WorldWideScience

Sample records for flibe systems thermofluid

  1. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF{sub 2}, commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  2. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  3. Numerical Analyses of a single-phase natural convection system for Molten Flibe using MARS-FLIBE code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    These advantages make the MSR attractive and to be one of the six candidates for the Generation IV Reactor. Therefore, the researches related to the MSR are being conducted. To analyze the molten salt-cooled systems in the laboratory, this study generated the properties of molten salt using MARS-LMR. In this research, the implemented salts were Flibe (LiF-BeF{sub 2}) in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. Table 1 indicates the comparison of thermal properties of various coolants in nuclear power plants. Molten salt was added to the MARS-LMR code to support the analysis of Flibe-cooled systems. The molten salt includes LiF-BeF{sub 2} in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. MARS-LMR code for liquid metals uses the soft sphere model based on Monte Carlo calculations for particles interacting with pair potentials. Although MARS was originally intended for a safety analysis of light water reactor, Flibe properties were newly added to this code as so-called MARS-FLIBE which is applicable for Flibe-cooled systems. By using this thermodynamic property table file, the thermal hydraulic systems of Flibe can be simulated for numerical and parametric studies. In this study, the natural convection phenomena in the rectangular natural convection loop and IVR-ERVC in APR 1400 were simulated. Through the simulations in Flibe-cooled systems, the temperature distribution and mass flowrate of Flibe can be calculated and the heat transfer coefficients of Flibe in natural convection loop will be calculated by adding the related heat transfer correlations in the MARS-FLIBE code. MARS-FLIBE code will be used to predict and design of Flibe-cooled systems.

  4. Flibe-D2 Permeation Experiment and Analysis

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Pawelko, R.J.; Smolik, G.R.; Schuetz, S.T.; O'Brien, J.E.; Nishimura, H.; Hatano, Y.; Terai, T.; Petti, D.A.; Sze, D.-K.; Tanaka, S.

    2003-01-01

    Experiment of D 2 permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment is proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 permeation experiment without Flibe, (iii) a dual-probe Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ni/Flibe/D 2 permeation experiment, and (vii) Ni/Flibe/HT permeation experiment. The present paper describes results of the single and dual Ni/D 2 permeation experiments in detail

  5. Deuterium permeation through Flibe facing materials

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Smolik, G.R.

    2004-01-01

    Experiment of deuterium permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment has been proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 , permeation experiment without Flibe, (iii) a dual-probe Ar/Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ar/Ni/Flibe/Ni/D 2 permeation experiment using the dual Ni probe, and (vii) Ar/Ni/Flibe/Ni/HT permeation experiment. The present paper describe results until the Ar/Ni/Flibe/Ni/D 2 permeation experiment in detail. (author)

  6. Flibe Use in Fusion Reactors - An Initial Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles; Longhurst, Glen Reed

    1999-04-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF2) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  7. Flibe use in fusion reactors: An initial safety assessment

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Longhurst, G.R.

    1999-01-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF 2 ) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material

  8. Flibe use in fusion reactors -- An initial safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.; Longhurst, G.R.

    1999-03-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF{sub 2}) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  9. Introduction to thermo-fluids systems design

    CERN Document Server

    Garcia McDonald, André

    2012-01-01

    A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone i

  10. A vacuum disengager for tritium removal from HYLIFE-II Reactor Flibe

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.; Garcia-Otero, E.

    1992-01-01

    We have designed a vacuum disengager system to remove tritium from the Flibe (Li 2 BeF 4 ) molten salt coolant of the HYLIFE-II fusion reactor. There is a two-stage vacuum disengager in each of three intermediate heat exchanger (IHX) loops. Each stage consists of a vacuum chamber 4 m in diameter and 7 m tall. As 0.2 mm diameter molten salt droplets fall vertically downward into the vacuum, most of the tritium diffuses out of the droplets and is pumped away. A fraction Φ ∼10 -5 of the 8.6 MCi/day tritium source (from breeding in the Flibe and from unburned fuel) remains in the Flibe as it leaves the vacuum disengagers, and about 21% of that permeates into the intermediate coolant loop, so about 20 Ci/day leak into the steam system. With Flibe primary coolant and a vacuum disengager, it appears that an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate Flibe vacuum disengager operation

  11. Electrochemical approach to corrosion behavior of ferritic steels in Flibe melt

    International Nuclear Information System (INIS)

    Nishimura, H.; Suzuki, A.; Terai, T.; Kondo, M.; Sagara, A.; Noda, N.

    2007-01-01

    Full text of publication follows: A mixture of LiF-BeF 2 , Flibe, is considered as a candidate material for tritium breeding in a fusion liquid blanket. Flibe has favorable characteristics such as high chemical stability and low electric conductivity. However, it produces TF with neutron irradiation, which is corrosive to structural materials. Therefore, the compatibility of structural materials with Flibe is a critical issue. Up to the present, the compatibility of some materials with Flibe was examined by carrying out simple immersion tests under limited conditions. By visual observations and analyses such as XRD on the surfaces after washing out Flibe from specimens, it was found that ferritic steels seemed to have good compatibility. However, strictly speaking, surface condition of the specimens should not be same as that during immersion in melt because these specimens were subjected to heat treatments and washing processes in order to remove solidified Flibe. Therefore, we planed electrochemical experiment to observe corrosion behavior during immersion. In this study, by carrying out cyclic voltammetry on specimens to observe alteration of surface condition of specimen in Flibe melt from moment to moment, the compatibility of ferritic steel with Flibe melt was discussed on. JLF-1 JOYO-II heat ferritic steel (Fe-9.000r-1.98W-0.09C-0.49Mn-0.20V-0.083Ta) which is a candidate low activation ferritic steel as a structural material of fusion reactor was chosen as a test specimen. Fe-9Cr and Fe-2W alloys were also chosen for comparison. The size of all specimens was 20 x 10 x 1 mm. A electrochemical cell was assembled using these specimens as working electrodes. Pt was chosen as a material for quasi-reference electrode. A Ni crucible which was the container of electrolyte, Flibe, was used as a counter electrode. 600 grams of Flibe was prepared and purified by HF/H 2 bubbling before being filled in the Ni crucible. Each specimen was dunked into Flibe at 773, 823 and

  12. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  13. The equation of state of liquid Flibe

    International Nuclear Information System (INIS)

    Chen, Xiang M.; Schrock, V.E.; Peterson, P.F.

    1991-01-01

    Flibe (Li 2 BeF 4 ) is a candidate material for the liquid blanket in the HYLIFE-2 fusion reactor. The thermodynamic properties of the material are important for the study of thermohydraulic behavior of the concept design, including the compressible analysis of the blanket isochoric heating problem and resulting jet breakup. The equation of state provides the relationship between all the thermodynamic properties. Previously, a soft sphere model of liquid equation of state was used for describing a number of liquid metals. In this paper we have fitted the available experimental data for liquid Flibe with a modified soft sphere model. 5 refs

  14. The soft-sphere equation of state for liquid Flibe

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1992-01-01

    Molten Flibe (Li 2 BeF 4 ) salt is a candidate material for the liquid blanket in the HYLIFE-II inertial confinement fusion reactor. The thermodynamic properties of the liquid are very important for the study of the thermohydraulic behavior of the concept design, particularly, the compressible analysis of the blanket isochoric heating problem. In this paper, a soft sphere model equation of state, which was used for describing liquid metals previously, is deployed with slight modifications for fitting the available experimental data for liquid Flibe. It is found that within the available temperature range the model gives a good agreement with experimental data for density, enthalpy and speed of sound. Additionally the model provides reasonable isotherms, spinodal line and predicts a 'critical point'. The results show that the model has good thermodynamic behavior, although for a material like Flibe the 'critical point' phenomenon is more complex than for pure component material

  15. Evaluation of heat transfer characteristics of a sphere-packed pipe for Flibe blanket

    International Nuclear Information System (INIS)

    Watanabe, Atsushi; Ebara, Shinji; Sagara, Akio; Hashizume, Hidetoshi

    2013-01-01

    A Flibe blanket has been proposed to be used in FFHR. Since Flibe has poor heat transfer performance, heat transfer promoter is required, and a sphere-packed pipe (SPP) has been proposed to enhance the heat transfer performance in the Flibe blanket. In this paper, the fluid flow and heat transfer characteristics in the SPP is evaluated numerically using a k–ε turbulent model for the flow field and an algebraic model for the thermal field. As a result, it was shown that bypass flows in the SPP play a significant role in heat transfer. Also it is thought that the turbulent energy can strongly affect heat transfer performance

  16. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    Science.gov (United States)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  17. SEVERAL PROBLEMS IN THERMOFLUID DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    过增元

    1991-01-01

    A new cross-discipline, the thermofluid dynamics, has been established, which is relatedto heat transfer, fluid dynamics and thermodynamics with emphasis on the effect of thermalprocess on fluid flow. Its subject areas are (i) thermal drag, (ii) thermal roundabout flow,(iii) thermal drive and thermal instability, and (iv) thermal optimization.

  18. A consistent model for the equilibrium thermodynamic functions of partially ionized flibe plasma with Coulomb corrections

    International Nuclear Information System (INIS)

    Zaghloul, Mofreh R.

    2003-01-01

    Flibe (2LiF-BeF2) is a molten salt that has been chosen as the coolant and breeding material in many design studies of the inertial confinement fusion (ICF) chamber. Flibe plasmas are to be generated in the ICF chamber in a wide range of temperatures and densities. These plasmas are more complex than the plasma of any single chemical species. Nevertheless, the composition and thermodynamic properties of the resulting flibe plasmas are needed for the gas dynamics calculations and the determination of other design parameters in the ICF chamber. In this paper, a simple consistent model for determining the detailed plasma composition and thermodynamic functions of high-temperature, fully dissociated and partially ionized flibe gas is presented and used to calculate different thermodynamic properties of interest to fusion applications. The computed properties include the average ionization state; kinetic pressure; internal energy; specific heats; adiabatic exponent, as well as the sound speed. The presented results are computed under the assumptions of local thermodynamic equilibrium (LTE) and electro-neutrality. A criterion for the validity of the LTE assumption is presented and applied to the computed results. Other attempts in the literature are assessed with their implied inaccuracies pointed out and discussed

  19. Thermo-fluid behaviour of periodic cellular metals

    CERN Document Server

    Lu, Tian Jian; Wen, Ting

    2013-01-01

    Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach.  The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...

  20. Flibe blanket concept for transmuting transuranic elements and long lived fission products

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful

  1. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  2. Compatibility studies of copper, brass and cupronickel with Hytherm-500 thermofluid

    International Nuclear Information System (INIS)

    Pujar, M.G.; Dayal, R.K.; Gnanamoorthy, J.B.

    1989-01-01

    Carbon steel used as a structural material in thermofluid/water heat exchangers in the Fast Breeder Test Reactor (FBTR) got perforated resulting in leakage. To suggest an alternative better corrosion resistant material for these exchangers, corrosion resistance studies of copper based alloy systems in both a s received and pickled conditions were carried out in the thermofluid medium (Hytherm-500) at room temperature (∼298 K), 373 K and 423 K upto 500 h duration. The tested materials, copper, admiralty brass and 70/30 cupronickel were found to have excellent corrosion resistance in both as-received and pickled conditions. In all the cases corrosion rates decreased with increased duration of exposure. All the above materials showed better corrosion resistance in pickled condition compared to that in as-received condition. The relative corrosion resistance of these three alloys was as follows: admiralty brass > cop per > cupronickel. This trend in the corrosion resistance was observed in both as-received and pickled conditions. In general, the corrosion resistance in pickled condition was found to be better than that in as-received condition. (author). 3 refs., 3 figs., 2 tabs

  3. Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER

    International Nuclear Information System (INIS)

    Acir, Adem

    2012-01-01

    In this paper, the effects of using FLiBe and FLiNaBe Molten Salts Bearing Plutonium Fluorides on the neutronic performance of the PACER are investigated. The optimum radial thickness for tritium self-sufficiency of the blankets addition of plutonium fluorides to FLiNaBe (LiF-/NaF BeF 2 ) and FLiBe (LiF-/BeF 2 ) of a dual purpose modified PACER concept are determined. The calculations are carried out with the one dimensional transport code XSDRNPM/SCALE5. The tritium breeding capacities of FLiNaBe and FLiBe with addition of plutonium fluorides in molten salt zone are investigated and compared. The optimum molten salt zone thickness is computed as 155 cm for tritium self-sufficiency of the blankets using FLiBe +1% PuF 4 whereas, the optimum thickness with FLiNaBe +1% PuF 4 is calculated as 170 cm. In addition, neutron transport calculations have been performed to evaluate the energy multiplication factor, total fission rate, displacement per atom and helium gas generation for optimal radial thickness in the blanket. Also, the tritium production and the radiation damage limits should be evaluated together in a fusion blanket for determining the optimum thickness of molten salt layer. (orig.)

  4. Contribution of thermo-fluid analyses to the LHC experiments

    CERN Document Server

    Gasser, G

    2003-01-01

    The big amount of electrical and electronic equipment that will be installed in the four LHC experiments will cause important heat dissipation into the detectors’ volumes. This is a major issue for the experimental groups, as temperature stability is often a fundamental requirement for the different sub-detectors to be able to provide a good measurement quality. The thermofluid analyses that are carried out in the ST/CV group are a very efficient tool to understand and predict the thermal behaviour of the detectors. These studies are undertaken according to the needs of the experimental groups; they aim at evaluate the thermal stability for a proposed design, or to compare different technical solutions in order to choose the best one for the final design. The usual approach to carry out these studies is first presented and then, some practical examples of thermo-fluid analyses are presented focusing on the main results in order to illustrate their contribution.

  5. Effects of physical properties on thermo-fluids cavitating flows

    Science.gov (United States)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  6. Sequential charged-particle and neutron activation of Flibe in the HYLIFE-II inertial fusion energy power plant design

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Tobin, M.T.; Vujic, J.L.; Sanz, J.

    1996-01-01

    Most radionuclide generation/depletion codes consider only neutron reactions and assume that charged particles, which may be generated in these reactions, deposit their energy locally without undergoing further nuclear interactions. Neglect of sequential charged-particle (x,n) reactions can lead to large underestimation in the inventories of radionuclides. PCROSS code was adopted for use with the ACAB activation code to enable calculation of the effects of (x,n) reactions upon radionuclide inventories and inventory-related indices. Activation calculations were made for Flibe (2LiF + BeF 2 ) coolant in the HYLIFE-II inertial fusion energy (IFE) power plant design. For pure Flibe coolant, it was found that (x,n) reactions dominate the residual contact dose rate at times of interest for maintenance and decommissioning. For impure Flibe, however, radionuclides produced directly in neutron reaction dominate the contact dose rate and (x,n) reactions do not make a significant contribution. Results demonstrate potential importance of (x,n) reactions and that the relative importance of (x,n) reactions varies strongly with the composition of the material considered. Future activation calculations should consider (x,n) reactions until a method for pre-determining their importance is established

  7. Quantitative measurement of beryllium-controlled redox of hydrogen fluoride in molten Flibe

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Smolik, Galen R.; Sharpe, John P.; Anderl, Robert A.; Petti, David A.; Hatano, Yuji; Hara, Masanori; Oya, Yasuhisa; Fukada, Satoshi; Tanaka, Satoru; Terai, Takayuki; Sze, Dai-Kai

    2006-01-01

    In order to investigate the viability of using Be as a redox agent in a molten Flibe (2LiF-BeF 2 ) blanket, a series of kinetics experiments were performed in which HF was bubbled through Flibe with varying concentrations of dissolved Be. The feed gas consisted of 910-1800 ppm HF and 0.1-0.2 vol.% H 2 , with the balance comprised of He. A cylindrical rod of Be was contacted with the salt for periods of time ranging from 600 to 3600 s, resulting in mole fractions in the salt ranging from 4.3 x 10 -5 to 2.6 x 10 -4 . Initially, high HF conversion levels in excess of 90% were observed. As HF reacted with the Be, the conversion levels slowly dropped over a period of several hours to a few days. A simple kinetic model, which is first order in both HF and Be concentration has been coupled with a non-mixed reactor model to yield a good fit to the data. Application of this model indicates that Be should be suitable for keeping the TF concentration in the salt below 0.02 ppb

  8. Multiphase flow problems on thermofluid safety for fusion reactors

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    2003-01-01

    As the thermofluid safety study for the International Thermonuclear Experimental Reactor (ITER), thermal-hydraulic characteristics of Tokamak fusion reactors under transient events were investigated experimentally and analyzed numerically. As severe transient events an ingress-of-coolant event (ICE) and a loss-of-vacuum event (LOVA) were considered. An integrated ICE test facility was constructed to demonstrate that the ITER safety design approach and parameters are adequate. Water-vapor two-phase flow behavior and performance of the ITER pressure suppression system during the ICE were clarified by the integrated ICE experiments. The TRAC was modified to specify the two-phase flow behavior under the ICE. The ICE experimental results were verified using the modified TRAC code. On the other hand, activated dust mobilization and air ingress characteristics in the ITER vacuum vessel during the LOVA were analyzed using a newly developed analysis code. Some physical models on the motion of dust were considered. The rate of dust released from the vacuum vessel through breaches to the outside was characterized quantitatively. The predicted average pressures in the vacuum vessel during the LOVA were in good agreement with the experimental results. Moreover, direct-contact condensation characteristics between water and vapor inside the ITER suppression tank were observed visually and simulated by the direct two-phase flow analysis. Furthermore, chemical reaction characteristics between vapor and ITER plasma-facing component materials were predicted numerically in order to obtain qualitative estimation on generation of inflammable gases such as hydrogen and methane. The experimental and numerical results of the present studies were reflected in the ITER thermofluid safety design. (author)

  9. Experimental study of MHD effects on turbulent flow of flibe simulant fluid in a circular pipe

    International Nuclear Information System (INIS)

    Takeuchi, Junichi; Morley, N.B.; Abdou, M.A.; Satake, Shin-ichi; Yokomine, Takehiko

    2007-01-01

    Experimental studies of MHD turbulent pipe flow of Flibe simulant fluid have been conducted as a part of US-Japan JUPITER-II collaboration. Flibe is considered as a promising candidate for coolant and tritium breeder in some fusion reactor design concepts because of its low electrical conductivity compared to liquid metals. This reduces the MHD pressure drop to a negligible level; however, turbulence can be significantly suppressed by MHD effects in fusion reactor magnetic field conditions. Heat transfer in the Flibe coolant is characterized by its high Prandtl number. In order to achieve sufficient heat transfer and to prevent localized heat concentration in a high Prandtl number coolant, high turbulence is essential. Even though accurate prediction of the MHD effects on heat transfer for high Prandtl number fluids in the fusion environment is very important, reliable data is not available. In these experiments, an aqueous solution of potassium hydroxide is used as a simulant fluid for Flibe. This paper presents the experimental results obtained by flow field measurement using particle image velocimetry (PIV) technique. The PIV measurements provide 2-dimensional 2-velocity component information on the MHD flow field. The test section is a circular pipe with 89 mm inner diameter and 7.0 m in length, which is 79 times pipe diameter. This relatively large diameter pipe is selected in order to maximize the MHD effects measured by Hartmann number (Ha=BL(sigma/mu)1/2), and to allow better resolution of the flow in the near-wall region. The test section is placed under maximum 2 Tesla magnetic fields for 1.4m of the axial length. The hydrodynamic developing length under the magnetic field is expected to be 1.2 m. In order to apply PIV technique in the magnetic field condition, special optical devices and visualization sections were created. PIV measurements are performed for Re = 11600 with variable Hartmann numbers. The turbulence statistics of the MHD turbulent flow

  10. Economical and neutronic performance of HYLIFE-II with mixture of 90% flibe + 10% UF4 (or ThF4)

    International Nuclear Information System (INIS)

    Uenalan, Sebahattin

    2004-01-01

    This work investigated the neutronics behavior and the economics of the HYLIFE-II reactor with ThF 4 and UF 4 , which produces an electrical power of 1 GW from the fusion power of 2.857 GW during the operation period of 30 years. The use of ThF 4 and UF 4 is realized by a mixture zone consisted of 90% flibe (Li 2 BeF 4 ) and 10% fuel, instead of 100% flibe coolant. The mixture compositions are selected as 90% flibe + 10% UF 4 , 90% flibe + 10% ThF 4 and 90% flibe + 5% UF 4 + 5% ThF 4 . The capacity factor of the reactor is 0.75. The mixtures, with zone thickness of 65 cm were circulated with periods of 20.22, 19.89 and 20.11 s during the operation period of 30 years, respectively. In addition, for flibe + UF 4 , power stabilization by means of plutonium separation from the mixture was applied. The use of fuel materials in the HYLIFE-II reactor resulted in high energy production, sufficient tritium breeding, significant fissile fuel breeding and low radiation damage in the first wall. The average values of tritium breeding ratio over 30 years are between 1.08 and 1.12, higher than 1.0 indicating sufficient tritium breeding. Generally, the mixtures with ThF 4 show better performance than the mixture with UF 4 in terms of more energy production and significant fissile fuel breeding. The neutronic performance of the reactor increases with the operational period. However, the stabilization process performed after operation for 6 years causes all neutronic values to remain nearly constant during the followed operation time. At the 6th year of operation, the power production, which is ∼1540 MW(electric) at startup, reached the electrical power of 2 GW for flibe + UF 4 . The power production without the separation process reached ∼3500 MW(electric) for the mixtures with ThF 4 and ∼3000 MW(electric) for the mixture with UF 4 . At the end of the operation period, helium production values in the first wall, made of Hastelloy, are calculated as 590 ppm without the

  11. A generalised porous medium approach to study thermo-fluid dynamics in human eyes.

    Science.gov (United States)

    Mauro, Alessandro; Massarotti, Nicola; Salahudeen, Mohamed; Romano, Mario R; Romano, Vito; Nithiarasu, Perumal

    2018-03-22

    The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution. Graphical abstract Velocity contours and vectors for healthy eyes (top) and glaucomatous eyes (bottom) for standing position.

  12. HYLIFE-II tritium management system

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1993-06-01

    The tritium management system performs seven functions: (1) tritium gas removal from the blast chamber, (2) tritium removal from the Flibe, (3) tritium removal from helium sweep gas, (4) tritium removal from room air, (5) hydrogen isotope separation, (6) release of non-hazardous gases through the stack, (7) fixation and disposal of hazardous effluents. About 2 TBq/s (5 MCi/day) of tritium is bred in the Flibe (Li 2 BeF 4 ) molten salt coolant by neutron absorption. Tritium removal is accomplished by a two-stage vacuum disengager in each of three steam generator loops. Each stage consists of a spray of 0.4 mm diameter, hot Flibe droplets into a vacuum chamber 4 m in diameter and 7 m tall. As droplets fall downward into the vacuum, most of the tritium diffuses out and is pumped away. A fraction Φ∼10 -5 of the tritium remains in the Flibe as it leaves the second stage of the vacuum disengager, and about 24% of the remaining tritium penetrates through the steam generator tubes, per pass, so the net leakage into the steam system is about 4.7 MBq/s (11 Ci/day). The required Flibe pumping power for the vacuum disengager system is 6.6 MW. With Flibe primary coolant and a vacuum disengager, an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate vacuum disengager operation with Flibe. A secondary containment shell with helium sweep gas captures the tritium permeating out of the Flibe ducts, limiting leaks there to about 1 Ci/day. The tritium inventory in the reactor is about 190 g, residing mostly in the large Flibe recirculation duct walls. The total cost of the tritium management system is 92 M$, of which the vacuum disengagers cost = 56%, the blast chamber vacuum system = 15%, the cryogenic plant = 9%, the emergency air cleanup and waste treatment systems each = 6%, the protium removal system = 3%, and the fuel storage system and inert gas system each = 2%

  13. Thermo-Fluid Verification of Fuel Column with Crossflow Gap

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam Il; Kim, Min Hwan; Noh, Jae Man

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing thermal-hydraulic code to design a safe and effective VHTR. Core reliable Optimization and Network thermo-fluid Analysis (CORONA) is a code that solves the fluid region as 1-D and the solid domain as 3-D. The postulated event is modeled to secure safety during design process. The reactor core of VHTR is piled with multi-fuel block layers. The helium gas goes through coolant channel holes after distributed from upper plenum. The fuel blocks are irradiated during operation and there might be cross gaps between blocks. These cross gaps change the passage of coolant channels and could affect the temperature of fuel compact. Therefore, two types of single fuel assembly (i. e., standard and Reserved Shutdown Control (RSC) hole fuel assemblies) were investigated in this study. The CORONA, thermo-fluid analysis code, has been developing to compute the reactor core of VHTR. Crossflow model was applied to predict temperature and flow distribution between fuel blocks in this study. The calculated results are compared with the data of commercial software, CFX. The temperature variations along the axial direction well agree for both standard / RSC fuel assemblies. The flow redistribution due to crossflow matches well. The hot spot temperature and locations might differ depending on the cross gap size. This research will be done in detail for further study

  14. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    Science.gov (United States)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  15. Impact of material system thermomechanics and thermofluid performance on He-cooled ceramic breeder blanket designs with SiCf/SiC

    International Nuclear Information System (INIS)

    Ying, Alice Y.; Yokomine, Takehiko; Shimizu, Akihiko; Abdou, Mohamed; Kohyama, Akira

    2004-01-01

    This paper presents results from a recent effort initiated under the JUPITER-II collaborative program for high temperature gas-cooled blanket systems using SiC f /SiC as a structural material. Current emphasis is to address issues associated with the function of the helium gas considered in the DREAM and ARIES-I concepts by performing thermomechanical and thermofluid analysis. The objective of the analysis is to guide future research focus for a task in the project. It is found that the DREAM concept has the advantage of achieving uniform temperature without threatening blanket pebble bed integrity by differential thermal stress. However, its superiority needs to be further justified by investigating the feasibility and economic issues involved in the tritium extraction technology

  16. Impact of material system thermomechanics and thermofluid performance on He-cooled ceramic breeder blanket designs with SiCf/SiC

    International Nuclear Information System (INIS)

    Ying, A.Y.; Abdou, M.; Yokomine, T.; Shimizu, A.; Kohyama, A.

    2008-01-01

    This paper presents results from a recent effort initiated under the JUPITER-II collaborative program for high temperature gas-cooled blanket systems using SiC/SiC as a structural material. Current emphasis is to address issues associated with the function of the helium gas considered in the DREAM and ARIES-I concepts by performing thermomechanical and thermofluid analysis. The objective of the analysis is to guide future research focus for a task in the project. It is found that the DREAM concept has the advantage of achieving uniform temperature without threatening blanket pebble bed integrity by differential thermal stress. However, its superiority needs to be further justified by investigating the feasibility and economic issues involved in the tritium extraction technology. (author)

  17. Complete Sensitivity/Uncertainty Analysis of LR-0 Reactor Experiments with MSRE FLiBe Salt and Perform Comparison with Molten Salt Cooled and Molten Salt Fueled Reactor Models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.

  18. Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators

    Science.gov (United States)

    Flemming, Leslie; Mascaro, Stephen

    2013-01-01

    A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.

  19. Fast reactor safety and computational thermo-fluid dynamics approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Shimizu, Takeshi

    1993-01-01

    This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)

  20. 3D analysis of thermo-fluid dynamics of a dry storage fuel container in stationary conditions; Analisis 3D de la termo-fluidodinamica de un contenedor de almacenamiento en seco de combustible en condiciones estacionarias

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, J.; Feria, F.; Herranz, L. E.

    2012-07-01

    Dry storage containers must ensure the cooling of the fuel housing. Compliance with this requirement is of huge importance to preserve the integrity of spent fuel. In this sense, the thermo-fluid dynamics of containers is a point to consider in safety studies of this storage system. The aim of this work is to achieve a three-dimensional model of thermo-fluid dynamics of the HI-STORM 100S container using Fluent code. In addition to the fundamental characterization of the device, we have studied the impact of design variations associated with the input and output channels air. In the future, the model presented here will provide a basis for analysis of transient and accidental conditions.

  1. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  2. Multimedia Thermofluid Dynamics, an Undergraduate Education Project

    Science.gov (United States)

    Settles, G. S.; Dreibelbis, L. J.; Miller, J. D.; Smith, B. P.

    2002-11-01

    New multimedia materials are being developed for undergraduate instruction in thermofluid dynamics (e.g. convective heat transfer, thermodynamics, and gas dynamics), with strong emphasis on experimental and optical flow visualization. Since textbooks often show only simple line diagrams, our emphasis is on real flow images as in Van Dyke's classic "Album of Fluid Motion." Here, however, digital video clips illustrate the pertinent phenomena in motion, with voice-over explanations and occasional musical accompaniment. Beyond that, no attempt is made to duplicate traditional textbook material, but rather to provide a visual "window" into the laboratory experience. The results will be produced and distributed in DVD form for instructors and students as a visual supplement to the standard textbooks on these topics. The suitability of such materials for national dissemination has already been demonstrated. This approach is believed to be especially important for small and minority universities that sometimes lack laboratory facilities. Several examples will be shown, including transitional flow, hydraulic jumps, nucleate boiling, convective heat transfer, and supersonic flow. (Supported by NSF DUE Grant.)

  3. Numerical model for the breakdown of a molecular F{sub 2} bubble in molten FLiBe

    Energy Technology Data Exchange (ETDEWEB)

    Seto, K., E-mail: kelvin.seto@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    A novel one-dimensional numerical model of the breakdown for a fluorine bubble due to break-up and chemical reactions with dissolved UF{sub 4} and PuF{sub 4} in the molten salt reactor (MSR) volatilization process was developed. The results show that an initial bubble diameter of 4.0 cm would be required in order for it to reach the top of the volatilization reactor. Chemical reactions were found to be the primary cause of bubble breakdown. Physical characteristics (density and surface tension) were found to have a negligible effect on the breakdown process, as determined by a sensitivity analysis comparing molten Li to FLiBe. (author)

  4. Evaluation of Thermo-Fluid Performance of Compact Heat Exchanger with Corrugated Wall Channels

    International Nuclear Information System (INIS)

    Tak, Nam Il; Lee, Won Jae

    2006-01-01

    One of the key components of an indirect nuclear hydrogen production system is an intermediate heat exchanger (IHX). For the IHX, a printed circuit heat exchanger (PCHE) is known as one of the promising types due to its compactness and ability to operate at high temperatures and under high pressures. The PCHE is a relatively new heat exchanger. It has been commercially manufactured only since 1985 and solely by one British vendor, HeatricTM. Due to its short history and limited production, sufficient information about the PCHE is not available for the design of the IHX in open literatures. The predominant shape of flow channels of the PCHE is laterally corrugated. The flow in a corrugated wall channel is very interesting since a variety of flow phenomena can be considered by changing the amplitude-to-wavelength ratio. In the present paper, thermo-fluid performance of a heat exchanger with a typical PCHE geometry has been evaluated. Computational fluid dynamics (CFD) analysis was performed to analyze a gas flow behavior in a corrugated wall channel

  5. Topology optimization of a pseudo 3D thermofluid heat sink model

    DEFF Research Database (Denmark)

    Haertel, Jan H. K.; Engelbrecht, Kurt; Lazarov, Boyan S.

    2018-01-01

    sink and a fixed heat production rate in the base plate. Optimized designs are presented and the resulting fin geometry is discussed from a thermal engineering point of view and compared to fin shapes resulting from a pressure drop minimization objective. Parametric studies are conducted to analyze......This paper investigates the application of density-based topology optimization to the design of air-cooled forced convection heat sinks. To reduce the computational burden that is associated with a full 3D optimization, a pseudo 3D optimization model comprising a 2D modeled conducting metal base...... layer and a thermally coupled 2D modeled thermofluid design layer is used. Symmetry conditions perpendicular to the flow direction are applied to generate periodic heat sink designs. The optimization objective is to minimize the heat sink heat transfer resistance for a fixed pressure drop over the heat...

  6. Thermofluid-neutronic stability of the rotating, fluidized bed, space-power reactor

    International Nuclear Information System (INIS)

    Lee, C.C.; Jones, O.C.; Becker, M.

    1993-01-01

    A rotating fluidized bed nuclear reactor has the potential of being a vary attractive option for ultra-high power space systems, especially for propulsion. Research has already examined fuel bed expansion due to variations in state variables, propellant flow rate, and rotational speed, and has also considered problems related to thermal stress. This paper describes the results of a coupled thermofluid-neutronic analysis where perturbations in fuel bed height caused by maneuvering changes in operating conditions alter power levels due to varying absorption of neutrons which would otherwise leak from the system, mainly through the nozzle. This first analysis was not a detailed stability analysis. Rather, it utilized simplified neutronic methods, and was intended to provide an order-of-magnitude assessment of the stability of the reactor with the intention to determine whether or not stability might be a 'concept killer'. Stability was compared with a fixed-fuel-bed reactor of identical geometry for three different cases comprising a set of small, medium and large sizes/powers from 250 MW to 5 GW. It was found that power fluctuations in the fluidized bed reactor were larger by 100 db or more than expected in a packed bed reactor of the same geometry, but never resulted in power excursions. Margins to unit gain in some cases, however, were sufficiently small that the approximations in this quasi-2-dimensional model may not be sufficiently accurate to preclude significant excursions. (orig.)

  7. Corrosion of 316 stainless steel in high temperature molten Li{sub 2}BeF{sub 4} (FLiBe) salt

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Guiqiu, E-mail: guiqiuzheng@gmail.com; Kelleher, Brian; Cao, Guoping; Anderson, Mark; Allen, Todd; Sridharan, Kumar

    2015-06-15

    In support of structural material development for the fluoride-salt-cooled high-temperature reactor (FHR), corrosion tests of 316 stainless steel were performed in the potential primary coolant, molten Li{sub 2}BeF{sub 4} (FLiBe) at 700 °C for an exposure duration up to 3000 h. Tests were performed in both 316 stainless steel and graphite capsules. Corrosion in both capsule materials occurred by the dissolution of chromium from the stainless steel into the salt which led to the depletion of chromium predominantly along the grain boundaries of the test samples. The samples tested in graphite capsules showed a factor of two greater depth of corrosion attack as measured in terms of chromium depletion, compared to those tested in 316 stainless steel capsules. The samples tested in graphite capsules showed the formation of Cr{sub 7}C{sub 3} particulate phases throughout the depth of the corrosion layer. Samples tested in both types of capsule materials showed the formation of MoSi{sub 2} phase due to increased activity of Mo and Si as a result of Cr depletion, and furthermore corrosion promoted the formation of a α-ferrite phase in the near-surface regions of the 316 stainless steel. Based on the corrosion tests, the corrosion attack depth in FLiBe salt was predicted as 17.1 μm/year and 31.2 μm/year for 316 stainless steel tested in 316 stainless steel and in graphite capsules respectively. It is in an acceptable range compared to the Hastelloy-N corrosion in the Molten Salt Reactor Experiment (MSRE) fuel salt.

  8. Coupled thermo-fluid stress analysis of Kambara Reactor with various anchors in the stirring of molten iron at extremely high temperatures

    International Nuclear Information System (INIS)

    Huang, De-Shau; Huang, Feng-Chi

    2014-01-01

    Kambara Reactors (KR) are commonly used to reduce sulfur content in steel making, achieving efficiency levels exceeding 85% at 1300 °C. Unfortunately, the operational lifespan of the KR impeller is somewhat limited due to fracturing of the refractory material via thermal shock, resulting in the penetration of molten iron into the inner core. Few studies have investigated the coupled thermo-fluid stress of KR impellers at extremely high temperatures. This study employed CFX and FEM to simulate and analyze the molten iron and the resulting thermal stress imposed on the KR impeller. Simulation results including flow field, temperature, and thermal stress under extremely high temperatures are in strong agreement with empirical data. V-type anchors for the KR impeller outperformed Y-type anchors. - Highlights: • A thermo-fluid coupling approach is proposed to analyze the thermal stress. • The temperature and stress of the impeller are 790 °C and 744 MPa at the final stage. • The highest temperatures occur at the tip of anchors, which causes material crack. • The thermal stress in impellers with Y-type anchors is greater than V-type anchors

  9. Development of GPU Based Parallel Computing Module for Solving Pressure Equation in the CUPID Component Thermo-Fluid Analysis Code

    International Nuclear Information System (INIS)

    Lee, Jin Pyo; Joo, Han Gyu

    2010-01-01

    In the thermo-fluid analysis code named CUPID, the linear system of pressure equations must be solved in each iteration step. The time for repeatedly solving the linear system can be quite significant because large sparse matrices of Rank more than 50,000 are involved and the diagonal dominance of the system is hardly hold. Therefore parallelization of the linear system solver is essential to reduce the computing time. Meanwhile, Graphics Processing Units (GPU) have been developed as highly parallel, multi-core processors for the global demand of high quality 3D graphics. If a suitable interface is provided, parallelization using GPU can be available to engineering computing. NVIDIA provides a Software Development Kit(SDK) named CUDA(Compute Unified Device Architecture) to code developers so that they can manage GPUs for parallelization using the C language. In this research, we implement parallel routines for the linear system solver using CUDA, and examine the performance of the parallelization. In the next section, we will describe the method of CUDA parallelization for the CUPID code, and then the performance of the CUDA parallelization will be discussed

  10. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li{sub 2}BeF{sub 4}(FLiBe) salt

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Guiqiu, E-mail: guiqiuzheng@gmail.com [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); He, Lingfeng [Idaho National Laboratory, Idaho Fall, ID (United States); Carpenter, David [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Sridharan, Kumar [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI (United States)

    2016-12-15

    The microstructural developments in the near-surface regions of AISI 316 stainless steel during exposure to molten Li{sub 2}BeF{sub 4} (FLiBe) salt have been investigated with the goal of using this material for the construction of the fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). Tests were conducted in molten FLiBe salt (melting point: 459 °C) at 700 °C in graphite crucibles and 316 stainless steel crucibles for exposure duration of up to 3000 h. Corrosion-induced microstructural changes in the near-surface regions of the samples were characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS capabilities. Intergranular corrosion attack in the near-surface regions was observed with associated Cr depletion along the grain boundaries. High-angle grain boundaries (15–180°) were particularly prone to intergranular attack and Cr depletion. The depth of attack extended to the depths of 22 μm after 3000-h exposure for the samples tested in graphite crucible, while similar exposure in 316 stainless steel crucible led to the attack depths of only about 11 μm. Testing in graphite crucibles led to the formation of nanometer-scale Mo{sub 2}C, Cr{sub 7}C{sub 3} and Al{sub 4}C{sub 3} particle phases in the near-surface regions of the material. The copious depletion of Cr in the near-surface regions induced a γ-martensite to α-ferrite phase (FeNi{sub x}) transformation. Based on the microstructural analysis, a thermal diffusion controlled corrosion model was developed and experimentally validated for predicting long-term corrosion attack depth.

  11. Filbe molten salt research for tritium breeder applications

    International Nuclear Information System (INIS)

    Anderl, R.A.; Petti, D.A.; Smolik, G.R.

    2004-01-01

    This paper presents an overview of Flibe (2Lif·BeF 2 ) molten salt research activities conducted at the INEEL as part of the Japan-US JUPITER-II joint research program. The research focuses on tritium/chemistry issues for self-cooled Flibe tritium breeder applications and includes the following activities: (1) Flibe preparation, purification, characterization and handling, (2) development and testing of REDOX strategies for containment material corrosion control, (3) tritium behavior and management in Flibe breeder systems, and (4) safety testing (e.g., mobilization of Flibe during accident scenarios). This paper describes the laboratory systems developed to support these research activities and summarizes key results of this work to date. (author)

  12. Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine

    Directory of Open Access Journals (Sweden)

    Christoph J.W. Kirmse

    2016-06-01

    Full Text Available The Up-THERM heat converter is an unsteady, two-phase thermofluidic oscillator that employs an organic working fluid, which is currently being considered as a prime-mover in small- to medium-scale combined heat and power (CHP applications. In this paper, the Up-THERM heat converter is compared to a basic (sub-critical, non-regenerative organic Rankine cycle (ORC heat engine with respect to their power outputs, thermal efficiencies and exergy efficiencies, as well as their capital and specific costs. The study focuses on a pre-specified Up-THERM design in a selected application, a heat-source temperature range from 210 °C to 500 °C and five different working fluids (three n-alkanes and two refrigerants. A modeling methodology is developed that allows the above thermo-economic performance indicators to be estimated for the two power-generation systems. For the chosen applications, the power output of the ORC engine is generally higher than that of the Up-THERM heat converter. However, the capital costs of the Up-THERM heat converter are lower than those of the ORC engine. Although the specific costs (£/kW of the ORC engine are lower than those of the Up-THERM converter at low heat-source temperatures, the two systems become progressively comparable at higher temperatures, with the Up-THERM heat converter attaining a considerably lower specific cost at the highest heat-source temperatures considered.

  13. A single-reciprocating-piston two-phase thermofluidic prime-mover

    International Nuclear Information System (INIS)

    Taleb, Aly I.; Timmer, Michael A.G.; El-Shazly, Mohamed Y.; Samoilov, Aleksandr; Kirillov, Valeriy A.; Markides, Christos N.

    2016-01-01

    examined, via changes to thermodynamic/thermophysical/transport properties and also geometrical features of the ERPE. It is found that for high efficiency and power output: (1) the vapour dead-spaces must be minimized; (2) the length of the tube that connects the displacer and working cylinders must be of significant length; and, (3) the heat-exchanger blocks must have a low thermal resistance and high heat capacity. The methodological approach implemented in this study can be used to guide the proposal, early-stage design and verification of these complex unsteady thermodynamic systems, while offering important suggestions for improved performance and system optimization. - Highlights: • A new two-phase unsteady thermofluidic oscillator engine concept is proposed. • A physical device with a vertical reciprocating-piston is derived from an electrical model. • Realistic operational frequencies and necessary heat inputs are estimated. • Small dead-spaces and a long connecting tube allow improved performance.

  14. Numerical Study of Thermo-Fluid Features of Electrically Conducting Fluids in Tube Bank Heat Exchangers Exposed to Uniform Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jin Ho; Kang, Namcheol [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-10-15

    When an electrically conducting fluid flows through a staggered tube bank, the heat transfer and fluid flow features are changed by the externally introduced magnetic field. This study provides a numerical investigation of this phenomenon. Heat and fluid flows are investigated for unsteady laminar flows at Reynolds numbers of 50 and 100 with the Hartmann number gradually increasing from zero to 100. As the Hartmann number increases, and owing to the effects of the introduced magnetic field, the velocity boundary layer near the tube wall is thinned, the flow separation is delayed downstream, and the shrinkage of a recirculation zone formed near the rear side is observed. Based on these thermo-fluid deformations, the resulting changes in the local and average Nusselt number are investigated.

  15. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  16. Engineering design and development of lead lithium loop for thermo-fluid MHD studies

    International Nuclear Information System (INIS)

    Kumar, M.; Patel, Anita; Jaiswal, A.; Ranjan, A.; Mohanta, D.; Sahu, S.; Saraswat, A.; Rao, T.S.; Mehta, V.; Bhattacharyay, R.; Rajendra Kumar, E.

    2017-01-01

    In the frame of the design and development of LLCB TBM, number of R and D activities is in progress in the area of Pb-Li technology development. Molten Pb-Li is used as a tritium breeder and also as a coolant for the internals of the TBM structure. In presence of strong plasma confining toroidal magnetic field, motion of electrically conducting Pb-Li leads to Magneto Hydro Dynamic (MHD) phenomena, as a consequence of which the flow profile of Pb-Li is significantly modified inside the Pb-Li channels of TBM. This causes additional pressure drop inside TBM and affects the heat transfer from internal structure. The detail studies of these MHD effects are of prime importance for successful design of LLCB TBM and its performance evaluation. Although, various numerical MHD codes have been developed, validated in simple flow configuration and are being used to study MHD phenomena in LLCB TBM, experimental validation of these codes in TBM relevant complex flow geometry is yet to be performed. A Pb-Li MHD experimental loop is, therefore, being developed at IPR to perform thermo-fluid MHD experiments in various LLCB TBM relevant flow configuration. MHD experiments are planned with different test sections instrumented with potential pins, thermo couples, etc. under a uniform magnetic field of ∼1.4 T. The obtained experimental data will be analyzed to understand the MHD phenomena in TBM like flow configuration and also for validation of MHD codes. This paper describes the detailed process as well as engineering design of the Pb-Li MHD loop and its major components along with the plan of MHD experiments in various test mock ups. (author)

  17. HYLIFE-II power conversion system design and cost study

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-09-01

    The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report

  18. Neutronics analysis for HYLIFE-II

    International Nuclear Information System (INIS)

    Tobin, M.T.

    1990-01-01

    A preliminary neutronics analysis of the HYLIFE-2 reactor concept gives a tritium breeding ratio of 1.17 and a system energy multiplication factor of 1.14. Modified SS-316 (in which Mn is substituted for Ni) is superior to Hastelloy X and Hastelloy N as a firstwall material considering He generation, dpa-limited lifetime, and shallow-burial index. Since Flibe is corrosive to Mn metals, however, a favorable first-wall material is yet to be decided on. Flibe impurities considered (e.g., inherent impurities and those arising from wall erosion or secondary-coolant leakage) do not increase the hazard to the public over that of pure Flibe. The main issues for HYLIFE-2 are the high shallow-burial index (106) and the requirement to contain some 99.7% of the 18 F inventory to prevent its release to the public 18 refs., 3 figs., 9 tabs

  19. Dynamic Modeling of ThermoFluid Systems

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch

    2003-01-01

    The objective of the present study has been to developed dynamic models for two-phase flow in pipes (evaporation and condensation). Special attention has been given to modeling evaporators for refrigeration plant particular dry-expansion evaporators. Models of different complexity have been...... formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...

  20. Beryllium research on FFHR molten salt blanket

    International Nuclear Information System (INIS)

    Terai, T.; Tanaka, S.; Sze, D.-K.

    2000-01-01

    Force-free helical reactor, FFHR, is a demo-relevant heliotron-type D-T fusion reactor based on the great amount of R and D results obtained in the LHD project. Since 1993, collaboration works have made great progress in design studies of FFHR with standing on the major advantage of current-less steady operation with no dangerous plasma disruptions. There are two types of reference designs, FFHR-1 and FFHR-2, where molten Flibe (LiF-BeF2) is utilized as tritium breeder and coolant. In this paper, we present the outline of FFHR blanket design and some related R and D topics focusing on Be utilization. Beryllium is used as a neutron multiplier in the design and Be pebbles are placed in the front part of the tritium breeding zone. In a Flibe blanket, HF (TF) generated due to nuclear transmutation will be a problem because of its corrosive property. Though nickel-based alloys are thought to be intact in such a corrosive environment, FFHR blanket design does not adopt the alloys because of their induced radioactivity. The present candidate materials for the structure are low-activated ferritic steel (JLF-1), V-4Cr-4Ti, etc. They are capable to be corroded by HF in the operation condition, and Be is expected to work as a reducing agent in the system as well. Whether Be pebbles placed in a Flibe flow can work well or not is a very important matter. From this point, Be solubility in Flibe, reaction rate of the Redox reaction with TF in the liquid and on the surface of Be pebbles under irradiation, flowing behavior of Flibe through a Be pebble bed, etc. should be investigated. In 1997, in order to establish more practical and new data bases for advanced design works, we started a collaboration work of R and D on blanket engineering, where the Be research above mentioned is included. Preliminary dipping-test of Be sheets and in-situ tritium release experiment from Flibe with Be sheets have got started. (orig.)

  1. Compatibility of reduced activation ferritic/martensitic steels with liquid breeders

    International Nuclear Information System (INIS)

    Muroga, T.; Nagasaka, T.; Kondo, M.; Sagara, A.; Noda, N.; Suzuki, A.; Terai, T.

    2008-10-01

    The compatibility of Reduced Activation Ferritic/Martensitic Steel (RAFM) with liquid Li and molten-salt Flibe have been characterized and accessed. Static compatibility tests were carried out in which the specimens were immersed into liquid Li or Flibe in isothermal autoclaves. Also carried out were compatibility tests in flowing liquid Li by thermal convection loops. In the case of liquid Li, the corrosion rate increased with temperature significantly. The corrosion was almost one order larger for the loop tests than for the static tests. Chemical analysis showed that the corrosion was enhanced when the level of N in Li is increased. Transformation from martensitic to ferritic phase and the resulting softening were observed in near-surface area of Li-exposed specimens, which were shown to be induced by decarburization. In the case of Flibe, the corrosion loss was much larger in a Ni crucible than in a RAFM crucible. Both fluorides and oxides were observed on the surfaces. Thus, the key corrosion process of Flibe is the competing process of fluoridation and oxidation. Possible mechanism of the enhanced corrosion in Ni crucible is electrochemical circuit effect. It was suggested that the corrosion loss rate of RAFM by liquid Li and Flibe can be reduced by reducing the level of impurity N in Li and avoiding the use of dissimilar materials in Flibe, respectively. (author)

  2. Safety Analysis in Large Volume Vacuum Systems Like Tokamak: Experiments and Numerical Simulation to Analyze Vacuum Ruptures Consequences

    Directory of Open Access Journals (Sweden)

    A. Malizia

    2014-01-01

    Full Text Available The large volume vacuum systems are used in many industrial operations and research laboratories. Accidents in these systems should have a relevant economical and safety impact. A loss of vacuum accident (LOVA due to a failure of the main vacuum vessel can result in a fast pressurization of the vessel and consequent mobilization dispersion of hazardous internal material through the braches. It is clear that the influence of flow fields, consequence of accidents like LOVA, on dust resuspension is a key safety issue. In order to develop this analysis an experimental facility is been developed: STARDUST. This last facility has been used to improve the knowledge about LOVA to replicate a condition more similar to appropriate operative condition like to kamaks. By the experimental data the boundary conditions have been extrapolated to give the proper input for the 2D thermofluid-dynamics numerical simulations, developed by the commercial CFD numerical code. The benchmark of numerical simulation results with the experimental ones has been used to validate and tune the 2D thermofluid-dynamics numerical model that has been developed by the authors to replicate the LOVA conditions inside STARDUST. In present work, the facility, materials, numerical model, and relevant results will be presented.

  3. Safety and environmental aspects of HYLIFE-II

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.

    1990-01-01

    The HYLIFE-II inertial confinement fusion reactor uses a Flibe spray for blast chamber protection and tritium breeding. HYLIFE-II is passively safe, having no large sources of energy available to disperse radioactive materials. The dominant activation product is 18 F (half-life 110 minutes). Only a small fraction ( -5 ) of the Flibe activation products would be mobilized. The offsite dose from a severe accident involving simultaneous failure of the blast chamber and containment building would be < 0.2 mSv (20 mrem), and N-stamp requirements could be avoided in the blast chamber and coolant systems. The required tritium removal efficiencies are quantified. 10 refs., 1 fig

  4. The heat transport system and plant design for the HYLIFE-2 fusion reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-01-01

    HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs

  5. Development of a high-heat flux cooling element with potential application in a near-term fusion power plant divertor

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jack Robert, E-mail: jack.nicholas@eng.ox.ac.uk [Osney Thermo-Fluids Laboratory, University of Oxford, Oxford (United Kingdom); Ireland, Peter [Osney Thermo-Fluids Laboratory, University of Oxford, Oxford (United Kingdom); Hancock, David [CCFE, Culham, Oxfordshire (United Kingdom); Robertson, Dan [Rolls-Royce Plc., Derby, Derbyshire (United Kingdom)

    2015-10-15

    Highlights: • Laminate jet impingement system introduced for high pressure operation (17 MPa+). • Numerical thermo-fluid analysis on baseline geometry. • Cascade impingement shown to reduce divertor mass flow rate requirements and increase fluid temperature change. • Numerical thermo-fluid analysis validated using scaled experiments with air. - Abstract: A low temperature jet impingement based heat sink module has been developed for potential application in a near-term fusion power plant divertor. The design is composed of a number of hexagonal CuCrZr sheets bonded together in a stack to form a laminate structure. This method allows the production of complex flow paths using relatively simple manufacturing techniques. The thermo-fluid performance of a baseline design employing cascade jet impingement has been assessed and compared to a non-cascade case. Experimental validation of the numerical work was carried out on a scaled model using air as the working fluid. Local heat transfer coefficients were obtained on the surface using surface temperature data from thermochromic liquid crystals.

  6. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  7. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  8. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    Science.gov (United States)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA

  9. Activation product transport in a FLiBe-vanadium alloy-HT9 system

    International Nuclear Information System (INIS)

    Klein, A.C.; Sze, D.K.

    1985-01-01

    An assessment is made of the gamma radiation hazards likely to be found around a fusion reactor heat transfer and tritium breeding loop which employs a vanadium alloy for the blanket and first wall structure and the ferritic-steel HT9 for the remainder of the loop. The coolant/tritium breeding fluid is the molten metallic salt FliBe. Since the radiation levels near the primary loop components are found to be less than 100 mR/hr 3-5 days after shutdown after three years of continuous full power operation, limited hands-on maintenance could be allowed. The very short half-lives of the predominant corrosion products make this result possible and make such a system very attractive

  10. Use of Generalized Fluid System Simulation Program (GFSSP) for Teaching and Performing Senior Design Projects at the Educational Institutions

    Science.gov (United States)

    Majumdar, A. K.; Hedayat, A.

    2015-01-01

    This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects.

  11. Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power

    Science.gov (United States)

    Nishiyama, H.; Onodera, M.; Igawa, J.; Nakajima, T.

    2009-12-01

    The aim of this study is to provide the optimum operating conditions for enhancing in-flight alumina particle heating as much as possible for particle spheroidization and aggregation of melted particles using a DC-RF hybrid plasma flow system even at constant low operating power based on the thermofluid considerations. It is clarified that the swirl flow and higher operating pressure enhance the particle melting and aggregation of melted particles coupled with increasing gas temperature downstream of a plasma uniformly in the radial direction at constant electrical discharge conditions.

  12. The impact of tritium solubility and diffusivity on inventory and permeation in liquid breeder blankets

    International Nuclear Information System (INIS)

    Caorlin, M.; Gervasini, G.; Reiter, F.

    1988-01-01

    The authors reviewed hydrogen solubility and diffusivity data for liquid lithium-based compounds which are potential breeding blanket materials in NET-type fusion devices. These data have been used to assess tritium permeation and inventory in separately cooled NET blankets and in self cooled blankets with a vanadium first wall. The results for the separately cooled NET-liquid breeder show that tritium permeation is negligible for lithium, a serious problem for Pb-17Li and a critical one for Flibe. The total tritium inventory is lowest in lithium, high in Pb-17Li and very high in Flibe. The high tritium partial pressure for Flibe or Pb-17Li can be reduced in a self cooled blanket with a vanadium first wall. Permeation into the plasma reduces the blanket tritium inventory and permeation. Tritium recovery can be combined with the plasma exhaust

  13. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  14. Tritium permeation losses in HYLIFE-II heat exchanger tubes

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1990-01-01

    Tritium permeation through the intermediate heat exchanger of the HYLIFE-II inertial fusion design concept is evaluated for routine operating conditions. The permeation process is modelled using the Lewis analogy combined with surface recombination. It is demonstrated that at very low driving potentials, permeation becomes proportional to the first power of the driving potential. The model predicts that under anticipated conditions the primary cooling loop will pass about 6% of the tritium entering it to the intermediate coolant. Possible approached to reducing tritium permeation are explored. Permeation is limited by turbulent diffusion transport through the molten salt. Hence, surface barriers with impendance factors typical of present technology can do very little to reduce permeation. Low Flibe viscosity is desirable. An efficient tritium removal system operating on the Flibe before it gets to the intermediate heat exchanger is required. Needs for further research are highlighted. 9 refs., 2 figs., 1 tab

  15. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    International Nuclear Information System (INIS)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-01

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  16. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  17. Neutronics study on hybrid reactor cooled by helium, water and molten salt

    International Nuclear Information System (INIS)

    Li Zaixin; Feng Kaiming; Zhang Guoshu; Zheng Guoyao; Zhao Fengchao

    2009-01-01

    There is no serious magnetohydrodynamics (MHD) problem when helium,water or molten salt of Flibe flows in high magnetic field. Thus helium, water and Flibe were proposed as candidate of coolant for fusion-fission hybrid reactor based on magnetic confinement. The effect on neutronics of hybrid reactor due to coolant was investigated. The analyses of neutron spectra and fuel breeding of blanket with different coolants were performed. Variations of tritium breeding ratio (TBR), blanket energy multiplication (M) and keff with operating time were also studied. MCNP code was used for neutron transport simulation. It is shown that spectra change greatly with different coolants. The blanket with helium exhibits very hard spectrum and good tritium breeding ability. And fission reactions are mainly from fast neutron. The blanket with water has soft spectrum and high energy multiplication factor. However, it needs to improve TBR. The blanket with Flibe has hard spectrum and less energy release. (authors)

  18. Summary report of Japan-US joint project (TITAN). FuY 2007-2012

    International Nuclear Information System (INIS)

    Okuno, K.; Muroga, T.

    2014-01-01

    This report summarizes the scientific accomplishments achieved through the TITAN Japan-US Collaboration Program. The TITAN collaboration (Tritium, Irradiation and Thermofluid for America and Nippon) has been carried out through six years (FuY 2007-2012) under the collaboration implemented by establishing Annex I to the NIFS-ORNL Agreement on Academic and Scientific Exchange. The TITAN collaboration was established to obtain fundamental understanding for the control of tritium and thermofluid in first wall, blanket and recovery systems with particular emphasis on their interfacial issues. The experiments were designed for testing under conditions specific to fusion, such as intense irradiation, high heat/particle flux, and circulation in a high magnetic field. The results have been applied using integrated modeling to advance the design of tritium and heat control in MFE and IFE systems. This issue is the collection of 34 papers presented at the entitled meeting. All the 34 of the presented papers are indexed individually. (J.P.N.)

  19. Parameter Optimization and Operating Strategy of a TEG System for Railway Vehicles

    Science.gov (United States)

    Heghmanns, A.; Wilbrecht, S.; Beitelschmidt, M.; Geradts, K.

    2016-03-01

    A thermoelectric generator (TEG) system demonstrator for diesel electric locomotives with the objective of reducing the mechanical load on the thermoelectric modules (TEM) is developed and constructed to validate a one-dimensional thermo-fluid flow simulation model. The model is in good agreement with the measurements and basis for the optimization of the TEG's geometry by a genetic multi objective algorithm. The best solution has a maximum power output of approx. 2.7 kW and does not exceed the maximum back pressure of the diesel engine nor the maximum TEM hot side temperature. To maximize the reduction of the fuel consumption, an operating strategy regarding the system power output for the TEG system is developed. Finally, the potential consumption reduction in passenger and freight traffic operating modes is estimated under realistic driving conditions by means of a power train and lateral dynamics model. The fuel savings are between 0.5% and 0.7%, depending on the driving style.

  20. Development of the CELVA-1D code to evaluate the safety of an air-ventilation system during postulated fire and explosion in the reprocessing plant. Contract research

    International Nuclear Information System (INIS)

    Nishio, Gunji; Watanabe, Kouji; Kouno, Kouji; Yamazaki, Noboru; Mukaide, Shigeo; Yoshioka, Itsuo

    1998-03-01

    The CELVA-1D computer code was developed to evaluate the confinement of radioactive materials during postulated fire and explosion in a cell of nuclear fuel reprocessing plants. The CELVA-1D code calculates a response of temperature, pressure, flow velocity of fluid in an air-ventilation system of the plants by one-dimensional thermofluid analysis and calculates an ability to confine radioactive aerosol particles by transport, deposition, and HEPA filtration. The mathematical models in CELVA-1D were verified by comparison of the calculation with the result of JAERI's demonstration tests simulating hypothetical fire and explosion accidents in the cell. (author)

  1. Development of the CELVA-1D code to evaluate the safety of an air-ventilation system during postulated fire and explosion in the reprocessing plant. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Gunji; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kouno, Kouji; Yamazaki, Noboru; Mukaide, Shigeo; Yoshioka, Itsuo

    1998-03-01

    The CELVA-1D computer code was developed to evaluate the confinement of radioactive materials during postulated fire and explosion in a cell of nuclear fuel reprocessing plants. The CELVA-1D code calculates a response of temperature, pressure, flow velocity of fluid in an air-ventilation system of the plants by one-dimensional thermofluid analysis and calculates an ability to confine radioactive aerosol particles by transport, deposition, and HEPA filtration. The mathematical models in CELVA-1D were verified by comparison of the calculation with the result of JAERI`s demonstration tests simulating hypothetical fire and explosion accidents in the cell. (author)

  2. Carbon tiles as spectral-shifter for long-life liquid blanket in LHD-type reactor FFHR

    International Nuclear Information System (INIS)

    Sagara, A.; Imagawa, S.; Tanaka, T.; Muroga, T.; Kubota, Y.; Dolan, T.; Hashizume, H.; Kunugi, T.; Fukada, S.; Shimizu, A.; Terai, T.; Mitarai, O.

    2006-01-01

    In terms of engineering feasibility for long-life Flibe blanket in LHD-type reactor FFHR, the Spectral-shifter and Tritium breeder Blanket (STB) concept is evaluated by taking neutron irradiation effects into account under system integration such as Flibe cooling and components replacement. FEM calculations for the neutron wall loading of 1.5 MW/m 2 show that the temperature of the STB armor tile can be kept below 2000 K by optimizing the first metal wall thickness. The heat load experiment on the STB armor mockup confirms feasibility of the temperature control and mechanical joining. Degradation of STB armor tiles due to neutron irradiation requires replacement of them every few years by means of remote handling 'screw coasters' using helical winding, where the replaced tiles are low level wastes. Although the STB concept is feasible within nuclear and thermal properties, more detailed structural optimization is needed including the mechanical and chemical properties

  3. Tritium permeation and recovery for the Flibe/He blanket design

    International Nuclear Information System (INIS)

    Moir, R.

    1984-10-01

    This study assumes tritium to be a gas dissolved in molten salt, with TF formation suppressed. Tritium permeates readily through the hot steel tubes of the reactor and steam generator and will leak into the steam system at the rate of about one gram per day in the absence of special permeation barriers, assuming that 1% of the helium coolant flow rate is processed for tritium recovery at 90% efficiency per pass. Tritiated water in the steam system is a personnel hazard at concentration levels well below one part per million and this level would soon be reached without costly isotopic processing. Alternatively, including a combination of permeation barriers on reactor and steam generator tubes and molten salt processing is estimated to reduce the leak rate into the steam system by over two orders of magnitude. For the option with the lowest estimated leak rate, 55 Ci/d, it may be possible to purge the steam system continuously to prevent tritiated water buildup. At best, isotopic separation of dilute tritiated water may not be necessary and for higher leak-rate options the isotopic processing rate can be reduced. The proposed permeation barrier for the reactor tubes is a 10 μm layer of tungsten which, in principle, will reduce tritium blanket permeation by a factor of about 300 below the bare-steel rate

  4. The dynomak: An advanced spheromak reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.A., E-mail: das1990@uw.edu; Jarboe, T.R.; Morgan, K.D.; Pfaff, M.; Lavine, E.S.; Kamikawa, Y.; Hughes, M.; Andrist, P.; Marklin, G.; Nelson, B.A.

    2014-04-15

    A high-β spheromak reactor concept has been formulated with an estimated overnight capital cost that is competitive with conventional power sources. This reactor concept utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt (FLiBe) blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER-developed cryogenic pumping systems were implemented in this concept from the basis of technological feasibility. A tritium breeding ratio (TBR) of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%.

  5. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  6. Preliminary Calculations of Bypass Flow Distribution in a Multi-Block Air Test

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il

    2011-01-01

    The development of a methodology for the bypass flow assessment in a prismatic VHTR (Very High Temperature Reactor) core has been conducted at KAERI. A preliminary estimation of variation of local bypass flow gap size between graphite blocks in the NHDD core were carried out. With the predicted gap sizes, their influence on the bypass flow distribution and the core hot spot was assessed. Due to the complexity of gap distributions, a system thermo-fluid analysis code is suggested as a tool for the core thermo-fluid analysis, the model and correlations of which should be validated. In order to generate data for validating the bypass flow analysis model, an experimental facility for a multi-block air test was constructed at Seoul National University (SNU). This study is focused on the preliminary evaluation of flow distribution in the test section to understand how the flow is distributed and to help the selection of experimental case. A commercial CFD code, ANSYS CFX is used for the analyses

  7. Thermo-fluid dynamic analysis of wet compression process

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Abhay; Kim, Heuy Dong [School of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Chidambaram, Palani Kumar [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Suryan, Abhilash [Dept. of Mechanical Engineering, College of Engineering Trivandrum, Kerala (India)

    2016-12-15

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV{sup γ} = constant) are analyzed.

  8. Thermo-fluid dynamic analysis of wet compression process

    International Nuclear Information System (INIS)

    Mohan, Abhay; Kim, Heuy Dong; Chidambaram, Palani Kumar; Suryan, Abhilash

    2016-01-01

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV γ = constant) are analyzed

  9. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    Science.gov (United States)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  10. Tokamak power system studies at ANL

    International Nuclear Information System (INIS)

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-06-01

    The following features, in particular, have been examined: (a) large aspect ratio (A ≅ 6), which may ease maintenance; (b) high beta (β ≥ 0.20) without indentation, which brings the maximum toroidal field down to about 6 to 7 T; (c) low toroidal current (I ≅ 4MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields they produce in the plasma. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors

  11. Initiating Event Analysis of a Lithium Fluoride Thorium Reactor

    Science.gov (United States)

    Geraci, Nicholas Charles

    The primary purpose of this study is to perform an Initiating Event Analysis for a Lithium Fluoride Thorium Reactor (LFTR) as the first step of a Probabilistic Safety Assessment (PSA). The major objective of the research is to compile a list of key initiating events capable of resulting in failure of safety systems and release of radioactive material from the LFTR. Due to the complex interactions between engineering design, component reliability and human reliability, probabilistic safety assessments are most useful when the scope is limited to a single reactor plant. Thus, this thesis will study the LFTR design proposed by Flibe Energy. An October 2015 Electric Power Research Institute report on the Flibe Energy LFTR asked "what-if?" questions of subject matter experts and compiled a list of key hazards with the most significant consequences to the safety or integrity of the LFTR. The potential exists for unforeseen hazards to pose additional risk for the LFTR, but the scope of this thesis is limited to evaluation of those key hazards already identified by Flibe Energy. These key hazards are the starting point for the Initiating Event Analysis performed in this thesis. Engineering evaluation and technical study of the plant using a literature review and comparison to reference technology revealed four hazards with high potential to cause reactor core damage. To determine the initiating events resulting in realization of these four hazards, reference was made to previous PSAs and existing NRC and EPRI initiating event lists. Finally, fault tree and event tree analyses were conducted, completing the logical classification of initiating events. Results are qualitative as opposed to quantitative due to the early stages of system design descriptions and lack of operating experience or data for the LFTR. In summary, this thesis analyzes initiating events using previous research and inductive and deductive reasoning through traditional risk management techniques to

  12. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, H.

    2016-01-01

    Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PBFHR) is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF_2) salt Temperature Reactivity Coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern) and two kinds of reflector materials (SiC and graphite). This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong "9Be(n,2n) reaction and low neutron absorption of "6Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows a good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel. (A.C)

  13. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled High Temperature Reactor - 15171

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, Hongjie

    2015-01-01

    Sustainability of thorium fuel in a pebble-bed fluoride salt-cooled high temperature reactor (PB-FHR) is investigated to find the feasible region of high discharge burnup and negative FLiBe (2LiF-BeF 2 ) salt temperature reactivity coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing heavy metal loading and decreasing excessive moderation. In order to analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared 2 refueling schemes (mixing flow pattern and directional flow pattern) and 2 kinds of reflector materials (SiC and graphite). This method has found that the feasible regions of breeding and negative FLiBe TRC is between 20 vol% and 62 vol% heavy metal loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, FLiBe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9 Be(n,2n) reaction and low neutron absorption of 6 Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows good safety margins. The greatest challenge of this reactor may be the very long irradiation time of the pebble fuel. (authors)

  14. Generalized Fluid System Simulation Program, Version 5.0-Educational

    Science.gov (United States)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  15. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  16. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.; Powers, Jeffrey J.

    2016-01-01

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 "7LiF-BeF_2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  17. DNA - An integrated open-source optimization platform for thermo-fluid systems

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Wronski, Jorrit; Elmegaard, Brian

    2014-01-01

    This paper presents developments and new features added to the simulation tool Dynamic Network Analysis. This open-source software is the result of ongoing development at the Department of Mechanical Engineering, Technical University of Denmark since 1988. Ever since, it has been employed to model...... to extend the capabilities of the software, while at the same time decreasing computational time. Dynamic Network Analysis can now solve non-convex optimization problems by virtue of the fully-embedded genetic algorithm. Moreover, the thermophysical fluid property library has been extended with more than...... 110 fluids by interfacing CoolProp, a high-accuracy open-source property package for pure and pseudo-pure fluids, as well as humid air. Furthermore, the use as time integrator for other tools is demonstrated. The new features are unveiled in two case studies. The first example covers the optimization...

  18. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. Detailed Numerical Simulation of Single-Walled Carbon Nanotube Synthesis in a Radio-Frequency Induction Thermal Plasma System

    International Nuclear Information System (INIS)

    Esfarjani, S Arabzadeh; Mostaghimi, J; Dworkin, S B; Kim, K S; Kingston, C T; Simard, B; Soucy, G

    2012-01-01

    2D axisymmetric numerical calculations are conducted to model the thermo-fluid fields and chemical reactions leading to the formation of SWCNTs in an RF plasma system. A modified version of the SWCNT “reduced” chemical model is used to estimate the formation of SWCNT in an RF plasma system for the first time. The “reduced” model incorporates 14 species and 36 chemical reactions to predict the formation of metal and carbon clusters and SWCNTs. By combing the chemistry model into the RF plasma CFD code, the formation and development of carbon and metal catalyst clusters and their reactions which produce SWCNTs are shown. The chemistry model is shown to under-predict the yield rate of SWCNT. In order to better predict the yield rate, a sensitivity analysis is performed to modify the dominant reaction rates. The modified model predicts the yield of SWCNTs correctly within the range reported experimentally. However, more studies should be conducted to validate the accuracy of the model for different operating conditions.

  20. A method for predicting fuel maintenance in once-through MSRs

    International Nuclear Information System (INIS)

    Ridley, Gavin; Chvala, Ondrej

    2017-01-01

    Highlights: •Novel method to control LEU-fueled MSR reactivity and chemistry is developed. •The method relies on adjusting material flows only. •Ten year full power depletion of a FLiBe core demonstrates the method. •Material flows and reactor physics data are presented. •Graphite lifetime and trifluoride actinide limits are satisfied. -- Abstract: Liquid fuel molten salt reactors allow reactivity control by material addition. This paper presents a method to adjust material flows in a molten salt reactor to keep the core critical, and to maintain desired reduction-oxidation potential in the core salt melt. The method is aimed at low-enriched uranium fueled thermal systems. It is developed as a Python library and uses Serpent2 Monte-Carlo transport and depletion code. A toy 300 MW(th) reactor with a FLiBe carrier salt is employed to demonstrate the performance of the method over 10 full power years. Results of the calculation are presented, including material flows, conversion ratio, effective delayed neutron fraction, and expected limits on trifluoride concentrations and graphite lifetime are investigated. This method lays a foundation for future studies including fuel cycle performance of molten salt reactors and dynamic behavior of the core during depletion.

  1. CFD Analysis on the Periodic Element of a Printed Circuit Heat Exchanger

    International Nuclear Information System (INIS)

    Tak, Nam-il; Kim, Min-Hwan; Lee, Won-Jae

    2007-01-01

    A typical printed circuit heat exchanger (PCHE) is composed of a large number of flow channels with lateral corrugations. In an effort to investigate fundamental thermo-fluid characteristics of a PCHE with corrugated channels, computational fluid dynamics (CFD) analyses were previously made in. One pair of flow channels (i.e., cold and hot channels) with the entire flow path was considered for the computational domain in the previous studies. Although only one pair of flow channels with coarse meshes was used, computational loads were found to be very high to simulate the entire flow path of the PCHE. Fortunately a recent study has shown that a simplified CFD methodology with a stream wise periodic assumption (called periodic CFD analysis) is feasible for a CFD evaluation of the thermo-fluid performance of compact heat exchangers. Since the periodic CFD analysis focuses on the periodic element of a flow channel, the required computing resources are dramatically reduced. In the present paper, the periodic CFD analysis has been applied to the periodic element of the PCHE. The results are compared with those of the full elements which have an entire flow path. Based on the periodic approach the effects of the corrugation parameters on the thermo-fluid performance of the PCHE are investigated

  2. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  3. Environmental considerations for alternative fusion reactor blankets

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Young, J.R.

    1975-01-01

    Comparisons of alternative fusion reactor blanket/coolant systems suggest that environmental considerations will enter strongly into selection of design and materials. Liquid blankets and coolants tend to maximize transport of radioactive corrosion products. Liquid lithium interacts strongly with tritium, minimizing permeation and escape of gaseous tritium in accidents. However, liquid lithium coolants tend to create large tritium inventories and have a large fire potential compared to flibe and solid blankets. Helium coolants minimize radiation transport, but do not have ability to bind the tritium in case of accidental releases. (auth)

  4. Comparison and physical interpretation of MCNP and TART neutron and γ Monte Carlo shielding calculations for a heavy-ion ICF system

    International Nuclear Information System (INIS)

    Mainardi, E.; Premuda, F.; Lee, E.

    2004-01-01

    Inertial confinement fusion (ICF) aims to induce implosions of D-T pellets to obtain a extremely dense and hot plasma with lasers or heavy-ion beams. For heavy-ion fusion (HIF), recent research has focused on 'liquid-protected' designs that allow highly compact target chambers. In the design of a reactor such as HYLIFE-II [Fus. Techol. 25 (1984); HYLIFE-II Progress Report, UCID-21816, 4.82-100], the liquid used is a molten salt made of F 10 , Li 6 , Li 7 , Be 9 (called flibe). Flibe allows the final-focus magnets to be closer to the target, which helps to reduce the focus spot size and in turn the size of the driver, with a large reduction of the cost of HIF electricity. Consequently the superconducting coils of the magnets closer to the D-T neutron source will potentially suffer higher damage though they can stand only a certain amount of energy deposited before quenching. This work has been primarily focusing on verifying that total energy deposited by fusion neutrons and induced γ rays remain under such limit values and the final purpose is the optimization of the shielding of the magnetic lens system from the points of view of the geometrical configuration and of the physical nature of the materials adopted. The system is analyzed in terms of six geometrical models going from simplified up to much more realistic representations of a system of 192 beam lines, each focused by six magnets. A 3-D transport calculation of the radiation penetrating through ducts, that takes into account the complexity of the system, requires Monte Carlo methods. The technical nature of the design problem and the methodology followed were presented in a previous paper [Nucl. Instr. and Meth. A 464 (2001) 410] by summarizing briefly the results for the deposited energy distribution on the six focal magnets of a beam line. Now a comparison of the performances of the two codes TART98 [TART98: A Coupled Neutron-Photon 3-D Combinational Geometry Monte Carlo Transport Code, Lawrence

  5. Forschungszentrum Rossendorf, Institute for Safety Research. Annual report 1995

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    1996-09-01

    The scientific work of the Institute of Safety Research covers a wide range of safety related investigations. During 1995 important results on thermo-fluid dynamic single effects, thermalhydraulics and neutron kinetics for accident analysis, materials safety, simulation of radiation and particle transport, mechanical integrity of technical systems and process monitoring, risk management for waste deposits, magneto-hydrodynamics of conductive fluids, and of renewable energies were reached. The annual report presents also lists of publications, conference contributions, meetings, and workshops. (DG)

  6. Institut fuer Kernenergetik und Energiesysteme. Report of the years 1990 to 1993

    International Nuclear Information System (INIS)

    1994-04-01

    Over the years, the research activities of the IKE have developed beyond the specifically nuclear framework and cover today the fields of system and plant engineering as well as thermofluid dynamics. Reactor physics and applied radiation physics, nuclear installations and nuclear power plants, reactor safety and environment technology, plant safety, heating and room air technology, solar thermal installations as well as hydrogen technology are priority topics. The Institute is concerned with basic research and problems of applied research. (orig./HP) [de

  7. Generalized Fluid System Simulation Program, Version 5.0-Educational. Supplemental Information for NASA/TM-2011-216470. Supplement

    Science.gov (United States)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.

  8. Design integration of liquid surface divertors

    International Nuclear Information System (INIS)

    Nygren, R.E.; Cowgill, D.F.; Ulrickson, M.A.; Nelson, B.E.; Fogarty, P.J.; Rognlien, T.D.; Rensink, M.E.; Hassanein, A.; Smolentsev, S.S.; Kotschenreuther, M.

    2004-01-01

    The US Enabling Technology Program in fusion is investigating the use of free flowing liquid surfaces facing the plasma. We have been studying the issues in integrating a liquid surface divertor into a configuration based upon an advanced tokamak, specifically the ARIES-RS configuration. The simplest form of such a divertor is to extend the flow of the liquid first wall into the divertor and thereby avoid introducing additional fluid streams. In this case, one can modify the flow above the divertor to enhance thermal mixing. For divertors with flowing liquid metals (or other electrically conductive fluids) MHD (magneto-hydrodynamics) effects are a major concern and can produce forces that redirect flow and suppress turbulence. An evaluation of Flibe (a molten salt) as a working fluid was done to assess a case in which the MHD forces could be largely neglected. Initial studies indicate that, for a tokamak with high power density, an integrated Flibe first wall and divertor does not seem workable. We have continued work with molten salts and replaced Flibe with Flinabe, a mixture of lithium, sodium and beryllium fluorides, that has some potential because of its lower melting temperature. Sn and Sn-Li have also been considered, and the initial evaluations on heat removal with minimal plasma contamination show promise, although the complicated 3D MHD flows cannot yet be fully modeled. Particle pumping in these design concepts is accomplished by conventional means (ports and pumps). However, trapping of hydrogen in these flowing liquids seems plausible and novel concepts for entrapping helium are also being studied

  9. CFD Analysis for Hot Spot Fuel Temperature of Deep-Burn Modular Helium Reactor

    International Nuclear Information System (INIS)

    Tak, Nam Il; Jo, Chang Keun; Jun, Ji Su; Kim, Min Hwan; Venneri, Francesco

    2009-01-01

    As an alternative concept of a conventional transmutation using fast reactors, a deep-burn modular helium reactor (DB-MHR) concept has been proposed by General Atomics (GA). Kim and Venneri published an optimization study on the DB-MHR core in terms of nuclear design. The authors concluded that more concrete evaluations are necessary including thermo-fluid and safety analysis. The present paper describes the evaluation of the hot spot fuel temperature of the fuel assembly in the 600MWth DB-MHR core under full operating power conditions. Two types of fuel shuffling scheme (radial and axial hybrid shuffling and axial-only shuffling) are investigated. For accurate thermo-fluid analysis, the computational fluid dynamics (CFD) analysis has been performed on a 1/12 fuel assembly using the CFX code

  10. A safety evaluation of fire and explosion in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou

    1996-01-01

    The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)

  11. Investigation of neutronic performance of a peaceful nuclear ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    and 25% flibe, for ThF4, at the end of the operation period. Keywords. ..... reactor lifetime in terms of economic feasibility and fuel management. .... In figure 5b, rate of increase of CFFE values rises very fast up to 8 years. .... Bondarenko I I (ed.) ...

  12. Tokamak power systems studies at ANL

    International Nuclear Information System (INIS)

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-01-01

    A number of advances in plasma physics and engineering promise to greatly improve the reactor prospects of tokamaks. The following features, in particular, are examined: (a) large aspect ratio (A ≅ 6), which may ease maintenance; (b) high beta (β ≥ 0.20) without indentation, which brings the maximum toroidal field down to about 7 T; (c) low toroidal current (I ≅ 5MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields produced in the plasma. In addition to matching desirable high-beta equilibria, this method is capable of producing a large variety of new equilibria, many of which look attractive. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors

  13. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    Science.gov (United States)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  14. Basic thermo-fluid dynamic problems in high temperature heat exchangers

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1986-01-01

    The authors consider high temperature heat exchangers to be ones where the heat transfer coefficients cannot be predicted confidently by classical analyses for pure forced convection with constant fluid properties. Alternatively, one could consider heat exchangers operating above some arbitrary temperature, say 1000F or 600C perhaps, to be at high temperature conditions. In that case, most common working fluids will be superheated vapors or gases. While some liquid metal heat exchangers are designed to operate in this range, the heat transfer coefficients of liquid metals are usually sufficiently high that the dominant thermal resistance would be due to the second fluid. This paper concentrates on convective heat transfer with gases. Typical applications include modular gas cooled nuclear reactors, proposed nuclear propulsion systems and space power plants, and superheaters in Rankine steam cycles

  15. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    Science.gov (United States)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  16. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  17. Solution Tree Problem Solving Procedure for Engineering Analysis ...

    African Journals Online (AJOL)

    Illustrations are provided in the thermofluid engineering area to showcase the procedure's applications. This approach has proved to be a veritable tool for enhancing the problem-solving and computer algorithmic skills of engineering students, eliciting their curiosity, active participation and appreciation of the taught course.

  18. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  19. A review of experimental investigations on thermal phenomena in nanofluids

    Directory of Open Access Journals (Sweden)

    Thomas Shijo

    2011-01-01

    Full Text Available Abstract Nanoparticle suspensions (nanofluids have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

  20. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  1. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  2. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    Science.gov (United States)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  3. 1984 American Control Conference, San Diego, CA, June 6-8, 1984, Proceedings. Volumes 1, 2 and 3

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The topics considered are related to the modeling of human cognitive decision processes, sensor-based robot control systems, adaptive control and applications, modelling and simulation of thermofluid processes and systems, advanced concepts for computer-aided control system design, model reduction and large scale systems, fuel-optimal aircraft guidance and control, and digital signal processing. Other subjects explored are concerned with the dynamical systems approach to problems in nonlinear systems and control, monitoring and fault detection in power systems, robot path planning and control, the real time control of processes, pole placement design, large scale systems and model reduction, and aircraft control. Attention is also given to servomechanisms and machine tool control, stochastic systems, process model-based control and analysis, applications of multivalued logic, microprocessor implementation of real time control systems using high order languages, multitarget tracking, digital systems, filtering and estimation, optimal control, and fault tolerant aerospace systems

  4. Scaling options for integral experiments for molten salt fluid mechanics and heat transfer

    International Nuclear Information System (INIS)

    Philippe Bardet; Per F Peterson

    2005-01-01

    Full text of publication follows: Molten fluoride salts have potentially large benefits for use in high-temperature heat transport in fission and fusion energy systems, due to their very very low vapor pressures at high temperatures. Molten salts have high volumetric heat capacity compared to high-pressure helium and liquid metals, and have desirable safety characteristics due to their chemical inertness and low pressure. Therefore molten salts have been studied extensively for use in fusion blankets, as an intermediate heat transfer fluid for thermochemical hydrogen production in the Next Generation Nuclear Plant, as a primary coolant for the Advanced High Temperature Reactor, and as a solvent for fuel in the Molten Salt Reactor. This paper presents recent progress in the design and analysis of scaled thermal hydraulics experiments for molten salt systems. We have identified a category of light mineral oils that can be used for scaled experiments. By adjusting the length, velocity, average temperature, and temperature difference scales of the experiment, we show that it is possible to simultaneously match the Reynolds (Re), Froude (Fr), Prandtl (Pr) and Rayleigh (Ra) numbers in the scaled experiments. For example, the light mineral oil Penreco Drakesol 260 AT can be used to simulate the molten salt flibe (Li 2 BeF 4 ). At 110 deg. C, the oil Pr matches 600 deg. C flibe, and at 165 deg. C, the oil Pr matches 900 deg. C flibe. Re, Fr, and Ra can then be matched at a length scale of Ls/Lp = 0.40, velocity scale of U s /U p = 0.63, and temperature difference scale of ΔT s /ΔT p = 0.29. The Weber number is then matched within a factor of two, We s /We p = 0.7. Mechanical pumping power scales as Qp s /Qp p = 0.016, while heat inputs scale as Qh s /Qh p = 0.010, showing that power inputs to scaled experiments are very small compared to the prototype system. The scaled system has accelerated time, t s /t p = 0.64. When Re, Fr, Pr and Ra are matched, geometrically scaled

  5. Safety and environmental aspects of the HYLIFE-II and ARIES fusion reactor designs

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.; Herring, J.S.

    1993-01-01

    The HYLIFE-II inertial confinement fusion reactor design uses jets of Flibe molten salt to protect the blast chamber walls and to breed tritium. It has a low tritium inventory and effective tritium removal. The issue with this design is not one of safety but of economics. The ARIES reactor designs have safety concerns associated with fires. These reactors designs are described

  6. Safety demonstration test on solvent fire in fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Hashimoto, Kazuichiro

    1989-03-01

    This report summarizes a fundamental of results obtained in the Reprocessing Plant Safety Demonstration Test Program which was performed under the contract between the Science and Technology Agency of Japan and the Japan Atomic Energy Research Institute. In this test program, a solvent fire was hypothesized, and such data were obtained as fire behavior, smoke behavior and integrity of exhaust filters in the ventilation system. Through the test results, it was confirmed that under the fire condition in hypothetical accident, the integrity of the cell and the cell ventilation system were maintained, and the safety function of the exhaust filters was maintained against the smoke loading. Analytical results by EVENT code agreed well with the present test data on the thermofluid flow in a cell ventilation system. (author)

  7. Neutronics/Thermo-fluid Coupled Analysis of PMR-200 Equilibrium Cycle by CAPP/GAMMA+ Code System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Tak, Nam-il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The equilibrium core was obtained by performing CAPP stand-alone multi-cycle depletion calculation with critical rod position search. In this work, a code system for coupled neutronics and thermo-fluids simulation was developed using CAPP and GAMMA+ codes. A server program, INTCA, controls the two codes for coupled calculations and performs the mapping between the variables of the two codes based on the nodalization of the two codes. In order to extend the knowledge about the coupled behavior of a prismatic VHTR, the CAPP/GAMMA+ code system was applied to steady state performance analysis of PMR-200. The coupled calculation was carried out for the equilibrium core of PMR-200 from BOC to EOC. The peak fuel temperature was predicted to be 1372 .deg. C near MOC. However, the cycle-average fuel temperature was calculated as 1230 .deg. C, which is slightly below the design target of 1250 .deg. C. In addition, significant impact of the bypass flow on the central reflector temperature was found. Without bypass flow, the temperature of the active core region was slightly decreased while the temperature of the central and side reflector region was increased much. The both changes in the temperature increase the multiplication factor and the total change of the multiplication factor was more than 300 pcm. On the other hand, the effect of the bypass flow on the power density profile was not significant.

  8. Verification of thermo-fluidic CVD reactor model

    International Nuclear Information System (INIS)

    Lisik, Z; Turczynski, M; Ruta, L; Raj, E

    2014-01-01

    Presented paper describes the numerical model of CVD (Chemical Vapour Deposition) reactor created in ANSYS CFX, whose main purpose is the evaluation of numerical approaches used to modelling of heat and mass transfer inside the reactor chamber. Verification of the worked out CVD model has been conducted with measurements under various thermal, pressure and gas flow rate conditions. Good agreement between experimental and numerical results confirms correctness of the elaborated model.

  9. Thermo-fluid dynamics of two-phase flow

    CERN Document Server

    Ishii, Mamoru; Ishii, Mamoru; Ishii, M

    2006-01-01

    Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.

  10. Investigation of nuclear criticality within a powder using coupled neutronics and thermofluids

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J.L.M.A. [Imperial College London, Department of Earth Sciences and Engineering, London SW7 2AZ (United Kingdom); Pain, C.C. [Imperial College London, Department of Earth Sciences and Engineering, London SW7 2AZ (United Kingdom)], E-mail: c.pain@imperial.ac.uk; Eaton, M.D.; Goddard, A.J.H.; Piggott, M.D. [Imperial College London, Department of Earth Sciences and Engineering, London SW7 2AZ (United Kingdom); Ziver, A.K. [RM Consultants Ltd., Suite 7, Hitching Court, Abingdon Business Park, OX14 1RA (United Kingdom); Oliveira, C.R.E. de [University of New Mexico, Department of Chemical and Nuclear Engineering, Albuquerque, NM 87131 (United States); Yamane, Y. [Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai-mura, Naga-gun, Ibaraki-ken 319-1195 (Japan)

    2008-11-15

    This paper investigates the dynamics of a postulated criticality in a powder used as part of fuel processing. Numerical simulations are performed in 2D and 3D geometries in which layers of MOX, UO{sub 2} and zinc stearate (acting as a moderating lubricant) powders become supercritical. The system simulated here were initialised with a step reactivity insertion of 1$, 2$ and 5$. The coupled radiation and multiphase-multicomponent simulations showed complex dynamics with an increase of powder temperature and mixing of the moderator into the MOX.

  11. Thermo-fluid analysis of water cooled research reactors in natural convection

    International Nuclear Information System (INIS)

    Veloso, Maria Auxiliadora Fortini

    2004-01-01

    The STHIRP-1 computer program, which fundamentals are described in this work, uses the principles of the subchannels analysis and has the capacity to simulate, under steady state and transient conditions, the thermal and hydraulic phenomena which occur inside the core of a water-refrigerated research reactor under a natural convection regime. The models and empirical correlations necessary to describe the flow phenomena which can not be described by theoretical relations were selected according to the characteristics of the reactor operation. Although the primary objective is the calculation of research reactors, the formulation used to describe the fluid flow and the thermal conduction in the heater elements is sufficiently generalized to extend the use of the program for applications in power reactors and other thermal systems with the same features represented by the program formulations. To demonstrate the analytical capacity of STHIRP-l, there were made comparisons between the results calculated and measured in the research reactor TRIGA IPR-R1 of CDTN/CNEN. The comparisons indicate that the program reproduces the experimental data with good precision. Nevertheless, in the future there must be used more consistent experimental data to corroborate the validation of the program. (author)

  12. Z-inertial fusion energy: power plant final report FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  13. Z-inertial fusion energy: power plant final report FY 2006

    International Nuclear Information System (INIS)

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M.; Kern, Brian; Tajima, Yu; Campen, Chistopher; Sketchley, Tomas; Moir, R; Bardet, Philippe M.; Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L.; Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar; Abdel-Khalik, S.; Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar; Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-01-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques

  14. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  15. Multiscale Space-Time Computational Methods for Fluid-Structure Interactions

    Science.gov (United States)

    2015-09-13

    thermo-fluid analysis of a ground vehicle and its tires ST-SI Computational Analysis of a Vertical - Axis Wind Turbine We have successfully...of a vertical - axis wind turbine . Multiscale Compressible-Flow Computation with Particle Tracking We have successfully tested the multiscale...Tezduyar, Spenser McIntyre, Nikolay Kostov, Ryan Kolesar, Casey Habluetzel. Space–time VMS computation of wind - turbine rotor and tower aerodynamics

  16. Development of very high temperature reactor design technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, Jan Man

    2012-04-01

    or an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, fission product/tritium transport analysis, core thermo-fluid analysis, system layout analysis, graphite structure seismic analysis and hydrogen exposion analysis, and they are being verified and validated through a lot of international collaborations

  17. Chemical form of released tritium from molten Li{sub 2}BeF{sub 4} salt under neutron irradiation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Akihiro; Terai, Takayuki; Yoneoka, Toshiaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Chemical forms of released tritium from FLIBE (the 2:1 mixture of LiF and BeF{sub 2}) by in-pile tritium release experiment were HT and TF and their proportion depended on the chemical composition of purge gas and the dehumidification time of specimen at high temperatures. The chemical form of tritium was determined by the thermodynamic equilibrium of the isotopic exchange reaction (T{sup +} + H{sub 2} {yields} H{sup +} + HT). (author)

  18. Initial integration of accident safety, waste management, recycling, effluent, and maintenance considerations for low-activation materials

    International Nuclear Information System (INIS)

    Piet, S.J.; Herring, J.S.; Cheng, E.T.; Fetter, S.

    1991-01-01

    A true low-activation material should ideally achieve all of the following objectives: 1. The possible prompt dose at the site boundary from 100% release of the inventory should be <2 Sv (200 rem); hence, the design would be inherently safe in that no possible accident could result in prompt radiation fatalities. 2. The possible cancers from realistic releases should be limited such that the accident risk is <0.1%/yr of the existing background cancer risk to local residents. This includes consideration of elemental volatility. 3. The decay heat should be limited so that active mitigative measures are not needed to protect the investment from cooling transients; hence, the design would be passively safe with respect to decay heat. 4. Used materials could be either recycled or disposed of as near- surface waste. 5. Hands-on maintenance should be possible around coolant system piping and components such as the heat exchanger. 6. Effluent of activation products should be minor compared to the major challenge of limiting tritium effluents. The most recent studies in these areas are used to determine which individual elements and engineering materials are low activation. Grades from A (best) to G (worst) are given to each element in the areas of accident safety, recycling, and waste management. Structure/fluid combinations are examined for low-activation effluents and out-of-blanket maintenance. The lowest activation structural materials are silicon carbide, vanadium alloys, and ferritic steels. Impurities and minor alloying constituents must be carefully considered. The lowest activation coolants are helium, water, FLiBe, and lithium. The lowest activation breeders are lithium, lithium oxide, lithium silicate, and FLiBe. Designs focusing on these truly low-activation materials will help achieve the excellent safety and environmental potential of fusion energy

  19. CRBR nuclear, thermofluid, and advanced fuel conceptual design

    International Nuclear Information System (INIS)

    Dickson, P.W.

    1975-01-01

    The improvements effected in flow orificing and fuel conceptual design to achieve both the breeding ratio and fuel lifetime goals within the restrictions imposed upon the core and blanket are discussed. The effect of cladding temperature on fuel lifetime is illustrated for either inelastic strain limits or life fraction damage function limits. The temperature varies through life differently for different assemblies. The maximum cladding midwall temperature for the assembly illustrated is just over 1300 0 F at the beginning of life, also calculated on a conservative basis. This results in a lifetime of 80 MWD/Kg. An initial temperature of closer to 1230 0 F would be required to achieve a burnup capability of 150 MWD/Kg. It is thus apparent that either the temperatures of the cladding must be decreased, or improved cladding material is required in order to achieve 150 MWD/Kg. (auth)

  20. Application of Recurrence Analysis to the period doubling cascade of a confined buoyant flow

    International Nuclear Information System (INIS)

    Angeli, D; Corticelli, M A; Fichera, A; Pagano, A

    2017-01-01

    Recurrence Analysis (RA) is a promising and flexible tool to identify the behaviour of nonlinear dynamical systems. The potentialities of such a technique are explored in the present work, for the study of transitions to chaos of buoyant flow in enclosures. The case of a hot cylindrical source centred in a square enclosure, is considered here, for which an extensive database of results has been collected in recent years. For a specific value of the system aspect ratio, a sequence of period doublings has been identified, leading to the onset of chaos. RA is applied here to analyse the different flow regimes along the route to chaos. The qualitative visual identification of patterns and the statistics given by the quantitative analysis suggest that this kind of tool is well suited to the study of transitional flows in thermo-fluid dynamics. (paper)

  1. Fuel enrichment and temperature distribution in nuclear fuel rod in (D-T) driven hybrid reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Ypek [Suleyman Demirel Universitesi Muhendislik-Mimarlyk Fakultesi, Isparta (Turkey)

    2001-07-01

    In this study, melting point of the fuel rod and temperature distribution in nuclear fuel rod are investigated for different coolants under various first wall loads (P{sub w}, =5, 6, 7, 8, 9, and 10 MWm{sup -2}) in Fusion-Fission reactor fueled with 50%LWR +50%CANDU. The fusion source of neutrons of 14.1 MeV is simulated by a movable target along the main axis of cylindrical geometry as a line source. In addition, the fusion chamber was thought as a cylindrical cavity with a diameter of 300 cm that is comparatively small value. The fissile fuel zone is considered to be cooled with four different coolants, gas, flibe (Li{sub 2}BeF{sub 4}), natural lithium (Li), and eutectic lithium (Li{sub 17}Pb{sub 83}). Investigations are observed during 4 years for discrete time intervals of{delta}t= 0.5 month and by a plant factor (PF) of 75%. Volumetric ratio of coolant-to fuel is 1:1, 45.515% coolant, 45.515% fuel, 8.971% clad, in fuel zone. (author)

  2. Transport properties of molten-salt reactor fuel mixtures: the case of Na, Li, Be/F and Li, Be, Th/F salts

    International Nuclear Information System (INIS)

    Ignatiev, V.; Merzlyakov, A.; Afonichkin, V.; Khokhlov, V.; Salyulev, A.

    2003-01-01

    In this paper we have compiled transport properties information, available, on two types of FLiBe based salt mixtures (Na,Li,Be/F and Li,Be,Th/F) that are presently of importance in the design of innovative molten-salt burner reactors. Estimated and/or experimental values measured (particularly, from prior US and Russian studies, as well our recent studies) are given for the following properties: viscosity, thermal conductivity, phase transition behaviour, heat capacity, density and thermal expansion. (author)

  3. Tritium inventory and permeation in liquid breeder blankets

    International Nuclear Information System (INIS)

    Reiter, F.

    1990-01-01

    This report reviews studies of the transport of hydrogen isotopes in the DEMO relevant water-cooled Pb-17Li blanket to be tested in NET and in a self-cooled blanket which uses Pb-17Li or Flibe as a liquid breeder material and V or Fe as a first wall material. The time dependences of tritium inventory and permeation in these blankets and of deuterium and tritium recycling in the self-cooled blanket are presented and discussed

  4. Transport properties of molten-salt reactor fuel mixtures: the case of Na, Li, Be/F and Li, Be, Th/F salts

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V; Merzlyakov, A [Kurchatov Institute - KI (Russian Federation); Afonichkin, V; Khokhlov, V; Salyulev, A [Institute of High Temperature Electrochemisty (IHTE), RF Yuri Golovatov, Konstantin Grebenkine, Vladimir Subbotin Institute of Technical Physics (VNIITF) (Russian Federation)

    2003-07-01

    In this paper we have compiled transport properties information, available, on two types of FLiBe based salt mixtures (Na,Li,Be/F and Li,Be,Th/F) that are presently of importance in the design of innovative molten-salt burner reactors. Estimated and/or experimental values measured (particularly, from prior US and Russian studies, as well our recent studies) are given for the following properties: viscosity, thermal conductivity, phase transition behaviour, heat capacity, density and thermal expansion. (author)

  5. Construction and initial operation of MHD PbLi facility at UCLA

    International Nuclear Information System (INIS)

    Kunugi, T.; Yokomine, T.; Ueki, Y.; Smolentsev, S.; Li, F.-C.; Sketchley, T.; Abdou, M.A.; Yuki, K.

    2014-01-01

    We review current accomplishments in Task 1-3 'Flow Control and Thermofluid Modeling' of the Japan-US 'TITAN' collaboration program. Our task focuses on experimental activities and also computer modeling of magnetohydrodynamic flows and heat and mass transfer of electrically conducting fluids under conditions relevant to fusion blankets. Since our task started, major efforts were taken to design, construct and test a new magnetohydrodynamic lead-lithium (PbLi) loop at UCLA, to accumulate the PbLi handling technology, and to develop a high-temperature ultrasonic Doppler velocimetry and a differential-pressure measurement system for PbLi flows. In the present paper, the loop construction, the electromagnetic pump performance test, our on-going experiments with the constructed loop are described. (author)

  6. Control of molten salt corrosion of reduced activation steel for fusion applications by metallic beryllium

    International Nuclear Information System (INIS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2007-01-01

    Full text of publication follows: In 2001 the INL started a research program as a part of the 2. Japan/US Program on Irradiation Tests for Fusion Energy Research (JUPITER-II collaboration) aimed at the characterization of the 2LiF-BeF2 (Flibe) molten salt as a breeder and coolant material for fusion applications. A key objective of the work was to demonstrate chemical compatibility between Flibe and potential fusion structural materials once suitable fluoride potential control methods are established. A series of tests performed at INL demonstrated that this can be achieved by contacting the salt with metallic beryllium, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W JLF-1 to static corrosion tests that include an active corrosion agent (hydrofluoric gas) and fluoride potential control (metallic Be) at 530 C, and the results of the tests are presented in this paper. The specimen and a beryllium rod were simultaneously immersed in the molten salt through gas tight fittings mounted on risers extending from the top lid of the test vessel; the beryllium rod was extracted after 5 hours, while the sample was left in the salt for 250 hours during which salt samples were withdrawn from the melt at fixed intervals. A diagnostic system based on the measurement of reacting HF through on-line titration was coupled with the analysis of metallic components in the salt samples that were dissolved and analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Impurity levels of oxygen, nitrogen and carbon were determined from pieces of the solidified melt using Leco analytical systems. The results confirmed the expected correlation of the HF recovery with the concentration of metallic elements dissolved in the salt because of specimen corrosion. The metals concentration falls below the detectable limit when the beryllium rod is inserted and increases when the

  7. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.; Cornish, D.N.

    1976-01-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements. Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated

  8. International Congress of Fluid Mechanics, 3rd, Cairo, Egypt, Jan. 2-4, 1990, Proceedings. Volumes 1, 2, 3, & 4

    Science.gov (United States)

    Nayfeh, A. H.; Mobarak, A.; Rayan, M. Abou

    This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.

  9. International Congress of Fluid Mechanics, 3rd, Cairo, Egypt, Jan. 2-4, 1990, Proceedings. Volumes 1, 2, 3, 4

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, A.H.; Mobarak, A.; Rayan, M.A.

    1990-01-01

    This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.

  10. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  11. Heat and mass transfer in air-fed pressurised suits

    International Nuclear Information System (INIS)

    Tesch, K.; Collins, M.W.; Karayiannis, T.G.; Atherton, M.A.; Edwards, P.

    2009-01-01

    Air-fed pressurised suits are used to protect workers against contamination and hazardous environments. The specific application here is the necessity for regular clean-up maintenance within the torus chamber of fusion reactors. The current design of suiting has been developed empirically. It is, therefore, very desirable to formulate a thermo-fluids model, which will be able to define optimum designs and operating parameters. Two factors indicate that the modelling should be as comprehensive as possible. Firstly, the overall thermo-fluids problem is three-dimensional and includes mass as well as heat transfer. The fluid field is complex, bounded on one side by the human body and on the other by what may be distensible, porous and multi-layer clothing. In this paper, we report firstly the modelling necessary for the additional mass and heat transport processes. This involves the use of Fick's and Fourier's laws and conjugate heat transfer. The results of an initial validation study are presented. Temperatures at the outlet of the suits were obtained experimentally and compared with those predicted by the overall CFD model. Realistic three-dimensional geometries were used for the suit and human body. Calculations were for turbulent flow with single- and two-component (species) models

  12. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  13. Innovative coupling of cogeneration units with fire tube boilers: thermo-fluid dynamics of the fire tubes

    Science.gov (United States)

    Cioccolanti, L.; Arteconi, A.; Bartolini, C. M.; Polonara, F.

    2017-11-01

    Nowadays the thermal energy demand in the industrial sector is usually satisfied by means of fire tube boilers while electricity is supplied from the grid. Alternatively cogeneration units could be adopted for thermal and electrical energy self-production, whilst installing boilers only as back-up units. However, even when cogeneration is profitable, it is not widespread because industries are usually unwilling to accept cogeneration plants for reliability and high investment costs issues. In this work a system aimed at overcoming the above mentioned market difficulties is proposed. It consists of an innovative coupling of a combined heat and power unit with a modified fire tube boiler. In particular, a CFD analysis was carried out by the authors in order to address the most critical aspects related with the coupling of the two systems. More precisely, the following aspects were evaluated in detail: (i) pressure losses of the exhausts going from the prime mover to the boiler due to the sudden cross-section area variations; (ii) thermal power recoverable from the exhausts in the tubes of the boiler; (iii) dependence of the system on the final users’ specification.

  14. Factors affecting the development of sprays produced by multihole injectors for direct-injection engine applications

    OpenAIRE

    Van Romunde, R. Z.

    2011-01-01

    The spray form development from a state of the art multi-hole injector for gasoline direct injection internal combustion engines is examined to attempt to determine the thermo-fluid dynamics affecting the spray development. The current state of knowledge regarding spray break-up and the interactivity of the factors on spray form are detailed. The spray under investigation was injected into purposely designed quiescent chambers to decouple the effects of the fluid mechanics on s...

  15. Embedding Entrepreneurial Thinking into Fluids-related Courses: Small Changes Lead to Positive Results

    Science.gov (United States)

    Carnasciali, Maria-Isabel

    2017-11-01

    Many fluid dynamics instructors have embraced student-centered learning pedagogies (Active & Collaborative Learning (ACL) and Problem/Project Based Learning (PBL)) to promote learning and increase student engagement. A growing effort in engineering education calls to equip students with entrepreneurial skills needed to drive innovation. The Kern Entrepreneurial Engineering Network (KEEN) defines entrepreneurial mindset based on three key attributes: curiosity, connections, and creating value. Elements of ACL and PBL have been used to embed Entrepreneurial Thinking concepts into two fluids-related subjects: 1) an introductory thermal-fluid systems course, and 2) thermo-fluids laboratory. Assessment of students' work reveal an improvement in student learning. Course Evaluations and Surveys indicate an increased perceived-value of course content. Training and development made possible through funding from the Kern Entrepreneurial Engineering Network and the Bucknall Excellence in Teaching Award.

  16. Institute for Safety Research. Annual report 1992

    International Nuclear Information System (INIS)

    Weiss, F.P.; Boehmert, J.

    1993-11-01

    The Institute is concerned with evaluating the design based safety and increasing the operational safety of technical systems which include serious sources of danger. It is further occupied with methods of mitigating the effects of incidents and accidents. For all these goals the institute does research work in the following fields: modelling and simulation of thermofluid dynamics and neutron kinetics in cases of accidents; two-phase measuring techniques; safety-related analyses and characterizing of mechanical behaviours of material; measurements and calculations of radiation fields; process and plant diagnostics; development and application of methods of decision analysis. This annual report gives a survey of projects and scientific contributions (e.g. Single rod burst tests with ZrNb1 cladding), lists publications, institute seminars and workshops, names the personal staff and describes the organizational structure. (orig./HP)

  17. Topology Optimization of Thermal Heat Sinks

    DEFF Research Database (Denmark)

    Klaas Haertel, Jan Hendrik; Engelbrecht, Kurt; Lazarov, Boyan Stefanov

    2015-01-01

    In this paper, topology optimization is applied to optimize the cooling performance of thermal heat sinks. The coupled two-dimensional thermofluid model of a heat sink cooled with forced convection and a density-based topology optimization including density filtering and projection are implemented...... in COMSOL Multiphysics. The optimization objective is to minimize the heat sink’s temperature for a prescribed pressure drop and fixed heat generation. To conduct the optimization, COMSOL’s Optimization Module with GCMMA as the optimization method is used. The implementation of this topology optimization...... approach in COMSOL Multiphysics is described in this paper and results for optimized two-dimensional heat sinks are presented. Furthermore, parameter studies regarding the effect of the prescribed pressure drop of the system on Reynolds number and realized heat sink temperature are presented and discussed....

  18. Optimal Control of Thermo--Fluid Phenomena in Variable Domains

    Science.gov (United States)

    Volkov, Oleg; Protas, Bartosz

    2008-11-01

    This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.

  19. Improved structure and long-life blanket concepts for heliotron reactors

    International Nuclear Information System (INIS)

    Sagara, A.; Imagawa, S.; Mitarai, O.

    2005-01-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14m is selected to permit a blanket-shield thickness of about 1m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R and D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated. (author)

  20. Improved structure and long-life blanket concepts for heliotron reactors

    Science.gov (United States)

    Sagara, A.; Imagawa, S.; Mitarai, O.; Dolan, T.; Tanaka, T.; Kubota, Y.; Yamazaki, K.; Watanabe, K. Y.; Mizuguchi, N.; Muroga, T.; Noda, N.; Kaneko, O.; Yamada, H.; Ohyabu, N.; Uda, T.; Komori, A.; Sudo, S.; Motojima, O.

    2005-04-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R&D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated.

  1. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  2. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  3. Diseño y construcción de un rodete de ventilador centrífugo de 100 cfm para el laboratorio de termofluidos de la Universidad Politécnica Salesiana - Campus Kennedy

    OpenAIRE

    Ontaneda Zapata, Roberto Javier

    2015-01-01

    The target of development of the currently project, is issued in order to determinate the standards for design a centrifugal fan wheel, and to verify the FM40 Fan equipment measurement design, which one belongs to thermofluid laboratory of Salesiana´s Polythechnic University.  First chapter of document, it shows targets, extension, theory which treat about centrifugal fans and it´s applications. Theory as formulae, equations, stages and graphs, they have been taken from books of recogn...

  4. Tritium breeding potential of the Princeton reference fusion power plant

    International Nuclear Information System (INIS)

    Greenspan, E.; Price, W.G. Jr.

    1974-04-01

    A variational method is used to investigate the tritium breeding potential of the blanket of a fusion reactor. Effectiveness functions indicating the changes in the breeding ratio (BR) due to material density perturbations are calculated with the code SWAN. Results are presented analyzing the sensitivity of the BR both to cross section variations and to material density perturbations. For example, SWAN indicates a 0.176 increase in BR for the replacement of 10% of the flibe by beryllium. Implications of the sensitivity figures for design modification and optimization are discussed. 15 refs., 7 figs

  5. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-15

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels.

  6. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-01

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels

  7. Fusion blanket inherent safety assessment

    International Nuclear Information System (INIS)

    Sze, D.K.; Jung, J.; Cheng, E.T.

    1986-01-01

    Fusion has significant potential safety advantages. There is a strong incentive for designing fusion plants to ensure that inherent safety will be achieved. Accordingly, both the Tokamak Power Systems Studies and MINIMARS have identified inherent safety as a design goal. A necessary condition is for the blanket to maintain its configuration and integrity under all credible accident conditions. A main problem is caused by afterheat removal in an accident condition. In this regard, it is highly desirable to achieve the required level of protection of the plant capital investment and limitation of radioactivity release by systems that rely only on inherent properties of matter (e.g., thermal conductivity, specific heat, etc.) and without the use of active safety equipment. This paper assesses the conditions under which inherent safety is feasible. Three types of accident conditions are evaluated for two blankets. The blankets evaluated are a self cooled vanadium/lithium blanket and a self-cooled vanadium/Flibe blanket. The accident conditions evaluated are: (1) loss-of-flow accident; (2) loss-of-coolant accident (LOCA); and (3) partial loss-of-coolant accident

  8. Study of thermo-fluidic behavior of micro-droplet in inkjet-based micro manufacturing processes

    Science.gov (United States)

    Das, Raju; Mahapatra, Abhijit; Ball, Amit Kumar; Roy, Shibendu Shekhar; Murmu, Naresh Chandra

    2017-06-01

    Inkjet printing technology, a maskless, non-contact patterning operation, which has been a revelation in the field of micro and nano manufacturing for its use in the selective deposition of desired materials. It is becoming an exciting alternative technology such as lithography to print functional material on to a substrate. Selective deposition of functional materials on desired substrates is a basic requirement in many of the printing based micro and nano manufacturing operations like the fabrication of microelectronic devices, solar cell, Light-emitting Diode (LED) research fields like pharmaceutical industries for drug discovery purposes and in biotechnology to make DNA microarrays. In this paper, an attempt has been made to design and develop an indigenous Electrohydrodynamic Inkjet printing system for micro fabrication and to study the interrelationships between various thermos-fluidic parameters of the ink material in the printing process. The effect of printing process parameters on printing performance characteristics has also been studied. And the applicability of the process has also been experimentally demonstrated. The experimentally found results were quite satisfactory and accordance to its applicability.

  9. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  10. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  11. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    International Nuclear Information System (INIS)

    Liu, J. Chien-Chih

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li 2 BeF 4 (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel

  12. Intermediate heat exchanger and steam generator designs for the HYLIFE-II fusion power plant using molten salts

    International Nuclear Information System (INIS)

    Lee, Y.T.; Hoffman, M.A.

    1992-01-01

    The HYLIFE-II fusion power plant employs the molten salt, Flibe, for the liquid jets which form the self-healing 'first wall' of the reactor. The molten salt, sodium fluoroborate then transports the heat from the IHX's to the steam generators. The design and optimization of the IHX's and the steam generators for use with molten salts has been done as part of the HYLIFE-II conceptual design study. The results of this study are described, and reference designs of these large heat exchangers are selected to minimize the cost of electricity while satisfying other important constraints

  13. Turbomachinery Flow Physics and Dynamic Performance

    CERN Document Server

    Schobeiri, Meinhard T

    2012-01-01

    With this second revised and extended edition, the readers have a solid source of information for designing state-of-the art turbomachinery components and systems at hand.   Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principles of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes.   While maintaining the unifying character of the book structure in this second revised and e...

  14. Status of Thermo-Fluid Experimental Research on VHTR in Korea

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Hong, Seong-Deok; Kim, Yong-Wan; Shin, Dong-Ho; Lee, Jeong-Hun; Park, Goon-Cherl

    2014-01-01

    For reasons related to licensing uncertainty, economic slowdown, and questionable financial backing, no new nuclear facility projects have been undertaken in the United States since the Three Mile Island Incident in 1979; however, a need for such facilities (both nuclear power plants and nuclear fuel facilities) continues and various incentives leading to the start of a nuclear renaissance have occurred. One incentive is a complete overhaul by the US Nuclear Regulatory Commission of the earlier two step licensing process under 10 CFR 50. The earlier approach required first a construction permit and then an operating license, whereas the new approach allows a more streamlined (one step) combined license (COL) approach utilizing Standard Design Certifications via the regulatory framework created by 10 CFR 52. Other incentives include US Government backed loan guarantees as well as private company contributions.One aspect to the new process has been consideration and implementation of many new topic-specific regulations and industry standards which have continued to evolve during the past 30 years in spite of the lack of new plant design and construction activity. Therefore, an Owner attempting a new nuclear facility project under 10 CFR 52 needs to address a myriad of new requirements previously unconsidered.Several new projects including both power plants and fuel facilities have begun the new licensing process with its many new requirements to consider, but a uranium enrichment facility has run the gamut first. This paper will summarize many of the lessons learned from designing, constructing and testing this first new nuclear facility to be built in the US in over 30 years. (authors)

  15. Experimental development, 1D CFD simulation and energetic analysis of a 15 kw micro-CHP unit based on reciprocating internal combustion engine

    International Nuclear Information System (INIS)

    Muccillo, M.; Gimelli, A.

    2014-01-01

    Cogeneration is commonly recognized as one of the most effective solutions to achieve the increasingly stringent reduction in primary energy consumption and greenhouse emissions. This characteristic led to the adoption of specific directives promoting this technique. In addition, a strategic role in power reliability is recognized to distributed generation. The study and prototyping of cogeneration plants, therefore, has involved many research centres. This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant based on a LPG reciprocating engine designed, built and grid connected. The plant consists of a heat recovery system characterized by a single water circuit recovering heat from exhaust gases, from engine coolant and from the energy radiated by the engine within the shell hosting the plant. Some tests were carried out at whole open throttle and the experimental data were collected. However it was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. As the heat actually recovered depends on the user's thermal load, particularly from the required temperature's level, a comparison of the results for six types of users were performed: residential, hospital, office, commercial, sports, hotel. Both Italian legislative indexes IRE and LT were evaluated, as defined by A.E.E.G resolution n. 42/02 and subsequent updates, as well as the plant's total Primary Energy Saving. - Highlights: • This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant. • The 15 kW micro-CHP plant is based on a GPL reciprocating engine designed, built and grid connected. • Some tests were carried out at whole open throttle and the experimental data were collected. • It was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. • The analysed solution is particularly suited for

  16. Simulación de termofluidos de PLA natural y ABS en el proceso de impresión en 3D

    OpenAIRE

    Ñauta Ñauta, Adrián Eugenio; Vergara Idrovo, Marcelo Roberto

    2017-01-01

    Nuestro trabajo titulado se orientó en la simulación de termofluidos en el proceso de impresión en 3D, la misma que en la actualidad está en desarrollo. Se simuló la impresión con PLA natural y ABS, permitiendo variar parámetros de temperatura y velocidad para lograr un mejor acabado superficial del producto. Our work was oriented to the simulation of thermofluids in the process of 3D impression, which is been developed nowadays. The simulation was made with natural PLA and ABS, allowing t...

  17. An advanced computational bioheat transfer model for a human body with an embedded systemic circulation.

    Science.gov (United States)

    Coccarelli, Alberto; Boileau, Etienne; Parthimos, Dimitris; Nithiarasu, Perumal

    2016-10-01

    In the present work, an elaborate one-dimensional thermofluid model for a human body is presented. By contrast to the existing pure conduction-/perfusion-based models, the proposed methodology couples the arterial fluid dynamics of a human body with a multi-segmental bioheat model of surrounding solid tissues. In the present configuration, arterial flow is included through a network of elastic vessels. More than a dozen solid segments are employed to represent the heat conduction in the surrounding tissues, and each segment is constituted by a multilayered circular cylinder. Such multi-layers allow flexible delineation of the geometry and incorporation of properties of different tissue types. The coupling of solid tissue and fluid models requires subdivision of the arterial circulation into large and small arteries. The heat exchange between tissues and arterial wall occurs by convection in large vessels and by perfusion in small arteries. The core region, including the heart, provides the inlet conditions for the fluid equations. In the proposed model, shivering, sweating, and perfusion changes constitute the basis of the thermoregulatory system. The equations governing flow and heat transfer in the circulatory system are solved using a locally conservative Galerkin approach, and the heat conduction in the surrounding tissues is solved using a standard implicit backward Euler method. To investigate the effectiveness of the proposed model, temperature field evolutions are monitored at different points of the arterial tree and in the surrounding tissue layers. To study the differences due to flow-induced convection effects on thermal balance, the results of the current model are compared against those of the widely used modelling methodologies. The results show that the convection significantly influences the temperature distribution of the solid tissues in the vicinity of the arteries. Thus, the inner convection has a more predominant role in the human body heat

  18. Mixing Performance of a Suspended Stirrer for Homogenizing Biodegradable Food Waste from Eatery Centers

    Directory of Open Access Journals (Sweden)

    Olumide Babarinsa

    2014-08-01

    Full Text Available Numerical simulation of a suspended stirrer within a homogenizing system is performed towards determining the mixing performance of a homogenizer. A two-dimensional finite volume formulation is developed for the cylindrical system that is used for the storage and stirring of biodegradable food waste from eatery centers. The numerical solver incorporates an analysis of the property distribution for viscous food waste in a storage tank, while coupling the impact of mixing on the slurry fluid. Partial differential equations, which describe the conservation of mass, momentum and energy, are applied. The simulation covers the mixing and heating cycles of the slurry. Using carrot-orange soup as the operating fluid (and its thermofluid properties and assuming constant density and temperature-dependent viscosity, the velocity and temperature field distribution under the influence of the mixing source term are analyzed. A parametric assessment of the velocity and temperature fields is performed, and the results are expected to play a significant role in designing a homogenizer for biodegradable food waste.

  19. Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Matthias A. Ebner; Piyush Sabharwall; Phil Sharpe

    2010-03-01

    The purpose of this report is to provide a review of thermodynamic and thermophysical properties of candidate molten salt coolants, which may be used as a primary coolant within a nuclear reactor or heat transport medium from the Next Generation Nuclear Plant (NGNP) to a processing plant, for example, a hydrogen-production plant. Thermodynamic properties of four types of molten salts, including LiF-BeF2 (67 and 33 mol%, respectively; also known as FLiBe), LiF-NaF-KF (46.5, 11.5, and 52 mol%, also known as FLiNaK), and KCl-MgCl2 (67 and 33 mol%), and sodium nitrate-sodium nitrite-potassium nitrate (NaNO3–NaNO2–KNO3, (7-49-44 or 7-40-53 mol%) have been investigated. Limitations of existing correlations to predict density, viscosity, specific heat capacity, surface tension, and thermal conductivity, were identified. The impact of thermodynamic properties on the heat transfer, especially Nusselt number was also discussed. Stability of the molten salts with structural alloys and their compatibility with the structural alloys was studied. Nickel and alloys with dense Ni coatings are effectively inert to corrosion in fluorides but not so in chlorides. Of the chromium containing alloys, Hastelloy N appears to have the best corrosion resistance in fluorides, while Haynes 230 was most resistant in chloride. In general, alloys with increasing carbon and chromium content are increasingly subject to corrosion by the fluoride salts FLiBe and FLiNaK, due to attack and dissolution of the intergranular chromium carbide. Future research to obtain needed information was identified.

  20. Thermal fluid dynamics study of nuclear advanced reactors of high temperature using RELAP5-3D; Estudo termofluidodinâmico de reatores nucleares avançados de alta temperatura utilizando o RELAP5-3D

    Energy Technology Data Exchange (ETDEWEB)

    Scari, Maria Elizabeth

    2017-07-01

    Fourth Generation nuclear reactors (GEN-IV) are being designed with special features such as intrinsic safety, reduction of isotopic inventory and use of fuel in proliferation-resistant cycles. Therefore, the investigation and evaluation of operational and safety aspects of the GEN-IV reactors have been the subject of numerous studies by the international community and also in Brazil. In 2008, in Brazil, was created the National Institute of Science and Technology of Innovative Nuclear Reactors, focusing on studies of projects and systems of new generation reactors, which included GEN-IV reactors as well as advanced PWR (Pressurized Water Reactor) concepts. The Department of Nuclear Engineering of the Federal University of Minas Gerais (DEN-UFMG) is a partner of this Institute, having started studies on the GEN-IV reactors in the year 2007. Therefore, in order to add knowledge to these studies, in this work, three projects of advanced reactors were considered to verify the simulation capability of the thermo-hydraulic RELAP5-3D code for these systems, either in stationary operation or in transient situations. The addition of new working fluids such as ammonia, carbon dioxide, helium, hydrogen, various types of liquid salts, among them Flibe, lead, lithium-bismuth, lithium-lead, was a major breakthrough in this version of the code, allowing also the simulation of GEN-IV reactors. The modeling of the respective core of an HTTR (High Temperature Engineering Test Reactor), HTR-10 (High Temperature Test Module Reactor) and LS-VHTR (Liquid-Salt-Cooled Very-High-Temperature Reactor) were developed and verified in steady state comparing the values found through the calculations with reference data from other simulations, when it is possible. The first two reactors use helium gas as coolant and the LS-VHTR uses a mixture of 66% LiF and 34% of BeF{sub 2}, the LiF-BeF{sub 2}, also know as Flibe. All the studied reactors use enriched uranium as fuel, in form of TRISO

  1. Thermal fluid dynamics study of nuclear advanced reactors of high temperature using RELAP5-3D

    International Nuclear Information System (INIS)

    Scari, Maria Elizabeth

    2017-01-01

    Fourth Generation nuclear reactors (GEN-IV) are being designed with special features such as intrinsic safety, reduction of isotopic inventory and use of fuel in proliferation-resistant cycles. Therefore, the investigation and evaluation of operational and safety aspects of the GEN-IV reactors have been the subject of numerous studies by the international community and also in Brazil. In 2008, in Brazil, was created the National Institute of Science and Technology of Innovative Nuclear Reactors, focusing on studies of projects and systems of new generation reactors, which included GEN-IV reactors as well as advanced PWR (Pressurized Water Reactor) concepts. The Department of Nuclear Engineering of the Federal University of Minas Gerais (DEN-UFMG) is a partner of this Institute, having started studies on the GEN-IV reactors in the year 2007. Therefore, in order to add knowledge to these studies, in this work, three projects of advanced reactors were considered to verify the simulation capability of the thermo-hydraulic RELAP5-3D code for these systems, either in stationary operation or in transient situations. The addition of new working fluids such as ammonia, carbon dioxide, helium, hydrogen, various types of liquid salts, among them Flibe, lead, lithium-bismuth, lithium-lead, was a major breakthrough in this version of the code, allowing also the simulation of GEN-IV reactors. The modeling of the respective core of an HTTR (High Temperature Engineering Test Reactor), HTR-10 (High Temperature Test Module Reactor) and LS-VHTR (Liquid-Salt-Cooled Very-High-Temperature Reactor) were developed and verified in steady state comparing the values found through the calculations with reference data from other simulations, when it is possible. The first two reactors use helium gas as coolant and the LS-VHTR uses a mixture of 66% LiF and 34% of BeF 2 , the LiF-BeF 2 , also know as Flibe. All the studied reactors use enriched uranium as fuel, in form of TRISO (Tristructural

  2. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James Chien-Chih [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li2BeF4 (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel.

  3. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  4. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  5. Analytical modelling of hydrogen transport in reactor containments

    International Nuclear Information System (INIS)

    Manno, V.P.

    1983-09-01

    A versatile computational model of hydrogen transport in nuclear plant containment buildings is developed. The background and significance of hydrogen-related nuclear safety issues are discussed. A computer program is constructed that embodies the analytical models. The thermofluid dynamic formulation spans a wide applicability range from rapid two-phase blowdown transients to slow incompressible hydrogen injection. Detailed ancillary models of molecular and turbulent diffusion, mixture transport properties, multi-phase multicomponent thermodynamics and heat sink modelling are addressed. The numerical solution of the continuum equations emphasizes both accuracy and efficiency in the employment of relatively coarse discretization and long time steps. Reducing undesirable numerical diffusion is addressed. Problem geometry options include lumped parameter zones, one dimensional meshs, two dimensional Cartesian or axisymmetric coordinate systems and three dimensional Cartesian or cylindrical regions. An efficient lumped nodal model is included for simulation of events in which spatial resolution is not significant. Several validation calculations are reported

  6. A future for computational fluid dynamics at CERN

    CERN Document Server

    Battistin, M

    2005-01-01

    Computational Fluid Dynamics (CFD) is an analysis of fluid flow, heat transfer and associated phenomena in physical systems using computers. CFD has been used at CERN since 1993 by the TS-CV group, to solve thermo-fluid related problems, particularly during the development, design and construction phases of the LHC experiments. Computer models based on CFD techniques can be employed to reduce the effort required for prototype testing, saving not only time and money but offering possibilities of additional investigations and design optimisation. The development of a more efficient support team at CERN depends on to two important factors: available computing power and experienced engineers. Available computer power IS the limiting resource of CFD. Only the recent increase of computer power had allowed important high tech and industrial applications. Computer Grid is already now (OpenLab at CERN) and will be more so in the future natural environment for CFD science. At CERN, CFD activities have been developed by...

  7. Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model

    Directory of Open Access Journals (Sweden)

    Kupecki Jakub

    2017-03-01

    Full Text Available The article presents a numerical analysis of an innovative method for starting systems based on high temperature fuel cells. The possibility of preheating the fuel cell stacks from the cold state to the nominal working conditions encounters several limitations related to heat transfer and stability of materials. The lack of rapid and safe start-up methods limits the proliferation of MCFCs and SOFCs. For that reason, an innovative method was developed and verified using the numerical analysis presented in the paper. A dynamic 3D model was developed that enables thermo-fluidic investigations and determination of measures for shortening the preheating time of the high temperature fuel cell stacks. The model was implemented in ANSYS Fluent computational fluid dynamic (CFD software and was used for verification of the proposed start-up method. The SOFC was chosen as a reference fuel cell technology for the study. Results obtained from the study are presented and discussed.

  8. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  9. Generalized Fluid System Simulation Program, Version 6.0

    Science.gov (United States)

    Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.

    2016-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct

  10. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration

    International Nuclear Information System (INIS)

    Dimopoulos, George G.; Stefanatos, Iason C.; Kakalis, Nikolaos M.P.

    2016-01-01

    thermofluid and chemical reactions modelling of each component, via our in-house ship machinery systems modelling framework, DNVGL COSSMOS. For the major system components spatially distributed exergy balances are considered in order to capture the coupling of the local process phenomena and exergy destruction with component design characteristics. Exhaust heat recovery is considered using a steam turbine combined-cycle module integrated with the rest of the MCFC system. Both the simple and combined cycle MCFC systems are optimised with respect to their overall exergetic efficiency subject to design, technical, operational and space constraints. The exergy analysis identified and ranked the sources of exergy destruction and the subsequent optimisation yielded significant improvement potential for both systems. The simple MCFC system optimisation yielded an exergy efficiency improvement of 7% with 5% more power produced. Heat recovery in the combined cycle MCFC resulted in 40% more power produced, with a 60% overall exergy efficiency (relative increase of 45%). Both MCFC systems outperform conventional dual-fuel engines with respect to efficiency, having also a positive impact on CO_2 emissions with a relative reduction of about 30%.

  11. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing

    International Nuclear Information System (INIS)

    Dal Magro, Fabio; Meneghetti, Antonella; Nardin, Gioacchino; Savino, Stefano

    2015-01-01

    Highlights: • A system based on phase change material is inserted into the off-gas-line of a continuous charge electric arc furnace. • The off-gas temperature profile after scrap preheating is smoothed. • A heat transfer fluid through phase change material containers allows to control overheating issues. • The smoothed off-gas profiles enable efficient downstream power generation. • The recovery system investment cost is decreased due to lower sizes of components. - Abstract: In order to allow an efficient energy recovery from off-gas in the steel industry, the high variability of heat flow should be managed. A temperature smoothing device based on phase change materials at high temperatures is inserted into the off-gas line of a continuous charge electric arc furnace process with scrap preheating. To address overheating issues, a heat transfer fluid flowing through containers is introduced and selected by developing an analytical model. The performance of the smoothing system is analyzed by thermo-fluid dynamic simulations. The reduced maximum temperature of off-gas allows to reduce the size and investment cost of the downstream energy recovery system, while the increased minimum temperature enhances the steam turbine load factor, thus increasing its utilization. Benefits on environmental issues due to dioxins generation are also gained

  12. Visualization and measurement of thermo-fluid phenomena by using neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Kaichiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1998-03-01

    Recently, neutron radiography is rapidly expanding its application to various fields incollaboration with the development of electronic imaging techniques. Particularly, in the field of thermal and fluid engineering, it has drawn much attention as an innovative and non-intrusive method for fluid-visualization and measurement using neutron beam as a probe. In this paper, some examples of applications are introduced on the high frame-rate imaging, quantification method (especially, determination of void fraction), and multidimensional measurement which are much interested in fluid measurement in relation to light water reactor safety and thermohydraulics. (author)

  13. Visualization and measurement of thermo-fluid phenomena by using neutron radiography

    International Nuclear Information System (INIS)

    Mishima, Kaichiro

    1998-01-01

    Recently, neutron radiography is rapidly expanding its application to various fields incollaboration with the development of electronic imaging techniques. Particularly, in the field of thermal and fluid engineering, it has drawn much attention as an innovative and non-intrusive method for fluid-visualization and measurement using neutron beam as a probe. In this paper, some examples of applications are introduced on the high frame-rate imaging, quantification method (especially, determination of void fraction), and multidimensional measurement which are much interested in fluid measurement in relation to light water reactor safety and thermohydraulics. (author)

  14. Characterization of a novel, highly integrated tubular solid oxide fuel cell system using high-fidelity simulation tools

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.

    2011-08-01

    A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the

  15. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-09-01

    A report on one year of study of a tokamak hybrid reactor is presented. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  16. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-01-01

    A report on one year of study of a tokamak hybrid reactor is given. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  17. Deposition of CsI aerosol in horizontal straight pipes in WIND project

    International Nuclear Information System (INIS)

    Sugimoto, J.; Maruyama, Y.; Igarashi, M.; Hidaka, A.; Maeda, A.; Harada, Y.; Hashimoto, K.

    1996-01-01

    In the WIND Project at Japan Atomic Energy Research Institute, the aerosol behaviors such as deposition, revaporization and resuspension have been investigated under the severe accident conditions. The present paper describes the deposition of CsI aerosol in horizontal straight pipes. The test results showed that the aerosol deposition depended on thermo-fluid dynamic characteristics of the carrier gas. In the test with the temperature gradient of the pipe, the deposition of CsI was remarkable within the downstream side, where the temperature of the gas was higher than that of the pipe wall. It is thus supposed that the major mechanism of the deposition was thermophoresis caused by the temperature gradient within the gas phase. However, circumferential distribution of the deposited CsI was influenced by the argon flow rate. In laminar flow case, larger amount of CsI was deposited on the ceiling than the floor area. Three-dimensional thermo-fluid dynamic analysis suggested that much sharper radial temperature gradient was developed within the gas near the ceiling area due to the formation of a natural convective secondary flow. This could result in the promotion of the thermophoretic aerosol deposition. On the other hand, slight circumferential distribution was observed in case of the high flow rate, probably due to a uniform temperature field. It was also found that the close coupling of the FP behavior and the detailed thermohydraulic analyses is essential in order to accurately predict the CsI deposition in the pipe. The findings on aerosol behaviors will also be utilized for the evaluation of sodium aerosol behaviors of fast reactors. (author)

  18. Numerical investigation of flow characteristics in a prototypical lower plenum of a prismatic VHTR

    International Nuclear Information System (INIS)

    Ying, Alice; Narula, Manmeet; Abdou, Mohamed; Tsai, Peter; Ando, Yuya

    2007-01-01

    The aim of this study is to obtain insights into the flow behavior, as well as to develop predictive capability with regards to the flow and thermal mixing, that occurs in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In this paper, numerical modeling has been used to capture qualitative phenomena observed during an experiment performed at INL, using a finite volume, thermo-fluid solver system, 'SC/Tetra' from CRADLE. The choice of the correct turbulence model is critical to accurately predict the flow in the VHTR lower plenum. Four different turbulence models have been used in this study and the flow predictions are significantly different. A trail of marker particles and fluid temperature as a passive scalar have been used to qualitatively study the flow characteristics, specifically the turbulent mixing of water jets. The quantitative experimental data, when available, will be used to compare and improve on the available turbulence models. Preliminary numerical modeling has been carried out to address the issue of hot streaking and buoyancy effects of hot helium jets in the lower plenum. (author)

  19. High-temperature thermocline TES combining sensible and latent heat - CFD modeling and experimental validation

    Science.gov (United States)

    Zavattoni, Simone A.; Geissbühler, Lukas; Barbato, Maurizio C.; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2017-06-01

    The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model's constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.

  20. A Comparison of Numerical Strategies for Modeling the Transport Phenomena in High-Energy Laser Surface Alloying Process

    Directory of Open Access Journals (Sweden)

    Dipankar Chatterjee

    2017-06-01

    Full Text Available A comparative assessment is done on the effectiveness of some developed and reported macroscopic and mesoscopic models deployed for addressing the three-dimensional thermo-fluidic transport during high-power laser surface alloying process. The macroscopic models include the most celebrated k–ε turbulence model and the large eddy simulation (LES model, whereas a kinetic theory-based lattice Boltzmann (LB approach is invoked under the mesoscopic paradigm. The time-dependent Navier–Stokes equations are transformed into the k–ε turbulence model by performing the Reynolds averaging technique, whereas a spatial filtering operation is used to produce the LES model. The models are suitably modified to address the turbulent melt-pool convection by using a modified eddy viscosity expression including a damping factor in the form of square root of the liquid fraction. The LB scheme utilizes three separate distribution functions to monitor the underlying hydrodynamic, thermal and compositional fields. Accordingly, the kinematic viscosity, thermal and mass diffusivities are adjusted independently. A single domain fixed-grid enthalpy-porosity approach is utilized to model the phase change phenomena in conjunction with an appropriate enthalpy updating closure scheme. The performance of these models is recorded by capturing the characteristic nature of the thermo-fluidic transport during the laser material processing. The maximum values of the pertinent parameters in the computational domain obtained from several modeling efforts are compared to assess their capabilities. The comparison shows that the prediction from the k–ε turbulence model is higher than the LES and LB models. In addition, the results from all three models are compared with the available experimental results in the form of dimensionless composition of the alloyed layer along the dimensionless depth of the pool. The comparison reveals that the LB and the LES approaches are better

  1. Convective boiling heat transfer of mixture of immiscible two-liquids

    International Nuclear Information System (INIS)

    Hijikata, K.; Ito, H.; Mori, Y.

    1987-01-01

    Thermal energy conversion of low or middle temperature difference to electric power is conventionally made by the Rankine cycle using the organic compound as a working fluid. However, the energy conversion efficiency from thermal energy to electric power is limited by the pinch point temperature difference in the high temperature side heat exchanging. In order to avoid the efficiency ceiling due to the pinch point temperature difference, utilization of mixture of miscible two liquids as the working fluid of the Rankine cycle has been proposed and its cycle efficiency has been calculated. However, in the miscible mixture, mutual diffusion process is considered to greatly affect the thermo-fluid characteristics, but has not been clarified yet because of its complexity

  2. The use of Phoenics in the design of catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, M. [Kemira Metalkat Oy, Oulu (Finland); Smith, A.G. [S and C Thermofluids Ltd, Bath (United Kingdom)

    1996-12-31

    Manufacturers of automotive catalytic converters are constrained to design a system which is mechanically reliable, puts low back pressure on the engine, has adequate conversion performance, is low cost and of minimum size. In recent years, computational fluid dynamics (CFD) has been widely examined as a means of predicting the performance of catalytic converters to aid with the design process. Kemira Metalkat and S and C Thermofluids have put together and developed a number of existing CFD techniques in order to create a tool which is integrated within the design process. PHOENICS is used in the heart of the system in order to produce predictions of transient (light-off) and steady state catalyst performance. Grid generation tools have been provided to allow simplified and rapid geometry definition with suitable integration (via FEMGEN) within other parts of the catalyst design process. Simplified input techniques have been provided along with associated translators to create specification of the model for PHOENICS. Post-processing software has been provided through FEMVIEW to allow visualisation of catalyst monolith variables and transient performance animation. The whole system is controlled via a menu. The system have been use to study the effects of the catalyst design parameters on the converter performance. The results obtained using the system have so far been more qualitative than quantitative. However, validation studies have been carried out to check pressure drop prediction. A new model for the pressure drop over a metallic monolith has been developed. (author)

  3. The use of Phoenics in the design of catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, M [Kemira Metalkat Oy, Oulu (Finland); Smith, A G [S and C Thermofluids Ltd, Bath (United Kingdom)

    1997-12-31

    Manufacturers of automotive catalytic converters are constrained to design a system which is mechanically reliable, puts low back pressure on the engine, has adequate conversion performance, is low cost and of minimum size. In recent years, computational fluid dynamics (CFD) has been widely examined as a means of predicting the performance of catalytic converters to aid with the design process. Kemira Metalkat and S and C Thermofluids have put together and developed a number of existing CFD techniques in order to create a tool which is integrated within the design process. PHOENICS is used in the heart of the system in order to produce predictions of transient (light-off) and steady state catalyst performance. Grid generation tools have been provided to allow simplified and rapid geometry definition with suitable integration (via FEMGEN) within other parts of the catalyst design process. Simplified input techniques have been provided along with associated translators to create specification of the model for PHOENICS. Post-processing software has been provided through FEMVIEW to allow visualisation of catalyst monolith variables and transient performance animation. The whole system is controlled via a menu. The system have been use to study the effects of the catalyst design parameters on the converter performance. The results obtained using the system have so far been more qualitative than quantitative. However, validation studies have been carried out to check pressure drop prediction. A new model for the pressure drop over a metallic monolith has been developed. (author)

  4. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    Directory of Open Access Journals (Sweden)

    Carlos O. Maidana

    2017-02-01

    Full Text Available Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  5. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Carlos O.; Nieminen, Juha E. [Maidana Research, Grandville (United States)

    2017-02-15

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  6. Computer code TRANS-ACE predicting for fire and explosion accidents in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Nishio; Gunji; Naito, Yoshitaka

    1993-11-01

    The accident analysis code TRANS-ACE was developed to evaluate the safety of a ventilation system in a reprocessing plant in the event of fire and explosion accidents. TRANS-ACE can evaluate not only the integrity of a ventilation system containing HEPA filters but also the source term of radioactive materials for release out of a plant. It calculates the temperature, pressure, flow rate, transport of combustion materials and confinement of radioactive materials in the network of a ventilation system that might experience a fire or explosion accident. TRANS-ACE is based on the one-dimensional compressible thermo-fluid analysis code EVENT developed by Los Alamos National Laboratory (LANL). Calculational functions are added for the radioactive source term, heat transfer and radiation to cell and duct walls and HEPA filter integrity. For the second edition in the report, TRANS-ACE has been improved incorporating functions for the initial steady-state calculation to determine the flow rates, pressure drops and temperature in the network before an accident mode analysis. It is also improved to include flow resistance calculations of the filters and blowers in the network and to have an easy to use code by simplifying the input formats. This report is to prepare an explanation of the mathematical model for TRANS-ACE code and to be the user's manual. (author)

  7. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  8. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe

    International Nuclear Information System (INIS)

    Mameli, Mauro; Marengo, Marco; Khandekar, Sameer

    2014-01-01

    A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)

  9. Laminar forced convection in a cylindrical collinear ohmic sterilizer

    Directory of Open Access Journals (Sweden)

    Pesso Tommaso

    2017-01-01

    Full Text Available The present work deals with a thermo-fluid analysis of a collinear cylindrical ohmic heater in laminar flow. The geometry of interest is a circular electrically insulated glass pipe with two electrodes at the pipe ends. For this application, since the electrical conductivity of a liquid food depends strongly on the temperature, the thermal analysis of an ohmic heater requires the simultaneous solution of the electric and thermal fields. In the present work the analysis involves decoupling the previous fields by means of an iterative procedure. The thermal field has been calculated using an analytical solution, which leads to fast calculations for the temperature distribution in the heater. Some considerations of practical interest for the design are also given.

  10. Utilization of surface-near geothermal energy by means of energy piles and geothermal probes; Nutzung der oberflaechennahen Geothermie mittels Energiepfaehlen und Erdwaermesonden

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaolong

    2013-05-01

    In collaboration with the Institute of Thermo-Fluid Dynamics (Hamburg, Federal Republic of Germany), a pilot plant for geothermal and sorption supported air-conditioning was built in the dockside area of Hamburg. The author of the book under consideration investigates a geothermal power plant with five energy poles and three boreholes. The economic and environmental benefits of this pilot plant were detected. The thermodynamic behavior of these energy piles was numerically simulated very well. The complex processes in the energy pile and in the soil could be mapped By means of a thermal-hydraulic-mechanical coupled simulation. The extraction capacity of a geothermal probe could be significantly increased by means of a combination of a groundwater circulation method with borehole heat exchangers.

  11. Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace

    Directory of Open Access Journals (Sweden)

    Buliński P.

    2015-09-01

    Full Text Available In this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.

  12. Fundamental study of a water jet injected into a vacuum vessel of fusion reactor under the ingress of coolant event

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Seki, Yasushi; Kurihara, Ryouichi; Ueda, Shuzou

    1996-01-01

    As one of some transient sequences for the thermofluid safety in ITER, pressure rise and boiling heat transfer characteristics in a Tokamak vacuum vessel during an ingress of coolant event (ICE) are being investigated experimentally by using the preliminary ICE apparatus. The pressure rise rates in the vacuum vessel and the wall temperature distributions on the target plate were measured quantitatively and clarified at first. In addition, a two-phase flow under the ICE conditions was analyzed numerically for predicting the experimental results using one-dimensional transport equations and the drift-flux model. The experimental results were compared with the numerical results. It was found that the pressurization behavior during the ICE conditions could be estimated qualitatively by the present numerical analyses. 5 refs., 5 figs

  13. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    Science.gov (United States)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  14. Edge-plasma analysis for liquid-wall MFE concepts

    International Nuclear Information System (INIS)

    Moir, R.W.; Rensink, M.E.; Rognlien, T.D.

    2001-01-01

    A thick flowing layer of liquid (e.g., flibe - a molten salt, or Sn 80 Li 20 - a liquid metal) protects the structural walls of the magnetic fusion configuration so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhanced turbulent convection of hot surface liquid into the cooler interior. This surface temperature is affected by the temperature of liquid from a heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D-transport code for the DT and impurity ions; these impurity ions are either swept out to the divertor, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall may further attenuate evaporating flux of atoms and molecules by ionization near the wall. (author)

  15. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    International Nuclear Information System (INIS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2009-01-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 deg. C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.

  16. TRISO fuel thermal simulations in the LS-VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Mario C.; Scari, Maria E.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F., E-mail: marc5663@gmail.com, E-mail: melizabethscari@yahoo.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil)

    2017-07-01

    The liquid-salt-cooled very high-temperature reactor (LS-VHTR) is a reactor that presents very good characteristics in terms of energy production and safety aspects. It uses as fuel the TRISO particles immersed in a graphite matrix with a cylindrical shape called fuel compact, as moderator graphite and as coolant liquid salt Li{sub 2}BeF{sub 4} called Flibe. This work evaluates the thermal hydraulic performance of the heat removal system and the reactor core by performing different simplifications to represent the reactor core and the fuel compact under steady-state conditions, starting the modeling from a single fuel element, until complete the studies with the entire core model developed in the RELAP5-3D code. Two models were considered for representation of the fuel compact, homogeneous and non-homogeneous models, as well as different geometries of the heat structures was considered. The aim to develop several models was to compare the thermal hydraulic characteristics resulting from the construction of a more economical and less discretized model with much more refined models that can lead to more complexes analyzes to representing TRISO effect particles in the fuel compact. The different results found, mainly, for the core temperature distributions are presented and discussed. (author)

  17. Liquid first walls for magnetic fusion energy

    International Nuclear Information System (INIS)

    Moir, R.W.

    1996-01-01

    Liquids (∼7 neutron mean free paths thick) with certain restrictions can probably be used in magnetic fusion designs between the burning plasma and the structural materials of the plant. If this works there are a number of profound advantages: lower the cost of electricity by more than 35%; remove the need to develop first wall materials saving over 4B$ in development costs; reduce the amount and kind of wastes generated in the plant; and permit a wider choice of materials. Evaporated liquid must be efficiently ionized in an edge plasma to prevent penetrating into the burning plasma and diminishing the burn rate. The fraction of evaporated material ionized is estimated to be 0.993 for Li, 0.98 for Flibe and 0.9999 for Li 17 Pb 83 . This ionized vapor would be swept along open field lines into a remote burial chamber. The most practical systems would be those with topological open field lines on the outer surface as is the case of a field reversed configuration (FRC), a Spheromak, a Z-pinch, or a mirror machine. In a Tokamak, including the Spherical Tokamak, the field lines outside the separatrix are restricted to a small volume inside the toroidal coil making for difficulties in introducing the liquid and removing the ionized vapor

  18. Fissile fuel breeding and minor actinide transmutation in the life engine

    International Nuclear Information System (INIS)

    Sahin, Suemer; Khan, Mohammad Javed; Ahmed, Rizwan

    2011-01-01

    Progress on The National Ignition Facility (NIF) brings fusion a viable energy source in foreseeable future. Energy multiplication in a fusion-fission (hybrid) reactor could lead earlier market penetration of fusion energy for commercial utilization. Originally, scientists at the Lawrence Livermore National Laboratory (LLNL) have worked out a hybrid reactor design concept; the so-called Laser Inertial Confinement Fusion-Fission Energy (LIFE) engine, which has consisted of a spherical fusion chamber of ∼5 m diameter, surrounded by a multi-layered blanket with a beryllium multiplier zone after the first wall. However, earlier work had indicated extreme power peaks at immediate vicinity of the first wall of a hybrid assembly, if a beryllium multiplier is used. Hence, in the current work, the beryllium multiplier zone has been removed in order to mitigate fission power peaks at the vicinity of the first wall as a result of neutron moderation on beryllium. Furthermore, minor actinides (MA) will cause significant neutron multiplication under fusion neutron irradiation so that an extra beryllium multiplier will not be needed. Present work has made following modifications on the LLNL design of the original (LIFE) engine: ·Omission of beryllium multiplier. ·TRISO fuel has been suspended as micro-size particles in Flibe coolant in lieu of being dissolved in uranium salt or imbedded carbon matrix in macro-size pebbles. ·Carbide fuel is used. ·Fissionable fuel charge is kept lower than in the LLNL (LIFE) engine. The modified (LIFE) engine is kept similar to the LLNL design to a great degree in order to allow mutual feedback between two geographically separated teams towards a more advanced and improved design under consideration of totally independent views. The first wall is made of ODS (2 cm) and followed by a Li 17 Pb 83 zone (2 cm), acting as neutron multiplier, tritium breeding and front coolant zone. It is separated by an ODS layer (2 cm) from the Flibe molten salt

  19. Modeling of thermal plasma arc technology FY 1994 report

    International Nuclear Information System (INIS)

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces

  20. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2002-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  1. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    Science.gov (United States)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  2. Relation between burnout and differential pressure fluctuation characteristics by the disturbance waves near the flow obstacle in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji; Fukano, Tohru [Kyushu Univ., Graduate School of Engineering, Fukuoka (Japan)

    2002-07-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss temperature fluctuation characteristics in relation to the change of the differential pressure across the spacer caused by the passing of the disturbance waves in case that the burnout generates. (author)

  3. On the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2003-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss the influence of the flow obstacle on the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel. (author)

  4. Conceptual design of a Tokamak hybrid power reactor (THPR)

    International Nuclear Information System (INIS)

    Matsuoka, F.; Imamura, Y.; Inoue, M.; Asami, N.; Kasai, M.; Yanagisawa, I.; Ida, T.; Takuma, T.; Yamaji, K.; Akita, S.

    1987-01-01

    A conceptual design of a fusion-fission hybrid tokamak reactor has been carried out to investigate the engineering feasibility and promising scale of a commercial hybrid reactor power plant. A tokamak fusion driver based on the recent plasma scaling law is introduced in this design study. The major parameters and features of the reactor are R=6.06 m, a=1.66 m, Ip=11.8 MA, Pf=668 MW, double null divertor plasma and steady state burning with RF current drive. The fusion power has been determined with medium energy multiplication in the blanket so as to relieve thermal design problems and produce electric power around 1000 MW. Uranium silicide is used for the fast fission blanket material to promise good nuclear performance. The coolant of the blanket is FLIBE and the tritium breeding blanket material is Li 2 O ceramics providing breeding ratio above unity

  5. A Solar Chimney for renewable energy production: thermo-fluid dynamic optimization by CFD analyses

    Science.gov (United States)

    Montelpare, S.; D'Alessandro, V.; Zoppi, A.; Costanzo, E.

    2017-11-01

    This paper analyzes the performance of a solar tower designed for renewable energy production. The Solar Chimney Power Plant (SCPP) involves technology that converts solar energy by means of three basic components: a large circular solar collector, a high tower in the center of the collector and a turbine generator inside the chimney. SCPPs are characterized by long term operational life, low maintenance costs, zero use of fuels, no use of water and no emissions of greenhouse gases. The main problem of this technology is the low energy global conversion coefficient due to the presence of four conversions: solar radiation > thermal energy > kinetic energy > mechanical energy > electric energy. This paper defines its starting point from the well known power plant of Manzanares in order to calibrate a numerical model based on finite volumes. Following that, a solar tower with reduced dimensions was designed and an analysis on various geometric parameters was conducted: on the inlet section, on the collector slope, and on the fillet radius among the SUPP sections. Once the optimal solution was identified, a curved deflectors able to induce a flow swirl along the vertical tower axis was designed.

  6. Improvement in understanding of natural circulation phenomena in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Cleveland, John; Aksan, Nusret

    2011-01-01

    Highlights: ► Phenomena influencing natural circulation in passive systems. ► Behaviour in large pools of liquid. ► Effect of non-condensable gas on condensation heat transfer. ► Behaviour of containment emergency systems. ► Natural circulation flow and pressure drop in various geometries. - Abstract: The IAEA has organized a coordinated research project (CRP) on “Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems That Utilize Natural Circulation.” Specific objectives of CRP were to (i) establish the status of knowledge: reactor start-up and operation, passive system initiation and operation, flow stability, 3-D effects, and scaling laws, (ii) investigate phenomena influencing reliability of passive natural circulation systems, (iii) review experimental databases for the phenomena, (iv) examine the ability of computer codes to predict natural circulation and related phenomena, and (v) apply methodologies for examining the reliability of passive systems. Sixteen institutes from 13 IAEA Member States have participated in this CRP. Twenty reference advanced water cooled reactor designs including evolutionary and innovative designs were selected to examine the use of natural circulation and passive systems in their designs. Twelve phenomena influencing natural circulation were identified and characterized: (1) behaviour in large pools of liquid, (2) effect of non-condensable gases on condensation heat transfer, (3) condensation on the containment structures, (4) behaviour of containment emergency systems, (5) thermo-fluid dynamics and pressure drops in various geometrical configurations, (6) natural circulation in closed loop, (7) steam liquid interaction, (8) gravity driven cooling and accumulator behaviour, (9) liquid temperature stratification, (10) behaviour of emergency heat exchangers and isolation condensers, (11) stratification and mixing of boron, and (12) core make-up tank behaviour. This paper summarizes the

  7. Neutronic performance of a fusion-fission hybrid reactor designed for fuel enrichment for LWRs

    International Nuclear Information System (INIS)

    Yapici, H.; Baltacioglu, E.

    1997-01-01

    In this study, the breeding performance of a fission hybrid reactor was analyzed to provide fissile fuel for Light Water Reactors (LWR) as an alternative to the current methods of gas diffusion and gas centrifuge. LWR fuel rods containing UO 2 or ThO 2 fertile material were located in the fuel zone of the blanket and helium gas or Flibe (Li 2 BeF 4 ) fluid was used as coolant. As a result of the analysis, according to fusion driver (D,T and D,D) and the type of coolant the enrichment of 3%-4% were achieved for operation periods of 12 and 36 months in case of fuel rods containing UO 2 , respectively and for operation periods of 18 and 48 months in case of fuel rods containing ThO 2 , respectively. Depending on the type of fusion driver, coolant and fertile fuel, varying enrichments of between 3% and 8.9% were achieved during operation period of four years

  8. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  9. The radiation and variable viscosity effects on electrically conducting fluid over a vertically moving plate subjected to suction and heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P., E-mail: malekzadeh@pgu.ac.i [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of); Moghimi, M.A. [Department of Mechanical Engineering, School of Engineering, Shaid Bahonar University, Kerman (Iran, Islamic Republic of); Nickaeen, M. [K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} A new application of the differential quadrature method in thermo-fluid fields. {yields} Moving vertical plate with suction and heat flux is considered. {yields} Fluid with variable viscosity subjected to thermal radiation is studied. -- Abstract: In this paper, firstly, the applicability of the differential quadrature method (DQM) as an efficient and accurate numerical method for solving the problem of variable viscosity and thermally radiative unsteady magneto-hydrodynamic (MHD) flow over a moving vertical plate with suction and heat flux is investigated. The spatial as well as the temporal domains are discretized using the DQM. The fast rate of convergence of the method is demonstrated and for the cases that a solution is available, comparison is done. Then, effects of the temperature dependence of viscosity and different fluid parameters on the velocity and temperature of transient MHD flow subjected to the above mentioned boundary condition are studied.

  10. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    International Nuclear Information System (INIS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J.P.

    2011-01-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10 21 m -2 s -1 , ion fluence: 4 x 10 25 m -2 ) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  11. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Science.gov (United States)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  12. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  13. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  14. Thermal Stress and Heat Transfer Coefficient for Ceramics Stalk Having Protuberance Dipping into Molten Metal

    Science.gov (United States)

    Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke

    Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.

  15. TRIO-EF a general thermal hydraulics computer code applied to the Avlis process

    International Nuclear Information System (INIS)

    Magnaud, J.P.; Claveau, M.; Coulon, N.; Yala, P.; Guilbaud, D.; Mejane, A.

    1993-01-01

    TRIO(EF is a general purpose Fluid Mechanics 3D Finite Element Code. The system capabilities cover areas such as steady state or transient, laminar or turbulent, isothermal or temperature dependent fluid flows; it is applicable to the study of coupled thermo-fluid problems involving heat conduction and possibly radiative heat transfer. It has been used to study the thermal behaviour of the AVLIS process separation module. In this process, a linear electron beam impinges the free surface of a uranium ingot, generating a two dimensional curtain emission of vapour from a water-cooled crucible. The energy transferred to the metal causes its partial melting, forming a pool where strong convective motion increases heat transfer towards the crucible. In the upper part of the Separation Module, the internal structures are devoted to two main functions: vapor containment and reflux, irradiation and physical separation. They are subjected to very high temperature levels and heat transfer occurs mainly by radiation. Moreover, special attention has to be paid to electron backscattering. These two major points have been simulated numerically with TRIO-EF and the paper presents and comments the results of such a computation, for each of them. After a brief overview of the computer code, two examples of the TRIO-EF capabilities are given: a crucible thermal hydraulics model, a thermal analysis of the internal structures

  16. Nuclear design considerations for Z-IFE chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)]. E-mail: meier5@llnl.gov; Schmitt, R.C. [Bettis Atomic Power Laboratory, Pittsburgh, PA 15203 (United States); Abbott, R.P. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Latkowski, J.F. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Reyes, S. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)

    2006-02-15

    Z-pinch driven IFE (Z-IFE) requires the design of a repetitive target insertion system that allows coupling of the pulsed power to the target with adequate standoff, and a chamber that can withstand blast and radiation effects from large yield targets. The present strategy for Z-IFE is to use high yield targets ({approx}2-3 GJ/shot), low repetition rate per chamber ({approx}0.1 Hz), and 10 chambers per power plant. In this study, we propose an alternative power plant configuration that uses very high yield targets (20 GJ/shot) in a single chamber operating at 0.1 Hz. A thick-liquid-wall chamber is proposed to absorb the target emission (X-rays, debris and neutrons) and mitigate the blast effects on the chamber wall. The target is attached to the end of a conical shaped recyclable transmission line (RTL) made from a solid coolant (e.g., frozen flibe), or a material that is easily separable from the coolant (e.g., steel). The RTL/target assembly is inserted through a single opening at the top of the chamber for each shot. This study looks at the RTL material choice from a safety and environmental point of view. Materials were assessed according to waste disposal rating (WDR) and contact dose rate (CDR). Neutronics calculations, using the TART2002 Monte Carlo code from Lawrence Livermore National Laboratory (LLNL), were performed for the RTL and Z-IFE chamber, and key results reported here.

  17. Thermofluid experiments for Fusion Reactor Safety. Visualization of exchange flows through breaches of a vacuum vessel in a fusion reactor under the LOVA condition

    International Nuclear Information System (INIS)

    Fujii, Sadao; Shibazaki, Hiroaki; Takase, Kazuyuki; Kunugi, Tomoaki.

    1997-01-01

    Exchange flow rates through breaches of a vacuum vessel in a fusion reactor under the LOVA (Loss of VAcuum event) conditions were measured quantitatively by using a preliminary LOVA apparatus and exchange flow patterns over the breach were visualized qualitatively by smoke. Velocity distributions in the exchange flows were predicted from the observed flow patterns by using the correlation method in the flow visualization procedures. Mean velocities calculated from the predicted velocity distributions at the outside of the breach were in good agreement with the LOVA experimental results when the exchange flow velocities were low. It was found that the present flow visualization and the image processing system might be an useful procedure to evaluate the exchange flow rates. (author)

  18. Steady-State Core Temperature Prediction Based on GAMMA+/CAPP Coupling

    International Nuclear Information System (INIS)

    Tak, Nam-il; Lee, Hyun-Chul; Lim, Hong-Sik

    2015-01-01

    In spite of sizable applications of the GAMMA+ code for the thermo-fluid analysis and design of a prismatic VHTR, the existing works are limited to stand-alone calculations. In the stand-alone calculations, information from the neutronic analysis (e.g., reactor power density profile) was considered only once i.e., when the calculations get started. For the neutronic analysis and design of a VHTR, the CAPP code, which is also under development at KAERI, is used. The main objective of this paper is to investigate the capability of GAMMA+ and CAPP coupling and to examine the results of the coupled analysis. Based on the coupling of GAMMA+ and CAPP, the steady-state core temperature was investigated in this work. It is found that the communication of data was successful. And the results of the GAMMA+ and CAPP coupling are found to be reasonable. The design modification of PMR200 is required to satisfy the design limit for the hot spot fuel temperature

  19. Analytical and numerical solution of three-dimensional channel flow in presence of a sinusoidal fluid injection and a chemical reaction

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2015-06-01

    Full Text Available Modeling of three-dimensional channel flow in a chemically-reacting fluid between two long vertical parallel flat plates in the presence of a transverse magnetic field is presented. The stationary plate is subjected to a transverse sinusoidal injection velocity distribution while the uniformly moving plate is subjected to a constant suction and slip boundary conditions. Due to this type of injection velocity, the flow becomes three dimensional. Comparisons with previously published work are performed and the results are found to be in excellent agreement. An increase in the permeability/magnetic parameter is found to escalate the velocity near the plate in motion. Growing Reynolds number or magnetic parameter enhances the x-component and reduces the z-component of the skin-friction at the wall at rest. The acquired knowledge in our study can be used by designers to control MHD flow as suitable for certain applications which include laminar magneto-aerodynamics, materials processing and MHD propulsion thermo-fluid dynamics.

  20. Qualification of MHD effects in dual-coolant DEMO blanket and approaches to their modelling

    International Nuclear Information System (INIS)

    Mas de les Valls, E.; Batet, L.; Medina, V. de; Fradera, J.; Sedano, L.A.

    2011-01-01

    Design refinements of vertical insulated banana-shaped liquid metal channels are being considered as a progress of conceptual design of dual-coolant liquid metal blankets (DEMO specifications). Among them: (a) optimised channel geometry and (b) improvements on flow channel inserts. Progress of channel conceptual design is conducted in parallel with underlying physics of MHD models in diverse aspects: (1) MHD models, (2) MHD turbulence, (3) LM buoyancy effects, (4) three-dimensional flows, and (5) LM/FCI/wall electrical and thermal coupling; in order to progress on common liquid metal flow characterisation, pressure drop and three-dimensional flows. The analyses are assumed as extension of those previous carried out for the DCLL blankets for new design refinements. At the present stage of the conceptual design progress, a preliminary thermofluid MHD study is of crucial interest for further design improvements and future detailed modelling. The paper overviews the ongoing modelling studies, making model refinements explicit, and anticipates some modelling results.

  1. Identification of 3-phase flow patterns of heavy oil from pressure drop and flow rate data

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, F.; Bannwart, A.C.; Mendes, J.R.P. [Campinas State Univ., Sao Paulo (Brazil); Serapiao, A.B.S. [Sao Paulo State Univ., Sao Paulo (Brazil)

    2008-07-01

    Pipe flow of oil-gas-water mixtures poses a complex thermo-fluid dynamical problem. This paper examined the relationship between phase flow rates, flow pattern identification, and pressure drop in 3-phase water-assisted heavy oil in the presence of a gaseous phase. An artificial intelligence program called a support vector machine (SVM) was used to determine relevant parameters for flow pattern classification. Data from a 3-phase flow of heavy oil with gas and water in a vertical pipe was used in the study. The data were used to train the machine, which then predicted the flow pattern of the remaining data. Tests with different parameters and training data were then performed. The study showed that the proposed SVM flow pattern identification process accurately predicted flow patterns. It was concluded that the SVM took a relatively short amount of time to train. Future research is needed to apply the tool to larger flow datasets. 5 refs., 1 tab., 2 figs.

  2. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Calderoni, P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Oda, T. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo 113-8656 (Japan); Oya, Y. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Sokolov, M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, K. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Cao, G. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kolasinski, R. [Hydrogen and Metallurgical Science Department, Sandia National Laboratories, Livermore, CA 94551 (United States); Sharpe, J.P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10{sup 21} m{sup -2} s{sup -1}, ion fluence: 4 x 10{sup 25} m{sup -2}) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  3. VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

    Directory of Open Access Journals (Sweden)

    NAM-IL TAK

    2013-11-01

    Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

  4. Revised numerical model for F{sub 2} bubble breakdown in molten flibe and its economics in the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Seto, K., E-mail: kelvin.seto@uoit.ca [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    A one-dimensional numerical model of the breakdown for a fluorine bubble due to break-up and chemical reactions with dissolved UF{sub 4} and PuF{sub 4} in the molten salt reactor (MSR) volatilization process was revised. The updated model utilized a more realistic, 1.0 cm F{sub 2} bubble to study the breakdown process in the idealized MSR fuel purification vessel. Although more accurate reaction interface and F{sub 2} reactivity values were used, chemical reactions were still found to be the primary cause of bubble breakdown. The importance of efficiency in F{sub 2} usage in the purification process on the economic and safety point of view was discussed. (author)

  5. Use of a thin-film evaporator for bitumen coating of radioactive concentrates; Utilisation d'un evaporateur a couche mince pour l'enrobage par le bitume de concentrats radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Lefillatre, G; Rodier, J; Hullo, R; Cudel, Y; Rodi, L [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    Following the development in the laboratory of a process for coating evaporation concentrates with bitumen, a technological study of this coating process has been undertaken. The report describes a pilot installation for the bitumen coating of concentrates, which uses a thin-film evaporator LUWA L 150. The first, inactive series of tests was designed to determine the maximum and optimum capacities of the evaporator by varying the amounts of bitumen and of concentrate, the rotor speed and the thermo-fluid temperature. Two rotors were tested, one of conventional type, the other a model especially designed for high viscosity products. The maximum capacity of evaporation of the apparatus is 72 kg/hr for a heating temperature of 221 deg. C. During normal operation, the evaporator can produce 50 kg/hr of coated product containing 55 to 60 per cent of bitumen (Mexphalte 40/50), the water content of the product remaining under 0.5 per cent. A second series of tests will shortly be carried out on this pilot installation using, in particular, bituminous emulsions containing mainly Mexphalte 40/50 and 80/100. (authors) [French] A la suite de la mise au point en laboratoire d'un procede d'enrobage par le bitume de concentrats d'evaporation, une etude technologique de cet enrobage a ete entreprise. Ce rapport decrit une installation pilote d'enrobage par le bitume de concentrats utilisant un evaporateur a couche mince LUWA L 150. La premiere serie d'essais en inactif a eu pour but de definir les capacites maximales et optimales de l'evaporateur en faisant varier les dosages en bitume et en concentrats, la vitesse du rotor et la temperature du thermo-fluide. Deux rotors ont ete testes, l'un de type classique, l'autre d'un modele special concu pour les produits de haute viscosite. La capacite d'evaporation maximale de l'appareil est de 72 kg/h d'eau pour une temperature de chauffage de 221 deg. C. En marche normale l'evaporateur peut debiter 50 kg/h d'enrobe compose de 55 a 60

  6. Multi-scale modeling of the environmental impact and energy performance of open-loop groundwater heat pumps in urban areas

    International Nuclear Information System (INIS)

    Sciacovelli, A.; Guelpa, E.; Verda, V.

    2014-01-01

    Groundwater heat pumps are expected to play a major role in future energy scenarios. Proliferation of such systems in urban areas may generate issues related to possible interference between installations. These issues are associated with the thermal plume produced by heat pumps during operation and are particularly evident in the case of groundwater flow, because of the advection heat transfer. In this paper, the impact of an installation is investigated through a thermo-fluid dynamic model of the subsurface which considers fluid flow in the saturated unit and heat transfer in both the saturated and unsaturated units. Due to the large extension of the affected area, a multiscale numerical model that combines a three-dimensional CFD model and a network model is proposed. The thermal request of the user and the heat pump performances are considered in the multi-scale numerical model through appropriate boundary conditions imposed at the wells. Various scenarios corresponding to different operating modes of the heat pump are considered. - Highlights: • A groundwater heat pump of a skyscraper under construction is considered. • The thermal plume induced in the groundwater is evaluated using a multi-scale model. • The multi-scale model is constituted by a full 3D model and a network model. • Multi-scale permits to study large space for long time with low computational costs. • In some cases thermal plume can reduce the COP of other heat pumps of 20%

  7. Numerical study on heat transfer characteristics of liquid-fueled molten salt using OpenFOAM

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2017-01-01

    To pursue sustainability and safety enhancement of nuclear energy, molten salt reactor is regarded as a promising candidate among various types of gen-IV reactors. Besides, pyroprocessing, which treats molten salt containing fission products, should consider safety related to decay heat from fuel material. For design of molten salt-related nuclear system, it is required to consider both thermal-hydraulic characteristics and neutronic behaviors for demonstration. However, fundamental heat transfer study of molten salt in operation condition is not easy to be experimentally studied due to its large scale, high temperature condition as well as difficulties of treating fuel material. >From that reason, numerical study can have benefit to investigate behaviors of liquid-fueled molten salt in real condition. In this study, open source CFD package OpenFOAM was used to analyze liquid-fueled molten salt loop having internal heat source as a first step of research. Among various molten salts considered as a candidate of liquid fueled molten salt reactors, in this study, FLiBe was chosen as liquid salt. For simulating heat generation from fuel material within fluid flow, volumetric heat source was set for fluid domain and OpenFOAM solver was modified as fvOptions as customized. To investigate thermal-hydraulic behavior of molten salt, CFD model was developed and validated by comparing experimental results in terms of heat transfer and pressure drop. As preliminary stage, 2D cavity simulations were performed to validate the modeling capacity of modified solver of OpenFOAM by comparison with those of ANSYS-CFX. In addition, cases of external heat flux and internal heat source were compared to configure the effect of heat source setting in various operation condition. As a result, modified solver of OpenFOAM considering internal heat source have sufficient modeling capacity to simulate liquid-fueled molten salt systems including heat generation cases. (author)

  8. Liquid wall boiler and moderator (BAM) for heavy ion-pellet fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.R.; Lazareth, O.; Fillo, J.

    1977-11-01

    Thick liquid wall blankets appear to be of great promise for heavy ion pellet fusion reactors. They avoid the severe problems of intense radiation and blast damage that would be encountered with solid blanket structures. The liquid wall material can be chosen so that its vapor pressure at the working temperature of the power cycle is well below the value at which it might interfere with the propagation of the heavy ion beam. The liquid wall can be arranged so that it does not contact any surrounding solid structure when the pellet explosion occurs, including the ends. The ends can be magnetically closed just before the pellet explosion, or a time phased flow can be used, which will leave a clear central zone into which the pellet is injected. Parametric analysis comparing three candidate liquid wall materials were carried out. The three materials were lithium, flibe, and lead (with a low concentration of disolved lithium). Lead appeared to be the best choice for the liquid wall, although any of the three should allow a practical reactor system. The parametric analyses examined the effects of pellet yield (0 to 10 GJ), pellet mass (3 g to 3 kg), liquid wall thickness (10 cm to 80 cm), vapor condensation time (0 to 10 milliseconds), degree of neutron moderation in the pellet (none to 100%), liquid wall chamber size (radius of 1.5 meters to 4 meters), Pb/Li 6 ratio (100 to 5,000), and thickness of graphite moderating zone behind the liquid wall

  9. A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air-Cooled Heat Exchangers

    DEFF Research Database (Denmark)

    Haertel, Jan Hendrik Klaas; Nellis, Gregory F.

    2017-01-01

    In this work, density-based topology optimization is applied to the design of the air-side surface of dry-cooled power plant condensers. A topology optimization model assuming a steady-state, thermally and fluid dynamically fully developed internal flow is developed and used for this application....

  10. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    Science.gov (United States)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  11. Application of CAMP code to analysis of debris coolability experiments in ALPHA program

    International Nuclear Information System (INIS)

    Maruyama, Yu; Moriyama, Kiyofumi; Park, Hyun-Sun; Yang, Yanhua; Sugimoto, Jun

    1999-01-01

    An analytical code for thermo-fluid dynamics of a molten debris, CAMP, was applied to the analysis of the ex-vessel and in-vessel debris coolability experiments performed in ALPHA program. The analysis on the ex-vessel debris coolability experiments, where water was added onto a layer of thermite melt, indicated that the upper surface of the melt was remained molten during a period when melt eruptions followed by a mild steam explosion were observed. This might imply that a coarse mixing between the melt and the overlying water could have been formed if a sufficient force was generated at the interface between the two fluids. In the analysis of the in-vessel debris coolability experiments, where an aluminum oxide (Al 2 O 3 ) melt was poured into a water-filled lower head experimental vessel, a temperature increase at the outer surface of the vessel was qualitatively reproduced when a gap was assumed to be at the interface between the solidified Al 2 O 3 and the vessel wall. (author)

  12. Developments of high-performance moderator vessel for JRR-3 cold neutron source

    International Nuclear Information System (INIS)

    Arai, Masaji; Tamura, Itaru; Hazawa, Tomoya

    2015-05-01

    The cold neutron source (CNS) facility converts thermal neutrons into cold neutrons to moderate neutrons with liquid hydrogen. The cold neutron beam at Japan Research Reactor No. 3 (JRR-3) is led to the beam experimental devices in the beam hall through neutron guide tubes. High intensities of the cold neutron beam are always demanded for increasing the experimental effectiveness and accuracy. In the Department of Research Reactor and Tandem Accelerator, developments of high-performance CNS moderator vessel that can produce cold neutron intensity about two times higher compared to the existing vessel have been performed in the second medium term plans. We compiled this report about the technological development to solve several problems with the design and manufacture of new vessel. In the present study, design strength evaluation, mockup test, simulation for thermo-fluid dynamics of the liquid hydrogen and strength evaluation of the different-material-bonding were studied. By these evaluation results, we verified that the developed new vessel can be applied to CNS moderator vessel of JRR-3. (author)

  13. Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Florian Ries

    2017-08-01

    Full Text Available In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1 the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing, (2 causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3 heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS and large eddy simulation (LES approaches while numerically modeling supercritical fluid flows.

  14. Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data.

    Science.gov (United States)

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Yermalayeu, Andrei V; Schick, Christoph; Liu, Hongjun; Maginn, Edward J; Bulut, Safak; Krossing, Ingo; Kalb, Roland

    2013-05-30

    Vaporization enthalpy of an ionic liquid (IL) is a key physical property for applications of ILs as thermofluids and also is useful in developing liquid state theories and validating intermolecular potential functions used in molecular modeling of these liquids. Compilation of the data for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(n)mim][NTf2]) ILs has revealed an embarrassing disarray of literature results. New experimental data, based on the concurring results from quartz crystal microbalance, thermogravimetric analyses, and molecular dynamics simulation have revealed a clear linear dependence of IL vaporization enthalpies on the chain length of the alkyl group on the cation. Ambiguity of the procedure for extrapolation of vaporization enthalpies to the reference temperature 298 K was found to be a major source of the discrepancies among previous data sets. Two simple methods for temperature adjustment of vaporization enthalpies have been suggested. Resulting vaporization enthalpies obey group additivity, although the values of the additivity parameters for ILs are different from those for molecular compounds.

  15. Beryllium R and D for fusion applications

    International Nuclear Information System (INIS)

    Scaffidi-Argentina, F.; Longhurst, G.R.; Shestakov, V.; Kawamura, H.

    2000-01-01

    Beryllium is one of the primary candidates as both plasma-facing material (PFM) and neutron multiplier in the next-step fusion reactors. Both sintered-product blocks and pebbles are considered in fusion reactor designs. Beryllium evaporated on carbon tiles has also been used in Joint European Torus (JET) and may be considered for other designs. Future efforts are directed toward the pebble form of beryllium. Research and evaluations of data are underway to determine the most attractive material processing approaches in terms of fabrication cost and quality; technical issues associated with heat transfer; thermal, mechanical and irradiation stability; safety and tritium release. Beryllium plasma-facing components will require periodic repair or replacement, therefore disposal or recycling of activated and tritiated beryllium will also be a concern. Beryllium as a component of the molten salt, Flibe is also being considered in novel approaches to the plasma-structure interface. This paper deals with the main issues related to the use of Be in a fusion reactor as both neutron multiplier and first wall material. These issues include potential reactions with steam during accidents and the health and environmental aspects of its use, reprocessing and reuse, or disposal

  16. Beryllium R and D for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F. E-mail: francesco.scaffidi@iket.fzk.de; Longhurst, G.R.; Shestakov, V.; Kawamura, H

    2000-11-01

    Beryllium is one of the primary candidates as both plasma-facing material (PFM) and neutron multiplier in the next-step fusion reactors. Both sintered-product blocks and pebbles are considered in fusion reactor designs. Beryllium evaporated on carbon tiles has also been used in Joint European Torus (JET) and may be considered for other designs. Future efforts are directed toward the pebble form of beryllium. Research and evaluations of data are underway to determine the most attractive material processing approaches in terms of fabrication cost and quality; technical issues associated with heat transfer; thermal, mechanical and irradiation stability; safety and tritium release. Beryllium plasma-facing components will require periodic repair or replacement, therefore disposal or recycling of activated and tritiated beryllium will also be a concern. Beryllium as a component of the molten salt, Flibe is also being considered in novel approaches to the plasma-structure interface. This paper deals with the main issues related to the use of Be in a fusion reactor as both neutron multiplier and first wall material. These issues include potential reactions with steam during accidents and the health and environmental aspects of its use, reprocessing and reuse, or disposal.

  17. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept

    Science.gov (United States)

    Guo, Shaoqiang; Shay, Nikolas; Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2017-12-01

    The fluoride molten salt such as FLiNaK and FLiBe is one of the coolant candidates for the next generation nuclear reactor concepts, for example, the fluoride salt cooled high temperature reactor (FHR). For mitigating corrosion of structural materials in molten fluoride salt, the redox condition of the salts needs to be monitored and controlled. This study investigates the feasibility of applying the Eu3+/Eu2+ couple for redox control. Cyclic voltammetry measurements of the Eu3+/Eu2+ couple were able to obtain the concentrations ratio of Eu3+/Eu2+ in the melt. Additionally, the formal standard potential of Eu3+/Eu2+ was characterized over the FHR's operating temperatures allowing for the application of the Nernst equation to establish a Eu3+/Eu2+ concentration ratio below 0.05 to prevent corrosion of candidate structural materials. A platinum quasi-reference electrode with potential calibrated by potassium reduction potential is shown as reliable for the redox potential measurement. These results show that the Eu3+/Eu2+ couple is a feasible redox buffering agent to control the redox condition in molten fluoride salts.

  18. Heat deposition, damage, and tritium breeding characteristics in thick liquid wall blanket concepts

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Abdou, M.A.

    2000-01-01

    The advanced power extraction (APEX) study aims at exploring new and innovative blanket concepts that can efficiently extract power from fusion devices with high neutron wall load. Among the concepts under investigation is the free liquid FW/liquid blanket concept in which a fast flowing liquid FW (∼2-3 cm) is followed by thick flowing blanket (B) of ∼40-50 cm thickness with minimal amount of structure. The liquid FW/B are contained inside the vacuum vessel (VV) with a shielding zone (S) located either behind the VV and outside the vacuum boundary (case A) or placed after the FW/B and inside the VV (case B). In this paper we investigate the nuclear characteristics of this concept in terms of: (1) attenuation capability of the liquid FW/B/S and protection of the VV and magnet against radiation damage; (2) profiles of tritium production rate and tritium breeding ratio (TBR) for several liquid candidates; and (3) profiles of heat deposition rate and power multiplication. The candidate liquid breeders considered are Li, Flibe, Li-Sn, and Li-Pb. Parameters varied are (1) FW/B thickness, L, (2) Li-6 enrichment and (3) thickness of the shield

  19. Low cost, high yield IFE reactors: Revisiting Velikhov's vaporizing blankets

    International Nuclear Information System (INIS)

    Logan, B.G.

    1992-01-01

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a ''Bang per Buck'' figure-of-merit approx-gt 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant

  20. Neutronic design of a Liquid Salt-cooled Pebble Bed Reactor (LSPBR)

    International Nuclear Information System (INIS)

    De Zwaan, S. J.; Boer, B.; Lathouwers, D.; Kloosterman, J. L.

    2006-01-01

    A renewed interest has been raised for liquid salt cooled nuclear reactors. The excellent heat transfer properties of liquid salt coolants provide several benefits, like lower fuel temperatures, higher coolant outlet temperatures, increased core power density and better decay heat removal. In order to benefit from the online refueling capability of a pebble bed reactor, the Liquid Salt Pebble Bed Reactor (LSPBR) is proposed. This is a high temperature pebble-bed reactor with a fuel design similar to existing HTRs, but using a liquid salt as a coolant. In this paper, the selection criteria for the liquid salt coolant are described. Based on its neutronic properties, LiF-BeF 2 (FLIBE) was selected for the LSPBR. Two designs of the LSPBR were considered: a cylindrical core and an annular core with a graphite inner reflector. Coupled neutronic-thermal hydraulic calculations were performed to obtain the steady state power distribution and the corresponding fuel temperatures. Finally, calculations were performed to investigate the decay heat removal capability in a protected loss-of-forced cooling accident. The maximum allowable power that can be produced with the LSPBR is hereby determined. (authors)

  1. Uncertainty Evaluation of the SFR Subchannel Thermal-Hydraulic Modeling Using a Hot Channel Factors Analysis

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Cho, Chung Ho; Kim, Sang Ji

    2011-01-01

    In an SFR core analysis, a hot channel factors (HCF) method is most commonly used to evaluate uncertainty. It was employed to the early design such as the CRBRP and IFR. In other ways, the improved thermal design procedure (ITDP) is able to calculate the overall uncertainty based on the Root Sum Square technique and sensitivity analyses of each design parameters. The Monte Carlo method (MCM) is also employed to estimate the uncertainties. In this method, all the input uncertainties are randomly sampled according to their probability density functions and the resulting distribution for the output quantity is analyzed. Since an uncertainty analysis is basically calculated from the temperature distribution in a subassembly, the core thermal-hydraulic modeling greatly affects the resulting uncertainty. At KAERI, the SLTHEN and MATRA-LMR codes have been utilized to analyze the SFR core thermal-hydraulics. The SLTHEN (steady-state LMR core thermal hydraulics analysis code based on the ENERGY model) code is a modified version of the SUPERENERGY2 code, which conducts a multi-assembly, steady state calculation based on a simplified ENERGY model. The detailed subchannel analysis code MATRA-LMR (Multichannel Analyzer for Steady-State and Transients in Rod Arrays for Liquid Metal Reactors), an LMR version of MATRA, was also developed specifically for the SFR core thermal-hydraulic analysis. This paper describes comparative studies for core thermal-hydraulic models. The subchannel analysis and a hot channel factors based uncertainty evaluation system is established to estimate the core thermofluidic uncertainties using the MATRA-LMR code and the results are compared to those of the SLTHEN code

  2. Numerical evaluation of flow through a prismatic very high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Barros Filho, Jose A.; Santos, Andre A.C.; Navarro, Moyses A.; Ribeiro, Felipe Lopes

    2011-01-01

    The High-temperature Gas-cooled reactor (HTGR) is a Next Generation Nuclear System that has a good chance to be used as energy generation source in the near future owing to its potential capacity to supply hydrogen without greenhouse gas emission for the future humanity. Recently, improvements in the HTGR design led to the Very High Temperature Reactor (VHTR) concept in which the outlet temperature of the coolant gas reaches to 1000 deg C increasing the efficiency of the hydrogen and electricity generation. Among the core concepts emerging in the VHTR development stands out the prismatic block which uses coated fuel microspheres named TRISO pressed into cylinders and assembled in hexagonal graphite blocks staked to form columns. The graphite blocks contain flow channels around the fuel cylinders for the helium coolant. In this study an analysis is performed using the CFD code CFX 13.0 on a prismatic fuel assembly in order to investigate its thermo-fluid dynamic performance. The simulations were made in a 1/12 fuel element model of the GT-MHR design which was developed by General Atomics. A numerical mesh verification process based on the Grid Convergence Index (GCI) was performed using five progressively refined meshes to assess the numerical uncertainty of the simulation and determine adequate mesh parameters. An analysis was also performed to evaluate different methods to define the inlet and outlet boundary conditions. In this study simulations of models with and without inlet and outlet plena were compared, showing that the presence of the plena offers a more realistic flow distribution. (author)

  3. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    International Nuclear Information System (INIS)

    Schuler, X.; Herter, K.H.; Moogk, S.; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M.

    2012-01-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  4. Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel

    Science.gov (United States)

    Abdulhameed, M.; Vieru, D.; Roslan, R.

    2017-10-01

    This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.

  5. Thermo-fluid analysis of water cooled research reactors in natural convection; Analise termofluidodinamica de reatores nucleares de pesquisa refrigerados a agua em regime de conveccao natural

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Maria Auxiliadora Fortini

    2004-07-01

    The STHIRP-1 computer program, which fundamentals are described in this work, uses the principles of the subchannels analysis and has the capacity to simulate, under steady state and transient conditions, the thermal and hydraulic phenomena which occur inside the core of a water-refrigerated research reactor under a natural convection regime. The models and empirical correlations necessary to describe the flow phenomena which can not be described by theoretical relations were selected according to the characteristics of the reactor operation. Although the primary objective is the calculation of research reactors, the formulation used to describe the fluid flow and the thermal conduction in the heater elements is sufficiently generalized to extend the use of the program for applications in power reactors and other thermal systems with the same features represented by the program formulations. To demonstrate the analytical capacity of STHIRP-l, there were made comparisons between the results calculated and measured in the research reactor TRIGA IPR-R1 of CDTN/CNEN. The comparisons indicate that the program reproduces the experimental data with good precision. Nevertheless, in the future there must be used more consistent experimental data to corroborate the validation of the program. (author)

  6. Investigation of effect of stopping supply flow into the cell on the confinement of the radioactive materials under fire accident

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Watanabe, Koji

    1999-03-01

    On November 20th 1997, a fire accident happened at Uranium Enrichment Research Laboratory, Tokai, Japan Atomic Energy Research Institute and ventilation filters in the laboratory clogged. When fire accident occurs in a controlled area, a large quantity of smoke generates in the area and dropping exhaust flow from the area by the clogging of ventilation filters and rising pressure in the area are caused. Moreover, leakage of smoke including radioactive materials from the area by the pressure rising is expected. To prevent the leakage, it is expected that stopping supply flow to the area during a fire accident is effective, however, quantitative evaluation about this effect has not been performed. By using CELVA-1D code, one-dimensional thermofluid analysis code, this effect is evaluated quantitatively by modeling the laboratory and estimating source terms released during the fire accident. As the results, it has been found that the efficiency of confinement of the radioactive materials into the area is preserved in the slightly long period of time in case of stopping supply flow to the area, however, this effect can be neglected in case that scale of fire accident is relatively large. (author)

  7. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    Directory of Open Access Journals (Sweden)

    Edward Davies

    2014-11-01

    Full Text Available A finite element analysis (FEA model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel.

  8. Use of a thin-film evaporator for bitumen coating of radioactive concentrates

    International Nuclear Information System (INIS)

    Lefillatre, G.; Rodier, J.; Hullo, R.; Cudel, Y.; Rodi, L.

    1969-01-01

    Following the development in the laboratory of a process for coating evaporation concentrates with bitumen, a technological study of this coating process has been undertaken. The report describes a pilot installation for the bitumen coating of concentrates, which uses a thin-film evaporator LUWA L 150. The first, inactive series of tests was designed to determine the maximum and optimum capacities of the evaporator by varying the amounts of bitumen and of concentrate, the rotor speed and the thermo-fluid temperature. Two rotors were tested, one of conventional type, the other a model especially designed for high viscosity products. The maximum capacity of evaporation of the apparatus is 72 kg/hr for a heating temperature of 221 deg. C. During normal operation, the evaporator can produce 50 kg/hr of coated product containing 55 to 60 per cent of bitumen (Mexphalte 40/50), the water content of the product remaining under 0.5 per cent. A second series of tests will shortly be carried out on this pilot installation using, in particular, bituminous emulsions containing mainly Mexphalte 40/50 and 80/100. (authors) [fr

  9. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    Energy Technology Data Exchange (ETDEWEB)

    Chien-Chih Liu, James [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li2BeF4 (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.

  10. Multi-unit inertial fusion plants based on HYLIFE-II, with shared heavy-ion RIA driver and target factory, producing electricity and hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Logan, G.; Moir, R. [Lawrence Livermore National Lab., CA (United States); Hoffman, M. [Univ. of California, Davis, CA (United States)

    1994-05-05

    Following is a modification of the IFEFUEL systems code, called IFEFUEL2, to treat specifically the HYLIFE-II target chamber concept. The same improved Recirculating Induction Accelerator (RIA) energy scaling model developed recently by Bieri is used in this survey of the economics of multi-unit IFE plants producing both electricity and hydrogen fuel. Reference cases will assume conventional HI-indirect target gains for a 2 mm spot, and improved HYLIFE-II BoP models as per Hoffman. Credits for improved plant availability and lower operating costs due to HYLIFE-II`s 30-yr target chamber lifetime are included, as well as unit cost reductions suggested by Delene to credit greater {open_quotes}learning curve{close_quotes} benefits for the duplicated portions of a multi-unit plant. To illustrate the potential impact of more advanced assumptions, additional {open_quotes}advanced{close_quotes} cases will consider the possible benefits of an MHD + Steam BoP, where direct MHD conversion of plasma from baseball-size LiH target blanket shells is assumed to be possible in a new (as yet undesigned) liquid Flibe-walled target chamber, together and separately, with advanced, higher-gain heavy-ion targets with Fast Ignitors. These runs may help decide the course of a possible future {open_quotes}HYLIFE-III{close_quotes} IFE study. Beam switchyard and final focusing system costs per target chamber are assumed to be consistent with single-sided illumination, for either {open_quotes}conventional{close_quotes} or {open_quotes}advanced{close_quotes} indirect target gain assumptions. Target costs are scaled according to the model by Woodworth. In all cases, the driver energy and rep rate for each chosen number of target chambers and total plant output will be optimized to minimize the cost of electricity (CoE) and the associated cost of hydrogen (CoH), using a relationship between CoE and CoH to be presented in the next section.

  11. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, X.; Herter, K.H.; Moogk, S. [Stuttgart Univ. (Germany). MPA; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M. [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems

    2012-07-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  12. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  13. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  14. Application of RELAP5-3D code for thermal analysis of the ADS reactor core

    International Nuclear Information System (INIS)

    Fernandes, Gustavo Henrique Nazareno

    2018-01-01

    Nuclear power is essential to supply global energy demand. Therefore, in order to use nuclear fuel more efficiently, more efficient nuclear reactors technologies researches have been intensified, such as hybrid systems, composed of particle accelerators coupled into nuclear reactors. In order to add knowledge to such studies, an innovative reactor design was considered where the RELAP5-3D thermal-hydraulic analysis code was used to perform a thermal analysis of the core, either in stationary operation or in situations transitory. The addition of new kind of coolants, such as, liquid salts, among them Flibe, lead, lead-bismuth, sodium, lithium-bismuth and lithium-lead was an important advance in this version of the code, making possible to do the thermal simulation of reactors that use these types of coolants. The reactor, object of study in this work, is an innovative reactor, due to its ability to operate in association with an Accelerator Driven System (ADS), considered a predecessor system of the next generation of nuclear reactors (GEN IV). The reactor selected was the MYRRHA (Multi-purpose Hybrid Research Reactor for High tech Applications) due to the availability of data to perform the simulation. In the modeling of the reactor with the code RELAP5-3D, the core was simulated using nodules with 1, 7, 15 and 51 thermohydraulic channels and eutectic lead-bismuth (LBE) as coolant. The parameters, such as, pressure, mass flow and coolant and heat structure temperature were analyzed. In addition, the thermal behavior of the core was evaluated by varying the type of coolant (sodium) in substitution for the LBE of the original design using the model with 7 thermohydraulic channels. The results of the steady-state calculations were compared with data from the literature and the proposed models were verified certifying the ability of the RELAP5-3D code to simulate this innovative reactor. After this step, it was analysed cases of transients with loss of coolant flow

  15. Application of RELAP5-3D code for thermal analysis of the ADS reactor core; Aplicação do código RELAP5-3D para análise térmica do núcleo de um reator ADS

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Gustavo Henrique Nazareno

    2018-04-01

    Nuclear power is essential to supply global energy demand. Therefore, in order to use nuclear fuel more efficiently, more efficient nuclear reactors technologies researches have been intensified, such as hybrid systems, composed of particle accelerators coupled into nuclear reactors. In order to add knowledge to such studies, an innovative reactor design was considered where the RELAP5-3D thermal-hydraulic analysis code was used to perform a thermal analysis of the core, either in stationary operation or in situations transitory. The addition of new kind of coolants, such as, liquid salts, among them Flibe, lead, lead-bismuth, sodium, lithium-bismuth and lithium-lead was an important advance in this version of the code, making possible to do the thermal simulation of reactors that use these types of coolants. The reactor, object of study in this work, is an innovative reactor, due to its ability to operate in association with an Accelerator Driven System (ADS), considered a predecessor system of the next generation of nuclear reactors (GEN IV). The reactor selected was the MYRRHA (Multi-purpose Hybrid Research Reactor for High tech Applications) due to the availability of data to perform the simulation. In the modeling of the reactor with the code RELAP5-3D, the core was simulated using nodules with 1, 7, 15 and 51 thermohydraulic channels and eutectic lead-bismuth (LBE) as coolant. The parameters, such as, pressure, mass flow and coolant and heat structure temperature were analyzed. In addition, the thermal behavior of the core was evaluated by varying the type of coolant (sodium) in substitution for the LBE of the original design using the model with 7 thermohydraulic channels. The results of the steady-state calculations were compared with data from the literature and the proposed models were verified certifying the ability of the RELAP5-3D code to simulate this innovative reactor. After this step, it was analysed cases of transients with loss of coolant flow

  16. Investigation of thermo-fluid behavior of mixed convection heat transfer of different dimples-protrusions wall patterns to heat transfer enhancement

    Science.gov (United States)

    Sobhani, M.; Behzadmehr, A.

    2018-05-01

    This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.

  17. Study of nonequilibrium dispersed two phase flow

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.

    1986-01-01

    Understanding the behavior of liquid droplets in a superheated steam environment is essential to the accurate prediction of nuclear fuel rod surface temperatures during the blowdown and reflood phase of a loss-of-coolant-accident (LOCA). In response to this need, this treatise presents several original and significant contributions to the field of thermofluid physics. The research contained herein presents a statistical derivation of the two-phase mass, momentum, and energy-conservation equations using a droplet continuity equation analogous to that used in the Kinetic Theory of Gases. Unlike the Eulerian volume and time-averaged conservation equations generally used to describe dispersed two-phase flow behavior, this statistical averaging approach results in an additional mass momentum or energy term in each of the respective conservation equations. Further, this study demonstrates that current definitions of the volumetric vapor generation rate used in the mass conservation equation are inappropriate results under certain circumstances. The mass conservation equation derived herein is used to obtain a new definition for the volumetric vapor-generation rate. Last, a simple two phase phenomenological model, based on the statistically averaged conservation equations, is presented and solved analytically. It is shown that the actual quality and vapor temperature, under these circumstances, depend on a single dimensionless group

  18. A simplified model for TIG-dressing numerical simulation

    Science.gov (United States)

    Ferro, P.; Berto, F.; James, M. N.

    2017-04-01

    Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.

  19. An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers

    International Nuclear Information System (INIS)

    Hendijanifard, Mohammad; Willis, David A

    2011-01-01

    Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.

  20. Boys who pee the farthest have a large hollow head, a thin skin, and medium-size manhood

    Science.gov (United States)

    Attinger, Daniel; Lee, Vincent

    2016-11-01

    Following a recent trend of scientific studies on artwork, we study here the thermodynamics of a jetting thermometer made of ceramic, related to the Chinese tea culture. The thermometer represents a boy who "urinates" shortly after hot water is poured onto his head. Long jetting distance indicates if the water temperature is hot enough to brew tea. Here, a thermofluid model describes the jetting phenomenon of that pee-pee boy. The study demonstrates how thermal expansion of an interior air pocket causes jetting. The validity of assumptions underlying the Hagen-Poiseuille flow is discussed for urethra of finite length. A thermodynamic potential is shown to define maximum jetting velocity. Seven optimization criteria to maximize jetting distance are provided, including two dimensionless numbers. The dimensionless numbers are obtained by comparing the time scales of the internal pressure buildup due to heating, with that of pressure relief due to jetting. Optimization results show that longer jets are produced by large individuals, with low body mass index, with a boyhood of medium size inclined at an angle π/4. Analogies are drawn with pissing contests among humans and lobsters. The study ends by noting similitudes of working principle between that politically incorrect thermometer and Galileo Galilei's thermoscope.

  1. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review.

    Science.gov (United States)

    Ai, Z T; Melikov, A K

    2018-07-01

    This article reviews past studies of airborne transmission between occupants in indoor environments, focusing on the spread of expiratory droplet nuclei from mouth/nose to mouth/nose for non-specific diseases. Special attention is paid to summarizing what is known about the influential factors, the inappropriate simplifications of the thermofluid boundary conditions of thermal manikins, the challenges facing the available experimental techniques, and the limitations of available evaluation methods. Secondary issues are highlighted, and some new ways to improve our understanding of airborne transmission indoors are provided. The characteristics of airborne spread of expiratory droplet nuclei between occupants, which are influenced correlatively by both environmental and personal factors, were widely revealed under steady-state conditions. Owing to the different boundary conditions used, some inconsistent findings on specific influential factors have been published. The available instrumentation was too slow to provide accurate concentration profiles for time-dependent evaluations of events with obvious time characteristics, while computational fluid dynamics (CFD) studies were mainly performed in the framework of inherently steady Reynolds-averaged Navier-Stokes modeling. Future research needs in 3 areas are identified: the importance of the direction of indoor airflow patterns, the dynamics of airborne transmission, and the application of CFD simulations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Nuclear energy synergetics and molten-salt technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1988-01-01

    There are various problems with nuclear energy techniques in terms of resources, safety, environmental effects, nuclear proliferation, reactor size reduction and overall economics. To overcome these problems, future studies should be focused on utilization of thorium resources, separation of multiplication process and power generation process, and application of liquid nuclear fuel. These studies will lead to the development of molten thorium salt nuclear synergetics. The most likely candidate for working medium is Lif-BeF 2 material (flibe). 233 U production facilities are required for the completion of the Th cycle. For this, three ideas have been proposed: accelerator M.S. breeder, impact fusion MSB and inertial conf. fusion hybrid MSB. The first step toward the development of molten Th salt nuclear energy synergetics will be the construction of a pilot plant of an extreme small size. As candidate reactor, the author has selected mini FUJI-II (7.0 MWe), an extremely small molten salt power reactor. Mini FUJI-II facilities are expected to be developed in 7 - 8 years. For the next step (demonstration step), the designing of a small power reactor (FUJI 160 MWe) has already been carried out. A small molten salt reactor will have good safety characteristics in terms of chemistry, material, structure, nuclear safety and design basis accidents. Such reactors will also have favorable economic aspects. (Nogami, K.)

  3. A study on the loss-of-coolant accidents associated with the lung-men nuclear power station

    International Nuclear Information System (INIS)

    Teng, J.T.; Hsu, C.T.; Wang, T.Q.; Chen, Y.H.; Wang, L.C.; Chung, N.M.; Yuann, R.Y.

    2001-01-01

    This study was intended to evaluate the behavior of the nuclear core of the Lung-Men Nuclear Power Station (LMNPS) under postulated LOCA conditions. The LMNPS construction is now in suspense by the Ministry of Economic Affairs, the Republic of China. The assumptions used in this study were in compliance with the requirements specified in 10CFR50.46 and Appendix K. The methodology used was primarily RELAP5YA, which was a modification to the RELAP5/MOD1 Cycle 18. In the paper, features of the thermo-fluids, neutronics, flow systems, trips, and breaks are discussed. Their assumptions and the resulting implications to the outcome of the analyses are emphasized. Also typical sequences of events, the reactor pressure vessel (RPV) pressure, temperature and water inventory transients, and the ultimate core heat-ups for a number of break sizes, ranging from small- to large-break LOCAs, are delineated. The results of this study indicated that for all cases studied, the peak cladding temperature (PCT) was 699.1 Celsius degrees (1290.4 F). This PCT was much lower than the upper temperature limit of 1204.4 Celsius degrees (2200 F) specified in the acceptance criterion of 10CFR50.46. It is to be noted that for all cases studied, the highest PCTs obtained occurred at 4 s after the initiation of the LOCAs. The reason for the occurrence of these PCTs was the internal pump trip, allowing the pump to coast down and the pump to reverse. The next PCTs, resulted from the LOCA, were observed to occur only for the LOCA cases with feedwater line breaks. It did not happen for the cases with steam-line breaks. (authors)

  4. Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility

    Science.gov (United States)

    Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G.

    2017-11-01

    In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermo-fluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation.

  5. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey James [Univ. of California, Berkeley, CA (United States)

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  6. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

    Science.gov (United States)

    Wang, Kon-Sheng Charles

    1994-01-01

    The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

  7. Stability of nanofluids: Molecular dynamic approach and experimental study

    International Nuclear Information System (INIS)

    Farzaneh, H.; Behzadmehr, A.; Yaghoubi, M.; Samimi, A.; Sarvari, S.M.H.

    2016-01-01

    Highlights: • Nanofluid stability is investigated and discussed. • A molecular dynamic approach, considering different forces on the nanoparticles, is adopted. • Stability diagrams are presented for different thermo-fluid conditions. • An experimental investigation is carried out to confirm the theoretical approach. - Abstract: Nanofluids as volumetric absorbent in solar energy conversion devices or as working fluid in different heat exchangers have been proposed by various researchers. However, dispersion stability of nanofluids is an important issue that must be well addressed before any industrial applications. Conditions such as severe temperature gradient, high temperature of heat transfer fluid, nanoparticle mean diameters and types of nanoparticles and base fluid are among the most effective parameters on the stability of nanofluid. A molecular dynamic approach, considering kinetic energy of nanoparticles and DLVO potential energy between nanoparticles, is adopted to study the nanofluid stability for different nanofluids at different working conditions. Different forces such as Brownian, thermophoresis, drag and DLVO are considered to introduce the stability diagrams. The latter presents the conditions for which a nanofluid can be stable. In addition an experimental investigation is carried out to find a stable nanofluid and to show the validity of the theoretical approach. There is a good agreement between the experimental and theoretical results that confirms the validity of our theoretical approach.

  8. Progress Toward Heavy Ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.L.; Callahan-Miller, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  9. Progress toward heavy-ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.-L.; Callahan, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of heavy-ion fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy-ion targets indicates that high gain (60-130) may be possible with a ∼3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy-ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLIFE-II design, which uses an array of flibe jets to protect chamber structures from X-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLIFE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HIF. A target injector experiment capable of >5 Hz operation has been designed and construction will start in 2002. Methods for mass-production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  10. Gas dynamics in the central cavity of HYLIFE-II reactor

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.; Colella, P.

    1992-01-01

    In a HYLIFE-II ICF reactor, the microfusion of the D-T capsule in the center of the chamber produces X-rays that can ablate a thin layer off the liquid blanket which protects the first structural wall Thisablated material will implode toward the center line of the central cavity due to the initial vacuum and cylindrical geometry, and then rebound back to the liquid blanket vent through it and exert a pressure ''impulse'' onto the structural wall. The initial ablation occurs in a very short period with very small characteristic length and the implosion and rebounding processes feature very high pressures and temperatures. The proper design of the chamber relies on the reasonably accurate analysis of the gas dynamics in the central cavity and the gas-liquid interaction. In this paper, a second order Godunov numerical method is used to solve the compressible flow equations in the central cavity. The rarefaction and shock phenomena are very well captured by the numerical calculation. The equation of state for Flibe vapor is used in the calculation along with the parameters for the HYLIFE-II design. Since the radiation transport has not yet been included in the current calculations, the vapor possesses higher energy and therefore temperature. The total mass vaporized will also be underestimated in the later time of the calculation. The incorporation of a radiation calculation into this code is our next goal

  11. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  12. LIFE Materails: Molten-Salt Fuels Volume 8

    International Nuclear Information System (INIS)

    Moir, R.; Brown, N.; Caro, A.; Farmer, J.; Halsey, W.; Kaufman, L.; Kramer, K.; Latkowski, J.; Powers, J.; Shaw, H.; Turchi, P.

    2008-01-01

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  13. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  14. Thermal performance of a concrete cask: Methodology to model helium leakage from the steel canister

    International Nuclear Information System (INIS)

    Penalva, J.; Feria, F.; Herranz, L.E.

    2017-01-01

    Highlights: • A thermal analysis of the canister during a loss of leaktightness has been performed. • Methodologies that predict fuel temperatures and heat up rates have been developed. • Casks with heat loads below 20 kW would never exceed the thermal threshold. - Abstract: Concrete cask storage systems used in dry storage allocate spent fuel within containers that are usually filled with helium at a certain pressure. Potential leaks from the container would result in a cooling degradation of fuel that might jeopardize fuel integrity if temperature exceeded a threshold value. According to ISG-11, temperatures below 673 K ensure fuel integrity preservation. Therefore, the container thermal response to a loss of leaktightness is of utmost importance in terms of safety. In this work, a thermo-fluid dynamic analysis of the canister during a loss of leaktightness has been performed. To do so, steady-state and transient Computational Fluid Dynamics (CFD) simulations have been carried out. Likewise, it has been developed two methodologies capable of estimating peak fuel temperatures and heat up rates resulting from a postulated depressurization in a dry storage cask. One methodology is based on control theory and transfers functions, and the other methodology is based on a linear relationship between the inner pressure and the maximum temperature. Both methodologies have been verified through comparisons with CFD calculations. The period of time to achieve the temperature threshold (673 K) is a function of pressure loss rate and decay heat of the fuel stored in the container; in case of a fuel canister with 30 kW the period of time to reach the thermal limit takes between half day (fast pressure loss) and one week (slow pressure loss). In case of a 15% reduction of the decay heat, the period of time to achieve the thermal limit increase up to a few weeks. The results highlight that casks with heat loads below 20 kW would never exceed the thermal threshold (673 K).

  15. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) with Silicon-Carbide-Matrix Coated-Particle Fuel

    International Nuclear Information System (INIS)

    Forsberg, C. W.; Snead, Lance Lewis; Katoh, Yutai

    2012-01-01

    The FHR is a new reactor concept that uses coated-particle fuel and a low-pressure liquid-salt coolant. Its neutronics are similar to a high-temperature gas-cooled reactor (HTGR). The power density is 5 to 10 times higher because of the superior cooling properties of liquids versus gases. The leading candidate coolant salt is a mixture of 7 LiF and BeF 2 (FLiBe) possessing a boiling point above 1300 C and the figure of merit ρC p (volumetric heat capacity) for the salt slightly superior to water. Studies are underway to define a near-term base-line concept while understanding longer-term options. Near-term options use graphite-matrix coated-particle fuel where the graphite is both a structural component and the primary neutron moderator. It is the same basic fuel used in HTGRs. The fuel can take several geometric forms with a pebble bed being the leading contender. Recent work on silicon-carbide-matrix (SiCm) coated-particle fuel may create a second longer-term fuel option. SiCm coated-particle fuels are currently being investigated for use in light-water reactors. The replacement of the graphite matrix with a SiCm creates a new family of fuels. The first motivation behind the effort is to take advantage of the superior radiation resistance of SiC compared to graphite in order to provide a stable matrix for hosting coated fuel particles. The second motivation is a much more rugged fuel under accident, repository, and other conditions.

  16. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    International Nuclear Information System (INIS)

    Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.

    2011-01-01

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  17. Natural convection heat transfer in a rectangular pool with volumetric heat sources

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.

    2003-01-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)

  18. Fluid dynamics of the 1997 Boxing Day volcanic blast on Montserrat, West Indies

    Science.gov (United States)

    Esposti Ongaro, T.; Clarke, A. B.; Neri, A.; Voight, B.; Widiwijayanti, C.

    2008-03-01

    Directed volcanic blasts are powerful explosions with a significant laterally directed component, which can generate devastating, high-energy pyroclastic density currents (PDCs). Such blasts are an important class of eruptive phenomena, but quantified understanding of their dynamics and effects is still incomplete. Here we use 2-D and 3-D multiparticle thermofluid dynamic flow codes to examine a powerful volcanic blast that occurred on Montserrat in December 1997. On the basis of the simulations, we divide the blast into three phases: an initial burst phase that lasts roughly 5 s and involves rapid expansion of the gas-pyroclast mixture, a gravitational collapse phase that occurs when the erupted material fails to mix with sufficient air to form a buoyant column and thus collapses asymmetrically, and a PDC phase that is dominated by motion parallel to the ground surface and is influenced by topography. We vary key input parameters such as total gas energy and total solid mass to understand their influence on simulations, and we compare the simulations with independent field observations of damage and deposits, demonstrating that the models generally capture important large-scale features of the natural phenomenon. We also examine the 2-D and 3-D model results to estimate the flow Mach number and conclude that the range of damage sustained at villages on Montserrat can be reasonably explained by the spatial and temporal distribution of the dynamic pressure associated with subsonic PDCs.

  19. Neutronics Design of Helical Type DEMO Reactor FFHR-d1

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Sagara, A.; Goto, T.; Yanagi, N.; Masuzaki, S.; Tamura, H.; Miyazawa, J.; Muroga, T., E-mail: teru@nifs.ac.jp [National Institute for Fusion Science, Toki (Japan)

    2012-09-15

    Full text: Neutronics design study has been performed in a newly started conceptual design activity for a helical type DEMO reactor FFHR-d1. Features of the FFHR-d1 design are enlargement of the basic configurations of reactor components and extrapolation of plasma parameters from those of the helical type plasma experimental machine Large Helical Device (LHD) to achieve the highest feasibility. From the neutronics point of view, a blanket space of FFHR-d1 is severely limited at the inboard of the torus. This is due to the core plasma position shifting to the inboard side under the confinement condition extrapolated from LHD. The first step of the neutronics investigation using the MCNP code has been performed with a simple torus model simulating thin inboard blanket space. A Flibe+Be/Ferritic steel breeding blanket showed preferable performances for both tritium breeding and shielding, and has been adapted as a reference blanket system for FFHR-d1. The investigations indicate that a combination of a 15 cm thick breeding blanket, 55 cm thick WC+B4C shield, i.e., the blanket space of 70 cm, could suppress the fast neutron flux and nuclear heating in the helical coils to the design targets for the neutron wall loading of 1.5 MW/m{sup 2}. Since the outboard side can provide a large space for a 60 cm thick breeding blanket, a fully-covered tritium breeding ratio (TBR) of 1.31 has been obtained in the simple torus model. The neutronics design study has proceeded to the second step using a 3-D helical reactor model. The most important issue in the 3-D neutronics design is a compatibility with the helical divertor design. To achieve a higher TBR and shielding performance, the core plasma has to be covered by the breeding blanket layers as possible. However, the dimensions of the blanket layers are limited by magnetic field lines connecting an edge of the core plasma and divertor pumping ports. After repeating modification of the blanket configuration, the global TBR of 1

  20. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2008-09-08

    blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including un-enriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed

  1. Neutronics of a liquid salt cooled - very high temperature reactor

    International Nuclear Information System (INIS)

    Zakova, J.

    2007-01-01

    During last few years, the interest in the innovative, Liquid Salt cooled - Very High Temperature Reactor (LS-VHTR), has been growing. The preconceptual design of the LS-VHTR was suggested in Oak Ridge National Laboratory (ORNL) [1] and nowadays, several research institutions contribute to the development of this concept. The LS-VHTR design utilises a prismatic, High Temperature Reactor (HTR) fuel [2] in combination with liquid salt as a coolant. This connection of high-performance fuel and a coolant with enhanced heat transfer abilities enables efficient and economical operation. Main objective of the LS-VHTR operation may be either an efficient electricity production or a heat supply for a production of hydrogen or, combination of both. The LS-VHTR is moderated by graphite. The graphite matrix of the fuel blocks, as well as the inner and outer core reflectors serve as a thermal buffer in case of an accident, and they provide a strong thermal feedback during normal reactor operation. The high inherent safety of the LS-VHTR meets the strict requirements on future reactor systems, as defined by the Gen IV project. This work, purpose, scope, contribution to the state-of-art: The design, used in the present work is based on the first ORNL suggestion [1]. Recent study is focused on comparison of the neutronic performance of two types of fuel in the LS-VHTR core, whereas, in all previous works, only uranium fuel has been investigated. The first type of fuel, which has been employed in the present analysis, is based on the spent Light Water Reactor (LWR) fuel, whereas the second one consists of enriched uranium oxide. The results of such a comparison bring a valuable knowledge about limits and possibilities of the LS-VHTR concept, when employed as a spent fuel burner. Method:It is used a 3-D drawing of the LS-VHTR core, which contains 324x10 hexagonal fuel blocks. Each fuel block contains 216x10 fuel pins, which consists of TRISO particles incorporated into a graphite

  2. Systems integration (automation system). System integration (automation system)

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K; Komori, T; Fukuma, Y; Oikawa, M [Nippon Steal Corp., Tokyo (Japan)

    1991-09-26

    This paper introduces business activities on an automation systems integration (SI) started by a company in July,1988, and describes the SI concepts. The business activities include, with the CIM (unified production carried out on computers) and AMENITY (living environment) as the mainstays, a single responsibility construction ranging from consultation on structuring optimal systems for processing and assembling industries and intelligent buildings to system design, installation and after-sales services. With an SI standing on users {prime} position taken most importantly, the business starts from a planning and consultation under close coordination. On the conceptual basis of structuring optimal systems using the ompany {prime}s affluent know-hows and tools and adapting and applying with multi-vendors, open networks, centralized and distributed systems, the business is promoted with the accumulated technologies capable of realizing artificial intelligence and neural networks in its background, and supported with highly valuable business results in the past. 10 figs., 1 tab.

  3. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph Collin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry Materials and Life Sciences Directorate

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrade structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H+ and T+) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion

  4. Coupling component systems towards systems of systems

    OpenAIRE

    Autran , Frédéric; Auzelle , Jean-Philippe; Cattan , Denise; Garnier , Jean-Luc; Luzeaux , Dominique; Mayer , Frédérique; Peyrichon , Marc; Ruault , Jean-René

    2008-01-01

    International audience; Systems of systems (SoS) are a hot topic in our "fully connected global world". Our aim is not to provide another definition of what SoS are, but rather to focus on the adequacy of reusing standard system architecting techniques within this approach in order to improve performance, fault detection and safety issues in large-scale coupled systems that definitely qualify as SoS, whatever the definition is. A key issue will be to secure the availability of the services pr...

  5. HYLIFE-2 progress report

    International Nuclear Information System (INIS)

    Moir, R.W.; Adamson, M.G.; Bangerter, R.O.; Bieri, R.L.; Condit, R.H.; Hartman, C.W.; House, P.A.; Langdon, A.B.; Logan, B.G.; Orth, C.D.; Petzoldt, R.W.; Pitts, J.H.; Post, R.F.; Sacks, R.A.; Tobin, M.T.; Williams, W.H.; Dolan, T.J.; Longhurst, G.R.; Hoffman, M.A.; Meier, W.R.

    1991-12-01

    LIFE-II inertial confinement fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. This is a progress report of an incomplete and ongoing study. HYLIFE-I used liquid lithium. HYLIFE-11 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 Be 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required.In addition, although not considered for HYLIFE-I there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.10 $/kW· in constant 1990 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost

  6. HYLIFE-II inertial fusion energy power plant design

    International Nuclear Information System (INIS)

    Moir, R.W.

    1992-01-01

    The HYLIFE-II inertial fusion power plant design study uses a liquid fall, in the form of jets, to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-I used liquid lithium. HYLIFE-II avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 BeF 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 Gj from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. In addition, although not adequately considered for HYLIFE-I, there is liquid splash that must be forcibly cleared because gravity is too slow, at higher repetition rates than 1 Hz. Splash removal is accomplished in the central region by oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW·h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost, that is, a zero cost driver would give a calculated cost of electricity of 0.045 $/kWh

  7. HYLIFE-II inertial fusion energy power plant design

    International Nuclear Information System (INIS)

    Moir, R.W.

    1992-01-01

    The HYLIFE-II inertial fusion power plant design study uses a liquid fall, in the form of jets, to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-I used liquid lithium. HYLIFE-II avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 BeF 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. In addition, although not adequately considered for HYLIFE-I, there is liquid splash that must be forcibly cleared because gravity is too slow, at higher repetition rates than 1 Hz. Splash removal is accomplished in the central region by oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW·h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost, that is, a zero cost driver would give a calculated cost of electricity of 0.045 $/kWh

  8. ACT-XN: Revised version of an activation calculation code for fusion reactor analysis. Supplement of the function for the sequential reaction activation by charged particles

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Konno, Chikara; Hori, Jun-ichi; Kawasaki, Hiromitsu

    2007-09-01

    The ACT-XN is a revised version of the ACT4 code, which was developed in the Japan Atomic Energy Research Institute (JAERI) to calculate the transmutation, induced activity, decay heat, delayed gamma-ray source etc. for fusion devices. The ACT4 code cannot deal with the sequential reactions of charged particles generated by primary neutron reactions. In the design of present experimental reactors, the activation due to sequential reactions may not be of great concern as it is usually buried under the activity by primary neutron reactions. However, low activation material is one of the important factors for constructing high power fusion reactors in future, and unexpected activation may be produced through sequential reactions. Therefore, in the present work, the ACT4 code was newly supplemented with the calculation functions for the sequential reactions and renamed the ACT-XN. The ACT-XN code is equipped with functions to calculate effective cross sections for sequential reactions and input them in transmutation matrix. The FISPACT data were adopted for (x,n) reaction cross sections, charged particles emission spectra and stopping powers. The nuclear reaction chain data library were revised to cope with the (x,n) reactions. The charged particles are specified as p, d, t, 3 He(h) and α. The code was applied to the analysis of FNS experiment for LiF and Demo-reactor design with FLiBe, and confirmed that it reproduce the experimental values within 15-30% discrepancies. In addition, a notice was presented that the dose rate due to sequential reaction cannot always be neglected after a certain period cooling for some of the low activation material. (author)

  9. Design Constraints for Liquid-Protected Divertors

    International Nuclear Information System (INIS)

    Shin, S.; Abdel-Khalik, S.I.; Yoda, M.

    2005-01-01

    Recent work on liquid-surface-protected plasma facing components has resulted in the establishment of operating windows for candidate liquids, as well as limits on the maximum allowable liquid surface temperature in order to limit plasma impurities from liquid evaporation. In this study, an additional constraint on the maximum allowable surface temperature gradient (i.e., heat flux gradient) has been quantified. Spatial variations in the wall and liquid surface temperatures are expected due to variations in the incident radiation and particle fluxes. Thermocapillary forces created by such temperature gradients can lead to film rupture and dry spot formation in regions of elevated local temperatures. Here, attention has been focused on ''non-flowing'' thin liquid films similar to those formed on the surface of porous wettedwall components. Future analyses will include the effects of macroscopic fluid motion, and MHD forces.A numerical model using the level contour reconstruction method was used to follow the evolution of the liquid free surface above a non-isothermal solid surface. The model was used to develop generalized charts for the maximum allowable spatial temperature gradients (i.e., the critical Marangoni number) as a function of the governing non-dimensional variables, viz. the Weber, Froude, and Prandtl numbers, and aspect ratio. Attention was focused on the asymptotic limit for thin liquid films (i.e., low aspect ratio) which provides a lower bound for the maximum allowable temperature gradients. Specific examples for lithium, Flibe, lithium-lead, tin, and gallium are presented. The generalized charts developed in this investigation will allow reactor designers to identify design windows for successful operation of liquid-protected plasma facing components for various coolants, film thicknesses, and operating conditions

  10. HYLIFE-II inertial confinement fusion reactor design

    International Nuclear Information System (INIS)

    Moir, R.W.

    1990-01-01

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 BeF 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW·h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 15 refs., 9 figs., 3 tabs

  11. HYLIFE-II inertial confinement: Fusion power plant design

    International Nuclear Information System (INIS)

    Moir, R.W.

    1990-01-01

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 BeF 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW·h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 16 refs., 6 figs., 2 tabs

  12. Fusion reactors and the environment

    International Nuclear Information System (INIS)

    Wrixon, A.D.

    1976-01-01

    A summary is given of the report of a study group set up in 1971 by the Director of the UKAEA Culham Laboratory to investigate environmental and safety aspects of future commercial fusion reactors (1975, Carruthers, R., Dunster, H.J., Smith, R.D., Watson, C.J.H., and Mitchell, J.T.D., Culham Study Group Report on Fusion Reactors and the Environment, CLM-R148, HMSO, London). This report was originally issued in 1973 under limited distribution, but has only recently been made available for open circulation. Deuterium/tritium fusion is thought to be the most likely reaction to be used in the first generation of reactors. Estimates were made of the local and world-wide population hazards from the release of tritium, both under normal operating conditions and in the event of an accident. One serious type of accident would be a lithium metal fire in the blanket region of the reactor. The use of a fusible lithium salt (FLIBE), eliminating the lithium fire risk, is considered but the report concentrates on lithium metal in the blanket region. The main hazards to operating staff arise both from tritium and from neutron activation of the construction materials. Remote servicing of the reactor structure will be essential, but radioactive waste management seems less onerous than for fission reactors. Meaningful comparison of the overall hazards associated with fusion and fission power programmes is not yet possible. The study group emphasized the need for more data to aid the safety assessments, and the need for such assessments to keep pace with fusion power station design. (U.K.)

  13. Design of the Natural Circulation Loop and Implementation of DOWTHERM A Properties into MARS-LMR Code

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Park, Seong Dae; Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Molten Salt Reactor (MSR), which is one of the generation IV reactors, has an advantage in these requirements. MSR uses a molten salt mixture as the primary coolant, or the fuel itself and it operates on high temperature, so it doesn't need pressurizing. Also, liquid state fuel has an advantage for pyro-processing with easy separation of fission products. These fission products also have relatively short half-lives compared to those of the existing reactors. With these characteristics, MSR can have inherent safety in both direct and indirect sides. Also, MSR can operate at high temperature range, so that it can have the high efficiency to produce electricity. Therefore, research of MSR is meaningful for developing advanced nuclear reactors. FLiBe which is a mixture of lithium fluoride (LiF) and beryllium fluoride (BeF{sub 2}) is used as a primary coolant in MSR and LMR (Liquid Metal cooled Reactor). It has superiority over conventional liquid metal coolant like sodium, because it doesn't react with air or water. thermos-physical properties of DOWTHERM A for MARS-LMR code were made by modifying stg file of existing one. It was based on the process of Moore using 6 output parameters such as specific volume, internal energy, thermal expansion coefficient, isothermal compressibility, specific heat and entropy. With generated stg file (stgdowa.f90) and input file, tpf file (tpfdowa) which includes fluid property tables for MARS-LMR simulation was obtained. For the verification, this tpf file with execution file will be applied to the input deck of our natural circulation design. This work will contribute to researching and developing of MSR and LMR.

  14. Digital processing data communication systems (bus systems). Digitale Prozessdaten-Kommunikations-Systeme (Bus Systeme)

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, K

    1980-01-01

    After an introduction to the technology of digital processing data communication systems there are the following chapters: digital communication of processing data in automation technology, the technology of biserial communication, the implementaiton of a bus system, the data transmission of the TDC-2000 system of Honeywell's and the process bus CS 275 in the automation system TELEPERM M of Siemens AG.

  15. Protecting information in systems of systems

    NARCIS (Netherlands)

    Trivellato, D.

    2012-01-01

    Systems of systems are coalitions of autonomous and heterogeneous systems that collaborate to achieve a common goal. The component systems of a system of systems often belong to different security domains, which are governed by different authorities (hereafter called parties). Furthermore, systems

  16. Data Systems vs. Information Systems

    OpenAIRE

    Amatayakul, Margret K.

    1982-01-01

    This paper examines the current status of “hospital information systems” with respect to the distinction between data systems and information systems. It is proposed that the systems currently existing are incomplete data dystems resulting in ineffective information systems.

  17. Situation awareness with systems of systems

    CERN Document Server

    Tretmans, Jan; Borth, Michael

    2013-01-01

    This book discusses various aspects, challenges, and solutions for developing systems-of-systems for situation awareness, using applications in the domain of maritime safety and security.  Topics include advanced, multi-objective visualization methods for situation awareness, stochastic outlier selection, rule-based anomaly detection, an ontology-based event model for semantic reasoning, new methods for semi-automatic generation of adapters bridging communication gaps, security policies for systems-of-systems, trust assessment, and methods to deal with the dynamics of systems-of-systems in run-time monitoring, testing, and diagnosis. Architectural considerations for designing information-centric systems-of-systems such as situation awareness systems, and an integrated demonstrator implementing many of the investigated aspects, complete the book.

  18. Intelligent Control Systems with an Introduction to System of Systems Engineering

    CERN Document Server

    Nanayakkara, Thrishantha

    2009-01-01

    From aeronautics and manufacturing to healthcare and disaster management, systems engineering (SE) focuses on designing applications that ensure performance optimization. This title integrates the fundamentals of artificial intelligence and systems control in a framework applicable to both simple dynamic systems and large-scale system of systems

  19. Upgraded RECOVER system - CASDAC system

    International Nuclear Information System (INIS)

    Yamamoto, Yoichi; Koyama, Kinji

    1992-03-01

    The CASDAC (Containment And Surveillance Data Authenticated Communication) system has been developed by JAERI for nuclear safeguards and physical protection of nuclear material. This system was designed and constructed as an upgraded RECOVER system, design concept of which was based on the original RECOVER system and also the TRANSEAVER system. Both of them were developed several years ago as a remote monitoring system for continual verification of security and safeguards status of nuclear material. The system consists of two subsystems, one of them is a Grand Command Center (GCC) subsystem and the other is a facility subsystem. Communication between the two subsystems is controlled through the international telephone line network. Therefore all communication data are encrypted to prevent access by an unauthorized person who may intend to make a falsification, or tapping. The facility subsystem has an appropriate measure that ensure data security and reliable operation under unattended mode of operator. The software of this system is designed so as to be easily used in other different types of computers. This report describes the outline of the CASDAC system and the results of its performance test. This work has been carried out in the framework of Japan Support Programme for Agency Safeguards (JASPAS) as a project, JA-1. (author)

  20. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    1976-01-01

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  1. Transport phenomena in fuel cells : from microscale to macroscale

    Energy Technology Data Exchange (ETDEWEB)

    Djilali, N. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering]|[Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2006-07-01

    Proton Exchange Membrane (PEM) fuel cells rely on an array of thermofluid transport processes for the regulated supply of reactant gases and the removal of by-product heat and water. Flows are characterized by a broad range of length and time scales that take place in conjunction with reaction kinetics in a variety of regimes and structures. This paper examined some of the challenges related to computational fluid dynamics (CFD) modelling of PEM fuel cell transport phenomena. An overview of the main features, components and operation of PEM fuel cells was followed by a discussion of the various strategies used for component modelling of the electrolyte membrane; the gas diffusion layer; microporous layer; and flow channels. A review of integrated CFD models for PEM fuel cells included the coupling of electrochemical thermal and fluid transport with 3-D unit cell simulations; air-breathing micro-structured fuel cells; and stack level modelling. Physical models for modelling of transport at the micro-scale were also discussed. Results of the review indicated that the treatment of electrochemical reactions in a PEM fuel cell currently combines classical reaction kinetics with solutions procedures to resolve charged species transport, which may lead to thermodynamically inconsistent solutions for more complex systems. Proper representation of the surface coverage of all the chemical species at all reaction sites is needed, and secondary reactions such as platinum (Pt) dissolution and oxidation must be accounted for in order to model and understand degradation mechanisms in fuel cells. While progress has been made in CFD-based modelling of fuel cells, functional and predictive capabilities remain a challenge because of fundamental modelling and material characterization deficiencies in ionic and water transport in polymer membranes; 2-phase transport in porous gas diffusion electrodes and gas flow channels; inadequate macroscopic modelling and resolution of catalyst

  2. A new high-performance 3D multiphase flow code to simulate volcanic blasts and pyroclastic density currents: example from the Boxing Day event, Montserrat

    Science.gov (United States)

    Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.

    2005-12-01

    For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation

  3. Profiling Systems Using the Defining Characteristics of Systems of Systems (SoS)

    Science.gov (United States)

    2010-02-01

    system exhaust and emissions system gas engine heating and air conditioning system fuel system regenerative braking system safety system...overcome the limitations of these fuzzy scales, measurement scales are often divided into a relatively small number of disjoint categories so that the...precision is not justified. This lack of precision can typically be addressed by breaking the measurement scale into a set of categories , the use of

  4. Superspeed Maglev system Transrapid. System decription

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L [Thyssen Henschel AG,, Maglev Transportation Technology, Muenchen (Germany)

    1996-12-31

    The superspeed maglev system Transrapid is a track-bound transportation system for passengern and priority freight transport. The transrapid trainsets are composed of self-sufficient vehicle section coupled together. The superspeed maglev system Transrapid is capable of revenue operation at speeds of 100 to 500 km/h. Besides the description of the system concept and system characteristics safety and availability are discussed. (HW)

  5. Linking Political Systems and War Systems

    DEFF Research Database (Denmark)

    Harste, Gorm

    2009-01-01

    Decisive parts of the Western political system have demonstrated a seemingly surprising misinterpretation of military might. As Madelaine Albright has suggested, the mighty perceived themselves as "almighty". Political power seems to have invested in instrumental coercive power relations and found...... military coercion to be the appropriate mean. Using the system theory and the theory of systemic risks displayed by the German sociologist Niklas Luhmann the article demonstrates how military systems due to their own autonomy and autopoiesis do not fit into the idea of political government....... The Clausewitzian ideal of a political system that could continue its power games by means of war was moderated by Clausewitz' own analysis of "friction". How can a political system be so blind towards the possibilities of another system? What are the risks of systemic blind spots? The argument of the paper...

  6. From systems biology to systems biomedicine.

    Science.gov (United States)

    Antony, Paul M A; Balling, Rudi; Vlassis, Nikos

    2012-08-01

    Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Computer System Design System-on-Chip

    CERN Document Server

    Flynn, Michael J

    2011-01-01

    The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses th

  8. The systems integration modeling system

    International Nuclear Information System (INIS)

    Danker, W.J.; Williams, J.R.

    1990-01-01

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It's use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations

  9. System specifications for the NDS Dictionary System

    International Nuclear Information System (INIS)

    Attree, P.M.; Smith, P.M.

    1979-09-01

    The NDS Dictionary System is a computerized system for maintaining and distributing the EXFOR dictionaries and for preparing internal versions of these dictionaries for use in the NDS EXFOR System and other NDS systems. This document is an internal manual for the system specifications of the NDS Dictionary System. It includes flow charts, system and program summaries, input and output specifications and file and record descriptions. This manual is updated from time to time when system modifications are made; this is the version of January 1979

  10. Protecting Information in Systems of Systems

    NARCIS (Netherlands)

    Trivellato, Daniel; Zannone, Nicola; Etalle, Sandro

    2011-01-01

    Systems of Systems (SoS) are dynamic, distributed coalitions of autonomous and heterogeneous systems that collaborate to achieve a common goal. While offering several advantages in terms of scalability and flexibility, the SoS paradigm has a strong impact on system interoperability and on the

  11. Expert Systems: What Is an Expert System?

    Science.gov (United States)

    Duval, Beverly K.; Main, Linda

    1994-01-01

    Describes expert systems and discusses their use in libraries. Highlights include parts of an expert system; expert system shells; an example of how to build an expert system; a bibliography of 34 sources of information on expert systems in libraries; and a list of 10 expert system shells used in libraries. (Contains five references.) (LRW)

  12. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  13. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  14. D0 Cryo System Control System Autodialer

    Energy Technology Data Exchange (ETDEWEB)

    Urbin, J.; /Fermilab

    1990-04-17

    The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.

  15. Z-pinch driven fusion energy

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Olson, Craig L.; Rochau, Gary E.; Dezon, Mark S.; Peterson, P.F.; Degroot, J.S.; Jensen, N.; Miller, G.

    2000-01-01

    The Z machine at Sandia National Laboratories (SNL) is the most powerful multi-module synchronized pulsed-power accelerator in the world. Rapid development of z-pinch loads on Z has led to outstanding progress in the last few years, resulting in radiative powers of up to 280 TW in 4 ns and a total radiated x-ray energy of 1.8 MJ. The present goal is to demonstrate single-shot, high-yield fusion capsules. Pulsed power is a robust and inexpensive technology, which should be well suited for Inertial Fusion Energy, but a rep-rated capability is needed. Recent developments have led to a viable conceptual approach for a rep-rated z-pinch power plant for IFE. This concept exploits the advantages of going to high yield (a few GJ) at low rep-rate (approximately 0.1 Hz), and using a Recyclable Transmission Line (RTL) to provide the necessary standoff between the fusion target and the power plant chamber. In this approach, a portion of the transmission line near the capsule is replaced after each shot. The RTL should be constructed of materials that can easily be separated from the liquid coolant stream and refabricated for a subsequent shots. One possibility is that most of the RTL is formed by casting FLiBe, a salt composed of fluorine, lithium, and beryllium, which is an attractive choice for the reactor coolant, with chemically compatible lead or tin on the surface to provide conductivity. The authors estimate that fusion yields greater than 1 GJ will be required for efficient generation of electricity. Calculations indicate that the first wall will have an acceptable lifetime with these high yields if blast mitigation techniques are used. Furthermore, yields above 5 GJ may allow the use of a compact blanket direct conversion scheme

  16. Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael

    2009-08-01

    This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.

  17. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Science.gov (United States)

    Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar

    2018-03-01

    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.

  18. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Science.gov (United States)

    Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar

    2018-04-01

    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.

  19. Networked control of microgrid system of systems

    Science.gov (United States)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  20. System program for MICRO-CAMAC terminal system

    International Nuclear Information System (INIS)

    Sasajima, Yoji; Yamada, Takayuki; Yagi, Hideyuki; Ishiguro, Misako

    1979-08-01

    A JAERI on-line network system was developed and exists for on-line data processing of nuclear instrumentation. As terminal systems for the network system, the one with a Micro -8 micro-computer is used. By modifying the control program for Micro-8 terminal system, a system program has been developed for a MICRO-CAMAC terminal system, which is controlled by a micro-computer framed within the CAMAC Crate Controller. In this report are described software specifications of the MICRO -CAMAC terminal system and its operation method. (author)

  1. System design in an evolving system-of-systems architecture and concept of operations

    Science.gov (United States)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  2. Lighting system with thermal management system

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  3. Intelligent car guidance system (parking support system); Chiteki sharyo yudo system (chusha shien system)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This system enables a driver to park the car at a predetermined spot without the driver seeing the outside scene. The system shows on a driver seat display the steps that the driver is to follow and thereby supports the driver when visibility is poor, when the parking space is difficult to approach, when the driver is a novice, or when the driver is aged. The system ensures accurate positioning of the car by showing the steering direction and angle, the car speed, and the force of braking to the driver. For this purpose, the system knows the absolute car position by the use of an RFID (Radio Frequency Identification) tag which is a kind of IC (Integrated Circuit) card and D-GPS (Differential-Global Positioning System), grasps the relative car position by the use of a gyroscope, and collects data from plural sensors, which are complementary to each other, such as a car-speed sensor and a steering sensor. (translated by NEDO)

  4. SystemC and systemC-AMS in practice systemC 2.3, 2.2 and systemC-AMS 1.0

    CERN Document Server

    Banerjee, Amal

    2013-01-01

    This book describes how engineers can make optimum use of the two industry standard analysis/design tools, SystemC and SystemC-AMS.  The authors use a system-level design approach, emphasizing how SystemC and SystemC-AMS features can be exploited most effectively to analyze/understand a given electronic system and explore the design space. The approach taken by this book enables system engineers to concentrate on only those SystemC/SystemC-AMS features that apply to their particular problem, leading to more efficient design. The presentation includes numerous, realistic and complete examples,

  5. Systems engineering for very large systems

    Science.gov (United States)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  6. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  7. Man-systems distributed system for Space Station Freedom

    Science.gov (United States)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  8. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  9. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  10. Cascade system using both trough system and dish system for power generation

    International Nuclear Information System (INIS)

    Zhang, Cheng; Zhang, Yanping; Arauzo, Inmaculada; Gao, Wei; Zou, Chongzhe

    2017-01-01

    Highlights: • A novel solar cascade system using both trough and dish collectors is proposed. • Heat rejected by the Stirling engines is collected by the condensed water. • The directions to increase the efficiency improvement has been pointed out • Influence of flow type of heating/cooling fluids of Stirling engines is considered. - Abstract: This paper represents a novel solar thermal cascade system using both trough and dish systems for power generation. An effective structure using the condensed fluid of Rankine cycle to cool the Stirling engines to use the heat released by Stirling engines was proposed. The cascade system model with different fluid circuits was developed. The models of some important components of the system, such as dish collector, trough collector and Stirling engine array, are presented with detail explanation in this paper. Corresponding stand-alone systems were also developed for comparison. Simulations were conducted with the models to find out efficiency difference between cascade system and corresponding stand-alone systems. The directions to increase the efficiency difference were also considered. Results show that the cascade system can achieve a higher efficiency with a high solar irradiance (>550 W/m"2). The flow type of fluids between heating and cooling Stirling engine array is also required to concern on designing a cascade system with Stirling engine array.

  11. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  12. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1996-01-01

    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  13. Systems Biology, Systems Medicine, Systems Pharmacology: The What and The Why.

    Science.gov (United States)

    Stéphanou, Angélique; Fanchon, Eric; Innominato, Pasquale F; Ballesta, Annabelle

    2018-05-09

    Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.

  14. A contemporary view of systems engineering. [definition of system and discussion of systems approach

    Science.gov (United States)

    Miles, R. F., Jr.

    1974-01-01

    The concept of a 'system' is defined, and the 'systems approach' is discussed. Four contemporary examples of the systems approach are presented: an operations research project, the planning-programming-budgeting system, an information processing system, and aerospace programs.

  15. A security framework for systems of systems

    NARCIS (Netherlands)

    Trivellato, D.; Zannone, N.; Etalle, S.

    2011-01-01

    Systems of systems consist of a wide variety of dynamic, distributed coalitions of autonomous and heterogeneous systems that collaborate to achieve a common goal. While offering several advantages in terms of scalability and flexibility, this new paradigm has a strong impact on system

  16. A Security Framework for Systems of Systems

    NARCIS (Netherlands)

    Trivellato, Daniel; Zannone, Nicola; Etalle, Sandro

    2011-01-01

    Systems of systems consist of a wide variety of dynamic, distributed coalitions of autonomous and heterogeneous systems that collaborate to achieve a common goal. While offering several advantages in terms of scalability and flexibility, this new paradigm has a strong impact on system

  17. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  18. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  19. Epilogue: Systems Approaches and Systems Practice

    Science.gov (United States)

    Reynolds, Martin; Holwell, Sue

    Each of the five systems approaches discussed in this volume: system dynamics (SD), the viable systems model (VSM), strategic options development and analysis (SODA), soft systems methodology (SSM) and critical systems heuristics (CSH) has a pedigree. Not in the sense of the sometimes absurd spectacle of animals paraded at dog shows. Rather, their pedigree derives from their systems foundations, their capacity to evolve and their flexibility in use. None of the five approaches has developed out of use in restricted and controlled contexts of either low or high levels of complicatedness. Neither has any one of them evolved as a consequence of being applied only to situations with either presumed stakeholder agreement on purpose, or courteous disagreement amongst stakeholders, or stakeholder coercion. The compilation is not a celebration of abstract ‘methodologies', but of theoretically robust approaches that have a genuine pedigree in practice.

  20. Systems theory of interconnected port contact systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    Port-based network modeling of a large class of complex physical systems leads to dynamical systems known as port-Hamiltonian systems. The key ingredient of any port-Hamiltonian system is a power-conserving interconnection structure (mathematically formalized by the geometric notion of a Dirac

  1. System specifications for the NDS EXFOR System

    International Nuclear Information System (INIS)

    Attree, P.M.; Smith, P.M.

    1979-07-01

    EXFOR is the agreed exchange format for the magnetic-tape exchange of nuclear reaction data between national and international nuclear data centres for the benefit of nuclear data users in all countries. The NDS EXFOR System is a computerized system for the storage and retrieval of EXFOR information compiled or received by the IAEA. This document is an internal manual for the system specifications of the NDS EXFOR System. It includes flow charts, system and program summaries, input and output specifications and file and record descriptions. The manual is updated from time to time when system modifications are made

  2. A Systems Thinking Approach to Engineering Challenges of Military Systems-of-Systems

    Science.gov (United States)

    2016-09-01

    as part of organizational thinking , processes and practice; and 2) an adequate SoSE practice supporting environment created and used to enable SoS...UNCLASSIFIED UNCLLASIFIED A Systems Thinking Approach to Engineering Challenges of Military Systems-of-Systems Pin Chen and Mark...their products and outcomes. This report introduces a systems thinking -based approach, SoS thinking , which offers a language and a thoughtful process

  3. Activity System Theory Approach to Healthcare Information System

    OpenAIRE

    Bai, Guohua

    2004-01-01

    Healthcare information system is a very complex system and has to be approached from systematic perspectives. This paper presents an Activity System Theory (ATS) approach by integrating system thinking and social psychology. First part of the paper, the activity system theory is presented, especially a recursive model of human activity system is introduced. A project ‘Integrated Mobile Information System for Diabetic Healthcare (IMIS)’ is then used to demonstrate a practical application of th...

  4. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  5. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  6. Automatic TLI recognition system. Part 1: System description

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Lassahn, G.D.; Davidson, J.R.

    1994-05-01

    This report describes an automatic target recognition system for fast screening of large amounts of multi-sensor image data, based on low-cost parallel processors. This system uses image data fusion and gives uncertainty estimates. It is relatively low cost, compact, and transportable. The software is easily enhanced to expand the system`s capabilities, and the hardware is easily expandable to increase the system`s speed. This volume gives a general description of the ATR system.

  7. LFTR: in search of the ideal pathway to thorium utilization-development program and current status

    International Nuclear Information System (INIS)

    Soon, Benjamin

    2015-01-01

    Thorium has gained substantial attention as a potential energy source that could rival and eventually replace fossil fuels as humanity's primary energy source. This could not have come at a more opportune time as concerns about global climate change from CO 2 emissions and the approaching spectre of finite fossil fuel resources create serious challenges for the continuation of our advanced industrial societies, which are reliant on readily available and affordable energy. Thorium also potentially represents the catalyst with which the nuclear industry could reinvent itself and finally gain widespread public acceptance. There are many opinions on how to utilize thorium as a fuel, but the question of what constitutes an 'ideal' pathway has mostly been under-emphasized. Many specific characteristics of the thorium fuel cycle can differ significantly depending on the conditions and methodologies of utilization; characteristics such as safety, efficiency, waste profile and volume, and fissile protection can vary greatly according to reactor design and utilization philosophy. With thorium, we have been given an opportunity to start over, a blank slate. Therefore, in imagining the 'Thorium Economy' to come, it behoves the scientific and engineering communities to consider the most 'elegant' solution physically possible-what constitutes the 'ideal' and is it possible to reconcile it with what is both economically and technically practical? The characteristics desired of an 'ideal' nuclear reactor, in the areas of safety, efficiency, economy, and sustainability, and the 5 key design choices that could enable such a reactor will be discussed. This will be followed by an overview of the Liquid Fluoride Thorium Reactor, a 2-fluid Molten Salt Reactor currently under development by Flibe Energy in the United States. LFTR is a direct descendant of the MSRE, which was developed at Oak Ridge National Laboratory (ORNL) in the

  8. Analysis on Radioactive Waste Transmutation in Light Water cooled Hyb-WT

    International Nuclear Information System (INIS)

    Hong, Seonghee; Kim, Myung Hyun

    2014-01-01

    A feasibility of realization is much higher in FFHR compared with pure fusion. A combination of plasma fusion source for neutrons with a subcritical reactor at the blanket side has much higher capability in transmutation of waste as well as reactor safety compared with fission reactor options. Fusion-Fission Hybrid Reactor (FFHR) uses various coolants depending on the purpose. It is important that coolant being used should be suitable to reactor purpose, because reactor performance and the design constraints may change depending on the coolant. There are basically two major groups of coolants for FFHR. One group of coolant does not contain Li. They are Na, Pb-Bi, H 2 O and D 2 O. The other group contains Li for tritium breeding. They are Li, LiPb, LiSN, FLIBE and FLiNaBe. Currently, the issue in FFHR is its implication for radioactive waste transmutation (FFHR for WT). Because radioactive wastes of spent nuclear fuel (SNF) are transmuted using fusion neutron source. Therefore a suitable coolant should be used for effective waste transmutation. . In FFHR for WT, LiPb coolant is being used mainly because of tritium production in Li and high neutron economic through reaction in Pb. However different coolants use such as Na, Pb-Bi are used in fast reactors and accelerator driven systems (ADS) having same purpose. In this study, radioactive waste transmutation performance of various coolants mentioned above will be compared and analyzed. Through this study, the coolants are judged primarily for their support to waste transmutation disregarding their limitation to reactor design and tritium breeding capability. First, performance of the light water coolant regarding radioactive waste transmutation was analyzed among various coolants mentioned above. In this paper, performance of radioactive waste transmutation can be known depending on different volume fractions (54.53, 60.27, 97.94vol.%) of the light water. Light water dose required fusion power lower than LiPb due to

  9. Systems integration of business systems. Business system ni kanshite

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, H [Nippon Steel Corp., Tokyo (Japan)

    1991-09-26

    System integration (SI) is defined as combining hardwares and softwares as the infrastructures with know-hows for their use comprehensively to respond to high-level needs of users. This paper reports the features of an SI being developed by a company (E Company), its concept on the systematized development methodology, and the conceptual models. With the primary policy placed on creative integration standing on customers positions, the SI concept comprises three parts of models for evaluations as seen from the customers, evaluations as seen from the E Company, and the development object systems to link both parts. The third part is further consisted of several lower hierarchies including a customer controlled system hierarchy (this enables customers to control the system through visualization, for example, and includes three logic models (multiple solution selection, optimal solution under restricted conditions, and numerical solution)). 2 refs., 9 figs.

  10. Fiscal system analysis - contractual systems

    International Nuclear Information System (INIS)

    Kaiser, M.J.

    2006-01-01

    Production sharing contracts are one of the most popular forms of contractual system used in petroleum agreements around the world, but the manner in which the fiscal terms and contract parameters impact system measures is complicated and not well understood. The purpose of this paper is to quantify the influence of private and market uncertainty in contractual fiscal systems. A meta-modelling approach is employed that couples the results of a simulation model with regression analysis to construct numerical functionals that quantify the fiscal regime. Relationships are derived that specify how the present value, rate of return, and take statistics vary as a function of the system parameters. The deepwater Girassol field development in Angola is taken as a case study. (author)

  11. System Entropy Measurement of Stochastic Partial Differential Systems

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2016-03-01

    Full Text Available System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs. To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3. Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.

  12. System specifications for the NDS EXFOR System

    Energy Technology Data Exchange (ETDEWEB)

    Attree, P M; Smith, P M

    1982-06-01

    EXFOR is the agreed exchange format for the magnetic-tape exchange of nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. The NDS EXFOR System is a computerized system for the storage and retrieval of EXFOR information compiled or received of the IAEA. This document is an internal manual for the system specifications of the NDS EXFOR System. It includes flow charts, system and program summaries, input and output specifications and file and record descriptions. The manual is updated from time to time when system modifications are made; the first version was issued in July 1979. (author)

  13. Performance of integrated systems of automated roller shade systems and daylight responsive dimming systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung-Chul; Choi, An-Seop; Jeong, Jae-Weon [Department of Architectural Engineering, Sejong University, Kunja-Dong, Kwangjin-Gu, Seoul (Korea, Republic of); Lee, Eleanor S. [Building Technologies Department, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2011-03-15

    Daylight responsive dimming systems have been used in few buildings to date because they require improvements to improve reliability. The key underlying factor contributing to poor performance is the variability of the ratio of the photosensor signal to daylight workplane illuminance in accordance with sun position, sky condition, and fenestration condition. Therefore, this paper describes the integrated systems between automated roller shade systems and daylight responsive dimming systems with an improved closed-loop proportional control algorithm, and the relative performance of the integrated systems and single systems. The concept of the improved closed-loop proportional control algorithm for the integrated systems is to predict the varying correlation of photosensor signal to daylight workplane illuminance according to roller shade height and sky conditions for improvement of the system accuracy. In this study, the performance of the integrated systems with two improved closed-loop proportional control algorithms was compared with that of the current (modified) closed-loop proportional control algorithm. In the results, the average maintenance percentage and the average discrepancies of the target illuminance, as well as the average time under 90% of target illuminance for the integrated systems significantly improved in comparison with the current closed-loop proportional control algorithm for daylight responsive dimming systems as a single system. (author)

  14. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  15. Cobit system in the audit processes of the systems of computer systems

    Directory of Open Access Journals (Sweden)

    Julio Jhovany Santacruz Espinoza

    2017-12-01

    Full Text Available The present research work has been carried out to show the benefits of the use of the COBIT system in the auditing processes of the computer systems, the problem is related to: How does it affect the process of audits in the institutions, use of the COBIT system? The main objective is to identify the incidence of the use of the COBIT system in the auditing process used by computer systems within both public and private organizations; In order to achieve our stated objectives of the research will be developed first with the conceptualization of key terms for an easy understanding of the subject, as a conclusion: we can say the COBIT system allows to identify the methodology by using information from the IT departments, to determine the resources of the (IT Information Technology, specified in the COBIT system, such as files, programs, computer networks, including personnel that use or manipulate the information, with the purpose of providing information that the organization or company requires to achieve its objectives.

  16. Chaos synchronization between Chen system and Genesio system

    International Nuclear Information System (INIS)

    Wu Xianyong; Guan Zhihong; Wu Zhengping; Li Tao

    2007-01-01

    This Letter presents two synchronization schemes between two different chaotic systems. Active control synchronization and adaptive synchronization between Chen system and Genesio system are studied, different controllers are designed to synchronize the drive and response systems, active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes

  17. Embedded systems design with special arithmetic and number systems

    CERN Document Server

    Sousa, Leonel; Chang, Chip-Hong

    2017-01-01

    This book introduces readers to alternative approaches to designing efficient embedded systems using unconventional number systems. The authors describe various systems that can be used for designing efficient embedded and application-specific processors, such as Residue Number System, Logarithmic Number System, Redundant Binary Number System Double-Base Number System, Decimal Floating Point Number System and Continuous Valued Number System. Readers will learn the strategies and trade-offs of using unconventional number systems in application-specific processors and be able to apply and design appropriate arithmetic operations from these number systems to boost the performance of digital systems. • Serves as a single-source reference to designing embedded systems with unconventional number systems • Covers theory as well as implementation on application-specific processors • Explains mathematical concepts in a manner accessible to readers with diverse backgrounds.

  18. Expert systems in process control systems

    International Nuclear Information System (INIS)

    Wittig, T.

    1987-01-01

    To illustrate where the fundamental difference between expert systems in classical diagnosis and in industrial control lie, the work of process control instrumentation is used as an example for the job of expert systems. Starting from the general process of problem-solving, two classes of expert systems can be defined accordingly. (orig.) [de

  19. Amotosalen: Allogeneic Cellular Immunotherapies system, INTERCEPT Plasma System, INTERCEPT Platelet System, S 59.

    Science.gov (United States)

    2003-01-01

    Adis CommentsCerus Corporation is developing a variety of pathogen-inactivation systems, based on its Helinx technology. Three of the systems include amotosalen [S 59] as the inactivation compound. Amotosalen is a light-activated, DNA-, RNA-crosslinking psoralen compound, which is used to neutralise pathogens. The systems that utilise amotosalen are called the INTERCEPT Platelet System, the INTERCEPT Plasma System and the Allogeneic Cellular Immunotherapies (ACIT) system. The INTERCEPT Platelet System and INTERCEPT Plasma System are two of the systems that make up Cerus' INTERCEPT Blood Systems. The other system is the INTERCEPT Red Blood Cell System, which contains S 303 as the inactivation compound rather than amotosalen. Cerus' Helinx technology is able to prevent replication of DNA or RNA that is present in pathogens but not in the blood components being treated (e.g. platelets and plasma). When added to the blood components, the inactivation agent (in this case amotosalen) crosses the membrane or cell wall of the pathogen. When activated by light, amotosalen binds to the nucleic acid of the pathogen and prevents replication. This process prevents infection. INTERCEPT Platelet System: Cerus developed its INTERCEPT Platelet System, in collaboration with Baxter Healthcare, for use in blood centres. Platelets are an essential component of the coagulation process and may be required by patients undergoing surgery, cancer chemotherapy, transplantation or with bleeding disorders. The system is made up of an illuminator device, a compound absorption device and a processing kit containing amotosalen. In October 2002, the two companies announced that CE Mark approval had been received for the illuminator device for the INTERCEPT trade mark Blood System. Application of this technology to platelets is the first to be approved. As it is a new technology, the system is currently undergoing process validation in accordance with European Blood Bank GMP requirements. This

  20. Manager's assistant systems for space system planning

    Science.gov (United States)

    Bewley, William L.; Burnard, Robert; Edwards, Gary E.; Shoop, James

    1992-01-01

    This paper describes a class of knowledge-based 'assistant' systems for space system planning. Derived from technology produced for the DARPA/USAF Pilot's Associate program, these assistant systems help the human planner by doing the bookkeeping to maintain plan data and executing the procedures and heuristics currently used by the human planner to define, assess, diagnose, and revise plans. Intelligent systems for Space Station Freedom assembly sequence planning and Advanced Launch System modeling will be presented as examples. Ongoing NASA-funded work on a framework supporting the development of such tools will also be described.

  1. Systems of Systems: Scaling Up the Development Process

    National Research Council Canada - National Science Library

    Humphrey, Watts

    2006-01-01

    ... of massive systems into system-of-systems structures Section 3 points out how large-scale systems development efforts have typically failed because of project-management and not technical problems...

  2. Digital processing data communication systems (bus systems)

    International Nuclear Information System (INIS)

    Fleck, K.

    1980-01-01

    After an introduction to the technology of digital processing data communication systems there are the following chapters: digital communication of processing data in automation technology, the technology of biserial communication, the implementaiton of a bus system, the data transmission of the TDC-2000 system of Honeywell's and the process bus CS 275 in the automation system TELEPERM M of Siemens AG. (WB) [de

  3. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  4. Linear Actuator System for the NASA Docking System

    Science.gov (United States)

    Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  5. Methods, apparatus, and systems for monitoring transmission systems

    Science.gov (United States)

    Polk, Robert E [Idaho Falls, ID; Svoboda, John M [Idaho Falls, ID; West, Phillip B [Idaho Falls, ID; Heath, Gail L [Iona, ID; Scott, Clark L [Idaho Falls, ID

    2010-08-31

    A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.

  6. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  7. Systems

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Papers in this session describe the concept of mined geologic disposal system and methods for ensuring that the system, when developed, will meet all technical requirements. Also presented in the session are analyses of system parameters, such as cost and nuclear criticality potential, as well as a technical analysis of a requirement that the system permit retrieval of the waste for some period of time. The final paper discusses studies under way to investigate technical alternatives or complements to the mined geologic disposal system. Titles of the presented papers are: (1) Waste Isolation System; (2) Waste Isolation Economics; (3) BWIP Technical Baseline; (4) Criticality Considerations in Geologic Disposal of High-Level Waste; (5) Retrieving Nuclear Wastes from Repository; (6) NWTS Programs for the Evaluation of Technical Alternatives or Complements to Mined Geologic Repositories - Purpose and Objectives

  8. systems

    Directory of Open Access Journals (Sweden)

    Alexander Leonessa

    2000-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  9. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  10. SSDL personel dosimetry system: migration from a client - server system into a web-based system

    International Nuclear Information System (INIS)

    Maizura Ibrahim; Rosnah Shariff; Ahmad Bazlie Abdul Kadir; John Konsoh Sangau; Mohd Amin Sharifuldin Salleh; Taiman Kadni; Noriah Mod Ali

    2007-01-01

    Personnel Dosimetry System has been used by the Secondary Standard Dosimetry Laboratory (SSDL), Nuclear Malaysia since ten years ago. The system is a computerized database system with a client-server concept. This system has been used by Film Badge Laboratory, SSDL to record details of clients, calculation of Film Badge dosage, management of radiation workers data's, generating of dosage report, retrieval of statistical reports regarding film badge usage for the purpose of reporting to monitoring bodies such as Atomic Energy Licensing Board (AELB), Ministry of Health and others. But, due to technical problems that frequently occurs, the system is going to be replaced by a newly developed web- based system called e-SSDL. This paper describe the problems that regularly occurs in the previous system, explains how the process of replacing the client-server system with a web-based system is done and the differences between the previous and current system. This paper will also present details architecture of the new system and the new process introduced in processing film badges. (Author)

  11. Real-Time Operating Systems for Multicore Embedded Systems

    OpenAIRE

    Tomiyama, Hiroyuki; Honda, Shinya; Takada, Hiroaki

    2008-01-01

    Multicore systems-on-chip have become popular inthe design of embedded systems in order to simultaneously achieve high performance and low power consumption. On the software side, real-time operating systems are necessary in orderto handle growing complexity of embedded software. This paper describes requirements, design principles and implementation techniques for real-time operating systems to be used inasymmetric multicore systems.

  12. EXPERT SYSTEMS

    OpenAIRE

    Georgiana Marin; Mihai Catalin Andrei

    2011-01-01

    In recent decades IT and computer systems have evolved rapidly in economic informatics field. The goal is to create user friendly information systems that respond promptly and accurately to requests. Informatics systems evolved into decision assisted systems, and such systems are converted, based on gained experience, in expert systems for creative problem solving that an organization is facing. Expert systems are aimed at rebuilding human reasoning on the expertise obtained from experts, sto...

  13. A master system for power system fault phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myung Ho; Jang, Sang Ho; Hong, Joon Hee; Min, Wan Ki; Yoo, Chang Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    This report includes as follows - Real time digital simulator - Remote measuring, analyzing and reproducing system of power system fault data -Power system reduction method program using EMTP -Test system for protection device. (author). 22 refs., 38 figs.

  14. T-systems and Y-systems in integrable systems

    International Nuclear Information System (INIS)

    Kuniba, Atsuo; Nakanishi, Tomoki; Suzuki, Junji

    2011-01-01

    T- and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analog of L-operators in KP hierarchy, Stokes phenomena in 1D Schroedinger problem, AdS/CFT correspondence, Toda field equations on discrete spacetime, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ansaetze, quantum transfer matrix method and so forth. This review is a collection of short reviews on these topics which can be read more or less independently. (topical review)

  15. T-systems and Y-systems in integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuniba, Atsuo [Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902 (Japan); Nakanishi, Tomoki [Graduate School of Mathematics, Nagoya University, Nagoya 464-8604 (Japan); Suzuki, Junji, E-mail: atsuo@gokutan.c.u-tokyo.ac.jp [Department of Physics, Faculty of Science, Shizuoka University, Ohya 836 (Japan)

    2011-03-11

    T- and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analog of L-operators in KP hierarchy, Stokes phenomena in 1D Schroedinger problem, AdS/CFT correspondence, Toda field equations on discrete spacetime, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ansaetze, quantum transfer matrix method and so forth. This review is a collection of short reviews on these topics which can be read more or less independently. (topical review)

  16. Sail GTS ground system analysis: Avionics system engineering

    Science.gov (United States)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  17. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  18. Cooling system for the IFMIF-EVEDA radiofrequency system

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2012-01-01

    The IFMIF-EVEDA project consists on an accelerator prototype that will be installed at Rokkasho (Japan). Through CIEMAT, that is responsible of the development of many systems and components. Empresarios Agrupados get the responsibility of the detailed design of the cooling system for the radiofrequency system (RF system) that must feed the accelerator. the RF water cooling systems is the water primary circuit that provides the required water flow (with a certain temperature, pressure and water quality) and also dissipates the necessary thermal power of all the radiofrequency system equipment. (Author) 4 refs.

  19. Tritium system test assembly control system cost estimate

    International Nuclear Information System (INIS)

    Stutz, R.A.

    1979-01-01

    The principal objectives of the Tritium Systems Test Assembly (TSTA), which includes the development, demonstration and interfacing of technologies related to the deuterium--tritium fuel cycle for fusion reactor systems, are concisely stated. The various integrated subsystems comprising TSTA and their functions are discussed. Each of the four major subdivisions of TSTA, including the main process system, the environmental and safety systems, supporting systems and the physical plant are briefly discussed. An overview of the Master Data Acquisition and Control System, which will control all functional operation of TSTA, is provided

  20. Site systems engineering: Systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  1. System safety education focused on system management

    Science.gov (United States)

    Grose, V. L.

    1971-01-01

    System safety is defined and characteristics of the system are outlined. Some of the principle characteristics include role of humans in hazard analysis, clear language for input and output, system interdependence, self containment, and parallel analysis of elements.

  2. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  3. Integrated Systems Health Management for Intelligent Systems

    Science.gov (United States)

    Figueroa, Fernando; Melcher, Kevin

    2011-01-01

    The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this paper, concepts, procedures, and approaches are presented as a foundation for implementing an intelligent systems ]relevant ISHM capability. The capability stresses integration of DIaK from all elements of a system. Both ground-based (remote) and on-board ISHM capabilities are compared and contrasted. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.

  4. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  5. Instrument air system - Aging impact on system availability

    International Nuclear Information System (INIS)

    Villaran, M.; Subudhi, M.

    1989-01-01

    As part of ongoing efforts to understand and manage the effects of aging in nuclear power plants, an aging assessment was performed for the Instrument Air (IA) system, a system that has been the subject of much scrutiny in recent years. Despite its non-safety classification, instrument air has been a factor in a number of potentially serious events. This report presents the results of the assessment and discusses the impact of instrument air system aging on system availability and plant safety. This work was performed for the US Nuclear Regulatory Commission (NRC) as part of the Nuclear Plant Aging Research (NPAR) program. To perform the complex task of analyzing an entire system, the Aging and Life Extension Assessment Program (ALEAP) System Level Plan was developed by Brookhaven National Laboratory and applied successfully in previous system aging studies. The work presented herein was performed using two parallel work paths, as described in the ALEAP plant. One path used deterministic techniques to assess the impact of aging on compressed air system performance, while the second path used probabilistic methods. Results from both paths then were used to characterize aging in the instrument air system. Some conclusions from this work are: compressors, air system valves, and air dryers were found to make up the majority of failures; the effectiveness and quantity of preventive maintenance devoted to a component significantly affected the amount of failures experienced; review of compressed air system designs and studies using a PRA-based system model revealed that the redundancy of key components (compressors, dryers, IA/SA crossconnect valve) was an important factor in system availability; total loss of air events are uncommon

  6. Airport Information Retrieval System (AIRS) System Design

    Science.gov (United States)

    1974-07-01

    This report presents the system design for a prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The design was directed toward the immediate automation of airport data for use in traffic load predicti...

  7. System description of the Basic MRS System for the FY 1990 Systems Integration Program studies

    International Nuclear Information System (INIS)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1991-07-01

    This document provides both functional and physical descriptions of a conceptual high-level waste management system defined as a Basic MRS System. Its purpose is to provide a basis for required system computer modeling and system studies initiated in FY 1990 under the Systems Integration Program of the Office of Civilian Radioactive Waste Management Office (OCRWM). Two specific systems studies initiated in FY 1990, the Reference System Performance Evaluation and the Aggregate Receipt Rate Study, utilize the information in this document. The Basic MRS System is the current OCRWM reference high-level radioactive wastes repository system concept. It is designed to accept 3000 MTU per year of spent fuel and 400 equivalent MTU per year of high-level wastes. The Basic MRS System includes a storage-only MRS that provides for a limited amount of commercial spent fuel storage capacity prior to acceptance by the geologic repository for disposal. This document contains both functional descriptions of the processes in the waste management system and physical descriptions of the equipment and facilities necessary for performance of those processes. The basic MRS system contains all system components, from the waste storage facilities of the waste generators to the underground facilities for final disposal of the wastes. The major facilities in the system are the waste generator waste storage facilities, an MRS facility that provides interim storage wastes accepted from the waste generators, a repository facility that packages the wastes and then emplaces them in the geologic repository, and the transportation equipment and facilities for transporting the waste between these major facilities

  8. Systems Biology and Health Systems Complexity in;

    NARCIS (Netherlands)

    Donald Combs, C.; Barham, S.R.; Sloot, P.M.A.

    2016-01-01

    Systems biology addresses interactions in biological systems at different scales of biological organization, from the molecular to the cellular, organ, organism, societal, and ecosystem levels. This chapter expands on the concept of systems biology, explores its implications for individual patients

  9. Triggering system innovation in agricultural innovation systems

    NARCIS (Netherlands)

    Turner, James A.; Williams, Tracy; Nicholas, Graeme; Foote, Jeff; Rijswijk, Kelly; Barnard, Tim; Beechener, Sam; Horita, Akiko

    2017-01-01

    This article describes a process for stimulating engagement among change agents to develop a shared understanding of systemic problems in the agricultural innovation system (AIS), challenge prevalent institutional logics and identify actions they might undertake to stimulate system innovation.

  10. Port contact systems for irreversible thermodynamical systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    In this paper we propose a definition of control contact systems, generalizing input-output Hamiltonian systems, to cope with models arising from irreversible Thermodynamics. We exhibit a particular subclass of these systems, called conservative, that leaves invariant some Legendre submanifold (the

  11. Lectures on algebraic system theory: Linear systems over rings

    Science.gov (United States)

    Kamen, E. W.

    1978-01-01

    The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.

  12. IDAPS (Image Data Automated Processing System) System Description

    Science.gov (United States)

    1988-06-24

    This document describes the physical configuration and components used in the image processing system referred to as IDAPS (Image Data Automated ... Processing System). This system was developed by the Environmental Research Institute of Michigan (ERIM) for Eglin Air Force Base. The system is designed

  13. A semantic security framework for systems of systems

    NARCIS (Netherlands)

    Trivellato, Daniel; Zannone, Nicola; Glaundrup, Maurice; Skowronek, Jacek; Etalle, Sandro

    2013-01-01

    Systems of systems (SoS) are dynamic coalitions of distributed, autonomous and heterogeneous systems that collaborate to achieve a common goal. While offering several advantages in terms of scalability and flexibility, the SoS paradigm has a strong impact on systems interoperability and on the

  14. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  15. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2006-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  16. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2002-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  17. Modeling learning technology systems as business systems

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Symeon; Papaspyrou, Nikolaos

    2003-01-01

    The design of Learning Technology Systems, and the Software Systems that support them, is largely conducted on an intuitive, ad hoc basis, thus resulting in inefficient systems that defectively support the learning process. There is now justifiable, increasing effort in formalizing the engineering

  18. Database management system for large container inspection system

    International Nuclear Information System (INIS)

    Gao Wenhuan; Li Zheng; Kang Kejun; Song Binshan; Liu Fang

    1998-01-01

    Large Container Inspection System (LCIS) based on radiation imaging technology is a powerful tool for the Customs to check the contents inside a large container without opening it. The author has discussed a database application system, as a part of Signal and Image System (SIS), for the LCIS. The basic requirements analysis was done first. Then the selections of computer hardware, operating system, and database management system were made according to the technology and market products circumstance. Based on the above considerations, a database application system with central management and distributed operation features has been implemented

  19. Verification and Validation Issues in Systems of Systems

    Directory of Open Access Journals (Sweden)

    Eric Honour

    2013-11-01

    Full Text Available The cutting edge in systems development today is in the area of "systems of systems" (SoS large networks of inter-related systems that are developed and managed separately, but that also perform collective activities. Such large systems typically involve constituent systems operating with different life cycles, often with uncoordinated evolution. The result is an ever-changing SoS in which adaptation and evolution replace the older engineering paradigm of "development". This short paper presents key thoughts about verification and validation in this environment. Classic verification and validation methods rely on having (a a basis of proof, in requirements and in operational scenarios, and (b a known system configuration to be proven. However, with constant SoS evolution, management of both requirements and system configurations are problematic. Often, it is impossible to maintain a valid set of requirements for the SoS due to the ongoing changes in the constituent systems. Frequently, it is even difficult to maintain a vision of the SoS operational use as users find new ways to adapt the SoS. These features of the SoS result in significant challenges for system proof. In addition to discussing the issues, the paper also indicates some of the solutions that are currently used to prove the SoS.

  20. Systems Theory and Systems Approach to Leadership

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Berim Ramosaj

    2014-06-01

    Full Text Available Systems theory is product of the efforts of many researchers to create an intermediate field of coexistence of all sciences. If not for anything else, because of the magnitude that the use of systemic thinking and systemic approach has taken, it has become undisputed among the theories. Systems theory not only provides a glossary of terms with which researchers from different fields can be understood, but provides a framework for the presentation and interpretation of phenomena and realities. This paper addresses a systematic approach to leadership, as an attempt to dredge leadership and systems theory literature to find the meeting point. Systems approach is not an approach to leadership in terms of a manner of leader’s work, but it’s the leader's determination to factorize in his leadership the external environment and relationships with and among elements. Leader without followers is unable to exercise his leadership and to ensure their conviction he should provide a system, a structure, a purpose, despite the alternative chaos. Systems approach clarifies the thought on the complexity and dynamism of the environment and provides a framework for building ideas. If the general system theory is the skeleton of science (Boulding: 1956, this article aims to replenish it with leadership muscles by prominent authors who have written on systems theory and leadership, as well as through original ideas. In this work analytical methods were used (by analyzing approaches individually as well as synthetic methods (by assaying individual approaches in context of entirety. The work is a critical review of literature as well as a deductive analysis mingled with models proposed by authors through inductive analysis. Meta-analysis has been used to dissect the interaction and interdependence between leadership approaches.

  1. Peripheral Nervous System Manifestations in Systemic Autoimmune Diseases

    OpenAIRE

    COJOCARU, Inimioara Mihaela; COJOCARU, Manole; SILOSI, Isabela; VRABIE, Camelia Doina

    2014-01-01

    The peripheral nervous system refers to parts of the nervous system outside the brain and spinal cord. Systemic autoimmune diseases can affect both the central and peripheral nervous systems in a myriad of ways and through a heterogeneous number of mechanisms leading to many different clinical manifestations. As a result, neurological complications of these disorders can result in significant morbidity and mortality. The most common complication of peripheral nervous system (PNS) involvement ...

  2. Multibody Systems

    DEFF Research Database (Denmark)

    Wagner, Falko Jens

    1999-01-01

    Multibody Systems is one area, in which methods for solving DAEs are of special interst. This chapter is about multibody systems, why they result in DAE systems and what kind of problems that can arise when dealing with multibody systems and formulating their corresponding DAE system....

  3. Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering

    Science.gov (United States)

    Watson, Michael D.

    2018-01-01

    Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.

  4. Applying System of Systems Engineering(SoSE) to VIVO?

    OpenAIRE

    Wang, Jing

    2015-01-01

    System of systems (SoS) refers to a set of operational and managerial independent systems interacting with each other to provide capabilities which cannot be accomplished by any single system. SoS has its own characteristics and challenges, such as emergent behavior and evolutionary development. This presentation will: Introduce the concepts and characteristics of system of systems (SoS) and system thinking practice. discuss SoS challenges using SoS case studies such as Global Earth Observati...

  5. Systems integration.

    Science.gov (United States)

    Siemieniuch, C E; Sinclair, M A

    2006-01-01

    The paper presents a view of systems integration, from an ergonomics/human factors perspective, emphasising the process of systems integration as is carried out by humans. The first section discusses some of the fundamental issues in systems integration, such as the significance of systems boundaries, systems lifecycle and systems entropy, issues arising from complexity, the implications of systems immortality, and so on. The next section outlines various generic processes for executing systems integration, to act as guides for practitioners. These address both the design of the system to be integrated and the preparation of the wider system in which the integration will occur. Then the next section outlines some of the human-specific issues that would need to be addressed in such processes; for example, indeterminacy and incompleteness, the prediction of human reliability, workload issues, extended situation awareness, and knowledge lifecycle management. For all of these, suggestions and further readings are proposed. Finally, the conclusions section reiterates in condensed form the major issues arising from the above.

  6. Formal heterogeneous system modeling with SystemC

    DEFF Research Database (Denmark)

    Niaki, Seyed Hosein Attarzadeh; Jakobsen, Mikkel Koefoed; Sulonen, Tero

    2012-01-01

    Electronic System Level (ESL) design of embedded systems proposes raising the abstraction level of the design entry to cope with the increasing complexity of such systems. To exploit the benefits of ESL, design languages should allow specification of models which are a) heterogeneous, to describe...

  7. System description of the Repository-Only System for the FY 1990 systems integration program studies

    International Nuclear Information System (INIS)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1991-07-01

    This document provides both functional and physical descriptions of a conceptual high-level waste management system defined as a Repository-Only System. Its purpose is to provide a basis for required system computer modeling and system studies initiated in FY 1990 under the Systems Integration Program of the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The Repository-Only System is designed to accept 3000 MTU per year of spent fuel and 400 equivalent MTU per year of high-level wastes disposal in the geologic repository. This document contains both functional descriptions of the processes in the waste management system and physical descriptions of the equipment and facilities necessary for performance of those processes. These descriptions contain the level of detail needed for the projected systems analysis studies. The Repository-Only System contains all system components, from the waste storage facilities of the waste generators to the underground facilities for final disposal of the wastes. The major facilities in the system are the waste generator waste storage facilities, a repository facility that packages the wastes and than emplaces them in the geologic repository, and the transportation equipment and facilities for transporting the wastes between these major facilities. 18 refs., 39 figs

  8. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  9. JOSHUA system

    International Nuclear Information System (INIS)

    Honeck, H.C.

    1975-04-01

    A major computational system called JOSHUA has been under development at the Savannah River Laboratory since 1968. The JOSHUA System has two major parts: the Operating System and the Application System. The Operating System has been in production use since 1970 and provides data management, terminal, and job execution facilities. The Application System uses these facilities in solving problems in reactor physics and engineering. Features of the Application System are the two-dimensional lattice physics and three-dimensional transient reactor physics capabilities, which have been in use since 1971 and 1974, respectively. The capabilities of the JOSHUA System are summarized, and statistics on size, use, and development effort are provided. (U.S.)

  10. Integrating system safety into the basic systems engineering process

    Science.gov (United States)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  11. A behavioral framework for compositionality: linear systems, discrete event systems and hybrid systems

    NARCIS (Netherlands)

    Anak Agung Julius, A.A.J.; van der Schaft, Arjan

    2004-01-01

    In this paper we formulate a general framework based on the behavioral approach to dynamical systems, in which various issues regarding interconnection of systems can be addressed. The main part of the framework is that interconnections or compositions of systems can be modelled with interconnection

  12. The Creation of Differential Correction Systems and the Systems of Global Navigation Satellite System Monitoring

    National Research Council Canada - National Science Library

    Polishchuk, G. M; Kozlov, V. I; Urlichich, Y. M; Dvorkin, V. V; Gvozdev, V. V

    2002-01-01

    ... for the Russian Federation and a system of global navigation satellite system monitoring. These projects are some of the basic ones in the Federal program "Global Navigation System," aimed at maintenance and development of the GLONASS system...

  13. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  14. System Analysis and Risk Assessment (SARA) system

    International Nuclear Information System (INIS)

    Krantz, E.A.; Russell, K.D.; Stewart, H.D.; Van Siclen, V.S.

    1986-01-01

    Utilization of Probabilistic Risk Assessment (PRA) related information in the day-to-day operation of plant systems has, in the past, been impracticable due to the size of the computers needed to run PRA codes. This paper discusses a microcomputer-based database system which can greatly enhance the capability of operators or regulators to incorporate PRA methodologies into their routine decision making. This system is called the System Analysis and Risk Assessment (SARA) system. SARA was developed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory to facilitate the study of frequency and consequence analyses of accident sequences from a large number of light water reactors (LWRs) in this country. This information is being amassed by several studies sponsored by the United States Nuclear Regulatory Commission (USNRC). To meet the need of portability and accessibility, and to perform the variety of calculations necessary, it was felt that a microcomputer-based system would be most suitable

  15. Dynamic Systems Modeling in Educational System Design & Policy

    Science.gov (United States)

    Groff, Jennifer Sterling

    2013-01-01

    Over the last several hundred years, local and national educational systems have evolved from relatively simple systems to incredibly complex, interdependent, policy-laden structures, to which many question their value, effectiveness, and direction they are headed. System Dynamics is a field of analysis used to guide policy and system design in…

  16. Optimization of large-scale heterogeneous system-of-systems models.

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Lee, Herbert K. H. (University of California, Santa Cruz, Santa Cruz, CA); Hart, William Eugene; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Woodruff, David L. (University of California, Davis, Davis, CA)

    2012-01-01

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  17. System Design of the SWRL Financial System.

    Science.gov (United States)

    Ikeda, Masumi

    To produce various management and accounting reports in order to maintain control of SWRL (Southwest Regional Laboratory) operational and financial activities, a computer-based SWRL financial system was developed. The system design is outlined, and various types of system inputs described. The kinds of management and accounting reports generated…

  18. Test System Impact on System Availability

    DEFF Research Database (Denmark)

    Pau, L. F.

    1987-01-01

    The specifications are presented for an imperfect automatic test system (ATS) (test frequency distribution, reliability, false alarm rate, nondetection rate) in order to account for the availability, readiness, mean time between unscheduled repairs (MTBUR), reliability, and maintenance of the sys......The specifications are presented for an imperfect automatic test system (ATS) (test frequency distribution, reliability, false alarm rate, nondetection rate) in order to account for the availability, readiness, mean time between unscheduled repairs (MTBUR), reliability, and maintenance...... of the system subject to monitoring and test. A time-dependent Markov model is presented, and applied in three cases, with examples of numerical results provided for preventive maintenance decisions, design of an automatic test system, buffer testing in computers, and data communications....

  19. Cognitive Systems

    DEFF Research Database (Denmark)

    The tutorial will discuss the definition of cognitive systems as the possibilities to extend the current systems engineering paradigm in order to perceive, learn, reason and interact robustly in open-ended changing environments. I will also address cognitive systems in a historical perspective...... to be modeled within a limited set of predefined specifications. There will inevitably be a need for robust decisions and behaviors in novel situations that include handling of conflicts and ambiguities based on the capability and knowledge of the artificial cognitive system. Further, there is a need...... in cognitive systems include e.g. personalized information systems, sensor network systems, social dynamics system and Web2.0, and cognitive components analysis. I will use example from our own research and link to other research activities....

  20. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  1. MARBLE: A system for executing expert systems in parallel

    Science.gov (United States)

    Myers, Leonard; Johnson, Coe; Johnson, Dean

    1990-01-01

    This paper details the MARBLE 2.0 system which provides a parallel environment for cooperating expert systems. The work has been done in conjunction with the development of an intelligent computer-aided design system, ICADS, by the CAD Research Unit of the Design Institute at California Polytechnic State University. MARBLE (Multiple Accessed Rete Blackboard Linked Experts) is a system of C Language Production Systems (CLIPS) expert system tool. A copied blackboard is used for communication between the shells to establish an architecture which supports cooperating expert systems that execute in parallel. The design of MARBLE is simple, but it provides support for a rich variety of configurations, while making it relatively easy to demonstrate the correctness of its parallel execution features. In its most elementary configuration, individual CLIPS expert systems execute on their own processors and communicate with each other through a modified blackboard. Control of the system as a whole, and specifically of writing to the blackboard is provided by one of the CLIPS expert systems, an expert control system.

  2. System dynamics

    International Nuclear Information System (INIS)

    Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan

    1999-02-01

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  3. Thermal systems; Systemes thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [Valenciennes Univ. et du Hainaut Cambresis, LME, 59 (France); Lecoeuche, S. [Ecole des Mines de Douai, Dept. GIP, 59 - Douai (France)]|[Lille Univ. des Sciences et Technologies, 59 - Villeneuve d' Ascq (France); Ahmad, M.; Sallee, H.; Quenard, D. [CSTB, 38 - Saint Martin d' Heres (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Gascoin, N.; Gillard, P.; Bernard, S. [Laboratoire d' Energetique, Explosion, Structure, 18 - Bourges (France); Gascoin, N.; Toure, Y. [Laboratoire Vision et Robotique, 18 - Bourges (France); Daniau, E.; Bouchez, M. [MBDA, 18 - Bourges (France); Dobrovicescu, A.; Stanciu, D. [Bucarest Univ. Polytechnique, Faculte de Genie Mecanique (Romania); Stoian, M. [Reims Univ. Champagne Ardenne, Faculte des Sciences, UTAP/LTM, 51 (France); Bruch, A.; Fourmigue, J.F.; Colasson, S. [CEA Grenoble, Lab. Greth, 38 (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Voicu, I.; Mare, T.; Miriel, J. [Institut National des Sciences Appliquees (INSA), LGCGM, IUT, 35 - Rennes (France); Galanis, N. [Sherbrooke Univ., Genie Mecanique, QC (Canada); Nemer, M.; Clodic, D. [Ecole des Mines de Paris, Centre Energetique et Procedes, 75 (France); Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, Lab. de Thermocinetiquede Nantes, UMR-CNRS 6607, 44 (France)

    2005-07-01

    This session about thermal systems gathers 26 articles dealing with: neural model of a compact heat exchanger; experimental study and numerical simulation of the thermal behaviour of test-cells with walls made of a combination of phase change materials and super-insulating materials; hydraulic and thermal modeling of a supercritical fluid with pyrolysis inside a heated channel: pre-dimensioning of an experimental study; energy analysis of the heat recovery devices of a cryogenic system; numerical simulation of the thermo-hydraulic behaviour of a supercritical CO{sub 2} flow inside a vertical tube; mixed convection inside dual-tube exchangers; development of a nodal approach with homogenization for the simulation of the brazing cycle of a heat exchanger; chaotic exchanger for the cooling of low temperature fuel cells; structural optimization of the internal fins of a cylindrical generator; a new experimental approach for the study of the local boiling inside the channels of exchangers with plates and fins; experimental study of the flow regimes of boiling hydrocarbons on a bundle of staggered tubes; energy study of heat recovery exchangers used in Claude-type refrigerating systems; general model of Carnot engine submitted to various operating constraints; the free pistons Stirling cogeneration system; natural gas supplied cogeneration system with polymer membrane fuel cell; influence of the CRN coating on the heat flux inside the tool during the wood unrolling process; transport and mixture of a passive scalar injected inside the wake of a Ahmed body; control of a laser welding-brazing process by infrared thermography; 2D self-adaptative method for contours detection: application to the images of an aniso-thermal jet; exergy and exergy-economical study of an 'Ericsson' engine-based micro-cogeneration system; simplified air-conditioning of telephone switching equipments; parametric study of the 'low-energy' individual dwelling; brief synthesis of

  4. Embedded Systems

    Indian Academy of Sciences (India)

    Embedded system, micro-con- troller ... Embedded systems differ from general purpose computers in many ... Low cost: As embedded systems are extensively used in con- .... operating systems for the desktop computers where scheduling.

  5. Understanding Patterns for System-of-Systems Integration

    DEFF Research Database (Denmark)

    Kazman, Rick; Nielsen, Claus Ballegård; Schmid, Klaus

    Creating a successful system of systems—one that meets the needs of its stakeholders today and can evolve and scale to sustain those stakeholders into the future—is a very complex engineering challenge. In a system of systems (SoS), one of the biggest challenges is in achieving cooperation and in...

  6. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  7. Power system protection 2 systems and methods

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  8. Degradable Systems: A Survey of Multistate System Theory.

    Science.gov (United States)

    1982-08-01

    and Subtitle) S. TYPE OF REPORT & PERIOD COVERED C. O DEGRADABLE SYSTEMS: A SURVEY OF MULTISTATE TECHNICAL SYSTEM THEORY 6. PERFORMING ORG. REPORT...THIS PAGE(R7,en Date £nt.,.d) AEoS-T- 8- 9 2 0 Degradable Systems: A Survey of Multistate System Theory by 1 2Emad El-Neweihi and Frank Proschan

  9. Holographic representation of space-variant systems: system theory.

    Science.gov (United States)

    Marks Ii, R J; Krile, T F

    1976-09-01

    System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.

  10. General Systems Theory and Instructional Systems Design.

    Science.gov (United States)

    Salisbury, David F.

    1990-01-01

    Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)

  11. Construction of test-bed system of voltage management system to ...

    African Journals Online (AJOL)

    Construction of test-bed system of voltage management system to apply physical power system. ... Journal of Fundamental and Applied Sciences ... system of voltage management system (VMS) in order to apply physical power system.

  12. Next generation railway system. ; Control system for JR Maglev. Jisedai tetsudo system. ; Rinia shinkansen no seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K [Central Japan Railway Company, Nagoya (Japan)

    1993-07-10

    Aiming at achieving a maglev Shinkansen that links Tokyo with Osaka at a speed of 500 km/h, an experimental maglev line is being constructed in Yamanashi Prefecture. This paper explains a train control system as the main subject. The system mounts superconductive magnets directly on bogies to propel a train using actions of moving magnet fields generated from propulsion coils paved on ground. Because of its mechanism to levitate and guide the train using induction coils superposed on the propulsion coils, no special control device is required for the levitation and guidance. This is a difference from a normal conduction magnet levitation system. Its speed control also differs from the conventional railway systems. It uses a ground primary control system that controls supply currents from substations on the ground, including braking control. One substation controls one train only. Automatic control is made on all controls related to travelling, including a control from train movement start to stops at predetermined positions, scheduled-time operation control, and jerk control. The construction of the experimental line is under steady progress. 5 figs.

  13. 78 FR 18252 - Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System...

    Science.gov (United States)

    2013-03-26

    ...-AM78 Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System... applicable sections. The Federal Prevailing Rate Advisory Committee, the national labor- management committee... proposing to amend 5 CFR part 532 as follows: PART 532--PREVAILING RATE SYSTEMS 0 1. The authority citation...

  14. Systems engineering simplified

    CERN Document Server

    Cloutier, Robert; Bone, Mary Alice

    2015-01-01

    IntroductionOverviewDiscussion of Common TerminologyThe Case for Systems EngineeringA Brief History of Systems EngineeringSystem ExamplesSummaryThe System Life CycleManaging System Development-The Vee ModelSystem ProductionSystem Utilization and SupportSystem Retirement and DisposalOther Systems Engineering Development ModelsSpiral ModelAgile Model for Systems EngineeringSystem of InterestAbstraction and DecompositionIntegrationDeveloping and Managing RequirementsCyclone Requiremen

  15. Expert Systems for auditing management information systems

    Directory of Open Access Journals (Sweden)

    Gheroghe Popescu

    2007-05-01

    Full Text Available Expert systems are built with the help of: specialised programming languages or expert system generators (shell. But this structure was reached after tens of years of work and research, because expert systems are nothing but pragmatic capitalisation of the results of research carried out in artificial intelligence and theory of knowledge.

  16. System and method for creating expert systems

    Science.gov (United States)

    Hughes, Peter M. (Inventor); Luczak, Edward C. (Inventor)

    1998-01-01

    A system and method provides for the creation of a highly graphical expert system without the need for programming in code. An expert system is created by initially building a data interface, defining appropriate Mission, User-Defined, Inferred, and externally-generated GenSAA (EGG) data variables whose data values will be updated and input into the expert system. Next, rules of the expert system are created by building appropriate conditions of the rules which must be satisfied and then by building appropriate actions of rules which are to be executed upon corresponding conditions being satisfied. Finally, an appropriate user interface is built which can be highly graphical in nature and which can include appropriate message display and/or modification of display characteristics of a graphical display object, to visually alert a user of the expert system of varying data values, upon conditions of a created rule being satisfied. The data interface building, rule building, and user interface building are done in an efficient manner and can be created without the need for programming in code.

  17. Bitcoin System

    Directory of Open Access Journals (Sweden)

    Jan Lánský

    2017-06-01

    Full Text Available Cryptocurrency systems are purely digital and decentralized systems that use cryptographic principles to confirm transactions. Bitcoin is the first and also the most widespread cryptocurrency. The aim of this article is to introduce Bitcoin system using a language understandable also to readers without computer science education. This article captures the Bitcoin system from three perspectives: internal structure, network and users. Emphasis is placed on brief and clear definitions (system components and their mutual relationships. A new system view of the stated terms constitutes author’s own contribution.

  18. Waste receiving and processing plant control system; system design description

    Energy Technology Data Exchange (ETDEWEB)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  19. Waste receiving and processing plant control system; system design description

    International Nuclear Information System (INIS)

    LANE, M.P.

    1999-01-01

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1

  20. Supporting Space Systems Design via Systems Dependency Analysis Methodology

    Science.gov (United States)

    Guariniello, Cesare

    The increasing size and complexity of space systems and space missions pose severe challenges to space systems engineers. When complex systems and Systems-of-Systems are involved, the behavior of the whole entity is not only due to that of the individual systems involved but also to the interactions and dependencies between the systems. Dependencies can be varied and complex, and designers usually do not perform analysis of the impact of dependencies at the level of complex systems, or this analysis involves excessive computational cost, or occurs at a later stage of the design process, after designers have already set detailed requirements, following a bottom-up approach. While classical systems engineering attempts to integrate the perspectives involved across the variety of engineering disciplines and the objectives of multiple stakeholders, there is still a need for more effective tools and methods capable to identify, analyze and quantify properties of the complex system as a whole and to model explicitly the effect of some of the features that characterize complex systems. This research describes the development and usage of Systems Operational Dependency Analysis and Systems Developmental Dependency Analysis, two methods based on parametric models of the behavior of complex systems, one in the operational domain and one in the developmental domain. The parameters of the developed models have intuitive meaning, are usable with subjective and quantitative data alike, and give direct insight into the causes of observed, and possibly emergent, behavior. The approach proposed in this dissertation combines models of one-to-one dependencies among systems and between systems and capabilities, to analyze and evaluate the impact of failures or delays on the outcome of the whole complex system. The analysis accounts for cascading effects, partial operational failures, multiple failures or delays, and partial developmental dependencies. The user of these methods can

  1. VESUVIUS PENTALOGUE: Interdisciplinary Science for Disaster Resilience and Sustainability of Populations Surrounding Vesuvius

    Science.gov (United States)

    Dobran, F.

    2015-12-01

    VESUVIUS PENTALOGUE is an elaboration of VESUVIUS 2000 scientific initiative aimed at volcanic risk reduction in the Vesuvius area. Its 5 building blocks are: (1) The current strategy of volcanic risk management (massive deportation of population) is both problematic and unacceptable. (2) A continuing close habitation of the population with the volcano should be the crucial cultural point to be pursued. This can be accomplished through a redefinition of the danger zone around Summa-Vesuvius as follows: (a) An exclusion nucleus should be established that prohibits all future human settlements and discourage the existing ones; (b) A resilience belt, housing most of the current population, should be established; (c) A sustainable area should be established beyond the resilience belt, allowing for both sustainable practices and temporary resettlements of the "resilience belt" citizens. (3) The built environment construction codes for the population of the danger zone should be established by utilizing Plinian eruption scenarios, scenario-based seismic hazard assessment and zonation, (c) dynamic structural analyses, (d) global volcanic simulations modeling of thermo-fluid dynamic eruption processes. (4) The volcanic risk information and education should involve an effective volcanic risk information campaign and active public preparedness strategy. This should be implemented for the exclusion nucleus, resilience belt, and sustainable area regions surrounding Summa-Vesuvius. A Volcanic Risk Education Safety Program should be implemented in all schools located within each of the above areas surrounding the volcano. (5)The political Authorities and the scientific community should produce a "memorandum of understanding" that univocally establishes an effective collaboration, and periodic progress reports that keep the populations informed on the improvements leading to the realization of the above objectives. For further details see www.gvess.org.

  2. Stand-alone core sensitivity and uncertainty analysis of ALFRED from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Pérez-Valseca, A.-D.; Espinosa-Paredes, G.; François, J.L.; Vázquez Rodríguez, A.; Martín-del-Campo, C.

    2017-01-01

    Highlights: • Methodology based on Monte Carlo simulation. • Sensitivity analysis of Lead Fast Reactor (LFR). • Uncertainty and regression analysis of LFR. • 10% change in the core inlet flow, the response in thermal power change is 0.58%. • 2.5% change in the inlet lead temperature the response is 1.87% in power. - Abstract: The aim of this paper is the sensitivity and uncertainty analysis of a Lead-Cooled Fast Reactor (LFR) based on Monte Carlo simulation of sizes up to 2000. The methodology developed in this work considers the uncertainty of sensitivities and uncertainty of output variables due to a single-input-variable variation. The Advanced Lead fast Reactor European Demonstrator (ALFRED) is analyzed to determine the behavior of the essential parameters due to effects of mass flow and temperature of liquid lead. The ALFRED core mathematical model developed in this work is fully transient, which takes into account the heat transfer in an annular fuel pellet design, the thermo-fluid in the core, and the neutronic processes, which are modeled with point kinetic with feedback fuel temperature and expansion effects. The sensitivity evaluated in terms of the relative standard deviation (RSD) showed that for 10% change in the core inlet flow, the response in thermal power change is 0.58%, and for 2.5% change in the inlet lead temperature is 1.87%. The regression analysis with mass flow rate as the predictor variable showed statistically valid cubic correlations for neutron flux and linear relationship neutron flux as a function of the lead temperature. No statistically valid correlation was observed for the reactivity as a function of the mass flow rate and for the lead temperature. These correlations are useful for the study, analysis, and design of any LFR.

  3. Comparison of fuel assemblies in lead cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G., E-mail: alejandria.peval@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  4. Gas absorption and discharge behaviors of lead-lithium

    International Nuclear Information System (INIS)

    Sakabe, Toshiro; Yokomine, Takehiko; Kunugi, Tomoaki; Kawara, Zensaku; Ueki, Yoshitaka; Tanaka, Teruya

    2014-01-01

    Highlights: • The absorption of argon in the lead-lithium is comparable with that of helium even at the solid state. • For the molten state of lead-lithium, the absorption of argon could be larger than that of helium. • It is observed that the argon tends to desorb when the phase change of lead-lithium occurs. • It is observed from the TPD-MS analysis that the argon tends to desorb when the phase change of lead-lithium occurs. - Abstract: The absorption of rare gas in the lead-lithium has been quite low and the gas is used as a cover-gas to control the environment of experiment. In our previous thermo-fluid experiment by using lithium-lead, it was found the cover gas pressure enclosed in the very leak tight container of lithium-lead was decreased with time, that is, the gas-absorption of the solid lithium-lead occurred at room temperature under atmospheric pressure. The variation of pressure exceeded the retention of argon in lead-lithium which is expected by the published data. Therefore, we aim to confirm those phenomena under well-controlled experimental condition by using argon, nitrogen and helium. According to the results of gas exposure tests, the absorption of argon in the lead-lithium is comparable with that of helium even at the solid state. For the molten state of lead-lithium, the absorption of argon could be larger than that of helium. It is also observed from the TPD-MS analysis that the argon tends to desorb when the phase change of lead-lithium occurs. If the retention of argon in the lead-lithium cannot be ignored, the problem of Ar-41 activity should be taken into consideration as well as the problem of argon bubble in the lead-lithium

  5. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  6. Comparison of fuel assemblies in lead cooled fast reactors

    International Nuclear Information System (INIS)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G.

    2016-09-01

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  7. Embedded systems handbook networked embedded systems

    CERN Document Server

    Zurawski, Richard

    2009-01-01

    Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area

  8. Modern system architectures in embedded systems

    International Nuclear Information System (INIS)

    Korhonen, T.

    2012-01-01

    Several new technologies are making their way also in embedded systems. In addition to the FPGA technology which has become commonplace, multi-core CPUs and I/O virtualization (the implementation of the tasks of a software hyper-visor in hardware to improve the efficiency) are being introduced to the embedded systems. In this paper we review the trends and discuss how to take advantage of these features in control systems. Some potential application examples like parallelization, data streaming, high-speed data acquisition and virtualization are discussed

  9. Nonlinearity of colloid systems oxyhydrate systems

    CERN Document Server

    Sucharev, Yuri I

    2008-01-01

    The present monograph is the first systematic study of the non-linear characteristic of gel oxy-hydrate systems involving d- and f- elements. These are the oxyhydrates of rare-earth elements and oxides - hydroxides of d- elements (zirconium, niobium, titanium, etc.) The non-linearity of these gel systems introduces fundamental peculiarities into their structure and, consequently, their properties. The polymer-conformational diversity of energetically congenial gel fragments, which continu-ously transform under the effect of, for instance, system dissipation heat, is central to the au-thor's hy

  10. Systems of Systems: Scaling up the Development Program

    National Research Council Canada - National Science Library

    Humphrey, Watts

    2006-01-01

    ... into system-of-systems structures. Section 3 points out how large-scale systems development efforts have typically failed because of project-management and not technical problems, and that the solutions to these problems...

  11. COGNITIVE SYSTEMS. REDEFINING THE COOPERATION BETWEEN MAN AND SYSTEM

    Directory of Open Access Journals (Sweden)

    Diana-Aderina MOISUC

    2016-12-01

    Full Text Available Cognitive systems appeared as a response to the real challenges brought by the Big Data phenomenon. It was found that the solutions for solving difficult problems caused by this phenomenon could be brought by using artificial intelligence tools. In this context a convergence between Big Data and Artificial Intelligence happened, which determined the start of a new stage in system development, namely the era of cognitive systems. The potential of these systems is given by the characteristics that differentiate them from other systems. The cognitive systems offered solutions and were used with success in complex projects from the medical and financial sectors. The architecture of cognitive systems is complex. These systems are designed so that they use artificial intelligence tools when processing source content, producing analytical solutions which can be used in the decision process. In this paper base concepts, the characteristics and architecture of cognitive systems, the benefits brought by the development and use of them were presented.

  12. Systems effectiveness

    CERN Document Server

    Habayeb, A R

    1987-01-01

    Highlights three principal applications of system effectiveness: hardware system evaluation, organizational development and evaluation, and conflict analysis. The text emphasizes the commonality of the system effectiveness discipline. The first part of the work presents a framework for system effectiveness, partitioning and hierarchy of hardware systems. The second part covers the structure, hierarchy, states, functions and activities of organizations. Contains an extended Appendix on mathematical concepts and also several project suggestions.

  13. Auxiliary systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1981-01-01

    Systems included under the heading ''Reactor Auxillary Systems'' are those immediately involved with the reactor operation. These include the systems for dosing and letdown of reactor coolant, as well as for the chemical dosing, purification and treatment of the reactor coolant and the cooling system in the controlled area. The ancillary systems are mainly responsible for liquid and gaseous treatment and the waste treatment for final storage. (orig.)

  14. Situation Awareness with Systems of Systems

    NARCIS (Netherlands)

    Laar, P. van de; Tretmans, J.; Borth, M.

    2013-01-01

    This book discusses various aspects, challenges, and solutions for developing systems-of-systems for situation awareness, using applications in the domain of maritime safety and security. Topics include advanced, multi-objective visualization methods for situation awareness, stochastic outlier

  15. 3S - Systematic, systemic, and systems biology and toxicology.

    Science.gov (United States)

    Smirnova, Lena; Kleinstreuer, Nicole; Corvi, Raffaella; Levchenko, Andre; Fitzpatrick, Suzanne C; Hartung, Thomas

    2018-01-01

    A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.

  16. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  17. An algebraic method for system reduction of stationary Gaussian systems

    NARCIS (Netherlands)

    D. Jibetean; J.H. van Schuppen (Jan)

    2003-01-01

    textabstractSystem identification for a particular approach reduces to system reduction, determining for a system with a high state-space dimension a system of low state-space dimension. For Gaussian systems the problem of system reduction is considered with the divergence rate criterion. The

  18. Open systems dependability dependability engineering for ever-changing systems

    CERN Document Server

    Tokoro, Mario

    2015-01-01

    The book describes a fundamentally new approach to software dependability, considering a software system as an ever-changing system due to changes in service objectives, users' requirements, standards and regulations, and to advances in technology. Such a system is viewed as an Open System since its functions, structures, and boundaries are constantly changing. Thus, the approach to dependability is called Open Systems Dependability. The DEOS technology realizes Open Systems Dependability. It puts more emphasis on stakeholders' agreement and accountability achievement for business/service cont

  19. System of Systems Analytic Workbench - 2017

    Science.gov (United States)

    2017-08-31

    Genetic Algorithm and Particle Swarm Optimization with Type-2 Fuzzy Sets for Generating Systems of Systems Architectures. Procedia Computer Science...The application effort involves modeling an existing messaging network to perform real-time situational awareness. The Analytical Workbench’s

  20. System Modeling and Trust Evaluation of Distributed Systems

    OpenAIRE

    Alhadad , Nagham; Serrano-Alvarado , Patricia; Busnel , Yann; Lamarre , Philippe

    2015-01-01

    International audience; Nowadays, digital systems are connected through complex architectures. These systems involve persons, physical and digital resources such that we can consider that a system consists of elements from two worlds, the social world and the digital world, and their relations. Users perform activities like chatting, buying, sharing data, etc. Evaluating and choosing appropriate systems involve aspects like functionality, performance, QoS, ease of use, or price. Recently, tru...

  1. Systems thinking.

    Science.gov (United States)

    Cabrera, Derek; Colosi, Laura; Lobdell, Claire

    2008-08-01

    Evaluation is one of many fields where "systems thinking" is popular and is said to hold great promise. However, there is disagreement about what constitutes systems thinking. Its meaning is ambiguous, and systems scholars have made diverse and divergent attempts to describe it. Alternative origins include: von Bertalanffy, Aristotle, Lao Tsu or multiple aperiodic "waves." Some scholars describe it as synonymous with systems sciences (i.e., nonlinear dynamics, complexity, chaos). Others view it as taxonomy-a laundry list of systems approaches. Within so much noise, it is often difficult for evaluators to find the systems thinking signal. Recent work in systems thinking describes it as an emergent property of four simple conceptual patterns (rules). For an evaluator to become a "systems thinker", he or she need not spend years learning many methods or nonlinear sciences. Instead, with some practice, one can learn to apply these four simple rules to existing evaluation knowledge with transformative results.

  2. Physical system requirements: Overall system

    International Nuclear Information System (INIS)

    1992-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Direct subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. This approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. The functional analysis approach recognizes that just the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being

  3. Using system dynamics simulation for assessment of hydropower system safety

    Science.gov (United States)

    King, L. M.; Simonovic, S. P.; Hartford, D. N. D.

    2017-08-01

    Hydropower infrastructure systems are complex, high consequence structures which must be operated safely to avoid catastrophic impacts to human life, the environment, and the economy. Dam safety practitioners must have an in-depth understanding of how these systems function under various operating conditions in order to ensure the appropriate measures are taken to reduce system vulnerability. Simulation of system operating conditions allows modelers to investigate system performance from the beginning of an undesirable event to full system recovery. System dynamics simulation facilitates the modeling of dynamic interactions among complex arrangements of system components, providing outputs of system performance that can be used to quantify safety. This paper presents the framework for a modeling approach that can be used to simulate a range of potential operating conditions for a hydropower infrastructure system. Details of the generic hydropower infrastructure system simulation model are provided. A case study is used to evaluate system outcomes in response to a particular earthquake scenario, with two system safety performance measures shown. Results indicate that the simulation model is able to estimate potential measures of system safety which relate to flow conveyance and flow retention. A comparison of operational and upgrade strategies is shown to demonstrate the utility of the model for comparing various operational response strategies, capital upgrade alternatives, and maintenance regimes. Results show that seismic upgrades to the spillway gates provide the largest improvement in system performance for the system and scenario of interest.

  4. System Study: Emergency Power System 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. An extremely statistically significant increasing trend was observed for EPS system unreliability for an 8-hour mission. A statistically significant increasing trend was observed for EPS system start-only unreliability.

  5. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    Science.gov (United States)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  6. Conceptual System of Systems Enabling Maritime Dominance in the Littorals

    National Research Council Canada - National Science Library

    Holmes, Matt

    2004-01-01

    .... Focusing on only system-of systems (SoS) concepts, we consider a system of only manned platforms, a system of primarily unmanned platforms, and a balanced hybrid system of manned and unmanned platforms...

  7. Airport Information Retrieval System (AIRS) System Support Manual

    Science.gov (United States)

    1973-01-01

    This handbook is a support manual for prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load prediction...

  8. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  9. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  10. Supervisory Control and Diagnostics System Distributed Operating System

    International Nuclear Information System (INIS)

    McGoldrick, P.R.

    1979-01-01

    This paper contains a description of the Supervisory Control and Diagnostics System (SCDS) Distributed Operating System. The SCDS consists of nine 32-bit minicomputers with shared memory. The system's main purpose is to control a large Mirror Fusion Test Facility

  11. Optimization of System Maturity and Equivalent System Mass for Exploration Systems Development Planning

    Science.gov (United States)

    Magnaye, Romulo; Tan, Weiping; Ramirez-Marquez, Jose; Sauser, Bruce

    2010-01-01

    The Exploration Systems Mission Directorate of the National Aeronautics and Space Administration (NASA) is currently pursuing the development of the next generation of human spacecraft and exploration systems throughout the Constellation Program. This includes, among others, habitation technologies for supporting lunar and Mars exploration. The key to these systems is the Exploration Life Support (ELS) system that composes several technology development projects related to atmosphere revitalization, water recovery, waste management and habitation. The proper functioning of these technologies is meant to produce sufficient and balanced resources of water, air, and food to maintain a safe and comfortable environment for long-term human habitation and exploration of space.

  12. Measurement system as a subsystem of the quality management system

    Directory of Open Access Journals (Sweden)

    Ľubica Floreková

    2006-12-01

    Full Text Available Each measurement system and a control principle must be based on certain facts about the system behaviour (what, operation (how and structure (why. Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirements defines the measurement, analysis and improvement for each organization in order to present the products conformity, the quality management system conformity guarantee and for the continuously permanent improvement of effectivity, efficiency and economy of quality management system.

  13. Emergent nested systems a theory of understanding and influencing complex systems as well as case studies in urban systems

    CERN Document Server

    Walloth, Christian

    2016-01-01

    This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...

  14. Quality management system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mu Sung

    2009-08-15

    This book deals with ISO9001 quality management system which includes summary of this system such as classification of quality, principle of quality management, and definition, requirement and procedure of quality management system, introduction of ISO9001 system like model of ISO9001 quality management system, ISO certificate system, structure of ISO9001 standard, requirement of ISO9001 quality management system, process approach and documentation of system, propel cases of ISO9001 quality management system.

  15. Quality management system

    International Nuclear Information System (INIS)

    Lee, Mu Sung

    2009-08-01

    This book deals with ISO9001 quality management system which includes summary of this system such as classification of quality, principle of quality management, and definition, requirement and procedure of quality management system, introduction of ISO9001 system like model of ISO9001 quality management system, ISO certificate system, structure of ISO9001 standard, requirement of ISO9001 quality management system, process approach and documentation of system, propel cases of ISO9001 quality management system.

  16. Proposing a Process-Oriented Systems Research for Systems Thinking Development

    Directory of Open Access Journals (Sweden)

    Jae Eon Yu

    2017-04-01

    Full Text Available This paper discusses systems thinking development from Churchman’s systems ideas related to critical systems practice that appreciates the use of systems methods from sociolinguistic perspectives and poststructuralist thought. Systems research enabled us to understand and reinterpret Churchman’s philosophy and systems approach through the works of Deleuze and Foucault. Based upon the interpretation of Churchman’s philosophy and systems approach, I propose ‘process-oriented systems research’ developed from the use of social appreciative process and Churchman’s metasystem approach. By applying a metasystem approach into practice, I basically appreciate Deleuzian ethics and Foucault’s theory of discourse in order to deal with issues of power and knowledge, and metaethics or moral epistemology, where the meaning of good or bad is discussed. A detailed account of an application of process-oriented systems research is given to demonstrate how I use systems methods to examine the usefulness of the systems research in practice.

  17. Measurement system as a subsystem of the quality management system

    OpenAIRE

    Ľubica Floreková; Ján Terpák; Marcela Čarnogurská

    2006-01-01

    Each measurement system and a control principle must be based on certain facts about the system behaviour (what), operation (how) and structure (why). Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirem...

  18. Study on Korean Radiological Emergency System-Care System- and National Nuclear Emergency Preparedness System Development

    International Nuclear Information System (INIS)

    Akhmad Khusyairi; Yudi Pramono

    2008-01-01

    Care system; Radiological Emergency Supporting System. Environmental radiology level is the main aspect that should be concerned deal with the utilization of nuclear energy. The usage of informational technology in nuclear area gives significant contribution to anticipate and to protect human and environment. Since 1960, South Korea has developed environment monitoring system as the effort to protect the human and environment in the radiological emergency condition. Indonesia has possessed several nuclear installations and planned to build and operate nuclear power plants (PLTN) in the future. Therefore, Indonesia has to prepare the integrated system, technically enables to overcome the radiological emergency. Learning from the practice in South Korea, the system on the radiological emergency should be prepared and applied in Indonesia. However, the government regulation draft on National Radiological Emergency System, under construction, only touches the management aspect, not the technical matters. Consequently, when the regulation is implemented, it will need an additional regulation on technical aspect including the consideration on the system (TSS), the organization of operator and the preparation of human resources development of involved institution. For that purpose, BAPETEN should have a typical independence system in regulatory frame work. (author)

  19. System-level musings about system-level science (Invited)

    Science.gov (United States)

    Liu, W.

    2009-12-01

    In teleology, a system has a purpose. In physics, a system has a tendency. For example, a mechanical system has a tendency to lower its potential energy. A thermodynamic system has a tendency to increase its entropy. Therefore, if geospace is seen as a system, what is its tendency? Surprisingly or not, there is no simple answer to this question. Or, to flip the statement, the answer is complex, or complexity. We can understand generally why complexity arises, as the geospace boundary is open to influences from the solar wind and Earth’s atmosphere and components of the system couple to each other in a myriad of ways to make the systemic behavior highly nonlinear. But this still begs the question: What is the system-level approach to geospace science? A reductionist view might assert that as our understanding of a component or subsystem progresses to a certain point, we can couple some together to understand the system on a higher level. However, in practice, a subsystem can almost never been observed in isolation with others. Even if such is possible, there is no guarantee that the subsystem behavior will not change when coupled to others. Hence, there is no guarantee that a subsystem, such as the ring current, has an innate and intrinsic behavior like a hydrogen atom. An absolutist conclusion from this logic can be sobering, as one would have to trace a flash of aurora to the nucleosynthesis in the solar core. The practical answer, however, is more promising; it is a mix of the common sense we call reductionism and awareness that, especially when strongly coupled, subsystems can experience behavioral changes, breakdowns, and catastrophes. If the stock answer to the systemic tendency of geospace is complexity, the objective of the system-level approach to geospace science is to define, measure, and understand this complexity. I will use the example of magnetotail dynamics to illuminate some key points in this talk.

  20. Open System Architecture design for planet surface systems

    Science.gov (United States)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.