities through shortwave infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-09-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45° . Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  19. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  20. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  1. Radiation effect characterization and test methods of single-chip and multi-chip stacked 16Mbit DRAMs

    International Nuclear Information System (INIS)

    LaBel, K.A.; Gates, M.M.; Moran, A.K.; Kim, H.S.; Seidleck, C.M.; Marshall, P.; Kinnison, J.; Carkhuff, B.

    1996-01-01

    This paper presents radiation effects characterization performed by the NASA Goddard Space Flight Center (GSFC) on spaceflight candidate 16Mbit DRAMs. This includes heavy ion, proton, and Co60 irradiations on single-chip devices as well as proton irradiation of a stacked DRAM module. Lastly, a discussion of test methodology is undertaken

  2. Automated Test for NASA CFS

    Science.gov (United States)

    McComas, David C.; Strege, Susanne L.; Carpenter, Paul B. Hartman, Randy

    2015-01-01

    The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications.

  3. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  4. An evaluation of the Goddard Space Flight Center Library

    Science.gov (United States)

    Herner, S.; Lancaster, F. W.; Wright, N.; Ockerman, L.; Shearer, B.; Greenspan, S.; Mccartney, J.; Vellucci, M.

    1979-01-01

    The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis.

  5. Dreams, Hopes, Realities: NASA's Goddard Space Flight Center, the First Forty Years

    Science.gov (United States)

    Wallace, Lane E.

    1999-01-01

    Throughout history, the great achievements of civilizations and cultures have been recorded in lists of dates and events. But to look only at the machinery, discoveries, or milestones is to miss the value of these achievements. Each goal achieved or discovery or made represents a supreme effort on the part of individual people who came and worked together for a purpose greater than themselves. Driven by an innate curiosity of the spirit, we have built civilizations and discovered new worlds, always reaching out beyond what we knew or thought was possible. These efforts may have used ships or machinery, but the achievement was that of the humans who made those machines possible- remarkable people willing to endure discomfort, frustration, fatigue, and the risk of failure in the hope of finding out something new. This is the case with the history of the Goddard Space Flight Center. This publication traces the legacy of successes, risks, disappointments and internationally recognized triumphs of the Center's first 40 years. It is a story of technological achievement and scientific discovery; of reaching back to the dawn of time and opening up a new set of eyes on our own planet Earth. In the end, it is not a story about machinery or discoveries, but a story about ourselves. If we were able to step off our planet, and if we continue to discover new mysteries and better technology, it is because the people who work at Goddard always had a passion for exploration and the dedication to make it happen. The text that follows is a testimony to the challenges people at the Goddard Space Flight Center have faced and overcome over almost half a century. Today, we stand on the threshold of a new and equally challenging era. It will once again test our ingenuity, skills, and flexibility as we find new ways of working with our colleagues in industry, government, and academia. Doing more with less is every bit as ambitious as designing the first science instrument to study the

  6. CLAES Product Improvement by Use of the GSFC Data Assimilation System (DAS)

    Science.gov (United States)

    Kumer, J. B.; Douglass, Anne (Technical Monitor)

    2000-01-01

    This report presents the Cryogenic Limb Array Etalon Spectrometer (CLAES) product improvement by use of the GSFC Data Assimilation System (DAS). The first task is to plug line of sight gradients derived from the CTM for 2/20/92 into the forward model of our retrieval software (RSW) in order to assess the impact on the retrieved quantities. The reporting period covers 12 May 2000 - 21 December 2000.

  7. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  8. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    Science.gov (United States)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  9. Implementation of a VLSI Level Zero Processing system utilizing the functional component approach

    Science.gov (United States)

    Shi, Jianfei; Horner, Ward P.; Grebowsky, Gerald J.; Chesney, James R.

    1991-01-01

    A high rate Level Zero Processing system is currently being prototyped at NASA/Goddard Space Flight Center (GSFC). Based on state-of-the-art VLSI technology and the functional component approach, the new system promises capabilities of handling multiple Virtual Channels and Applications with a combined data rate of up to 20 Megabits per second (Mbps) at low cost.

  10. 107 Range Commanders Council Meteorology Group Meeting (RCC-MG): NASA Marshall Space Flight Center Range Report

    Science.gov (United States)

    Roberts, Barry C.

    2016-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Mission Systems Office (ZP).

  11. National Space Transportation System telemetry distribution and processing, NASA-JFK Space Center/Cape Canaveral

    Science.gov (United States)

    Jenkins, George

    1986-01-01

    Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.

  12. Emergency Flight Control Using Only Engine Thrust and Lateral Center-of-Gravity Offset: A First Look

    Science.gov (United States)

    Burcham, Frank W., Jr.; Burken, John; Maine, Trindel A.; Bull, John

    1997-01-01

    Normally, the damage that results in a total loss of the primary flight controls of a jet transport airplane, including all engines on one side, would be catastrophic. In response, NASA Dryden has conceived an emergency flight control system that uses only the thrust of a wing-mounted engine along with a lateral center-of-gravity (CGY) offset from fuel transfer. Initial analysis and simulation studies indicate that such a system works, and recent high-fidelity simulation tests on the MD-11 and B-747 suggest that the system provides enough control for a survivable landing. This paper discusses principles of flight control using only a wing engine thrust and CGY offset, along with the amount of CGY offset capability of some transport airplanes. The paper also presents simulation results of the throttle-only control capability and closed-loop control of ground track using computer-controlled thrust.

  13. Plasma Liner Research for MTF at NASA Marshall Space Flight Center

    Science.gov (United States)

    Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.; hide

    2002-01-01

    The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.

  14. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  15. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    Science.gov (United States)

    Pitone, D. S.; Klein, J. R.; Twambly, B. J.

    1990-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.

  16. X-43A Flight Controls

    Science.gov (United States)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  17. Assessment team report on flight-critical systems research at NASA Langley Research Center

    Science.gov (United States)

    Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)

    1989-01-01

    The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.

  18. Friction Stir Welding Development at NASA-Marshall Space Flight Center

    Science.gov (United States)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.

    2001-01-01

    This paper presents an overview of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including thin and thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  19. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  20. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  1. Technology for the Stars: Extending Our Reach. [Research and Technology: 1995 Annual Report of the Marshall Space Flight Center.

    Science.gov (United States)

    1996-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Studies, Research, Technology, and Technology Transfer projects are summarized in this report. The focus of the report is on the three spotlights at MSFC in 1995: space transportation technology, microgravity research, and technology transfer.

  2. Using microsoft excel applications in the graduate intern program at Goddard Space Flight Center. M.S. Thesis

    Science.gov (United States)

    Antoine, Lisa

    1992-01-01

    An outline of the Project Operations Branch at Goddard Space Flight Center is presented that describes the management of the division and each subgroup's responsibility. The paper further describes the development of software tools for the Macintosh personal computer, and their impending implementation. A detailed step by step procedure is given for using these software tools.

  3. Sensor Webs with a Service-Oriented Architecture for On-demand Science Products

    Science.gov (United States)

    Mandl, Daniel; Ungar, Stephen; Ames, Troy; Justice, Chris; Frye, Stuart; Chien, Steve; Tran, Daniel; Cappelaere, Patrice; Derezinsfi, Linda; Paules, Granville; hide

    2007-01-01

    This paper describes the work being managed by the NASA Goddard Space Flight Center (GSFC) Information System Division (ISD) under a NASA Earth Science Technology Ofice (ESTO) Advanced Information System Technology (AIST) grant to develop a modular sensor web architecture which enables discovery of sensors and workflows that can create customized science via a high-level service-oriented architecture based on Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) web service standards. These capabilities serve as a prototype to a user-centric architecture for Global Earth Observing System of Systems (GEOSS). This work builds and extends previous sensor web efforts conducted at NASA/GSFC using the Earth Observing 1 (EO-1) satellite and other low-earth orbiting satellites.

  4. ASTEC: Controls analysis for personal computers

    Science.gov (United States)

    Downing, John P.; Bauer, Frank H.; Thorpe, Christopher J.

    1989-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. The project is a follow-on to the INCA (INteractive Controls Analysis) program that has been developed at GSFC over the past five years. While ASTEC makes use of the algorithms and expertise developed for the INCA program, the user interface was redesigned to take advantage of the capabilities of the personal computer. The design philosophy and the current capabilities of the ASTEC software are described.

  5. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  6. Non-Topographic Space-Based Laser Remote Sensing

    Science.gov (United States)

    Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.; hide

    2016-01-01

    In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.

  7. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  8. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  9. Contamination Control for Thermal Engineers

    Science.gov (United States)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  10. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    Science.gov (United States)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  11. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  12. 108 Range Commanders Council Meteorology Group Meeting (RCC-MG) NASA Marshall Space Flight Center Range Report - April 2017

    Science.gov (United States)

    Roberts, Barry C.

    2017-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Technology Office (ST).

  13. Icecube: Spaceflight Validation of an 874-GHz Submillimeter Wave Radiometer for Ice Cloud Remote Sensing

    Science.gov (United States)

    Wu, D. L.; Esper, J.; Ehsan, N.; Piepmeier, J. R.; Racette, P.

    2014-12-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Submillimeter wave remote sensing offers a unique capability to improve cloud ice measurements from space. At 874 GHz cloud scattering produces a larger brightness temperature depression from cirrus than lower frequencies, which can be used to retrieve vertically-integrated cloud ice water path (IWP) and ice particle size. The objective of the IceCube project is to retire risks of 874-GHz receiver technology by raising its TRL from 5 to 7. The project will demonstrate, on a 3-U CubeSat in a low Earth orbit (LEO) environment, the 874-GHz receiver system with noise equivalent differential temperature (NEDT) of ~0.2 K for 1-second integration and calibration error of 2.0 K or less as measured from deep-space observations. The Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes, Inc (VDI) to qualify commercially available 874-GHz receiver technology for spaceflight, and demonstrate the radiometer performance. The instrument (submm-wave cloud radiometer, or SCR), along with the CubeSat system developed and integrated by GSFC, will be ready for launch in two years. The instrument subsystem includes a reflector antenna, sub-millimeter wave mixer, frequency multipliers and stable local oscillator, an intermediate frequency (IF) circuit with noise injection, and data-power boards. The mixer and frequency multipliers are procured from VDI with GSFC insight into fabrication and testing processes to ensure scalability to spaceflight beyond TRL 7. The remaining components are a combination of GSFC-designed and commercial off-the-shelf (COTS) at TRLs of 5 or higher. The spacecraft system is specified by GSFC and comprises COTS components including three-axis stabilizer and sun sensor, GPS receiver, deployable solar arrays, UHF radio, and 2 GB of on-board storage. The spacecraft and instrument are integrated and flight qualified

  14. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    Science.gov (United States)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  15. Robotic and automatic welding development at the Marshall Space Flight Center

    Science.gov (United States)

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  16. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    Science.gov (United States)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  17. Initial Results from the Miniature Imager for Neutral Ionospheric Atoms and Magnetospheric Electrons (MINI-ME) on the FASTSAT Spacecraft

    Science.gov (United States)

    Collier, Michael R.; Rowland, Douglas; Keller, John W.; Chornay, Dennis; Khazanov, George; Herrero, Federico; Moore, Thomas E.; Kujawski, Joseph; Casas, Joseph C.; Wilson, Gordon

    2011-01-01

    The MINI-ME instrument is a collaborative effort between NASA's Goddard Space Flight Center (GSFC) and the U.S. Naval Academy, funded solely through GSFC Internal Research and Development (IRAD) awards. It detects neutral atoms from about 10 eV to about 700 eV (in 30 energy steps) in its current operating configuration with an approximately 10 degree by 360 degree field-of-view, divided into six sectors. The instrument was delivered on August 3, 2009 to Marshall Space Flight Center (MSFC) for integration with the FASTSAT-HSV01 small spacecraft bus developed by MSFC and a commercial partner, one of six Space Experiment Review Board (SERB) experiments on FASTSAT and one of three GSFC instruments (PISA and TTI being the other two). The FASTSAT spacecraft was launched on November 21, 2010 from Kodiak, Alaska on a Minotaur IV as a secondary payload and inserted into a 650 km, 72 degree inclination orbit, very nearly circular. MINI-ME has been collecting science data, as spacecraft resources would permit, in "optimal science mode" since January 20, 2011. In this presentation, we report initial science results including the potential first observations of neutral molecular ionospheric outflow. At the time of this abstract, we have identified 15 possible molecular outflow events. All these events occur between about 65 and 82 degrees geomagnetic latitude and most map to the auroral oval. The MINI-ME results provide an excellent framework for interpretation of the MILENA data, two instruments almost identical to MINI-ME that will launch on the VISIONS suborbital mission

  18. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  19. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  20. Qualification and issues with space flight laser systems and components

    Science.gov (United States)

    Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.

    2006-02-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  1. The assembly, calibration, and preliminary results from the Colorado high-resolution Echelle stellar spectrograph (CHESS)

    Science.gov (United States)

    Hoadley, Keri; France, Kevin; Nell, Nicholas; Kane, Robert; Schultz, Ted; Beasley, Matthew; Green, James; Kulow, Jen; Kersgaard, Eliot; Fleming, Brian

    2014-07-01

    The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) is a far ultraviolet (FUV) rocket-borne experiment designed to study the atomic-to-molecular transitions within translucent interstellar clouds. CHESS is an objective echelle spectrograph operating at f/12.4 and resolving power of 120,000 over a band pass of 100 - 160 nm. The echelle flight grating is the product of a research and development project with LightSmyth Inc. and was coated at Goddard Space Flight Center (GSFC) with Al+LiF. It has an empirically-determined groove density of 71.67 grooves/mm. At the Center for Astrophysics and Space Astronomy (CASA) at the University of Colorado (CU), we measured the efficiencies of the peak and adjacent dispersion orders throughout the 90 - 165 nm band pass to characterize the behavior of the grating for pre-flight calibrations and to assess the scattered-light behavior. The crossdispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, low line density (351 grooves/mm), powered optic with a toroidal surface curvature. The CHESS cross-disperser was also coated at GSFC; Cr+Al+LiF was deposited to enhance far-UV efficiency. Results from final efficiency and reflectivity measurements of both optics are presented. We utilize a cross-strip anode microchannel plate (MCP) detector built by Sensor Sciences to achieve high resolution (25 μm spatial resolution) and data collection rates (~ 106 photons/second) over a large format (40mm round, digitized to 8k x 8k) for the first time in an astronomical sounding rocket flight. The CHESS instrument was successfully launched from White Sands Missile Range on 24 May 2014. We present pre-flight sensitivity, effective area calculations, lab spectra and calibration results, and touch on first results and post-flight calibration plans.

  2. Effect of video-game experience and position of flight stick controller on simulated-flight performance.

    Science.gov (United States)

    Cho, Bo-Keun; Aghazadeh, Fereydoun; Al-Qaisi, Saif

    2012-01-01

    The purpose of this study was to determine the effects of video-game experience and flight-stick position on flying performance. The study divided participants into 2 groups; center- and side-stick groups, which were further divided into high and low level of video-game experience subgroups. The experiment consisted of 7 sessions of simulated flying, and in the last session, the flight stick controller was switched to the other position. Flight performance was measured in terms of the deviation of heading, altitude, and airspeed from their respective requirements. Participants with high experience in video games performed significantly better (p increase (0.78 %). However, after switching from a center- to a side-stick controller, performance scores decreased (4.8%).

  3. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    Science.gov (United States)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  4. Data collection procedures for the Software Engineering Laboratory (SEL) database

    Science.gov (United States)

    Heller, Gerard; Valett, Jon; Wild, Mary

    1992-01-01

    This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms.

  5. Green Propellant Infusion Mission Program Development and Technology Maturation

    Science.gov (United States)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; hide

    2014-01-01

    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  6. Center Innovation Fund: AFRC CIF Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Armstrong Flight Research Center is NASA’s primary center for atmospheric flight research and operations, with a vision “to fly what others only...

  7. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  8. Doing Systems Engineering Without Thinking About It at NASA Dryden Flight Research Center

    Science.gov (United States)

    Bohn-Meyer, Marta; Kilp, Stephen; Chun, Peggy; Mizukami, Masashi

    2004-01-01

    When asked about his processes in designing a new airplane, Burt Rutan responded: ...there is always a performance requirement. So I start with the basic physics of an airplane that can get those requirements, and that pretty much sizes an airplane... Then I look at the functionality... And then I try a lot of different configurations to meet that, and then justify one at a time, throwing them out... Typically I'll have several different configurations... But I like to experiment, certainly. I like to see if there are other ways to provide the utility. This kind of thinking engineering as a total systems engineering approach is what is being instilled in all engineers at the NASA Dryden Flight Research Center.

  9. Computations on the massively parallel processor at the Goddard Space Flight Center

    Science.gov (United States)

    Strong, James P.

    1991-01-01

    Described are four significant algorithms implemented on the massively parallel processor (MPP) at the Goddard Space Flight Center. Two are in the area of image analysis. Of the other two, one is a mathematical simulation experiment and the other deals with the efficient transfer of data between distantly separated processors in the MPP array. The first algorithm presented is the automatic determination of elevations from stereo pairs. The second algorithm solves mathematical logistic equations capable of producing both ordered and chaotic (or random) solutions. This work can potentially lead to the simulation of artificial life processes. The third algorithm is the automatic segmentation of images into reasonable regions based on some similarity criterion, while the fourth is an implementation of a bitonic sort of data which significantly overcomes the nearest neighbor interconnection constraints on the MPP for transferring data between distant processors.

  10. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  11. Mini-Sniffer II in Flight

    Science.gov (United States)

    1976-01-01

    This photograph shows the second Mini-Sniffer undergoing flight testing over Rogers Dry Lake in Edwards, California. This version of the Mini-Sniffer lacked the canard of the original version and had wing tips and tail booms added. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.

  12. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    Science.gov (United States)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  13. Cross-Cutting Risk Framework: Mining Data for Common Risks Across the Portfolio

    Science.gov (United States)

    Klein, Gerald A., Jr.; Ruark, Valerie

    2017-01-01

    The National Aeronautics and Space Administration (NASA) defines risk management as an integrated framework, combining risk-informed decision making and continuous risk management to foster forward-thinking and decision making from an integrated risk perspective. Therefore, decision makers must have access to risks outside of their own project to gain the knowledge that provides the integrated risk perspective. Through the Goddard Space Flight Center (GSFC) Flight Projects Directorate (FPD) Business Change Initiative (BCI), risks were integrated into one repository to facilitate access to risk data between projects. With the centralized repository, communications between the FPD, project managers, and risk managers improved and GSFC created the cross-cutting risk framework (CCRF) team. The creation of the consolidated risk repository, in parallel with the initiation of monthly FPD risk managers and risk governance board meetings, are now providing a complete risk management picture spanning the entire directorate. This paper will describe the challenges, methodologies, tools, and techniques used to develop the CCRF, and the lessons learned as the team collectively worked to identify risks that FPD programs projects had in common, both past and present.

  14. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  15. Benefits Analysis of Multi-Center Dynamic Weather Routes

    Science.gov (United States)

    Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien

    2014-01-01

    Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.

  16. Theseus Landing Following Maiden Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  17. Development of the solar array deployment and drive system for the XTE spacecraft

    Science.gov (United States)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  18. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    Science.gov (United States)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  19. Quantifying Pilot Contribution to Flight Safety During an In-Flight Airspeed Failure

    Science.gov (United States)

    Etherington, Timothy J.; Kramer, Lynda J.; Bailey, Randall E.; Kennedey, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport fatal accidents. Yet a well-trained and well-qualified crew is acknowledged as the critical center point of aircraft systems safety and an integral component of the entire commercial aviation system. A human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to system failures. To quantify the human's contribution, crew complement was used as an independent variable in a between-subjects design. This paper details the crew's actions and responses while dealing with an in-flight airspeed failure. Accident statistics often cite flight crew error (Baker, 2001) as the primary contributor in accidents and incidents in transport category aircraft. However, the Air Line Pilots Association (2011) suggests "a well-trained and well-qualified pilot is acknowledged as the critical center point of the aircraft systems safety and an integral safety component of the entire commercial aviation system." This is generally acknowledged but cannot be verified because little or no quantitative data exists on how or how many accidents/incidents are averted by crew actions. Anecdotal evidence suggest crews handle failures on a daily basis and Aviation Safety Action Program data generally supports this assertion, even if the data is not released to the public. However without hard evidence, the contribution and means by which pilots achieve safety of flight is difficult to define. Thus, ways to improve the human ability to contribute or overcome deficiencies are ill-defined.

  20. X-36 in Flight over Mojave Desert during 5th Flight

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  1. Increasing Flight Software Reuse with OpenSatKit

    Science.gov (United States)

    McComas, David C.

    2018-01-01

    In January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospace's command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for users to extend the FSW functionality to meet their

  2. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  3. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  4. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  5. An algorithm for enhanced formation flying of satellites in low earth orbit

    Science.gov (United States)

    Folta, David C.; Quinn, David A.

    1998-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.

  6. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    Science.gov (United States)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  7. X-36 during First Flight

    Science.gov (United States)

    1997-01-01

    The remotely-piloted X-36 Tailless Fighter Agility Research Aircraft climbs out from Rogers Dry Lake at the Dryden Flight Research Center on its first flight in May 1997. The aircraft flew for five minutes and reached an altitude of approximately 4,900 feet. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19

  8. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    Science.gov (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  9. Theseus First Flight - May 24, 1996

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to

  10. Space Flight Software Development Software for Intelligent System Health Management

    Science.gov (United States)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  11. Theseus on Take-off for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden

  12. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  13. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  14. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  15. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  16. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    Science.gov (United States)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  17. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  18. Processes and Procedures of the Higher Education Programs at Marshall Space Flight Center

    Science.gov (United States)

    Heard, Pamala D.

    2002-01-01

    The purpose of my research was to investigate the policies, processes, procedures and timelines for the higher education programs at Marshall Space Flight Center. The three higher education programs that comprised this research included: the Graduate Student Researchers Program (GSRP), the National Research Council/Resident Research Associateships Program (NRC/RRA) and the Summer Faculty Fellowship Program (SFFP). The GSRP award fellowships each year to promising U.S. graduate students whose research interest coincides with NASA's mission. Fellowships are awarded for one year and are renewable for up to three years to competitively selected students. Each year, the award provides students the opportunity to spend a period in residence at a NASA center using that installation's unique facilities. This program is renewable for three years, students must reapply. The National Research Council conducts the Resident Research Associateships Program (NRC/RRA), a national competition to identify outstanding recent postdoctoral scientists and engineers and experience senior scientists and engineers, for tenure as guest researchers at NASA centers. The Resident Research Associateship Program provides an opportunity for recipients of doctoral degrees to concentrate their research in association with NASA personnel, often as a culmination to formal career preparation. The program also affords established scientists and engineers an opportunity for research without any interruptions and distracting assignments generated from permanent career positions. All opportunities for research at NASA Centers are open to citizens of the U.S. and to legal permanent residents. The Summer Faculty Fellowship Program (SFFP) is conducted each summer. NASA awards research fellowships to university faculty through the NASA/American Society for Engineering Education. The program is designed to promote an exchange of ideas between university faculties, NASA scientists and engineers. Selected

  19. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  20. The Fifteen-Year Attitude History of the Wide Field Planetary Camera 2 Radiator and Collection Efficiencies for Micrometeoroids and Orbital Debris

    Science.gov (United States)

    Anz-Meador, Phillip D.; Liou, Jer-Chyi; Cooke, William J.; Koehler, H.

    2010-01-01

    An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was a distinct biasing of the largest 45 impact features towards one side of the radiator, in contrast to an approximately uniform distribution of smaller impacts. Such a distribution may be a consequence of the HST s attitude history and pointing requirements for the cold radiator, or of environmental effects, such as an anisotropic distribution of the responsible population in that size regime. Understanding the size-dependent spatial distribution of impact features is essential to the general analysis of these features. We have obtained from GSFC a 15 minute temporal resolution record of the state vector (Earth Centered Inertial position and velocity) and HST attitude, consisting of the orientation of the velocity and HST-sun vectors in HST body coordinates. This paper reviews the actual state vector and attitude history of the radiator in the context of the randomly tumbling plate assumption and assesses the statistical likelihood (or collection efficiency) of the radiator for the micrometeoroid and orbital debris environments. The NASA Marshall Space Flight Center s Meteoroid Environment Model is used to assess the micrometeoroid component. The NASA Orbital Debris Engineering Model (ORDEM) is used to model the orbital debris component. Modeling results are compared with observations of the impact feature spatial distribution, and the relative contribution of each environmental component are examined in detail.

  1. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  2. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  3. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  4. Landsat science team meeting: Summer 2015

    Science.gov (United States)

    Schroeder, Todd; Loveland, Thomas; Wulder, Michael A.; Irons, James R.

    2015-01-01

    The summer meeting of the joint U.S. Geological Survey (USGS)–NASA Landsat Science Team (LST) was held at the USGS’s Earth Resources Observation and Science (EROS) Center July 7-9, 2015, in Sioux Falls, SD. The LST co-chairs, Tom Loveland [EROS—Senior Scientist] and Jim Irons [NASA’s Goddard Space Flight Center (GSFC)—Landsat 8 Project Scientist], opened the three-day meeting on an upbeat note following the recent successful launch of the European Space Agency’s Sentinel-2 mission on June 23, 2015 (see image on page 14), and the news that work on Landsat 9 has begun, with a projected launch date of 2023.

  5. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    Science.gov (United States)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  6. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  7. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  8. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  9. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    Science.gov (United States)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  10. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  11. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  12. Young PHD's in Human Space Flight

    Science.gov (United States)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  13. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  14. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  15. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  16. Candidate Mission from Planet Earth control and data delivery system architecture

    Science.gov (United States)

    Shapiro, Phillip; Weinstein, Frank C.; Hei, Donald J., Jr.; Todd, Jacqueline

    1992-01-01

    Using a structured, experienced-based approach, Goddard Space Flight Center (GSFC) has assessed the generic functional requirements for a lunar mission control and data delivery (CDD) system. This analysis was based on lunar mission requirements outlined in GSFC-developed user traffic models. The CDD system will facilitate data transportation among user elements, element operations, and user teams by providing functions such as data management, fault isolation, fault correction, and link acquisition. The CDD system for the lunar missions must not only satisfy lunar requirements but also facilitate and provide early development of data system technologies for Mars. Reuse and evolution of existing data systems can help to maximize system reliability and minimize cost. This paper presents a set of existing and currently planned NASA data systems that provide the basic functionality. Reuse of such systems can have an impact on mission design and significantly reduce CDD and other system development costs.

  17. X-36 in Flight near Edge of Rogers Dry Lake during 5th Flight

    Science.gov (United States)

    1997-01-01

    This photo shows the X-36 Tailless Fighter Agility Research Aircraft passing over the edge of Rogers Dry Lake as the remotely-piloted aircraft flies over Edwards Air Force Base on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  18. Theseus Waits on Lakebed for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype remotely-piloted aircraft (RPA) waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  19. A Magnetic Petrology Database for Satellite Magnetic Anomaly Interpretations

    Science.gov (United States)

    Nazarova, K.; Wasilewski, P.; Didenko, A.; Genshaft, Y.; Pashkevich, I.

    2002-05-01

    A Magnetic Petrology Database (MPDB) is now being compiled at NASA/Goddard Space Flight Center in cooperation with Russian and Ukrainian Institutions. The purpose of this database is to provide the geomagnetic community with a comprehensive and user-friendly method of accessing magnetic petrology data via Internet for more realistic interpretation of satellite magnetic anomalies. Magnetic Petrology Data had been accumulated in NASA/Goddard Space Flight Center, United Institute of Physics of the Earth (Russia) and Institute of Geophysics (Ukraine) over several decades and now consists of many thousands of records of data in our archives. The MPDB was, and continues to be in big demand especially since recent launching in near Earth orbit of the mini-constellation of three satellites - Oersted (in 1999), Champ (in 2000), and SAC-C (in 2000) which will provide lithospheric magnetic maps with better spatial and amplitude resolution (about 1 nT). The MPDB is focused on lower crustal and upper mantle rocks and will include data on mantle xenoliths, serpentinized ultramafic rocks, granulites, iron quartzites and rocks from Archean-Proterozoic metamorphic sequences from all around the world. A substantial amount of data is coming from the area of unique Kursk Magnetic Anomaly and Kola Deep Borehole (which recovered 12 km of continental crust). A prototype MPDB can be found on the Geodynamics Branch web server of Goddard Space Flight Center at http://core2.gsfc.nasa.gov/terr_mag/magnpetr.html. The MPDB employs a searchable relational design and consists of 7 interrelated tables. The schema of database is shown at http://core2.gsfc.nasa.gov/terr_mag/doc.html. MySQL database server was utilized to implement MPDB. The SQL (Structured Query Language) is used to query the database. To present the results of queries on WEB and for WEB programming we utilized PHP scripting language and CGI scripts. The prototype MPDB is designed to search database by major satellite magnetic

  20. Overview of the NASA balloon R&D program

    Science.gov (United States)

    Smith, I. Steve, Jr.

    1994-01-01

    The catastrophic balloon failure during the first half of the 1980's identified the need for a comprehensive and continuing balloon research and development (R&D) commitment by NASA. Technical understanding was lacking in many of the disciplines and processes associated with scientific ballooning. A comprehensive balloon R&D plan was developed in 1986 and implemented in 1987. The objectives were to develop the understanding of balloon system performance, limitations, and failure mechanisms. The program consisted of five major technical areas: structures, performance and analysis, materials, chemistry and processing, and quality control. Research activitites have been conducted at NASA/Goddard Space Flight Center (GSFC)-Wallops Flight Facility (WFF), other NASA centers and government facilities, universities, and the balloon manufacturers. Several new and increased capabilities and resources have resulted from this activity. The findings, capabilities, and plan of the balloon R&D program are presented.

  1. X-36 Taking off During First Flight

    Science.gov (United States)

    1997-01-01

    The X-36 remotely piloted aircraft lifts off on its first flight, May 17, 1997, at NASA's Dryden Flight Research Center, Edwards, California. The aircraft flew for five minutes and reached an altitude of approximately 4,900 feet. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet

  2. Green Monopropellant Status at Marshall Space Flight Center

    Science.gov (United States)

    Burnside, Christopher G.; Pierce, Charles W.; Pedersen, Kevin W.

    2016-01-01

    NASA Marshall Space Flight Center is continuing investigations into the use of green monopropellants as a replacement for hydrazine in spacecraft propulsion systems. Work to date has been to push technology development through multiple activities designed to understand the capabilities of these technologies. Future work will begin to transition to mission pull as these technologies are mature while still keeping a solid goal of pushing technology development as opportunities become available. The AF-M315E activities began with hot-fire demonstration testing of a 1N monopropellant thruster in FY 14 and FY15. Following successful completion of the preliminary campaign, changes to the test stand to accommodate propellant conditioning capability and better control of propellant operations was incorporated to make testing more streamlined. The goal is to conduct hot-fire testing with warm and cold propellants using the existing feed system and original thruster design. Following the 1N testing, a NASA owned 100 mN thruster will be hot-fire tested in the same facility to show feasibility of scaling to smaller thrusters for cubesat applications. The end goal is to conduct a hot-fire test of an integrated cubesat propulsion system using an SLM printed propellant tank, an MSFC designed propulsion system electronic controller and the 100 mN thruster. In addition to the AF-M315E testing, MSFC is pursuing hot-fire testing with LMP-103S. Following our successful hot-fire testing of the 22N thruster in April 2015, a test campaign was proposed for a 440N LMP-103S thruster with Orbital ATK and Plasma Processes. This activity was funded through the Space Technology Mission Directorate (STMD) ACO funding call in the last quarter of CY15. Under the same funding source a test activity with Busek and Glenn Research Center for testing of 5N AF-M315E thrusters was proposed and awarded. Both activities are in-work with expected completion of hot-fire testing by the end of FY17. MSFC is

  3. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    Science.gov (United States)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  4. ADC Catalog Services: an Update

    Science.gov (United States)

    Gass, J. E.; Roman, N. G.; Schneider, G. L.; Blackwell, J. H.; Kuin, N. P. M.; Larkin, M. C.; Lyu, C.-C. J.; Cheung, C. Y.

    1996-12-01

    The Astronomical Data Center (ADC) at the NASA Goddard Space Flight Center is a major archive and distribution center for computer-readable versions of astronomical catalogs and journal data tables. The ADC's archives contain more than 1600 catalogs and tables of astrometry, photometry, spectroscopy, radio, high energy, and other miscellaneous data for stellar and non-stellar objects. These data files are documented in a standardized manner, developed in cooperation with the Centre de Donnees astronomiques de Strasbourg (CDS). The ADC's data collection is available via anonymous FTP from node adc.gsfc.nasa.gov in the /pub/adc/archives directory. The holdings can also be accessed from the ADC's WWW site, http://adc.gsfc.nasa.gov/. This site permits users to search the text of the documentation files to locate catalogs and tables of interest or to browse the archives. Hypertext author and keyword indices, and other browsing tools have recently been developed as additional aids to navigating the ADC's large collection of data sets. The ADC is currently developing services to allow researchers to easily locate data fields of interest within files in its archives. The ADC has also prepared three volumes of CD-ROMs that contain several hundred of the largest and most requested catalogs in both ASCII and FITS table formats.

  5. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  6. Hera: High Energy Astronomical Data Analysis via the Internet

    Science.gov (United States)

    Valencic, Lynne A.; Chai, P.; Pence, W.; Snowden, S.

    2011-09-01

    The HEASARC at NASA Goddard Space Flight Center has developed Hera, a data processing facility for analyzing high energy astronomical data over the internet. Hera provides all the software packages, disk space, and computing resources needed to do general processing of and advanced research on publicly available data from High Energy Astrophysics missions. The data and data products are kept on a server at GSFC and can be downloaded to a user's local machine. This service is provided for free to students, educators, and researchers for educational and research purposes.

  7. 14 CFR 1206.401 - Location of NASA Information Centers.

    Science.gov (United States)

    2010-01-01

    ... Locator (URL) addresses are as follows: (1) (HQ) http://www.hq.nasa.gov/office/pao/FOIA/; (2) (ARC) http://george.arc.nasa.gov/dx/FOIA/elec.html; (3) (DFRC) http://www.dfrc.nasa.gov/FOIA/readroom.html; (4) (GRC) http://www.grc.nasa.gov/WWW/FOIA/ReadingRm.htm; (5) (GSFC) http://genesis.gsfc.nasa.gov//foia/read-rm...

  8. Bat Flight and Zoonotic Viruses

    Centers for Disease Control (CDC) Podcasts

    2014-05-30

    Reginald Tucker reads an abridged version of the EID perspective Bat Flight and Zoonotic Viruses.  Created: 5/30/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/2/2014.

  9. Using Airborne In-Situ Profiles to Evaluate TCCON Data from Armstrong Flight Research Center

    Science.gov (United States)

    Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Albertson, R.

    2016-12-01

    A Fourier Transform Spectrometer (FTS) was deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON) and has now been in operation for over 3 years. The data record from AFRC will be presented as well as airborne validation profiles obtained during the NASA SEAC4RS, SARP, KORUS-AQ, and ATom missions utilizing various NASA aircraft. One of the reasons that the AFRC location was selected is due to its proximity to a highly reflective lakebed, which has proven to be difficult for accurate satellite retrievals. As such, the data from AFRC has been used for OCO-2 calibration. In order for accurate calibration of OCO-2, the validity of the TCCON measurements must be established. To this end, integrated airborne in-situ vertical profiles will be presented and compared with the TCCON FTS measurements, where good agreement has been found.

  10. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  11. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  12. Shuttle operations era planning for flight operations

    Science.gov (United States)

    Holt, J. D.; Beckman, D. A.

    1984-01-01

    The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.

  13. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  14. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  15. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  16. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  17. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  18. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  19. Data Mining Tools Make Flights Safer, More Efficient

    Science.gov (United States)

    2014-01-01

    A small data mining team at Ames Research Center developed a set of algorithms ideal for combing through flight data to find anomalies. Dallas-based Southwest Airlines Co. signed a Space Act Agreement with Ames in 2011 to access the tools, helping the company refine its safety practices, improve its safety reviews, and increase flight efficiencies.

  20. Impact of subject related factors and position of flight control stick on acquisition of simulated flying skills using a flight simulator

    Science.gov (United States)

    Cho, Bo-Keun

    Increasing demand on aviation industry calls for more pilots. Thus, pilot training systems and pilot-candidate screening systems are essential for civil and military flying training institutes. Before actual flight training, it is not easy to determine whether a flight trainee will be successful in the training. Due to the high cost of actual flight training, it would be better if there were low cost methods for screening and training candidates prior to the actual flight training. This study intended to determine if subject related factors and flight control stick position have an impact on acquisition of simulated flying skills using a PC-based flight simulator. The experimental model was a factorial design with repeated measures. Sixty-four subjects participated in the experiment and were divided into 8 groups. Experiment consisted of 8 sessions in which performance data, such as heading, altitude and airspeed were collected every 15 seconds. Collected data were analyzed using SAS statistical program. Result of multivariate analysis of variance indicated that the three independent variables: nationality, computer game experience, and flight stick position have significant impact on acquiring simulated flying skill. For nationality, Americans recorded higher scores in general (mean: 81.7) than Koreans (mean: 78.9). The difference in mean scores between Americans and Koreans was 2.8 percent. Regarding computer game experience, the difference between high experience group (82.3) and low experience group (78.3) is significant. For high experience group, American side-stick group recorded the highest (mean: 85.6), and Korean side-stick group (mean: 77.2) scored the lowest. For the low experience group, American center-stick group scored the highest (80.6), and the Korean side-stick group (74.2) scored the lowest points. Therefore, there is a significant difference between high experience group and low experience group. The results also reveal that the center

  1. Outcomes of medical emergencies on commercial airline flights.

    Science.gov (United States)

    Peterson, Drew C; Martin-Gill, Christian; Guyette, Francis X; Tobias, Adam Z; McCarthy, Catherine E; Harrington, Scott T; Delbridge, Theodore R; Yealy, Donald M

    2013-05-30

    Worldwide, 2.75 billion passengers fly on commercial airlines annually. When in-flight medical emergencies occur, access to care is limited. We describe in-flight medical emergencies and the outcomes of these events. We reviewed records of in-flight medical emergency calls from five domestic and international airlines to a physician-directed medical communications center from January 1, 2008, through October 31, 2010. We characterized the most common medical problems and the type of on-board assistance rendered. We determined the incidence of and factors associated with unscheduled aircraft diversion, transport to a hospital, and hospital admission, and we determined the incidence of death. There were 11,920 in-flight medical emergencies resulting in calls to the center (1 medical emergency per 604 flights). The most common problems were syncope or presyncope (37.4% of cases), respiratory symptoms (12.1%), and nausea or vomiting (9.5%). Physician passengers provided medical assistance in 48.1% of in-flight medical emergencies, and aircraft diversion occurred in 7.3%. Of 10,914 patients for whom postflight follow-up data were available, 25.8% were transported to a hospital by emergency-medical-service personnel, 8.6% were admitted, and 0.3% died. The most common triggers for admission were possible stroke (odds ratio, 3.36; 95% confidence interval [CI], 1.88 to 6.03), respiratory symptoms (odds ratio, 2.13; 95% CI, 1.48 to 3.06), and cardiac symptoms (odds ratio, 1.95; 95% CI, 1.37 to 2.77). Most in-flight medical emergencies were related to syncope, respiratory symptoms, or gastrointestinal symptoms, and a physician was frequently the responding medical volunteer. Few in-flight medical emergencies resulted in diversion of aircraft or death; one fourth of passengers who had an in-flight medical emergency underwent additional evaluation in a hospital. (Funded by the National Institutes of Health.).

  2. Wingless Flight: The Lifting Body Story

    Science.gov (United States)

    Reed, R. Dale; Lister, Darlene (Editor); Huntley, J. D. (Editor)

    1997-01-01

    Wingless Flight tells the story of the most unusual flying machines ever flown, the lifting bodies. It is my story about my friends and colleagues who committed a significant part of their lives in the 1960s and 1970s to prove that the concept was a viable one for use in spacecraft of the future. This story, filled with drama and adventure, is about the twelve-year period from 1963 to 1975 in which eight different lifting-body configurations flew. It is appropriate for me to write the story, since I was the engineer who first presented the idea of flight-testing the concept to others at the NASA Flight Research Center. Over those twelve years, I experienced the story as it unfolded day by day at that remote NASA facility northeast of los Angeles in the bleak Mojave Desert. Benefits from this effort immediately influenced the design and operational concepts of the winged NASA Shuttle Orbiter. However, the full benefits would not be realized until the 1990s when new spacecraft such as the X-33 and X-38 would fully employ the lifting-body concept. A lifting body is basically a wingless vehicle that flies due to the lift generated by the shape of its fuselage. Although both a lifting reentry vehicle and a ballistic capsule had been considered as options during the early stages of NASA's space program, NASA initially opted to go with the capsule. A number of individuals were not content to close the book on the lifting-body concept. Researchers including Alfred Eggers at the NASA Ames Research Center conducted early wind-tunnel experiments, finding that half of a rounded nose-cone shape that was flat on top and rounded on the bottom could generate a lift-to-drag ratio of about 1.5 to 1. Eggers' preliminary design sketch later resembled the basic M2 lifting-body design. At the NASA Langley Research Center, other researchers toyed with their own lifting-body shapes. Meanwhile, some of us aircraft-oriented researchers at the, NASA Flight Research Center at Edwards Air

  3. Reliability Block Diagram (RBD) Analysis of NASA Dryden Flight Research Center (DFRC) Flight Termination System and Power Supply

    Science.gov (United States)

    Morehouse, Dennis V.

    2006-01-01

    In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.

  4. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    Science.gov (United States)

    Collins, Emmanuel G., Jr.; Phillips, Douglas; Hyland, David C.

    1990-01-01

    An experiment was conducted to design controllers that would provide substantial reduction of line-of-sight control errors. The satisfaction of this objective required the controllers to attenuate the beam vibration significantly. Particular emphasis was placed on controller simplicity (i.e., reduced-order and decentralized controller architectures). Complexity reduction in control law implementation is of paramount interest due to stringent limitations on throughput of even state-of-the-art space qualified processors. The results of this experiment successfully demonstrate active vibrator control for a flexible structure. The testbed is the ACES structure at the NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  5. TRISTAR I: Evaluation Methods for Testing Head-Up Display (HUD) Flight Symbology

    National Research Council Canada - National Science Library

    Newman, R

    1995-01-01

    A piloted head up display (HUD) flight symbology study (TRISTAR) measuring pilot task performance was conducted at the NASA Ames Research Center by the Tri-Service Flight Symbology Working Group (FSWO...

  6. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  7. Simpler ISS Flight Control Communications and Log Keeping via Social Tools and Techniques

    Science.gov (United States)

    Scott, David W.; Cowart, Hugh; Stevens, Dan

    2012-01-01

    The heart of flight operations control involves a) communicating effectively in real time with other controllers in the room and/or in remote locations and b) tracking significant events, decisions, and rationale to support the next set of decisions, provide a thorough shift handover, and troubleshoot/improve operations. International Space Station (ISS) flight controllers speak with each other via multiple voice circuits or loops, each with a particular purpose and constituency. Controllers monitor and/or respond to several loops concurrently. The primary tracking tools are console logs, typically kept by a single operator and not visible to others in real-time. Information from telemetry, commanding, and planning systems also plays into decision-making. Email is very secondary/tertiary due to timing and archival considerations. Voice communications and log entries supporting ISS operations have increased by orders of magnitude because the number of control centers, flight crew, and payload operations have grown. This paper explores three developmental ground system concepts under development at Johnson Space Center s (JSC) Mission Control Center Houston (MCC-H) and Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC). These concepts could reduce ISS control center voice traffic and console logging yet increase the efficiency and effectiveness of both. The goal of this paper is to kindle further discussion, exploration, and tool development.

  8. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  9. A Decade of Friction Stir Welding R and D at NASA's Marshall Space Flight Center and a Glance into the Future

    Science.gov (United States)

    Ding, Jeff; Carter, Bob; Lawless, Kirby; Nunes, Arthur; Russell, Carolyn; Suites, Michael; Schneider, Judy

    2006-01-01

    Welding at NASA's Marshall Space Flight Center (MSFC), Huntsville, Alabama, has taken a new direction through the last 10 years. Fusion welding processes, namely variable polarity plasma arc (VPPA) and tungsten inert gas (TIG) were once the corner stone of welding development in the Space Flight Center's welding laboratories, located in the part of MSFC know as National Center for Advanced Manufacturing (NCM). Developed specifically to support the Shuttle Program's External Tank and later International Space Station manufacturing programs, was viewed as the paragon of welding processes for joining aluminum alloys. Much has changed since 1994, however, when NASA's Jeff Ding brought the FSW process to the NASA agency. Although, at that time, FSW was little more than a "lab curiosity", NASA researchers started investigating where the FSW process would best fit NASA manufacturing programs. A laboratory FSW system was procured and the first welds were made in fall of 1995. The small initial investment NASA made into the first FSW system has certainly paid off for the NASA agency in terms of cost savings, hardware quality and notoriety. FSW is now a part of Shuttle External Tank (ET) production and the preferred weld process for the manufacturing of components for the new Crew Launch Vehicle (CLV) and Heavy Lift Launch Vehicle (HLLV) that will take this country back to the moon. It is one of the solid state welding processes being considered for on-orbit space welding and repair, and is of considerable interest for Department of Defense @OD) manufacturing programs. MSFC involvement in these and other programs makes NASA a driving force in this country's development of FSW and other solid state welding technologies. Now, a decade later, almost the entire on-going welding R&D at MSFC now focuses on FSW and other more advanced solid state welding processes.

  10. F-8 SCW in flight

    Science.gov (United States)

    1973-01-01

    A Vought F-8A Crusader was selected by NASA as the testbed aircraft (designated TF-8A) to install an experimental Supercritical Wing in place of the conventional wing. The unique design of the Supercritical Wing (SCW) reduces the effect of shock waves on the upper surface near Mach 1, which in turn reduces drag. In this photograph a Vought F-8A Crusader is shown being used as a flying testbed for an experimental Supercritical Wing airfoil. The smooth fairing of the fiberglass glove with the wing is illustrated in this view. This is the configuration of the F-8 SCW aircraft late in the program. The SCW team fitted the fuselage with bulges fore and aft of the wings. This was similar to the proposed shape of a near-sonic airliner. Both the SCW airfoil and the bulged-fuselage design were optimal for cruise at Mach 0.98. Dr. Whitcomb (designer of the SCW) had previously spent about four years working on supersonic transport designs. He concluded that these were impractical due to their high operating costs. The high drag at speeds above Mach 1 resulted in greatly increased costs. Following the fuel-price rises caused by the October 1973 oil embargo, airlines lost interest in near-sonic transports. Rather, they wanted a design that would have lower fuel consumption. Dr. Whitcomb developed a modified supercritical-wing shape that provided higher lift-to-drag ratios at the same speeds. He did this by using thicker airfoil sections and a reduced wing sweepback. This resulted in an increased aspect ratio without an increase in wing weight. In the three decades since the F-8 SCW flew, the use of such airfoils has become common. The F-8 Supercritical Wing was a flight research project designed to test a new wing concept designed by Dr. Richard Whitcomb, chief of the Transonic Aerodynamics Branch, Langley Research Center, Hampton, Virginia. Compared to a conventional wing, the supercritical wing (SCW) is flatter on the top and rounder on the bottom with a downward curve at the

  11. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    Science.gov (United States)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  12. Using the World Wide Web for GIDEP Problem Data Processing at Marshall Space Flight Center

    Science.gov (United States)

    McPherson, John W.; Haraway, Sandra W.; Whirley, J. Don

    1999-01-01

    Since April 1997, Marshall Space Flight Center has been using electronic transfer and the web to support our processing of the Government-Industry Data Exchange Program (GIDEP) and NASA ALERT information. Specific aspects include: (1) Extraction of ASCII text information from GIDEP for loading into Word documents for e-mail to ALERT actionees; (2) Downloading of GIDEP form image formats in Adobe Acrobat (.pdf) for internal storage display on the MSFC ALERT web page; (3) Linkage of stored GRDEP problem forms with summary information for access from the MSFC ALERT Distribution Summary Chart or from an html table of released MSFC ALERTs (4) Archival of historic ALERTs for reference by GIDEP ID, MSFC ID, or MSFC release date; (5) On-line tracking of ALERT response status using a Microsoft Access database and the web (6) On-line response to ALERTs from MSFC actionees through interactive web forms. The technique, benefits, effort, coordination, and lessons learned for each aspect are covered herein.

  13. X-36 Being Prepared on Lakebed for First Flight

    Science.gov (United States)

    1997-01-01

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepare the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight in May 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet

  14. The CCSDS Lossless Data Compression Algorithm for Space Applications

    Science.gov (United States)

    Yeh, Pen-Shu; Day, John H. (Technical Monitor)

    2001-01-01

    In the late 80's, when the author started working at the Goddard Space Flight Center (GSFC) for the National Aeronautics and Space Administration (NASA), several scientists there were in the process of formulating the next generation of Earth viewing science instruments, the Moderate Resolution Imaging Spectroradiometer (MODIS). The instrument would have over thirty spectral bands and would transmit enormous data through the communications channel. This was when the author was assigned the task of investigating lossless compression algorithms for space implementation to compress science data in order to reduce the requirement on bandwidth and storage.

  15. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; hide

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  16. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    Science.gov (United States)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  17. NASA's Preparations for ESA's L3 Gravitational Wave Mission

    Science.gov (United States)

    Stebbins, Robin

    2016-01-01

    Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.

  18. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  19. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    Science.gov (United States)

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  20. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    Science.gov (United States)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  1. Marshall Space Flight Center Technology Investments Overview

    Science.gov (United States)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  2. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  3. Information Analysis Centers in the Department of Defense. Revision

    Science.gov (United States)

    1987-07-01

    Combat Data Information Center (CDIC) and the Aircraft Survivability Model Repository ( ASMR ) into the Survivability/Vulnerability Information Analysis...Information Center (CDIC) and the Aircraft Survivability Model Respository ( ASMR ). The CDIC was a central repository for combat and test data related to...and ASMR were operated under the technical monitorship of the Flight Dynamics Laboratory at Wright-Patterson AFB, Ohio and were located in Flight

  4. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  5. Transfer of training from a Full-Flight Simulator vs. a high level flight training device with a dynamic seat

    Science.gov (United States)

    2010-08-02

    This paper summarizes the most recent study conducted by the Federal Administration Administration/Volpe Center Flight Simulator Fidelity Requirements Program. For many smaller airlines, access to qualified simulators is limited due to the availabili...

  6. Flight test of the X-29A at high angle of attack: Flight dynamics and controls

    Science.gov (United States)

    Bauer, Jeffrey E.; Clarke, Robert; Burken, John J.

    1995-01-01

    The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.

  7. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    Science.gov (United States)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  8. X-36 in Flight over Mojave Desert

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 technology demonstrator contrast sharply with the desert floor as the remotely piloted aircraft scoots across the California desert at low altitude during a research flight on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with

  9. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  10. Ares I-X Flight Test Philosophy

    Science.gov (United States)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  11. Remotely Piloted Vehicles for Experimental Flight Control Testing

    Science.gov (United States)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  12. Digital Data Matrix Scanner Developnent At Marshall Space Flight Center

    Science.gov (United States)

    2004-01-01

    Research at NASA's Marshall Space Flight Center has resulted in a system for reading hidden identification codes using a hand-held magnetic scanner. It's an invention that could help businesses improve inventory management, enhance safety, improve security, and aid in recall efforts if defects are discovered. Two-dimensional Data Matrix symbols consisting of letters and numbers permanently etched on items for identification and resembling a small checkerboard pattern are more efficient and reliable than traditional bar codes, and can store up to 100 times more information. A team led by Fred Schramm of the Marshall Center's Technology Transfer Department, in partnership with PRI,Torrance, California, has developed a hand-held device that can read this special type of coded symbols, even if covered by up to six layers of paint. Before this new technology was available, matrix symbols were read with optical scanners, and only if the codes were visible. This latest improvement in digital Data Matrix technologies offers greater flexibility for businesses and industries already using the marking system. Paint, inks, and pastes containing magnetic properties are applied in matrix symbol patterns to objects with two-dimensional codes, and the codes are read by a magnetic scanner, even after being covered with paint or other coatings. The ability to read hidden matrix symbols promises a wide range of benefits in a number of fields, including airlines, electronics, healthcare, and the automotive industry. Many industries would like to hide information on a part, so it can be read only by the party who put it there. For instance, the automotive industry uses direct parts marking for inventory control, but for aesthetic purposes the marks often need to be invisible. Symbols have been applied to a variety of materials, including metal, plastic, glass, paper, fabric and foam, on everything from electronic parts to pharmaceuticals to livestock. The portability of the hand

  13. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    Science.gov (United States)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  14. Aerial view of the Kennedy Space Center Visitor Center

    Science.gov (United States)

    1998-01-01

    The Kennedy Space Center Visitor Center, shown in this aerial view looking south, sprawls across 70 acres on Florida's Space Coast , and is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the bottom of the photo. Just above the roadway, from left can be seen the Shuttle/Gantry mockup; the Post Show Dome; the Astronaut Memorial; and to the far right, the Center for Space Education. Behind the Memorial are a cluster of buildings that include the Theater Complex, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, and Ticket Pavilion. At the upper right are various rockets that have played a significant role in the growth of the space program.

  15. Electronic Flight Bag (EFB) 2015 Industry Survey.

    Science.gov (United States)

    2015-10-01

    This document provides an overview of Electronic Flight Bag (EFB) hardware and software capabilities, including portable electronic devices (PEDs) used as EFBs, as of July 2015. This document updates and replaces the Volpe Centers previous EFB ind...

  16. 14 CFR 29.27 - Center of gravity limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  17. Mongoose: Creation of a Rad-Hard MIPS R3000

    Science.gov (United States)

    Lincoln, Dan; Smith, Brian

    1993-01-01

    This paper describes the development of a 32 Bit, full MIPS R3000 code-compatible Rad-Hard CPU, code named Mongoose. Mongoose progressed from contract award, through the design cycle, to operational silicon in 12 months to meet a space mission for NASA. The goal was the creation of a fully static device capable of operation to the maximum Mil-883 derated speed, worst-case post-rad exposure with full operational integrity. This included consideration of features for functional enhancements relating to mission compatibility and removal of commercial practices not supported by Rad-Hard technology. 'Mongoose' developed from an evolution of LSI Logic's MIPS-I embedded processor, LR33000, code named Cobra, to its Rad-Hard 'equivalent', Mongoose. The term 'equivalent' is used to infer that the core of the processor is functionally identical, allowing the same use and optimizations of the MIPS-I Instruction Set software tool suite for compilation, software program trace, etc. This activity was started in September of 1991 under a contract from NASA-Goddard Space Flight Center (GSFC)-Flight Data Systems. The approach affected a teaming of NASA-GSFC for program development, LSI Logic for system and ASIC design coupled with the Rad-Hard process technology, and Harris (GASD) for Rad-Hard microprocessor design expertise. The program culminated with the generation of Rad-Hard Mongoose prototypes one year later.

  18. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    Science.gov (United States)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  19. Flight Planning Branch NASA Co-op Tour

    Science.gov (United States)

    Marr, Aja M.

    2013-01-01

    This semester I worked with the Flight Planning Branch at the NASA Johnson Space Center. I learned about the different aspects of flight planning for the International Space Station as well as the software that is used internally and ISSLive! which is used to help educate the public on the space program. I had the opportunity to do on the job training in the Mission Control Center with the planning team. I transferred old timeline records from the planning team's old software to the new software in order to preserve the data for the future when the software is retired. I learned about the operations of the International Space Station, the importance of good communication between the different parts of the planning team, and enrolled in professional development classes as well as technical classes to learn about the space station.

  20. 14 CFR 27.27 - Center of gravity limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...

  1. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    Science.gov (United States)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  2. NASA/RAE cooperation on a knowlede based flight status monitor

    Science.gov (United States)

    Butler, G. F.; Duke, E. L.

    1989-01-01

    As part of a US/UK cooperative aeronautical research pragram, a joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on Knowledge Based Systems was established. Under the agreement, a Flight Status Monitor Knowledge base developed at Ames-Dryden was implemented using the real-time IKBS toolkit, MUSE, which was developed in the UK under RAE sponsorship. The Flight Status Monitor is designed to provide on-line aid to the flight test engineer in the interpretation of system health and status by storing expert knowledge of system behavior in an easily accessible form. The background to the cooperation is described and the details of the Flight Status Monitor, the MUSE implementation are presented.

  3. Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3

    Science.gov (United States)

    Whiteman, D. N.; Wang, Z.; Demoz, B.

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.

  4. Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II

    Science.gov (United States)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. D.; Harper, D. A.; Jhabvala, Murzy D.; Moseley, S. H.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Staguhn, Johannes G.

    2003-02-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 × 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 × 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  5. Literature for flight simulator (motion) requirements research

    Science.gov (United States)

    2010-10-29

    This is the yearly snapshot of the literature examined in the framework of the Federal Aviation Administration/Volpe Center Flight Simulator Human Factors Program and entered in an EndNote database. It describes 1131 documents, 118 more than last y...

  6. SCI 236 AGARDograph. Part Two; National Aeronautics and Space Administration Armstrong Flight Research Center Annex

    Science.gov (United States)

    Neal, Bradford A.; Stoliker, Patrick C.

    2018-01-01

    NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.

  7. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  8. Observations and Modelling of the Zodiacal Light

    Science.gov (United States)

    Kelsall, T.

    1994-12-01

    The DIRBE instrument on the COBE satellite performed a full-sky survey in ten bands covering the spectral range from 1.25 to 240 microns, and made measurements of the polarization from 1.25 to 3.5 microns. These observations provide a wealth of data on the radiations from the interplanetary dust cloud (IPD). The presentation covers the observations, the model-independent findings, and the results from the extensive efforts of the DIRBE team to model the IPD. Emphasis is placed on describing the importance of correctly accounting for the IPD contribution to the observed-sky signal for the purpose of detecting the cosmic infrared background. (*) The NASA/Goddard Space Flight Center (GSFC) is responsible for the design, development, and operation of the COBE mission. GSFC is also responsible for the development of the analysis software and for the production of the mission data sets. Scientific guidance is provided by the COBE Science Working Group. The COBE program is supported by the Astrophysics Division of NASA's Office of Space Science.

  9. Perseus A in Flight with Moon

    Science.gov (United States)

    1994-01-01

    The Perseus A, a remotely-piloted, high-altitude research aircraft, is seen here framed against the moon and sky during a research mission at the Dryden Flight Research Center, Edwards, California in August 1994. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  10. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    Science.gov (United States)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  11. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  12. Development of a Free-Flight Simulation Infrastructure

    Science.gov (United States)

    Miles, Eric S.; Wing, David J.; Davis, Paul C.

    1999-01-01

    In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.

  13. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.

    2015-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.

  14. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    Science.gov (United States)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  15. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP.

    Science.gov (United States)

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5 day dust forecasts at 1°×1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  16. The astronomical data base and retrieval system at NASA

    Science.gov (United States)

    Mead, J. M.; Nagy, T. A.; Hill, R. S.; Warren, W. H., Jr.

    1982-01-01

    More than 250 machine-readable catalogs of stars and extended celestial objects are now available at the NASA/Goddard Space Flight Center (GSFC) as the result of over a decade of catalog acquisition, verification and documentation. Retrieval programs are described which permit the user to obtain from a remote terminal bibliographical listings for stars; to find all celestial objects from a given list that are within a defined angular separation from each object in another list; to plot celestial objects on overlays for sky survey plate areas; and to search selected catalogs for objects by criteria of position, identification number, magnitude or spectral type.

  17. The astronomical data base and retrieval system at NASA

    International Nuclear Information System (INIS)

    Mead, J.M.; Warren, W.H. Jr.; Nagy, T.A.; Hill, R.S.

    1982-01-01

    More than 250 machine-readable catalogs of stars and extended celestial objects are now available at the NASA/Goddard Space Flight Center (GSFC) as the result of over a decade of catalog acquisition, verification and documentation. Retrieval programs are described which permit the user to obtain from a remote terminal bibliographical listings for stars; to find all celestial objects from a given list that are within a defined angular separation from each object in another list; to plot celestial objects on overlays for sky survey plate areas; and to search selected catalogs for objects by criteria of position, identification number, magnitude or spectral type. (Auth.)

  18. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  19. 14 CFR 25.27 - Center of gravity limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each practicably...

  20. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    Science.gov (United States)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  1. Analysis of Return and Forward Links from STARS' Flight Demonstration 1

    Science.gov (United States)

    Gering, James A.

    2003-01-01

    Space-based Telemetry And Range Safety (STARS) is a Kennedy Space Center (KSC) led proof-of-concept demonstration, which utilizes NASA's space network of Tracking and Data Relay Satellites (TDRS) as a pathway for launch and mission related information streams. Flight Demonstration 1 concluded on July 15,2003 with the seventh flight of a Low Power Transmitter (LPT) a Command and Data Handler (C&DH), a twelve channel GPS receiver and associated power supplies and amplifiers. The equipment flew on NASA's F-I5 aircraft at the Dryden Flight Research Center located at Edwards Air Force Base in California. During this NASA-ASEE Faculty Fellowship, the author participated in the collection and analysis of data from the seven flights comprising Flight Demonstration 1. Specifically, the author examined the forward and return links bit energy E(sub B) (in Watt-seconds) divided by the ambient radio frequency noise N(sub 0) (in Watts / Hertz). E(sub b)/N(sub 0) is commonly thought of as a signal-to-noise parameter, which characterizes a particular received radio frequency (RF) link. Outputs from the data analysis include the construction of time lines for all flights, production of graphs of range safety values for all seven flights, histograms of range safety E(sub b)/N(sub 0) values in five dB increments, calculation of associated averages and standard deviations, production of graphs of range user E(sub b)/N(sub 0) values for the all flights, production of graphs of AGC's and E(sub b)/N(sub 0) estimates for flight 1, recorded onboard, transmitted directly to the launch head and transmitted through TDRS. The data and graphs are being used to draw conclusions related to a lower than expected signal strength seen in the range safety return link.

  2. A Comprehensive Analysis of the X-15 Flight 3-65 Accident

    Science.gov (United States)

    Dennehy, Cornelius J.; Orr, Jeb S.; Barshi, Immanuel; Statler, Irving C.

    2014-01-01

    The November 15, 1967, loss of X-15 Flight 3-65-97 (hereafter referred to as Flight 3-65) was a unique incident in that it was the first and only aerospace flight accident involving loss of crew on a vehicle with an adaptive flight control system (AFCS). In addition, Flight 3-65 remains the only incidence of a single-pilot departure from controlled flight of a manned entry vehicle in a hypersonic flight regime. To mitigate risk to emerging aerospace systems, the NASA Engineering and Safety Center (NESC) proposed a comprehensive review of this accident. The goal of the assessment was to resolve lingering questions regarding the failure modes of the aircraft systems (including the AFCS) and thoroughly analyze the interactions among the human agents and autonomous systems that contributed to the loss of the pilot and aircraft. This document contains the outcome of the accident review.

  3. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Science.gov (United States)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  4. F-14 in banked flight

    Science.gov (United States)

    1979-01-01

    NASA 991, an F-14 Navy Tomcat designated the F-14 (1X), is seen here in banked flight over the desert on a research flight at NASA's Dryden Flight Research Center, Edwards, California. The F-14 was used at Dryden between 1979 and 1985 in extensive high-angle-of-attack and spin-control-and-recovery tests. The NASA/Navy program, which included 212 total flights, acheived considerable improvement in the F-14 high-angle-of-attack flying qualities, improved departure and spin resistance, and contributed to substantial improvements in reducing 'wing rock,' (i.e., tilting from one side to another), at high angles of attack. The Navy had been experiencing inadvertant spin entries caused by the F-14's aileron rudder interconnect. The NASA/Navy/Grumman team developed and tested 4 different configurations of the aileron rudder interconnect to address the spin problem. These problems prompted the Navy to ask the manufacturer, Grumman, and NASA to investigate the issue. NASA 991 had numerous special additions for high-angle-of-attack and spin-recovery research. These included a battery-powered auxiliary power unit, a flight test nose boom, and a special spin recovery system, consisting of forward mounted, hydraulically actuated canards and an emergency spin chute. NASA's F-14 was first flown by NASA research pilots, but was later flown by Grumman, and by Navy test pilots from Patuxent River Naval Air Station (NAS). The Navy test flights with the spin research vehicle constituted the first program that incorporated air combat maneuvering in its test flights at Dryden. The Navy brought F-14s from Point Mugu and Miramar NAS in San Diego to test the new spin control laws in combat situations. Although the new control laws proved valuable, the Navy did not incorporate them into production F-14s until the F-14D, nearly 15 years later.

  5. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    Science.gov (United States)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  6. Lessons Learned: Mechanical Component and Tribology Activities in Support of Return to Flight

    Science.gov (United States)

    Handschuh, Robert F.; Zaretsky, Erwin V.

    2017-01-01

    The February 2003 loss of the Space Shuttle Columbia resulted in NASA Management revisiting every critical system onboard this very complex, reusable space vehicle in a an effort to Return to Flight. Many months after the disaster, contact between NASA Johnson Space Center and NASA Glenn Research Center evolved into an in-depth assessment of the actuator drive systems for the Rudder Speed Brake and Body Flap Systems. The actuators are CRIT 1-1 systems that classifies them as failure of any of the actuators could result in loss of crew and vehicle. Upon further evaluation of these actuator systems and the resulting issues uncovered, several research activities were initiated, conducted, and reported to the NASA Space Shuttle Program Management. The papers contained in this document are the contributions of many researchers from NASA Glenn Research Center and Marshall Space Flight Center as part of a Lessons Learned on mechanical actuation systems as used in space applications. Many of the findings contained in this document were used as a basis to safely Return to Flight for the remaining Space Shuttle Fleet until their retirement.

  7. Calibration of a TCCON FTS at Armstrong Flight Research Center (AFRC) Using Multiple Airborne Profiles

    Science.gov (United States)

    Hillyard, P. W.; Iraci, L. T.; Podolske, J. R.; Tanaka, T.; Yates, E. L.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Albertson, R. T.; Blake, D. R.; Meinardi, S.; Marrero, J. E.; Yang, M. M.; Beyersdorf, A. J.; Wofsy, S. C.; Pittman, J. V.; Daube, B. C.

    2014-12-01

    Satellite missions including GOSAT, OCO-2 and ASCENDS measure column abundances of greenhouse gases. It is crucial to have calibrated ground-based measurements to which these satellite measurements can compare and refine their retrieval algorithms. To this end, a Fourier Transform Spectrometer has been deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON). This location was selected due to its proximity to a highly reflective lakebed. Such surfaces have proven to be difficult for accurate satellite retrievals. This facility has been in operation since July 2013. The data collected to date at this site will be presented. In order to ensure the validity of the measurements made at this site, multiple vertical profiles have been performed using the Alpha jet, DC-8, and ER-2 as part of the AJAX (ongoing), SEAC4RS (August 2013), and SARP (July 2014) field campaigns. The integrated in-situ vertical profiles for CO2 and CH4 have been analyzed and compared with the TCCON FTS measurements, where good agreement between TCCON data and vertically-integrated aircraft in-situ data has been found.

  8. Fatalities above 30,000 feet: characterizing pediatric deaths on commercial airline flights worldwide.

    Science.gov (United States)

    Rotta, Alexandre T; Alves, Paulo M; Mason, Katherine E; Nerwich, Neil; Speicher, Richard H; Allareddy, Veerasathpurush; Allareddy, Veerajalandhar

    2014-10-01

    We conducted this study to characterize in-flight pediatric fatalities onboard commercial airline flights worldwide and identify patterns that would have been unnoticed through single case analysis of these relative rare events. Retrospective cohort study of pediatric in-flight medical emergencies resulting in fatalities between January 2010 and June 2013. A ground-based medical support center providing remote medical support to commercial airlines worldwide. Children (age 0-18 yr) who experienced a medical emergency resulting in death during a commercial airline flight. None. There were a total of 7,573 in-flight medical emergencies involving children reported to the ground-based medical support center, resulting in 10 deaths (0.13% of all pediatric in-flight emergencies). The median subject age was 3.5 months with 90% being younger than 2 years, the age until which children are allowed to travel sharing a seat with an adult passenger, also known as lap infants. Six patients had no previous medical history, with one suffering cardiorespiratory arrest after developing acute respiratory distress during flight and five found asystolic (including four lap infants). Four subjects had preflight medical conditions, including two children traveling for the purpose of accessing advanced medical care. Pediatric in-flight fatalities are rare, but death occurs most commonly in infants and in subjects with a preexisting medical condition. The number of fatalities involving seemingly previously healthy children under the age of 2 years (lap infants) is intriguing and could indicate a vulnerable population at increased risk of death related to in-flight environmental factors, sleeping arrangements, or yet another unrecognized factor.

  9. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  10. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  11. Design and flight testing of a nullable compressor face rake

    Science.gov (United States)

    Holzman, J. K.; Payne, G. A.

    1973-01-01

    A compressor face rake with an internal valve arrangement to permit nulling was designed, constructed, and tested in the laboratory and in flight at the NASA Flight Research Center. When actuated by the pilot in flight, the nullable rake allowed the transducer zero shifts to be determined and then subsequently removed during data reduction. Design details, the fabrication technique, the principle of operation, brief descriptions of associated digital zero-correction programs and the qualification tests, and test results are included. Sample flight data show that the zero shifts were large and unpredictable but could be measured in flight with the rake. The rake functioned reliably and as expected during 25 hours of operation under flight environmental conditions and temperatures from 230 K (-46 F) to greater than 430 K (314 F). The rake was nulled approximately 1000 times. The in-flight zero-shift measurement technique, as well as the rake design, was successful and should be useful in future applications, particularly where accurate measurements of both steady-state and dynamic pressures are required under adverse environmental conditions.

  12. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  13. X-36 Tailless Fighter Agility Research Aircraft in flight

    Science.gov (United States)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  14. M2-F1 in flight during low-speed car tow

    Science.gov (United States)

    1963-01-01

    The M2-F1 shown in flight during a low-speed car tow runs across the lakebed. Such tests allowed about two minutes to test the vehicle's handling in flight. NASA Flight Research Center (later redesignated the Dryden Flight Research Center) personnel conducted as many as 8 to 14 ground-tow flights in a single day either to test the vehicle in preparation for air tows or to train pilots to fly the vehicle before they undertook air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30

  15. Benefits of Delay Tolerant Networking for Earth Science Missions

    Science.gov (United States)

    Davis, Faith; Marquart, Jane; Menke, Greg

    2012-01-01

    To date there has been much discussion about the value of Delay Tolerant Networking (DTN) for space missions. Claims of various benefits, based on paper analysis, are good; however a benefits statement with empirical evidence to support is even better. This paper presents potential and actual advantages of using DTN for Earth science missions based on results from multiple demonstrations, conducted by the Communications, Standards, and Technology Laboratory (CSTL) at NASA Goddard Space Flight Center (GSFC). Demonstrations included two flight demonstrations using the Earth Observing Mission 1 (EO-1) and the Near Earth Network (NEN), a ground based demonstration over satellite links to the Internet Router in Space (IRIS) payload on Intelsat-14, and others using the NASA Tracking Data Relay Satellite System (TDRSS). Real and potential findings include increased flexibility and efficiency in science campaigns, reduced latency in a collaborative science scenario, and improved scientist-instrument communication and control.

  16. Close Approach Prediction Analysis of the Earth Science Constellation with the Fengyun-1C Debris

    Science.gov (United States)

    Duncan, Matthew; Rand, David K.

    2008-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. Each day, close approach predictions are generated by a U.S. Department of Defense Joint Space Operations Center Orbital Safety Analyst using the high accuracy Space Object Catalog maintained by the Air Force's 1" Space Control Squadron. Prediction results and other ancillary data such as state vector information are sent to NASAJGoddard Space Flight Center's (GSFC's) Collision Risk Assessment analysis team for review. Collision analysis is performed and the GSFC team works with the ESC member missions to develop risk reduction strategies as necessary. This paper presents various close approach statistics for the ESC. The ESC missions have been affected by debris from the recent anti-satellite test which destroyed the Chinese Fengyun- 1 C satellite. The paper also presents the percentage of close approach events induced by the Fengyun-1C debris, and presents analysis results which predict the future effects on the ESC caused by this event. Specifically, the Fengyun-1C debris is propagated for twenty years using high-performance computing technology and close approach predictions are generated for the ESC. The percent increase in the total number of conjunction events is considered to be an estimate of the collision risk due to the Fengyun-1C break- UP.

  17. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  18. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    Science.gov (United States)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  19. A flight sensory-motor to olfactory processing circuit in the moth Manduca sexta

    Directory of Open Access Journals (Sweden)

    Samual P Bradley

    2016-02-01

    Full Text Available Neural circuits projecting information from motor pathways to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL glomeruli. Furthermore, within the AL we show that the Manduca sexta histamine B receptor (MsHisClB is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center (LAC indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.

  20. M2-F1 in flight being towed by a C-47

    Science.gov (United States)

    1964-01-01

    The M2-F1 Lifting Body is seen here being towed behind a C-47 at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. In this rear view, the M2-F1 is flying above and to one side of the C-47. This was done to avoid wake turbulence from the towplane. Lacking wings, the M2-F1 used an unusual configuration for its control surfaces. It had two rudders on the fins, two elevons (called 'elephant ears') mounted on the outsides of the fins, and two body flaps on the upper rear fuselage. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and

  1. Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.

    2015-01-01

    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.

  2. The Implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for Global Dust Forecasting at NOAA NCEP

    Science.gov (United States)

    Lu, Cheng-Hsuan; Da Silva, Arlindo M.; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; hide

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1deg x 1deg resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  3. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  4. Design and Development of a Flight Route Modification, Logging, and Communication Network

    Science.gov (United States)

    Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.

    2016-01-01

    There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.

  5. Eclipse - tow flight closeup and release

    Science.gov (United States)

    1998-01-01

    This clip, running 15 seconds in length, shows the QF-106 'Delta Dart' gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed

  6. Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator

    Science.gov (United States)

    Bolen, Kenny; Greenlaw, Ronald

    2010-01-01

    A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.

  7. Development of a Multi-Disciplinary Aerothermostructural Model Applicable to Hypersonic Flight

    Science.gov (United States)

    Kostyk, Chris; Risch, Tim

    2013-01-01

    The harsh and complex hypersonic flight environment has driven design and analysis improvements for many years. One of the defining characteristics of hypersonic flight is the coupled, multi-disciplinary nature of the dominant physics. In an effect to examine some of the multi-disciplinary problems associated with hypersonic flight engineers at the NASA Dryden Flight Research Center developed a non-linear 6 degrees-of-freedom, full vehicle simulation that includes the necessary model capabilities: aerothermal heating, ablation, and thermal stress solutions. Development of the tool and results for some investigations will be presented. Requirements and improvements for future work will also be reviewed. The results of the work emphasize the need for a coupled, multi-disciplinary analysis to provide accurate

  8. Marshall Space Flight Center's Tower Vector Magnetograph: Upgrades, Hardware, and Operations for the HESSI Mission

    Science.gov (United States)

    Adams, M. L.; Hagyard, M. J.; West, E. A.; Smith, J. E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center's (MSFC) solar group announces the successful upgrade of our tower vector magnetograph. In operation since 1973, the last major alterations to the system (which includes telescope, filter, polarizing optics, camera, and data acquisition computer) were made in 1982, when we upgraded from an SEC Vidicon camera to a CCD. In 1985, other changes were made which increased the field-of-view from 5 x 5 arc min (2.4 arc sec per pixel) to 6 x 6 arc min with a resolution of 2.81 arc sec. In 1989, the Apollo Telescope Mount H-alpha telescope was coaligned with the optics of the magnetograph. The most recent upgrades (year 2000), funded to support the High Energy Solar Spectroscopic Imager (HESSI) mission, have resulted in a pixel size of 0.64 arc sec over a 7 x 5.2 arc min field-of-view (binning 1x1). This poster describes the physical characteristics of the new system and compares spatial resolution, timing, and versatility with the old system. Finally, we provide a description of our Internet web site, which includes images of our most recent observations, and links to our data archives, as well as the history of magnetography at MSFC and education outreach pages.

  9. A comparison of theory and flight test of the BO 105/BMR in hover and forward flight

    Science.gov (United States)

    Mirick, Paul H.

    1988-01-01

    Four cases were selected for comparison with theoretical predictions using stability data obtained during the flight test of the Bearingless Main Rotor (BMR) on a Messerschmidt-Boelkow-Blohm BO 105 helicopter. The four cases selected form the flight test included two ground resonance cases and two air resonance cases. The BMR used four modified BO 105 blades attached to a bearingless hub. The hub consisted of dual fiberglass C-channel beams attached to the hub center at 0.0238R and attached to the blade root at 0.25R with blade pitch control provided by a torque tube. Analyses from Bell Helicopter Textron, Boeing Vertol, and Sikorsky Aircraft were compared with the data and the correlation ranged from very poor-to-poor to poor-to-fair.

  10. Flight Tests of a Ministick Controller in an F/A-18 Airplane

    Science.gov (United States)

    Stoliker, Patrick C.; Carter, John

    2003-01-01

    In March of 1999, five pilots performed flight tests to evaluate the handling qualities of an F/A-18 research airplane equipped with a small-displacement center stick (ministick) controller that had been developed for the JAS 39 Gripen airplane (a fighter/attack/ reconnaissance airplane used by the Swedish air force). For these tests, the ministick was installed in the aft cockpit (see figure) and production support flight control computers (PSFCCs) were used as interfaces between the controller hardware and the standard F/A-18 flight-control laws. The primary objective of the flight tests was to assess any changes in handling qualities of the F/A-18 airplane attributable to the mechanical characteristics of the ministick. The secondary objective was to demonstrate the capability of the PSFCCs to support flight-test experiments.

  11. Assessment of NPP VIIRS Ocean Color Data Products: Hope and Risk

    Science.gov (United States)

    Turpie, Kevin R.; Meister, Gerhard; Eplee, Gene; Barnes, Robert A.; Franz, Bryan; Patt, Frederick S.; Robinson, Wayne d.; McClain, Charles R.

    2010-01-01

    For several years, the NASA/Goddard Space Flight Center (GSFC) NPP VIIRS Ocean Science Team (VOST) provided substantial scientific input to the NPP project regarding the use of Visible Infrared Imaging Radiometer Suite (VIIRS) to create science quality ocean color data products. This work has culminated into an assessment of the NPP project and the VIIRS instrument's capability to produce science quality Ocean Color data products. The VOST concluded that many characteristics were similar to earlier instruments, including SeaWiFS or MODIS Aqua. Though instrument performance and calibration risks do exist, it was concluded that programmatic and algorithm issues dominate concerns. Keywords: NPP, VIIRS, Ocean Color, satellite remote sensing, climate data record.

  12. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.; Zhao, W. [State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2016-05-15

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  13. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    International Nuclear Information System (INIS)

    Zhang, Y.; Huang, S. L.; Wang, S.; Zhao, W.

    2016-01-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  14. 76 FR 64112 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting.

    Science.gov (United States)

    2011-10-17

    ... Center (GSFC) must provide their full name, company affiliation (if applicable), to the GSFC Protective... copy of their passport, and print or type their name, current address, citizenship, company affiliation..., U.S. visa information to include type, number, and expiration date, U.S. social Security Number (if...

  15. Distributing flight dynamics products via the World Wide Web

    Science.gov (United States)

    Woodard, Mark; Matusow, David

    1996-01-01

    The NASA Flight Dynamics Products Center (FDPC), which make available selected operations products via the World Wide Web, is reported on. The FDPC can be accessed from any host machine connected to the Internet. It is a multi-mission service which provides Internet users with unrestricted access to the following standard products: antenna contact predictions; ground tracks; orbit ephemerides; mean and osculating orbital elements; earth sensor sun and moon interference predictions; space flight tracking data network summaries; and Shuttle transport system predictions. Several scientific data bases are available through the service.

  16. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  17. Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management

    Science.gov (United States)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.

  18. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  19. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  20. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  1. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals.

    Science.gov (United States)

    Zhang, Y; Huang, S L; Wang, S; Zhao, W

    2016-05-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of wave detection signals.

  2. DAST Being Calibrated for Flight in Hangar

    Science.gov (United States)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and

  3. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  4. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  5. The FLP microsatellite platform flight operations manual

    CERN Document Server

    2016-01-01

    This book represents the Flight Operations Manual for a reusable microsatellite platform – the “Future Low-cost Platform” (FLP), developed at the University of Stuttgart, Germany. It provides a basic insight on the onboard software functions, the core data handling system and on the power, communications, attitude control and thermal subsystem of the platform. Onboard failure detection, isolation and recovery functions are treated in detail. The platform is suited for satellites in the 50-150 kg class and is baseline of the microsatellite “Flying Laptop” from the University. The book covers the essential information for ground operators to controls an FLP-based satellite applying international command and control standards (CCSDS and ECSS PUS). Furthermore it provides an overview on the Flight Control Center in Stuttgart and on the link to the German Space Agency DLR Ground Station which is used for early mission phases. Flight procedure and mission planning chapters complement the book. .

  6. Software for Managing Inventory of Flight Hardware

    Science.gov (United States)

    Salisbury, John; Savage, Scott; Thomas, Shirman

    2003-01-01

    The Flight Hardware Support Request System (FHSRS) is a computer program that relieves engineers at Marshall Space Flight Center (MSFC) of most of the non-engineering administrative burden of managing an inventory of flight hardware. The FHSRS can also be adapted to perform similar functions for other organizations. The FHSRS affords a combination of capabilities, including those formerly provided by three separate programs in purchasing, inventorying, and inspecting hardware. The FHSRS provides a Web-based interface with a server computer that supports a relational database of inventory; electronic routing of requests and approvals; and electronic documentation from initial request through implementation of quality criteria, acquisition, receipt, inspection, storage, and final issue of flight materials and components. The database lists both hardware acquired for current projects and residual hardware from previous projects. The increased visibility of residual flight components provided by the FHSRS has dramatically improved the re-utilization of materials in lieu of new procurements, resulting in a cost savings of over $1.7 million. The FHSRS includes subprograms for manipulating the data in the database, informing of the status of a request or an item of hardware, and searching the database on any physical or other technical characteristic of a component or material. The software structure forces normalization of the data to facilitate inquiries and searches for which users have entered mixed or inconsistent values.

  7. Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis

    Science.gov (United States)

    Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus

    2011-05-01

    The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.

  8. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  9. PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13

    International Nuclear Information System (INIS)

    Bultman, D. H.; Weinacht, D.

    2000-01-01

    This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule)

  10. Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs

    Science.gov (United States)

    Turner, Wlat

    2011-01-01

    With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments

  11. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  12. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    Science.gov (United States)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  13. Understanding and Predicting the Process of Software Maintenance Releases

    Science.gov (United States)

    Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.

    1996-01-01

    One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.

  14. The Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  15. Operational computer graphics in the flight dynamics environment

    Science.gov (United States)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  16. Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

    Science.gov (United States)

    Edquist, Karl T.

    2006-01-01

    Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required.

  17. The Max Launch Abort System - Concept, Flight Test, and Evolution

    Science.gov (United States)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  18. Hyper-X Research Vehicle - Artist Concept in Flight

    Science.gov (United States)

    1997-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  19. Liquid Nitrogen Dewar Loading at KSC for STS-71 Flight

    Science.gov (United States)

    1995-01-01

    Liquid nitrogen dewar loading at Kennedy Space Center for STS-71 flight with Stan Koszelak (right), University of California at Riverside, adn Tamara Chinareva (left), Russian Spacecraft Coporation-Energia. The picture shows Koszelak removing the insert from the transportation dewar.

  20. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  1. ACSYNT inner loop flight control design study

    Science.gov (United States)

    Bortins, Richard; Sorensen, John A.

    1993-01-01

    The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between

  2. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  3. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    Science.gov (United States)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.

  4. Comprehensive Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data

    Science.gov (United States)

    Deutschmann, Julie K.; Bar-Itzhack, Itzhack Y.

    2000-01-01

    A single, augmented Extended Kalman Filter (EKF), which simultaneously and autonomously estimates spacecraft attitude and orbit has been developed and successfully tested with real magnetometer and gyro data only. Because the earth magnetic field is a function of time and position, and because time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both orbit and attitude errors. Thus, conceivably these differences could be used to estimate both orbit and attitude; an observability study validated this assumption. The results of testing the EKF with actual magnetometer and gyro data, from four satellites supported by the NASA Goddard Space Flight Center (GSFC) Guidance, Navigation, and Control Center, are presented and evaluated. They confirm the assumption that a single EKF can estimate both attitude and orbit when using gyros and magnetometers only.

  5. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    Science.gov (United States)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  6. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  7. NASA-FAA helicopter Microwave Landing System curved path flight test

    Science.gov (United States)

    Swenson, H. N.; Hamlin, J. R.; Wilson, G. W.

    1984-01-01

    An ongoing series of joint NASA/FAA helicopter Microwave Landing System (MLS) flight tests was conducted at Ames Research Center. This paper deals with tests done from the spring through the fall of 1983. This flight test investigated and developed solutions to the problem of manually flying curved-path and steep glide slope approaches into the terminal area using the MLS and flight director guidance. An MLS-equipped Bell UH-1H helicopter flown by NASA test pilots was used to develop approaches and procedures for flying these approaches. The approaches took the form of Straight-in, U-turn, and S-turn flightpaths with glide slopes of 6 deg, 9 deg, and 12 deg. These procedures were evaluated by 18 pilots from various elements of the helicopter community, flying a total of 221 hooded instrument approaches. Flying these curved path and steep glide slopes was found to be operationally acceptable with flight director guidance using the MLS.

  8. An Indispensable Ingredient: Flight Research and Aircraft Design

    Science.gov (United States)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  9. NASA Langley Research Center outreach in astronautical education

    Science.gov (United States)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  10. Integrated Test and Evaluation (ITE) Flight Test Series 4

    Science.gov (United States)

    Marston, Michael

    2016-01-01

    The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.

  11. MD-11 PCA - Research flight team photo

    Science.gov (United States)

    1995-01-01

    On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.

  12. Aeroelastic stability of full-span tiltrotor aircraft model in forward flight

    Directory of Open Access Journals (Sweden)

    Zhiquan LI

    2017-12-01

    Full Text Available The existing full-span models of the tiltrotor aircraft adopted the rigid blade model without considering the coupling relationship among the elastic blade, wing and fuselage. To overcome the limitations of the existing full-span models and improve the precision of aeroelastic analysis of tiltrotor aircraft in forward flight, the aeroelastic stability analysis model of full-span tiltrotor aircraft in forward flight has been presented in this paper by considering the coupling among elastic blade, wing, fuselage and various components. The analytical model is validated by comparing with the calculation results and experimental data in the existing references. The influence of some structural parameters, such as the fuselage degrees of freedom, relative displacement between the hub center and the gravity center, and nacelle length, on the system stability is also investigated. The results show that the fuselage degrees of freedom decrease the critical stability velocity of tiltrotor aircraft, and the variation of the structural parameters has great influence on the system stability, and the instability form of system can change between the anti-symmetric and symmetric wing motions of vertical and chordwise bending. Keywords: Aeroelastic stability, Forward flight, Full-span model, Modal analysis, Tiltrotor aircraft

  13. Vision based techniques for rotorcraft low altitude flight

    Science.gov (United States)

    Sridhar, Banavar; Suorsa, Ray; Smith, Philip

    1991-01-01

    An overview of research in obstacle detection at NASA Ames Research Center is presented. The research applies techniques from computer vision to automation of rotorcraft navigation. The development of a methodology for detecting the range to obstacles based on the maximum utilization of passive sensors is emphasized. The development of a flight and image data base for verification of vision-based algorithms, and a passive ranging methodology tailored to the needs of helicopter flight are discussed. Preliminary results indicate that it is possible to obtain adequate range estimates except at regions close to the FOE. Closer to the FOE, the error in range increases since the magnitude of the disparity gets smaller, resulting in a low SNR.

  14. Marshall Space Flight Center Ground Systems Development and Integration

    Science.gov (United States)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  15. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  16. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    Science.gov (United States)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  17. Torque Tension Testing of Fasteners used for NASA Flight Hardware Applications

    Science.gov (United States)

    Hemminger, Edgar G.; Posey, Alan J.; Dube, Michael J.

    2014-01-01

    The effect of various lubricants and other compounds on fastener torque-tension relationships is evaluated. Testing was performed using a unique test apparatus developed by Posey at the NASA Goddard Space Flight Center. A description of the test methodology, including associated data collection and analysis will be presented. Test results for 300 series CRES and A286 heat resistant fasteners, torqued into various types of inserts will be presented. The primary objective of this testing was to obtain torque-tension data for use on NASA flight projects.

  18. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  19. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  20. High Energy Astronomical Data Processing and Analysis via the Internet

    Science.gov (United States)

    Valencic, Lynne A.; Snowden, S.; Pence, W.

    2012-01-01

    The HEASARC at NASA Goddard Space Flight Center and the US XMM-Newton GOF has developed Hera, a data processing facility for analyzing high energy astronomical data over the internet. Hera provides all the disk space and computing resources needed to do general processing of and advanced research on publicly available data from High Energy Astrophysics missions. The data and data products are kept on a server at GSFC and can be downloaded to a user's local machine. Further, the XMM-GOF has developed scripts to streamline XMM data reduction. These are available through Hera, and can also be downloaded to a user's local machine. These are free services provided to students, educators, and researchers for educational and research purposes.

  1. New semiconductor laser technology for gas sensing applications in the 1650nm range

    Science.gov (United States)

    Morrison, Gordon B.; Sherman, Jes; Estrella, Steven; Moreira, Renan L.; Leisher, Paul O.; Mashanovitch, Milan L.; Stephen, Mark; Numata, Kenji; Wu, Stewart; Riris, Haris

    2017-08-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. CH4 also contributes to pollution in the lower atmosphere through chemical reactions leading to ozone production. Recent developments of LIDAR measurement technology for CH4 have been previously reported by Goddard Space Flight Center (GSFC). In this paper, we report on a novel, high-performance tunable semiconductor laser technology developed by Freedom Photonics for the 1650nm wavelength range operation, and for LIDAR detection of CH4. Devices described are monolithic, with simple control, and compatible with low-cost fabrication techniques. We present 3 different types of tunable lasers implemented for this application.

  2. NASA Conjunction Assessment Organizational Approach and the Associated Determination of Screening Volume Sizes

    Science.gov (United States)

    Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    NASA is committed to safety of flight for all of its operational assets Performed by CARA at NASA GSFC for robotic satellites Focus of this briefing Performed by TOPO at NASA JSC for human spaceflight he Conjunction Assessment Risk Analysis (CARA) was stood up to offer this service to all NASA robotic satellites Currently provides service to 70 operational satellites NASA unmanned operational assets Other USG assets (USGS, USAF, NOAA) International partner assets Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction screening The Joint Space Operations Center (JSpOC) a USAF unit at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD tasking, and generates close approach data.

  3. F-8 Digital Fly-by-Wire (DFBW) in flight over snow capped mountains

    Science.gov (United States)

    1973-01-01

    F-8 Digital Fly-by-Wire (DFBW) aircraft in flight over snow capped mountains. Externally identical to a standard Navy F-8C, this aircraft had its control system replaced initially by a primary system using an Apollo digital computer. The backup system used three analog computers. When the pilot moved the airplane's stick and rudder, electronic signals went to the computer, which would generate signals to move the control surfaces. The system was designed so that the digital fly-by-wire aircraft would handle almost identically to a standard F-8C. Later, in Phase 2, the aircraft used three IBM AP-101 computers for its flight control system. The F-8 Digital Fly-By-Wire (DFBW) flight research project validated the principal concepts of all-electric flight control systems now used on nearly all modern high-performance aircraft and on military and civilian transports. The first flight of the 13-year project was on May 25, 1972, with research pilot Gary E. Krier at the controls of a modified F-8C Crusader that served as the testbed for the fly-by-wire technologies. The project was a joint effort between the NASA Flight Research Center, Edwards, California, (now the Dryden Flight Research Center) and Langley Research Center. It included a total of 211 flights. The last flight was December 16, 1985, with Dryden research pilot Ed Schneider at the controls. The F-8 DFBW system was the forerunner of current fly-by-wire systems used in the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient. Electronic fly-by-wire systems replaced older hydraulic control systems, freeing designers to design aircraft with reduced in-flight stability. Fly-by-wire systems are safer because of their redundancies. They are more maneuverable because computers can command more frequent adjustments than a human pilot can. For airliners, computerized control ensures a smoother ride than a human pilot alone can provide. Digital

  4. MD-11 PCA - Research flight team egress

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 has parked on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. Coming down the steps from the aircraft are Gordon Fullerton (in front), followed by Bill Burcham, Propulsion Controlled Aircraft (PCA) project engineer at Dryden; NASA Dryden controls engineer John Burken; John Feather of McDonnell Douglas; and Drew Pappas, McDonnell Douglas' project manager for PCA.

  5. Transforming Our SMEX Organization by Way of Innovation, Standardization, and Automation

    Science.gov (United States)

    Madden, Maureen; Crouse, Pat; Carry, Everett; Esposito, timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorer (SMEX) Flight Operations Team (FOT) is currently tackling the challenge of supporting ground operations for several satellites that have surpassed their designed lifetime and have a dwindling budget. At Goddard Space Flight Center (GSFC), these missions are presently being reengineered into a fleet-oriented ground system. When complete, this ground system will provide command and control of four SMEX missions, and will demonstrate fleet automation and control concepts as a pathfinder for additional mission integrations. A goal of this reengineering effort is to demonstrate new ground-system technologies that show promise of supporting longer mission lifecycles and simplifying component integration. In pursuit of this goal, the SMEX organization has had to examine standardization, innovation, and automation. A core technology being demonstrated in this effort is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture focuses on providing standard interfaces for ground system applications to promote application interoperability. Building around commercial Message Oriented Middleware and providing a common messaging standard allows GMSEC to provide the capabilities necessary to support integration of new software components into existing missions and increase the level of interaction within the system. For SMS, GMSEC has become the technology platform to transform flight operations with the innovation and automation necessary to reduce operational costs. The automation technologies supported in SMEX are built upon capabilities provided by the GMSEC architecture that allows the FOT to further reduce the involvement of the console, operator. Initially, SMEX is automating only routine operations, such as safety and health monitoring, basic commanding, and system recovery. The operational concepts being developed here will reduce the need for staffed passes and are a necessity for future fleet management. As this

  6. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    Directory of Open Access Journals (Sweden)

    Yamina BOUGHARI

    2017-06-01

    Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.

  7. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  8. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  9. Creating Innovative Frameworks to Spur Cultural Change at NASA Armstrong Flight Research Center

    Science.gov (United States)

    Samuel, Aamod; Lozano, Joel; Carte, Olivia; Robillos, Troy

    2018-01-01

    Changing the culture of an organization is a monumental task that often takes years and has no set formula. Steps can be taken, however, to spur cultural change by creating spaces and infrastructure to serve as the initial driving force. An innovation space and a bicycle sharing (bike share) program were implemented at the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) with a vision toward connecting Center personnel, fostering collaboration and innovation, retaining newer employees, promoting flexibility, and improving the culture and workplace atmosphere. This paper discusses the steps taken, challenges faced, novel culture-change-focused design elements, lessons learned, acquired metrics, and how these initiated cultural change at AFRC. For both the innovation space and the bike share program, funding was negotiated and provided through the NASA Convergent Aeronautics Solutions (CAS) project, which was seeking to improve the innovation and collaboration capabilities at each of the four NASA aeronautics Centers. Key stakeholders across AFRC from upper management, facilities, safety, engineering, and procurement were identified early in the process and were consulted and included throughout execution to ensure that any encountered roadblocks could be easily navigated. Research was then conducted by attending conferences and visiting culture-changing organizations both inside and outside United States Government agencies. Distilling the research, identifying available space, and deciding on specific design elements for the space was conducted by a subset of individuals of diverse backgrounds to enable quick, effective decision-making. Decisions were made with the intent to increase usage and diversity of users of the space; care was taken to ensure a well-crafted atmosphere that would foster the desired culture change. The allocated physical space required major structural modifications, new

  10. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  11. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    Science.gov (United States)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  12. Perseus A, Part of the ERAST Program, in Flight

    Science.gov (United States)

    1993-01-01

    The Perseus A remotely-piloted research vehicle flies low over Rogers Dry Lake on its maiden voyage Dec. 21, 1993, at the Dryden Flight Research Center, Edwards, California. The Perseus, designed and built by Aurora Flight Sciences Corp., was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999

  13. An American knowledge base in England - Alternate implementations of an expert system flight status monitor

    Science.gov (United States)

    Butler, G. F.; Graves, A. T.; Disbrow, J. D.; Duke, E. L.

    1989-01-01

    A joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on knowledge-based systems has been agreed. Under the agreement, a flight status monitor knowledge base developed at Ames-Dryden has been implemented using the real-time AI (artificial intelligence) toolkit MUSE, which was developed in the UK. Here, the background to the cooperation is described and the details of the flight status monitor and a prototype MUSE implementation are presented. It is noted that the capabilities of the expert-system flight status monitor to monitor data downlinked from the flight test aircraft and to generate information on the state and health of the system for the test engineers provides increased safety during flight testing of new systems. Furthermore, the expert-system flight status monitor provides the systems engineers with ready access to the large amount of information required to describe a complex aircraft system.

  14. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    Science.gov (United States)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  15. Speech Recognition Interfaces Improve Flight Safety

    Science.gov (United States)

    2013-01-01

    "Alpha, Golf, November, Echo, Zulu." "Sierra, Alpha, Golf, Echo, Sierra." "Lima, Hotel, Yankee." It looks like some strange word game, but the combinations of words above actually communicate the first three points of a flight plan from Albany, New York to Florence, South Carolina. Spoken by air traffic controllers and pilots, the aviation industry s standard International Civil Aviation Organization phonetic alphabet uses words to represent letters. The first letter of each word in the series is combined to spell waypoints, or reference points, used in flight navigation. The first waypoint above is AGNEZ (alpha for A, golf for G, etc.). The second is SAGES, and the third is LHY. For pilots of general aviation aircraft, the traditional method of entering the letters of each waypoint into a GPS device is a time-consuming process. For each of the 16 waypoints required for the complete flight plan from Albany to Florence, the pilot uses a knob to scroll through each letter of the alphabet. It takes approximately 5 minutes of the pilot s focused attention to complete this particular plan. Entering such a long flight plan into a GPS can pose a safety hazard because it can take the pilot s attention from other critical tasks like scanning gauges or avoiding other aircraft. For more than five decades, NASA has supported research and development in aviation safety, including through its Vehicle Systems Safety Technology (VSST) program, which works to advance safer and more capable flight decks (cockpits) in aircraft. Randy Bailey, a lead aerospace engineer in the VSST program at Langley Research Center, says the technology in cockpits is directly related to flight safety. For example, "GPS navigation systems are wonderful as far as improving a pilot s ability to navigate, but if you can find ways to reduce the draw of the pilot s attention into the cockpit while using the GPS, it could potentially improve safety," he says.

  16. Investigation of Inner Loop Flight Control Strategies for High-Speed Research

    Science.gov (United States)

    Newman, Brett; Kassem, Ayman

    1999-01-01

    This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.

  17. 14 CFR 23.29 - Empty weight and corresponding center of gravity.

    Science.gov (United States)

    2010-01-01

    ... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast; (2...

  18. Daedalus - Last Dryden flight

    Science.gov (United States)

    1988-01-01

    The Daedalus 88, with Glenn Tremml piloting, is seen here on its last flight for the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  19. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  20. Python-Based Scientific Analysis and Visualization of Precipitation Systems at NASA Marshall Space Flight Center

    Science.gov (United States)

    Lang, Timothy J.

    2015-01-01

    At NASA Marshall Space Flight Center (MSFC), Python is used several different ways to analyze and visualize precipitating weather systems. A number of different Python-based software packages have been developed, which are available to the larger scientific community. The approach in all these packages is to utilize pre-existing Python modules as well as to be object-oriented and scalable. The first package that will be described and demonstrated is the Python Advanced Microwave Precipitation Radiometer (AMPR) Data Toolkit, or PyAMPR for short. PyAMPR reads geolocated brightness temperature data from any flight of the AMPR airborne instrument over its 25-year history into a common data structure suitable for user-defined analyses. It features rapid, simplified (i.e., one line of code) production of quick-look imagery, including Google Earth overlays, swath plots of individual channels, and strip charts showing multiple channels at once. These plotting routines are also capable of significant customization for detailed, publication-ready figures. Deconvolution of the polarization-varying channels to static horizontally and vertically polarized scenes is also available. Examples will be given of PyAMPR's contribution toward real-time AMPR data display during the Integrated Precipitation and Hydrology Experiment (IPHEx), which took place in the Carolinas during May-June 2014. The second software package is the Marshall Multi-Radar/Multi-Sensor (MRMS) Mosaic Python Toolkit, or MMM-Py for short. MMM-Py was designed to read, analyze, and display three-dimensional national mosaicked reflectivity data produced by the NOAA National Severe Storms Laboratory (NSSL). MMM-Py can read MRMS mosaics from either their unique binary format or their converted NetCDF format. It can also read and properly interpret the current mosaic design (4 regional tiles) as well as mosaics produced prior to late July 2013 (8 tiles). MMM-Py can easily stitch multiple tiles together to provide a

  1. Spacecraft control center automation using the generic inferential executor (GENIE)

    Science.gov (United States)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  2. The Author’s Guide to Writing Air Force Flight Test Center Technical Reports

    Science.gov (United States)

    2009-08-01

    arguments about how bad is bad and how good is good; this table should apply in most cases. If you feel you have an exception to the rating table... IFR instrument flight rules --- ILS instrument landing system --- IMC instrument meteorological conditions --- IMU inertial measurement

  3. Esrange Space Center, a Gate to Space

    Science.gov (United States)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  4. Cosmology and Dust from the COBE FIRAS

    Science.gov (United States)

    Mather, John C.

    1995-12-01

    I report the results of an analysis of improved data sets from the COBE FIRAS (Far Infrared Absolute Spectrophotometer) experiment. The new data sets have been analyzed to obtain improved limits, with smaller error bars, on the distortion of the cosmic microwave background radiation relative to a pure blackbody. These place strong constraints on exotic energy releases in the early universe. Also, an extension of the Principal Component analysis has provided new information on Galactic dust and limits on a far infrared cosmic background (FIRB) in the 0.1 - 0.5 mm range. Although the FIRAS data are consistent with a FIRB that is a significant fraction of the Galactic brightness at the poles, they can also be explained in terms of spatial variations of the properties of the interstellar medium. I acknowledge the FIRAS team, and especially D. J. Fixsen and R. A. Shafer, for the improved data sets and significant contributions to the analyses reported here. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE), under the scientific guidance of the COBE Science Working Group. GSFC is also responsible for the software development and the final processing of the mission data.

  5. Marshall Space Flight Center Propulsion Systems Department (PSD) Knowledge Management (KM) Initiative

    Science.gov (United States)

    Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard

    2006-01-01

    NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include

  6. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ.

    Science.gov (United States)

    Schramm, Harry F.; Sullivan, Kenneth W.

    1991-01-01

    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  7. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  8. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    Science.gov (United States)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  9. Pathfinder-Plus on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  10. Pathfinder-Plus on flight over Hawaii

    Science.gov (United States)

    1998-01-01

    ,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  11. Control and Non-Payload Communications (CNPC) Prototype Radio Validation Flight Test Report

    Science.gov (United States)

    Shalkhauser, Kurt A.; Ishac, Joseph A.; Iannicca, Dennis C.; Bretmersky, Steven C.; Smith, Albert E.

    2017-01-01

    This report provides an overview and results from the unmanned aircraft (UA) Control and Non-Payload Communications (CNPC) Generation 5 prototype radio validation flight test campaign. The radios used in the test campaign were developed under cooperative agreement NNC11AA01A between the NASA Glenn Research Center and Rockwell Collins, Inc., of Cedar Rapids, Iowa. Measurement results are presented for flight tests over hilly terrain, open water, and urban landscape, utilizing radio sets installed into a NASA aircraft and ground stations. Signal strength and frame loss measurement data are analyzed relative to time and aircraft position, specifically addressing the impact of line-of-sight terrain obstructions on CNPC data flow. Both the radio and flight test system are described.

  12. The Spartan 1 mission

    Science.gov (United States)

    Cruddace, Raymond G.; Fritz, G. G.; Shrewsberry, D. J.; Brandenstein, D. J.; Creighton, D. C.; Gutschewski, G.; Lucid, S. W.; Nagel, J. M.; Fabian, J. M.; Zimmerman, D.

    1989-01-01

    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the space shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.

  13. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  14. Realizing the Dream of Flight: Biographical Essays in Honor of the Centennial of Flight, 1903-2003

    Science.gov (United States)

    Dawson, Virginia P. (Editor); Bowles, Mark D. (Editor)

    2005-01-01

    While growing up in Cedar Rapids, Iowa, Milton Wright, The Wright Brothers Father, liked to purchase toys for his sons that he hoped would stimulate their imagination. One of the most memorable gifts was a toy helicopter that was designed by the French aeronautical experimenter Alphonse P naud. Milton gave his sons this gift in 1878, and, though it was a simple device with a stick bound to a four-blade rotor set in a spindle, it had the intended effect it caused them to dream. Twenty-five years separated the gift of this toy and their invention of the airplane, yet the Wright brothers were convinced it had exerted an important influence. Tom Crouch argued in The Bishop's Boys that toys like these perfectly illustrated the significance of play for technological innovation. He wrote, rotary-wing toys were to intrigue and inspire generations of children, a few of whom would, as adults, attempt to realize the dream of flight for themselves. If the first powered flight on 17 December 1903 represented a childhood dream realized, it was only the first step in the rapid evolution of the airplane from their flimsy kite-like contraption of wood and cloth to jet airliners and rockets in space. And, as extraordinary as the achievement of powered flight seemed in 1903, before the end of the century, space travel also would become a dream realized. Soviet astronaut Yuri Gagarin first circumnavigated Earth in April 1961, and, eight years later, American astronauts took the first steps for humankind on the Moon. It is with great pleasure that we introduce Realizing the Dream: Biographical Essays in Honor of the Centennial of Flight. These essays in celebration of the Wright brothers first flight 100 years ago grew out of presentations by a group of prominent scholars in 2003 at a conference sponsored by the NASA History Division and held at the Great Lakes Science Center in Cleveland, Ohio. The volume focuses on the careers of some of the many men and women who helped to realize

  15. X-43A Hypersonic Experimental Vehicle - Artist Concept in Flight

    Science.gov (United States)

    1999-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  16. DAST in Flight Showing Diverging Wingtip Oscillations

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. In this view of DAST-1 (Serial # 72-1557), taken on June 12, 1980, severe wingtip flutter is visible. Moments later, the right wing failed catastrophically and the vehicle crashed near Cuddeback Dry Lake. Before the drone was lost, it had made two captive and two free flights. Its first free flight, on October 2, 1979, was cut short by an uplink receiver failure. The drone was caught in midair by an HH-3 helicopter. The second free flight, on March 12, 1980, was successful, ending in a midair recovery. The third free flight, made on June 12, was to expand the flutter envelope. All of these missions launched from the NASA B-52. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than

  17. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  18. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    Science.gov (United States)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, anairplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  19. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  20. Imagine the Universe!

    Science.gov (United States)

    White, N.

    2003-01-01

    Welcome to the 2004 edition of the education CD from the Laboratory for High Energy Astrophysics at NASA Goddard Space Flight Center. We hope that you will find it to be an exciting and fun learning experience. We have tried very hard to make this CD as user-friendly as possible and along the way we have discovered some things that every user may need to know. Please read the README file found on the CD if you have any questions or problems using the disk. Then, after that, if you still have problems, email us at itu@athena.gsfc.nasa.gov. We will be happy to help you 'get going'! Below are links to all of the sites included on the CD. You will also find the addresses for the on-line version of each of these sites. If you have a good Internet connection available, we recommend that you view the sites on-line. There you will find the latest updated information, interactive activities, and active links to other sites. Included on the disk are: Imagine The Universe! This site is dedicated to a discussion about our Universe... what we know about it, how it is evolving, and the kinds of objects and phenomena it contains. Emphasizing the X-ray and gamma-ray parts of the electromagnetic spectrum, it also discusses how scientists know what they know, what mysteries remain, and how the answers to remaining mysteries may one day be found. Lots of movies, quizzes, and a special section for educators. Geared for ages 14 and up. This site can be viewed on-line at http://imagine.gsfc.nasa.gov/. StarChild: A learning center for young astronomers The 1998 Webby Award Winner for Best Education Website, StarChild is aimed at ages 4-14. It contains easy-to-understand information about our Solar System, the Universe, and space exploration. There are also activities, songs, movies, and puzzles! This site can be viewed on-line at http://starchild.gsfc.nasa.gov/. Astronomy Picture of the Day APOD offers a new astronomical image and caption each calendar day. We have captured the year 2003

  1. A knowledge-based flight status monitor for real-time application in digital avionics systems

    Science.gov (United States)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  2. The Real Time Interactive Display Environment (RTIDE), a display building tool developed by Space Shuttle flight controllers

    Science.gov (United States)

    Kalvelage, Thomas A.

    1989-01-01

    NASA's Mission Control Center, located at Johnson Space Center, is incrementally moving from a centralized architecture to a distributed architecture. Starting with STS-29, some host-driven console screens will be replaced with graphics terminals driven by workstations. These workstations will be supplied realtime data first by the Real Time Data System (RTDS), a system developed inhouse, and then months later (in parallel with RTDS) by interim and subsequently operational versions of the Mission Control Center Upgrade (MCCU) software package. The Real Time Interactive Display Environment (RTIDE) was built by Space Shuttle flight controllers to support the rapid development of multiple new displays to support Shuttle flights. RTIDE is a display building tool that allows non-programmers to define object-oriented, event-driven, mouseable displays. Particular emphasis was placed on upward compatibility between RTIDE versions, ability to acquire data from different data sources, realtime performance, ability to modularly upgrade RTIDE, machine portability, and a clean, powerful user interface. The operational and organizational factors that drove RTIDE to its present form, the actual design itself, simulation and flight performance, and lessons learned in the process are discussed.

  3. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  4. High contrast vacuum nuller testbed (VNT) contrast, performance, and null control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-09-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal plane region extending from 1 - 4 λ/D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. The VNC is a hybrid interferometric/coronagraphic approach for exoplanet science. It operates with high Lyot stop efficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential future NASA flight telescopes. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop the VNC and its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and its enabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry to unprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a “W” configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, critical technologies and null sensing and control.

  5. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    Science.gov (United States)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  6. Visible nulling coronagraph testbed results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Petrone, Peter; Madison, Timothy; Rizzo, Maxime; Melnick, Gary; Tolls, Volker

    2009-08-01

    We report on our recent laboratory results with the NASA/Goddard Space Flight Center (GSFC) Visible Nulling Coronagraph (VNC) testbed. We have experimentally achieved focal plane contrasts of 1 x 108 and approaching 109 at inner working angles of 2 * wavelength/D and 4 * wavelength/D respectively where D is the aperture diameter. The result was obtained using a broadband source with a narrowband spectral filter of width 10 nm centered on 630 nm. To date this is the deepest nulling result with a visible nulling coronagraph yet obtained. Developed also is a Null Control Breadboard (NCB) to assess and quantify MEMS based segmented deformable mirror technology and develop and assess closed-loop null sensing and control algorithm performance from both the pupil and focal planes. We have demonstrated closed-loop control at 27 Hz in the laboratory environment. Efforts are underway to first bring the contrast to > 109 necessary for the direct detection and characterization of jovian (Jupiter-like) and then to > 1010 necessary for terrestrial (Earth-like) exosolar planets. Short term advancements are expected to both broaden the spectral passband from 10 nm to 100 nm and to increase both the long-term stability to > 2 hours and the extent of the null out to a ~ 10 * wavelength / D via the use of MEMS based segmented deformable mirror technology, a coherent fiber bundle, achromatic phase shifters, all in a vacuum chamber at the GSFC VNC facility. Additionally an extreme stability textbook sized compact VNC is under development.

  7. Using the Process and Excitement of Science and Technology to Empower Teachers and Engage their Students

    Science.gov (United States)

    Crannell, Carol Jo

    2002-01-01

    Students United with NASA Becoming Enthusiastic About Math and Science (SUNBEAMS) is a Partnership between NASA Goddard Space Flight Center (GSFC) and the District of Columbia Public Schools (DCPS). It empowers teachers and inspires students with the process and excitement of science and technology. SUNBEAMS is being developed as a model urban intervention program for sixth grade teachers and their students. The teachers come to Goddard for five weeks during the summer. They partner with Goddard mentors and work much the same way that summer students do. In addition, the teachers are responsible for developing lesson plans that they pilot at their schools and post on the SUNBEAMS web site. During the school year, each teacher brings one class to Goddard for a full week of total immersion in math and science.

  8. XA readout chip characteristics and CdZnTe spectral measurements

    International Nuclear Information System (INIS)

    Barbier, L.M.; Birsa, F.; Odom, J.

    1999-01-01

    The authors report on the performance of a CdZnTe (CZT) array readout by an XA (X-ray imaging chip produced at the AMS foundry) application specific readout chip (ASIC). The array was designed and fabricated at NASA/Goddard Space Flight Center (GSFC) as a prototype for the Burst Arc-Second Imaging and Spectroscopy gamma-ray instrument. The XA ASIC was obtained from Integrated Detector and Electronics (IDE), in Norway. Performance characteristics and spectral data for 241 Am are presented both at room temperature and at -20 C. The measured noise (σ) was 2.5 keV at 60 keV at room temperature. This paper represents a progress report on work with the XA ASIC and CZT detectors. Work is continuing and in particular, larger arrays are planned for future NASA missions

  9. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    Science.gov (United States)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  10. Design and Flight Performance of the Orion Pre-Launch Navigation System

    Science.gov (United States)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  11. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  12. Effects of Reynold's number on flight performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defense Agency Tokyo (Japan); Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1988-12-10

    Concerning the performance of the F3-30 turbofan engine which is carried on the intermediate trainer XT-4 of the Air Self Defense Force, tests simulating its flight conditions were conducted at the Altitude Test Facility (ATF) of the Arnold Engineering Development Center (AEDC), U.S. Air Force in order to adjust the effect of Reynold's number corresponding to the flight condition. This report summarizes the results of the above tests. As the results of the tests, it was revealed that in order to calculate with precision the flight performance of the F3-30 turbofan engine, it was required to adjust Reynold's number against the following figures, namely the fan air flow, compressor air flow, compressor adiabatic efficiency, low pressure turbine gas flow and low pressure turbine adiabatic efficiency. The engine performance calculated by using the above adjustments agreed well with the measured values of the ATF tests. 7 refs., 17 figs., 1 tab.

  13. Cognitive Assessment During Long-Duration Space Flight

    Science.gov (United States)

    Seaton, Kimberly; Kane, R. L.; Sipes, Walter

    2010-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a computer-based, self-administered battery of five cognitive assessment tests developed for medical operations at NASA's Johnson Space Center in Houston, Texas. WinSCAT is a medical requirement for U.S. long-duration astronauts and has been implemented with U.S. astronauts from one NASA/Mir mission (NASA-7 mission) and all expeditions to date on the International Space Station (ISS). Its purpose is to provide ISS crew surgeons with an objective clinical tool after an unexpected traumatic event, a medical condition, or the cumulative effects of space flight that could negatively affect an astronaut's cognitive status and threaten mission success. WinSCAT was recently updated to add network capability to support a 6-person crew on the station support computers. Additionally, WinSCAT Version 2.0.28 has increased difficulty of items in Mathematics, increased number of items in Match-to-Sample, incorporates a moving rather than a fixed baseline, and implements stricter interpretation rules. ISS performance data were assessed to compare initial to modified interpretation rules for detecting potential changes in cognitive functioning during space flight. WinSCAT tests are routinely taken monthly during an ISS mission. Performance data from these ISS missions do not indicate significant cognitive decrements due to microgravity/space flight alone but have shown decrements. Applying the newly derived rules to ISS data results in a number of off-nominal performances at various times during and after flight.. Correlation to actual events is needed, but possible explanations for off-nominal performances could include actual physical factors such as toxic exposure, medication effects, or fatigue; emotional factors including stress from the mission or life events; or failure to exert adequate effort on the tests.

  14. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    International Nuclear Information System (INIS)

    Lawson, A.C.; Smith, K.

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs

  15. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Smith, K. (comps.)

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs.

  16. Models of disordered media: some new results, including some new connections between composite-media, fluid-state, and random-flight theories

    International Nuclear Information System (INIS)

    Stell, G.

    1983-01-01

    Some new theoretical results on the microstructure of models of two-phase disordered media are given, as well as the new quantitative bounds on the thermal conductivity that follows for one such model (randomly centered spherical inclusions). A second set of results is then given for random flights, including random flights with hit expectancy prescribed in a unit hall around the flight origin. Finally, some interesting correspondences are demonstrated, via the Ornstein-Zernike equation, between random-flight results, liquid-state results and percolation-theory results. 27 references, 6 figures, 4 tables

  17. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  18. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access

  19. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  20. Configuration management issues and objectives for a real-time research flight test support facility

    Science.gov (United States)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  1. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  2. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    Science.gov (United States)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  3. Review of the High Performance Antiproton Trap (HiPAT) Experiment at the Marshall Space Flight Center

    Science.gov (United States)

    Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace

    2003-01-01

    The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various

  4. Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations. Volume 2; Appendices

    Science.gov (United States)

    Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.

    2015-01-01

    This NASA Engineering and Safety Center (NESC) assessment was established to develop a set of time histories for the flight behavior of increasingly complex example aerospacecraft that could be used to partially validate various simulation frameworks. The assessment was conducted by representatives from several NASA Centers and an open-source simulation project. This document contains details on models, implementation, and results.

  5. Lujan Center upgrade for cold moderators: current design and future options

    International Nuclear Information System (INIS)

    Ferguson, P. D.; Russell, G. J.; Pitcher, E. J.

    1997-09-01

    The upgraded Lujan Center target system is designed to be a split target with two tiers of moderators. The original suite of four moderators serving twelve flight paths has been optimized and an additional pair of moderators, one water and one LH 2 , have been added in a new upper moderator tier serving four additional flight paths. The upper moderators are partially coupled and viewed in backscattering geometry, as opposed to the decoupled moderators in the existing Lujan Center target system, which are viewed in transmission geometry. Fabrication of this new target system is currently in progress and installation is expected in 1998. The decoupling scheme for the upper moderator tier is documented. The neutronic performance of the two cold moderators is presented in the form of time and energy spectra with comparisons to the existing Lujan Center LH 2 moderator. Neutronic performance of a partially-coupled flux trap LH 2 moderator is also presented.

  6. Pathfinder-Plus on a flight in Hawaii

    Science.gov (United States)

    1998-01-01

    4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  7. Pathfinder-Plus on flight over Hawaiian Islands

    Science.gov (United States)

    1998-01-01

    days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  8. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  9. Weapon system simulation in flight (WaSiF)

    Science.gov (United States)

    Bartoldus, Klaus H.

    2005-05-01

    The research and technology demonstration program was co-funded by the Ministries of Defence of five European countries under the framework of the "EUropean Cooperation for the Long term in Defence" (EUCLID) MoU to include Germany, Italy, The Netherlands, Portugal and Turkey with considerable financial contribution from the industrial entities. EADS Military Aircraft Munich has led a team of seven industries and research centers, including Aermacchi of Italy, DutchSpace and NLR of The Netherlands, OGMA and INETI of Portugal and Marmara Research Center of Turkey. The purpose of the project was the design, realization and demonstration of an embedded real time simulation system allowing the combat training of operational aircrew in a virtual air defence scenario and threat environment against computer generated forces in the air and on the ground while flying on a real aircraft. The simulated scenario is focused on air-to-air beyond visual range engagements of fighter aircraft. WaSiF represents one of the first demonstrations of an advanced embedded real time training system onboard a fighter/training aircraft. The system is integrated onboard the MB339CX aircraft. The overall flight test activity covered a wide variety of test conditions for a total of 21 test flights; the operational airborne time of the WaSiF amounted to nearly 18 hours. The demonstration and evaluation were quite positive; the five-nation aircrew was very fond of their first encounter with the virtual world in the military flight training. A common view and approach towards Network Centric Warfare is but emerging. WaSiF in a future networked configuration holds lots of promise to serve the needs of Integrated Air Defence: Common training in a virtual environment.

  10. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    Science.gov (United States)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  11. Apollo 11 Astronaut Armstrong Arrives at the Flight Crew Training Building

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil Armstrong walks to the flight crew training building at the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  12. DAST Mated to B-52 in Flight - Close-up from Below

    Science.gov (United States)

    1977-01-01

    This photo shows a BQM-34 Firebee II drone being carried aloft under the wing of NASA's B-52 mothership during a 1977 research flight. The Firebee/DAST research program ran from 1977 to 1983 at the NASA Dryden Flight Research Center, Edwards, California. This is the original Firebee II wing. Firebee 72-1564 made three captive flights--on November 25, 1975; May 17, 1976; and June 22, 1977--in preparation for the DAST project with modified wings. These were for checkout of the Firebee's systems and the prelaunch procedures. The first two used a DC-130A aircraft as the launch vehicle, while the third used the B-52. A single free flight using this drone occurred on July 28, 1977. The remote (ground) pilot was NASA research pilot Bill Dana. The launch and flight were successful, and the drone was caught in midair by an HH-53 helicopter. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  13. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    , which are all tightly linked to the UAV flight controller hardware and software. The lack of standardization of flight controller architectures and the use of proprietary closed-source flight controllers on many UAV platforms, however, complicates this work: solutions developed for one flight controller...... may be difficult to port to another without substantial extra development and testing. Using open-source flight controllers mitigates some of these challenges and enables other researchers to validate and build upon existing research. This paper presents a survey of the publicly available open...

  14. The use of vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  15. Finding of No Significant Impact and Environmental Assessment for Flight Test to the Edge of Space

    Science.gov (United States)

    2008-12-01

    Runway 22 or on Rogers Dry Lakebed at Edwards AFB. 17 On the basis of the findings of the Environmental Assessment, no significant impact to human...FLIGHT TEST CENTER Environmental Assessment for Flight Test to the Edge of Space Page 5-3 Bowles, A.E., S. Eckert, L . Starke, E. Berg, L . Wolski, and...Numbers. Anne Choate, Laura 20 Pederson , Jeremy Scharfenberg, Henry Farland. Washington, D.C. September. 21 Jeppesen Sanderson, Incorporated 22

  16. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  17. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    Science.gov (United States)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2012-01-01

    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  18. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  19. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  20. Interferometric laser imaging for in-flight cloud droplet sizing

    International Nuclear Information System (INIS)

    Dunker, Christina; Roloff, Christoph; Grassmann, Arne

    2016-01-01

    A non-intrusive particle sizing method with a high spatial distribution is used to estimate cloud droplet spectra during flight test campaigns. The interferometric laser imaging for droplet sizing (ILIDS) method derives particle diameters of transparent spheres by evaluating the out-of-focus image patterns. This sizing approach requires a polarized monochromatic light source, a camera including an objective lens with a slit aperture, a synchronization unit and a processing tool for data evaluation. These components are adapted to a flight test environment to enable the microphysical investigation of different cloud genera. The present work addresses the design and specifications of ILIDS system, flight test preparation and selected results obtained in the lower and middle troposphere. The research platform was a Dornier Do228-101 commuter aircraft at the DLR Flight Operation Center in Braunschweig. It was equipped with the required instrumentation including a high-energy laser as the light source. A comprehensive data set of around 71 800 ILIDS images was acquired over the course of five flights. The data evaluation of the characteristic ILIDS fringe patterns relies, among other things, on a relationship between the fringe spacing and the diameter of the particle. The simplest way to extract this information from a pattern is by fringe counting, which is not viable for such an extensive number of data. A brief contrasting comparison of evaluation methods based on frequency analysis by means of fast Fourier transform and on correlation methods such as minimum quadratic difference is used to encompass the limits and accuracy of the ILIDS method for such applications. (paper)

  1. The Comparison Of In-Flight Pitot Static Calibration Method By Using Radio Altimeter As Reference with GPS and Tower Fly By Methods On CN235-100 MPA

    Science.gov (United States)

    Derajat; Hariowibowo, Hindawan

    2018-04-01

    The new proposed In-Flight Pitot Static Calibration Method has been carried out during Development and Qualification of CN235-100 MPA (Military Patrol Aircraft). This method is expected to reduce flight hours, less human resources required, no additional special equipment, simple analysis calculation and finally by using this method it is expected to automatically minimized operational cost. At The Indonesian Aerospace (IAe) Flight Test Center Division, the development and updating of new flight test technique and data analysis method as specially for flight physics test subject are still continued to be developed as long as it safety for flight and give additional value for the industrial side. More than 30 years, Flight Test Data Engineers at The Flight Test center Division work together with the Air Crew (Test Pilots, Co-Pilots, and Flight Test Engineers) to execute the flight test activity with standard procedure for both the existance or development test techniques and test data analysis. In this paper the approximation of mathematical model, data reduction and flight test technique of The In-Flight Pitot Static Calibration by using Radio Altimeter as reference will be described and the test results had been compared with another methods ie. By using Global Position System (GPS) and the traditional method (Tower Fly By Method) which were used previously during this Flight Test Program (Ref. [10]). The flight test data case are using CN235-100 MPA flight test data during development and Qualification Flight Test Program at Cazaux Airport, France, in June-November 2009 (Ref. [2]).

  2. Perseus B over Edwards AFB on a Development Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely-piloted research aircraft, seen here during a test flight in April1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  3. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  4. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  5. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  6. The importance of being top-heavy: Intrinsic stability of flapping flight

    Science.gov (United States)

    Ristroph, Leif; Liu, Bin; Zhang, Jun

    2011-11-01

    We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object that freely hovers in a vertically oscillating airflow. Such a ``bug'' not only generates sufficient aerodynamic force to keep aloft but also robustly maintains balance during free-flight. Flow visualization reveals that both weight support and intrinsic stability result from the periodic shedding of dipolar vortices. Counter-intuitively, the observed pattern of vortex shedding suggests that stability requires a high center-of-mass, which we verify by comparing the performance of top- and bottom-heavy bugs. Finally, we visit a zoo of other flapping flyers, including Mary Poppins' umbrella, a flying saucer or UFO, and Da Vinci's helicopter.

  7. Command and Data Handling Flight Software test framework: A Radiation Belt Storm Probes practice

    Science.gov (United States)

    Hill, T. A.; Reid, W. M.; Wortman, K. A.

    During the Radiation Belt Storm Probes (RBSP) mission, a test framework was developed by the Embedded Applications Group in the Space Department at the Johns Hopkins Applied Physics Laboratory (APL). The test framework is implemented for verification of the Command and Data Handling (C& DH) Flight Software. The RBSP C& DH Flight Software consists of applications developed for use with Goddard Space Flight Center's core Flight Executive (cFE) architecture. The test framework's initial concept originated with tests developed for verification of the Autonomy rules that execute with the Autonomy Engine application of the RBSP C& DH Flight Software. The test framework was adopted and expanded for system and requirements verification of the RBSP C& DH Flight Software. During the evolution of the RBSP C& DH Flight Software test framework design, a set of script conventions and a script library were developed. The script conventions and library eased integration of system and requirements verification tests into a comprehensive automated test suite. The comprehensive test suite is currently being used to verify releases of the RBSP C& DH Flight Software. In addition to providing the details and benefits of the test framework, the discussion will include several lessons learned throughout the verification process of RBSP C& DH Flight Software. Our next mission, Solar Probe Plus (SPP), will use the cFE architecture for the C& DH Flight Software. SPP also plans to use the same ground system as RBSP. Many of the RBSP C& DH Flight Software applications are reusable on the SPP mission, therefore there is potential for test design and test framework reuse for system and requirements verification.

  8. Implementation of a virtual link between power system testbeds at Marshall Spaceflight Center and Lewis Research Center

    Science.gov (United States)

    Doreswamy, Rajiv

    1990-01-01

    The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.

  9. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  10. Wind Tunnel Measurements of Shuttle Orbiter Global Heating with Comparisons to Flight

    Science.gov (United States)

    Berry, Scott A.; Merski, N. Ronald; Blanchard, Robert C.

    2002-01-01

    An aerothermodynamic database of global heating images was acquired of the Shuttle Orbiter in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. These results were obtained for comparison to the global infrared images of the Orbiter in flight from the infrared sensing aeroheating flight experiment (ISAFE). The most recent ISAFE results from STS-103, consisted of port side images, at hypersonic conditions, of the surface features that result from the strake vortex scrubbing along the side of the vehicle. The wind tunnel results were obtained with the phosphor thermography system, which also provides global information and thus is ideally suited for comparison to the global flight results. The aerothermodynamic database includes both windward and port side heating images of the Orbiter for a range of angles of attack (20 to 40 deg), freestream unit Reynolds number (1 x 10(exp 6))/ft to 8 x 10(exp 6)/ft, body flap deflections (0, 5, and 10 deg), speed brake deflections (0 and 45 deg), as well as with boundary layer trips for forced transition to turbulence heating results. Sample global wind tunnel heat transfer images were extrapolated to flight conditions for comparison to Orbiter flight data. A windward laminar case for an angle of attack of 40 deg was extrapolated to Mach 11.6 flight conditions for comparison to STS-2 flight thermocouple results. A portside wind tunnel image for an angle of attack of 25 deg was extrapolated for Mach 5 flight conditions for comparison to STS-103 global surface temperatures. The comparisons showed excellent qualitative agreement, however the extrapolated wind tunnel results over-predicted the flight surface temperatures on the order of 5% on the windward surface and slightly higher on the portside.

  11. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  12. Manpower Requirements for Air Traffic Control and Flight Service Specialists in Indiana.

    Science.gov (United States)

    Purdue Univ., Lafayette, IN. Office of Manpower Studies.

    As of January 1, 1968 the Federal Aviation Administration (FAA) of the United States Department of Transportation employed 6,963 controllers in airport towers, 7,617 controllers in Air Route Traffic Control Centers, and 4,459 flight service specialists at airport locations. Projected needs are as follows: (1) Controllers in airport towers:…

  13. A Student-Friendly Graphical User Interface to Extract Data from Remote Sensing Level-2 Products.

    Science.gov (United States)

    Bernardello, R.

    2016-02-01

    Remote sensing era has provided an unprecedented amount of publicly available data. The United States National Aeronautics and Space Administration Goddard Space Flight Center (NASA-GSFC) has achieved remarkable results in the distribution of these data to the scientific community through the OceanColor web page (http://oceancolor.gsfc.nasa.gov/). However, the access to these data, is not straightforward and needs a certain investment of time in learning the use of existing software. Satellite sensors acquire raw data that are processed through several steps towards a format usable by the scientific community. These products are distributed in Hierarchical Data Format (HDF) which often represents the first obstacle for students, teachers and scientists not used to deal with extensive matrices. We present here SATellite data PROcessing (SATPRO) a newly developed Graphical User Interface (GUI) designed in MATLAB environment to provide an easy, immediate yet reliable way to select and extract Level-2 data from NASA SeaWIFS and MODIS-Aqua databases for oceanic surface temperature and chlorophyll. Since no previous experience with MATLAB is required, SATPRO allows the user to explore the available dataset without investing any software-learning time. SATPRO is an ideal tool to introduce undergraduate students to the use of remote sensing data in oceanography and can also be useful for research projects at the graduate level.

  14. [Scientific and research experimentation center of aviation and space medicine and human engineeing celebrates 80th anniversary].

    Science.gov (United States)

    Zhdanko, I M; Vorona, A A; Lapa, V V; Khomenko, M N

    2015-03-01

    The article is devoted to the history of the Research Test Center Aviation and Space Medicine and military ergonomics, now included in the Central Research Institute of the Air Force Defense Ministry. The center throughout 80 years history is a leding research organization in the country for the integrated study of the human factor in aviation and problems connected with it. The world-famous scientific schools in aviation physiology, hygiene and radiolorgy, emergency medicine, aviation psychology and ergonomics have been grounded on the basis of this center. With a high qualified scientific staff and laboratory-and-bench-scale base including unique seminatural airplanes and helicopters complexes, posters and installation simulating the impact of flight factors (centrifuge, hyperbaric chambers, shakenr vestibulyar-WIDE stands, etc.) the center has. successfully slved tasks concerning an improvement of flight crews protection from occupational hazards, ergonomic demands to capabilities of aircraft, professional and psycho-physiological training. Automatic systems of medical decision-making on assessment of the health status in the medical-flight expertise and dynamic medical supervision, planning, treatment and preventive and remedial actions aircrew training are currently 'being developed

  15. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  16. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    Science.gov (United States)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    that performance on the closed-loop tilt control task will be improved with this tactile display feedback of tilt orientation. The current plans include testing on eight crewmembers following Space Shuttle missions or short stay onboard the International Space Station. Measurements are obtained pre-flight at L-120 (plus or minus 30), L-90 (plus or minus 30), and L-30, (plus or minus 10) days and post-flight at R+0, R+1, R+2 or 3, R+4 or 5, and R+8 days. Pre-and post-flight testing (from R+1 on) is performed in the Neuroscience Laboratory at the NASA Johnson Space Center on both the Tilt-Translation Device and a variable radius centrifuge. A second variable radius centrifuge, provided by DLR for another joint ESA-NASA project, has been installed at the Baseline Data Collection Facility at Kennedy Space Center to collect data immediately after landing. ZAG was initiated with STS-122/1E and the first post-flight testing will take place after STS-123/1JA landing.

  17. Hyper-X Research Vehicle - Artist Concept in Flight with Scramjet Engine Firing

    Science.gov (United States)

    1997-01-01

    This is an artist's depiction of a Hyper-X research vehicle under scramjet power in free-flight following separation from its booster rocket. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need

  18. ELBE Center for High-Power Radiation Sources

    Directory of Open Access Journals (Sweden)

    Peter Dr. Michel

    2016-01-01

    Full Text Available In the ELBE Center for High-Power Radiation Sources, the superconducting linear electron accelerator ELBE, serving  two free electron lasers, sources for intense coherent THz radiation, mono-energetic positrons, electrons, γ-rays, a neutron time-of-flight system as well as two synchronized ultra-short pulsed Petawatt laser systems are collocated. The characteristics of these beams make the ELBE center a unique research instrument for a variety of external users in fields ranging from material science over nuclear physics to cancer research, as well as scientists of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  19. Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    Science.gov (United States)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2003-01-01

    The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to

  20. Flow structures around a beetle in a tethered flight

    Science.gov (United States)

    Lee, Boogeon; Oh, Sehyeong; Park, Hyungmin; Choi, Haecheon

    2017-11-01

    In the present study, through a wind-tunnel experiment, we visualize the flow in a tethered flight of a rhinoceros beetle using a smoke-wire visualization technique. Measurements are done at five side planes along the wind span while varying the body angle (angle between the horizontal and the body axis) to investigate the influence of the stroke plane angle that was observed to change depending on the flight mode such as hovering, forward and takeoff flights so on. Observing that a large attached leading-edge vortex is only found on the hindwing, it is inferred that most of the aerodynamic forces would be generated by hindwings (flexible inner wings) compared to the elytra (hard outer wings). In addition, it is observed to use unsteady lift-generating mechanisms such as clap-and-fling, wing-wing interaction and wake capture. Finally, we discuss the relation between the advance ratio and Strouhal number by adjusting free-stream velocity and the body angle (i.e., angle of wake-induced flow). Supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by ADD, Korea (UD130070ID).

  1. Public Support As A Center Of Gravity For National Space Power

    Science.gov (United States)

    2014-04-01

    Advisors: Doctor Dale Hayden Lieutenant Colonel David Hanson Major Mark Ciesel Major Carrie Chappell Maxwell Air Force Base, Alabama...2011. Wechsler , Jill. The Role of GPS in Precise Time and Frequency Dissemination. 1990. http://ilrs.gsfc.nasa.gov/docs/timing/gpsrole.pdf

  2. NASA Astrophysics Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Strategic Technology Development Program

    Science.gov (United States)

    Pham, Thai; Seery, Bernard D.

    2015-01-01

    The COR and PCOS Program Offices (PO) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions.The PO is guided by the National Research Council's 'New Worlds, New Horizons in Astronomy and Astrophysics' Decadal Survey report, and NASA's Astrophysics Implementation Plan. Strategic goals include dark energy; gravitational waves; X-ray observatories, e.g., US participation in ATHENA; Inflation probe; and a large UV/Visible telescope.To date, 51 COR and 65 PCOS SAT proposals have been received, of which 11 COR and 18 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2 that allowed measurement of B-mode polarization in the CMB signal, a possible signature of Inflation; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects. These include five newly selected projects, kicking off in FY 2015.For more information, visit the COR Program website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  3. Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids

    Science.gov (United States)

    Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L.; Zwart, Sara R.

    2012-01-01

    Context: Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. Objective: The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Design: Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Setting: Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. Participants: All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Main Outcome Measures: Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Results: Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. Conclusions: There was no evidence for decrements in testosterone during long-duration space flight or bed rest. PMID:22049169

  4. Center for risk research: A review of work 1988-1991

    International Nuclear Information System (INIS)

    Sjoeberg, L.

    1992-01-01

    This report gives a summary of the research published during the first 4 years of the Center for Risk Research at the Stockholm School of Economics. Risk research carried out so far at the Center has been concerned with mapping of attitudes and risk perceptions with regard to nuclear risks, AIDS, military flight risks, and economic risks. There has also been some methodological work and some work on the relationship between risk perception and interests

  5. Center for risk research: A review of work 1988-1991

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, L

    1992-01-01

    This report gives a summary of the research published during the first 4 years of the Center for Risk Research at the Stockholm School of Economics. Risk research carried out so far at the Center has been concerned with mapping of attitudes and risk perceptions with regard to nuclear risks, AIDS, military flight risks, and economic risks. There has also been some methodological work and some work on the relationship between risk perception and interests.

  6. A satellite-based global landslide model

    Directory of Open Access Journals (Sweden)

    A. Farahmand

    2013-05-01

    Full Text Available Landslides are devastating phenomena that cause huge damage around the world. This paper presents a quasi-global landslide model derived using satellite precipitation data, land-use land cover maps, and 250 m topography information. This suggested landslide model is based on the Support Vector Machines (SVM, a machine learning algorithm. The National Aeronautics and Space Administration (NASA Goddard Space Flight Center (GSFC landslide inventory data is used as observations and reference data. In all, 70% of the data are used for model development and training, whereas 30% are used for validation and verification. The results of 100 random subsamples of available landslide observations revealed that the suggested landslide model can predict historical landslides reliably. The average error of 100 iterations of landslide prediction is estimated to be approximately 7%, while approximately 2% false landslide events are observed.

  7. Development of computer software to analyze entire LANDSAT scenes and to summarize classification results of variable-size polygons

    Science.gov (United States)

    Turner, B. J. (Principal Investigator); Baumer, G. M.; Myers, W. L.; Sykes, S. G.

    1981-01-01

    The Forest Pest Management Division (FPMD) of the Pennsylvania Bureau of Forestry has the responsibility for conducting annual surveys of the State's forest lands to accurately detect, map, and appraise forest insect infestations. A standardized, timely, and cost-effective method of accurately surveying forests and their condition should enhance the probability of suppressing infestations. The repetitive and synoptic coverage provided by LANDSAT (formerly ERTS) makes such satellite-derived data potentially attractive as a survey medium for monitoring forest insect damage over large areas. Forest Pest Management Division personnel have expressed keen interest in LANDSAT data and have informally cooperated with NASA/Goddard Space Flight Center (GSFC) since 1976 in the development of techniques to facilitate their use. The results of this work indicate that it may be feasible to use LANDSAT digital data to conduct annual surveys of insect defoliation of hardwood forests.

  8. Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)

    Science.gov (United States)

    Kurrus, R.; Stump, F.

    1995-01-01

    The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.

  9. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    Science.gov (United States)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  10. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    Science.gov (United States)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  11. Near Earth Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  12. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    Science.gov (United States)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  13. The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G

    Science.gov (United States)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2016-12-01

    Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.

  14. Pathfinder-Plus takes off on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  15. The Scintillation Prediction Observations Research Task (SPORT): A Multinational Science Mission using a CubeSat

    Science.gov (United States)

    Spann, J. F.; Habash Krause, L.; Swenson, C.; Heelis, R. A.; Bishop, R. L.; Le, G.; Abdu, M. A.; Durão, O.; Loures, L.; De Nardin, C. M.; Shibuya, L.; Casas, J.; Nash-STevenson, S.; Muralikrishana, P.; Costa, J. E. R.; Wrasse, C. M.; Fry, C. D.

    2017-12-01

    The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat pathfinder mission to address the very compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at the Jicamarca Radio Observatory from Peru, a single site, within a single longitude sector. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to allow us to understand the differences between geography and magnetic geometry. This talk will present an overview of the mission and the anticipated data products. Products include global maps of scintillation occurrence as a function of local time, and magnetic conjugacy occurrence observations. SPORT is a multinational partnership between NASA, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA). It has been encouraged by U.S. Southern Command (SOUTHCOM) to foster increased cooperation and ties between academics, civilian space programs and the militaries. NASA Marshall Space Flight Center is coordinating this investigation by overseeing the launch to orbit and the flight instruments, which are being built by the Aerospace Corporation, University of Texas Dallas, Utah State University, and NASA Goddard Space Flight Center. The Brazilian partners are contributing the spacecraft, observatory integration and test, ground observation networks, and mission operations and data management. The science data will be distributed from and archived at the INPE/EMBRACE regional space-weather forecasting center in Brazil, and mirrored at the NASA GSFC Space Physics Data Facility (SPDF).

  16. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    Science.gov (United States)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  17. Advancing satellite operations with intelligent graphical monitoring systems

    Science.gov (United States)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1993-01-01

    For nearly twenty-five years, spacecraft missions have been operated in essentially the same manner: human operators monitor displays filled with alphanumeric text watching for limit violations or other indicators that signal a problem. The task is performed predominately by humans. Only in recent years have graphical user interfaces and expert systems been accepted within the control center environment to help reduce operator workloads. Unfortunately, the development of these systems is often time consuming and costly. At the NASA Goddard Space Flight Center (GSFC), a new domain specific expert system development tool called the Generic Spacecraft Analyst Assistant (GenSAA) has been developed. Through the use of a highly graphical user interface and point-and-click operation, GenSAA facilitates the rapid, 'programming-free' construction of intelligent graphical monitoring systems to serve as real-time, fault-isolation assistants for spacecraft analysts. Although specifically developed to support real-time satellite monitoring, GenSAA can support the development of intelligent graphical monitoring systems in a variety of space and commercial applications.

  18. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  19. Reusing Information Management Services for Recommended Decadal Study Missions to Facilitate Aerosol and Cloud Studies

    Science.gov (United States)

    Kempler, Steve; Alcott, Gary; Lynnes, Chris; Leptoukh, Greg; Vollmer, Bruce; Berrick, Steve

    2008-01-01

    NASA Earth Sciences Division (ESD) has made great investments in the development and maintenance of data management systems and information technologies, to maximize the use of NASA generated Earth science data. With information management system infrastructure in place, mature and operational, very small delta costs are required to fully support data archival, processing, and data support services required by the recommended Decadal Study missions. This presentation describes the services and capabilities of the Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) and the reusability for these future missions. The GES DISC has developed a series of modular, reusable data management components currently in use. They include data archive and distribution (Simple, Scalable, Script-based, Science [S4] Product Archive aka S4PA), data processing (S4 Processor for Measurements aka S4PM), data search (Mirador), data browse, visualization, and analysis (Giovanni), and data mining services. Information management system components are based on atmospheric scientist inputs. Large development and maintenance cost savings can be realized through their reuse in future missions.

  20. An alternate and reversible method for flight restraint of cranes.

    Science.gov (United States)

    Zhang, Sen Lin; Yang, Shu Hui; Li, Bing; Xu, Yan Chun; Ma, Jian Hua; Xu, Jian Feng; Zhang, Xian Guang

    2011-01-01

    Flight restraint is important for zoos, safaris, and breeding centers for large birds. Currently used techniques for flight restraint include both surgical and non-surgical approaches. Surgical approaches usually cause permanent change to or removal of tendon, patagial membrane, or wing bones, and can cause pain and inflammation. Non-surgical approaches such as clipping or trimming feathers often alter the bird's appearance, and can damage growing blood feathers in fledglings or cause joint stiffness. We observed microstructure of primary feathers of the red-crowned crane (Grus japonensis) and found that the width of barbs is a determinative factor influencing vane stiffness and geometric parameters. We hypothesized that partial longitudinal excision of barbs on the ventral surface of the primary feathers would reduce the stiffness of the vane and render the feathers unable to support the crane's body weight during flight. Furthermore, we hypothesized that this modification of barbs would also change the aerodynamic performance of feathers such that they could not generate sufficient lift and thrust during flapping to enable the bird to fly. We tested this hypothesis on a red-crowned crane that had normal flight capability by excising the ventral margin of barbs on all 10 primaries on the left wing. The bird was unable to take off until the modified feathers were replaced by new ones. Removal of barbs proved to be a simple, non-invasive, low-cost and reversible method for flight restraint. It is potentially applicable to other large birds with similar structural characteristics of primary feathers. © 2010 Wiley-Liss, Inc.